WorldWideScience

Sample records for accurate gps time-linked

  1. Accurate GPS Time-Linked data Acquisition System (ATLAS II) user's manual.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Perry L.; Zayas, Jose R.; Ortiz-Moyet, Juan (PrimeCore Systems Inc., Albuquerque, NM)

    2004-02-01

    The Accurate Time-Linked data Acquisition System (ATLAS II) is a small, lightweight, time-synchronized, robust data acquisition system that is capable of acquiring simultaneous long-term time-series data from both a wind turbine rotor and ground-based instrumentation. This document is a user's manual for the ATLAS II hardware and software. It describes the hardware and software components of ATLAS II, and explains how to install and execute the software.

  2. Accurate Realization of GPS Vertical Global Reference Frame

    Science.gov (United States)

    Elosegui, Pedro

    2004-01-01

    The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.

  3. Accurate Localization of Communicant Vehicles using GPS and Vision Systems

    Directory of Open Access Journals (Sweden)

    Georges CHALLITA

    2009-07-01

    Full Text Available The new generation of ADAS systems based on cooperation between vehicles can offer serious perspectives to the road security. The inter-vehicle cooperation is made possible thanks to the revolution in the wireless mobile ad hoc network. In this paper, we will develop a system that will minimize the imprecision of the GPS used to car tracking, based on the data given by the GPS which means the coordinates and speed in addition to the use of the vision data that will be collected from the loading system in the vehicle (camera and processor. Localization information can be exchanged between the vehicles through a wireless communication device. The creation of the system must adopt the Monte Carlo Method or what we call a particle filter for the treatment of the GPS data and vision data. An experimental study of this system is performed on our fleet of experimental communicating vehicles.

  4. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  5. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    Science.gov (United States)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  6. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling

    Indian Academy of Sciences (India)

    G Sasibhushana Rao

    2007-10-01

    The positional accuracy of the Global Positioning System (GPS)is limited due to several error sources.The major error is ionosphere.By augmenting the GPS,the Category I (CAT I)Precision Approach (PA)requirements can be achieved.The Space-Based Augmentation System (SBAS)in India is known as GPS Aided Geo Augmented Navigation (GAGAN).One of the prominent errors in GAGAN that limits the positional accuracy is instrumental biases.Calibration of these biases is particularly important in achieving the CAT I PA landings.In this paper,a new algorithm is proposed to estimate the instrumental biases by modelling the TEC using 4th order polynomial.The algorithm uses values corresponding to a single station for one month period and the results confirm the validity of the algorithm.The experimental results indicate that the estimation precision of the satellite-plus-receiver instrumental bias is of the order of ± 0.17 nsec.The observed mean bias error is of the order − 3.638 nsec and − 4.71 nsec for satellite 1 and 31 respectively.It is found that results are consistent over the period.

  7. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    Science.gov (United States)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-01-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154

  8. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    Science.gov (United States)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  9. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-12-01

    Full Text Available With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.

  10. Accurate Solution of Navigation Equations in GPS Receivers for Very High Velocities Using Pseudorange Measurements

    Directory of Open Access Journals (Sweden)

    N. Rahemi

    2014-01-01

    Full Text Available GPS is a satellite-based navigation system that is able to determine the exact position of objects on the Earth, sky, or space. By increasing the velocity of a moving object, the accuracy of positioning decreases; meanwhile, the calculation of the exact position in the movement by high velocities like airplane movement or very high velocities like satellite movement is so important. In this paper, seven methods for solving navigation equations in very high velocities using least squares method and its combination with the variance estimation methods for weighting observations based on their qualities are studied. Simulations on different data with different velocities from 100 m/s to 7000 m/s show that proposed method can improve the accuracy of positioning more than 50%.

  11. Accurate Quantification of Grassland Cover Density in an Alpine Meadow Soil Based on Remote Sensing and GPS

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Sui; HU Ye-Cui; PENG Liu-Ying

    2005-01-01

    The principles of remotely estimating grassland cover density in an alpine meadow soil from space lie in the synchronous collection of in situ samples with the satellite pass and statistically linking these cover densities to their image properties according to their geographic coordinates. The principles and procedures for quantifying grassland cover density from satellite image data were presented with an example from Qinghai Lake, China demonstrating how quantification could be made more accurate through the integrated use of remote sensing and global positioning systems (GPS). An empirical model was applied to an entire satellite image to convert pixel values into ground cover density. Satellite data based on 68 field samples was used to produce a map of ten cover densities. After calibration a strong linear regression relationship (r2 = 0.745) between pixel values on the satellite image and in situ measured grassland cover density was established with an 89% accuracy level. However, to minimize positional uncertainty of field samples, integrated use of hyperspatial satellite data and GPS could be utilized. This integration could reduce disparity in ground and space sampling intervals,and improve future quantification accuracy even more.

  12. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    Science.gov (United States)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  13. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    OpenAIRE

    Shiyao Wang; Zhidong Deng; Gang Yin

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ...

  14. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    Science.gov (United States)

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  15. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    Science.gov (United States)

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  16. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  17. GPS Separator

    CERN Multimedia

    2016-01-01

    Footage of the 70 degree ISOLDE GPS separator magnet MAG70 as well as the switchyard for the Central Mass and GLM (GPS Low Mass) and GHM (GPS High Mass) beamlines in the GPS separator zone. In the GPS20 vacuum sector equipment such as the long GPS scanner 482 / 483 unit, faraday cup FC 490, vacuum valves and wiregrid piston WG210 and WG475 and radiation monitors can also be seen. Also the RILIS laser guidance and trajectory can be seen, the GPS main beamgate switch box and the actual GLM, GHM and Central Beamline beamgates in the beamlines as well as the first electrostatic quadrupoles for the GPS lines. Close up of the GHM deflector plates motor and connections and the inspection glass at the GHM side of the switchyard.

  18. Adaptive Missile Guidance Using GPS

    Directory of Open Access Journals (Sweden)

    Pallavi Sharad Rupnar

    2013-05-01

    Full Text Available The name adaptive means we can guide any missile using GPS in any critical conditions. GPS guided missiles, using the exceptional navigational and surveying abilities of GPS, after being launched, could deliver a warhead to any part of the globe via the interface of the onboard computer in the missile with the GPS satellite system.GPS allows accurate targeting of various military weapons including ICBMs, cruise missiles and precision-guided munitions. Artillery projectiles with embedded GPS receivers able to withstand accelerations of 12,000 G have been developed for use in 155mm.GPS guided weapons, with their technological advances over previous, are the superior weapon of choice in modern days

  19. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  20. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    Directory of Open Access Journals (Sweden)

    Shiyao Wang

    2016-02-01

    Full Text Available A high-performance differential global positioning system (GPS  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU/dead reckoning (DR data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  1. GPS & Roadpricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2005-01-01

    I denne artikel præsenteres analysemetoderne og resultaterne fra et eksamensprojekt omhandlende en analyse af GPS kvaliteten i forhold til roadpricing i København. Denne undersøgelse af GPS kvaliteten i forbindelse med roadpricing, er foretaget i tilknytning til det danske AKTA forsøg (www.......akta-kbh.dk), hvor GPS data er indsamlet for 500 biler over en 2-årig periode (2001-2003). Artiklen præsenterer således en analyse af GPS nøjagtigheden med henblik på at undersøge om kvalitet og pålidelighed er tilstrækkelig, til et GPS-baseret roadpricingssystem i København. Ved GPS-baseret roadpricing, udstyres...... med henblik på enhedsomkostningerne skulle være økonomisk realisable til brug i et så omfattende roadpricingssystem. Endvidere vanskeliggøres positionerings forholdene, idet bilen der ønskes positionsbestemt er i bevægelse. Når både satellitterne og GPS modtageren er i bevægelse, reduceres...

  2. {WiFi GPS} based Combined positioning Algorithm

    OpenAIRE

    Zirari, Soumaya; Canalda, Philippe; Spies, François

    2010-01-01

    International audience If nowadays, positioning becomes more and more accurate, and covers better and better a territory (indoor and outdoor), it remains territories where traditional (and basic) positioning system (GPS, gsm or WiFi) and hybrid ones (GPS-gsm, GPS-WiFi, GPS-WiFi-gsm,...) are insufficient and requires research investment treating combined positioning. In this paper we propose a GPS-WiFi combined positioning algorithm, based on trilateration technique. Real experiments and ot...

  3. Unsupervised action classification using space-time link analysis

    DEFF Research Database (Denmark)

    Liu, Haowei; Feris, Rogerio; Krüger, Volker;

    2010-01-01

    In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization methods...... in a standard dataset. Our method is inspired by the recent success of link analysis techniques in the image domain. By applying these techniques in the space-time domain, we are able to naturally take into account the spatio-temporal relationships between the video features, while leveraging the power of graph...

  4. GPS for land surveyors

    CERN Document Server

    Van Sickle, Jan

    2008-01-01

    The GPS SignalGlobal Positioning System (GPS) Signal StructureTwo ObservablesPseudorangingCarrier Phase RangingBiases and SolutionsThe Error BudgetDifferencingThe FrameworkTechnological ForerunnersVery Long Baseline InterferometryTransitNavstar GPSGPS Segment OrganizationGPS ConstellationThe Control SegmentReceivers and MethodsCommon Features of GPS ReceiversChoosing a GPS ReceiverSome GPS Surveying MethodsCoordinatesA Few Pertinent Ideas About Geodetic Datums for GPSState Plane CoordinatesHeightsGPS Surveying TechniquesStatic GPS SurveyingReal-Time Kinematic (RTK) and Differential GPS (DGPS)T

  5. GPS Sounding Rocket Developments

    Science.gov (United States)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place In the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. The NASA Sounding Rocket Program is managed by personnel from Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia. Typically around thirty of these rockets are launched each year, either from established ranges at Wallops Island, Virginia, Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico or from Canada, Norway and Sweden. Many times launches are conducted from temporary launch ranges in remote parts of the world requi6ng considerable expense to transport and operate tracking radars. An inverse differential GPS system has been developed for Sounding Rocket. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of a high accurate and useful system.

  6. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  7. GPS Separator HD

    CERN Multimedia

    2016-01-01

    Footage of the 70 degree ISOLDE GPS separator magnet MAG70 as well as the switchyard for the Central Mass and GLM (GPS Low Mass) and GHM (GPS High Mass) beamlines in the GPS separator zone. In the GPS20 vacuum sector equipment such as the long GPS scanner 482 / 483 unit, faraday cup FC 490, vacuum valves and wiregrid piston WG210 and WG475 and radiation monitors can also be seen. Also the RILIS laser guidance and trajectory can be seen, the GPS main beamgate switch box and the actual GLM, GHM and Central Beamline beamgates in the beamlines as well as the first electrostatic quadrupoles for the GPS lines. Close up of the GHM deflector plates motor and connections and the inspection glass at the GHM side of the switchyard.

  8. GLOBAL POSITIONING SYSTEM (GPS)

    OpenAIRE

    Celalettin Karaali; Ömer Yıldırım

    1996-01-01

    Use of GPS is becoming more widespread on surveying engineering. Especially, preference to GPS is increased by getting accuracy of order of milimeter, making observation on every weather forecast, without requiring intervisibility between station. Besides, developing new observation techniques and technologies in GPS increased its use in deformation easurements, monitoring crustal movements, mapping precise geoid maps, detail surveying, etc.

  9. GLOBAL POSITIONING SYSTEM (GPS

    Directory of Open Access Journals (Sweden)

    Celalettin Karaali

    1996-02-01

    Full Text Available Use of GPS is becoming more widespread on surveying engineering. Especially, preference to GPS is increased by getting accuracy of order of milimeter, making observation on every weather forecast, without requiring intervisibility between station. Besides, developing new observation techniques and technologies in GPS increased its use in deformation easurements, monitoring crustal movements, mapping precise geoid maps, detail surveying, etc.

  10. National 2000' GPS control network of China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An accurately unified national GPS network with more than 2500 stations, named "National 2000' GPS Control Network", signed the epoch 2000.0, has been established by integrating the existing six nationwide GPS networks of China set up by different departments with different objectives. This paper presents the characteristics of the existing GPS networks, summarizes the strategies in the integrated adjustment of the GPS network, including functional model, stochastic model as well as the adjustment principle modification. By modifying the adjustment strategies according to the characteristics of the existing GPS networks and under the support of the IGS stations, the accuracy of the integrated national GPS network is greatly improved. The datum differences among the sub networks disappear, the systematic error influences are weakened, and the effects of the outliers on the estimated coordinates and their variances are controlled. It is shown that the average standard deviation for the horizontal component is smaller than 1.0 cm, the vertical component is smaller than 2.0 cm, and the three-dimensional (3-D) position of geocenter coordinates is smaller than 3.0 cm. The exterior checking accuracy for the 3-D position is averagely better than 1.0 cm.

  11. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  12. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  13. Chip Advancer For GPS Receiver

    Science.gov (United States)

    Meehan, Thomas K.; Srinivasan, Jeffrey M.; Thomas, J. Brooks

    1989-01-01

    Instrument errors made negligible. For each integration interval, both delay and rate of change of delay initialized to small fraction of chip - for example, to order of 10 to the negative 7th power - thereby making feedback control and extraction of delay highly accurate and flexible. With appropriate selection of sampling rate relative to chip rate, commensurability errors reduced to extremely small levels. In Global Positioning System (GPS) receiver, pseudorandom code sequence generated by simple digital logic incorporating effects of time, delay, and rate of change of delay. Flexibility in starting time and sum interval very useful in aligning correlation interval with beginnings and endings of data bits.

  14. GPs' experiences with loneliness.

    NARCIS (Netherlands)

    Ravesteijn, H van; Lucassen, P.; Akker, M. van den

    2008-01-01

    BACKGROUND: Loneliness has a negative influence on health. General practitioners are confronted with lonely patients in their daily practice, but there is little information about how GPs deal with loneliness. METHODS: A qualitative study using semistructured interviews with 20 GPs who practise inte

  15. The application of GPS time information in the telemetry ground station

    International Nuclear Information System (INIS)

    GPS time information is a kind of practicable information resource that can be shared all over the world. Now it is the most accurate wireless time information. The major of this paper is the application information of GPS time information in telemetry. The main point introduces how to make use of the GPS time information to produce GPS-IRIG-B time code for proving ground and how to send time information to related equipment in telemetry ground station

  16. GPS Satellites Orbits: Resonance

    Directory of Open Access Journals (Sweden)

    Luiz Danilo Damasceno Ferreira

    2009-01-01

    Full Text Available The effects of perturbations due to resonant geopotential harmonics on the semimajor axis of GPS satellites are analyzed. For some GPS satellites, secular perturbations of about 4 m/day can be obtained by numerical integration of the Lagrange planetary equations considering in the disturbing potential the main secular resonant coefficients. Amplitudes for long-period terms due to resonant coefficients are also exhibited for some hypothetical satellites orbiting in the neighborhood of the GPS satellites orbits. The results are important to perform orbital maneuvers of GPS satellites such that they stay in their nominal orbits. Also, for the GPS satellites that are not active, the long-period effects due to the resonance must be taken into account in the surveillance of the orbital evolutions of such debris.

  17. Ionospheric modelling using GPS to calibrate the MWA. 1: Comparison of first order ionospheric effects between GPS models and MWA observations

    CERN Document Server

    Arora, B S; Ord, S M; Tingay, S J; Hurley-Walker, N; Bell, M; Bernardi, G; Bhat, R; Briggs, F; Callingham, J R; Deshpande, A A; Dwarakanath, K S; Ewall-Wice, A; Feng, L; For, B -Q; Hancock, P; Hazelton, B J; Hindson, L; Jacobs, D; Johnston-Hollitt, M; Kapińska, A D; Kudryavtseva, N; Lenc, E; McKinley, B; Mitchell, D; Oberoi, D; Offringa, A R; Pindor, B; Procopio, P; Riding, J; Staveley-Smith, L; Wayth, R B; Wu, C; Zheng, Q; Bowman, J D; Cappallo, R J; Corey, B E; Emrich, D; Goeke, R; Greenhill, L J; Kaplan, D L; Kasper, J C; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Morales, M F; Morgan, E; Prabu, T; Rogers, A E E; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2015-01-01

    We compare first order (refractive) ionospheric effects seen by the Murchison Widefield Array (MWA) with the ionosphere as inferred from Global Positioning System (GPS) data. The first order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the Center for Orbit Determination in Europe (CODE), using data from globally distributed GPS receivers. However, for the more accurate local ionosphere estimates required for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver Differential Code Biases (DCBs). The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling, a requirement for establishing dense GPS networks in arbitr...

  18. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing...... of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic. The GPS measurements are compared with the Arctic tidal model AOTIM-5, which assimilates tide...

  19. Fundamentals of GPS Receivers A Hardware Approach

    CERN Document Server

    Doberstein, Dan

    2012-01-01

    While much of the current literature on GPS receivers is aimed at those intimately familiar with their workings, this volume summarizes the basic principles using as little mathematics as possible, and details the necessary specifications and circuits for constructing a GPS receiver that is accurate to within 300 meters. Dedicated sections deal with the features of the GPS signal and its data stream, the details of the receiver (using a hybrid design as exemplar), and more advanced receivers and topics including time and frequency measurements. Later segments discuss the Zarlink GPS receiver chip set, as well as providing a thorough examination of the TurboRogue receiver, one of the most accurate yet made. Guiding the reader through the concepts and circuitry, from the antenna to the solution of user position, the book’s deployment of a hybrid receiver as a basis for discussion allows for extrapolation of the core ideas to more complex, and more accurate designs. Digital methods are used, but any analogue c...

  20. Mass balance assessment using GPS

    Science.gov (United States)

    Hulbe, Christina L.

    1993-01-01

    Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.

  1. GPS system simulation methodology

    Science.gov (United States)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  2. Uav Onboard GPS in Positioning Determination

    Science.gov (United States)

    Tahar, K. N.; Kamarudin, S. S.

    2016-06-01

    The establishment of ground control points is a critical issue in mapping field, especially for large scale mapping. The fast and rapid technique for ground control point's establishment is very important for small budget projects. UAV onboard GPS has the ability to determine the point positioning. The objective of this research is to assess the accuracy of unmanned aerial vehicle onboard global positioning system in positioning determination. Therefore, this research used UAV onboard GPS as an alternative to determine the point positioning at the selected area. UAV is one of the powerful tools for data acquisition and it is used in many applications all over the world. This research concentrates on the error contributed from the UAV onboard GPS during observation. There are several points that have been used to study the pattern of positioning error. All errors were analyzed in world geodetic system 84- coordinate system, which is the basic coordinate system used by the global positioning system. Based on this research, the result of UAV onboard GPS positioning could be used in ground control point establishment with the specific error. In conclusion, accurate GCP establishment could be achieved using UAV onboard GPS by applying a specific correction based on this research.

  3. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards. PMID:27552205

  4. Terrestrial Reference Frame from GPS and SLR

    Science.gov (United States)

    Weiss, Jan; Bertiger, Willy; Desai, Shailen; Haines, Bruce; Sibois, Aurore

    2015-04-01

    We present strategies for realizing the terrestrial reference frame (TRF) using tracking data from terrestrial GPS receivers alone and in tandem with the GRACE and LAGEOS satellites. We generate solutions without apriori ties to the International Terrestrial Reference Frame (ITRF). Our approach relies on processing multi-day orbit arcs to take advantage of the satellite dynamics, GPS receiver and transmitter calibrations derived from low-Earth orbiter (LEO) data, and estimation strategies tuned for realizing a stable and accurate TRF. We furthermore take advantage of the geometric diversity provided by GPS tracking from GRACE, and explore the impacts of including ground-based satellite laser range (SLR) measurements to LAGEOS-1 and -2 with local ties relating the two geodetic techniques. We process data from 2003-2014 and compute Helmert transformations relative to ITRF/IGb08. With GPS alone we achieve a 3D origin offset and rate of global solutions. Scale bias and rate are 3.1 ppb and 0.01 ppb/yr in either solution. Including SLR tracking from 11 ground stations to the LAGEOS satellites from 2012-2014 yields a reduction in scale bias of 0.5-1.0 ppb depending on the weight assigned to the SLR measurements. However, scatter is increased due to the relatively sparse SLR tracking network. We conclude with approaches for improving the TRF realized from GPS and SLR combined at the measurement level.

  5. How and Why to do VLBI on GPS

    CERN Document Server

    Dickey, John M

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites {\\bf in the ICRF reference frame}, i.e. relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  6. Coal mining GPS subsidence monitoring technology and its application

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Peng Xiangguo; Xu Chang hui

    2011-01-01

    We proved theoretically that geodetic height,measured with Global Positioning System (GPS),can be applied directly to monitor coal mine subsidence.Based on a Support Vector Machine (SVM) model,we built a regional geoid model with a Gaussian Radial Basis Function (RBF) and the technical scheme for GPS coal mine subsidence monitoring is presented to provide subsidence information for updating the regional Digital Elevation Model (DEM).The theory proposed was applied to monitor mining subsidence in an Inner Mongolia coal mine in China.The scheme established an accurate GPS reference network and a comprehensive leveling conjunction provided the normal height of all GPS control points.According to the case study,the SVM model to establish geoid-model is better than a polynomial fit or a Genetic Algorithm based Back Propagation (GA-BP) neural network.GPS-RTK measurements of coal mine subsidence information can be quickly acquired for updating the DEM.

  7. How and Why to Do VLBI on GPS

    Science.gov (United States)

    Dickey, J. M.

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  8. A New Indoor Positioning System Architecture Using GPS Signals

    Science.gov (United States)

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-01-01

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations. PMID:25938199

  9. Specification of a NAVSTAR Global Positioning System (GPS) receiver for a differential GPS ground system

    Science.gov (United States)

    Mccall, D. L.; Turner, R. N.

    1984-01-01

    One step towards the successful completion of a functional ground unit for the Differential Global Positioning System (DGPS) will be in choosing a currently available GPS receiver that will accurately measure the propagation times of the satellite signals and have the capability to be electrically interfaced with and controlled by a Digital Equipment Corporation (DEC) PDP-11/34A computer. The minimum requirements and characteristics of a NAVSTAR Global Positioning System (GPS) receiver are described. The specific technical specifications addressed include data accuracies and resolutions, receiver interface/external control, enclosure dimensions and mounting requirements, receiver operation, and environmental specifications.

  10. Counterrotator And Correlator For GPS Receivers

    Science.gov (United States)

    Thomas, J. Brooks; Srinivasan, Jeffrey M.; Meehan, Thomas K.

    1989-01-01

    Accurate, all-digital, high-speed processor comprising correlator and down-converter developed for receivers in Global Positioning System (GPS). Processor reduces roundoff and commensurability errors to extremely small values. Use of digital chip and phase advancers provides outstanding control and accuracy in phase and feedback. Great flexibility imparted by provision for arbitrary starting time and integration length. Minimum-bit design requires minimum number of logical elements, thereby reducing size, power, and cost.

  11. An Interdisciplinary Approach at Studying the Earth-Sun System with GPS/GNSS and GPS-like Signals

    Science.gov (United States)

    Zuffada, Cinzia; Hajj, George; Mannucci, Anthony J.; Chao, Yi; Ao, Chi; Zumberge, James

    2005-01-01

    The value of Global Positioning Satellites (GPS) measurements to atmospheric science, space physics, and ocean science, is now emerging or showing a potential to play a major role in the evolving programs of NASA, NSF and NOAA. The objective of this communication is to identify and articulate the key scientific questions that are optimally, or perhaps uniquely, addressed by GPS or GPS-like observations, and discuss their relevance to existing or planned national Earth-science research programs. The GPS-based ocean reflection experiments performed to date have demonstrated the precision and spatial resolution suitable to altimetric applications that require higher spatial resolution and more frequent repeat than the current radar altimeter satellites. GPS radio occultation is promising as a climate monitoring tool because of its benchmark properties: its raw observable is based on extremely accurate timing measurements. GPS-derived temperature profiles can provide meaningful climate trend information over decadal time scales without the need for overlapping missions or mission-to-mission calibrations. By acquiring data as GPS satellites occult behind the Earth's limb, GPS also provides high vertical resolution information on the vertical structure of electron density with global coverage. New experimental techniques will create more comprehensive TEC maps by using signals reflected from the oceans and received in orbit. This communication will discuss a potential future GNSS Earth Observing System project which would deploy a constellation of satellites using GPS and GPS-like measurements, to obtain a) topography measurements based on GPS reflections with an accuracy and horizontal resolution suitable for eddy monitoring, and h) climate-records quality atmospheric temperature profiles. The constellation would also provide for measurements of ionospheric elec tron density. This is a good example of an interdisciplinary mission concept, with broad science objectives

  12. GPS Metric Tracking Unit

    Science.gov (United States)

    2008-01-01

    As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.

  13. Ralliauton GPS-loggeri

    OpenAIRE

    Virjonen, Tuomas

    2012-01-01

    Työssä suunniteltiin ja toteutettiin GPS-sijaintitietoa tallentava laite, jonka tarkoituksena on mahdollistaa kuljetun reitin tarkasteleminen rallikilpailun jälkeen. Laite tallentaa GPS-moduulilta saadut sijaintitiedot sekä nopeuden massamuistiin, Google Earth -karttasovelluksen ymmärtämään muotoon, jolloin reitti saadaan piirrettyä suoraan sovelluksen karttapohjalle. Laitteen suunnittelussa pyrittiin ottamaan huomioon, että laitetta tullaan käyttämään kilpa-ajoneuvossa kilpailun aikana, j...

  14. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  15. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  16. GPS Applications in Construction

    OpenAIRE

    Stranger, J. W.

    2012-01-01

    This session will explore the use of GPS technology in the construction engineering aspects of highway projects. Discussion will include control of line and grade for construction equipment and how the state inspector can verify the construction is according to plans without physical surveying stakes.

  17. Networked differential GPS system

    Science.gov (United States)

    Mueller, K. Tysen (Inventor); Loomis, Peter V. W. (Inventor); Kalafus, Rudolph M. (Inventor); Sheynblat, Leonid (Inventor)

    1994-01-01

    An embodiment of the present invention relates to a worldwide network of differential GPS reference stations (NDGPS) that continually track the entire GPS satellite constellation and provide interpolations of reference station corrections tailored for particular user locations between the reference stations Each reference station takes real-time ionospheric measurements with codeless cross-correlating dual-frequency carrier GPS receivers and computes real-time orbit ephemerides independently. An absolute pseudorange correction (PRC) is defined for each satellite as a function of a particular user's location. A map of the function is constructed, with iso-PRC contours. The network measures the PRCs at a few points, so-called reference stations and constructs an iso-PRC map for each satellite. Corrections are interpolated for each user's site on a subscription basis. The data bandwidths are kept to a minimum by transmitting information that cannot be obtained directly by the user and by updating information by classes and according to how quickly each class of data goes stale given the realities of the GPS system. Sub-decimeter-level kinematic accuracy over a given area is accomplished by establishing a mini-fiducial network.

  18. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  19. MONITORING THE DYNAMIC CHARACTERISTICS OF TALL BUILDINGS BY GPS TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Dynamic characteristics of large structures,such as tall buildings,long-span suspension,cable-stayed bridges and tall chimneys,are key to assess their drift and stress conditions.The dynamic characteristics of large structures are difficult to measure directly under the condition of earthquakes or strong winds using traditional techniques such as laser collimator,total station and accelerometers.Therefore there is a great need for developing new method or technique for this purpose.Recent advances in Global Positioning System (GPS) technology provide a great opportunity to monitor long-period changes of structures reliably.GPS receivers capable to gauge the motion at the centimeter or sub-centimeter level with sampling frequency 10Hz or even 20 Hz are now available from several manufacturers.To the authors' knowledge,the capability of identifying dynamic characteristics from GPS observations has not been widely verified.For the feasibility study on using kinematic GPS technology to identify the dynamic characteristics of tall buildings,some experiments were conducted in a simulative environment.This paper discusses in detail the experiment device,and the ways through them GPS data are recorded,processed and analyzed.With post-processing version of NovAtel's Softsurv software and auto-regressive (AR) spectral analysis method,relative displacements and corresponding vibrating frequencies have been derived from GPS observations.The results indicate that the dynamic characteristics can be identified accurately by kinematic GPS technology.

  20. Design and application of single-antenna GPS/accelerometers attitude determination system

    Institute of Scientific and Technical Information of China (English)

    He Jie; Huang Xianlin; Wang Guofeng

    2008-01-01

    In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU).It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi-physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).

  1. Physical applications of GPS geodesy: a review

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation’s original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth’s land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  2. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS......) placed on sea-ice, at six different sites north of Greenland for the preliminary study of sea surface height (SSH), and tidal analysis to improve tide models in the Central Arctic. The GPS measurements are compared with the Arctic tide model AOTIM-5, which assimilates tide-gauges and altimetry data....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  3. Regional Deformation Studies with GRACE and GPS

    Science.gov (United States)

    Davis, J. L.; Elosequi, P.; Tamisiea, M.; Mitrovica, J. X.

    2005-01-01

    GRACE data indicate large seasonal variations in gravity that have been shown to be to be related to climate-driven fluxes of surface water. Seasonal redistribution of surface mass deforms the Earth, and our previous study using GRACE data demonstrate that annual radial deformations of +/-13 mm in the region of Amazon River Basin were observed by both GRACE and ten GPS sites in the region. For the GRACE determinations, we estimate in a least-squares solution for each Stokes coefficient parameters that represent the amplitudes of the annual variation. We then filter these parameters based on a statistical test that uses the scatter of the postfit residuals. We demonstrate by comparison to the GPS amplitudes that this method is more accurate, for this region, than Gaussian smoothing. Our model for the temporal behavior of the gravity coefficients includes a rate term, and although the time series are noisy, the glacial isostatic adjustment signal over Hudson s Bay can be observed. .

  4. Permanent monitoring of alpine slope instabilities with L1-GPS

    Science.gov (United States)

    Limpach, Philippe; Geiger, Alain; Su, Zhenzhong; Beutel, Jan; Gruber, Stephan

    2013-04-01

    Since winter 2010/2011, a network of permanent GPS stations is being set up in the Matter Valley (Swiss Alps). The aim is to monitor the time variable movement of potentially instable rock glaciers. The network has been established in the framework of the X-Sense project, currently totaling more than 20 stations. X-Sense is an interdisciplinary project for monitoring alpine mass movements at multiple scales, funded by the Swiss federal program Nano-Tera within the Swiss Science Foundation. The X-Sense stations consist of low-cost L1 GPS receivers coupled with inclinometers. A part of the stations allow for on-line data transmission. The data of the X-Sense L1 GPS network is operationally processed on a daily basis with Bernese GPS software, in a fully automated processing chain. In addition, real-time solutions are computed for the on-line stations. The geodetic potential of low-cost GPS receivers for the precise monitoring of slope instabilities in mountain areas was previously investigated in a feasibility study. It is shown that low-cost GPS units are able to provide reliable and continuous time series of surface displacements at cm-level accuracy in harsh environment, using adequate differential processing techniques. Enhanced algorithms were developed to derive accurate time series of surface velocities based on the GPS displacements. It was shown that the low-cost GPS receivers allow to reliably observe surface velocities even below 1 cm/day, as well as to detect small and short-term velocity changes. In addition, the time series of more than 2 years obtained reveal the capability to detect seasonal velocity variations, as well as inter-annual variations of the velocity pattern. By providing continuous observations of surface motion, the GPS-based permanent monitoring contributes to the understanding of processes linked to permafrost-related slope instabilities.

  5. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben;

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS availa...... within a given building is dependent on local properties like close-by building elements and materials, number of walls, number of overlaying stories and surrounding buildings....

  6. Shuttle Global Positioning System (GPS) design study

    Science.gov (United States)

    Nilsen, P. W.

    1979-01-01

    The effects of oscillator noise on Shuttle Global Positioning System (GPS) receiver performance, GPS navigation system self-test, GPS ground transmitter design to augment shuttle navigation, the effect of ionospheric delay modelling on GPS receiver design, and GPS receiver tracking of Shuttle transient maneuvers were investigated.

  7. Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex.

    Science.gov (United States)

    Wittmann, Marco K; Kolling, Nils; Akaishi, Rei; Chau, Bolton K H; Brown, Joshua W; Nelissen, Natalie; Rushworth, Matthew F S

    2016-01-01

    In many natural environments the value of a choice gradually gets better or worse as circumstances change. Discerning such trends makes predicting future choice values possible. We show that humans track such trends by comparing estimates of recent and past reward rates, which they are able to hold simultaneously in the dorsal anterior cingulate cortex (dACC). Comparison of recent and past reward rates with positive and negative decision weights is reflected by opposing dACC signals indexing these quantities. The relative strengths of time-linked reward representations in dACC predict whether subjects persist in their current behaviour or switch to an alternative. Computationally, trend-guided choice can be modelled by using a reinforcement-learning mechanism that computes a longer-term estimate (or expectation) of prediction errors. Using such a model, we find a relative predominance of expected prediction errors in dACC, instantaneous prediction errors in the ventral striatum and choice signals in the ventromedial prefrontal cortex.

  8. Evaluating the performance of a low-cost GPS in precision agriculture applications

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Larsen, Morten; Simonsen, Tom;

    2012-01-01

    Field Robots are often equipped with a Real Time Kinematic (RTK) GPS to obtain precise positioning. In many precision agriculture applications, however, the robot operates in semi-structured environments like orchards and row crops, where local sensors such as computer vision and laser range...... scanners can produce accurate positioning relative to the crops. GPS is then primarily needed for robust inter-row navigation. This work evaluates a new low-cost GPS. Static tests were used to test the absolute accuracy. To test the GPS in a precision agriculture environment it was installed on a robot...... errors were estimated to be within 0.2 m. It was concluded that the GPS can be applied to selected applications in row crops and orchards if augmented by local sensors and mapping techniques. Using the GPS in a RTK setup applies to general applications where position errors of 0.2 m are acceptable....

  9. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  10. Performance: GPs in the spotlight.

    Science.gov (United States)

    Clews, Graham

    2009-08-13

    PCTs are having to review the level of service they are getting from GP practices. The balanced scorecard tool attempts to combine quality and efficiency indicators. GPs' concerns include publication of the scorecard data without agreement by the GPs. PMID:19810224

  11. Evidential recovery from GPS devices

    Directory of Open Access Journals (Sweden)

    Brian Cusack

    Full Text Available Global Positioning Systems (GPS have become more affordable, are now widely used in motor vehicles and in other frequently used applications. As a consequence GPS are increasingly becoming an important source of evidential data for digital forensic investigations. This paper acknowledges there are only disparate documents for the guidance of an investigator when extracting evidence form such systems. The focus of this paper is to provide the technical details of recovering artifacts from four GPS currently available to the New Zealand market. Navman brand GPS are used, following a forensically robust process. The steps of the process are described, results analysed and the associated risks are discussed. In addition, the paper discusses techniques related to the visual presentation of evidence suitable for Google Maps. Automation attempts to speed up the analysis to visualization steps are also included. The outcome is a road map that may assist digital forensic investigators develop GPS examination strategies for implementation in their own organizations.

  12. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  13. De GPS al mapa

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available Las coordenadas Lambert obtenidas a partir de mediciones con equipos GPS de mano, llamados a veces navegadores, en ciertos casos confunden al usuario, por diferir claramente de su posición real al ser graficadas en un mapa del Instituto Geográfico Nacional (IGN: Esto puede resolverse con suficiente exactitud mediante una transformación de Molodensky, seguida de la correspondiente proyección cartográfica. Sin embargo, los tres parámetros necesarios para la transformación, supuestamente válidos para Costa Rica, se encuentran en muchas variantes y producen obviamente resultados diferentes. En este trabajo se analizan los fundamentos del problema y sus posibles soluciones, culminando con un estudio comparativo de ocho casos, que permite seleccionar los valores más adecuados para los parámetros.

  14. 75 FR 8928 - Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800 Interface Control Working Group (ICWG...

    Science.gov (United States)

    2010-02-26

    ... Department of the Air Force Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800Interface Control Working Group... an Interface Control Working Group (ICWG) teleconference meeting for document/s IS-GPS-200E (NAVSTAR GPS Space Segment/Navigation User Interfaces), IS-GPS-705A (NAVSTAR GPS Space Segment/User Segment...

  15. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  16. Analysis of Spaceborne GPS Systems

    Science.gov (United States)

    Cosmo, Mario L.; Davis, James L.; Elosegui, Pedro; Hill, Michael; ScireScapuzzo, Francesca

    1998-01-01

    A reasonable amount of literature can be found on the general topic of GPS receiving antennas, but very little has been published on spaceborne GPS receiving antennas. This very new topic seems to be so far more of interest for the industrial world than for the academic community. For satellite applications, microstrip antennas are usually preferred over other types of antennas mainly because of their non-electrical characteristics, such as small size, relatively lightweight, shape, possibility of integration with microwave integrated circuits, and relatively low costs. Careful design of patch antennas could meet all the requirements (electrical and non-electrical) of GPS receiving antenna to be mounted on a tethered satellite.

  17. Hastighedskort for Danmark vha. GPS

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2011-01-01

    Hastighed på vejnettet er en central metrik indenfor trafikplanlægning og trafikoptimering. I denne artikel beskrives, hvorledes et hastighedskort for hele Danmark er skabt udelukkende vha. GPS data. To tilgangsvinkler til at beregne hastigheder vha. GPS data er præsenteret. Dette er hhv. en....... Opsummeret anses den turbaseret for at beregne det mest akkurate estimat, men metoden er meget datakrævende. Det er derfor nødvendigt at have den punktbaserede at falde tilbage på. Generelt mangler metoder til beregning af hastigheder vha. GPS data at blive valideret. Hvordan en sådan validering kan...

  18. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  19. Next Generation GPS Ground Control Segment (OCX) Navigation Design

    Science.gov (United States)

    Bertiger, Willy; Bar-Sever, Yoaz; Harvey, Nate; Miller, Kevin; Romans, Larry; Weiss, Jan; Doyle, Larry; Solorzano, Tara; Petzinger, John; Stell, Al

    2010-01-01

    In February 2010, a Raytheon-led team was selected by The Air Force to develop, implement, and operate the next generation GPS ground control segment (OCX). To meet and exceed the demanding OCX navigation performance requirements, the Raytheon team partnered with ITT (Navigation lead) and JPL to adapt major elements of JPL's navigation technology, proven in the operations of the Global Differential GPS (GDGPS) System. Key design goals for the navigation subsystem include accurate ephemeris and clock accuracy (user range error), ease of model upgrades, and a smooth and safe transition from the legacy system to OCX.We will describe key elements of the innovative architecture of the OCX navigation subsystem,and demonstrate the anticipated performance of the system through high fidelity simulations withactual GPS measurements.

  20. Improving GPS/INS Integration through Neural Networks

    CERN Document Server

    Nguyen-H, M

    2010-01-01

    The Global Positioning Systems (GPS) and Inertial Navigation System (INS) technology have attracted a considerable importance recently because of its large number of solutions serving both military as well as civilian applications. This paper aims to develop a more efficient and especially a faster method for processing the GPS signal in case of INS signal loss without losing the accuracy of the data. The conventional or usual method consists of processing data through a neural network and obtaining accurate positioning output data. The new or improved method adds selective filtering at the low-band frequency, the mid-band frequency and the high band frquency, before processing the GPS data through the neural network, so that the processing time is decreased significantly while the accuracy remains the same.

  1. Integrating GIS and GPS in environmental remediation oversight

    International Nuclear Information System (INIS)

    This paper presents findings on Ohio EPA Office of Federal Facilities Oversight's (OFFO) use of GIS and GPS for environmental remediation oversight at the U.S. Department of Energy's (DOE) Fernald Site. The Fernald site is a former uranium metal production facility within DOE's nuclear weapons complex. Significant uranium contamination of soil and groundwater is being remediated under state and federal regulations. OFFO uses GIS/GPS to enhance environmental monitoring and remediation oversight. These technologies are utilized within OFFO's environmental monitoring program for sample location and parameter selection, data interpretation and presentation. GPS is used to integrate sample data into OFFO's GIS and for permanently linking precise and accurate geographic data to samples and waste units. It is important to identify contamination geographically as all visual references (e.g., buildings, infrastructure) will be removed during remediation. Availability of the GIS allows OFFO to perform independent analysis and review of DOE contractor generated data, models, maps, and designs. This ability helps alleviate concerns associated with open-quotes black boxclose quotes models and data interpretation. OFFO's independent analysis has increased regulatory confidence and the efficiency of design reviews. GIS/GPS technology allows OFFO to record and present complex data in a visual format aiding in stakeholder education and awareness. Presented are OFFO's achievements within the aforementioned activities and some reasons learned in implementing the GIS/GPS program. OFFO's two years of GIS/GPS development have resulted in numerous lessons learned and ideas for increasing effectiveness through the use of GIS/GPS

  2. Test of GBAS Integrity Monitoring System Using GPS Simulator

    Institute of Scientific and Technical Information of China (English)

    Yun Young-sun; Park Sung-min; Kee Chang-don

    2003-01-01

    In recent years, many countries are developing aircraft navigation systems using GNSS(Global Navigation Satellite System),because GNSS has many technical and economic benefits. International organizations as ICAO(International Civil Aviation Organization) and RTCA(Radio Technical Commission for Aeronautics) set up international standards of GBAS(Ground Based Augmentation System)using GNSS and recommend countries to develop GBAS that is based on the standards. To go with the international stream, Korea Airport Cooperation has also developed GBAS. For evaluating the system,KAC and Seoul National University have performed flight tests of the developed GBAS several times and have concluded that the system has good accuracy enough to be used in aircrafts. At that time, the purpose of tests was focused on accuracy of GBAS. But integrity of the system which is important for safety of aircrafts was not tested sufficiently,because it is impossible to make erroneous situations of real GPS signals. So, at this time, we used GPS simulator which can generate GPS signals with satellite failure scenarios. The GPS simulator used in this test generates GPS signals by the scenarios organized in advance.The scenarios can include pseudorange and carrier phase error, parity error and etc. So we organized several scenarios which can includes potential errors of GPS signals and many possible cases for testing the system effectively and accurately. And we tested integrity function of the GBAS system by using GPS signals generated by the simulator.This paper introduces the implemented integrity monitoring system and algorithms used in the tests. And it describes the scenarios of satellite failure. Finally, this paper shows the results of tests.

  3. Real-time estimation of ionospheric delay using GPS measurements

    Science.gov (United States)

    Lin, Lao-Sheng

    1997-12-01

    When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is

  4. Ephemeris errors of GPS satellites

    Science.gov (United States)

    Colombo, O. L.

    1986-01-01

    Numerical models are developed to examine the potential effects of solar radiation, the terrestrial gravitational field, and the estimated initial state of the Global Positioning System (GPS) satellites, along with the capability of current models to account for the effects on the ephemeris of the GPS constellation. Of particular interest is the accuracy of the satellite position predictions for applications in geodesy. The main characteristics of the GPS orbits are reviewed and linear combinations of possible errors for 3 day ephemerides are examined. It is shown that the effects of the forces on the GPS orbits will be dynamic, yet can be expressed simply enough to maintain positioning accuracy to 1 percent. The calculations can also take into consideration solar wind pressure on the solar panels.

  5. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  6. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  7. Scintillation-Hardened GPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) experiment is proposed to improve the performance of GPS during geomagnetic storms....

  8. SECURE TRACKING AND TRANSPORT SYSTEM USING RWP AND GPS

    Directory of Open Access Journals (Sweden)

    Silky Verma

    2013-06-01

    Full Text Available In the present era where technology has become a part of our life, every day new applications are developed in every field to serve mankind. Many applications have been developed using GPS (globalpositioning system such as aquatic and spacecraft routing, surveying and mapping, precise time reference etc. GPS (global positioning system enables everyday activities such as banking, mobile phone operations, and even the control of power grids by allowing well harmonized hand-off switching and accurate time. The main contribution of this paper is tracking and transportation of object in a secured way using RWP and GPS. To assure the security of the tracking and tracing application we introduce a method to evaluate the one-hop distance between the target object and all the cooperative nodes in the object’s view. A key factor that increases the project’s accuracy and performance is GPS, a common example of wireless which can be interfaced to provide location and time information in all weather conditions. GPS has become a widely adopted and useful tool for commerce, scientific uses, tracking, and investigation. We control the ground session with RWP (random way point using AODV routing protocol. DOP (dilution of precision.

  9. Continuous professional development for GPs

    DEFF Research Database (Denmark)

    Kjaer, N K; Steenstrup, A P; Pedersen, L B;

    2014-01-01

    randomly chosen Danish GPs. RESULTS: Focus groups: CPD activities are chosen based on personal needs analysis, and in order to be professionally updated, to meet engaged colleagues and to prevent burnout. GPs also attend CPD to assess their own pre-existing level of competence. CPD activities need...... by topics strengthening their professional capacity and preventing burnout. There would seem to be no need for a mandatory system....

  10. Operational aspects of CASA UNO '88-The first large scale international GPS geodetic network

    Science.gov (United States)

    Neilan, Ruth E.; Dixon, T. H.; Meehan, Thomas K.; Melbourne, William G.; Scheid, John A.; Kellogg, J. N.; Stowell, J. L.

    1989-01-01

    For three weeks, from January 18 to February 5, 1988, scientists and engineers from 13 countries and 30 international agencies and institutions cooperated in the most extensive GPS (Global Positioning System) field campaign, and the largest geodynamics experiment, in the world to date. This collaborative eperiment concentrated GPS receivers in Central and South America. The predicted rates of motions are on the order of 5-10 cm/yr. Global coverage of GPS observations spanned 220 deg of longitude and 125 deg of latitude using a total of 43 GPS receivers. The experiment was the first civilian effort at implementing an extended international GPS satellite tracking network. Covariance analyses incorporating the extended tracking network predicted significant improvement in precise orbit determination, allowing accurate long-baseline geodesy in the science areas.

  11. PRINCIPLE, SOFTWARE AND EXPERIMENT OF GPS-SUPPORTED AEROTRIANGULATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In conventional aerial photogrammetry, the high accurate photogrammetric point determination is always carried out by aerotriangulation using a great deal of ground control points around the perimeter and in the center of block area because the exterior orien tation parameters of aerial photographs are unknown. A technological revolution in pho togrammetry has taken place since Navstar global positioning system (GPS) was applied to determine the 3D coordinates of exposure station positions during the photo flight missions. GPS-supported aerotriangulation is conducted by a combined bundle adjustment for pho togrammetric observations and the camera orientation data. In this case, the essential ground control points are replaced by GPS-determined camera positions. Recent investigations show this method is coming to the practice. We have been engaged in the theoretical studies, soft ware development,and related experiments and production in the field since 1990. So far the abundant research achievements are obtained in terms of the theory and application. In this paper, we first derives the mathematical model of GPS-supported aerotriangulation from the geometry between camera and airborne GPS antenna, then describes briefly a software pack age WuCAPS (Wuhan combined adjustment program system) developed newly by the au thor,which serves the purpose of the combined bundle adjustment for photogrammetric and non-photogrammetric observations. At the end of the present work, a set of actual aerial pho tographs,at the image scale of 1:34 000, with airborne GPS data taken from Tianjing site, China were processed by WuCAPS. The empirical results have verified that the accuracy of the combined bundle adjustment with 4 XYZ ground control points around the comers of block area is very close to that of the conventional bundle adjustment with 3 additional pa rameters, that leads to reduce 88% field survey and 75% production cost,and can meet the specification of topographic mapping

  12. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  13. Precise GPS/GNSS Positioning Solution for Airborne Data Acquisition Systems

    Institute of Scientific and Technical Information of China (English)

    B. G. Gerlach; D. Gondy

    2003-01-01

    The precise positioning of aircrafts during flights belongs to the great challenges with respect to the development of airborne data acquisition systems. Satellite positioning systems like GPS offers a unique capability for precise positioning but requires in depth knowledge of GPS in airborne applications, e.g.GPS for high dynamic application, integration of GPS with other sensors, dynamic behaviour of aircrafts or antenna location. For its positioning reference system of Flight Inspection systems Aerodata AG has developed a robust GPS carrier phase ambiguity solution P-DGPS, Precise Differential GPS combined with complementary sensors like INS, barometers, radio altimeters or laser altimeters as well as laser trackers. Using recorded data during the flight the algorithm offers also the capability to calculate more accurate positions in post-processing. The presented sensor fusion algorithm using GPS without differential corrections (SGPS, standalone GPS) offers a precise height reference solution for approach calibration based only on aircraft-based sensors. SGPS data are combined in post-processing with inertial, pressure, radio and laser altimeter data. Flight trials with a Bombardier "Global Express" at Braunschweig Airport on May 2002 shows the achieved accuracies of the height reference solution calculated by SGPS in comparison to P-DGPS. The SGPS solution for precise height calculation of special mission aircrafts provides accuracies in the order of 5 m and at the runway's threshold in the order of 30 cm.

  14. A Framework For Using GPS Data In Physical Activity And Sedentary Behavior Studies

    DEFF Research Database (Denmark)

    Jankowska, Marta M; Schipperijn, Jasper; Kerr, Jacqueline

    2015-01-01

    Global Positioning Systems (GPS) are increasingly applied in activity studies, yet significant theoretical and methodological challenges remain. This paper presents a framework for integrating GPS data with other technologies to create dynamic representations of behaviors in context. Utilizing more...... accurate and sensitive measures to link behavior and environmental exposures allows for new research questions and methods to be developed. SUMMARY: Global Positioning Systems can be linked with other technologies to create dynamic representations of behaviors in context....

  15. Removing atmosphere loading effect from GPS time series

    Science.gov (United States)

    Tiampo, K. F.; Samadi Alinia, H.; Samsonov, S. V.; Gonzalez, P. J.

    2015-12-01

    The GPS time series of site position are contaminated by various sources of noise; in particular, the ionospheric and tropospheric path delays are significant [Gray et al., 2000; Meyer et al., 2006]. The GPS path delay in the ionosphere is largely dependent on the wave frequency whereas the delay in troposphere is dependent on the length of the travel path and therefore site elevation. Various approaches available for compensating ionosphere path delay cannot be used for removal of the tropospheric component. Quantifying the tropospheric delay plays an important role for determination of the vertical GPS component precision, as tropospheric parameters over a large distance have very little correlation with each other. Several methods have been proposed for tropospheric signal elimination from GPS vertical time series. Here we utilize surface temperature fluctuations and seasonal variations in water vapour and air pressure data for various spatial and temporal profiles in order to more accurately remove the atmospheric path delay [Samsonov et al., 2014]. In this paper, we model the atmospheric path delay of vertical position time series by analyzing the signal in the frequency domain and study its dependency on topography in eastern Ontario for the time period from January 2008 to December 2012. Systematic dependency of amplitude of atmospheric path delay as a function of height and its temporal variations based on the development of a new, physics-based model relating tropospheric/atmospheric effects with topography and can help in determining the most accurate GPS position.The GPS time series of site position are contaminated by various sources of noise; in particular, the ionospheric and tropospheric path delays are significant [Gray et al., 2000; Meyer et al., 2006]. The GPS path delay in the ionosphere is largely dependent on the wave frequency whereas the delay in troposphere is dependent on the length of the travel path and therefore site elevation. Various

  16. GPS derived Crustal Deformation and Strain determination in India

    Directory of Open Access Journals (Sweden)

    Abhay P. Singh,

    2011-06-01

    Full Text Available The theory of Plate tectonics has revolutionized the way thinking about the processes of Earth. According to this theory, the surface of the Earth is broken into large plates. The size and position of these plates change over time. The edges of these plates, where they move against each other, are sites of intense tectonic activity, suchas earthquakes, volcanism, and mountain building. It is well known that Indian Plate is currently moving in the northeast direction, while the Eurasian Plate is moving north. This is causing the Indian and Eurasian Plate to deform at the point of contact besides its interior. Modern geophysical and space geodetic techniques such asseismology and GPS (Global Positioning system, have become important tools in the study of the deformation in the Earth due to tectonic processes, leading to earthquakes. Geodesy has provided an important role for plate tectonics study with high temporal resolution of the plate movements, particular from space technologies such as GPS and VLBI. The Global Positioning System (GPS provides accurate measurements of the rate of displacement of crustal. Indeed, the GPS velocity field can only be compared to finite strain if one assumes adeformation mechanism and that the style of deformation has been the same over long periods of geological time. For study of crustal deformation National Center of Mineralogy and Petrology, University of Allahabad, Allahabad installed highly efficient and accurate LEICA GRX1200 Pro receiver at Ghoorpur near to Allahabad. This instrument is also equipped withMET3A sensor to record pressure, temperature, humidity at regular interval of 30 second. The Latitude and longitude of the GPS sites is 25.21N, 81.28E.

  17. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  18. A simulation of GPS and differential GPS sensors

    Science.gov (United States)

    Rankin, James M.

    1993-01-01

    The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.

  19. GPS operations at Olkiluoto in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2012-06-15

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a {+-} 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a {+-} 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM

  20. GPS Attitude Determination for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  1. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  2. Retrieving real-time co-seismic displacements using GPS/GLONASS: a preliminary report from the September 2015 Mw 8.3 Illapel earthquake in Chile

    Science.gov (United States)

    Chen, Kejie; Ge, Maorong; Babeyko, Andrey; Li, Xingxing; Diao, Faqi; Tu, Rui

    2016-08-01

    Compared with a single GPS system, GPS/GLONASS observations can improve the satellite visibility, optimize the spatial geometry and improve the precise positioning performance. Although the advantage over GPS-only methods in terms of positioning is clear, the potential contributions of GPS/GLONASS to co-seismic displacement determination and the subsequent seismic source inversion still require extensive study and validation. In this paper, we first extended a temporal point positioning model from GPS-only to GPS/GLONASS observations. Using this new model, the performance of the GPS/GLONASS method for obtaining co-seismic displacements was then validated via eight outdoor experiments on a shaking table. Our result reveals that the GPS/GLONASS method provides more accurate and robust co-seismic displacements than the GPS-only observations in a non-optimal observation environment. Furthermore, as a case study, observation data recorded during the September 2015 Mw 8.3 Illapel earthquake in Chile were re-processed. At some stations, obvious biases were found between the co-seismic displacements derived from GPS-only and GPS/GLONASS observations. The subsequent slip distribution inversion on a curved fault confirms that the differences in the co-seismic displacements causes differences in the inversion results and that the slip distributions of the Illapel earthquake inferred from the GPS/GLONASS observations tend to be shallower and larger.

  3. Real-time retrieval of precipitable water vapor from GPS and BeiDou observations

    Science.gov (United States)

    Lu, Cuixian; Li, Xingxing; Nilsson, Tobias; Ning, Tong; Heinkelmann, Robert; Ge, Maorong; Glaser, Susanne; Schuh, Harald

    2015-09-01

    The rapid development of the Chinese BeiDou Navigation Satellite System (BDS) brings a promising prospect for the real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV), which is of great benefit for supporting the time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a real-time ZTD/PWV processing method based on Global Positioning System (GPS) and BDS observations. The performance of ZTD and PWV derived from BDS observations using real-time precise point positioning (PPP) technique is carefully investigated. The contribution of combining BDS and GPS for ZTD/PWV retrieving is evaluated as well. GPS and BDS observations of a half-year period for 40 globally distributed stations from the International GNSS Service Multi-GNSS Experiment and BeiDou Experiment Tracking Network are processed. The results show that the real-time BDS-only ZTD series agree well with the GPS-only ZTD series in general: the RMS values are about 11-16 mm (about 2-3 mm in PWV). Furthermore, the real-time ZTD derived from GPS-only, BDS-only, and GPS/BDS combined solutions are compared with those derived from the Very Long Baseline Interferometry. The comparisons show that the BDS can contribute to real-time meteorological applications, slightly less accurately than GPS. More accurate and reliable water vapor estimates, about 1.3-1.8 mm in PWV, can be obtained if the BDS observations are combined with the GPS observations in the real-time PPP data processing. The PWV comparisons with radiosondes further confirm the performance of BDS-derived real-time PWV and the benefit of adding BDS to standard GPS processing.

  4. Exploring GPS Data for Operational Analysis of Farm Machinery

    Directory of Open Access Journals (Sweden)

    Ramin Shamshiri

    2013-04-01

    Full Text Available Global Positioning System (GPS has made a great evolution in different aspects of modern agricultural sectors. Today, a growing number of crop producers are using GPS and other modern electronic and computer equipments to practice Site Specific Management (SSM and precision agriculture. This technology has the potential in agricultural mechanization by providing farmers with a sophisticated tool to measure yield on much smaller scales as well as precisely determination and automatic storing of variables such as field time, working area, machine travel distance and speed, fuel consumption and yield information. This study focuses on how to interpret and process raw GPS data for operational analysis of farm machinery. Exact determinations of field activities using GPS data along with accurate measurements and records of yield provide an integrated tool to calculate field efficiency and field machine index which in turn increases machine productivity and labor saving. The results can also provide graphical tools for visualizing machine operator’s performance as well as making decision on field and machine size and selection.

  5. Managing the GPS/GIS function in an electric utility

    International Nuclear Information System (INIS)

    A new period of higher significance has arrived for the GPS/GIS function at electric utilities such that to a degree never seen before, utility managers are looking to their GIS programs, filled with increasingly accurate data collected by GPS technology, before making many decisions. With this capability comes an expectation for GPS/GIS professionals to provide higher levels of planning and management of their data collection process. At Duke Power in Charlotte, North Carolina, managers rely on GPS mapping to fill their data collection equipment needs. When the city of Charlotte requested a more detailed billing system, Duke Power co-sponsored the street lighting inventory project, a comprehensive program implemented to fully account for street lighting facilities within the billing area. One of the key projects to be kept in mind was the creation of a common data base viewable by GIS from which a bill could be created and as well reveal data. A billing calculation routine can be run against the data base to generate a bill or use MapInfo to see a graphical picture. Prior to the creation of this data base capability, the difference between the data base as a display tool and billing system was a potential source of discrepancy, which is eliminated now. Creating the data base allows more than just creating a bill for the city, it allows Duke Power to work better with the city by improving its billing accountability and provides better service as well

  6. IMU/GPS System Provides Position and Attitude Data

    Science.gov (United States)

    Lin, Ching Fang

    2006-01-01

    A special navigation system is being developed to provide high-quality information on the position and attitude of a moving platform (an aircraft or spacecraft), for use in pointing and stabilization of a hyperspectral remote-sensing system carried aboard the platform. The system also serves to enable synchronization and interpretation of readouts of all onboard sensors. The heart of the system is a commercially available unit, small enough to be held in one hand, that contains an integral combination of an inertial measurement unit (IMU) of the microelectromechanical systems (MEMS) type, Global Positioning System (GPS) receivers, a differential GPS subsystem, and ancillary data-processing subsystems. The system utilizes GPS carrier-phase measurements to generate time data plus highly accurate and continuous data on the position, attitude, rotation, and acceleration of the platform. Relative to prior navigation systems based on IMU and GPS subsystems, this system is smaller, is less expensive, and performs better. Optionally, the system can easily be connected to a laptop computer for demonstration and evaluation. In addition to airborne and spaceborne remote-sensing applications, there are numerous potential terrestrial sensing, measurement, and navigation applications in diverse endeavors that include forestry, environmental monitoring, agriculture, mining, and robotics.

  7. The SMS-GPS-Trip-Method

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael

    2015-01-01

    This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking...

  8. Shuttle Global Positioning (GPS) System design study

    Science.gov (United States)

    Nilsen, P.; Huth, G. K.

    1980-01-01

    Investigations of certain aspects and problems of the shuttle global positioning system GPS, are presented. Included are: test philosophy and test outline; development of a phase slope specification for the shuttle GPS antenna; an investigation of the shuttle jamming vulnerability; and an expression for the GPS signal to noise density ratio for the thermal protection system.

  9. Diagnosing dementia with confidence by GPs.

    NARCIS (Netherlands)

    Hout, H.P.J. van; Vernooij-Dassen, M.J.F.J.; Stalman, W.A.B.

    2007-01-01

    BACKGROUND: Earlier reports suggest limited clinical reasoning and substantial uncertainty of GPs in assessing patients suspected of dementia. OBJECTIVE: To explore the predictors of GPs to decide on the presence and absence of dementia as well as the predictors of diagnostic confidence of GPs. DESI

  10. Integrated navigation of aerial robot for GPS and GPS-denied environment

    Science.gov (United States)

    Suzuki, Satoshi; Min, Hongkyu; Wada, Tetsuya; Nonami, Kenzo

    2016-09-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment.

  11. Animal Tracking ARGOS vs GPS

    Science.gov (United States)

    Robinson, P. W.; Costa, D.; Arnould, J.; Weise, M.; Kuhn, C.; Simmons, S. E.; Villegas, S.; Tremblay, Y.

    2006-12-01

    ARGOS satellite tracking technology has enabled a tremendous increase in our understanding of the movement patterns of a diverse array of marine vertebrates from Sharks to marine mammals. Our current understanding has moved from simple descriptions of large scale migratory patterns to much more sophisticated comparisons of animal movements and behavior relative to oceanic features. Further, animals are increasingly used to carry sensors that can acquire water column temperature and salinity profiles. However, a major limitation of this work is the spatial precision of ARGOS locations. ARGOS provides 7 location qualities that range from 3,2,1,0,A,B,Z and correspond to locations with a precision of 150m to tens of kilometers. Until recently, GPS technology could not be effectively used with marine mammals because they did not spend sufficient time at the surface to allow complete acquisition of satellite information. The recent development of Fastloc technology has allowed the development of GPS tags that can be deployed on marine mammals. Here we compare the location quality and frequency derived from standard ARGOS PTTs to Fastloc GPS locations acquired from 11 northern elephant seals, 5 California and 5 Galapagos sea lions and 1 Cape and 3 Australian fur seals. Our results indicate that GPS technology will greatly enhance our ability to understand the movement patterns of marine vertebrates and the in-situ oceanographic data they collect.

  12. Optimal Preprocessing Of GPS Data

    Science.gov (United States)

    Wu, Sien-Chong; Melbourne, William G.

    1994-01-01

    Improved technique for preprocessing data from Global Positioning System receiver reduces processing time and number of data to be stored. Optimal in sense that it maintains strength of data. Also increases ability to resolve ambiguities in numbers of cycles of received GPS carrier signals.

  13. NASA's global differential GPS system and the TDRSS augmentation service for satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John

    2004-01-01

    NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy, and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access channel of NASA's Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by NASA's Jet Propulsion Laboratory. The GDGPS System employs a global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in Early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the

  14. Altimetry Using GPS-Reflection/Occultation Interferometry

    Science.gov (United States)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  15. Experimental validation of GPS-INS-STAR hybrid navigation system for space autonomy

    Science.gov (United States)

    Tanabe, Toru; Harigae, Masatoshi

    The experimental validation of the GPS-INS-STAR hybrid navigation system concept is performed. The hybrid navigation system combines the best features of employed sensors to improve total navigation performances. The GPS-INS-STAR hybrid navigation system consists of the three different sensors, a GPS receiver, an inertial navigation system and a STAR image sensor. In this concept, the system integrates a high positioning performance of the GPS system, an accurate attitude determination capability of the STAR image sensor and the INS signal with a wide bandwidth. It results in a complete 6-DOF (degrees of freedom) autonomous navigation system. The present paper shows the validation of the concept by the experiments using GPS, INS and STAR hardware systems. The experiments are divided into three steps. Firstly, the INS-STAR hybrid navigation system is constructed on the 3-axis motion table to verify the performances of its attitude loop. Secondly, the GPS-INS hybrid navigation system installed on the car shows the performance improvement in its translational loop. Finally, the full configuration of the GPS-INS-STAR hybrid navigation system is evaluated at night. Each experiment result is checked by the theoretical analysis. In the theoretical analysis, the concept of observability well explains the performances of the system. Its feasibility for space application is also evaluated in the point of existing hardware technology. It is concluded that the experiments vaidate the concept of the hybrid navigation system and confirm its capability to realize space autonomy.

  16. Integrated Global Positioning Systems (GPS) Laboratory

    Science.gov (United States)

    Brown, Dewayne Randolph

    2002-01-01

    The purpose of this research is to develop a user-friendly Integrated GPS lab manual. This manual will help range engineers at NASA to integrate the use of GPS Simulators, GPS receivers, computers, MATLAB software, FUGAWI software and SATELLITE TOOL KIT software. The lab manual will be used in an effort to help NASA engineers predict GPS Coverage of planned operations and analyze GPS coverage of operation post mission. The Integrated GPS Laboratory was used to do GPS Coverage for two extensive case studies. The first scenario was an airplane trajectory in which an aircraft flew from Cape Canaveral to Los Angeles, California. In the second scenario, a rocket trajectory was done whereas a rocket was launched from Cape Canaveral to one thousand kilometers due east in the Atlantic Ocean.

  17. Image Network Generation of Uncalibrated Uav Images with Low-Cost GPS Data

    Science.gov (United States)

    Huang, Shan; Zhang, Zuxun; He, Jianan; Ke, Tao

    2016-06-01

    The use of unmanned air vehicle (UAV) images acquired by a non-metric digital camera to establish an image network is difficult in cases without accurate camera model parameters. Although an image network can be generated by continuously calculating camera model parameters during data processing as an incremental structure from motion (SfM) methods, the process is time consuming. In this study, low-cost global position system (GPS) information is employed in image network generation to decrease computational expenses. Each image is considered as reference, and its neighbor images are determined based on GPS coordinates during processing. The reference image and its neighbor images constitute an image group, which is used to generate a free network through image matching and relative orientation. Data are then transformed from the free network coordinate system of each group into the GPS coordinate system by using the GPS coordinates of each image. After the exterior elements of each image are determined in the GPS coordinate system, the initial image network is established. Finally, self-calibration bundle adjustment constrained by GPS coordinates is conducted to refine the image network. The proposed method is validated on three fields. Results confirm that the method can achieve good image network when accurate camera model parameters are unavailable.

  18. Reinforced Ultra-Tightly Coupled GPS/INS System for Challenging Environment

    Directory of Open Access Journals (Sweden)

    Xueyun Wang

    2014-01-01

    Full Text Available Among all integration levels currently available for Global Positioning System (GPS and Inertial Navigation System (INS Integrated System, ultra-tightly coupled (UTC GPS/INS system is the best choice for accurate and reliable navigation. Nevertheless the performance of UTC GPS/INS system degrades in challenging environments, such as jamming, changing noise of GPS signals, and high dynamic maneuvers. When low-end Inertial Measurement Units (IMUs based on MEMS sensors are employed, the performance degradation will be more severe. To solve this problem, a reinforced UTC GPS/INS system is proposed. Two techniques are adopted to deal with jamming and high dynamics. Firstly, adaptive integration Kalman filter (IKF based on fuzzy logics is developed to reinforce the antijamming ability. The parameters of membership functions (MFs are adjusted and optimized through self-developed neutral network. Secondly, a Doppler frequency error estimator based on Kalman filter is designed to improve the navigation performance under high dynamics. A complete simulation platform is established to evaluate the reinforced system. Results demonstrate that the proposed system architecture significantly improves navigation performance in challenging environments and it is a more advanced solution to accurate and reliable navigation than traditional UTC GPS/INS system.

  19. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  20. High integrity carrier phase navigation using multiple civil GPS signals

    Science.gov (United States)

    Jung, Jaewoo

    2000-11-01

    A navigation system should guide users to their destinations accurately and reliably. Among the many available navigation aids, the Global Positioning System stands out due to its unique capabilities. It is a satellite-based navigation system which covers the entire Earth with horizontal accuracy of 20 meters for stand alone civil users. Today, the GPS provides only one civil signal, but two more signals will be available in the near future. GPS will provide a second signal at 1227.60 MHz (L2) and a third signal at 1176.45 MHz (Lc), in addition to the current signal at 1575.42 MHz (L1). The focus of this thesis is exploring the possibility of using beat frequencies of these signals to provide navigation aid to users with high accuracy and integrity. To achieve high accuracy, the carrier phase differential GPS is used. The integer ambiguity is resolved using the Cascade Integer Resolution (CIR), which is defined in this thesis. The CIR is an instantaneous, geometry-free integer resolution method utilizing beat frequencies of GPS signals. To insure high integrity, the probability of incorrect integer ambiguity resolution using the CIR is analyzed. The CIR can immediately resolve the Lc integer ambiguity up to 2.4 km from the reference receiver, the Widelane (L1-L2) integer ambiguity up to 22 km, and the Extra Widelane (L2-Lc) integer ambiguity from there on, with probability of incorrect integer resolution of 10-4 . The optimal use of algebraic combinations of multiple GPS signals are also investigated in this thesis. Finally, the gradient of residual differential ionospheric error is estimated to stimated to increase performance of the CIR.

  1. Instant tsunami early warning based on real-time GPS – Tohoku 2011 case study

    Directory of Open Access Journals (Sweden)

    A. Hoechner

    2013-05-01

    Full Text Available Taking the 2011 Tohoku earthquake as an example, we demonstrate the ability of real-time GPS to provide qualified tsunami early warning within minutes. While in earlier studies we demonstrated the power of the so-called GPS shield concept based on synthetic data, we here present a complete processing chain starting from actual GPS raw data and fully simulate the situation as it would be in a warning center. The procedure includes processing of GPS observations with predicted high precision orbits, inversion for slip and computation of the tsunami propagation and coastal warning levels. We show that in case of the Tohoku earthquake, it would be feasible to provide accurate tsunami warning as soon as 3 min after the beginning of the earthquake.

  2. Thermal structure of intense convective clouds derived from GPS radio occultations

    Directory of Open Access Journals (Sweden)

    R. Biondi

    2011-10-01

    Full Text Available Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO lidar observations; we focus on 53 cases of near-coincident GPS occultations with CALIPSO profiles over deep convection. Results show a sharp spike in GPS bending angle highly correlated to the top of the clouds, corresponding to anomalously cold temperatures within the clouds. Above the clouds the temperatures return to background conditions, and there is a strong inversion at cloud top. For cloud tops below 14 km, the temperature lapse rate within the cloud often approaches a moist adiabat, consistent with rapid undiluted ascent within the convective systems.

  3. Seamless Guidance System Combining GPS, BLE Beacon, and NFC Technologies

    Directory of Open Access Journals (Sweden)

    Rung-Shiang Cheng

    2016-01-01

    Full Text Available Users rely increasingly on Location-Based Services (LBS and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study proposes a system based on GPS, Bluetooth Low Energy (BLE beacons, and Near Field Communication (NFC technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoors and outdoors on smart phones, wishing to give user perfect smart life through this system. The proposed system is implemented on a smart phone and evaluated on a student campus environment. The experimental results confirm the ability of the proposed app to switch automatically from an outdoor mode to an indoor mode and to guide the user to requested target destination via the shortest possible route.

  4. GPS Multipath in Urban Environments

    Science.gov (United States)

    Bilich, A.; Sella, G.

    2008-12-01

    Multipath, where a GNSS signal arrives by more than one path, is considered one of the last unmodeled errors remaining in GNSS. Multipath is of great concern because the additional path length traveled by the incoming signal biases the satellite-receiver range and therefore determination of position. Siting a GNSS station in an urban area, in the immediate vicinity of large reflecting objects such as rooftops, buildings, asphalt and concrete parking lots, grassy fields, and chainlink fences, is both a multipath nightmare and a necessary evil. We note that continuously-operating GNSS stations are becoming increasingly common in urban areas, which makes sense as these stations are often installed in support of civil infrastructure (e.g. departments of transportation, strong motion monitoring of buildings in earthquake-prone areas, surveying networks). Urban stations are well represented in geodetic networks such as the CORS (United States) and GeoNet (Japan) networks, with more stations likely to be installed in the coming years. What sources and types of urban multipath are the most detrimental to geodetic GPS positioning? Which reflecting objects are assumed to be a major source of multipath error, but the GPS data show otherwise? Are certain reflecting environments worse for specific applications, i.e. kinematic vs. static positioning? If forced to install a GNSS station in a highly reflective environment, is it possible to rank objects for their multipath severity? To answer these questions, we provide multipath examples taken from continuously- operating GNSS stations sited in urban environments. We concentrate on some of the most common obstacles and reflecting objects for urban sites - rooftops, parking lots, and fences. We analyze the multipath signature of these objects as manifested in the GPS phase, pseudorange, and signal-to-noise ratio (SNR) observables, and also examine multipath impacts on the precision and accuracy of GPS-derived positions.

  5. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  6. GPS deformation measurements at Olkiluoto in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, S.; Kallio, U.; Koivula, H. [Finnish Geodetic Institute, Masala (Finland)

    2014-08-15

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  7. GPS in Travel and Activity Surveys

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder

    2004-01-01

    The use of GPS-positioning as a monitoring tool in travel and activity surveys opens up a range of possibilities. Using a personal GPS device, the locations and movements of respondents can be followed over a longer period of time. It will then be possible to analyse how the use of urban spaces...... are embedded in the wider context of activity patterns (work, school etc.). The general pattern of everyday itineraries, including route choice and time spent at different locations ?on the way? can also be analysed. If the personal GPS device is combined with an electronic questionnaire, for example...... area. The paper presents the possibilities in travel and activity surveys with GPS and electronic questionnaires. Demonstrative mapping of test data from passive GPS registration of Copenhagen respondents is presented. The different survey possibilities given a combination of GPS and PDA based...

  8. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  9. Determination of Vessel Attitudes Using GPS

    Institute of Scientific and Technical Information of China (English)

    王书寅; 周丰年; 金建霞; 吴敬文

    2002-01-01

    With the development of GPS carrier wave phase technology, it becomes possible that the height accuracy of centimeter level is got by GPS RTK technology. Vessel attitudes are very important parameters in marine survey. In this paper, they were determined by 4 GPS receivers. At the same time, the arithmetic and procedure of vessel attitude determining were given. Based on an experiment, some useful conclusions were obtained and the corresponding methods were put forward to improve the accuracy.

  10. The estimation method of GPS instrumental biases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model of estimating the global positioning system (GPS) instrumental biases and the methods to calculate the relative instrumental biases of satellite and receiver are presented. The calculated results of GPS instrumental biases, the relative instrumental biases of satellite and receiver, and total electron content (TEC) are also shown. Finally, the stability of GPS instrumental biases as well as that of satellite and receiver instrumental biases are evaluated, indicating that they are very stable during a period of two months and a half.

  11. GPS operations at Olkiluoto in 2009

    International Nuclear Information System (INIS)

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ±0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  12. The GPS Laser Retroreflector Array Project

    Science.gov (United States)

    Merkowitz, Stephen M.

    2012-01-01

    Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project.

  13. GPS operations at Olkiluoto in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J. (Finnish Geodetic Institute, Masala (Finland))

    2010-06-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +-0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  14. Gravity field models derived from Swarm GPS data

    Science.gov (United States)

    de Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert

    2016-04-01

    The GPS instruments on-board the three Earth's Magnetic Field and Environment Explorer (Swarm) satellites provide the opportunity to measure the gravity field model at basin-wide spatial scales. In spite of being a geo-magnetic satellite mission, Swarm's GPS receiver collects highly accurate hl-SST data (van den IJssel et al., 2015), which has been exploited to produce gravity field models at a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2014), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2015) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015). With the help of GRACE gravity field models, which are derived from much more accurate ll-SST data, we investigate the best combination strategy for producing a superior model on the basis of the solutions produced by the three institutes, similarly to the approach taken by the European Gravity Service for Improved Emergency Management project (http://egsiem.eu). We demonstrate that the Swarm-derived gravity field models are able to resolve monthly solutions with 1666km spatial resolutions (roughly up to degree 12). We illustrate how these monthly solutions correlate with GRACE-derived monthly solutions, for the period of 2014 - 2015, as well as indicate which geographical areas are measured more or less accurately.

  15. Do GPs' medical records demonstrate a good recognition of depression? A new perspective on case extraction.

    NARCIS (Netherlands)

    Joling, K.J.; Marwijk, H.W.J. van; Piek, E.; Horst, H.E. van der; Penninx, B.W.; Verhaak, P.; Hout, H.P.J. van

    2011-01-01

    Background: Previous estimates of depression recognition in primary care are low and inconsistent. This may be due to registration artifacts and limited extraction efforts. This study investigated a) whether GPs' medical records demonstrate an accurate recognition of depression and b) which combinat

  16. Do GPs' medical records demonstrate a good recognition of depression? A new perspective on case extraction

    NARCIS (Netherlands)

    Joling, Karlijn J.; van Marwijk, Harm W. J.; Piek, Ellen; van der Horst, Henriette E.; Penninx, Brenda W.; Verhaak, Peter; van Hout, Hein P. J.

    2011-01-01

    Background: Previous estimates of depression recognition in primary care are low and inconsistent. This may be due to registration artifacts and limited extraction efforts. This study investigated a) whether GPs' medical records demonstrate an accurate recognition of depression and b) which combinat

  17. GPS Attitude Determination Using Deployable-Mounted Antennas

    Science.gov (United States)

    Osborne, Michael L.; Tolson, Robert H.

    1996-01-01

    The primary objective of this investigation is to develop a method to solve for spacecraft attitude in the presence of potential incomplete antenna deployment. Most research on the use of the Global Positioning System (GPS) in attitude determination has assumed that the antenna baselines are known to less than 5 centimeters, or one quarter of the GPS signal wavelength. However, if the GPS antennas are mounted on a deployable fixture such as a solar panel, the actual antenna positions will not necessarily be within 5 cm of nominal. Incomplete antenna deployment could cause the baselines to be grossly in error, perhaps by as much as a meter. Overcoming this large uncertainty in order to accurately determine attitude is the focus of this study. To this end, a two-step solution method is proposed. The first step uses a least-squares estimate of the baselines to geometrically calculate the deployment angle errors of the solar panels. For the spacecraft under investigation, the first step determines the baselines to 3-4 cm with 4-8 minutes of data. A Kalman filter is then used to complete the attitude determination process, resulting in typical attitude errors of 0.50.

  18. GPS time series at Campi Flegrei caldera (2000-2013

    Directory of Open Access Journals (Sweden)

    Prospero De Martino

    2014-05-01

    Full Text Available The Campi Flegrei caldera is an active volcanic system associated to a high volcanic risk, and represents a well known and peculiar example of ground deformations (bradyseism, characterized by intense uplift periods, followed by subsidence phases with some episodic superimposed mini-uplifts. Ground deformation is an important volcanic precursor, and, its continuous monitoring, is one of the main tool for short time forecast of eruptive activity. This paper provides an overview of the continuous GPS monitoring of the Campi Flegrei caldera from January 2000 to July 2013, including network operations, data recording and processing, and data products. In this period the GPS time series allowed continuous and accurate tracking of ground deformation of the area. Seven main uplift episodes were detected, and during each uplift period, the recurrent horizontal displacement pattern, radial from the “caldera center”, suggests no significant change in deformation source geometry and location occurs. The complete archive of GPS time series at Campi Flegrei area is reported in the Supplementary materials. These data can be usefull for the scientific community in improving the research on Campi Flegrei caldera dynamic and hazard assessment.

  19. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    Science.gov (United States)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  20. Reliable positioning in a sparse GPS network, eastern Ontario

    Science.gov (United States)

    Samadi Alinia, H.; Tiampo, K.; Atkinson, G. M.

    2013-12-01

    Canada hosts two regions that are prone to large earthquakes: western British Columbia, and the St. Lawrence River region in eastern Canada. Although eastern Ontario is not as seismically active as other areas of eastern Canada, such as the Charlevoix/Ottawa Valley seismic zone, it experiences ongoing moderate seismicity. In historic times, potentially damaging events have occurred in New York State (Attica, 1929, M=5.7; Plattsburg, 2002, M=5.0), north-central Ontario (Temiskaming, 1935, M=6.2; North Bay, 2000, M=5.0), eastern Ontario (Cornwall, 1944, M=5.8), Georgian Bay (2005, MN=4.3), and western Quebec (Val-Des-Bois,2010, M=5.0, MN=5.8). In eastern Canada, the analysis of detailed, high-precision measurements of surface deformation is a key component in our efforts to better characterize the associated seismic hazard. The data from precise, continuous GPS stations is necessary to adequately characterize surface velocities from which patterns and rates of stress accumulation on faults can be estimated (Mazzotti and Adams, 2005; Mazzotti et al., 2005). Monitoring of these displacements requires employing high accuracy GPS positioning techniques. Detailed strain measurements can determine whether the regional strain everywhere is commensurate with a large event occurring every few hundred years anywhere within this general area or whether large earthquakes are limited to specific areas (Adams and Halchuck, 2003; Mazzotti and Adams, 2005). In many parts of southeastern Ontario and western Québec, GPS stations are distributed quite sparsely, with spacings of approximately 100 km or more. The challenge is to provide accurate solutions for these sparse networks with an approach that is capable of achieving high-accuracy positioning. Here, various reduction techniques are applied to a sparse network installed with the Southern Ontario Seismic Network in eastern Ontario. Recent developments include the implementation of precise point positioning processing on acquired

  1. Speaking Fluently And Accurately

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    Even after many years of study,students make frequent mistakes in English. In addition, many students still need a long time to think of what they want to say. For some reason, in spite of all the studying, students are still not quite fluent.When I teach, I use one technique that helps students not only speak more accurately, but also more fluently. That technique is dictations.

  2. Accurate Finite Difference Algorithms

    Science.gov (United States)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  3. A novel fusion methodology to bridge GPS outages for land vehicle positioning

    International Nuclear Information System (INIS)

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle position information whether in open-sky environments or in Global Positioning System (GPS) denied environments. However, there remains a challenging task for land vehicles to achieve such positioning performance using low-cost sensors, especially microelectromechanical system (MEMS) sensors. In this paper, a novel and cost-effective fusion methodology to bridge GPS outages is proposed and applied in the Inertial Navigation System (INS)/GPS/ compass integrated positioning system. In the implementation of the proposed methodology, a key data preprocessing algorithm is first developed to eliminate the noise in inertial sensors in order to provide more accurate information for subsequent modeling. Then, a novel hybrid strategy incorporating the designed autoregressive model (AR model)-based forward estimator (ARFE) with Kalman filter (KF) is presented to predict the INS position errors during GPS outages. To verify the feasibility and effectiveness of the proposed methodology, real road tests with various scenarios were performed. The proposed methodology illustrates significant improvement in positioning accuracy during GPS outages. (paper)

  4. A novel fusion methodology to bridge GPS outages for land vehicle positioning

    Science.gov (United States)

    Chen, Wei; Li, Xu; Song, Xiang; Li, Bin; Song, Xianghui; Xu, Qimin

    2015-07-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle position information whether in open-sky environments or in Global Positioning System (GPS) denied environments. However, there remains a challenging task for land vehicles to achieve such positioning performance using low-cost sensors, especially microelectromechanical system (MEMS) sensors. In this paper, a novel and cost-effective fusion methodology to bridge GPS outages is proposed and applied in the Inertial Navigation System (INS)/GPS/ compass integrated positioning system. In the implementation of the proposed methodology, a key data preprocessing algorithm is first developed to eliminate the noise in inertial sensors in order to provide more accurate information for subsequent modeling. Then, a novel hybrid strategy incorporating the designed autoregressive model (AR model)-based forward estimator (ARFE) with Kalman filter (KF) is presented to predict the INS position errors during GPS outages. To verify the feasibility and effectiveness of the proposed methodology, real road tests with various scenarios were performed. The proposed methodology illustrates significant improvement in positioning accuracy during GPS outages.

  5. GPS receivers timing data processing using neural networks: optimal estimation and errors modeling.

    Science.gov (United States)

    Mosavi, M R

    2007-10-01

    The Global Positioning System (GPS) is a network of satellites, whose original purpose was to provide accurate navigation, guidance, and time transfer to military users. The past decade has also seen rapid concurrent growth in civilian GPS applications, including farming, mining, surveying, marine, and outdoor recreation. One of the most significant of these civilian applications is commercial aviation. A stand-alone civilian user enjoys an accuracy of 100 meters and 300 nanoseconds, 25 meters and 200 nanoseconds, before and after Selective Availability (SA) was turned off. In some applications, high accuracy is required. In this paper, five Neural Networks (NNs) are proposed for acceptable noise reduction of GPS receivers timing data. The paper uses from an actual data collection for evaluating the performance of the methods. An experimental test setup is designed and implemented for this purpose. The obtained experimental results from a Coarse Acquisition (C/A)-code single-frequency GPS receiver strongly support the potential of methods to give high accurate timing. Quality of the obtained results is very good, so that GPS timing RMS error reduce to less than 120 and 40 nanoseconds, with and without SA.

  6. Remote reference processing in MT survey using GPS clock; MT ho ni okeru GPS wo mochiita jikoku doki system

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K.; Inoue, J.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Kosuge, S. [DRICO Co. Ltd., Tokyo (Japan)

    1996-05-01

    A report is given about the application of a synchronizing system using clock signals from GPS satellites to a remote reference method which is a technique to reject noise from the MT method. This system uses the C/A code out of the L1 band waves from NAVSTAR/GPS satellites. The new system was operated in MT method-using investigations conducted at China Peninsula, Aichi Prefecture, and Izu Peninsula, Shizuoka Prefecture, with the reference points placed several 100km away in Iwate Prefecture on both occasions. It was found as the result that it is basically possible to catch signals from the GPS at any place, that the signals are accurate enough to be applied to time synchronization for the MT method, and that the signals assure a far remote reference method with a separation of several 100km between the sites involved. The referencing process at high frequencies whose feasibility had been doubted proved a success when highly correlated signals were exchanged between two stations over a distance of several 100km. 5 refs., 9 figs.

  7. Positional accuracy of the Wide Area Augmentation System in consumer-grade GPS units

    Science.gov (United States)

    Arnold, Lisa L.; Zandbergen, Paul A.

    2011-07-01

    Global Positioning System devices are increasingly being used for data collection in many fields. Consumer-grade GPS units without differential correction have a published horizontal positional accuracy of approximately 10-15 m (average positional accuracy). An attractive option for differential correction for these GPS units is the Wide Area Augmentation System (WAAS). Most consumer-grade GPS units on the market are WAAS capable. According to the Federal Aviation Authority (FAA), the WAAS broadcast message provides integrity information about the GPS signal as well as accuracy improvements, which are reported to improve accuracy to 3-5 m. Limited empirical evidence has been published on the accuracy of WAAS-enabled GPS compared to autonomous GPS. An empirical study was conducted comparing the horizontal and vertical accuracy of WAAS-corrected GPS and autonomous GPS under ideal conditions using consumer-grade receivers. Data were collected for 30-min time spans over accurately surveyed control points. Metrics of median, 68th and 95th percentile, Root Mean Squared Error (RMSE), and average positional accuracy in the horizontal and vertical dimensions were computed and statistically compared. No statistically significant difference was found between WAAS and autonomous position fixes when using two different consumer-grade units. When using WAAS, a third unit type exhibited a statistically significant improvement in positional accuracy. Analysis of data collected for a 27-h time span indicates that while WAAS is altering the estimated position of a point compared to an autonomous position estimate, WAAS augmentation actually appears to decrease the positional accuracy.

  8. Errors in long distance kinematic GPS

    Science.gov (United States)

    Colombo, Oscar L.

    1991-01-01

    An attempt is made to quantify the contribution of tropospheric refraction, GPS ephemerides errors, and unresolved ambiguities to the overall error in the use of differential GPS to estimate aircraft position over very long distances. The extent to which such errors can be filtered out when estimating a trajectory, and how efficiently this may be done, are addressed.

  9. Ideas for Future GPS Timing Improvements

    Science.gov (United States)

    Hutsell, Steven T.

    1996-01-01

    Having recently met stringent criteria for full operational capability (FOC) certification, the Global Positioning System (GPS) now has higher customer expectations than ever before. In order to maintain customer satisfaction, and the meet the even high customer demands of the future, the GPS Master Control Station (MCS) must play a critical role in the process of carefully refining the performance and integrity of the GPS constellation, particularly in the area of timing. This paper will present an operational perspective on several ideas for improving timing in GPS. These ideas include the desire for improving MCS - US Naval Observatory (USNO) data connectivity, an improved GPS-Coordinated Universal Time (UTC) prediction algorithm, a more robust Kalman Filter, and more features in the GPS reference time algorithm (the GPS composite clock), including frequency step resolution, a more explicit use of the basic time scale equation, and dynamic clock weighting. Current MCS software meets the exceptional challenge of managing an extremely complex constellation of 24 navigation satellites. The GPS community will, however, always seek to improve upon this performance and integrity.

  10. External Review of GPS LifePlan

    Science.gov (United States)

    Arendale, David R.

    2008-01-01

    The GPS LifePlan is an interactive resource that helps students succeed in reaching their career, education and personal goals. GPS stands for "GOALS + PLANS = SUCCESS". http://gpslifeplan.org This holistic academic and student development program provides a structure for students to define their goals and helps them establish plans to…

  11. GPS queues with heterogeneous traffic classes

    NARCIS (Netherlands)

    Borst, Sem; Mandjes, Michel; Uitert, van Miranda

    2002-01-01

    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for a

  12. An assisted GPS support for GPS simulators for embedded mobile positioning

    Science.gov (United States)

    Kashyap, Pradeep; Samant, Abhay; Sagiraju, Phani K.; Akopian, David

    2009-02-01

    During recent years, location technologies have emerged as a research area with many possible applications in wireless communications, surveillance, military equipment, etc. Location Based Services (LBS) such as safety applications have become very popular. For example, US Federal Communication Commission Enhanced 911 (E911) Mandate seeks to provide emergency services personnel with location information that will enable them to dispatch assistance to wireless 911 callers much more quickly. Assisted GPS (A-GPS) is an extension of the conventional Global Positioning System (GPS) which increases start-up sensitivity by as much as 25dB relative to conventional GPS and reduces start times to less than six seconds. In A-GPS assistance data is delivered to the receiver through communication links. This paper addresses the generation of the assistance for GPS simulators for testing A-GPS receivers. The proposed approach is to use IP-based links and location support standards for assistance delivery avoiding network-specific signaling mechanisms so that GPS receiver developers can use this information for testing A-GPS capabilities using basic GPS simulators. The approach is implemented for the GPS simulator developed by the National InstrumentsTM.

  13. Application of Collocated GPS and Seismic Sensors to Earthquake Monitoring and Early Warning

    Directory of Open Access Journals (Sweden)

    Bofeng Guo

    2013-10-01

    Full Text Available We explore the use of collocated GPS and seismic sensors for earthquake monitoring and early warning. The GPS and seismic data collected during the 2011 Tohoku-Oki (Japan and the 2010 El Mayor-Cucapah (Mexico earthquakes are analyzed by using a tightly-coupled integration. The performance of the integrated results is validated by both time and frequency domain analysis. We detect the P-wave arrival and observe small-scale features of the movement from the integrated results and locate the epicenter. Meanwhile, permanent offsets are extracted from the integrated displacements highly accurately and used for reliable fault slip inversion and magnitude estimation.

  14. Interplanetary GPS using pulsar signals

    Science.gov (United States)

    Becker, W.; Bernhardt, M. G.; Jessner, A.

    2015-11-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  15. GPS Radio Occultation as Part of the Global Observing System for Atmosphere

    Science.gov (United States)

    Mannucci, Anthony J.; Ao, C. O.; Iijima, B. A.; Wilson, B. D.; Yunck, T. P.; Kursinski, E. R.

    2008-01-01

    Topics include: The Measurement (Physical retrievals based on time standards), GPS Retrieval Products, Retrievals and Radiances: CLARREO Mission, GPS RO and AIRS, GPS RO and Microwave, GPS RO and Radiosondes, GPS/GNSS Science, and Conclusions.

  16. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  17. GPS radio interferometry of travelling ionospheric disturbances

    Science.gov (United States)

    Afraimovich, E. L.; Palamartchouk, K. S.; Perevalova, N. P.

    1998-01-01

    This paper presents some results investigating the new possibilities of radio interferometry of Travelling Ionospheric Disturbances (TIDs) that are based on exploiting standard measurements of transionospheric radio signal characteristics and coordinate-time measurements using dual-frequency multichannel receivers of the Global Positioning System (GPS). A Statistical Angle-of-arrival and Doppler Method for GPS radio interferometry (SADM-GPS) is proposed for determining the characteristics of the TIDs dynamics by measuring variations of GPS phase derivatives with respect to time and spatial coordinates. These data are used to calculate corresponding values of the velocity vector, in view of a correction for satellite motions based on the current information available regarding the angular coordinates of the satellites. Subsequently, velocity and direction distributions are constructed and analyzed to verify the hypothesis of whether there is a predominant displacement. If it exists, then the pattern can be considered to be travelling, and the mean travel velocity can be determined from the velocity distribution. Through a computer simulation it was shown that multi-satellite GPS radio interferometry in conjunction with the SADM-GPS algorithm allows the detection and measurement of the velocity vector of TIDs in virtually the entire azimuthal range of possible TID propagation directions. The use of the proposed method is exemplified by an investigation of TIDs during the solar eclipse of 9 March 1997, using the GPS-radio interferometer GPSINT at Irkutsk.

  18. Think GPS offers high security? Think again.

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, R. G. (Roger G.); Warner, J. S. (Jon S.)

    2004-01-01

    The Global Positioning System (GPS) is being increasingly used for a variety of important applications. These include public safety services (police, fire, rescue, and ambulance), marine and aircraft navigation, vehicle theft monitoring, cargo tracking, and critical time synchronization for utility, telecommunications, banking, and computer industries. Civilian GPS signals-the only ones available to business and to most of the federal government-are high-tech, but not high-security. They were never meant for critical or security applications. Unlike the military GPS signals, civilian GPS satellite signals are unencrypted and unauthenticated. This makes it easy for even relatively unsophisticated adversaries to jam or counterfeit them. Counterfeiting ('spoofing') of civilian GPS signals is particularly troublesome because it is totally surreptitious, and (as we have demonstrated) surprisingly simple. The U.S. Department of Transportation (DOT) has warned of vulnerabilities and looming problems associated with over-reliance and over-confidence in civilian GPS. Few GPS users appear to be paying attention.

  19. NASA's GPS tracking system for Aristoteles

    Science.gov (United States)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  20. Seasonal Effects on GPS PPP Accuracy

    Science.gov (United States)

    Saracoglu, Aziz; Ugur Sanli, D.

    2016-04-01

    GPS Precise Point Positioning (PPP) is now routinely used in many geophysical applications. Static positioning and 24 h data are requested for high precision results however real life situations do not always let us collect 24 h data. Thus repeated GPS surveys of 8-10 h observation sessions are still used by some research groups. Positioning solutions from shorter data spans are subject to various systematic influences, and the positioning quality as well as the estimated velocity is degraded. Researchers pay attention to the accuracy of GPS positions and of the estimated velocities derived from short observation sessions. Recently some research groups turned their attention to the study of seasonal effects (i.e. meteorological seasons) on GPS solutions. Up to now usually regional studies have been reported. In this study, we adopt a global approach and study the various seasonal effects (including the effect of the annual signal) on GPS solutions produced from short observation sessions. We use the PPP module of the NASA/JPL's GIPSY/OASIS II software and globally distributed GPS stations' data of the International GNSS Service. Accuracy studies previously performed with 10-30 consecutive days of continuous data. Here, data from each month of a year, incorporating two years in succession, is used in the analysis. Our major conclusion is that a reformulation for the GPS positioning accuracy is necessary when taking into account the seasonal effects, and typical one term accuracy formulation is expanded to a two-term one.

  1. AGV用GPS/DR组合导航动融滤波技术%On Two-Stage Filtering of GPS/DR Integrated Navigation System for AGV

    Institute of Scientific and Technical Information of China (English)

    张晓霞; 韩刘柱; 李晓琳; 章金成

    2012-01-01

    目的 研究基于GPS/DR信息融合的AGV导引系统,实现AGV行走过程中高精度、实时定位,确保AGV在预设轨道上精确导航.方法 应用Kalman滤波算法将GPS定位信号进行动态滤波,以获取相对精确的GPS定位信号,进而将动态滤波结果与编码器信息结合,进行融合滤波,以获取高精度定位数据.结果 给出定位实验数据和数据处理结果曲线,描绘GPS、DR单独定位数据,以及GPS/DR融合滤波定位数据;对比发现,误差允许范围内设定平滑带,动融滤波技术相对于普通滤波优势在50%以上.结论 采用动融滤波技术,AGV用GPS/DR组合导航系统实施二级滤波,可提供实时、稳定、可靠的定位数据.%This research is a study on AGV navigation system which is based on GPS/DR information fusion, and aims to achieve high-precision and real-time location of walking AGV,and ensure accurate navigation of AGV along the preset orbit. GPS positioning signal will be filtered by application of Kalman filtering algorithm to obtain relatively precise GPS positioning signal, then the result will be combined with the encoder information to obtain high-precision positioning data. A group of positioning data curves, depicting GPS, DR positioning data separately, and positioning data of GPS/DR fusion filter have been provided. By comparison,the dynamic filter on the smoothness of the final positioning data plays a key role,smoothness increasing by 50% with dynamic filtering. GPS/DR integrated navigation system applying two-stage filtering provides real-time, stable and reliable positioning data.

  2. Accuracy of velocities from repeated GPS measurements

    Science.gov (United States)

    Akarsu, V.; Sanli, D. U.; Arslan, E.

    2015-04-01

    Today repeated GPS measurements are still in use, because we cannot always employ GPS permanent stations due to a variety of limitations. One area of study that uses velocities/deformation rates from repeated GPS measurements is the monitoring of crustal motion. This paper discusses the quality of the velocities derived using repeated GPS measurements for the aim of monitoring crustal motion. From a global network of International GNSS Service (IGS) stations, we processed GPS measurements repeated monthly and annually spanning nearly 15 years and estimated GPS velocities for GPS baseline components latitude, longitude and ellipsoidal height. We used web-based GIPSY for the processing. Assuming true deformation rates can only be determined from the solutions of 24 h observation sessions, we evaluated the accuracy of the deformation rates from 8 and 12 h sessions. We used statistical hypothesis testing to assess the velocities derived from short observation sessions. In addition, as an alternative control method we checked the accuracy of GPS solutions from short observation sessions against those of 24 h sessions referring to statistical criteria that measure the accuracy of regression models. Results indicate that the velocities of the vertical component are completely affected when repeated GPS measurements are used. The results also reveal that only about 30% of the 8 h solutions and about 40% of 12 h solutions for the horizontal coordinates are acceptable for velocity estimation. The situation is much worse for the vertical component in which none of the solutions from campaign measurements are acceptable for obtaining reliable deformation rates.

  3. Mining significant semantic locations from GPS data

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian S.

    2010-01-01

    With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable...... of extracting semantic locations from GPS data. We capture the relationships between locations and between locations and users with a graph. Significance is then assigned to locations using random walks over the graph that propagates significance among the locations. In doing so, mutual reinforcement between...

  4. HI Absorption in GPS/CSS Sources

    CERN Document Server

    Pihlström, Y M; Vermeulen, R C

    2002-01-01

    Combining our own observations with data from the literature, we consider the incidence of HI absorption in Gigahertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources. Here we present our preliminary results, where we find that the smaller GPS sources (1 kpc). Both a spherical and an axi-symmetric gas distribution, with a radial power law density profile, can be used to explain this anti-correlation between projected linear size and HI column density. Since most detections occur in galaxy classified objects, we argue that if the unified schemes apply to the GPS/CSSs, a disk distribution for the HI is more likely.

  5. Charting pipeline paths : GIS/GPS application zooms into the 21. century

    International Nuclear Information System (INIS)

    The Global Positioning System (GPS) was originally developed by the US Defence Department as a navigational tool. Today, portable receivers make it possible for one to determine their precise coordinates on any place on earth in a matter of seconds. GPS technology uses orbiting satellites to pinpoint locations based on the distance and speed of transmission signals. Pipeline professionals use the receivers to locate faults, corrosion damage and cathodic protection flaws. GPS technology is the only accurate alternative to physically measuring pipelines. All the data collected is generally transferred into a geographical information system (GIS) and transposed onto a graphic representation of the pipeline. Details such as coating quality, pipeline composition, surface conditions and landowner status are recorded. Calgary-based Golder Associates Ltd., has developed a computer simulation that incorporates elements extracted from a GIS database. 3 figs

  6. Las Necesidades del Trabajador en Salud y el Sistema de Posicionamiento Global (GPS. GPS convencional (GPSC y GPS diferencial (GPSD

    Directory of Open Access Journals (Sweden)

    OJ Chang

    1998-01-01

    Full Text Available Los autores explican, desde la perspectiva de las necesidades del trabajador en salud, el uso del GPS, enfatizando la necesidad de utilizar el GPS diferencial cuando se requiere localizar elementos (p. ej. casas, sitios de proliferación de insectos, etc. en el espacio con un alto grado de exactitud, utilizando como ejemplo información correspondiente a un caso real.

  7. Navstar Global Positioning System (GPS) clock program: Present and future

    Science.gov (United States)

    Tennant, D. M.

    1981-01-01

    Global Positioning System (GPS) program status are discussed and plans for ensuring the long term continuation of the program are presented. Performance of GPS clocks is presented in terms of on orbit data as portrayed by GPS master control station kalman filter processing. The GPS Clock reliability program is reviewed in depth and future plans fo the overall clock program are published.

  8. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    Science.gov (United States)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  9. Accuracy of WAAS-enabled GPS for the determination of position and speed over ground.

    Science.gov (United States)

    Witte, T H; Wilson, A M

    2005-08-01

    The Global Positioning System (GPS) offers many advantages over conventional methods for the determination of subject speed during biomechanical studies. Recent advances in GPS technology, in particular the implementation of the Wide-Angle Augmentation System and European Geostationary Navigation Overlay Service (WAAS/EGNOS), mean that small, highly portable units are available offering the potential of superior accuracy in the determination of both position and speed. This study set out to examine the accuracy of a WAAS-enabled GPS unit for the determination of position and speed. Comparison with the new and published data showed significant enhancements in both position and speed accuracy over a non-WAAS system. Position data collected during straight line cycling showed significantly lower sample-to-sample variation (mean absolute deviation from straight line 0.11 vs. 0.78 m) and greater repeatability from trial to trial (mean absolute deviation from actual path 0.37 vs. 4.8 m) for the WAAS-enabled unit compared to the non-WAAS unit. The speed determined by the WAAS-enabled GPS receiver during cycling in a straight line was within 0.2 ms(-1) of the actual speed measured for 57% of the values with 82% lying within 0.4 ms(-1), however, the data tended towards underestimation of speed during circle cycling, with 65% of values within 0.2 ms(-1) and 87% within 0.4 ms(-1) of the actual value. Local dGPS and dual frequency techniques are more accurate still, however, traditional differential GPS (dGPS), employing FM radio transmission of correction data to a separate receiver, now offers no advantage over WAAS and appears redundant.

  10. A low-cost GPS GSM/GPRS telemetry system: performance in stationary field tests and preliminary data on wild otters (Lutra lutra.

    Directory of Open Access Journals (Sweden)

    Lorenzo Quaglietta

    Full Text Available BACKGROUND: Despite the increasing worldwide use of global positioning system (GPS telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra. The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55. GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%. CONCLUSIONS/SIGNIFICANCE: Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or

  11. Shuttle Global Positioning System (GPS) system design study

    Science.gov (United States)

    Nilsen, P. W.

    1979-01-01

    The various integration problems in the Shuttle GPS system were investigated. The analysis of the Shuttle GPS link was studied. A preamplifier was designed since the Shuttle GPS antennas must be located remotely from the receiver. Several GPS receiver architecture trade-offs were discussed. The Shuttle RF harmonics and intermode that fall within the GPS receiver bandwidth were analyzed. The GPS PN code acquisition was examined. Since the receiver clock strongly affects both GPS carrier and code acquisition performance, a clock model was developed.

  12. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  13. GPS in Pedestrian and Spatial Behaviour Surveys

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder

    position in the urban area. Thus a new form of integration between research into activity patterns and urban places will be possible.    The paper presents the possibilities in spatial behaviour and pedestrian surveys with GPS and electronic questionnaires. Demonstrative mapping of test data from passive......The planning of the environment for pedestrians can be improved by using the newest gps tools for monitoring changes in human activity patterns in time and space. Using a personal GPS device, the locations and movements of respondents can be followed over a longer period of time....... It will then be possible to analyse how the use of urban spaces are embedded in the wider context of activity patterns (work, school etc.). The general pattern of everyday itineraries, including route choice and time spent at different locations ?on the way? can also be analysed.    If the personal GPS device is combined...

  14. A GPS-Based Control Framework for Accurate Current Sharing and Power Quality Improvement in Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Savaghebi, Mehdi; Lu, Dylan;

    2016-01-01

    consensus protocol to ensure proportional sharing of average power. The voltage conditioning scheme produces compensation signals at fundamental and dominant harmonics to improve the voltage quality at a sensitive load bus. Experimental results are presented to validate the efficacy of the proposed method.......This paper proposes a novel hierarchical control strategy for improvement of load sharing and power quality in ac microgrids. This control framework is composed of a droop based controller at the primary level, and a combination of distributed power sharing and voltage conditioning schemes...... dynamic response. The droop coefficient, which acts as a virtual resistance is adaptively changed as a function of the peak current. This strategy not only simplifies the control design but also improves the current sharing accuracy at high loading conditions. The distributed power sharing scheme uses...

  15. Earth Rotation Parameter Estimation by GPS Observations

    Institute of Scientific and Technical Information of China (English)

    YAO Yibin

    2006-01-01

    The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.

  16. Volcanic ash detection by GPS signal

    OpenAIRE

    Aranzulla, M.; Dipartimento di Fisica e Astronomia, Università di Catania; Cannavò, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Scollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Puglisi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Immè, G.; sita` degli studi di Catania

    2013-01-01

    We investigate the ability of GPS to detect volcanic plumes at Mt. Etna, Italy. We use a robust statistical approach to highlight whether the presence of a volcanic plume in the atmosphere may really affect the GPS undifferenced post-fit phase residuals. The proposed method has been tested for the September 4–5, 2007 activity of Mt. Etna. This eruption produced powerful lava fountains forming a weak, a few kilometers high plume for several hours, representing typical a...

  17. Techniques to improve the GPS precision

    Directory of Open Access Journals (Sweden)

    Nelson Acosta

    2012-08-01

    Full Text Available The accuracy of a standard market receiver GPS (Global Positioning System is near 10-15 meters the 95% of the times. To reach a sub-metric level of accuracy some techniques must be used [1]. This article describes some of these procedures to improve the positioning accuracy by using a low-cost GPS in a differential relative positioning way. The proposed techniques are some variations of Kalman, fuzzy logic and information selection.

  18. Scintillation Effects on Space Shuttle GPS Data

    Science.gov (United States)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  19. Supply Chain Basics: Tracking Trucks With GPS

    OpenAIRE

    Berney, Gerald

    2008-01-01

    In its most basic form, GPS systems provide a vehicle operator with the vehicle’s position in latitude and longitude. A mapping program is usually integrated, which correlates the vehicle’s position with the location of landmarks. Routing programs (similar to the commonly used Internet driving directions) are generally added to give vehicle operators directions to their destination. The central component of a tracking system is a GPS unit with the ability to locate a container, truck, or rail...

  20. En Billig GPS Data Analyse Platform

    DEFF Research Database (Denmark)

    Andersen, Ove; Christiansen, Nick; Larsen, Niels T.;

    2011-01-01

    Denne artikel præsenterer en komplet software platform til analyse af GPS data. Platformen er bygget udelukkende vha. open-source komponenter. De enkelte komponenter i platformen beskrives i detaljer. Fordele og ulemper ved at bruge open-source diskuteres herunder hvilke IT politiske tiltage, der...... organisationer med et digitalt vejkort og GPS data begynde at lave trafikanalyser på disse data. Det er et krav, at der er passende IT kompetencer tilstede i organisationen....

  1. Integrating GPS with Dead Reckoning Sensors

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2000-01-01

    A vehicle positioning system comprising a GPS receiver, a digital compass, and an odometer was tested on a 2.8-km stretch in Aalborg, Denmark. The system, which merges observations from the three instruments using a Kalman filter, has an update rate of 1 Hz and is intended for use in both urban...... and rural areas. The filtered positions follow the travelled route closely. A simulation suggests that the system will work even when the GPS coverage is insufficient....

  2. Analysis list: Gps2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Gps2 Embryonic fibroblast + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Gps...2.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Gps2.5.tsv http://dbarchive.biosciencedb...c.jp/kyushu-u/mm9/target/Gps2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Gps2.Embryonic_fibr

  3. Analysis list: GPS2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available GPS2 + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/GPS2.1.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/GPS2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/GPS...2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/GPS2..tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/.gml ...

  4. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  5. Permanent GPS and crustal deformation in Greenland

    Science.gov (United States)

    Khan, S. A.

    2003-12-01

    The National Survey and Cadastre - Denmark (KMS) is responsible for the geodetic definition of the reference network in Greenland. Permanent GPS plays an important role in the monitoring and maintenance of the geodetic network. Furthermore, KMS supports the international GPS infrastructure and research by supporting IGS. In October 1998 KMS has established a permanent GPS station THU2 at Thule Airbase. Besides THU2 the old permanent station THU1 is also running. The Thule stations are important because they are two of the few northernmost stations in the IGS network. THU2 has been operating since March 1999, and it is now a high quality and high performance station contributing to the IGS Low-Earth Orbiters (LEO) network. Besides the GPS stations in Thule, KMS is also running a permanent GPS station SCOB in Scoresbysund, which was established in August 1997, and in October 2001 a permanent station QAQ1 was established in Qaqortoq. This station is registered at IGS. Furthermore, University of Colorado operates the IGS station Kellyville near Kangerlussuaq and a station in Kulusuk. Using the BERNESE software, we have calculated daily baseline solutions between the GPS sites. The time series of the 3D crustal movements are analyzed due to post glacial rebound, plate tectonic and seasonal deformations (e.g. atmosphere loading). In addition, we have used the GIPSY OASIS II software to obtain similar time series. The results are compared with modeled estimates of the glacial rebound.

  6. Comparison of the precision of three commonly used GPS models

    Directory of Open Access Journals (Sweden)

    E Chavoshi

    2016-04-01

    farming operations as well as the efficiency of the work done in different situations. Materials and Methods: In this study, three commonly used GPS models belong to GARMIN CO. were selected for comparison. This company is the world biggest manufacturer of GPS device. Three models include eTrex VISTA, MAP 60 csx and MAP 78s that in recent years have been the most widely used receivers in precision agriculture (Figure 1, Table 1. To assess the accuracy and precision of the receivers, 9 recording stations were selected in a field (20×20 m2 and detailed mapping by the odolite camera under high precision compass networks and regular conditions (figure 2 was identified. To reduce the error of multi-path, a relatively open and unobstructed place in the Abbas Abad field of Bu-Ali Sina University were considered. This study was conducted in a Completely Randomized Design (CRD with factorial analysis to examine three factors, at three levels, each in three replication including weather conditions (clear, partially cloudy and full cloudy sky, time of day (9 am, 12 am and 4 pm and three different models of receiver (MAP 60 csx, eTrex VISTA and MAP 78s, in 9 local stations. Difference of deviation value at each station with the mean value of latitude and longitude recorded at same station was used to precision calculate on (equation 1 and the difference of deviation value at each station with a deviation of the actual position latitude and longitude of the same station was used to calculate the accuracy (equation 2. The base station position (No.1 was determined with an accurately large-scale map. Then, the positions of other stations were defined with camera and compass in exact rectangular grid by underlying base station. Mean error for each station using equation (3 and the precision and accuracy and the definitions of each receiver was calculated. Results and Discussion: To display the geographical distribution stations and the registered location data for GPS devices Arc

  7. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    Science.gov (United States)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  8. 4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model

    Science.gov (United States)

    Tuna, Hakan; Arikan, Feza; Arikan, Orhan

    2016-07-01

    Ionospheric imaging is an important subject in ionospheric studies. GPS based TEC measurements provide very accurate information about the electron density values in the ionosphere. However, since the measurements are generally very sparse and non-uniformly distributed, computation of 3D electron density estimation from measurements alone is an ill-defined problem. Model based 3D electron density estimations provide physically feasible distributions. However, they are not generally compliant with the TEC measurements obtained from GPS receivers. In this study, GPS based TEC measurements and an ionosphere model known as International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) are employed together in order to obtain a physically accurate 3D electron density distribution which is compliant with the real measurements obtained from a GPS satellite - receiver network. Ionospheric parameters input to the IRI-Plas model are perturbed in the region of interest by using parametric perturbation models such that the synthetic TEC measurements calculated from the resultant 3D electron density distribution fit to the real TEC measurements. The problem is considered as an optimization problem where the optimization parameters are the parameters of the parametric perturbation models. Proposed technique is applied over Turkey, on both calm and storm days of the ionosphere. Results show that the proposed technique produces 3D electron density distributions which are compliant with IRI-Plas model, GPS TEC measurements and ionosonde measurements. The effect of the GPS receiver station number on the performance of the proposed technique is investigated. Results showed that 7 GPS receiver stations in a region as large as Turkey is sufficient for both calm and storm days of the ionosphere. Since the ionization levels in the ionosphere are highly correlated in time, the proposed technique is extended to the time domain by applying Kalman based tracking and smoothing

  9. Integration of InSAR and GPS for hydraulic engineering

    Institute of Scientific and Technical Information of China (English)

    HE; XiuFeng; LUO; HaiBin; HUANG; QiHuan; HE; Min

    2007-01-01

    Interferometric synthetic aperture radar (InSAR) is a potential earth observation approach,and it has been demonstrated to have a variety of applications in measuring ground movement,urban subsidence and landslides.Currently InSAR provides the ability to map accurate DEM and measure ground deformation to sub-centimeter accuracy.However,many factors affect InSAR to measure ground movement since dam constructions are built in a large scale area with a complicated climate and unstable geology.This paper discusses potential applications of integrated InSAR and GPS to monitor a large-scale ground movement due to hydropower developments.The integration of InSAR and GPS can provide a cost-effective means for monitoring deformation of hydropower developments.Moreover,two novel methods,both the improved spatial interpolating method and estimation of 3D surface motion velocities method,are proposed and the experimental results and analysis are given in this paper.

  10. Precise orbit determination based on raw GPS measurements

    Science.gov (United States)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  11. Gravity field models derived from Swarm GPS data

    Science.gov (United States)

    Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert

    2016-07-01

    It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.

  12. Building a GPS Receiver for Space Lessons Learned

    Science.gov (United States)

    Sirotzky, Steve; Heckler, G. W.; Boegner, G.; Roman, J.; Wennersten, M.; Butler, R.; Davis, M.; Lanham, A.; Winternitz, L.; Thompson, W.; Bamford, B.; Banes, V.

    2008-01-01

    Over the past 4 years the Component Systems and Hardware branch at NASA GSFC has pursued an inhouse effort to build a unique space-flight GPS receiver. This effort has resulted in the Navigator GPS receiver. Navigator's first flight opportunity will come with the STS-125 HST-SM4 mission in August 2008. This paper covers the overall hardware design for the receiver and the difficulties encountered during the transition from the breadboard design to the final flight hardware design. Among the different lessons learned, the paper stresses the importance of selecting and verifying parts that are appropriate for space applications, as well as what happens when these parts are not accurately characterized by their datasheets. Additionally, the paper discusses what analysis needs to be performed when deciding system frequencies and filters. The presentation also covers how to prepare for thermal vacuum testing, and problems that may arise during vibration testing. It also contains what criteria should be considered when determining which portions of a design to create in-house, and which portions to license from a third party. Finally, the paper shows techniques which have proven to be extraordinarily helpful in debugging and analysis.

  13. GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users

    Science.gov (United States)

    Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen

    2015-01-01

    GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.

  14. Very long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?

    Science.gov (United States)

    Kelevitz, K.; Houlie, N.; Nissen-Meyer, T.; Boschi, L.; Giardini, D.; Rothacher, M.

    2014-12-01

    It is now admitted that high rate GPS observations can provide reliable surface displacement waveforms. For long-period (T > 5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component [Houlié et al., 2011]. We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. We aim at extending the use of GPS measurements beyond the range of STS-1 in the low frequency end (T>1000s). We present the results of the processing of 1Hz GPS records of the Hokkaido, Sumatra and Tohoku earthquakes (25th of September, 2003, Mw = 8.3; 26th of December, 2004, Mw = 8.9; 11th of March, 2011, Mw = 9.1, respectively). 3D waveforms phase time-series have been used to recover the ground motion histories at the GPS sites. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of periods ranging from 30 seconds to 1300 seconds for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms, superconducting gravity waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. We find that the GPS waveforms are in agreement with the SPECFEM synthetic data and are able to fill the period-gap between the broadband seismometer STS-1 data and the normal mode period range detected by the superconducting gravimeters. References: Houlié, N., G. Occhipinti, T. Blanchard, N. Shapiro, P. Lognonne, and M. Murakami (2011), New approach to detect seismic surface waves in 1Hz-sampled GPS time series, Scientific reports, 1, 44.

  15. Ionospheric irregularities at Antarctic using GPS measurements

    Indian Academy of Sciences (India)

    Sunita Tiwari; Amit Jain; Shivalika Sarkar; Sudhir Jain; A K Gwal

    2012-04-01

    The purpose of this work is to study the behaviour of the ionospheric scintillation at high latitude during geomagnetically quiet and disturbed conditions which is one of the most relevant themes in the space weather studies. Scintillation is a major problem in navigation application using GPS and in satellite communication at high latitudes. Severe amplitude fading and strong scintillation affect the reliability of GPS navigational system and satellite communication. To study the effects of the ionospheric scintillations, GPS receiver installed at Antarctic station Maitri (Geog. 70.76°S; 11.74°E) was used. The data is collected by using GISTM 4004A, NOVATEL’S GPS receiver during March 2008. Studies show that percentage occurrence of phase scintillation is well correlated with geomagnetic activity during the observation period. The result also shows that very intense scintillations can degrade GPS based location determination due to loss of lock of satellites. These findings indicate that the dependence of scintillations and irregularity occurrence on geomagnetic activity is associated with the magnetic local time (MLT). Large number of patches are reported and their activity depends on the magnetic activity index.

  16. GPS Remote Sensing Measurements Using Aerosonde UAV

    Science.gov (United States)

    Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.

    2005-01-01

    In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.

  17. GPS-GRAVIMETRIC GEOID DETERMINATION IN EGYPT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The main objective of this study is to improve the geoid byGPS/leveling data in Egypt.Comparisons of the gravimetric geoid with GPS/leveling data have been performed.On the basis of a gravimetric geoid fitted to GPS/leveling by the least square method,a smoothed geoid was obtained.A high-resolution geoid in Egypt was computed with a 2.5′×2.5′ grid by combining the data set of 2 600 original point gravity values,30″×30″ resolution Digital Terrain Model (DTM) grid and the spherical harmonic model EGM96.The method of computation involved the strict evaluation of the Stokes integral with 1D-FFT.The standard deviation of the difference between the gravimetric and the GPS/leveling geoid heights is ±0.47 m.The standard deviation after fitting of the gravimetric geoid to the GPS/leveling points is better than ±13 cm.In the future we will try to improve our geoid results in Egypt by increasing the density of gravimetric coverage.

  18. 低费用多天线GPS变形监测系统的研究%A Low Cost Multi-antenna GPS System for Deformation Monitoring

    Institute of Scientific and Technical Information of China (English)

    黄丁发; 丁晓利; 陈永奇; 苏经凯

    2001-01-01

    简要介绍多天线GPS监测系统的设计思想,并着重介绍和讨论一个使用低质量(低费用)GPS 天线及接收机的变形监测系统,包括此系统的设计、资料处理方法以及一些初步测试结果。%GPS technology has been proved to be more accurate, efficient, highly automatic and low labor extensive than traditional surveying techniques for local deformation monitoring applications. However, one limitation factor for large-scale use of GPS is high cost with standard approach, such as permanent GPS receiver arrays used for landslide monitoring, one receiver is required for each point that needs monitored. To reduce the expenses of GPS hardware and prevent the loss of advanced equipment in disaster, a new multi-antenna GPS system has been developed to bring GPS implementation into a new era. This paper presents the design of multi antenna GPS system, methodology of data processing, and experimental results.

  19. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.;

    2012-01-01

    behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...... inversion at cloud top. For cloud tops below 14 km, the temperature lapse rate within the cloud often approaches a moist adiabat, consistent with rapid undiluted ascent within the convective systems....

  20. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.;

    2011-01-01

    behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...... inversion at cloud top. For cloud tops below 14 km, the temperature lapse rate within the cloud often approaches a moist adiabat, consistent with rapid undiluted ascent within the convective systems....

  1. Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers

    Science.gov (United States)

    Lightsey, E. Glenn

    2004-01-01

    Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.

  2. Quarry monitoring using GPS measurements and UAV photogrammetry

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Koukouvelas, Ioannis; Argyropoulos, NIkolaos; Megalooikonomou, Vasileios

    2015-10-01

    The objective of this work is to indicate a monitoring methodology in order to survey the present state of the quarry sites and their evolution in time, which are the basic data needed to implement an adequate land reclamation project. The land monitoring has been realised by UAV photogrammetry and GPS measurements supported by a Geographic Information System. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos have been used in order to create orthophotos mosaic and DSM from the quarry planes. DGPS measurements and the data captured from the UAV are combined in GIS and the results are presented in the current study.

  3. Integration of GPS precise point positioning and MEMS-based INS using unscented particle filter.

    Science.gov (United States)

    Abd Rabbou, Mahmoud; El-Rabbany, Ahmed

    2015-01-01

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available. PMID:25815446

  4. Integration of GPS Precise Point Positioning and MEMS-Based INS Using Unscented Particle Filter

    Directory of Open Access Journals (Sweden)

    Mahmoud Abd Rabbou

    2015-03-01

    Full Text Available Integration of Global Positioning System (GPS and Inertial Navigation System (INS integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF, is utilized, which combines the unscented Kalman filter (UKF and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available.

  5. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach.

    Directory of Open Access Journals (Sweden)

    Mariano R Recio

    Full Text Available Recent technological improvements have made possible the development of lightweight GPS-tagging devices suitable to track medium-to-small sized animals. However, current inferences concerning GPS performance are based on heavier designs, suitable only for large mammals. Lightweight GPS-units are deployed close to the ground, on species selecting micro-topographical features and with different behavioural patterns in comparison to larger mammal species. We assessed the effects of vegetation, topography, motion, and behaviour on the fix success rate for lightweight GPS-collar across a range of natural environments, and at the scale of perception of feral cats (Felis catus. Units deployed at 20 cm above the ground in sites of varied vegetation and topography showed that trees (native forest and shrub cover had the largest influence on fix success rate (89% on average; whereas tree cover, sky availability, number of satellites and horizontal dilution of position (HDOP were the main variables affecting location error (±39.5 m and ±27.6 m before and after filtering outlier fixes. Tests on HDOP or number of satellites-based screening methods to remove inaccurate locations achieved only a small reduction of error and discarded many accurate locations. Mobility tests were used to simulate cats' motion, revealing a slightly lower performance as compared to the fixed sites. GPS-collars deployed on 43 cats showed no difference in fix success rate by sex or season. Overall, fix success rate and location error values were within the range of previous tests carried out with collars designed for larger species. Lightweight GPS-tags are a suitable method to track medium to small size species, hence increasing the range of opportunities for spatial ecology research. However, the effects of vegetation, topography and behaviour on location error and fix success rate need to be evaluated prior to deployment, for the particular study species and their habitats.

  6. Multicorrelator techniques for robust mitigation of threats to GPS signal quality

    Science.gov (United States)

    Phelts, Robert Eric

    2001-10-01

    Many applications that utilize the Global Positioning System (GPS) demand highly accurate positioning information. Safety-critical applications such as aircraft navigation require position solutions with not only high accuracy but also with high integrity. Two significant threats to GPS signal quality exist which can make meeting both of these requirements a difficult task. Satellite signal anomalies, or "evil waveforms," can result from soft failures of the signal generating hardware onboard the GPS satellite. These subtle anomalies cause distortions of the signal, which if undetected may pose an integrity risk to an aircraft relying on GPS. Signal Quality Monitoring (SQM) is required to reliably detect these anomalies and thereby protect airborne users from this integrity threat. Multipath, or undesired reflected signals from the ground or other obstacles, also distorts the desired GPS signal. In addition to making evil waveforms more difficult to detect, multipath---an ever-present error source---also degrades nominal performance. Multipath mitigation techniques attempt to reduce or eliminate this threat. This thesis introduces novel signal processing techniques for addressing these twin concerns. First, a comprehensive method for designing a robust signal quality monitor to detect evil waveforms in the presence of multipath is described. This method is used to specify a practical multiple-correlator configuration for the SQM receiver that satisfies the requirements for Category I precision approaches for landing aircraft. Second, a new multipath mitigation approach is introduced that leverages "multipath invariant" properties of the GPS signals. A real-time Tracking Error Compensator (TrEC) algorithm is experimentally shown to provide significant accuracy improvements over existing techniques for low-end (or "narrowband") receivers. Additionally, it is shown that TrEC may have at least comparable multipath mitigation performance to that of a high-end (or

  7. Analysis of signal acquisition in GPS receiver software

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-01-01

    Full Text Available This paper presents a critical analysis of the flow signal processing carried out in GPS receiver software, which served as a basis for a critical comparison of different signal processing architectures within the GPS receiver. It is possible to achieve Increased flexibility and reduction of GPS device commercial costs, including those of mobile devices, by using radio technology software (SDR, Software Defined Radio. The SDR application can be realized when certain hardware components in a GPS receiver are replaced. Signal processing in the SDR is implemented using a programmable DSP (Digital Signal Processing or FPGA (Field Programmable Gate Array circuit, which allows a simple change of digital signal processing algorithms and a simple change of the receiver parameters. The starting point of the research is the signal generated on the satellite the structure of which is shown in the paper. Based on the GPS signal structure, a receiver is realized with a task to extract an appropriate signal from the spectrum and detect it. Based on collected navigation data, the receiver calculates the position of the end user. The signal coming from the satellite may be at the carrier frequencies of L1 and L2. Since the SPS is used in the civil service, all the tests shown in the work were performed on the L1 signal. The signal coming to the receiver is generated in the spread spectrum technology and is situated below the level of noise. Such signals often interfere with signals from the environment which presents a difficulty for a receiver to perform proper detection and signal processing. Therefore, signal processing technology is continually being improved, aiming at more accurate and faster signal processing. All tests were carried out on a signal acquired from the satellite using the SE4110 input circuit used for filtering, amplification and signal selection. The samples of the received signal were forwarded to a computer for data post processing, i. e

  8. GPS and Mobile Multisensor Mapping System

    Institute of Scientific and Technical Information of China (English)

    Zhang Ke-fei; Xiao Ben-lin

    2003-01-01

    The latest development and evolution of surveying and mobile mapping technologies opens new avenues for the acquisition, update, fast and online processing of data. Currently mobile mapping systems are supported by a series of advanced technologies, including GPS and Inertial Navigation Systems (INS), imaging sensors of high-resolution CCD, SAR, multispectral and hyperspectral sensors, portable computers and highly intelligent processing/automation algorithms. This paper outlines recent developments of micro-GPS technology and integrated mapping systems, including accuracy,integration with GIS and communication techniques. The definition and history of the Mobile Mapping System(MMS) is reviewed and briefly outlined. Advancements in low-cost, micro-GPS technologies are emphasised.Some new advancements of the current MMS will be reviewed to demonstrate recent progress and future trends of development. A few commercial MMSs are also assessed.

  9. Airborne gravimetry, altimetry, and GPS navigation errors

    Science.gov (United States)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  10. Using Reflected GPS Signals for Environmental Research

    Science.gov (United States)

    Larson, K. M.; Small, E. E.; Moore, A. W.; Owen, S. E.; Hardman, S. H.; Castro, S. L.; Wong, C.

    2015-12-01

    Tens of thousands of high-precision GPS receivers are operating around the world. With very few exceptions, the primary use of these receivers is to measure position. However, we now know that reflection data collected by these receivers can be used to measure shallow soil moisture variations, snow depth, and vegetation water content. If properly situated, many can measure sea level. A portal dedicated to environmental products derived from reflected GPS signals from the NSF EarthScope Plate Boundary Observatory, a large network in the western United States, is now available and updated daily at http://xenon.colorado.edu/portal. I will outline the methodology used by PBO H2O and validation results for each of these products. GPS reflections have a footprint that is intermediate to more typical in situ sensors and satellite data. These products are primarily useful for climate studies and satellite validation.

  11. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.

    Directory of Open Access Journals (Sweden)

    Yu Xue

    Full Text Available As one of the most important and ubiquitous post-translational modifications (PTMs of proteins, S-nitrosylation plays important roles in a variety of biological processes, including the regulation of cellular dynamics and plasticity. Identification of S-nitrosylated substrates with their exact sites is crucial for understanding the molecular mechanisms of S-nitrosylation. In contrast with labor-intensive and time-consuming experimental approaches, prediction of S-nitrosylation sites using computational methods could provide convenience and increased speed. In this work, we developed a novel software of GPS-SNO 1.0 for the prediction of S-nitrosylation sites. We greatly improved our previously developed algorithm and released the GPS 3.0 algorithm for GPS-SNO. By comparison, the prediction performance of GPS 3.0 algorithm was better than other methods, with an accuracy of 75.80%, a sensitivity of 53.57% and a specificity of 80.14%. As an application of GPS-SNO 1.0, we predicted putative S-nitrosylation sites for hundreds of potentially S-nitrosylated substrates for which the exact S-nitrosylation sites had not been experimentally determined. In this regard, GPS-SNO 1.0 should prove to be a useful tool for experimentalists. The online service and local packages of GPS-SNO were implemented in JAVA and are freely available at: http://sno.biocuckoo.org/.

  12. Single-Receiver GPS Phase Bias Resolution

    Science.gov (United States)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  13. A GPS Receiver for Lunar Missions

    Science.gov (United States)

    Bamford, William A.; Heckler, Gregory W.; Holt, Greg N.; Moreau, Michael C.

    2008-01-01

    Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical

  14. Fast error analysis of continuous GPS observations

    OpenAIRE

    Bos, M.S.; Fernandes, R. M. S.; Williams, S. D. P.; Bastos, L.

    2007-01-01

    It has been generally accepted that the noise in continuous GPS observations can be well described by a power-law plus white noise model. Using maximum likelihood estimation (MLE) the numerical values of the noise model can be estimated. Current methods require calculating the data covariance matrix and inverting it, which is a significant computational burden. Analysing 10 years of daily GPS solutions of a single station can take around 2 h on a regular computer such as a PC with an AMD Athl...

  15. GPS for large-scale aerotriangulation

    Science.gov (United States)

    Rogowksi, Jerzy B.

    The application of GPS (Global Positioning System) measurements to photogrammetry is presented. The technology of establishment of a GPS network for aerotriangulation as a base for mapping at scales from 1:1000 has been worked out at the Institute of Geodesy and Geodetical Astronomy of the Warsaw University of Technology. This method consists of the design, measurement, and adjustment of this special network. The results of several pilot projects confirm the possibility of improving the aerotriangulation accuracy. A few-centimeter accuracy has been achieved.

  16. Investigation on Tidal Components in GPS Coordinates

    Science.gov (United States)

    Araszkiewicz, Andrzej; Bogusz, Janusz; Figurski, Mariusz

    2009-01-01

    This paper presents analyses on the GPS coordinates from sub-diurnal solutions of EPN data provided by Warsaw Military University of Technology. The aim of this research is to investigate the way the tidal models used in Bernese software (solid Earth and ocean tides as well) fit to the individual conditions of EPN stations. The 1-hour solution technique of GPS data processing was utilized to obtain coordinates of above 70 EPN stations. Additionally several Polish permanent sites with clearly seen oscillations were examined. This processing technique allowed us to recognize diurnal and sub-diurnal residual oscillations which could be next utilized for validation of the tidal models.

  17. A Bridge Deflection Monitoring with GPS

    Science.gov (United States)

    Figurski, M.; Gałuszkiewicz, M.; Wrona, M.

    2007-01-01

    This paper introduces results of investigation carried on by The Applied Geomatics Section in Military University of Technology. Research includes possibilities of monitoring dynamic behavior of a bridge using high rate GPS data. Whole event was executed with collaboration of The Road and Bridge Management and The Warsaw Geodesy Company. Interdisciplinary approach with this project allows authors to get reliable information about investigating constructions and their respond for true traffic loading detected by GPS receivers. Way of compute data and used software (TRACK) are also shown in this paper.

  18. GPS landy system (GPS land dynamic management system). Jinko eisei GPS ni yoru doko sogo kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Kanzaki, T.; Nishizawa, S. (Taisei Corp., Tokyo (Japan))

    1991-09-15

    A GPS LANDY system was developed, which is characterized in overall systematization of large scale land constructions, intended to improve its efficiency, by means of linking the shape measurement utilizing satellites with various types of land management. The GPS is an observation system using 18 satellites, three each on six orbits, orbifing in an altitude of 20,000 km. Because of the conventional GPS requiring three hours, and in addition, having as poor accuracy as several ten meters, a GPS dynamic position measuring method was developed, which is applied with such an improvement as installing receiving antennas at the measuring points. As a result, recording the three-dimensional coordinates has become possible instantaneously and continuously; the system can be operated by a single operator; simultaneous multi-point measurements have become possible if the number of receivers is increased; quick and wide-area three-dimensional topographic measurement has become possible; and the accuracy was improved to 1 cm. Utilization of these measurement data to various construction management systems led to a completion of the overall land management system. 5 figs.

  19. A New GPS System for Continuous Deformation Monitoring

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a multi-antenna GPS based system developed for localcontinuous deformation monitoring. Due to a large number of points that needs to be monitored,the standard approaches of using permanent GPS receiver arrays will cause high cost. Iteventually becomes the limiting factor for large-scale use of GPS in these application areas.Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiverby a specially designed electronic component, i.e. the so-called GPS multi-antenna switch(GMS), The receiver takes data sequentially from each of the antennas attached to thereceiver. A distinctive advantage of the approach is that one GPS receiver can be used tomonitor more than one point. The cost per monitored point (i. e. the expenses of hardware)istherefore significantly reduced.

  20. A HYBRID APPROACH TO GPS IMPROVEMENT IN URBAN CANYONS

    OpenAIRE

    Ashwani Kumar Aggarwal *

    2015-01-01

    GPS has become important tool in everyday life for safe and convenient transportation of automobiles. Pedestrians use hand held smart devices to know their own position in a town, modern vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating current position of vehicle for safe driving. However, in urban areas with canyon of buildings where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from near...

  1. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    Science.gov (United States)

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  2. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  3. Accuracy assessment of GPS and surveying technique in forest road mapping

    Directory of Open Access Journals (Sweden)

    Ehsan Abdi

    2012-12-01

    Full Text Available Forest road networks provide access to the forest as a source of timber production and tourism services. Moreover, it is considered the main tool to protect forests from fire and smuggling. The prerequisite of road management and maintenance planning is to have spatial distribution and map of the roads. But newly constructed or some other forest road segments are not available in national maps. Therefore, mapping these networks is raised as a priority for a forest manager. The aim of this study was to assess accuracy of routine methods in road mapping. For this purpose, Patom district forest road was selected and road network map was extracted from the National Cartographic Center maps as the ground truth or base map. The map of the network was acquired using two methods, a GPS receiver and survey technique. Selecting 70 sample points on the network and considering the National Cartographic Center map as base map, accuracy was determined for two methods. The results showed that while the survey method was more accurate at the beginning of the path (first 500 meters, accumulation of errors resulted in higher rates of error in this method (up to 263 meters compared to GPS. Mann-Whitney test revealed significant differences in accuracy of two methods and mean accuracies were 38.86 and 147.90 for GPS and surveying respectively. The results showed that for samples 1-15 there was no significant difference between the survey and GPS data but for samples 28-42 and 56-70 statistically significant difference were existed between the survey and GPS data. Regression analysis showed that the relation between GPS and surveying accuracies and distance were best defined by cubic (R2 adj = 0.65 and linear (R2 adj = 0.83 regression models respectively. Applying 10 and 5 meters buffers around base map, 68 and 41% of GPS and 44 and 21% of surveying derived road were overlapped with buffer zones. The time required to complete the survey was found to increase the

  4. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The vertical structure of water vapor in atmosphere is one of the initial information of numerical weather forecast model. Because of the strong variation of water vapor in atmosphere and limited spatio-temporal solutions of traditional observation technique, the initial water vapor field of numerical weather forecast model can not accurately be described. At present, using GPS slant observations to study water vapor profile is very popular in the world. Using slant water vapor(SWV) observations from Shanghai GPS network,we diagnose the three-dimensional(3D) water vapor structure over Shanghai area firstly in China. In water vapor tomography, Gauss weighted function is used as horizontal constraint, the output of numerical forecast is used as apriori information, and boundary condition is also considered. For the problem without exact apriori weights for observations, estimation of variance components is introduced firstly in water vapor tomography to determine posteriori weights. Robust estimation is chosen for reducing the effect of blunders on solutions. For the descending characteristic of water vapor with height increasing, non-equal weights are used along vertical direction. Comparisons between tomography results and the profile provided by numerical model (MM5) show that the forecasted moisture fields of MM5 can be improved obviously by GPS slant water vapor. Using GPS slant observations to study 3D structure of atmosphere in near real-time is very important for improving initial water vapor field of short-term weather forecast and enhancing the accuracy of numerical weather forecast.

  5. Receiver-channel based adaptive blind equalization approach for GPS dynamic multipath mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun; Xue Xiaonan; Zhang Tingfei

    2013-01-01

    Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications,an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed,which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops.The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; there-fore an increase in the number of correlator channels is required compared with conventional GPS receivers.An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response.Then,the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs.To demonstrate the capabilities of the proposed approach,this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator,thus simulations under controlled dynamic multipath scenarios can be carried out.Simulation results show that in a dynamic and fairly severe multipath environment,the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.

  6. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  7. Investigating Atmospheric Rivers using GPS TPW during CalWater 2015

    Science.gov (United States)

    Almanza, V.; Foster, J. H.; Businger, S.

    2015-12-01

    Ship-based Global Positioning System (GPS) receivers have been successful in obtaining millimeter accuracy total precipitable water (TPW). We apply this technique with a field experiment using a GPS meteorology system installed on board the R/V Ronald Brown during the CalWater 2015 project. The goal of CalWater is to monitor atmospheric river (AR) events over the Eastern Pacific Ocean and improve forecasting of the extreme precipitation events they can produce. During the 30-day cruise, TPW derived from radiosonde balloons released from the Ron Brown are used to verify the accuracy of shipboard GPS TPW. The results suggest that ship-based GPS TPW offers a cost-effective approach for acquiring accurate real-time meteorological observations of TPW in AR's over remote oceans, as well as near the coastlines where satellites algorithms have limited accuracy. The results have implications for augmenting operational observing networks to improve weather prediction and nowcasting of ARs, thereby supporting hazard response and mitigation efforts associated with coastal flooding events.

  8. Practical method for estimating road curvatures using onboard GPS and IMU equipment

    Science.gov (United States)

    Zamfir, S.; Drosescu, R.; Gaiginschi, R.

    2016-08-01

    This paper describes an experimental method to determine with high accuracy the curvature of a road segment, the turning radius of a car, and the discomfort level perceived by the passengers in the vehicle cabin when passing through a curve. For these experiments we used professional equipment provided with two GPS active antennas with 13 dB gain featuring non-contact 100 Hz speed and distance measurement, and a ten degree Inertial Measurement Unit (IMU) with dynamic orientation outputs. The same experimental measurements also usedthe low cost GPS equipment available on smartphones, domestic vehicle GPS devices, as well as an Arduino GPS shield in order to compare the results generated by professional equipment. The purpose of these experiments was also to establish if certain road curve sections were correctly executed in order to ensure the safety and comfort of passengers. Another use of the proposed method relates to the road accident reconstruction field, providing experts and forensics with an accurate method of measuring the roadway curvature at accident scenes or traffic events. The research and equipment described in this paper have been acquired and developed under a PhD studyand a European funded project won and elaborated by the authors.

  9. Estimating snow water equivalent from GPS vertical site-position observations in the western United States.

    Science.gov (United States)

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-05-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508-2518, doi:10.1002/wrcr.20173. PMID:24223442

  10. 78 FR 67132 - GPS Satellite Simulator Control Working Group Meeting

    Science.gov (United States)

    2013-11-08

    ... Department of the Air Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Space and Missile Systems Center, Global Positioning Systems (GPS) Directorate, Air Force, DoD. ACTION: Meeting notice..., 2013 Vol. 78 No. 206. This new meeting notice is to inform GPS simulator manufacturers, who...

  11. 78 FR 63459 - GPS Satellite Simulator Control Working Group Meeting

    Science.gov (United States)

    2013-10-24

    ... Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Department of the Air Force. ACTION: Meeting Notice. SUMMARY: This meeting notice is to inform GPS simulator manufacturers, who supply products to the Department of Defense (DoD), and GPS simulator users, both government and DoD...

  12. 77 FR 70421 - GPS Satellite Simulator Control Working Group Meeting

    Science.gov (United States)

    2012-11-26

    ... Department of the Air Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Space and Missile Systems Center, Global Positioning Systems (GPS) Directorate, Department of the Air Force, DoD. ACTION: Meeting Notice. SUMMARY: This meeting notice is to inform GPS simulator manufacturers, who supply...

  13. The Evolution of Global Positioning System (GPS) Technology.

    Science.gov (United States)

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  14. GPS Rapid Static and Kinematic Positioning Based on GPS Active Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents a data processing strategy for GPS kinematic positioning by using a GPS active network to model the GPS errors in double difference observable.Firstly,the double difference residuals are estimated between the reference stations in the active network.Then the errors at a user station are predicted as the network corrections to user measurements,based on the location of the user.Finally conventional kinematic positioning algorithms can be applied to determine the position of the user station.As an example,continuous 24-hour GPS data in March 2001 has been processed by this method.It clearly demonstrates that,after applying these corrections to a user within the network,both the success rate for ambiguity resolution and the positioning accuracy have been significantly improved.

  15. The MARCOR GPS mobile data system

    Science.gov (United States)

    Rothblatt, Martin

    1991-09-01

    Market research revealed several key demands for an Automatic Vehicle Location (AVL) Global Positioning System (GPS) radio. The demands were for minimization of urban building blockage, easy programmability to minimize mobile data transmission costs, high accuracy for street map level coordination, interface capability with non-digital Specialized Mobile Radios (SMR), and a selling price close to that of alternatives such as Signposts and Loran-C. A team of experts was assembled to surmount these challenges and deliver a GPS radio for $500 to $1000, which operates at high accuracy in an urban environment and is plug-compatible with nearly all vehicle radios. Among the engineering and production breakthroughs described here are a unique Simultrac (Trademark) approach to satellite tracking, enabling up to eight GPS satellites to be used for position determination with a 2-channel receiver, and a receiver-in-a-microphone design. A powerful Application Specific Integrated Circuit (ASIC) allowed GPS to be brought within easy reach of millions of AVL users such as bus, taxi, and delivery vehicle fleets.

  16. Global geodesy using GPS without fiducial sites

    Science.gov (United States)

    Heflin, Michael; Bertiger, Willy; Blewitt, Geoff; Freedman, Adam; Hurst, Ken; Lichten, Steve; Lindqwister, Ulf; Vigue, Yvonne; Webb, Frank; Yunck, Tom

    1992-01-01

    Baseline lengths and geocentric radii have been determined from GPS data without the use of fiducial sites. Data from the first GPS experiment for the IERS and Geodynamics (GIG '91) have been analyzed with a no-fiducial strategy. A baseline length daily repeatability of 2 mm + 4 parts per billion was obtained for baselines in the Northern Hemisphere. Comparison of baseline lengths from GPS and the global VLBI solution GLB659 (Caprette et al. 1990) show rms agreement of 2.1 parts per billion. The geocentric radius mean daily repeatability for all sites was 15 cm. Comparison of geocentric radii from GPS and SV5 (Murray et al. 1990) show rms agreement of 3.8 cm. Given n globally distributed stations, the n(n - 1)/2 baseline lengths and n geocentric radii uniquely define a rigid closed polyhedron with a well-defined center of mass. Geodetic information can be obtained by examining the structure of the polyhedron and its change with time.

  17. Iranian Permanent GPS Network for Geodynamics (IPGN)

    Science.gov (United States)

    Tavakoli, F.; Nankali, H. R.; Sedighi, M.; Djamour, Y.; Mosavi, Z.

    2009-04-01

    Iran is one of the most tectonically active zone in Alpine-Himalayan seismic belt where has been shaken by largely destroying historical and instrumental earthquakes. Iran is located in the convergence zone between Arabia and Eurasia with a velocity of 22 mm/yr nearly to the North. The shortening between Arabian and Eurasian plates in Iran is mainly distributed on Zagros and Alborz belts. Despite the historical and scientific awareness of seismic hazard in Iran, unfortunately this country lacked a Continuous GPS network to study geodynamic and tectonic movements. Such geodetic measurement can play an important role to understand the tectonic deformation then to evaluate the seismic hazard on Iran. Since early 2005 National Cartographic Center of Iran (NCC) is establishing a continuous GPS network named Iranian Permanent GPS Network for Geodynamics (IPGN). Taking into account the number of provided GPS receivers, (108) we made a priority based on two factors of seismicity and population. At the first, in order to study general tectonic behavior in Iran 41 stations, globally distributed in whole of Iran, were been considered. Three other areas in the priority list were: Centeral Alborz, North-West of Iran and North-East of Iran. The rest of receivers, i.e. ~60, were considered for these areas as local networks. These four networks are daily processed and give us a continuous monitoring of any surface deformation. In this paper we try to present the results obtained from the network

  18. The MARCOR GPS mobile data system

    Science.gov (United States)

    Rothblatt, Martin

    1991-01-01

    Market research revealed several key demands for an Automatic Vehicle Location (AVL) Global Positioning System (GPS) radio. The demands were for minimization of urban building blockage, easy programmability to minimize mobile data transmission costs, high accuracy for street map level coordination, interface capability with non-digital Specialized Mobile Radios (SMR), and a selling price close to that of alternatives such as Signposts and Loran-C. A team of experts was assembled to surmount these challenges and deliver a GPS radio for $500 to $1000, which operates at high accuracy in an urban environment and is plug-compatible with nearly all vehicle radios. Among the engineering and production breakthroughs described here are a unique Simultrac (Trademark) approach to satellite tracking, enabling up to eight GPS satellites to be used for position determination with a 2-channel receiver, and a receiver-in-a-microphone design. A powerful Application Specific Integrated Circuit (ASIC) allowed GPS to be brought within easy reach of millions of AVL users such as bus, taxi, and delivery vehicle fleets.

  19. Discovering Hidden Treasures with GPS Technology

    Science.gov (United States)

    Nagel, Paul; Palmer, Roger

    2014-01-01

    "I found it!" Addison proudly proclaimed, as she used an iPhone and Global Positioning System (GPS) software to find the hidden geocache along the riverbank. Others in Lisa Bostick's fourth grade class were jealous, but there would be other geocaches to find. With the excitement of movies like "Pirates of the Caribbean"…

  20. GPS Signal Acquisition via Compressive Multichannel Sampling

    CERN Document Server

    Li, Xiao; Eldar, Yonina C; Scaglione, Anna

    2011-01-01

    In this paper, we propose an efficient acquisition scheme for GPS receivers. It is shown that GPS signals can be effectively sampled and detected using a bank of randomized correlators with much fewer chip-matched filters than those used in existing GPS signal acquisition algorithms. The latter use correlations with all possible shifted replicas of the satellite-specific C/A code and an exhaustive search for peaking signals over the delay-Doppler space. Our scheme is based on the recently proposed analog compressed sensing framework, and consists of a multichannel sampling structure with far fewer correlators. The compressive multichannel sampler outputs are linear combinations of a vector whose support tends to be sparse; by detecting its support one can identify the strongest satellite signals in the field of view and pinpoint the correct code-phase and Doppler shifts for finer resolution during tracking. The analysis in this paper demonstrates that GPS signals can be detected and acquired via the proposed ...

  1. GPS LifePlan--Leading Campus Change

    Science.gov (United States)

    Litecky, Larry; Bruner, Mike; Hageman, Kristin

    2009-01-01

    The Goals + Plans = Success (GPS) LifePlan is a new and innovative approach to assist and support students in answering critical questions that give direction to their pursuit of success. The program has brought impressive cultural changes to Century College. It benefited new students by establishing a framework for critical decision making that…

  2. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    Directory of Open Access Journals (Sweden)

    Hyunchul Roh

    2016-08-01

    Full Text Available This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM. Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i exploiting costly airborne sensors or (ii surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS. We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM. Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK-GPS.

  3. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †.

    Science.gov (United States)

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird's-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  4. Development of a GPS Seamless Archive

    Science.gov (United States)

    Scharber, M.; Bock, Y.; Gilmore, B.

    2003-12-01

    The Scripps Orbit and Permanent Array Center (SOPAC) has completed development of software for UNAVCO's GPS Seamless Archive Center (GSAC). The GSAC is a collection of GPS data archives and their operating agencies that have agreed to exchange information about their individual data holdings. GSAC allows a user to locate GPS data and metadata from these different archives through a single interface; hence GSAC is an operating virtual observatory for continuous and "campaign" GPS data. Data providers collect or generate data and then supply the data to data wholesalers. Data wholesalers collect and archive data and metadata, from one or more data providers. GSAC currently has 7 U.S.-based data wholesalers (NASA's CDDIS, UC Berkeley's NCEDC, NGS, CWU's PANGA archive, SCEC, SOPAC, and UNAVCO). Together these archives hold over 2 million GPS data (RINEX) files collected for over 10,000 monuments, including a nearly complete set of data collected between 1986 and 2003 for the global network and western North America, and a significant quantity of data collected by U.S. scientists in other tectonically active regions. Data retailers collect information from the wholesalers in a well-defined manner and run a service for clients to access the information. Currently there are two GSAC retailers (SOPAC and UNAVCO). The GSAC software suite includes a Web-based interactive client (GSAC Wizard) to locate data, a command-line client to locate and download data, and a retailer service that uses a macro language to pass commands to a server using the http url. The command-line client uses the retailer service to communicate with the retailer server. SOPAC has also modified its map interface to work with GSAC so that GPS data can be located using a spatial context, and maintains a GSAC Home Page (http://gsac.ucsd.edu). In this abstract, we highlight achievements and lessons learned from our development of the current system, but focus on a possible next generation GSAC that will

  5. GPS, GNSS, and Ionospheric Density Gradients

    Science.gov (United States)

    Kintner, P. M.; O'Hanlon, B.; Humphreys, T. E.

    2009-12-01

    Ionospheric density and density gradients affect GNSS signals in two ways. They can introduce ranging errors or irregularities that form on the density gradients producing scintillation. Here we focus on the issue of ranging errors. There are two approaches to mitigating ranging errors produced by ionospheric density gradients which can be 20-30 m during major magnetic storms. The first approach is to use a reference receiver(s) to determine the ionospheric contribution to ranging errors. The ranging error is then transmitted to the user for correction within the mobile receiver. This approach is frequently referred to as differential GPS and, when multiple reference receivers are used, the system is referred to as an augmentation system. This approach is vulnerable to ionospheric gradients depending on the reference receiver spacing(s) and latency in applying the correction within the mobile receiver. The second approach is to transmit navigation signals at two frequencies and then use the relative delay between the two signals to both estimate the ranging error and calculate the correct range. Currently the dual frequency technique is used by US military receivers with an encryption key and some civilian receivers which must be stationary and average over times long compared to those required for navigation. However, the technology of space based radio navigation is changing. GPS will soon be a system with three frequencies and multiple codes. Furthermore Europe, Russia, and China are developing independent systems to complement and compete with GPS while India and Japan are developing local systems to enhance GPS performance in their regions. In this talk we address two questions. How do density gradients affect augmentation systems including the social consequences and will the new GPS/GNSS systems with multiple civilian frequencies be able to remove ionospheric errors. The answers are not at all clear.

  6. EGNOS - USE OF GPS SYSTEM FOR APPROACH PROCEDURES

    Directory of Open Access Journals (Sweden)

    Ewa Wajszczak

    2013-03-01

    Full Text Available Since GPS system became available for common use, a it has been applied in many areas, including aviation. The development of portable GPS receivers provided immeasurable aid in air navigation. The paper presents EGNOS system that ensures the possibility of using GPS system for approach procedure. The article addresses the following issues: the history of creation and development of GPS, principle of system operation, accuracy in relation for GPS system, comparison with conventional radio navigation ILS system and potential benefits from implementing EGNOS.

  7. Measuring Postglacial Rebound with GPS and Absolute Gravity

    Science.gov (United States)

    Larson, Kristine M.; vanDam, Tonie

    2000-01-01

    We compare vertical rates of deformation derived from continuous Global Positioning System (GPS) observations and episodic measurements of absolute gravity. We concentrate on four sites in a region of North America experiencing postglacial rebound. The rates of uplift from gravity and GPS agree within one standard deviation for all sites. The GPS vertical deformation rates are significantly more precise than the gravity rates, primarily because of the denser temporal spacing provided by continuous GPS tracking. We conclude that continuous GPS observations are more cost efficient and provide more precise estimates of vertical deformation rates than campaign style gravity observations where systematic errors are difficult to quantify.

  8. Pricise Target Geolocation Based on Integeration of Thermal Video Imagery and Rtk GPS in Uavs

    Science.gov (United States)

    Hosseinpoor, H. R.; Samadzadegan, F.; Dadras Javan, F.

    2015-12-01

    There are an increasingly large number of uses for Unmanned Aerial Vehicles (UAVs) from surveillance, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy which implicates that it cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using a linear Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors and Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process.

  9. PRICISE TARGET GEOLOCATION BASED ON INTEGERATION OF THERMAL VIDEO IMAGERY AND RTK GPS IN UAVS

    Directory of Open Access Journals (Sweden)

    H. R. Hosseinpoor

    2015-12-01

    Full Text Available There are an increasingly large number of uses for Unmanned Aerial Vehicles (UAVs from surveillance, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy which implicates that it cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using a linear Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors and Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process.

  10. High Precision and Real Time Tracking of Low Earth Orbiters With GPS: Case Studies With TOPEX/POSEIDON and EUVE

    Science.gov (United States)

    Yunck, Thomas P.; Bertiger, Winy I.; Gold, Kenn; Guinn, Joseph; Reichert, Angie; Watkins, Michael

    1995-01-01

    TOPEX/POSEIDON carries a dual-frequency 6 channel GPS receiver while EUVE has a 12 channel single frequency receiver. Flying at an altitude of 1334 km, TOPEX/POSEIDON performs precise ocean altimetry, which demands the highest possible accuracy in determining the radial orbit component in post-processing. Radial RMS accuracies of about 2 cm were realized using reduced dynamic tracking techniques. In this approach, orbit errors due to force are substantially reduced by exploiting the geometric strength of GPS to solve for a set of stochastic forces. On EUVE, the emphasis was on evaluating real time positioning techniques with a single frequency receiver. The capability for real time 3D accuracies of 15 m in the presence of Selective Availability was shown. This was validated by comparing to a post-processed differential GPS truth orbit believed accurate to about 1 m.!.

  11. The First Experiment with VLBI-GPS Hybrid System

    Science.gov (United States)

    Kwak, Younghee; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun; Takiguchi, Hiroshi; Sekido, Mamoru; Ichikawa, Ryuichi; Sasao, Tetsuo; Cho, Jungho; Kim, Tuhwan

    2010-01-01

    In this paper, we introduce our GPS-VLBI hybrid system and show the results of the first experiment which is now under way. In this hybrid system, GPS signals are captured by a normal GPS antenna, down-converted to IF signals, and then sampled by the VLBI sampler VSSP32 developed by NICT. The sampled GPS data are recorded and correlated in the same way as VLBI observation data. The correlator outputs are the group delay and the delay rate. Since the whole system uses the same frequency standard, many sources of systematic errors are common between the VLBI system and the GPS system. In this hybrid system, the GPS antenna can be regarded as an additional VLBI antenna having multiple beams towards GPS satellites. Therefore, we expect that this approach will provide enough data to improve zenith delay estimates and geodetic results.

  12. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    Science.gov (United States)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of

  13. Monitoring of D-layer using GPS

    Science.gov (United States)

    Golubkov, Maxim; Bessarab, Fedor; Karpov, Ivan; Golubkov, Gennady; Manzheliy, Mikhail; Borchevkina, Olga; Kuverova, Veronika; Malyshev, Nikolay; Ozerov, Georgy

    2016-07-01

    Changes in D layer of ionosphere during the periods of high solar activity lead to non-equilibrium two-temperature plasma parameter variations. Accordingly, the population of orbital degenerate states of Rydberg complexes changes in a fraction of a microsecond. In turn, this affects the operation of any of the systems based on the use of GPS radio signals passing through this layer. It is well known that GPS signals undergo the greatest distortion in the altitude range of 60-110 km. Therefore, the analysis of changes in signal intensity can be useful for plasma diagnosis in these altitudes. In particular, it is useful to determine the vertical temperature profiles and electron density. For this purpose, one can use the satellite radio occultation method. This method is widely used in recent years to solve problems of the electron concentration profile recovery in the F-region of the ionosphere, and also for climate problem solutions. This method allows to define the altitude profiles of the GPS signal propagation delays and to obtain from the inverse problem solution qualitatively high-altitude profiles of the quantities using relative measurements. To ensure the authenticity of the found distributions of electron density and temperature in the D region of the ionosphere, the results should be complemented by measurements of the own atmospheric radiation power at frequencies of 1.4 and 5.0 GHz. This ensures control of the reliability of the results obtained using the "Rydberg" code. Monitoring of the state changes in the D layer by repeatedly following at regular intervals GPS satellite measurements are also of great interest and can provide valuable information on the macroscopic dynamics of D layer containing Rydberg complexes and free electrons. For example, one can monitor changes in the thickness of the emitting layer in time. Such changes lead to an additional contribution to the formation of satellite GPS system errors. It should also be noted that the

  14. Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs

    Science.gov (United States)

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-01-01

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5∘) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05∘ for the roll and the pitch angle and 0.2∘ for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281

  15. Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography

    Directory of Open Access Journals (Sweden)

    Cathryn N. Mitchell

    2009-06-01

    Full Text Available

    Abstract

    Single-frequency Global Positioning System (GPS receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS, to correct for the ionospheric delay and compares the results to existing single and dualfrequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.



  16. Accurate Localization in Dense Urban Area Using Google Street View Image

    OpenAIRE

    Salarian, Mahdi

    2014-01-01

    Accurate information about the location and orientation of a camera in mobile devices is central to the utilization of location-based services (LBS). Most of such mobile devices rely on GPS data but this data is subject to inaccuracy due to imperfections in the quality of the signal provided by satellites. This shortcoming has spurred the research into improving the accuracy of localization. Since mobile devices have camera, a major thrust of this research has been seeks to acquire the local ...

  17. GIST A tool for Global Ionospheric Tomography using GPS ground and LEO d ata and sources of opportunity with applications in instrument calibration

    CERN Document Server

    Flores, A; Rius, A; Cardellach, E

    1999-01-01

    Ionospheric tomography using GPS data has been reported in the literature and even the application to radar altimeter calibration was succesfully carried out in a recent work. We here present a new software tool, called Global Ionospheric Stochastic Tomography software (GIST), and its powerful capability for ingesting GPS data from different sources (ground stations, receivers on board LEO for navigation and occultation purposes) and other data such as altimetry data to yield global maps with dense coverage and inherent calibration of the instruments. We show results obtained including 106 IGS ground stations, GPS/MET low rate occultation data, TOPEX/POSEIDON GPS data from the navigation antenna and NASA Radar Altimeter with the additional benefit of a direct estimation of the NRA bias. The possibility of ingesting different kinds of ionospheric data into the tomographic model suggest a way to accurately monitor the ionosphere with direct application to single frequency instrument calibration.

  18. Evaluation of the Effect of Radio Frequency Interference on Global Positioning System (GPS Accuracy via GPS Simulation

    Directory of Open Access Journals (Sweden)

    Dinesh Sathyamoorthy

    2012-09-01

    Full Text Available In this study, Global positioning system (GPS simulation is employed to study the effect of radio frequency interference (RFI on the accuracy of two handheld GPS receivers; Garmin GPSmap 60CSx (evaluated GPS receiver and Garmin GPSmap 60CS (reference GPS receiver. Both GPS receivers employ the GPS L1 coarse acquisition (C/A signal. It was found that with increasing interference signal power level, probable error values of the GPS receivers increase due to decreasing carrier-to-noise density (C/N0 levels for GPS satellites tracked by the receivers. Varying probable error patterns are observed for readings taken at different locations and times. This was due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in GPS accuracy being location/time dependent. In general, the highest probable error values were observed for readings with the highest position dilution of precision (PDOP values, and vice versa.Defence Science Journal, 2012, 62(5, pp.338-347, DOI:http://dx.doi.org/10.14429/dsj.62.1606

  19. A new approach of single epoch GPS positioning for landslide monitoring

    Institute of Scientific and Technical Information of China (English)

    LIU Gen-you; ZHU Yao-zhong; ZHOU Rong-sheng

    2005-01-01

    When the deformation of landslide becomes larger, the conventional static GPS surveying cannot satisfy the real-time requirement in landslide monitoring. In this paper we present a new method for single epoch GPS positioning combining with the accuracy of approximate coordinates of monitored station in landslide monitoring. This algorithm does not consider troublesome cycle-slip problem of carrier phase, and integer ambiguities can be solved at a single epoch, so the centimeter level accurate coordinates can be calculated instantaneously. By means of filtering or smoothing, this method can be extended to detect millimeter level deformation and velocity. In order to test the new method, low-cost single frequency receivers have been used in a real landslide, which happened in Jiangxi Province, China.

  20. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...... to guide the vehicle relative to the crop rows on an absolute coordinate. A row guidance sensor is therefore included to sense the position relative to the rows. The vehicle path in the field is re-planned online in order to allow for crop row irregularities sensed by the row sensor. The path generation...... is thus controlled by location relative to the local field while the actual path execution is carried out in absolute GPS coordinates. The solution is a system that fuse data from a relative and an absolute measurement system while ensuring accurate row operation at high work rates....

  1. Underwater Digital Terrain Model with GPS-aided High-resolution Profile-scan Sonar Images

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-jun; KOU Xin-jian

    2008-01-01

    The whole procedures of underwater digital terrain model (DTM) were presented by building with the global positioning system (GPS) aided high-resolution profile-scan sonar images. The algorithm regards the digital image scanned in a cycle as the raw data. First the label rings are detected with the improved Hough transform (HT) method and followed by curve-fitting for accurate location; then the most probable window for each ping is detected with weighted neighborhood gray-level co-occurrence matrix; and finally the DTM is built by integrating the GPS data with sonar data for 3D visualization. The case of an underwater trench for immersed tube road tunnel is illustrated.

  2. In situ treatment of liver using catheter based therapeutic ultrasound with combined imaging and GPS tracking

    Science.gov (United States)

    Ghoshal, Goutam; Heffter, Tamas; Williams, Emery; Bromfield, Corinne; Salgaonkar, Vasant; Rund, Laurie; Ehrhardt, John M.; Diederich, Chris J.; Burdette, E. Clif

    2013-02-01

    Extensive surgical procedure or liver transplant still remains the gold standard for treating slow-growing tumors in liver. But only few candidates are suitable for such procedure due to poor liver function, tumors in unresectable locations or presence of other liver diseases. In such situations, minimally invasive surgery may be the best therapeutic procedure. The use of RF, laser and ultrasound ablation techniques has gained considerable interest over the past several years to treat liver diseases. The success of such minimally invasive procedure depends on accurately targeting the desired region and guiding the entire procedure. The purpose of this study is to use ultrasound imaging and GPS tracking system to accurately place a steerable acoustic ablator and multiple temperature sensors in porcine liver in situ. Temperature sensors were place at eight different locations to estimate thermal distribution in the three-dimensional treated volume. Acoustic ablator of center frequency of 7 MHz was used for the experiments. During therapy a maximum temperature of 60-65 °C was observed at a distance 8-10 mm from the center of the ablation transducer. The dose distribution was analyzed and compared with the gross pathology of the treated region. Accurate placement of the acoustic applicator and temperature sensors were achieved using the combined image-guidance and the tracking system. By combining ultrasound imaging and GPS tracking system accurate placement of catheter based acoustic ablation applicator can be achieved in livers in situ.

  3. The GPS-gravimetry boundary value problem

    Institute of Scientific and Technical Information of China (English)

    YU; Jinhai; ZHANG; Chuanding

    2005-01-01

    How to determine the earth's external gravity field with the accuracy of O(T2) by making use of GPS data and gravity values measured on the earth's surface is dealt with in this paper. There are two main steps: to extend these measured values on the earth's surface onto the reference ellipsoid at first and then to seek for the integral solution of the external Neumann problem outside the ellipsoid. In addition, the corresponding judging criteria of accuracy to solve the GPS-gravity boundary value problem are established. The integral solution given in the paper not only contains all frequency-spectral information of the gravity field with the accuracy of O(T2),but is also easily computed. In fact, the solution has great significance for both theory and practice.

  4. Convective towers detection using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.;

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapour mixing ratio and the temperature of the upper troposphere and lower stratosphere. To gain a better understanding of deep convective processes, the study of tropical cyclones could play an import...... (ACES) payload on the International Space Station....... 1194 profiles in a time window of 3 hours and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS RO signal is typically larger than the climatology above the tropopause. Comparisons with co-located radiosondes, climatology of tropopause altitudes...... and GOES analyses will also be shown to support our hypothesis and to corroborate the idea that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space...

  5. 不开车也用GPS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 巧用GPS手机E860秘籍 你真的了解GPS吗?提到GPS很多人最先想到的是车载GPS,大部分人认为只有开车的时候才能用得上GPS.其实,进入2007年以来,各个领域都导入了GPS应用, GPS手机夏新E860不仅具备普通GPS所具有的功能,而且设计更加人性化,巧妙地使用E860将使你的生活更加精彩.

  6. GPS: El sistema de posicionamiento global

    Directory of Open Access Journals (Sweden)

    Juan Gilberto Serpas

    2016-03-01

    Full Text Available El Sistema de Posicionamiento Global (GPS, por sus siglas en inglés se ha convertido, en la actualidad, en una herramienta invaluable para el posicionamiento de puntos sobre la superficie terrestre. Este artículo pretende dar al lector una descripción del GPS, así como la introducción al cálculo de coordenadas para ser usadas tanto en navegación como en labores de topografía y geodesia. Las características principales del sistema son descritas y se introducen los principios básicos para la determinación de coordenadas tanto en modo absoluto como en modo relativo.

  7. Digital Signal Processor For GPS Receivers

    Science.gov (United States)

    Thomas, J. B.; Meehan, T. K.; Srinivasan, J. M.

    1989-01-01

    Three innovative components combined to produce all-digital signal processor with superior characteristics: outstanding accuracy, high-dynamics tracking, versatile integration times, lower loss-of-lock signal strengths, and infrequent cycle slips. Three components are digital chip advancer, digital carrier downconverter and code correlator, and digital tracking processor. All-digital signal processor intended for use in receivers of Global Positioning System (GPS) for geodesy, geodynamics, high-dynamics tracking, and ionospheric calibration.

  8. UAV ONBOARD GPS IN POSITIONING DETERMINATION

    OpenAIRE

    K. N. Tahar; Kamarudin, S. S.

    2016-01-01

    The establishment of ground control points is a critical issue in mapping field, especially for large scale mapping. The fast and rapid technique for ground control point’s establishment is very important for small budget projects. UAV onboard GPS has the ability to determine the point positioning. The objective of this research is to assess the accuracy of unmanned aerial vehicle onboard global positioning system in positioning determination. Therefore, this research used UAV onboar...

  9. Dual algebraic formulation of differential GPS

    Science.gov (United States)

    Lannes, A.; Dur, S.

    2003-05-01

    A new approach to differential GPS is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory. The notion of double difference, which is related to that of closure in the sense of Kirchhoff, is revisited in this context. The Moore-Penrose pseudo-inverse of the closure operator plays a key role in the corresponding dual formulation. This approach, which is very attractive from a conceptual point of view, sheds a new light on the Teunissen formulation.

  10. Continuous GPS Carrier-Phase Time Transfer

    Science.gov (United States)

    Yao, Jian

    Time transfer (TT) is the process of transmitting a timing signal from one place to another place. It has applications to the formation and realization of Coordinated Universal Time (UTC), telecommunications, electrical power grids, and even stock exchanges. TT is the actual bottleneck of the UTC formation and realization since the technology of atomic clocks is almost always ahead of that of TT. GPS carrier-phase time transfer (GPSCPTT), as a mainstream TT technique accepted by most national timing laboratories, has suffered from the day-boundary-discontinuity (day-BD) problem for many years. This makes us difficult to observe a remote Cesium fountain clock behavior even after a few days. We find that day-BD comes from the GPS code noise. The day-BD can be lowered by ˜40% if more satellite-clock information is provided and if a few GPS receivers at the same station are averaged. To completely eliminate day-BD, the RINEX-Shift (RS) and revised RS (RRS) algorithms have been designed. The RS/RRS result matches the two-way satellite time/frequency transfer (TWSTFT) result much better than the conventional GPSCPTT result. With the RS/RRS algorithm, we are able to observe a remote Cesium fountain after half a day. We also study the BD due to GPS data anomalies (anomaly-BD). A simple curve-fitting strategy can eliminate the anomaly-BD. Thus, we achieve continuous GPSCPTT after eliminating both day-BD and anomaly-BD.

  11. Global Geodesy Using GPS Without Fiducial Sites

    Science.gov (United States)

    Heflin, Michael B.; Blewitt, Geoffrey

    1994-01-01

    Global Positioning System, GPS, used to make global geodetic measurements without use of fiducial site coordinates. Baseline lengths and geocentric radii for each site determined without having to fix any site coordinates. Given n globally distributed sites, n baseline lengths and n geocentric radii form polyhedron with each site at vertex and with geocenter at intersection of all radii. Geodetic information derived from structure of polyhedron and its change with time. Approach applied to any global geodetic technique.

  12. Towards accurate emergency response behavior

    International Nuclear Information System (INIS)

    Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail

  13. Ionospheric scintillation effects on single frequency GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C. G.; Groves, K. M.

    2008-04-01

    Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active within, although not limited to, a belt encircling the Earth within 20 degrees of the geomagnetic equator. As GPS applications and users increase, so does the potential for degraded precision and availability from scintillation. We examined amplitude scintillation data spanning 7 years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/American longitudinal sector as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K. in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at 1 min resolution. We examine diurnal, seasonal, and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  14. Cleaning HI Spectra Contaminated by GPS RFI

    Science.gov (United States)

    Sylvia, Kamin; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team

    2016-01-01

    The NUDET systems aboard GPS satellites utilize radio waves to communicate information regarding surface nuclear events. The system tests appear in spectra as RFI (radio frequency interference) at 1381MHz, which contaminates observations of extragalactic HI (atomic hydrogen) signals at 50-150 Mpc. Test durations last roughly 20-120 seconds and can occur upwards of 30 times during a single night of observing. The disruption essentially renders the corresponding HI spectra useless.We present a method that automatically removes RFI in HI spectra caused by these tests. By capitalizing on the GPS system's short test durations and predictable frequency appearance we are able to devise a method of identifying times containing compromised data records. By reevaluating the remaining data, we are able to recover clean spectra while sacrificing little in terms of sensitivity to extragalactic signals. This method has been tested on 500+ spectra taken by the Undergraduate ALFALFA Team (UAT), in which it successfully identified and removed all sources of GPS RFI. It will also be used to eliminate RFI in the upcoming Arecibo Pisces-Perseus Supercluster Survey (APPSS).This work has been supported by NSF grant AST-1211005.

  15. GPS/CAPS dual-mode software receiver

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The positioning of the GPS or Chinese Area Positioning System (CAPS) software receiver was developed on a software receiver platform. The structure of the GPS/CAPS dual-mode software receiver was put forward after analyzing the differences in the satellite identification, ranging code, spread spectrum, coordinate system, time system, carrier band, and navigation data between GPS and CAPS. Based on Matlab software on a personal computer, baseband signal processing and positioning procedures were completed using real GPS and CAPS radio frequency signals received by two antennas. Three kinds of experiments including GPS positioning, CAPS positioning, and GPS/CAPS positioning were carried out. Stability and precision of the results were analyzed and compared. The experimental results show that the precision of CAPS is similar to that of GPS, while the positioning precision of the GPS/CAPS dual-mode software receiver is 1-2 m higher than that of CAPS or GPS. The smallest average variance of the positioning can be obtained by using the GPS/CAPS dual-mode software receiver.

  16. Bayesian statistics and information fusion for GPS-denied navigation

    Science.gov (United States)

    Copp, Brian Lee

    It is well known that satellite navigation systems are vulnerable to disruption due to jamming, spoofing, or obstruction of the signal. The desire for robust navigation of aircraft in GPS-denied environments has motivated the development of feature-aided navigation systems, in which measurements of environmental features are used to complement the dead reckoning solution produced by an inertial navigation system. Examples of environmental features which can be exploited for navigation include star positions, terrain elevation, terrestrial wireless signals, and features extracted from photographic data. Feature-aided navigation represents a particularly challenging estimation problem because the measurements are often strongly nonlinear, and the quality of the navigation solution is limited by the knowledge of nuisance parameters which may be difficult to model accurately. As a result, integration approaches based on the Kalman filter and its variants may fail to give adequate performance. This project develops a framework for the integration of feature-aided navigation techniques using Bayesian statistics. In this approach, the probability density function for aircraft horizontal position (latitude and longitude) is approximated by a two-dimensional point mass function defined on a rectangular grid. Nuisance parameters are estimated using a hypothesis based approach (Multiple Model Adaptive Estimation) which continuously maintains an accurate probability density even in the presence of strong nonlinearities. The effectiveness of the proposed approach is illustrated by the simulated use of terrain referenced navigation and wireless time-of-arrival positioning to estimate a reference aircraft trajectory. Monte Carlo simulations have shown that accurate position estimates can be obtained in terrain referenced navigation even with a strongly nonlinear altitude bias. The integration of terrain referenced and wireless time-of-arrival measurements is described along with

  17. Recent Advances in Global Positioning System(GPS)%全球定位系统(GPS)的最新进展(下)

    Institute of Scientific and Technical Information of China (English)

    胡明城

    2001-01-01

    This paper deals with the recent advances in global positioningsystem(GPS). First of all,the principal error sources of GPS observations are analysed. Then the scientific applications of space based GPS are described,of which the TOPEX and Microlape missions are excellent examples of great success. With regard to the application of GPS to meteorology (GPS/MET),detailed description is given to earth based GPS/MET and space based GPS/MET,they stand at the front of recent advances in GPS.

  18. FFT and PLL Based GPS Signal Processing for Software GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    Ko Sun-jun; Won Jong-hoon; Lee Ja-sung

    2003-01-01

    This paper presents FFT and PLL based GPS signal acquisition and tracking algorithms for a software GPS receiver. Conventional hardware based acquisition and tracking have some restrictions in processing signal with poor signal to noise ratio. The FFT of digitized local signals of multiple carrier frequencies for a specified Doppler band are pre-computed and are circular correlated with the digitized incoming signal from RF-front-end in an organized computational order. The global maximum of the correlation is associated with the closest estimates of the Doppler shift and the code shift. PLL refines the estimates to track the signal. Doppler information from an external source can readily be integrated to narrow down the frequency band for correlation and is especially useful for tracking in a high dynamic navigation situation. The performance of the proposed algorithms is evaluated through post processing of the IF signals acquired from a commercial hardware GPS receiver.

  19. Accurate Modeling of Advanced Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min

    Analysis and optimization methods for the design of advanced printed re ectarrays have been investigated, and the study is focused on developing an accurate and efficient simulation tool. For the analysis, a good compromise between accuracy and efficiency can be obtained using the spectral domain...

  20. Using GPS and leveling data in local precise geoid determination and case study

    Science.gov (United States)

    Erol, B.; Çelik, R. N.; Erol, S.

    2003-04-01

    As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with

  1. Continuing medical education and burnout among Danish GPs

    DEFF Research Database (Denmark)

    Brøndt, Anders; Sokolowski, Ineta; Olesen, Frede;

    2008-01-01

    BACKGROUND: There has been minimal research into continuing medical education (CME) and its association with burnout among GPs. AIM: The aim of this study was to investigate the association between participating in CME and experiencing burnout in a sample of Danish GPs. DESIGN OF STUDY: Cross......-sectional questionnaire study. SETTING: All 458 active GPs in 2004, in the County of Aarhus, Denmark were invited to participate. METHOD: Data on CME activities were obtained for all GPs and linked to burnout which was measured using the Maslach Burnout Inventory - Human Services Survey. The relationship between CME...... activity and burnout was calculated as prevalence ratios (PR) in a generalised linear model. RESULTS: In total, 379 (83.5%) GPs returned the questionnaire. The prevalence of burnout was about 25%, and almost 3% suffered from 'high burnout'. A total of 344 (92.0%) GPs were members of a CME group...

  2. Crustal deformations at permanent GPS sites in Denmark

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Knudsen, Per; Tscherning, Carl Christian

    2005-01-01

    The National Survey and Cadastre (KMS) is responsible for the geodetic definition of the reference network in Denmark. Permanent GPS stations play an important role in the monitoring and maintenance of the geodetic network. During 1998 and 1999 KMS established three permanent GPS station in Denmark......, SMID, SULD and BUDP. Using almost 4.5 years of continuous data from the Danish station and the Swedish station, ONSA, we analyse the daily GPS solution due to crustal deformation caused by glacial isostatic adjustment (GIA). Although, displacements due to GIA are only 1–3 mm/year at the Danish GPS...... sites, the current precision of positioning using GPS allows us to observe these effects. The modelled horizontal GIA velocities and the observed horizontal residuals obtained from GPS show almost the same direction for all station. However, the observed velocity residuals are larger than the modelled...

  3. GPS error and its effects on movement analysis

    CERN Document Server

    Ranacher, Peter; Van der Spek, Stefan Christiaan; Reich, Siegfried

    2015-01-01

    Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), are among the most important sensors in movement analysis. GPS data loggers are widely used to record the movement trajectories of vehicles, animals or human beings. However, these trajectories are inevitably affected by GPS measurement error, which influences conclusion drawn about the behavior of the moving objects. In this paper we investigate GPS measurement error and discuss its influence on movement parameters such as speed, direction or distance. We identify three characteristic properties of GPS measurement error: it follows temporal (1) and spatial (2) autocorrelation and causes a systematic overestimation of distances (3). Based on our findings we give recommendations on how to collect movement data in order to minimize the influence of error. We claim that these recommendations are essential for designing an appropriate sampling strategy for collecting movement data by means of a GPS.

  4. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2011-11-15

    The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 {sigma}. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 {+-} 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates

  5. Nonlinear Filtering for Hybrid GPS/GSM Mobile Terminal Tracking

    OpenAIRE

    Carsten Fritsche; Anja Klein

    2010-01-01

    The Global Positioning System (GPS) has become one of the state-of-the-art location systems that offers reliable mobile terminal (MT) location estimates. However, there exist situations where GPS is not available, for example, when the MT is used indoors or when the MT is located close to high buildings. In these scenarios, a promising approach is to combine the GPS-measured values with measured values from the Global System for Mobile Communication (GSM), which is known as hybrid localiza...

  6. GPS technology to monitoring auto transport in Latvia

    Directory of Open Access Journals (Sweden)

    Victor Boicov

    2014-01-01

    Full Text Available This paper is the result of authors’ activities in the field of research and implementation of global positioning system (GPS technologies in the Latvian car industry. The subject of study is the characteristics of Latvian auto transport management. Topicality and importance of this issue are related with new GPS applications to auto transport monitoring. Principal practical application of this paper is reflected in the methodology developed by the authors in order to design, elaborate and introduce GPS systems.

  7. Launch strategy for a GPS-based package tracker product

    OpenAIRE

    Biermann, Jürgen

    2006-01-01

    The objective of this paper is to present a recommendation for a launch strategy for a new Package Tracker Product based on enhanced GPS location technology for a GPS software company, Guardian Mobile Monitoring Systems. We will first give an overview of Global Positioning System (GPS) technology and its more recent advancements and explain the potential for a package tracker product. Secondly, we will examine possible target market segments. Thirdly, we will perform an internal analysis of G...

  8. Arctic glacier movement monitoring with GPS method on 2005

    Institute of Scientific and Technical Information of China (English)

    Ai Songtao; E Dongchen; Yan Ming; Ren Jiawen

    2006-01-01

    During the 2005 Arctic Yellow River Station expedition, the research on monitoring the movement and mass balance of two glaciers around Ny-Alesund,Station expedition were conducted. This paper analyzes the feasibility and advantage in using GPS method to monitor the Arctic glaciers'movement, estimates the precision of first time measured GPS data and discusses the relevant problems in surveying on the Arctic Glaciers with GPS.

  9. Method and apparatus for relative navigation using reflected GPS signals

    Science.gov (United States)

    Cohen, Ian R. (Inventor); Boegner, Jr., Gregory J. (Inventor)

    2010-01-01

    A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target.

  10. INS/GPS Integrated Navigation Technology for Hypersonic UAV

    OpenAIRE

    Nana Meng; Shunan Wu; Hongtu Ma; Wenya Zhou

    2013-01-01

    INS/GPS integrated navigation system is studied in this paper for the hypersonic UAV in order to satisfy the precise guidance requirements of hypersonic UAV and in response to the defects while the inertial navigation system (INS) and the global positioning system (GPS) are being applied separately. The information of UAV including position, velocity and attitude can be obtained by using INS and GPS respectively after generating a reference trajectory. The corresponding errors of two navigati...

  11. Anomaly detection in GPS data based on visual analytics

    OpenAIRE

    Yu, Y.; Liao, Z; Chen, B

    2010-01-01

    Modern machine learning techniques provide robust approaches for data-driven modeling and critical information extraction, while human experts hold the advantage of possessing high-level intelligence and domain-specific expertise. We combine the power of the two for anomaly detection in GPS data by integrating them through a visualization and human-computer interaction interface. In this paper we introduce GPSvas (GPS Visual Analytics System), a system that detects anomalies in GPS data using...

  12. Profitable capitation requires accurate costing.

    Science.gov (United States)

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  13. Analysis of Adverse Events in Identifying GPS Human Factors Issues

    Science.gov (United States)

    Adams, Catherine A.; Hwoschinsky, Peter V.; Adams, Richard J.

    2004-01-01

    The purpose of this study was to analyze GPS related adverse events such as accidents and incidents (A/I), Aviation Safety Reporting System (ASRS) reports and Pilots Deviations (PDs) to create a framework for developing a human factors risk awareness program. Although the occurrence of directly related GPS accidents is small the frequency of PDs and ASRS reports indicated there is a growing problem with situational awareness in terminal airspace related to different types of GPs operational issues. This paper addresses the findings of the preliminary research and a brief discussion of some of the literature on related GPS and automation issues.

  14. Kalman Filtering USNO's GPS Observations for Improved Time Transfer Predictions

    Science.gov (United States)

    Hutsell, Steven T.

    1996-01-01

    The Global Positioning System (GPS) Master Control Station (MCS) performs the Coordinated Universal Time (UTC) time transfer mission by uploading and broadcasting predictions of the GPS-UTC offset in subframe 4 of the GS navigation message. These predictions are based on only two successive daily data points obtained from the US Naval Observatory (USNO). USNO produces these daily smoothed data points by performing a least-squares fit on roughly 38 hours worth of data from roughly 160 successive 13-minute tracks of GPS satellites. Though sufficient for helping to maintain a time transfer error specification of 28 ns (1 Sigma), the MCS's prediction algorithm does not make the best use of the available data from from USNO, and produces data that can degrade quickly over extended prediction spans. This paper investigates how, by applying Kalman filtering to the same available tracking data, the MCS could improve its estimate of GPS-UTC, and in particular, the GPS-UTC A(sub 1) term. By refining the A(sub 1) (frequency) estimate for GPS-UTC predictions, error in GPS time transfer could drop significantly. Additional, the risk of future spikes in GPS's time transfer error could similarly be minimized, by employing robust Kalman filtering for GPS-UTC predictions.

  15. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2006

    International Nuclear Information System (INIS)

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 22 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 15 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.23 mm/a ± 0.023 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  16. Researches on Application of GPS to Earthquake Monitoring and Prediction

    Directory of Open Access Journals (Sweden)

    Wanju BO

    2007-10-01

    Full Text Available The earliest researches on application of GPS to earthquake monitoring and prediction in China began in 1980s, and it was limited to learn some relative technology from other countries and do some test with a few of equipments. As the improvement of software for data processing and the depreciating of hardware, several local GPS network had been gradually set up till the end of 1990s, and then more systematically GPS monitoring, data processing and its application research have been done gradually. In this paper, 3 research examples of the application of GPS to earthquake monitoring and prediction are presented.

  17. GPS/CAPS dual-mode software receiver

    Institute of Scientific and Technical Information of China (English)

    NING ChunLin; SHI HuLi; HU Chao

    2009-01-01

    The positioning of the GPS or Chinese Area Positioning System (CAPS) software receiver was developed on a software receiver platform.The structure of the GPSlCAPS dual-mode software receiver was put forward after analyzing the differences in the satellite identification,ranging code,spread spectrum,coordinate system,time system,carrier band,and navigation data between GPS and CAPS.Based on Matlab software on a personal computer,baseband signal processing and positioning procedures were completed using real GPS and CAPS radio frequency signals received by two antennas.Three kinds of experiments including GPS positioning,CAPS positioning,and GPS/CAPS positioning were carried out.Stability and precision of the results were analyzed and compared.The experimental results show that the precision of CAPS is similar to that of GPS,while the positioning precision of the GPS/CAPS dual-mode software receiver is 1-2 m higher than that of CAPS or GPS.The smallest average variance of the positioning can be obtained by using the GPS/CAPS dual-mode software receiver.

  18. Autonomous navigation system based on GPS and magnetometer data

    Science.gov (United States)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  19. GENESIS: GPS Environmental and Earth Science Information System

    Science.gov (United States)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  20. GPS Antenna Characterization Experiment (ACE): Receiver Design and Initial Results

    Science.gov (United States)

    Martzen, Phillip; Highsmith, Dolan E.; Valdez, Jennifer E.; Parker, Joel J. K.; Moreau, Michael C.

    2015-01-01

    The GPS Antenna Characterization Experiment (ACE) is a research collaboration between Aerospace and NASA Goddard to characterize the gain patterns of the GPS L1 transmit antennas. High altitude GPS observations are collected at a ground station through a transponder-based or "bent-pipe" architecture where the GPS L1 RF spectrum is received at a platform in geosynchronous orbit and relayed to the ground for processing. The focus of this paper is the unique receiver algorithm design and implementation. The high-sensitivity GPS C/A-code receiver uses high fidelity code and carrier estimates and externally supplied GPS message bit data in a batch algorithm with settings for a 0 dB-Hz threshold. The resulting carrier-to-noise measurements are used in a GPS L1 transmit antenna pattern reconstruction. This paper shows initial transmit gain patterns averaged over each block of GPS satellites, including comparisons to available pre-flight gain measurements from the GPS vehicle contractors. These results provide never-before-seen assessments of the full, in-flight transmit gain patterns.

  1. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ahola, J.; Koivula, H.; Poutanen, M.; Jokela, J. (Finnish Geodetic Institute, Masala (FI))

    2007-05-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 22 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 15 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +- 0.22 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.23 mm/a +- 0.023 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  2. 基于EVT的GPS RTK接收机研制%Development of GPS RTK Receiver Based on EVT

    Institute of Scientific and Technical Information of China (English)

    聂志锋; 过静珺

    2003-01-01

    本文介绍了GPS RTK接收机的主要结构及其通讯功能,重点阐述Windows CE编程的主要特点和编制接收机程序的关键技术.论证了运行Windows CE的PDA结合GPS OEM板可以开发性能优越的GPS RTK接收机的可行性.

  3. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  4. Topo-Iberia GPS network: installation complete

    Science.gov (United States)

    Khazaradze, G.

    2009-04-01

    As part of the project, titled "Geociencias en Iberia: Estudios integrados de topografía y evolución 4D: Topo-Iberia", we have established a network of 26 continuous GPS stations, covering the Spanish part of the Iberian Peninsula (22 stations) and Morocco (4 stations). A major objective behind the establishment of this array is to monitor millimeter level deformation of the crust due to the collision of African and Eurasian (including Iberian) tectonic plates. More specific goals of the project include the identification of the areas and/or specific seismic faults which exhibit higher deformation rates, which could imply an increased seismic hazard in these specific areas. The network has been designed as two X-shaped transects crossing the peninsula from NE to SW and NW to SE, with relatively coarse distribution of the stations, superimposed with denser coverage in the seismically active areas of the Betics, Pyrenees and Cantabrian chains. The majority of the built monuments consist of 1.5-1.8 m tall concrete pillars of 40 cm in diameter anchored to the bedrock using iron rebars. One station in Huesca was built according the UNAVCO's short drilled braced monument (SDBM) specifications. All the monuments were equipped with the SCIGN leveling mounts to ensure the precise antenna alignment and re-alignment in case of the antenna replacement, as well as, tamper resistance of the monument mark. In places were the snow accumulation was possible the antennas were covered with plastic radomes. The instrumentation used is Trimble NetRS dual-frequency receivers with choke-ring antennas. The communication is mainly via cellular telephone system. As of December 2008, the network installation has been competed and all the stations are fully operational. Here we report the milestones of the installation of the network and, as well as, present the first preliminary results of the analysis of the data. Besides the newly established Topo-Iberia CGPS stations, we have included

  5. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  6. Some Considerations in Designing a GPS Pseudolite

    Science.gov (United States)

    Rapinski, J.; Koziar, M.; Rzepecka, Z.; Cellmer, S.; Chrzanowski, A.

    2012-01-01

    Pseudolites are transmitters of GPS-like signals placed on the ground. Though pseudolites are well known devices and have already been used in the project where visibility to the GNSS satellites is limited, there are still many issues that need enhancement. A prototype of a low-cost pseudolite is being designed and assembled at the University of Warmia and Mazury. This will allow for conducting tests with various codes, signals and software. The goal of the project is to apply the pseudolite as an augmentation to GNSS positioning tasks in geodetic engineering projects. Some practical considerations crucial for the design are discussed in this paper.

  7. GPS-Supported Visual SLAM with a Rigorous Sensor Model for a Panoramic Camera in Outdoor Environments

    OpenAIRE

    Ryosuke Shibasaki; Yulin Duan; Zhongchao Shi; Shunping Ji; Yun Shi

    2012-01-01

    Accurate localization of moving sensors is essential for many fields, such as robot navigation and urban mapping. In this paper, we present a framework for GPS-supported visual Simultaneous Localization and Mapping with Bundle Adjustment (BA-SLAM) using a rigorous sensor model in a panoramic camera. The rigorous model does not cause system errors, thus representing an improvement over the widely used ideal sensor model. The proposed SLAM does not require additional restrictions, such as loop ...

  8. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  9. Will a continuous GPS array for L.A. help earthquake hazard assessment?

    Science.gov (United States)

    Prescott, William H.

    The striking landscapes and hospitable climate of Southern California are home to more than 20 million people and vital elements of the nation's economy. Unfortunately, the region is also laced with many active faults that can produce strong earthquakes. Scientists from several institutions are pursuing a new approach to studying earthquake hazards in a high-risk metropolitan area.The Southern California Integrated GPS Network (SCIGN) is currently an array of about 40 Global Positioning System (GPS) stations distributed throughout the greater Los Angeles metropolitan region. There have been informal discussions about expanding the array to 250 stations, and formal proposals have been submitted to begin this expansion. To achieve high precision, the sites will be carefully monumented, and all the GPS receivers will operate continuously. The goals of the array are to provide an accurate and detailed velocity field from which to identify the deformation from known faults, test current models of the geologic structure, and make better estimates of the seismic potential in the populous parts of southern California.

  10. An improved method for tight integration of GPS and strong-motion records: Complementary advantages

    Science.gov (United States)

    Tu, Rui; Zhang, Qin; Wang, Li; Liu, Zhanke; Huang, Guanwen

    2015-12-01

    The complementary nature of GPS and seismic sensors for station ground motion estimation is well recognized and many studies have proposed the integrated processing of the two datasets for obtaining more accurate and reliable seismic waves (displacement, velocity and acceleration). There are two critical issues in the integrated processing; one is the precise correction of the strong-motion's baseline shifts which are caused by tilting and/or rotation of the seismic sensors, the other is the suitable constraint of the high resolution accelerations to get more reliable seismic waves. In this contribution, we present an improved approach for the integration estimation in two steps. First, proper introduction of the baseline-corrected acceleration into the Precise Point Positioning (PPP)'s state equation and treatment of the baseline shifts as unknown parameters to be estimated for each epoch. Second, after correction of these baseline shifts, use of the high resolution acceleration for constraint of the GPS solution and ambiguity resolution. The efficiency of the improved approach was validated using an experimental dataset which was recorded by a pair of collocated GPS antenna and an accelerometer, and it shows that the advantages of each sensor are complementary.

  11. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver

    Directory of Open Access Journals (Sweden)

    Fuhong Wang

    2015-12-01

    Full Text Available Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD for geo-referencing. Onboard Global Positioning System (GPS has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China’s HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS of 0.2–0.4 m and 0.2–0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3–5 dm for position and 0.3–0.5 mm/s for velocity with this RTOD method.

  12. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver

    Science.gov (United States)

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China’s HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2–0.4 m and 0.2–0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3–5 dm for position and 0.3–0.5 mm/s for velocity with this RTOD method. PMID:26690149

  13. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    Science.gov (United States)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  14. Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency

    Science.gov (United States)

    Sedlak, Joseph E.

    2016-01-01

    A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.

  15. GPS-Based Daily Context Recognition for Lifelog Generation Using Smartphone

    Directory of Open Access Journals (Sweden)

    Go Tanaka

    2015-02-01

    Full Text Available Mobile devices are becoming increasingly more sophisticated with their many diverse and powerful sensors, such as GPS, acceleration, and gyroscope sensors. They provide numerous services for supporting daily human life and are now being studied as a tool to reduce the worldwide increase of lifestyle-related diseases. This paper describes a method for recognizing the contexts of daily human life by recording a lifelog based on a person’s location. The proposed method can distinguish and recognize several contexts at the same location by extracting features from the GPS data transmitted from smartphones. The GPS data are then used to generate classification models by machine learning. Five classification models were generated: a mobile or stationary recognition model, a transportation recognition model, and three daily context recognition models. In addition, optimal learning algorithms for machine learning were determined. The experimental results show that this method is highly accurate. As examples, the F-measure of the daily context recognition was approximately 0.954 overall at a tavern and approximately 0.920 overall at a university .

  16. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    Science.gov (United States)

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method. PMID:26690149

  17. An improved regularization method to resolve integer ambiguity in rapid positioning using single frequency GPS receivers

    Institute of Scientific and Technical Information of China (English)

    OU Jikun; WANG Zhenjie

    2004-01-01

    A new approach is employed in GPS rapid positioning using several-epoch single frequency phase data. Firstly, the structure characteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of the characteristic, based on TIKHONOV regularization theorem, a new regularizer is designed to mitigate the ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (Mean Squared Error Matrix) are obtained using several-epoch single frequency phase data. Combined with LAMBDA method, the new approach was used to fix the integer ambiguities correctly and quickly using MSEM instead of the cofactor matrix of the ambiguities. Finally, a baseline over 3 km is taken as an example. The fixed integer ambiguities by the new approach using five epoch single frequency phase data are the same as those fixed by Bernese software using long time data. The success rate of fixing the integer ambiguities is 100 percent using 197 group data. Compared with the traditional methods, the new approach provides better accuracy and efficiency in GPS rapid positioning. So, the new approach has an extensive application outlook in deformation monitoring, pseudokinematic relative positioning, and attitude determination, etc.

  18. Vibration Frequencies Extraction of the Forth Road Bridge Using High Sampling GPS Data

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available This paper proposes a scheme for vibration frequencies extraction of the Forth Road Bridge in Scotland from high sampling GPS data. The interaction between the dynamic response and the ambient loadings is carefully analysed. A bilinear Chebyshev high-pass filter is designed to isolate the quasistatic movements, the FFT algorithm and peak-picking approach are applied to extract the vibration frequencies, and a GPS data accumulation counter is suggested for real-time monitoring applications. To understand the change in the structural characteristics under different loadings, the deformation results from three different loading conditions are presented, that is, the ambient circulation loading, the strong wind under abrupt wind speed change, and the specific trial with two 40 t lorries passing the bridge. The results show that GPS not only can capture absolute 3D deflections reliably, but also can be used to extract the frequency response accurately. It is evident that the frequencies detected using the filtered deflection time series in different direction show quite different characteristics, and more stable results can be obtained from the height displacement time series. The frequency responses of 0.105 and 0.269 Hz extracted from the lateral displacement time series correlate well with the data using height displacement time series.

  19. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    Science.gov (United States)

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-12-04

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method.

  20. Optimal Methods of RTK-GPS/Accelerometer Integration to Monitor the Displacement of Structures

    Directory of Open Access Journals (Sweden)

    Sungnam Hong

    2012-01-01

    Full Text Available The accurate measurement of diverse displacements of structures is an important index for the evaluation of a structure’s safety. In this study, a comparative analysis was conducted to determine the integrated RTK-GPS/accelerometer method that can provide the most precise structure displacement measurements. For this purpose, three methods of calculating the dynamic displacements from the acceleration data were comparatively analyzed. In addition, two methods of determining dynamic, static, and quasi-static displacements by integrating the displacements measured from the RTK-GPS system and the accelerometer were also comparatively analyzed. To ensure precise comparison results, a cantilever beam was manufactured onto which diverse types of displacements were generated to evaluate the measurement accuracy by method. Linear variable differential transformer (LVDT measurements were used as references for the evaluation to ensure accuracy. The study results showed that the most suitable method of measuring the dynamic displacement with the accelerometer was to calculate the displacement by filtering and double-integrating the acceleration data using the FIR band-pass filter. The integration method that uses frequency-based displacement extraction was most appropriate for the integrated RTK-GPS/accelerometer method of comprehensively measuring the dynamic, static, and quasi-static displacements.

  1. Ultra-tight GPS/IMU Integration based Long-Range Rocket Projectile Navigation

    Directory of Open Access Journals (Sweden)

    Handong Zhao

    2016-01-01

    Full Text Available Accurate navigation is important for long-range rocket projectile’s precise striking. For getting a stable and high-performance navigation result, a ultra-tight global position system (GPS, inertial measuring unit integration (IMU-based navigation approach is proposed. In this study, high-accuracy position information output from IMU in a short time to assist the carrier phase tracking in the GPS receiver, and then fused the output information of IMU and GPS based on federated filter. Meanwhile, introduced the cubature kalman filter as the local filter to replace the unscented kalman filter, and improved it with strong tracking principle, then, improved the federated filter with vector sharing theory. Lastly simulation was carried out based on the real ballistic data, from the estimation error statistic figure. The navigation accuracy of the proposed method is higher than traditional method.Defence Science Journal, Vol. 66, No. 1, January 2016, pp. 64-70, DOI: http://dx.doi.org/10.14429/dsj.66.8326

  2. On-board identification of tyre cornering stiffness using dual Kalman filter and GPS

    Science.gov (United States)

    Lee, Seungyong; Nakano, Kimihiko; Ohori, Masanori

    2015-04-01

    Cornering stiffness is one of the important vehicle parameters for steering control of a vehicle. Accurate vehicle parameters are essential for a high performance of vehicle control because vehicle control is significantly affected by variations in vehicle parameters. In this study, a novel identification method is proposed using a dual Kalman filter algorithm and a GPS (global positioning system) measurement system to estimate the cornering stiffness for on-board identification. Performance of the identification method is examined with experiments, and the estimation results show that this identification method is effective on both a flat road and a banked curve road.

  3. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  4. Great Circle Distance Methode for Improving Operational Control System Based on GPS Tracking System

    Directory of Open Access Journals (Sweden)

    Benny Dwi Kifana

    2012-04-01

    Full Text Available Fleet monitoring conducted to determine the position of the movement of the fleet to a point of reference. There are three applications that are necessary for the implementation of the monitoring system. They are Global Positioning System (GPS, Geographic Information System (GIS and Global System for Mobile Communications (GSM technologies. The Great Circle Distance method with two equations, Vincenty and Haversine, is used to calculate the accurate positioning. The experiment results show that the use of the equation Vincenty have better performance in comparison to Haversine equationon overspeeding detection. Accuracy of monitoring is increasing as evidenced by increased frequency of position reporting.

  5. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations

    Directory of Open Access Journals (Sweden)

    Wang Gao

    2015-10-01

    Full Text Available The regional constellation of the BeiDou navigation satellite system (BDS has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR. We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2 ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

  6. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  7. Accurate Vehicle Location System Using RFID, an Internet of Things Approach.

    Science.gov (United States)

    Prinsloo, Jaco; Malekian, Reza

    2016-06-04

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved.

  8. Accurate Vehicle Location System Using RFID, an Internet of Things Approach.

    Science.gov (United States)

    Prinsloo, Jaco; Malekian, Reza

    2016-01-01

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved. PMID:27271638

  9. Accurate Vehicle Location System Using RFID, an Internet of Things Approach

    Science.gov (United States)

    Prinsloo, Jaco; Malekian, Reza

    2016-01-01

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved. PMID:27271638

  10. Accurate Vehicle Location System Using RFID, an Internet of Things Approach

    Directory of Open Access Journals (Sweden)

    Jaco Prinsloo

    2016-06-01

    Full Text Available Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID technology in combination with GPS and the Global system for Mobile communication (GSM technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz. The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved.

  11. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  12. Differential GPS and system integration of the Low Visibility Landing and Surface Operations (LVLASO) demonstration

    Science.gov (United States)

    Rankin, James M.

    1994-01-01

    The LVLASO Flight Demonstration of ASTA concepts (FDAC) integrates NASA-Langley's electronic moving map display and Transport Systems Research Vehicle (TSRV) (a modified Boeing 737 aircraft); ARINC's VHF data link, GPS ground station, and automated controller workstation; and Norden's surface radar/airport movement safety system. Aircraft location is shown on the electronic map display in the cockpit. An approved taxi route as well as other aircraft and surface traffic are also displayed. An Ashtech Z12 Global Positioning System (GPS) receiver on the TSRV estimates the aircraft's position. In Differential mode (DSPS), the Ashtech receiver accepts differential C/A code pseudorange corrections from a GPS ground station. The GPS ground station provides corrections up to ten satellites. The corrections are transmitted on a VHF data link at a 1 Hz. rate using the RTCM-104 format. DGPS position estimates will be within 5 meters of actual aircraft position. DGPS position estimates are blended with position, velocity, acceleration, and heading data from the TSRV Air Data/Inertial Reference System (ADIRS). The ADIRS data is accurate in the short-term, but drifts over time. The DGPS data is used to keep the ADIRS position accurate. Ownship position, velocity, heading, and turn rate are sent at a 20 Hz. rate to the electronic map display. Airport traffic is detected by the airport surface radar system. Aircraft and vehicles such as fuel trucks and baggage carts are detected. The traffic's location, velocity, and heading are sent to the TSRV. To prevent traffic symbology from jumping each second when a location update arrives, velocity and heading are used to predict a new traffic location for each display update. Possible runway incursions and collisions can be shown on the electronic map. Integrating the different systems used in the FDAC requires attention to the underlying coordinate systems. The airport diagram displayed on the electronic map is obtained from published

  13. Scattering height estimation using scintillating Wide Area Augmentation System/Satellite Based Augmentation System and GPS satellite signals

    Science.gov (United States)

    Cerruti, A. P.; Ledvina, B. M.; Kintner, P. M.

    2006-12-01

    An experiment to measure equatorial amplitude scintillations on the geostationary Wide Area Augmentation System (WAAS) Satellite Based Augmentation System (SBAS) signal was conducted in Cachoeira Paulista (22.70°S, 45.01°W geographic coordinates; -17.74°N, 21.74°E geomagnetic coordinates), Brazil from December 2003 through February 2004. The purpose of this paper is to estimate the scattering height of the irregularities using the WAAS signal scintillations as compared to nearby Global Positioning System (GPS) signal scintillations. Estimating the scattering height is important because the calculated zonal drift velocity of the irregularities using the measured scintillation pattern velocity on the ground is height dependent. Accurate height estimation is also required if one wishes to develop phase screen scintillation models. The difference in the pattern velocities is due to the different signal puncture point velocities with respect to the ionospheric drift. Two east-west receivers are used to measure the scintillation pattern drift velocity and to compare the results of the geostationary WAAS satellite signal to that of a GPS satellite signal, which has a nonzero ionospheric signal puncture point velocity. By varying the assumed scattering height for the measurements from the nearby GPS signal, the zonal velocity measurements from the GPS scintillations can be matched to those of the WAAS scintillations, and a scattering height estimate can be made. When the puncture points have minimal separation, the inferred ionospheric irregularity zonal velocities should be equal. On the two nights for which data are available, scattering height estimates of 669 ± 209 km for the first night and 388 ± 139 km for the second night were obtained. On the second night, the reported mean hmF2 as calculated using a collocated Digisonde was 385 ± 17 km over the same period as the GPS/WAAS scattering height estimate. The geometry of this experiment was not optimal, but

  14. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Science.gov (United States)

    2013-11-15

    ... COMMISSION Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems... the United States after importation of certain navigation products, including GPS devices, navigation... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  15. Ionospheric error analysis in gps measurements

    Directory of Open Access Journals (Sweden)

    G. Pugliano

    2008-06-01

    Full Text Available The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km; the second group is characterized by greater distances (up to 90 km. The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.

  16. Strain rate patterns from dense GPS networks

    Directory of Open Access Journals (Sweden)

    M. Hackl

    2009-07-01

    Full Text Available The knowledge of the crustal strain rate tensor provides a description of geodynamic processes such as fault strain accumulation, which is an important parameter for seismic hazard assessment, as well as anthropogenic deformation. In the past two decades, the number of observations and the accuracy of satellite based geodetic measurements like GPS greatly increased, providing measured values of displacements and velocities of points. Here we present a method to obtain the full continuous strain rate tensor from dense GPS networks. The tensorial analysis provides different aspects of deformation, such as the maximum shear strain rate, including its direction, and the dilatation strain rate. These parameters are suitable to characterize the mechanism of the current deformation. Using the velocity fields provided by SCEC and UNAVCO, we were able to localize major active faults in Southern California and to characterize them in terms of faulting mechanism. We also show that the large seismic events that occurred recently in the study region highly contaminate the measured velocity field that appears to be strongly affected by transient postseismic deformation. Finally, we applied this method to coseismic displacement data of two earthquakes in Iceland, showing that the strain fields derived by these data provide important information on the location and the focal mechanism of the ruptures.

  17. GPS Receiver Performance Inspection by Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    Xia Lin-yuan; Liu Jing-nan; Lu Liang-xi

    2003-01-01

    As a powerful analysis tool and the result of contemporary mathematics development, wavelet transform has shown its promising application potentials through the research in the paper. Three aspects regarding GPS receiver performance is tackled: cycle slip detection, receiver noise analysis and receiver channel bias inspection. Wavelet decomposition for double differential observation has demonstrated that this multi-level transform can reveal cycle slips as small as 0.5 cycles without any pre-adjustment processes or satellite orbit information, it can therefore be regarded as a 'geometry free' method. Based on property assumption of receiver noise, signal of noise serial is obtained at the high frequency scale in wavelet decomposition layers. This kind of noise influence on GPSb aseline result can be effectively eliminated by reconstruction process during wavelet reconstruction. Through observed data analysis, the transform has detected a kind of receiver channel bias that has not been completely removed by processing unit of GPS receiver during clock offset resetting operation. Thus the wavelet approach can be employed as a kind of system diagnosis in a generalized point of view.

  18. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  19. Automatic Campus Network Management using GPS

    Directory of Open Access Journals (Sweden)

    Jayakumar.S

    2012-05-01

    Full Text Available The Organization Network is the place where large number of attacks is happening. The attackers are using different methodologies to capture the information from the end user without the knowledge of the end-user. This paper introduces the concepts of Campus Management and Emergency log by using Medium Access Control (MAC and Global Positioning System (GPS. By using the IP address of an attacker, the MAC address can be found and the attackers machine can be blocked access with the help of firewall. Using the GPS we can be able to navigate the attackers position with the help of the position log. The log keeps updating for each and every 10 seconds. The attacker can be identified as if he used his own system or victim (3rd party system. An emergency response log has been created to record each emergency incident response process. The role of the log is more important with an increasing accumulation of information with the log; Network Engineer/Administrator can determine the type of inevitable emergency incidents grouped into evitable events, in order to improve the system reliability of emergency response.

  20. INVESTIGATION OF TIGHTLY COUPLED SINS/GPS INTEGRATION MIDCOURSE GUIDANCE FOR AIR-TO-AIR MISSILES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The applied problems of SINS/GPS integration navigation system existing in midcourse guidance of air-to-air missiles have been investigated recently. In comparison with those investigations existing in current publications, a new tightly coupled SINS/GPS integration navigation system for air-to-air missiles, based on the decorrelated pseudo-range approach, is presented in this paper. Because of high jamming and dynamic of air-to-air missiles, inertial velocity aiding GPS receiver is used to provide a more accurate, jam-resistant measurement for midcourse guidance systems. A tracking error estimator is designed to distinguish the correlation that existed between pseudo-range measurements and inertial information. It is found better to regard inertial velocity aiding errors as the noise of which statistical properties are unknown. So using mixed Kalman/minimax filtering theory, one can obtain the new tracking error estimator with simple and robust algorithm through constructing a composite filter consisting of two parts: Kalman filter for the noise of known statistics and minimax filter for the unknown. In order to ensure this simple estimator stability, a new method is proposed to choose its parameters, based on Khargonekars work. Moreover, it is demonstrated that the given method also ensures the proposed estimator optimality. All the work mentioned above is involved in the tightly coupled SINS/GPS integration midcourse system design in which a set of low-accuracy inertial components is shared by SINS and autopilot. Simulation results of a certain type of air-to-air missile are presented. Due to decorrelation by the tracking error estimator, only small white noise of pseudo-range measurements remains. So it is shown that application of the new midcourse guidance system results in better guidance accuracy, higher jam-resistance.

  1. Study of the March 31, 2001 magnetic storm effects on the ionosphere using GPS data

    Science.gov (United States)

    Fedrizzi, M.; de Paula, E. R.; Langley, R. B.; Komjathy, A.; Batista, I. S.; Kantor, I. J.

    Despite the fact that much has been learned about the Sun-Earth relationship during disturbed conditions, understanding the effects of magnetic storms on the neutral and ionized upper atmosphere is still one of the most challenging topics remaining in the physics of this atmospheric region. In order to investigate the magnetospheric and ionospheric-thermospheric coupling processes, many researchers are taking advantage of the dispersive nature of the ionosphere to compute total electron content (TEC) from global positioning system (GPS) dual-frequency data. Even though there are currently a large number of GPS receivers in continuous operation, they are unevenly distributed for ionosphere study purposes, being situated mostly in the Northern Hemisphere. The relatively smaller number of GPS receivers located in the Southern Hemisphere and, consequently, the reduced number of available TEC measurements, cause ionospheric modelling to be less accurate in this region. In the work discussed in this paper, the University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) has been used to describe the local time and geomagnetic latitude dependence of the TEC during the March 31, 2001 magnetic storm with an emphasis on the effects in the Southern Hemisphere. Data collected from several GPS networks worldwide, including the Brazilian network for continuous monitoring, have been used along with ionosonde measurements to investigate the global ionospheric response to this severe storm. Data analysis revealed interesting ionospheric effects, which are shown to be dependent on the local time at the storm commencement and the magnetic conditions previous to and during the storm period. The southward turning of the interplanetary magnetic field during the recovery phase of the storm began a process of substorm activity and development and intensification of electrojet activity over broad regions. Observed effects on the ionosphere during that storm are analysed and the

  2. RTK-GPS positioning by TV audio-MPX-data broadcast in Japan

    Science.gov (United States)

    Namie, Hiromune; Yasuda, Akio; Sasano, Koji

    2000-10-01

    RTK-GPS is a satellite positioning system which provides instant and accurate positions. The ranging error to the satellite from a user GPS antenna determined by the phase measurement of the carrier waves from the GPS satellites is of the order of mms. Thus an accuracy of a few cm can be easily obtained. The system is easier to operate than a traditional survey system such as the `Total Station'. Hence it has been used for many applications in Japan. It is necessary, however, to provide a fast data communication link for the transmission of carrier phase data from a reference station located at a known position, to a user receiver. A radio communication device with low power, is commonly used because it requires no license. However the data transmission area is generally limited to just several hundred meters in radius from the reference station. The authors have investigated RTK-GPS positioning with several different lengths of baseline using data transmission via TV audio-MPX-data broadcast, and evaluated its validity. The carrier phase data is transmitted from the reference receiver at the Tokyo University of Mercantile Marine, to the experimental station of the Asahi National Broadcasting Company, by public phone line with data rate 9,600 bps. The data, which when multiplexed into TV audio, was then disseminated with the rate of about 8 kbps from the Tokyo Tower. The data transmission delay in this system appeared random between 0.740 and 1.317 s, of which the difference (0.577 s) corresponds to the transmission time of 32 blocks of multiplexed data. Positioning was tried at several fixed points with different lengths of baseline (0-21 km). Tests proved that the accuracy became worse as the length of baselines became longer. The 2drms height are less than the 2.5 cm, and `Fix' solution success rates are more than 98%, for shorter baselines less than 10 km in length.

  3. Taking correlations in GPS least squares adjustments into account with a diagonal covariance matrix

    Science.gov (United States)

    Kermarrec, Gaël; Schön, Steffen

    2016-09-01

    -dependent diagonal covariance matrix is appropriate to take correlations in GPS least squares adjustment into account, yielding more accurate cofactor matrices of the unknown.

  4. Parameters for accurate genome alignment

    Directory of Open Access Journals (Sweden)

    Hamada Michiaki

    2010-02-01

    Full Text Available Abstract Background Genome sequence alignments form the basis of much research. Genome alignment depends on various mundane but critical choices, such as how to mask repeats and which score parameters to use. Surprisingly, there has been no large-scale assessment of these choices using real genomic data. Moreover, rigorous procedures to control the rate of spurious alignment have not been employed. Results We have assessed 495 combinations of score parameters for alignment of animal, plant, and fungal genomes. As our gold-standard of accuracy, we used genome alignments implied by multiple alignments of proteins and of structural RNAs. We found the HOXD scoring schemes underlying alignments in the UCSC genome database to be far from optimal, and suggest better parameters. Higher values of the X-drop parameter are not always better. E-values accurately indicate the rate of spurious alignment, but only if tandem repeats are masked in a non-standard way. Finally, we show that γ-centroid (probabilistic alignment can find highly reliable subsets of aligned bases. Conclusions These results enable more accurate genome alignment, with reliability measures for local alignments and for individual aligned bases. This study was made possible by our new software, LAST, which can align vertebrate genomes in a few hours http://last.cbrc.jp/.

  5. Modeling low elevation GPS signal propagation in maritime atmospheric ducts

    Science.gov (United States)

    Zhang, Jinpeng; Wu, Zhensen; Wang, Bo; Wang, Hongguang; Zhu, Qinglin

    2012-05-01

    Using the parabolic wave equation (PWE) method, we model low elevation GPS L1 signal propagation in maritime atmospheric ducts. To consider sea surface impedance, roughness, and the effects of earth's curvature, we propose a new initial field model for the GPS PWE split-step solution. On the basis of the comparison between the proposed model and the conventional initial field model for a smooth, perfectly conducting sea surface on a planar earth, we conclude that both the amplitude and phase of the initial field are influenced by surface impedance and roughness, and that the interference behavior between direct and reflected GPS rays is affected by earth's curvature. The performance of the proposed model is illustrated with examples of low elevation GPS L1 signal propagation in three types of ducts: an evaporation duct, a surface-based duct, and an elevated duct. The GPS PWE is numerically implemented using the split-step discrete mixed Fourier transform algorithm to enforce impedance-type boundary conditions at the rough sea surface. Because the GPS signal is right hand circularly polarized, we calculate its power strength by combining the propagation predictions of the horizontally and the vertically polarized components. The effects of the maritime atmospheric ducts on low elevation GPS signal propagation are demonstrated according to the presented examples, and the potential applications of the GPS signals affected by ducts are discussed.

  6. A Simple Method to Improve Autonomous GPS Positioning for Tractors

    Directory of Open Access Journals (Sweden)

    Tim Stombaugh

    2011-05-01

    Full Text Available Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS. However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory.

  7. A simple method to improve autonomous GPS positioning for tractors.

    Science.gov (United States)

    Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim

    2011-01-01

    Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory. PMID:22163917

  8. Processing In A GPS Receiver To Reduce Multipath Errors

    Science.gov (United States)

    Meehan, Thomas K.

    1994-01-01

    Four techniques of ancillary real-time digital processing of signals in Global Positioning System, GPS, receiver introduced reducing effects of multipath propagation of signals on position estimates produced by receiver. Multipath range errors halved. Applied in addition to other signal-processing techniques and to other techniques designing as receiving antenna to make it insensitive to reflections of GPS signals from nearby objects.

  9. GPs' Perceptions of Cardiovascular Risk and Views on Patient Compliance

    DEFF Research Database (Denmark)

    Barfoed, Benedicte Marie Lind; Jarbøl, Dorte Ejg; Paulsen, Maja Skov;

    2015-01-01

    Objective. General practitioners' (GPs') perception of risk is a cornerstone of preventive care. The aims of this interview study were to explore GPs' professional and personal attitudes and experiences regarding treatment with lipid-lowering drugs and their views on patient compliance. Methods. ...

  10. ATTITUDE RATE ESTIMATION BY GPS DOPPLER SIGNAL PROCESSING

    Institute of Scientific and Technical Information of China (English)

    He Side; Milos Doroslovacki; Guo Zhenyu; Zhang Yufeng

    2003-01-01

    A method is presented for near-Earth spacecraft or aviation vehicle's attitude rate estimation by using relative Doppler frequency shift of the Global Positioning System (GPS)carrier. It comprises two GPS receiving antennas, a signal processing circuit and an algorithm.The whole system is relatively simple, the cost and wcight, as well as power consumption, are very low.

  11. PDOP values for simulated GPS/Galileo positioning

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2005-01-01

    The paper illustrates satellite coverage and PDOP values for a simulated combined GPS/Galileo system. The designed GPS satellite constellation and the planned Galileo satellite constellation are presented. The combined system is simulated and the number of visible satellites and PDOP values...

  12. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    Science.gov (United States)

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  13. Empathy: what does it mean for GPs? A qualitative study

    NARCIS (Netherlands)

    Derksen, F.; Bensing, J.; Kuiper, S.; Meerendonk, M. van; Lagro-Janssen, A.

    2015-01-01

    BACKGROUND: Research has highlighted empathy as an important and effective factor in patient-physician communication. GPs have extensive practical experience with empathy. However, little is known about the personal views of GPs regarding the meaning and application of empathy in daily practice. OBJ

  14. Backyard Botany: Using GPS Technology in the Science Classroom

    Science.gov (United States)

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  15. Coordinate Time and Proper Time in the GPS

    Science.gov (United States)

    Matolcsi, T.; Matolcsi, M.

    2008-01-01

    The global positioning system (GPS) provides an excellent educational example of how the theory of general relativity is put into practice and becomes part of our everyday life. This paper gives a short and instructive derivation of an important formula used in the GPS, and is aimed at graduate students and general physicists. The authors…

  16. Reprocessed height time series of GPS stations at tide gauges

    Directory of Open Access Journals (Sweden)

    S. Rudenko

    2012-07-01

    Full Text Available Precise weekly positions of 403 Global Positioning System (GPS stations located worldwide are obtained by reprocessing GPS data of these stations at the time span from 4 January 1998 until 29 December 2007. The used processing algorithm and models as well as the solution and results obtained are presented. Vertical velocities of GPS stations having tracking history longer than 2.5 yr are computed and compared with the estimates from the colocated tide gauges and other GPS solutions. Examples of typical behavior of station height changes are given and interpreted. The derived time series and vertical motions of continuous GPS at tide gauges stations can be used for correcting tide gauge estimates of regional and global sea level changes.

  17. Estimering af brændstofforbrug vha. GPS Data

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2010-01-01

    Det er simpelt og billigt at opsamle GPS målinger fra køretøjer. Når større mængder GPS data indsamles fra et passende antal køretøjer kan dataen bruges til at beregne f.eks. køretider. Det er ligeledes muligt ud fra GPS data at estimere miljøindikatorer så som, hvor aggressivt kører bilister og er...... der nogle vejstrækninger, der har en højere (negativ) miljø påvirkning end andre? I denne artikel præsenterer et forsøg, hvor GPS data anvendes til at estimere brændstofforbruget ved en enkelt tur og for vejnettet generelt. Dette gøres ved at opbygge en database med GPS data. Ud fra disse data gives...

  18. GPS/INS制导巡航导弹GPS干扰方法的探讨%Exploration for GPS Jamming to GPS/INS Guided Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    周坤芳; 周湘蓉; 李德武

    2005-01-01

    目前GPS/INS制导已成为精确制导武器的核心.本文根据GPS信号特点及GPS/INS制导机理,通过对压制干扰和欺骗干扰技术及其对GPS接收机影响的分析,着重探讨对GPS/INS制导巡航导弹GPS干扰的方法.若要提高对GPS/INS制导巡航导弹实施远距离干扰的效果,而又使干扰机功率不是很大,则需建立多层次、分布式、立体式、小功率GPS干扰体系.

  19. Accurate ab initio spin densities

    CERN Document Server

    Boguslawski, Katharina; Legeza, Örs; Reiher, Markus

    2012-01-01

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...

  20. The Accurate Particle Tracer Code

    CERN Document Server

    Wang, Yulei; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusion energy research, computational mathematics, software engineering, and high-performance computation. The APT code consists of seven main modules, including the I/O module, the initialization module, the particle pusher module, the parallelization module, the field configuration module, the external force-field module, and the extendible module. The I/O module, supported by Lua and Hdf5 projects, provides a user-friendly interface for both numerical simulation and data analysis. A series of new geometric numerical methods...

  1. Accurate thickness measurement of graphene

    Science.gov (United States)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  2. Accurate thickness measurement of graphene.

    Science.gov (United States)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  3. GPS-supported visual SLAM with a rigorous sensor model for a panoramic camera in outdoor environments.

    Science.gov (United States)

    Shi, Yun; Ji, Shunping; Shi, Zhongchao; Duan, Yulin; Shibasaki, Ryosuke

    2012-01-01

    Accurate localization of moving sensors is essential for many fields, such as robot navigation and urban mapping. In this paper, we present a framework for GPS-supported visual Simultaneous Localization and Mapping with Bundle Adjustment (BA-SLAM) using a rigorous sensor model in a panoramic camera. The rigorous model does not cause system errors, thus representing an improvement over the widely used ideal sensor model. The proposed SLAM does not require additional restrictions, such as loop closing, or additional sensors, such as expensive inertial measurement units. In this paper, the problems of the ideal sensor model for a panoramic camera are analysed, and a rigorous sensor model is established. GPS data are then introduced for global optimization and georeferencing. Using the rigorous sensor model with the geometric observation equations of BA, a GPS-supported BA-SLAM approach that combines ray observations and GPS observations is then established. Finally, our method is applied to a set of vehicle-borne panoramic images captured from a campus environment, and several ground control points (GCP) are used to check the localization accuracy. The results demonstrated that our method can reach an accuracy of several centimetres. PMID:23344377

  4. Impact of single-point GPS integrated water vapor estimates on short-range WRF model forecasts over southern India

    Science.gov (United States)

    Kumar, Prashant; Gopalan, Kaushik; Shukla, Bipasha Paul; Shyam, Abhineet

    2016-09-01

    Specifying physically consistent and accurate initial conditions is one of the major challenges of numerical weather prediction (NWP) models. In this study, ground-based global positioning system (GPS) integrated water vapor (IWV) measurements available from the International Global Navigation Satellite Systems (GNSS) Service (IGS) station in Bangalore, India, are used to assess the impact of GPS data on NWP model forecasts over southern India. Two experiments are performed with and without assimilation of GPS-retrieved IWV observations during the Indian winter monsoon period (November-December, 2012) using a four-dimensional variational (4D-Var) data assimilation method. Assimilation of GPS data improved the model IWV analysis as well as the subsequent forecasts. There is a positive impact of ˜10 % over Bangalore and nearby regions. The Weather Research and Forecasting (WRF) model-predicted 24-h surface temperature forecasts have also improved when compared with observations. Small but significant improvements were found in the rainfall forecasts compared to control experiments.

  5. Research on GPS signal acquisition strategy%G PS 信号捕获策略的研究

    Institute of Scientific and Technical Information of China (English)

    陶帅; 孙克文

    2015-01-01

    文章在传统GPS信号捕获算法的基础上提出了一种适用于GPS软件接收机的信号捕获策略,它能够准确而有效地搜索捕获到可见的GPS卫星信号,利用并行码相位快速搜索算法对GPS信号进行快速初捕获,使用 N‐M检测算法对被捕获结果进行确认,再做进一步的优化,从而得到真实可靠的捕获数据,以供信号跟踪阶段使用。%In this paper ,a new signal acquisition strategy is proposed based on the traditional acquisi‐tion algorithm of global positioning system (GPS ) signal in order to adapt to the development of the software‐defined GPS receiver .It can acquire the useful GPS signal effectively and accurately .A par‐allel code search algorithm is used to promote the speed of GPS signal acquisition ,and a “ M on N”statistic approach is used in order to increase the reliability of acquisition ,reducing the probability of false detection .In order to increase the acquisition accuracy ,a refinement is performed finally .The acquisition results can be used in signal tracking stage .

  6. GPS-Supported Visual SLAM with a Rigorous Sensor Model for a Panoramic Camera in Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Ryosuke Shibasaki

    2012-12-01

    Full Text Available Accurate localization of moving sensors is essential for many fields, such as robot navigation and urban mapping. In this paper, we present a framework for GPS-supported visual Simultaneous Localization and Mapping with Bundle Adjustment (BA-SLAM using a rigorous sensor model in a panoramic camera. The rigorous model does not cause system errors, thus representing an improvement over the widely used ideal sensor model. The proposed SLAM does not require additional restrictions, such as loop closing, or additional sensors, such as expensive inertial measurement units. In this paper, the problems of the ideal sensor model for a panoramic camera are analysed, and a rigorous sensor model is established. GPS data are then introduced for global optimization and georeferencing. Using the rigorous sensor model with the geometric observation equations of BA, a GPS-supported BA-SLAM approach that combines ray observations and GPS observations is then established. Finally, our method is applied to a set of vehicle-borne panoramic images captured from a campus environment, and several ground control points (GCP are used to check the localization accuracy. The results demonstrated that our method can reach an accuracy of several centimetres.

  7. GPS Towards 21 Century%面向21世纪的GPS

    Institute of Scientific and Technical Information of China (English)

    陈俊勇

    2000-01-01

    综合介绍了全球定位系统(GPS) 走向21世纪时的最新发展情况.评述了GPS在各方面的重要应用,重点介绍了当前国际GPS服务(IGS)的产品内容及其应用和服务.最后对GPS现代化计划作了评介.

  8. CASA Uno GPS orbit and baseline experiments

    Science.gov (United States)

    Schutz, B. E.; Ho, C. S.; Abusali, P. A. M.; Tapley, B. D.

    1990-01-01

    CASA Uno data from sites distributed in longitude from Australia to Europe have been used to determine orbits of the GPS satellites. The characteristics of the orbits determined from double difference phase have been evaluated through comparisons of two-week solutions with one-week solutions and by comparisons of predicted and estimated orbits. Evidence of unmodeled effects is demonstrated, particularly associated with the orbit planes that experience solar eclipse. The orbit accuracy has been assessed through the repeatability of unconstrained estimated baseline vectors ranging from 245 km to 5400 km. Both the baseline repeatability and the comparison with independent space geodetic methods give results at the level of 1-2 parts in 100,000,000. In addition, the Mojave/Owens Valley (245 km) and Kokee Park/Ft. Davis (5409 km) estimates agree with VLBI and SLR to better than 1 part in 100,000,000.

  9. True or false GPS-derived deformations?

    Directory of Open Access Journals (Sweden)

    M. Anzidei

    2001-06-01

    Full Text Available In this paper we focus on the question whether GPS networks born with cartographic aims can be safely used in crustal deformation control. We carried out a test on a network of five vertices located in the Rome district, comparing two data sets, the first coming from the adjustment of the survey carried out in 1994 in the frame of the IGM95 project, the second coming from the surveys carried out in 1996 and 1999 by the DITS of the "La Sapienza" University of Rome. Our analysis shows how the detection of crustal deformation becomes extremely critical in absence of significant seismicity or when deformation events are limited. In other words, it is possible to find false deformations due to residual systematic effects affecting the coordinate estimates

  10. GPS Software Packages Deliver Positioning Solutions

    Science.gov (United States)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  11. Validation of ionospheric electron density profiles inferred from GPS occultation observations of the GPS/MET experiment

    Science.gov (United States)

    Kawakami, Todd Mori

    In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of

  12. GPS Imaging of Sierra Nevada Uplift

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.

    2015-12-01

    Recent improvements in the scope and precision of GPS networks across California and Nevada have allowed for uplift of the Sierra Nevada to be observed directly. Much of the signal, in the range of 1 to 2 mm/yr, has been attributed to lithospheric scale rebound following massive groundwater withdrawal in the San Joaquin Valley in southern California, exacerbated by drought since 2011. However, natural tectonic deformation associated with long term uplift of the range may also contribute to the observed signal. We have developed new algorithms that enhance the signal of Sierra Nevada uplift and improve our ability to interpret and separate natural tectonic signals from anthropogenic contributions. We apply our new Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series and a inverse distance-weighted median spatial filtering and Delaunay-based interpolation to despeckle the rate map. The resulting spatially continuous vertical rate field is insensitive to outliers and steps in the GPS time series, and omits isolated features attributable to unstable stations or unrepresentative rates. The resulting vertical rate field for California and Nevada exhibits regionally coherent signals from the earthquake cycle including interseismic strain accumulation in Cascadia, postseismic relaxation of the mantle from recent large earthquakes in central Nevada and southern California, groundwater loading changes, and tectonic uplift of the Sierra Nevada and Coast Ranges. Uplift of the Sierra Nevada extends from the Garlock Fault in the south to an indefinite boundary in the north near the latitude of Mt. Lassen to the eastern Sierra Nevada range front in Owen's Valley. The rates transition to near zero in the southern Walker Lane. The eastern boundary of uplift coincides with the highest strain rates in the western Great Basin, suggesting higher normal fault slip rates and a component of tectonic uplift of the Sierra Nevada.

  13. GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements

    Directory of Open Access Journals (Sweden)

    Saffet Erdoğan

    2009-03-01

    Full Text Available Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15-30 mm/yr toward the southwest and strain values up to 0.28-8.23x10-8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity.

  14. GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements.

    Science.gov (United States)

    Erdoğan, Saffet; Sahin, Muhammed; Tiryakioğlu, Ibrahim; Gülal, Engin; Telli, Ali Kazım

    2009-01-01

    Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15-30 mm/yr toward the southwest and strain values up to 0.28-8.23×10(-8). Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity. PMID:22573998

  15. Development of an RTK-GPS positioning application with an improved position error model for smartphones.

    Science.gov (United States)

    Hwang, Jinsang; Yun, Hongsik; Suh, Yongcheol; Cho, Jeongho; Lee, Dongha

    2012-01-01

    This study developed a smartphone application that provides wireless communication, NRTIP client, and RTK processing features, and which can simplify the Network RTK-GPS system while reducing the required cost. A determination method for an error model in Network RTK measurements was proposed, considering both random and autocorrelation errors, to accurately calculate the coordinates measured by the application using state estimation filters. The performance evaluation of the developed application showed that it could perform high-precision real-time positioning, within several centimeters of error range at a frequency of 20 Hz. A Kalman Filter was applied to the coordinates measured from the application, to evaluate the appropriateness of the determination method for an error model, as proposed in this study. The results were more accurate, compared with those of the existing error model, which only considered the random error. PMID:23201981

  16. Development of an RTK-GPS Positioning Application with an Improved Position Error Model for Smartphones

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    2012-09-01

    Full Text Available This study developed a smartphone application that provides wireless communication, NRTIP client, and RTK processing features, and which can simplify the Network RTK-GPS system while reducing the required cost. A determination method for an error model in Network RTK measurements was proposed, considering both random and autocorrelation errors, to accurately calculate the coordinates measured by the application using state estimation filters. The performance evaluation of the developed application showed that it could perform high-precision real-time positioning, within several centimeters of error range at a frequency of 20 Hz. A Kalman Filter was applied to the coordinates measured from the application, to evaluate the appropriateness of the determination method for an error model, as proposed in this study. The results were more accurate, compared with those of the existing error model, which only considered the random error.

  17. A More Accurate Fourier Transform

    CERN Document Server

    Courtney, Elya

    2015-01-01

    Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...

  18. Robust Real-Time Wide-Area Differential GPS Navigation

    Science.gov (United States)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  19. Land Vehicle Positioning Using GPS and Dead Reckoning

    Institute of Scientific and Technical Information of China (English)

    Yang Dong-kai; C. L. Law; N. Nagarajan; Xu Ai-gong

    2003-01-01

    To ensure reliable land vehicle positioning, the Global Positioning System (GPS) is one of the best techniques commonly used in present-day positioning systems. However, GPS signals are not available if line of sight with the satellites is lost. In this respect, the addition of the Dead Reckoning (DR) method to complement the GPS unit would enhance the reliability of land vehicle positioning system. For implementing the DR method, the magnetic sensor and accelerometer are used for obtaining heading and velocity or distance information. Calibration of two sensors' dynamic model and DR algorithm are also introduced in this paper. The test result utilizing the GPS and DR methods is analyzed in this paper. It utilize spositioning information from GPS receiver when GPSsignal is available, otherwise DR is started to compensate GPS outage with the GPS output as the original point. The results showed that the error in east and north produced by the DR algorithm for a short time interval can be limitedwithin an acceptable range.

  20. Assessing the role of GPs in Nordic health care systems.

    Science.gov (United States)

    Quaye, Randolph K

    2016-05-01

    Purpose This paper examines the changing role of general practitioners (GPs) in Nordic countries of Sweden, Norway and Denmark. It aims to explore the "gate keeping" role of GPs in the face of current changes in the health care delivery systems in these countries. Design/methodology/approach Data were collected from existing literature, interviews with GPs, hospital specialists and representatives of Danish regions and Norwegian Medical Association. Findings The paper contends that in all these changes, the position of the GPs in the medical division of labor has been strengthened, and patients now have increased and broadened access to choice. Research limitations/implications Health care cost and high cancer mortality rates have forced Nordic countries of Sweden, Norway and Denmark to rethink their health care systems. Several attempts have been made to reduce health care cost through market reform and by strenghtening the position of GPs. The evidence suggests that in Norway and Denmark, right incentives are in place to achieve this goal. Sweden is not far behind. The paper has limitations of a small sample size and an exclusive focus on GPs. Practical implications Anecdotal evidence suggests that physicians are becoming extremely unhappy. Understanding the changing status of primary care physicians will yield valuable information for assessing the effectiveness of Nordic health care delivery systems. Social implications This study has wider implications of how GPs see their role as potential gatekeepers in the Nordic health care systems. The role of GPs is changing as a result of recent health care reforms. Originality/value This paper contends that in Norway and Denmark, right incentives are in place to strengthen the position of GPs.

  1. Detection of coherent reflections with GPS bipath interferometry

    CERN Document Server

    Helm, A; Nitschke, M

    2004-01-01

    Results from a GPS reflectometry experiment with a 12 channel ground-based GPS receiver above two lakes in the Bavarian Alps are presented. The receiver measures in open-loop mode the coarse/aquisition code correlation function of the direct and the reflected signal of one GPS satellite simultaneously. The interference between the coherently reflected signal and a model signal, which is phase-locked to the direct signal, causes variations in the amplitude of the in-phase and quad-phase components of the correlation sums. From these amplitude variations the relative altimetric height is determined within a precision of 2 cm.

  2. Dynamic Filtering Method for GPS Based on Multi-Scale

    Directory of Open Access Journals (Sweden)

    Tingjun Li

    2013-01-01

    Full Text Available Aiming at GPS dynamic filtering method, this paper uses the method of multi-scale analysis, combines the “current” statistical model of automotive carrier with multi-scale signal transformation which is based on statistical characteristic, establishes the new algorithm of multi-scale data fusion for GPS dynamic filter combining with normal Kalman filter algorithm, at last achieves the optimal fusion estimated value of the target states based on global information at the finest scale. When the above algorithm is used to GPS dynamic filter, the simulated results show that the proposed algorithm can effectively increase estimated precision of target states compared with the conventional KF.

  3. High-Precision Motorcycle Trajectory Measurements Using GPS

    Science.gov (United States)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    A method for measuring motorcycle trajectory using GPS is needed for simulating motorcycle dynamics. In GPS measurements of a motorcycle, both the declination of the motorcycle and obstacles near the course can cause problems. Therefore, we propose a new algorithm for GPS measurement of motorcycle trajectory. We interpolate the missing observation data within a few seconds using polynomial curves, and use a Kalman filter to smoothen position calculations. This results in obtaining trajectory with high accuracy and with sufficient continuity. The precision is equal to that of fixed point positioning, given a sufficient number of available satellites.

  4. GPS-based certification for the microwave landing system

    Science.gov (United States)

    Thornton, C. L.; Young, L. E.; Wu, S. C.; Thomas, J. B.

    1984-01-01

    An MLS (microwave landing system) certification system based on the Global Positioning System (GPS) is described. To determine the position history of the flight inspection aircraft during runway approach, signals from the GPS satellites, together with on-board radar altimetry, are used. It is shown that the aircraft position relative to a fixed point on the runway at threshold can be determined to about 30 cm vertically and 1 m horizontally. A requirement of the system is that the GPS receivers be placed on each flight inspection aircraft and at selected ground sites. The effects of different error sources on the determination of aircraft instantaneous position and its dynamics are analyzed.

  5. Forward and Inverse Modeling of GPS Multipath for Snow Monitoring

    Science.gov (United States)

    Nievinski, Felipe Geremia

    Snowpacks provide reservoirs of freshwater, storing solid precipitation and delaying runoff to be released later in the spring and summer when it is most needed. The goal of this dissertation is to develop the technique of GPS multipath reflectometry (GPS-MR) for ground-based measurement of snow depth. The phenomenon of multipath in GPS constitutes the reception of reflected signals in conjunction with the direct signal from a satellite. As these coherent direct and reflected signals go in and out of phase, signal-to-noise ratio (SNR) exhibits peaks and troughs that can be related to land surface characteristics. In contrast to other GPS reflectometry modes, in GPS-MR the poorly separated composite signal is collected utilizing a single antenna and correlated against a single replica. SNR observations derived from the newer L2-frequency civilian GPS signal (L2C) are used, as recorded by commercial off-the-shelf receivers and geodetic-quality antennas in existing GPS sites. I developed a forward/inverse approach for modeling GPS multipath present in SNR observations. The model here is unique in that it capitalizes on known information about the antenna response and the physics of surface scattering to aid in retrieving the unknown snow conditions in the antenna surroundings. This physically-based forward model is utilized to simulate the surface and antenna coupling. The statistically-rigorous inverse model is considered in two parts. Part I (theory) explains how the snow characteristics are parameterized; the observation/parameter sensitivity; inversion errors; and parameter uncertainty, which serves to indicate the sensing footprint where the reflection originates. Part II (practice) applies the multipath model to SNR observations and validates the resulting GPS retrievals against independent in situ measurements during a 1-3 year period in three different environments---grasslands, alpine, and forested. The assessment yields a correlation of 0.98 and an RMS error

  6. Hybrid GPS-GSM Localization of Automobile Tracking System

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Khedher

    2012-01-01

    Full Text Available An integrated GPS-GSM system is proposed to track vehicles using Google Earth application. Theremote module has a GPS mounted on the moving vehicle to identify its current position, and to betransferred by GSM with other parameters acquired by the automobile’s data port as an SMS to arecipient station. The received GPS coordinates are filtered using a Kalman filter to enhance theaccuracy of measured position. After data processing, Google Earth application is used to view thecurrent location and status of each vehicle. This goal of this system is to manage fleet, policeautomobiles distribution and car theft cautions.

  7. Noise characteristics of Continuous GPS time series of Central and Eastern Himalaya

    Science.gov (United States)

    Ray, J. D.; Vijayan, M. S. M.; Kumar, A.

    2015-12-01

    Global positioning system measurements with its millimetre level accuracy have been widely used to monitor the crustal dynamics. Geodetic crustal deformation studies require accurate estimate of the parameters which demands realistic estimate of the uncertainties in order to constrain the signal. GPS based crustal deformation studies in tectonically active region, such as Central and Eastern Himalaya have been carried out by several groups however, proper noise characteristics of GPS time series of this study region are unknown. In this work, we attempt to address the noise characteristics of GPS position time series by analysing the GPS time series of 22 stations from North-East India, Bhutan and Nepal Himalaya spanning 2002-2013. We have employed Spectral analysis and Maximum Likelihood Estimation (MLE) to study the noise characteristics. Power spectrum obtained by using Lomb-Scargle method reveals characteristics of white noise at the high frequencies and power law noise at lower frequencies. Estimation of the spectral index by finding the slope of the spectral curve suggests fractal white noise with overall index of -0.61. MLE was performed in two ways. First, by assuming the time series to be composed of (a) white (WN), (b) white plus flicker (FL) and (c) white plus random walk noise (WRN) and then by estimating spectral index assuming the noise to be composition of white and power law noise (WPN). The comparison of MLE values of three noise model suggest that white plus flicker noise model (FL) is the most preferred noise model. Comparison of velocity uncertainties between white noise and white plus flicker noise, obtained from MLE, suggest that velocity uncertainty is under estimated by factor of ~8 when simple white noise model is used. The spectral index estimated using MLE is -1.1 (~1) which suggests that flicker noise is the main power law noise in time series of all 22 GPS stations. A slight difference of noise amplitudes of two different monument types

  8. Effectiveness of Observation-Domain Sidereal Filtering for GPS Precise Point Positioning

    Science.gov (United States)

    Atkins, C.; Ziebart, M. K.

    2014-12-01

    Global navigation satellite systems (GNSS) are increasingly being used in earthquake monitoring and tsunami warning systems. However, the ability of GNSS to measure potentially small ground displacements is limited by a number of error sources, one of which is multipath interference, which affects the measurements made by a GNSS receiver.Sidereal filtering is a technique sometimes used to reduce errors caused by multipath in the positioning of static receivers via GPS in particular. It relies upon the receiver and its surrounding environment remaining static from one day to the next and takes advantage of the approximately sidereal repeat time of the GPS constellation geometry. The repeating multipath error can thus be identified, usually in the position domain, and largely removed from the following day.We have developed an observation-domain sidereal filter (ODSF) algorithm that operates on un-differenced ionosphere-free GPS carrier phase observations to reduce errors caused by multipath. It is applied in the context of high-rate 1 Hz precise point positioning (PPP) of a static receiver. An ODSF is able to account for the slightly different repeat times of each GPS satellite, unlike a position-domain sidereal filter, and can hence be more effective at reducing high-frequency multipath error.Using eight-hour long datasets of GPS observations from two different receivers with different antenna types and contrasting environments, the ODSF algorithm is shown overall to yield a position time series 10% to 45% more stable, in terms of Allan deviation, than a position-domain sidereal filter over time intervals of between 20 s and 300 s in length. This would be particularly useful for earthquake and tsunami early warning systems where the accurate measurement of small displacements of the ground over the period of just a few minutes is crucial. However, the sidereal filters have also been applied to a third dataset during which two short episodes of particularly high

  9. Comparison of GPS-TEC observations over Addis Ababa with IRI-2012 model predictions during 2010-2013

    Science.gov (United States)

    Akala, A. O.; Somoye, E. O.; Adewale, A. O.; Ojutalayo, E. W.; Karia, S. P.; Idolor, R. O.; Okoh, D.; Doherty, P. H.

    2015-10-01

    This study presents Global Positioning System-Total Electron Content (GPS-TEC) observations over Addis Ababa (Lat: 9.03°N Lon: 38.77°E Mag. lat: 0.18°N) and an evaluation of the accuracy of International Reference Ionosphere-2012 (IRI-2012) model predictions during 2010-2013. Generally, on a diurnal scale, TEC recorded minimum values at 0400-0600 LT and maximum at 1400-1600 LT. Seasonally, TEC recorded maximum values during December solstice and September equinox, and minimum during June solstice. On a year-by-year basis, 2013 recorded the highest values of TEC for both the observed and the model measurements, while 2010 recorded the lowest, implying the solar activity dependence of TEC. Furthermore, we observed discrepancies in the comparison of the GPS-TEC measurements with those derived from IRI-2012 model, after the exclusion of the contributions of plasmaspheric electron content (PEC) from the GPS-observed TEC. All the three options of IRI-2012 model overestimated TEC during early morning and post-sunset hours. Comparatively, of the three options of IRI-2012 model, NeQuick appears to be the most accurate for TEC estimation over Addis Ababa, although at a very close performance capability with the IRI01 CORR option, while IRI2001 is the least accurate.

  10. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2008

    International Nuclear Information System (INIS)

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 26 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 17 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stable expect one pillar at Romuvaara. There are seven pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. The comparison between the GPS and EDM results can help to fix a possible scale error of the GPS measurements. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is

  11. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2007

    International Nuclear Information System (INIS)

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 24 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 16 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.22 mm/a ± 0.02 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  12. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ahola, J.; Koivula, H.; Jokela, J. (Finnish Geodetic Institute, Masala (Finland))

    2008-05-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 24 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 16 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +- 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.22 mm/a +- 0.02 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  13. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Ahola, J.; Koivula, H.; Jokela, J.; Poutanen, M. (Finnish Geodetic Institute, Masala (Finland))

    2009-09-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 26 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 17 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stable expect one pillar at Romuvaara. There are seven pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. The comparison between the GPS and EDM results can help to fix a possible scale error of the GPS measurements. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is

  14. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  15. 77 FR 23668 - GPS Satellite Simulator Working Group Notice of Meeting

    Science.gov (United States)

    2012-04-20

    ... Department of the Air Force GPS Satellite Simulator Working Group Notice of Meeting AGENCY: The United States... Global Positioning Systems (GPS) Directorate will be hosting an open GPS Satellite Simulator Working Group (SSWG) meeting for manufacturers of GPS constellation simulators utilized by the...

  16. Precise and accurate train run data: Approximation of actual arrival and departure times

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    possible with the present systems. GPS data from a major Danish Railway Undertaking is used as an alternate data source with more accurate arrival and departure times. The offset is based on the median of the time difference between these two sources. Factors taken into consideration when constructing...... the correction function, are location, message type, platform used and train type. The approximated correction values are then analysed to ensure that interquartile range is within the defined criteria. The practical implementation is an additional column in the train run history database tables...

  17. 辅助全球定位系统(A-GPS)研发现状与展望%Prospect of Research Status and Development of Assisted Global Positioning System (A-GPS)

    Institute of Scientific and Technical Information of China (English)

    邓绍云

    2014-01-01

    Based on the development and application of GPS technology limitations, expounds the assisted global positioning system (A-GPS) developed the motivation, introduces in detail the assisted global positioning system (A-GPS) effect, and fi-nally points out the future assisted global positioning system (A-GPS) development direction for the accurate, high precision, portable, miniaturization, widely.%在基于GPS技术的开发应用的局限的基础上,阐述了辅助全球定位系统(A-GPS)开发研制的动机,详细介绍了辅助全球定位系统(A-GPS)功效,最后指出未来辅助全球定位系统(A-GPS)的发展方向。

  18. Studies on Precise Spacecraft Navigation and Positioning Using GPS

    Institute of Scientific and Technical Information of China (English)

    XiangKaiheng; QuGuangji

    2004-01-01

    GPS measurement technology, Encke method to solve satellite orbit perturbation and generalized Kalman filtering technology are organically combined together, and an innovative solution—carrier phase & pseudorange integrated dynamic orbit determination (CPPIDOD) for low earth orbit spacecraft on-board autonomous precise navigation and positioning by using GPS is presented. The difficult problems of dynamically resolving integer ambiguities and amendment of cycle slips in the application of GPS carrier phase have been solved.Based on all above, the technique of carrier phase & pseudorange integrated dynamic differential relative navigation between two spacecrafts is brought forward. Results of numerical simulation analyses and senti-physical simulation tests show that the solutions presented in this paper are feasible, which can significantly improve the performance of GPS positioning, and the models, algorithms and software are practical for engineering use.

  19. Characteristics of Multipath Effects in GPS Dynamic Deformation Monitoring

    Institute of Scientific and Technical Information of China (English)

    HUANG Shengxiang; JIN Xiangsheng; YANG Baocen

    2006-01-01

    The multipath has long been considered a major error source in GPS applications. The characteristics of the GPS signal multipath effects are analyzed, based on which an experiment that considers the characteristics of dynamic deformation monitoring has been carried out. The solution results of observation data in two successive days are processed by a method, which combines the wavelet filtering and the differential correction between two successive days. The research demonstrates that the multipath errors have stronger repeatability on successive days; after significantly mitigating the influence of multipath effects, the accuracy of three-dimensional positioning for GPS dynamic deformation monitoring can attain the mm level, an obvious accuracy improving particularly in vertical component. The characteristics of GPS signal multipath, the experimental scheme and the qualitative and quantitative analysis of results are detailed.

  20. ISOLDE target zone GPS robot, Camera B Part2 HD

    CERN Document Server

    2016-01-01

    Sequences of the ISOLDE GPS robot movements mainly in close up moving a target along the corridor and onto a shelf position and vice versa. Close up GPS robot handling at exchange point. Movement GPS robot with target through the corridor. Close up robot cable guidance system. Close up posing target on the shelf position. Close up picking up a target from the shelf position and passing through corridor. Picking up a target from a shelf position seen from the target front end towards the zone entrance and taking it to the exchange point and vice versa. Checking activation: GPS robot picking up a target from the shelf and moving it in front of the radiation monitor and close up.

  1. ISOLDE target zone GPS robot Camera B Part1 HD

    CERN Multimedia

    2016-01-01

    Sequences of the ISOLDE GPS robot movements mainly in close up moving a target along the corridor and onto a shelf position and vice versa. Close up GPS robot handling at exchange point. Movement GPS robot with target through the corridor. Close up robot cable guidance system. Close up posing target on the shelf position. Close up picking up a target from the shelf position and passing through corridor. Picking up a target from a shelf position seen from the target front end towards the zone entrance and taking it to the exchange point and vice versa. Checking activation: GPS robot picking up a target from the shelf and moving it in front of the radiation monitor and close up.

  2. ISOLDE target zone GPS robot, Camera B Part2

    CERN Document Server

    2016-01-01

    Sequences of the ISOLDE GPS robot movements mainly in close up moving a target along the corridor and onto a shelf position and vice versa. Close up GPS robot handling at exchange point. Movement GPS robot with target through the corridor. Close up robot cable guidance system. Close up posing target on the shelf position. Close up picking up a target from the shelf position and passing through corridor. Picking up a target from a shelf position seen from the target front end towards the zone entrance and taking it to the exchange point and vice versa. Checking activation: GPS robot picking up a target from the shelf and moving it in front of the radiation monitor and close up.

  3. ISOLDE target zone GPS robot Camera B Part1

    CERN Document Server

    2016-01-01

    Sequences of the ISOLDE GPS robot movements mainly in close up moving a target along the corridor and onto a shelf position and vice versa. Close up GPS robot handling at exchange point. Movement GPS robot with target through the corridor. Close up robot cable guidance system. Close up posing target on the shelf position. Close up picking up a target from the shelf position and passing through corridor. Picking up a target from a shelf position seen from the target front end towards the zone entrance and taking it to the exchange point and vice versa. Checking activation: GPS robot picking up a target from the shelf and moving it in front of the radiation monitor and close up.

  4. DARPA looks beyond GPS for positioning, navigating, and timing

    International Nuclear Information System (INIS)

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable

  5. The establishment of GPS network in Grove Mountains, East Antarctica

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Grove Mountains are located in Princess Elizabeth Land, East Antarctica, extending from 72° to 73°S latitude and 73° to 76°E longitude, covering approximately 8000 km2 areas. During the 2002/2003 austral summer season, the 19th CHINARE (Chinese National Antarctic Research Expedition) carried out the third expedition in Grove Mountains, East Antarctica. The Geodetic network was established, which can provide ground control for the satellite image map for the multi-discipline expedition in the Grove Mountains where seven permanent GPS benchmarks were set up supported by the helicopter and snow vehicles. All GPS sites besides Z001 were observed at least for one hour using the dual frequencies Trimble 4000ssi GPS receivers. The data were processed by the comprehensive GPS analysis package-GAMIT/GLOBK and the precision is good enough to satisfy with the acquirement of satellite mapping in this area.

  6. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  7. GPS source solution of the 2004 Parkfield earthquake.

    Science.gov (United States)

    Houlié, N; Dreger, D; Kim, A

    2014-01-01

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95(th) percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm. PMID:24434939

  8. GPS source solution of the 2004 Parkfield earthquake

    CERN Document Server

    Houlie, N; Kim, A

    2014-01-01

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is, 55 +/- 6 cm.

  9. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  10. Accuracy Assessment of Digital Elevation Models Using GPS

    Science.gov (United States)

    Farah, Ashraf; Talaat, Ashraf; Farrag, Farrag A.

    2008-01-01

    A Digital Elevation Model (DEM) is a digital representation of ground surface topography or terrain with different accuracies for different application fields. DEM have been applied to a wide range of civil engineering and military planning tasks. DEM is obtained using a number of techniques such as photogrammetry, digitizing, laser scanning, radar interferometry, classical survey and GPS techniques. This paper presents an assessment study of DEM using GPS (Stop&Go) and kinematic techniques comparing with classical survey. The results show that a DEM generated from (Stop&Go) GPS technique has the highest accuracy with a RMS error of 9.70 cm. The RMS error of DEM derived by kinematic GPS is 12.00 cm.

  11. Short-Period Information in GPS Time Series

    Science.gov (United States)

    Bogusz, Janusz; Figurski, Mariusz

    2010-01-01

    This paper presents results of the Polish Active Geodetic Network (ASG-EUPOS) processing. The analyses on the GPS coordinates from sub-diurnal solutions of ASG-EUPOS and EPN data provided by Warsaw Military University of Technology were performed. The aim of this research is to find out how the tidal models used in Bernese software (solid Earth and ocean tides as well) fit to the individual conditions of GPS stations. The 1-hour solution technique of GPS data processing was utilized to obtain coordinates of above 130 Polish and foreign stations. This processing technique allowed us to recognize residual diurnal and sub-diurnal oscillations which could be next utilized for validation of the tidal models used in GPS software.

  12. How GPs implement clinical guidelines in everyday clinical practice

    DEFF Research Database (Denmark)

    Videbæk Le, Jette; Hansen, Helle P; Riisgaard, Helle;

    2015-01-01

    . Interviews were recorded, transcribed verbatim and then analysed using systematic text condensation. RESULTS: Analysis of the interviews revealed three different approaches to the implementation of guidelines in clinical practice. In some practices the GPs prioritized time and resources on collective...

  13. GPS SATELLITE SIMULATOR SIGNAL ESTIMATION BASED ON ANN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver are analyzed from the viewpoint of simulator design. The estimation methods are focused of which several signal parameters are difficult to determine directly according to existing experiential models due to various error factors. Based on the theory of Artificial Neural Network (ANN), an approach is proposed to simulate signal propagation delay,carrier phase, power, and other parameters using ANN. The architecture of the hardware-in-the-loop test system is given. The ANN training and validation process is described. Experimental results demonstrate that the ANN designed can statistically simulate sample data in high fidelity.Therefore the computation of signal state based on this ANN can meet the design requirement,and can be directly applied to the development of multi-channel GPS satellite signal simulator.

  14. Deployment of Autonomous GPS Stations in Marie Byrd Land, Antartica

    Science.gov (United States)

    Donnellan, A.; Luyendyk, B.; Smith, M.; Dace, G.

    1999-01-01

    During the 1998-1999 Antarctic field season, we installed three autonomous GPS stations in Marie Byrd Land, West Antarctica to measure glacio-isostatic rebound and rates of spreading across the West Antartic Rift System.

  15. Non-Linear Filtering Approaches for INS/GPS Integration

    OpenAIRE

    Giremus, Audrey; Doucet, Arnaud; Escher, Anne-Christine; Tourneret, Jean-Yves

    2004-01-01

    Navigation with an integrated INS/GPS approach requires to solve a set of nonlinear equations. In this case, nonlinear filtering techniques such as Particle Filtering methods are expected to perform better than the classical, but suboptimal, Extended Kalman Filter. Besides, the INS/GPS model has a conditionally linear Gaussian structure. A Rao-Blackwellization procedure can then be applied to reduce the variance of the state estimates. This paper studies different algorithms combining Rao-Bla...

  16. Degradation of GPS performance in geomagnetically disturbed conditions

    CERN Document Server

    Afraimovich, E L; Kondakova, T N

    2002-01-01

    The GPS performance is impaired in conditions of geomagnetic distrubances. The rms error of positioning accuracy increases in the case where two-frequency GPS receivers of three main types (ASHTECH, TRIMBLE, and AOA) are in operation. For ASHTECH receivers (unlike AOA and TRIMBLE) there is also a clear correlation between the slip density of the one- and two-frequency modes of positioning and the level of geomagnetic disturbance.

  17. Can RTK GPS be Used to Improve Cadastral Infrastructure?

    OpenAIRE

    Craig Roberts; Thomas Grinter; Volker Janssen

    2011-01-01

    Cadastral surveying is concerned with the process of gathering evidence in the form of position information that is used to define the location of objects or land boundaries for the purposes of identifying ownership and/or the value of land parcels. The advent of Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), has revolutionised the way 3-dimensional positions are determined and GPS surveying techniques, particularly Real Time Kinematic (RTK), are incr...

  18. Counteraction to GPS satellite radio-navigation system

    OpenAIRE

    Skorik, E. T.

    2006-01-01

    The paper presents information in concern with non-deliberate and deliberate counteraction (creation of interference) to the GPS satellite radio-navigation system. This man-made interference may have an impact on stability and accuracy of guiding the objects using the satellite radio navigation. The objects may represent civil airplanes or cruise missiles (the latter being used as high-precision weapons). The work outlines the measures for GPS protection from radio interference. As a whole, t...

  19. Software Defined GPS Receiver for International Space Station

    Science.gov (United States)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  20. GPS and Glonass Combined Static Precise Point Positioning (ppp)

    Science.gov (United States)

    Pandey, D.; Dwivedi, R.; Dikshit, O.; Singh, A. K.

    2016-06-01

    With the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs), satellite navigation is undergoing drastic changes. Presently, more than 70 satellites are already available and nearly 120 more satellites will be available in the coming years after the achievement of complete constellation for all four systems- GPS, GLONASS, Galileo and BeiDou. The significant improvement in terms of satellite visibility, spatial geometry, dilution of precision and accuracy demands the utilization of combining multi-GNSS for Precise Point Positioning (PPP), especially in constrained environments. Currently, PPP is performed based on the processing of only GPS observations. Static and kinematic PPP solutions based on the processing of only GPS observations is limited by the satellite visibility, which is often insufficient for the mountainous and open pit mines areas. One of the easiest options available to enhance the positioning reliability is to integrate GPS and GLONASS observations. This research investigates the efficacy of combining GPS and GLONASS observations for achieving static PPP solution and its sensitivity to different processing methodology. Two static PPP solutions, namely standalone GPS and combined GPS-GLONASS solutions are compared. The datasets are processed using the open source GNSS processing environment gLAB 2.2.7 as well as magicGNSS software package. The results reveal that the addition of GLONASS observations improves the static positioning accuracy in comparison with the standalone GPS point positioning. Further, results show that there is an improvement in the three dimensional positioning accuracy. It is also shown that the addition of GLONASS constellation improves the total number of visible satellites by more than 60% which leads to the improvement of satellite geometry represented by Position Dilution of Precision (PDOP) by more than 30%.

  1. Effect of a GPS anomaly on different GNSS receivers

    OpenAIRE

    Vogel, Anne-Laure; Macabiau, Christophe; Suard, Norbert

    2005-01-01

    International audience; On January 1st 2004, a GPS clock failure occurred suddenly onboard the GPS satellite PRN23 at around 18:30 UTC with the signal being transmitted for hours after that. The Unhealthy flag of its navigation message, used by the receivers to discard its measurements from the navigation position computation, was raised a few hours after the occurrence of this event. It was observed that the estimated user position was impacted in different manners depending on the different...

  2. Using Transponders on the Moon to Increase Accuracy of GPS

    Science.gov (United States)

    Penanen, Konstantin; Chui, Talso

    2008-01-01

    It has been proposed to place laser or radio transponders at suitably chosen locations on the Moon to increase the accuracy achievable using the Global Positioning System (GPS) or other satellite-based positioning system. The accuracy of GPS position measurements depends on the accuracy of determination of the ephemerides of the GPS satellites. These ephemerides are determined by means of ranging to and from Earth-based stations and consistency checks among the satellites. Unfortunately, ranging to and from Earth is subject to errors caused by atmospheric effects, notably including unpredictable variations in refraction. The proposal is based on exploitation of the fact that ranging between a GPS satellite and another object outside the atmosphere is not subject to error-inducing atmospheric effects. The Moon is such an object and is a convenient place for a ranging station. The ephemeris of the Moon is well known and, unlike a GPS satellite, the Moon is massive enough that its orbit is not measurably affected by the solar wind and solar radiation. According to the proposal, each GPS satellite would repeatedly send a short laser or radio pulse toward the Moon and the transponder(s) would respond by sending back a pulse and delay information. The GPS satellite could then compute its distance from the known position(s) of the transponder(s) on the Moon. Because the same hemisphere of the Moon faces the Earth continuously, any transponders placed there would remain continuously or nearly continuously accessible to GPS satellites, and so only a relatively small number of transponders would be needed to provide continuous coverage. Assuming that the transponders would depend on solar power, it would be desirable to use at least two transponders, placed at diametrically opposite points on the edges of the Moon disk as seen from Earth, so that all or most of the time, at least one of them would be in sunlight.

  3. ISOLDE target zone GPS robot, Camera A Part1 HD

    CERN Multimedia

    2016-01-01

    Sequences of the ISOLDE GPS robot movements along the corridor picking up an ISOLDE target from one of the shelfs behind the lead shielding doors and moving it to the exchange point. Several movements of the ISOLDE GPS robot from different angles with and without target along the corridor as well as posing and taking the target from the shelf and posing it onto the exchange point.

  4. ISOLDE target zone GPS robot, Camera A Part1

    CERN Document Server

    2016-01-01

    Sequences of the ISOLDE GPS robot movements along the corridor picking up an ISOLDE target from one of the shelfs behind the lead shielding doors and moving it to the exchange point. Several movements of the ISOLDE GPS robot from different angles with and without target along the corridor as well as posing and taking the target from the shelf and posing it onto the exchange point.

  5. ISOLDE target zone GPS robot, Camera A Part2 HD

    CERN Multimedia

    2016-01-01

    Sequences of the ISOLDE GPS robot movements along the corridor picking up an ISOLDE target from one of the shelfs behind the lead shielding doors and moving it to the exchange point. Several movements of the ISOLDE GPS robot from different angles with and without target along the corridor as well as posing and taking the target from the shelf and posing it onto the exchange point.

  6. ISOLDE target zone GPS robot, Camera A Part2

    CERN Multimedia

    2016-01-01

    Sequences of the ISOLDE GPS robot movements along the corridor picking up an ISOLDE target from one of the shelfs behind the lead shielding doors and moving it to the exchange point. Several movements of the ISOLDE GPS robot from different angles with and without target along the corridor as well as posing and taking the target from the shelf and posing it onto the exchange point.

  7. 基于Gamin GPS OEM模块的车载GPS-PC系统开发

    Institute of Scientific and Technical Information of China (English)

    周剑敏

    2005-01-01

    GPS民用化已经是大势所趋,车载GPS是典型应用,开发低价实用的GPS已经不是难事。文章介绍了一例基于Garmin GPS OEM模块的车载GPS—PC系统开发实例,提出了该系统的硬件组成和软件设计要点,实现了车载GPS系统低价位、实用化。

  8. Inferring Directed Road Networks from GPS Traces by Track Alignment

    Directory of Open Access Journals (Sweden)

    Xingzhe Xie

    2015-11-01

    Full Text Available This paper proposes a method to infer road networks from GPS traces. These networks include intersections between roads, the connectivity between the intersections and the possible traffic directions between directly-connected intersections. These intersections are localized by detecting and clustering turning points, which are locations where the moving direction changes on GPS traces. We infer the structure of road networks by segmenting all of the GPS traces to identify these intersections. We can then form both a connectivity matrix of the intersections and a small representative GPS track for each road segment. The road segment between each pair of directly-connected intersections is represented using a series of geographical locations, which are averaged from all of the tracks on this road segment by aligning them using the dynamic time warping (DTW algorithm. Our contribution is two-fold. First, we detect potential intersections by clustering the turning points on the GPS traces. Second, we infer the geometry of the road segments between intersections by aligning GPS tracks point by point using a “stretch and then compress” strategy based on the DTW algorithm. This approach not only allows road estimation by averaging the aligned tracks, but also a deeper statistical analysis based on the individual track’s time alignment, for example the variance of speed along a road segment.

  9. Studying Landslide Displacements in Megamendung (Indonesia Using GPS Survey Method

    Directory of Open Access Journals (Sweden)

    Hasanuddin Z. Abidin

    2004-11-01

    Full Text Available Landslide is one of prominent geohazards that frequently affects Indonesia, especially in the rainy season. It destroys not only environment and property, but usually also causes deaths. Landslide monitoring is therefore very crucial and should be continuously done. One of the methods that can have a contribution in studying landslide phenomena is repeated GPS survey method. This paper presents and discusses the operational performances, constraints and results of GPS surveys conducted in a well known landslide prone area in West Java (Indonesia, namely Megamendung, the hilly region close to Bogor. Three GPS surveys involving 8 GPS points have been conducted, namely on April 2002, May 2003 and May 2004, respectively. The estimated landslide displacements in the area are relatively quite large in the level of a few dm to a few m. Displacements up to about 2-3 m were detected in the April 2002 to May 2003 period, and up to about 3-4 dm in the May 2003 to May 2004 period. In both periods, landslides in general show the northwest direction of displacements. Displacements vary both spatially and temporally. This study also suggested that in order to conclude the existence of real and significant displacements of GPS points, the GPS estimated displacements should be subjected to three types of testing namely: the congruency test on spatial displacements, testing on the agreement between the horizontal distance changes with the predicted direction of landslide displacement, and testing on the consistency of displacement directions on two consecutive periods.

  10. System and method for generating attitude determinations using GPS

    Science.gov (United States)

    Cohen, Clark E. (Inventor)

    1996-01-01

    A GPS attitude receiver for determining the attitude of a moving vehicle in conjunction with a first, a second, a third, and a fourth antenna mounted to the moving vehicle. Each of the antennas receives a plurality of GPS signals that each include a carrier component. For each of the carrier components of the received GPS signals there is an integer ambiguity associated with the first and fourth antennas, an integer ambiguity associated with second and fourth antennas, and an integer ambiguity associated with the third and fourth antennas. The GPS attitude receiver measures phase values for the carrier components of the GPS signals received from each of the antennas at a plurality of measurement epochs during an initialization period and at a measurement epoch after the initialization period. In response to the phase values measured at the measurement epochs during the initialization period, the GPS attitude receiver computes integer ambiguity resolution values representing resolution of the integer ambiguities. Then, in response to the computed integer ambiguity resolution values and the phase value measured at the measurement epoch after the initialization period, it computes values defining the attitude of the moving vehicle at the measurement epoch after the initialization period.

  11. Kinematic GPS survey as validation of LIDAR strips accuracy

    Directory of Open Access Journals (Sweden)

    C. Gordini

    2006-06-01

    Full Text Available As a result of the catastrophic hydrogeological events which occurred in May 1998 in Campania, in the south of Italy, the distinctive features of airborne laser scanning mounted on a helicopter were used to survey the landslides at Sarno and Quindici. In order to survey the entire zone of interest, approximately 21 km2, it was necessary to scan 12 laser strips. Many problems arose during the survey: difficulties in receiving the GPS signal, complex terrain features and unfavorable atmospheric conditions. These problems were investigated and it emerged that one of the most influential factors is the quality of GPS signals. By analysing the original GPS data, the traces obtained by fixing phase ambiguity with an On The Fly (OTF algorithm were isolated from those with smoothed differential GPS solution (DGPS. Processing and analysis of laser data showed that not all the overlapping laser strips were congruent with each other. Since an external survey to verify the laser data accuracy was necessary, it was decided to utilize the kinematic GPS technique. The laser strips were subsequently adjusted, using the kinematic GPS data as reference points. Bearing in mind that in mountainous areas like the one studied here it is not possible to obtain nominal precision and accuracy, a good result was nevertheless obtained with a Digital Terrain Model (DTM of all the zones of interest.

  12. Permanent GPS Station Sulp: Problems and Preliminary Results

    Science.gov (United States)

    Abrikosov, O.; Zablotskyj, F.; Savchuk, S.

    The permanent GPS station SULP is operating starting from September 2001. GPS observations are carrying out by means of the receiver Trimble 4700 and the antenna Zephyr mounted at the fundamental monument of the Astronomical Observatory of the National University "Lviv Polytechnic". Starting from October 2001, daily and hourly observation files are hosted by OLG Data Center. Analysis of these data is performing by WUT and GOP Analysis Centers. Station SULP was included into episodic GPS campaigns GEODUC (1995) and CEGRN (1994 - 1999, 2001). There- fore, besides the traditional task of providing the permanent high-precision GPS ob- servations for supporting the European networks EUREF and CEGRN, it is planned to use SULP station for the following problems. (1) Investigation of recent movements of the Earth's surface in Carpathian area, particularly in the frames of CERGOP project. (2) Studying of local peculiarities of the atmosphere and constructing of correspond- ing mathematical models. (3) Providing of coordinate data for geodetic activities in the Western Ukraine. GPS data analysis for the mentioned problems is performing by means of GAMIT software. The permanent stations, which surround the Carpathian mountain area, are included into the analysis together with 4 active Ukrainian perma- nent GPS stations. First results show the possibility of the geodetic monitoring based on the permanent station SULP.

  13. Foundation of Digital Manufacture——The Improved GPS System

    Institute of Scientific and Technical Information of China (English)

    CUI Changcai; JIANG Xiangqian; LIU Xiaojun; LI Zhu

    2006-01-01

    The geometrical product specifications and verification (GPS) system is an engineering tool for product development and manufacture. The new GPS standard system is necessary, as companies are rapidly moving ahead with new technologies, new manufacturing processes, new materials and visionary products in an environment of international outsourcing. The GPS system takes the complete life cycle of a product from function requirements, design, manufacturing to verification into account. The matrix framework of the new GPS is masterplanned under one main line and two kinds of correlation. The main line is based on specifications concerning the whole production process. And two kinds of correlation are the expanded uncertainties and duality principle-based operators. They are two important tools for manufacture production and there are other concepts and definitions proposed in the new GPS that differ from the traditional geometrical standards. The paper discusses the improved GPS system about its background, characteristics, framework and some important concepts, which will present a clear and impressive standard system for the digital manufacture.

  14. 38 CFR 4.46 - Accurate measurement.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. Operational GPS Imaging System at Multiple Scales for Earth Science and Monitoring of Geohazards

    Science.gov (United States)

    Blewitt, Geoffrey; Hammond, William; Kreemer, Corné

    2016-04-01

    Toward scientific targets that range from slow deep Earth processes to geohazard rapid response, our operational GPS data analysis system produces smooth, yet detailed maps of 3-dimensional land motion with respect to our Earth's center of mass at multiple spatio-temporal scales with various latencies. "GPS Imaging" is implemented operationally as a back-end processor to our GPS data processing facility, which uses JPL's GIPSY OASIS II software to produce positions from 14,000 GPS stations in ITRF every 5 minutes, with coordinate precision that gradually improves as latency increases upward from 1 hour to 2 weeks. Our GPS Imaging system then applies sophisticated signal processing and image filtering techniques to generate images of land motion covering our Earth's continents with high levels of robustness, accuracy, spatial resolution, and temporal resolution. Techniques employed by our GPS Imaging system include: (1) similarity transformation of polyhedron coordinates to ITRF with optional common-mode filtering to enhance local transient signal to noise ratio, (2) a comprehensive database of ~100,000 potential step events based on earthquake catalogs and equipment logs, (3) an automatic, robust, and accurate non-parametric estimator of station velocity that is insensitive to prevalent step discontinuities, outliers, seasonality, and heteroscedasticity; (4) a realistic estimator of velocity error bars based on subsampling statistics; (5) image processing to create a map of land motion that is based on median spatial filtering on the Delauney triangulation, which is effective at despeckling the data while faithfully preserving edge features; (6) a velocity time series estimator to assist identification of transient behavior, such as unloading caused by drought, and (7) a method of integrating InSAR and GPS for fine-scale seamless imaging in ITRF. Our system is being used to address three main scientific focus areas, including (1) deep Earth processes, (2

  16. GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results.

    Science.gov (United States)

    Ware, R.; Rocken, C.; Solheim, F.; Exner, M.; Schreiner, W.; Anthes, R.; Feng, D.; Herman, B.; Gorbunov, M.; Sokolovskiy, S.; Hardy, K.; Kuo, Y.; Zou, X.; Trenberth, K.; Meehan, T.; Melbourne, W.; Businger, S.

    1996-01-01

    Halogen Occultation Experiment was available for comparison. These comparisons show that accurate vertical temperature profiles may be obtained using the GPS limb sounding technique from approximately 40 km to about 5-7 km in altitude where moisture effects are negligible. Temperatures in this region usually agree within 2°C with the independent sources of data. The GPS/MET temperature profiles show vertical resolution of about 1 km and resolve the location and minimum temperature of the tropopause very well. Theoretical temperature accuracy is better than 0.5°C at the tropopause, degrading to about 1°C at 40-km altitude.Above 40 km and below 5 km, these preliminary temperature retrievals show difficulties. In the upper atmosphere, the errors result from initial temperature and pressure assumptions in this region and initial ionospheric refraction assumptions. In the lower troposphere, the errors appear to be associated with multipath effects caused by large gradients in refractivity primarily due to water vapor distribution.

  17. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    Science.gov (United States)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3

  18. GPS Array as a Sensor of Lithosphere, Troposphere and Ionosphere

    Science.gov (United States)

    Heki, K.

    2011-12-01

    The Japanese dense array of GPS receivers (GEONET) started operation in 1993, and is currently composed of ~1200 stations. GPS (or GNSS in general) receivers can be compared to a Swiss army knife: it could be used not only for positioning (a knife) but also for various purposes, e.g. remote sensing of tropospheric water vapor or ionospheric electrons (screw driver, tin opener etc). Dense GPS arrays have been found extremely useful for variety of geophysical studies. In this lecture, I briefly review their historical achievements, recent highlights, and future perspectives. In Japan, first generation GPS stations were implemented in 1993 (the Kanto-Tokai region) and 1994 (nationwide) by GSI, Japan. Shortly after the launch, they successfully caught coseismic crustal movement of several major earthquakes, the 1994 October Shikotan (Mw8.3), the 1994 December Sanriku (Mw7.6), and the 1995 January Kobe (Mw7.0) earthquakes. These earthquakes accelerated the densification of the GPS network, achieving 1000 in the number of stations within the following 2-3 years. In addition to coseismic jumps, important discoveries continued in 1990s, e.g. large-scale afterslip of interplate thrust earthquakes and slow slip events (SSE). Later it was shown that tilt- and strainmeter can better observe short-term SSEs, and InSAR can draw more detailed maps of coseismic crustal movements. Now GPS array is recognized as a good tool to measure crustal movement with high temporal resolution and stability and with moderate sensitivity and spatial resolution. GPS data are also useful to study hydrosphere. Seasonal crustal movements in Japan mainly reflect changes in hydrological loads. Multipath signatures in GPS data also provide useful information on the environment around the antenna, e.g. soil moisture, snow depth and vegetation. I will compare the snow depth record over a winter inferred by analyzing GPS multipath signatures, and observed by a conventional apparatus. GPS can also measure

  19. Doppler lidar sensor for precision navigation in GPS-deprived environment

    Science.gov (United States)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  20. How useful is satellite positioning system (GPS to track gait parameters? A review

    Directory of Open Access Journals (Sweden)

    Schutz Yves

    2005-09-01

    Full Text Available Abstract Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5–20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters – such as walking speed, step length and step frequency – that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness – combined with a usability which requires further improvement – remain obstacles to the full development of the GPS technology in human applications.

  1. How useful is satellite positioning system (GPS) to track gait parameters? A review.

    Science.gov (United States)

    Terrier, Philippe; Schutz, Yves

    2005-09-02

    Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5-20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters--such as walking speed, step length and step frequency--that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness--combined with a usability which requires further improvement--remain obstacles to the full development of the GPS technology in human applications.

  2. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  3. Impact of Swarm GPS receiver updates on POD performance

    Science.gov (United States)

    van den IJssel, Jose; Forte, Biagio; Montenbruck, Oliver

    2016-05-01

    The Swarm satellites are equipped with state-of-the-art Global Positioning System (GPS) receivers, which are used for the precise geolocation of the magnetic and electric field instruments, as well as for the determination of the Earth's gravity field, the total electron content and low-frequency thermospheric neutral densities. The onboard GPS receivers deliver high-quality data with an almost continuous data rate. However, the receivers show a slightly degraded performance when flying over the geomagnetic poles and the geomagnetic equator, due to ionospheric scintillation. Furthermore, with only eight channels available for dual-frequency tracking, the amount of collected GPS tracking data is relatively low compared with various other missions. Therefore, several modifications have been implemented to the Swarm GPS receivers. To optimise the amount of collected GPS data, the GPS antenna elevation mask has slowly been reduced from 10° to 2°. To improve the robustness against ionospheric scintillation, the bandwidths of the GPS receiver tracking loops have been widened. Because these modifications were first implemented on Swarm-C, their impact can be assessed by a comparison with the close flying Swarm-A satellite. This shows that both modifications have a positive impact on the GPS receiver performance. The reduced elevation mask increases the amount of GPS tracking data by more than 3 %, while the updated tracking loops lead to around 1.3 % more observations and a significant reduction in tracking losses due to severe equatorial scintillation. The additional observations at low elevation angles increase the average noise of the carrier phase observations, but nonetheless slightly improve the resulting reduced-dynamic and kinematic orbit accuracy as shown by independent satellite laser ranging (SLR) validation. The more robust tracking loops significantly reduce the large carrier phase observation errors at the geomagnetic poles and along the geomagnetic

  4. Infectious disease management in primary care: perceptions of GPs

    Directory of Open Access Journals (Sweden)

    Röing Marta

    2011-01-01

    Full Text Available Abstract Background It is important to keep the level of antibiotic prescribing low to contain the development of resistant bacteria. This study was conducted to reveal new knowledge about how GPs think in relation to the prescribing of antibiotics - knowledge that could be used in efforts toward rational treatment of infectious diseases in primary care. The aim was to explore and describe the variations in GPs' perceptions of infectious disease management, with special reference to antibiotic prescribing. Methods Twenty GPs working at primary care centres in a county in south-west Sweden were purposively selected based on the strategy of including GPs with different kinds of experience. The GPs were interviewed and perceptions among GPs were analysed by a phenomenographic approach. Results Five qualitatively different perceptions of infectious disease management were identified. They were: (A the GP must help the patient to achieve health and well-being; (B the management must meet the GP's perceived personal, professional and organisational demands; (C restrictive antibiotic prescribing is time-consuming; (D restrictive antibiotic prescribing can protect the effectiveness of antibiotics; and (E patients benefit personally from restrictive antibiotic prescribing. Conclusions Restrictive antibiotic prescribing was considered important in two perceptions, was not an issue as such in two others, and was considered in one perception although the actual prescribing was greatly influenced by the interaction between patient and GP. Accordingly, to encourage restrictive antibiotic prescribing several aspects must be addressed. Furthermore, different GPs need various kinds of support. Infectious disease management in primary care is complex and time-consuming, which must be acknowledged in healthcare organisation and planning.

  5. Status of Precise Orbit Determination for Jason-2 Using GPS

    Science.gov (United States)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Pavlis, D. E.

    2011-01-01

    The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD.

  6. Sequential Quadratic Method for GPS NLOS Positioning in Urban Canyon Envi-ronments

    Directory of Open Access Journals (Sweden)

    He-Sheng Wang

    2013-03-01

    Full Text Available In this paper, the problem of GPS non-line-of-sight (NLOS positioning in urban canyon environment is considered. We propose a new position-determination estimator based on the sequential quadratic programming (SQP that is able to estimate and eliminate the path-delay error caused by the indirect transmission of the GPS signal. The estimator takes into account the measurement bias resulting from NLOS transmission, and in the mean-time also improves the location accuracy of a satellite positioning system. The present method can effectively eliminate the NLOS delay errors and is also able to improve the location accuracy of a satellite navigation receiver in an urban canyon environment. A Wilcoxon-norm-based regressor is further derived to improve the probability of detection of the NLOS biases. The Wilcoxon regressor is a robust estimator that is well suitable for identifying outliers (in our case, the NLOS biases during the regression process. In our experimental results, it is demonstrated that the proposed estimator can compute the coordinate of a user location in an accurate fashion after identifying and removing the measurement biases.

  7. Helicopter terminal approach using differential GPS with vertical-axis enhancement

    Science.gov (United States)

    Edwards, F. G.; Paielli, R. A.; Hegarty, D. M.

    1987-01-01

    The NAVSTAR Global Positioning System (GPS) in differential mode (DGPS) has been shown to be least accurate in the vertical axis. The vertical axis also has the most stringent accuracy requirements for aircraft precision approach and landing. A series of flight tests were conducted to evaluate a concept for improving the DGPS vertical axis navigation performance. These tests incorporated augmentation sensors to aid the DGPS navigation solution during terminal approach operations. A GPS receiver was installed on board a NASA helicopter and interfaced with a real-time digital computer system. A reconfigurable navigation filter programmed in the digital computer provided an augmented DGPS solution, with selectable inputs from a low-cost vertical accelerometer, a barometric altimeter, and the aircraft attitude gyros. The reference aircraft position was determined by a laser tracker. Extensive post-test analysis was done to optimize the filter performance during the terminal approach operation. Test results show that baro-altimeter aiding can significantly improve vertical axis performance. Follow-on tests are planned for the optimized configurations.

  8. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  9. Digital image georeferencing from a multiple camera system by GPS/INS

    Science.gov (United States)

    Mostafa, Mohamed M. R.; Schwarz, Klaus-Peter

    In this paper, the development and testing of an airborne fully digital multi-sensor system for digital mapping data acquisition is presented. The system acquires two streams of data, namely, navigation (georeferencing) data and imaging data. The navigation data are obtained by integrating an accurate strapdown inertial navigation system with a differential GPS system (DGPS). The imaging data are acquired by two low-cost digital cameras, configured in such a way so as to reduce their geometric limitations. The two cameras capture strips of overlapping nadir and oblique images. The GPS/INS-derived trajectory contains the full translational and rotational motion of the carrier aircraft. Thus, image exterior orientation information is extracted from the trajectory, during post-processing. This approach eliminates the need for ground control (GCP) when computing 3D positions of objects that appear in the field of view of the system imaging component. Two approaches for calibrating the system are presented, namely, terrestrial calibration and in-flight calibration. Test flights were conducted over the campus of The University of Calgary. Testing the system showed that best ground point positioning accuracy at 1:12,000 average image scale is 0.2 m (RMS) in easting and northing and 0.3 m (RMS) in height. Preliminary results indicate that major applications of such a system in the future are in the field of digital mapping, at scales of 1:5000 and smaller, and in the generation of digital elevation models for engineering applications.

  10. Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou

    Directory of Open Access Journals (Sweden)

    Tegedor J.

    2014-04-01

    Full Text Available State of the art Precise Point Positioning (PPP is currently based on dual-frequency processing of GPS and Glonass navigation systems. The International GNSS Service (IGS is routinely providing the most accurate orbit and clock products for these constellations, allowing point positioning at centimeter-level accuracy. At the same time, the GNSS landscape is evolving rapidly, with the deployment of new constellations, such as Galileo and BeiDou. The BeiDou constellation currently consists of 14 operational satellites, and the 4 Galileo In-Orbit Validation (IOV satellites are transmitting initial Galileo signals. This paper focuses on the integration of Galileo and BeiDou in PPP, together with GPS and Glonass. Satellite orbits and clocks for all constellations are generated using a network adjustment with observation data collected by the IGS Multi-GNSS Experiment (MGEX, as well as from Fugro proprietary reference station network. The orbit processing strategy is described, and orbit accuracy for Galileo and BeiDou is assessed via orbit overlaps, for different arc lengths. Kinematic post-processed multi-GNSS positioning results are presented. The benefits of multiconstellation PPP are discussed in terms of enhanced availability and positioning accuracy.

  11. IVS Tropospheric Parameters: Comparison with DORIS and GPS for CONT02

    Science.gov (United States)

    Schuh, Harald; Snajdrova, Kristyna; Boehm, Johannes; Willis, Pascal; Engelhardt, Gerald; Lanotte, Roberto; Tomasi, Paolo; Negusini, Monia; MacMillan, Daniel; Vereshchagina, Iraida

    2004-01-01

    In April 2002 the IVS (International VLBI Service for Geodesy and Astrometry) set up the Pilot Project - Tropospheric Parameters, and the Institute of Geodesy and Geophysics (IGG), Vienna, was put in charge of coordinating the project. Seven IVS Analysis Centers have joined the project and regularly submitted their estimates of tropospheric parameters (wet and total zenith delays, horizontal gradients) for all IVS-R1 mid IVS-R4 sessions since January 1st, 2002. The individual submissions are combined by a two-step procedure to obtain stable, robust and highly accurate tropospheric parameter time series with one hour resolution (internal accuracy: 2-4 ram). Starting with July 2003, the combined tropospheric estimates became operational IVS products. In the second half of October 2002 the VLBI campaign CONT02 was observed with 8 stations participating around the globe. At four of them (Gilmore Creek, U.S.A.; Hartebeesthoek, South Africa; Kokee Park, U.S.A.; Ny-Alesund, Norway) also total zenith delays from DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) are available and these estimates are compared with those from the IGS (International GPS Service) and the IVS. The distance from the DORIS beacons to the co-located GPS and VLBI stations is around 2 km or less for the four sites mentioned above.

  12. Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995

    Science.gov (United States)

    Blerman, Gregory S.

    1995-01-01

    Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.

  13. Federated unscented particle filtering algorithm for SINS/CNS/GPS system

    Institute of Scientific and Technical Information of China (English)

    HU Hai-dong; HUANG Xian-lin; LI Ming-ming; SONG Zhuo-yue

    2010-01-01

    To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS)integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF)algorithm was introduced.In this algorithm,the unscented particle filter(UPF)served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases: climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10 6 rad,0.667×10 6 rad,4.25 m)of FUKF to(0.403×10-6 rad,0.251 × 10 6 rad,1.36 m)of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.

  14. The use of civilian-type GPS receivers by the military and their vulnerability to jamming

    Directory of Open Access Journals (Sweden)

    Ludwig Combrinck

    2012-05-01

    Full Text Available We considered the impact of external influences on a GPS receiver and how these influences affect the capabilities of civilian-type GPS receivers. A standard commercial radio frequency signal generator and passive GPS antenna were used to test the sensitivity of GPS to intentional jamming; the possible effects of the terrain on the propagation of the jamming signal were also tested. It was found that the high sensitivity of GPS receivers and the low strength level of GPS satellite signals combine to make GPS receivers very vulnerable to intentional jamming or unintentional radio frequency interference. Terrain undulation was used to shield GPS antennas from the direct line-of-sight of the jamming antenna and this indicated that terrain characteristics can be used to mitigate the effects of jamming. These results illuminate the vulnerability of civilian-type GPS receivers to the possibility and the ease of disablement and establish the foundation for future work.

  15. Distributed pedestrian detection alerts based on data fusion with accurate localization.

    Science.gov (United States)

    García, Fernando; Jiménez, Felipe; Anaya, José Javier; Armingol, José María; Naranjo, José Eugenio; de la Escalera, Arturo

    2013-01-01

    Among Advanced Driver Assistance Systems (ADAS) pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner) and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided. PMID:24008284

  16. Distributed Pedestrian Detection Alerts Based on Data Fusion with Accurate Localization

    Directory of Open Access Journals (Sweden)

    Arturo de la Escalera

    2013-09-01

    Full Text Available Among Advanced Driver Assistance Systems (ADAS pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided.

  17. Distributed Pedestrian Detection Alerts Based on Data Fusion with Accurate Localization

    Science.gov (United States)

    García, Fernando; Jiménez, Felipe; Anaya, José Javier; Armingol, José María; Naranjo, José Eugenio; de la Escalera, Arturo

    2013-01-01

    Among Advanced Driver Assistance Systems (ADAS) pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner) and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided. PMID:24008284

  18. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    Science.gov (United States)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi

  19. Study of magnetic storm effects on the ionosphere using GPS data

    Science.gov (United States)

    Fedrizzi, M.; de Paula, E. R.; Kantor, I. J.; Batista, I. S.; Langley, R. B.; Komjathy, A.

    Despite the fact that much has been learned about Sun-Earth relationship during disturbed conditions, understanding the effects of magnetic storms on the neutral and ionized upper atmosphere is still one of the most challenging topics remaining in the physics of this atmospheric region. In order to investigate the magnetospheric and ionospheric-thermospheric coupling processes, many researchers are taking advantage of the dispersive nature of the ionosphere to compute total electron content (TEC) from Global Positioning System (GPS) dual-frequency data. Even though there are currently a large number of GPS receivers in continuous operation, they are unevenly distributed for ionosphere study purposes, being situated mostly in the Northern Hemisphere. The relatively smaller number of GPS receivers located in the Southern Hemisphere and, consequently, the reduced number of available TEC measurements, cause ionospheric modelling to be less accurate in this region. In this work, the University of New Brunswick (UNB) Ionospheric Modelling Technique, which applies a spatial linear approximation of the vertical TEC above each station using stochastic parameters in a Kalman filter estimation, has been used to describe the local time and geomagnetic latitude dependence of the TEC. Data collected from several GPS networks worldwide, including the Brazilian Network for Continuous Monitoring (RBMC), have been used along with ionosonde measurements to investigate the ionospheric response to a severe magnetic storm occurred on March 31, 2001. Data analysis revealed distinct ionospheric effects, which are shown to be dependent on the season, local time and magnetic conditions previous and during the storm period. During the March 31, 2001 storm, the global ionosphere showed a distinct behaviour over Australian/Asian and American regions, which are located at approximately opposite longitude sectors. The southward turning of the interplanetary magnetic field during the recovery

  20. GPS water level measurements for Indonesia's Tsunami Early Warning System

    Science.gov (United States)

    Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  1. GPS Technology and Human Psychological Research: A Methodological Proposal

    Directory of Open Access Journals (Sweden)

    Pedro S. A. Wolf

    2010-10-01

    Full Text Available Animal behaviorists have made extensive use of GPS technology since 1991. In contrast, psychological research has made little use of the technology, even though the technology is relatively inexpensive, familiar, and widespread. Hence, its potential for pure and applied psychological research remains untapped. We describe three methods psychologists could apply to individual differences research, clinical research, or spatial use research. In the context of individual differences research, GPS technology permits us to test hypotheses predicting specific relations among patterns of spatial use and individual differences variables. In a clinical context, GPS technology provides outcome measures that may relate to the outcome of interventions designed to treat psychological disorders that, for example, may leave a person homebound (e.g. Agoraphobia, PTSD, TBI. Finally, GPS technology provides natural measures of spatial use. We, for example, used GPS technology to quantify traffic flow and exhibit use at the Arizona Sonora Desert Museum. Interested parties could easily extend this methodology some aspects of urban planning or business usage.DOI: 10.2458/azu_jmmss.v1i1.74

  2. Patient complexity and GPs' income under mixed remuneration.

    Science.gov (United States)

    Olsen, K R

    2012-06-01

    Because of problems with recruiting GPs to deprived areas in Denmark, it has been discussed whether the mixed remuneration scheme is flexible enough to compensate GPs serving patients with high need for services. The objective is to assess how patient heterogeneity affects list size, income and total utility of GPs operating under a mixed remuneration scheme. We adapt the model by Iversen (2004) as a theoretical framework for analysing the consequences of patient heterogeneity in a mixed remuneration system. We use a data set of Danish solo practitioners to analyse the effect of patient complexity on list size and income. From the theoretical model we find that higher levels of patient complexity lead GPs to choose a lower list size, whereas the effect on income is ambiguous. The effect on total utility (income and leisure) is, however, shown to be negative. Using empirical data from 1039 solo practices we find that patient complexity reduces both list size and income and conclude that a mixed per capita and fee for service remuneration system does not fully compensate practices with more complex patients. Differentiated per capita payment may represent a means of ensuring fair and equal income of GPs.

  3. Impacts of Stochastic Modeling on GPS-derived ZTD Estimations

    CERN Document Server

    Jin, Shuanggen

    2010-01-01

    GPS-derived ZTD (Zenith Tropospheric Delay) plays a key role in near real-time weather forecasting, especially in improving the precision of Numerical Weather Prediction (NWP) models. The ZTD is usually estimated using the first-order Gauss-Markov process with a fairly large correlation, and under the assumption that all the GPS measurements, carrier phases or pseudo-ranges, have the same accuracy. However, these assumptions are unrealistic. This paper aims to investigate the impact of several stochastic modeling methods on GPS-derived ZTD estimations using Australian IGS data. The results show that the accuracy of GPS-derived ZTD can be improved using a suitable stochastic model for the GPS measurements. The stochastic model using satellite elevation angle-based cosine function is better than other investigated stochastic models. It is noted that, when different stochastic modeling strategies are used, the variations in estimated ZTD can reach as much as 1cm. This improvement of ZTD estimation is certainly c...

  4. Data Analysis of Permanent GPS Sites (RING) in Italy

    Science.gov (United States)

    Serpelloni, E.; Cavaliere, A.; Pietrantonio, G.; Galvani, A.; Esposito, A.; Sepe, V.; Devoti, R.; Riguzzi, F.

    2007-12-01

    The RING (Rete Integrata Nazionale GPS) GPS network is the result of a scientific project started by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in 2004 with the aim of increasing the number of continuous GPS stations (CGPS) in Italy in order to improve the knowledge of the geodynamics and tectonic processes acting in this area which is characterized by a complex set of independent or partially independent crustal blocks, within the slowly converging African and Eurasian plates. At present RING is a dense CGPS network of more than 110 stations covering the Italian area and integrating GPS receivers with broad-band seismometers and accelerometers in real time connection with three acquisition centers. In this work we describe the data analysis strategy of the whole GPS network (consisting of RING sites, other public Italian CGPS and some IGS sites for a total amount of about 300 stations) and some results in terms of position time series and velocities. The processing is performed adopting a distributed session approach, with more than 10 clusters, sharing common stations, each of them consisting of about 40 stations. Daily loosely constrained solutions are routinely produced for each cluster using the Bernese and Gamit softwares and then transformed into the ITRF05 reference frame. In the next months these solutions will be freely available as daily SINEX files on the public RING website http://ring.gm.ingv.it and subsequently other derived geodetic products (full time series, velocity field, etc.) will also be available.

  5. GPS Time Synchronization in School-Network Cosmic Ray Detectors

    CERN Document Server

    Berns, H G; Gran, R; Wilkes, R J; Berns, Hans-Gerd; Burnett, Toby H.; Gran, Richard

    2003-01-01

    The QuarkNet DAQ card for school-network cosmic ray detectors provides a low-cost alternative to using standard particle and nuclear physics fast pulse electronics modules. Individual detector stations, each consisting of 4 scintillation counter modules, front-end electronics, and a GPS receiver, produce a stream of data in form of ASCII text strings in identifiable set of formats for different functions. The card includes a low-cost GPS receiver module, which permits timestamping event triggers to about 50 nanosecond accuracy in UTC between widely separated sites. The technique used for obtaining precise GPS time employs the 1PPS signal, which is not normally available to users of the commercial GPS module. We had the stock model slightly custom-modified to access this signal. The method for deriving time values was adapted from methods developed for the K2K long-baseline neutrino experiment. Performance of the low-cost GPS module used is compared to that of a more expensive unit with known quality.

  6. Ethics support for GPs: what should it look like?

    Science.gov (United States)

    Clark-Grill, Monika

    2016-03-01

    INTRODUCTION Ethics support services for hospital clinicians have become increasingly common globally but not as yet in New Zealand. However, an initiative to change this is gathering momentum. Its slogan 'Clinical ethics is everyone's business' indicates that the aim is to encompass all of health care, not just the hospital sector. General Practitioners (GPs) deal with ethical issues on a daily basis. These issues are often quite different from ethical issues in hospitals. To make future ethics support relevant for primary care, local GPs were interviewed to find out how they might envisage ethics support services that could be useful to them. METHODS A focus group interview with six GPs and semi-structured individual interviews with three GPs were conducted. Questions included how they made decisions on ethical issues at present, what they perceived as obstacles to ethical reflection and decision-making, and what support might be helpful. FINDINGS Three areas of ethics support were considered potentially useful: Formal ethics education during GP training, access to an ethicist for assistance with analysing an ethical issue, and professional guidance with structured ethics conversations in peer groups. CONCLUSION The complex nature of general practice requires GPs to be well educated and supported for handling ethical issues. The findings from this study could serve as input to the development of ethics support services. KEYWORDS General practice; primary care; ethics; support; education.

  7. Ethics support for GPs: what should it look like?

    Science.gov (United States)

    Clark-Grill, Monika

    2016-03-01

    INTRODUCTION Ethics support services for hospital clinicians have become increasingly common globally but not as yet in New Zealand. However, an initiative to change this is gathering momentum. Its slogan 'Clinical ethics is everyone's business' indicates that the aim is to encompass all of health care, not just the hospital sector. General Practitioners (GPs) deal with ethical issues on a daily basis. These issues are often quite different from ethical issues in hospitals. To make future ethics support relevant for primary care, local GPs were interviewed to find out how they might envisage ethics support services that could be useful to them. METHODS A focus group interview with six GPs and semi-structured individual interviews with three GPs were conducted. Questions included how they made decisions on ethical issues at present, what they perceived as obstacles to ethical reflection and decision-making, and what support might be helpful. FINDINGS Three areas of ethics support were considered potentially useful: Formal ethics education during GP training, access to an ethicist for assistance with analysing an ethical issue, and professional guidance with structured ethics conversations in peer groups. CONCLUSION The complex nature of general practice requires GPs to be well educated and supported for handling ethical issues. The findings from this study could serve as input to the development of ethics support services. KEYWORDS General practice; primary care; ethics; support; education. PMID:27477378

  8. GPS/INS Integration: A Performance Sensitivity Analysis

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-ling; H. K. Lee; C. Rizos

    2003-01-01

    Inertial Navigation System (INS) and Global Positioning System (GPS) technologies have been widely used in a variety of positioning and navigation applications. Both systems have their unique features and shortcomings. Therefore, the integration of GPS with INS is now critical to overcome each of their drawbacks and to maximize each of their benefits. The integration of GPS with INS can be implemented using a Kalman filter in such modes as loosely, tightly and ultra-tightly coupled. In all these integration modes the INS error states, together with any navigation state (position, velocity, attitude) and other unknown parameters of interest, are estimated using GPS measurements. In a high performance system it is expected that all these unknown states will be precisely estimated. Although it has been noted that both the quality of the GPS measurements and the trajectory and/or manoeuvre characteristics of the problem will have impacts on system performance, a systematic sensitivity analysis is still lacking. This paper will address this issue through real data analyses. The performance analysisresults are very relevant to system design and platform trajectory and/or manoeuvre optimisation.

  9. Can RTK GPS be Used to Improve Cadastral Infrastructure?

    Directory of Open Access Journals (Sweden)

    Craig Roberts

    2011-01-01

    Full Text Available Cadastral surveying is concerned with the process of gathering evidence in the form of position information that is used to define the location of objects or land boundaries for the purposes of identifying ownership and/or the value of land parcels. The advent of Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, has revolutionised the way 3-dimensional positions are determined and GPS surveying techniques, particularly Real Time Kinematic (RTK, are increasingly being adopted by cadastral surveyors. This paper presents a methodology for using RTK GPS observations to improve the existing cadastral survey control infrastructure, based on an extensive survey carried out in New South Wales, Australia. It is shown that accuracies (RMS of 11 mm in the horizontal and 34 mm in the vertical component (1? can be achieved for this dataset. Calculated bearings and distances agree very well with the official values derived from the state’s survey control database, easily meeting accuracy specifications and survey regulation requirements. 55% of the unestablished marks surveyed were able to be upgraded to cadastral survey control quality. Enhancements in the GPS survey design would have enabled an even higher percentage of marks to be classified as established, showing that the RTK GPS technique is well suited to improving survey control infrastructure for cadastral surveyors.

  10. Faster Acquisition Technique for Software-defined GPS Receivers

    Directory of Open Access Journals (Sweden)

    M. Venu Gopala Rao

    2015-03-01

    Full Text Available Acquisition is a most important process and a challenge task for identifying visible satellites, coarse values of carrier frequency, and code phase of the satellite signals in designing software defined Global positioning system (GPS receiver. This paper presents a new, simple, efficient and faster GPS acquisition via sub-sampled fast Fourier transform (ssFFT. The proposed algorithm exploits the recently developed sparse FFT (or sparse IFFT that computes in sub-linear time. Further it uses the property of fourier transforms (FT: Aliasing a signal in the time domain corresponds to sub-sampling it in the frequency domain, and vice versa. The ssFFT is an FFT algorithm that computes sub-sampled version of the data by an integer factor ‘d’, and hence, the computational complexity is proportionately reduced by a factor of ‘d log d’ compared to conventional FFT-based algorithms for any length of the input GPS signal. The simulation results show that the proposed ssFFT based GPS acquisition computation is 8.5571 times faster than the conventional FFT-based acquisition computation time. The implementation of this method in an FPGA provides very fast processing of incoming GPS samples that satisfies real-time positioning requirements.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.5-11, DOI:http://dx.doi.org/10.14429/dsj.65.5579

  11. ACCURACY ASSESSMENT OF COMBINED GPS/GALILEO SINGLE POINT POSITIONING%GPS/GALILEO组合单点定位精度分析

    Institute of Scientific and Technical Information of China (English)

    罗小敏; 蔡昌盛

    2013-01-01

    建立了GPS/GALILEO组合单点定位的数学模型,在对各项误差改正的基础上,利用全球多卫星导航系统试验网跟踪站的观测数据,对GPS/GALILEO组合单点定位模型进行了试算.结果表明,当GPS观测卫星较充足时,增加1~2颗GALILEO观测卫星并不能有效地提高组合GPS/GALILEO定位的精度,当GPS观测卫星较少时,组合GPS/GALILEO系统相比单GPS系统,定位精度有较明显的改善.%A mathematic model of combined GPS/GALILEO single point positioning (SPP) is developed.On the basis of error corrections,the combined GPS/GALILEO SPP model is tested using the data of the MGEX tracking stations.The results indicate that the accuracy of the GPS/GALILEO SPP is not significantly improved when adding only one or two GALILEO satellites when the GPS observation satellites are sufficient.However,in the condition of insufficient number of GPS satellites,the accuracy of the combined GPS/GALILEO SPP is better than the GPS-onlv SPP.

  12. Use of an Activity Monitor and GPS Device to Assess Community Activity and Participation in Transtibial Amputees

    Directory of Open Access Journals (Sweden)

    Brenton Hordacre

    2014-03-01

    Full Text Available This study characterized measures of community activity and participation of transtibial amputees based on combined data from separate accelerometer and GPS devices. The relationship between community activity and participation and standard clinical measures was assessed. Forty-seven participants were recruited (78% male, mean age 60.5 years. Participants wore the accelerometer and GPS devices for seven consecutive days. Data were linked to assess community activity (community based step counts and community participation (number of community visits. Community activity and participation were compared across amputee K-level groups. Forty-six participants completed the study. On average each participant completed 16,645 (standard deviation (SD 13,274 community steps and 16 (SD 10.9 community visits over seven days. There were differences between K-level groups for measures of community activity (F(2,45 = 9.4, p < 0.001 and participation (F(2,45 = 6.9, p = 0.002 with lower functioning K1/2 amputees demonstrating lower levels of community activity and participation than K3 and K4 amputees. There was no significant difference between K3 and K4 for community activity (p = 0.28 or participation (p = 0.43. This study demonstrated methodology to link accelerometer and GPS data to assess community activity and participation in a group of transtibial amputees. Differences in K-levels do not appear to accurately reflect actual community activity or participation in higher functioning transtibial amputees.

  13. Use of an activity monitor and GPS device to assess community activity and participation in transtibial amputees.

    Science.gov (United States)

    Hordacre, Brenton; Barr, Christopher; Crotty, Maria

    2014-03-25

    This study characterized measures of community activity and participation of transtibial amputees based on combined data from separate accelerometer and GPS devices. The relationship between community activity and participation and standard clinical measures was assessed. Forty-seven participants were recruited (78% male, mean age 60.5 years). Participants wore the accelerometer and GPS devices for seven consecutive days. Data were linked to assess community activity (community based step counts) and community participation (number of community visits). Community activity and participation were compared across amputee K-level groups. Forty-six participants completed the study. On average each participant completed 16,645 (standard deviation (SD) 13,274) community steps and 16 (SD 10.9) community visits over seven days. There were differences between K-level groups for measures of community activity (F(2,45) = 9.4, p amputees demonstrating lower levels of community activity and participation than K3 and K4 amputees. There was no significant difference between K3 and K4 for community activity (p = 0.28) or participation (p = 0.43). This study demonstrated methodology to link accelerometer and GPS data to assess community activity and participation in a group of transtibial amputees. Differences in K-levels do not appear to accurately reflect actual community activity or participation in higher functioning transtibial amputees.

  14. Performance Assessment of GPS-Sensed Precipitable Water Vapor using IGS Ultra-Rapid Orbits: A Preliminary Study in Thailand

    Directory of Open Access Journals (Sweden)

    Yoon-Soo Choi

    2011-01-01

    Full Text Available Precipitable Water Vapor (PWV is a significant variable used for climate change studies. Currently PWV can be derived from the Global Positioning System (GPS observation in addition to the specific instruments such as Radiosondes (RS, Microwave Radiometers (MWR and Meteorological Satellites. To accurately derive PWV from GPS data, long periods of observation time in conjunction with final orbit data have to be applied in the data processing steps. This final orbit data can be acquired from the International GNSS Service (IGS with 13 days latency, which is not practical in climate change studies or meteorological forecasting. Alternatively, real-time ultra-rapid orbits are more suitable for this application but with lower orbit accuracy. It is therefore interesting to evaluate the impact of using different orbits in the estimation of PWV. In this study, data from permanent GPS base stations in Thailand were processed using Bernese 5.0 software to derive near real-time PWV values. Ultra-rapid orbit data have been introduced in the data processing step with different time windows and compared to that using final orbit data with the 24-hr time window. The results have shown that 1.0 mm and 2.9 mm biases can be achieved using 24-hr and 12-hr time windows, respectively. These results therefore address the potential use of ultra-rapid orbits for a near real-time estimation of PWV.

  15. GPS Zenith Total Delays and Precipitable Water in comparison with special meteorological observations in Verona (Italyduring MAP-SOP

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2002-06-01

    Full Text Available Continuous meteorological examination of the Pre-Alpine zones in Northern Italy (Po Valleyis important for determination of atmospheric water cycles connected with floods and rainfalls.During a special meteorological observing period (MAP-SOP,radiosounding and other measurements were made in the site of Verona (Italy. This paper deals with Zenith Total Delay (ZTDand Precipitable Water (PWcomparisons obtained by GPS, radiosounding and other meteorological measurements.PW and ZTD from ground-based GPS data in comparisonwith classical techniques (e.g.,WVR,radiosoundingfrom recent literature present an accurate tool for use in meteorology applications (e.g.,assimilation in Numerical Weather Prediction (NWPmodels on short-range precipitation forecasts.Comparison of such ZTD for MAP-SOP showed a standard deviation of 16.1 mm and PW comparison showed a standard deviation of 2.7 mm,confirming the accuracy of GPS measurements for meteorology applications.In addition,PW data and its time variation are also matched with time series of meteorological situations.Those results indicate that changes in PW values could be connected to changes in air masses,i.e.to passages of both cold and warm fronts.There is also a correlation between precipitation, forthcoming increase and the following decrease of PW.A good agreement between oscillation of PW and precipitation and strong cyclonic activities is found.

  16. Thule to Summit: Accumulation variability, surface elevation, and satellite altimeter validation from ground-penetrating radar and GPS profiles

    Science.gov (United States)

    Overly, T. B.; Wong, G. J.; Courville, Z.; Hawley, R. L.; Lutz, E.; Osterberg, E. C.

    2011-12-01

    The spatial variability of accumulation rates, elevation, and near-surface firn physical properties on the Greenland Ice Sheet (GIS) are of interest in the context of mass balance studies, remote sensing studies, and climate studies. In the springs of 2010 and 2011, we traversed from Thule Air Base to Summit Station on the GIS. Along the traverse route, we collected continuous Ground-penetrating radar data with a 400 MHz commercial (GSSI) instrument, and continuous kinematic geodetic-quality GPS data. Here, we present these data and preliminary analysis. In the GPR data, continuous reflection horizons persist along the entire traverse path through the dry-snow zone. We calculate near-surface radar velocity from snowpit and shallow core density measurements collected along the traverse route. Our 400 MHz radar data yields accumulation rates along the traverse route to a depth of 60 meters. The continuous geodetic-quality GPS data provides the most accurate representation of surface elevation along our traverse route. We compare our GPS elevation data with surface elevations from remote-sensing platforms such as ESA's CryoSat-2 and the altimeters aboard the NASA Operation IceBridge aircraft.

  17. Comparisons of GPS Troposphere Parameters Estimated at Rates from 1 to 1800 Seconds and Implications for Meteorological Applications

    Science.gov (United States)

    Moore, A. W.; Geng, J.; Haase, J. S.; Bock, Y.; Gutman, S. I.; Laber, J. L.; Small, I. J.; Kedar, S.

    2014-12-01

    Half-hourly estimates of precipitable water (PW) from ground-based GPS have been ingested by operational weather models in the U.S., demonstrably leading to more accurate forecasts, for a number of years. Ongoing upgrades to communications infrastructure in the western U.S. have enabled many GPS stations to stream data in real time at rates up to 1 Hz. At a number of these real-time sites in southern California, we have deployed prototype Geodetic Modules that can perform onsite Precise Point Positioning with Ambiguity Resolution (PPP-AR) position and troposphere delay solutions and stream the results at up to 1Hz for earthquake early warning (EEW) and weather hazard applications. This approach enables the next phase of development that includes a software upgrade to calculate the GPS PW at the site to eliminate the single point of failure when performing the processing at a central processing location. This also enables delivery of the processed results to various remote and local users in a continuous stream with no delay. We compare the 1 second troposphere delay estimates with 5 minute and 30 minute estimates to assure consistency with previous results. In addition to the benefits of zero latency communication for weather forecasting, the approach may yield a deployable real-time PW device that could be beneficial as a source of real-time PW in field studies.

  18. SAR Inteferometry and GPS Surveying for Subsidence Monitoring and its Contribution to Risk Management, the Case Study of Aguascalientes, Mexico

    Science.gov (United States)

    Esquivel, R.; Castaneda, L. P.

    2013-05-01

    Aguascalientes valley is just one of many regions affected by ground subsidence in Mexico, results of GPS monitoring from 2003 to date and differential SAR interferometry using Envisat archived data show subsidence maximums of 15 centimeters but with a decreasing rate with time. Recent implementation of TerraSAR-X stripmap mode images allowed a more accurate estimation of displacements, which are being used for subsidence mapping and to develop models for corrections to geodetic positions. In addition, results of the study are also being used to the development of the State's atlas of hazards and will contribute by detecting new ground failures and areas susceptible to failure.

  19. A New GPS-based Digital Protection System for Smart Grids in Loop Structure

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-12-01

    Full Text Available This paper presents a new digital protection system to solve the protection challenges in future smart grids, i.e., fast protection and fault isolation in a loop-structured system with limited magnitude of fault current. The new system combines two protection algorithms, i.e., a differential protection as the primary algorithm and an overcurrent protection as the backup one. The new system uses real-time Ethernet and digital data acquisition techniques to overcome the restriction on data transmission over large grids. The current measurements at different locations are time-synchronized by GPS clocks, and then transmitted to a central computer via the Ethernet. As opposed to digital relays which often contain PMU functionality nowadays, this approach uses time stamps on the instantaneous current values. We build a prototype of the new system on a test-bed. The results from simulations and experiments have demonstrated that the protection system achieves fast and accurate protection.

  20. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    Science.gov (United States)

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  1. Pembuatan Digital Elevation Model Resolusi 10m dari Peta RBI dan Survei GPS dengan Algoritma Anudem

    Directory of Open Access Journals (Sweden)

    Indarto

    2014-04-01

    Full Text Available This study proposes the generation of Digital Elevation Model (DEM with spatial resolution of 10m x 10m by re-interpolation of elevation data. Data input for this study includes: (1 digitized datum coordinate from RBI map, (2 sample points surveyed by GPS, (3 digitized contour data fromSRTM DEM and ASTER GDEM2, and (4 digitized stream-network layer from RBI. All collected data were converted to mass point coordinats. On the top of Topogrid-ArcGIS, all points data were interpolated to produce DEM. After that the produced DEM were compared and evaluated to the SRTM and ASTER DEMvisually. The result shows that produced DEM are more accurate to represent the detailed topography of the study areas.

  2. Present-day shortening in Southern Haiti from GPS measurements and implications for seismic hazard

    Science.gov (United States)

    Symithe, Steeve; Calais, Eric

    2016-06-01

    The ~ 3 M inhabitant capital region of Haiti, severely affected by the devastating January 12, 2010, M7.0 earthquake, continues to expand at a fast rate. Accurate characterization of regional earthquake sources is key to inform urban development and construction practices through improved regional seismic hazard estimates. Here we use a recently updated Global Positioning System (GPS) data set to show that seismogenic strain accumulation in southern Haiti involves an overlooked component of shortening on a south-dipping reverse fault along the southern edge of the Cul-de-Sac basin, in addition to the well-known component of left-lateral strike-slip motion. This tectonic model implies that ground shaking may be twice that expected if the major fault was purely strike-slip, as assumed in the current seismic hazard map for the region.

  3. RELIABILITY AND ACCURACY OF 10 HZ GPS DEVICES FOR SHORT-DISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Julen Castellano

    2011-03-01

    Full Text Available The use of GPS technology for training and research purposes requires a study of the reliability, validity and accuracy of the data generated (Petersen et al., 2009. To date, studies have focused on devices with a logging rate of 1 Hz and 5 Hz (Coutts and Duffield, 2010; Duffield et al., 2010; Jennings et al., 2010; MacLeod et al., 2009; Petersen et al., 2009; Portas et al., 2010, although it seems that more frequent sampling can increase the accuracy of the information provided by these devices (Jennings et al., 2010; MacLeod et al., 2009, Portas et al., 2010. However, we are unaware of any study of the reliability and accuracy of GPS devices using a sampling frequency of 10 Hz. Thus, the aim of the present research was to determine the reliability and accuracy of GPS devices operating at a sampling frequency of 10 Hz, in relation here to sprints of 15 m and 30 m and using both video and photoelectric cells.Nine trained male athletes participated in the study. Each participant completed 7 and 6 linear runs of 15 m and 30 m, respectively (n = 117, with only one GPS device being used per participant. Each repetition required them to complete the route as quickly as possible, with 1 min recovery between sets. Distance was monitored through the use of GPS devices (MinimaxX v4.0, Catapult Innovations, Melbourne, Australia operating at the above mentioned sampling frequency of 10 Hz. In addition, all tests were filmed with a video camera operating at a sampling frequency of 25 frames. Data were collected during what were considered to be good GPS conditions in terms of the weather and satellite conditions (number of satellites = 10.0 ± 0.2 and 10.3 ± 0.4 for sprints of 15 m and 30 m, respectively.Distance was measured using a tape measure. Electronic timing gates (TAG- Heuer, CP 520 Training model, Switzerland were used to obtain a criterion sprint time accurate to 0.01 s, with gates being placed at the beginning and end of the route (Petersen et

  4. Efectos relativistas en los sistemas Galileo, GPS y GLONASS

    CERN Document Server

    Pascual-Sánchez, J F

    2004-01-01

    Nowadays, the Global Navigation Satellite Systems (GNSS), working like global positioning systems, are the GPS (NAVSTAR) and the GLONASS, which only are operative when several relativistic effects are corrected. In the next years the Galileo system will be constructed, copying the GPS System if there is no an alternative project. In this work, it will be exposed that there is one alternative to the mere copy by means of the SYPOR project, using relativistic concepts, and without utilize the Newtonian ideas that are in the basic conception, so much of the GPS as of the GLONASS. According to the SYPOR project, the Galileo system would be exact, with no need of corrections, and it would have additional technological advantages.

  5. Using the GPS SNR Technique to Detect Volcanic Plumes

    Science.gov (United States)

    Naik, S. R.; Mattia, M.; Larson, K. M.; Rossi, M.; Bruno, V.; Coltelli, M.; Ohta, Y.; Schneider, D. J.

    2015-12-01

    Detection of volcanic plumes, especially ash-laden ones, is important both for public health and aircraft safety. A variety of geophysical tools and satellite data are used to monitor volcanic eruptions and to predict the movement of ash. However, satellite-based methods are restricted by time of day and weather, while radars are often unavailable because of cost/ portability. GPS instruments are frequently deployed near volcanos, but typically they have only been used to measure deformation. Here a method is proposed to detect volcanic plumes using GPS signal to noise ratio (SNR) data. The strengths and limitations of the method are assessed using GPS data collected during eruptions at Mt. Redoubt (2009) and Mt. Etna (2013). Plume detections are compared with independently collected seismic and radar data.

  6. Investigation of GPS/IMU Positioning System for Mining Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ken L. Stratton

    2006-09-13

    The objective of this project is to investigate the applicability of a combined Global Positioning System and Inertial Measurement Unit (GPS/IMU) for information based displays on earthmoving machines and for automated earthmoving machines in the future. This technology has the potential of allowing an information-based product like Caterpillar's Computer Aided Earthmoving System (CAES) to operate in areas with satellite shading. Satellite shading is an issue in open pit mining because machines are routinely required to operate close to high walls, which reduces significantly the amount of the visible sky to the GPS antenna mounted on the machine. An inertial measurement unit is a product, which provides data for the calculation of position based on sensing accelerations and rotation rates of the machine's rigid body. When this information is coupled with GPS it results in a positioning system that can maintain positioning capability during time periods of shading.

  7. 3 dimensional ionospheric electron density reconstruction based on GPS measurements

    Science.gov (United States)

    Stolle, C.; Schlüter, S.; Jacobi, C.; Jakowski, N.

    When radio waves as sended by the naviagtion system GPS are passing through the ionosphere they are subject to delays in phase, travel time and polarisation which is an effect of the free electrons. The measured integrated value of Total Electron Content can be utilised for three-dimensional reconstruction of electron density patterns in the ionosphere. Here a tomographic approach is represented. Scince the distribution of data is very sparse and patchy we decided for an algebraic iterative algorithm. The ground based GPS data collected by IGS receivers can be combined by space based GPS of radio limb sounding, incoherent scatter radar and ionosondes data. Hereby, radio occultation data improve beside the amount of available data especially the vertical resolution of electron density distribution. Ionosonde peack electron densities are taken as stop criteria determination for iteration. Reconstructed ionospheric scenarios and validations of the system by independent measurements are presented.

  8. Mw 8.5 BENGKULU EARTHQUAKES FROM CONTINUOUS GPS DATA

    Directory of Open Access Journals (Sweden)

    W. A. W. Aris

    2016-09-01

    Full Text Available The Mw 8.5 Bengkulu earthquake of 30 September 2007 and the Mw8.6 28 March 2005 are considered amongst large earthquake ever recorded in Southeast Asia. The impact into tectonic deformation was recorded by a network of Global Positioning System (GPS Continuously Operating Reference Station (CORS within southern of Sumatra and west-coast of Peninsular Malaysia. The GPS data from the GPS CORS network has been deployed to investigate the characteristic of postseismic deformation due to the earthquakes. Analytical logarithmic and exponential function was applied to investigate the deformation decay period of postseismic deformation. This investigation provides a preliminary insight into postseismic cycle along the Sumatra subduction zone in particular and on the dynamics Peninsular Malaysia in general.

  9. GPS-based tracking system for TOPEX orbit determination

    Science.gov (United States)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  10. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  11. Voice and GPS Based Navigation System For Visually Impaired

    Directory of Open Access Journals (Sweden)

    Harsha Gawari

    2014-04-01

    Full Text Available The paper represents the architecture and implementation of a system that will help to navigate the visually impaired people. The system designed uses GPS and voice recognition along with obstacle avoidance for the purpose of guiding visually impaired. The visually impaired person issues the command and receives the direction response using audio signals. The latitude and longitude values are received continuously from the GPS receiver. The directions are given to the user with the help of audio signals. An obstacle detector is used to help the user to avoid obstacles by sending an audio message.GPS receivers use NMEA standard. With the advancement in voice recognition it becomes easier to issue commands regarding directions to the visually impaired.

  12. Sensing and Classifying Impairments of GPS Reception on Mobile Devices

    DEFF Research Database (Denmark)

    Blunck, Henrik; Kjærgaard, Mikkel Baun; Toftegaard, Thomas Skjødeberg

    2011-01-01

    degradation on modern smart phones for different hand grip styles and body placements can cause signal strength drops as high as 10-16 dB and double the positioning error. Furthermore, existing phone applications designed to help users identify sources of GPS performance impairment are restricted to show raw...... that the proposed autonomous method can identify and differentiate such sources, and thus also user environments and phone postures, with reasonable accuracy, while relying solely on GPS receiver data as it is available on most modern smart phones....... signal statistics. To help both users as well as application systems in understanding and mitigating body and environment-induced effects, we propose a method for sensing the current sources of GPS reception impairment in terms of body, urban and indoor conditions. We present results that show...

  13. Fast and Accurate Practical Positioning Method using Enhanced-Lateration Technique and Adaptive Propagation Model in GSM Mode

    Directory of Open Access Journals (Sweden)

    Mohamed H. Abdel Meniem

    2012-03-01

    Full Text Available In this paper, we consider problem of positioning of mobile phones, different approaches were produced for these targets using GPS, WiFi, GSM, UMTS and other sensors, which exist in today smart phone sensors. Location awareness in gen-eral is emerging a tremendous interest in different fields and scopes. Position is the key element of context awareness. How-ever GPS produces an accurate position, it requires open sky and does not work indoors. We produce an innovative robust tech-nique for positioning which could be applied on terminal-based or network-based architecture. It depends only on Received Sig-nal Strength (RSS and location of Base Transceiver Station (BTS. This work has been completely tested and analyzed in Egypt1 roads using realistic data and commercial android smart phone. In general, all performance evaluation results were good. Mean positioning error was about 120 m in urban and 394 m in rural.

  14. Precise levelling of the Olkiluoto GPS Network in 2005

    International Nuclear Information System (INIS)

    The GPS observation network of Olkiluoto was constructed in 1994 for monitoring crustal deformations at the investigation area. To fulfil a better vertical control of the GPS network, precise levellings were started at the area in autumn 2003. The levelling network consisted of the reserve mark pairs of eight GPS pillars and five levelling bench marks two of which constituted the nodal bench mark pair. The second precise levelling campaign on the area was carried out in autumn 2005. The same points as in autumn 2003 were levelled except one destroyed bench mark. In addition, one bench mark, one reserve mark pair and nine antenna platforms on the top of the GPS pillars were levelled. In total 32 points were levelled in 2005, of which eight reserve mark pairs, two bench marks and the nodal bench mark pair were common for both campaigns. Compared to the other points, the elevation difference of two reserve mark pairs had changed significantly during two years, about one millimetre. The reason may be the blasting of the rock in the neighbourhood of these points and deformation of the rock after the blasting. New precise levelling campaigns can shed more light on these movements. The next one will be carried out in autumn 2007. To monitor the possible vertical movement of whole Olkiluoto island, the GPS network was connected to the Finnish precise levelling net at Lapijoki in 2003. In the future this connection will be levelled every fourth year and the levelling of the GPS network will be carried out every second year. (orig.)

  15. Velocity Field Derived from Taiwan Continuous GPS Array (2007 - 2013

    Directory of Open Access Journals (Sweden)

    Min-Chien Tsai

    2015-01-01

    Full Text Available Data were collected from 281 Taiwan continuous Global Positioning System (cGPS Array sites from 2007 - 2013 and processed with GAMIT/GLOBK software. Power spectral density stacking from cGPS position time series in Taiwan found the spectral index as -0.72, -0.77, and -0.57 for the E, N, U components, respectively. This indicates the cGPS data errors can be described as a combination of white noise and flicker noise. The common-mode errors are removed by stacking data from 50 cGPS sites with data periods greater than 5 years. By removing the common-mode errors the GPS data precision is further improved to 2.3, 1.9, and 6.9 mm in the E, N, U components, respectively. After strict data quality control, time series analysis and noise analysis, we derive a new Taiwan velocity field using cGPS data from 2007 - 2013. The general pattern of the newly derived 2007 - 2013 velocity field is quite similar to that from previous studies, but the station density is much larger and spatial coverage better. About 80 mm yr-1 plate convergence rate is observed, half of the rate is accommodated on the fold and thrust belt of western Taiwan and another half is taken up in the Longitudinal Valley and Coastal Range in eastern Taiwan. The velocities in western Taiwan generally show a fan-shaped pattern, consistent with the maximum compression tectonic stress direction. In northern Taiwan the velocity vectors reveal clockwise rotation, indicating the on-going extensional deformation related to the back-arc extension of the Okinawa Trough. In southern Taiwan, the horizontal velocity increases from about 40 mm yr-1 in the Chia-Nan area to 55 mm yr-1 in the Kao-Ping area with a counterclockwise rotation.

  16. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  17. Vehicle teleoperation using 3D maps and GPS time synchronization.

    Science.gov (United States)

    Suzuki, Taro; Amano, Yoshiharu; Hashizume, Takumi; Kubo, Nobuaki

    2013-01-01

    In conventional vehicle teleoperation systems, using low-bandwidth, high-delay transmission links causes a serious problem for remote control of the vehicles. To solve this problem, a proposed teleoperation system employs 3D maps and GPS time synchronization. Two GPS receivers measure the transmission delay, which the system uses to estimate the vehicle's location and orientation. Field experiments show that the 3D-map-based interface lets users easily comprehend the remote environment while navigating a vehicle. The experiments also show that taking communication delays into account improves maneuverability. PMID:24808084

  18. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  19. Trimble IS Il rilievo integrato tra Total Station e GPS

    Directory of Open Access Journals (Sweden)

    Redazione Redazione

    2005-10-01

    Full Text Available Le tecniche di Rilievo Integrato sono state introdotte per la prima volta da Trimble nel 1998 con il controller GeodatWin. GeodatWin è stato il primo controller a permettere la connessione ed il controllo sia per i ricevitori GPS che per gli strumenti topografici convenzionali. I dati registrati da ciascun dispositivo venivano memorizzati e gestiti in un unico file di lavoro, consentendo così la misura dei punti indifferentementesia con apparati GPS che con strumenti convenzionali.

  20. The Aalborg Survey / Part 2 - GPS Based Survey

    DEFF Research Database (Denmark)

    Harder, Henrik; Reiter, Ida Maria; Christensen, Cecilie Breinholm;

    ) and the research focus within the cluster of Mobility and Tracking Technologies (MoTT), AAU. Summary / Part 2 - GPS Based Survey The 2nd part of the DUS research project has been carried out during the months May-September 2008 and May 2009 as a quantitative GPS based activity survey of approximately 400, later...... data with data on the single respondent’s gender, age, address, activities, mode of transport, use of money etc. it is possible to gain a more detailed knowledge of young people’s use of urban spaces in Aalborg....