WorldWideScience

Sample records for accurate frequency dependent

  1. Frequency-dependent heat capacity

    DEFF Research Database (Denmark)

    Behrens, Claus Flensted

    The frequency–dependent heat capacity of super-cooled glycerol near the glass transition is measured using the 3w detection technique. An electrical conducting thin film with a temperature–dependent electrical resistance is deposited on a substrate. The thin film is used simultaneously as a heater...

  2. Accurate modeling of high frequency microelectromechanical systems (MEMS switches in time- and frequency-domainc

    Directory of Open Access Journals (Sweden)

    F. Coccetti

    2003-01-01

    Full Text Available In this contribution we present an accurate investigation of three different techniques for the modeling of complex planar circuits. The em analysis is performed by means of different electromagnetic full-wave solvers in the timedomain and in the frequency-domain. The first one is the Transmission Line Matrix (TLM method. In the second one the TLM method is combined with the Integral Equation (IE method. The latter is based on the Generalized Transverse Resonance Diffraction (GTRD. In order to test the methods we model different structures and compare the calculated Sparameters to measured results, with good agreement.

  3. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    Science.gov (United States)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  4. The KFM, A Homemade Yet Accurate and Dependable Fallout Meter

    Energy Technology Data Exchange (ETDEWEB)

    Kearny, C.H.

    2001-11-20

    The KFM is a homemade fallout meter that can be made using only materials, tools, and skills found in millions of American homes. It is an accurate and dependable electroscope-capacitor. The KFM, in conjunction with its attached table and a watch, is designed for use as a rate meter. Its attached table relates observed differences in the separations of its two leaves (before and after exposures at the listed time intervals) to the dose rates during exposures of these time intervals. In this manner dose rates from 30 mR/hr up to 43 R/hr can be determined with an accuracy of {+-}25%. A KFM can be charged with any one of the three expedient electrostatic charging devices described. Due to the use of anhydrite (made by heating gypsum from wallboard) inside a KFM and the expedient ''dry-bucket'' in which it can be charged when the air is very humid, this instrument always can be charged and used to obtain accurate measurements of gamma radiation no matter how high the relative humidity. The heart of this report is the step-by-step illustrated instructions for making and using a KFM. These instructions have been improved after each successive field test. The majority of the untrained test families, adequately motivated by cash bonuses offered for success and guided only by these written instructions, have succeeded in making and using a KFM. NOTE: ''The KFM, A Homemade Yet Accurate and Dependable Fallout Meter'', was published by Oak Ridge National Laboratory report in1979. Some of the materials originally suggested for suspending the leaves of the Kearny Fallout Meter (KFM) are no longer available. Because of changes in the manufacturing process, other materials (e.g., sewing thread, unwaxed dental floss) may not have the insulating capability to work properly. Oak Ridge National Laboratory has not tested any of the suggestions provided in the preface of the report, but they have been used by other groups. When using these

  5. Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Olesen, Anders Sig; Rottwitt, Karsten

    2011-01-01

    with constant peak power and no significant growth of noise. The numerical simulation is based on careful measurements of the physical properties of the individual components and a well established Raman amplifier model. Very good agreement between the measured and the simulated data is found. (C) 2011 Optical......A lightwave synthesized frequency sweeper using a Raman amplifier for loss compensation is presented together with a numerical model capable of predicting the shape of individual pulses as well as the overall envelope of more than 100 pulses. The generated pulse envelope consists of 116 pulses...

  6. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    Science.gov (United States)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  7. Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Gimeno, E; Mendez, D I; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2008-06-15

    A modified generalized, rational harmonic balance method is used to construct approximate frequency-amplitude relations for a conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable. The procedure is used to solve the nonlinear differential equation approximately. The approximate frequency obtained using this procedure is more accurate than those obtained using other approximate methods and the discrepancy between the approximate frequency and the exact one is lower than 0.40%.

  8. Frequency dependent changes in NMDAR-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-09-01

    Full Text Available The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or LTD depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ~5-15Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike-timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process.

  9. Incorporating spatial dependence in regional frequency analysis

    Science.gov (United States)

    Wang, Zhuo; Yan, Jun; Zhang, Xuebin

    2014-12-01

    The efficiency of regional frequency analysis (RFA) is undermined by intersite dependence, which is usually ignored in parameter estimation. We propose a spatial index flood model where marginal generalized extreme value distributions are joined by an extreme-value copula characterized by a max-stable process for the spatial dependence. The parameters are estimated with a pairwise likelihood constructed from bivariate marginal generalized extreme value distributions. The estimators of model parameters and return levels can be more efficient than those from the traditional index flood model when the max-stable process fits the intersite dependence well. Through simulation, we compared the pairwise likelihood method with an L-moment method and an independence likelihood method under various spatial dependence models and dependence levels. The pairwise likelihood method was found to be the most efficient in mean squared error if the dependence model was correctly specified. When the dependence model was misspecified within the max-stable models, the pairwise likelihood method was still competitive relative to the other two methods. When the dependence model was not a max-stable model, the pairwise likelihood method led to serious bias in estimating the shape parameter and return levels, especially when the dependence was strong. In an illustration with annual maximum precipitation data from Switzerland, the pairwise likelihood method yielded remarkable reduction in the standard errors of return level estimates in comparison to the L-moment method.

  10. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  11. Anomalous frequency dependent diamagnetism in metal silicide

    Science.gov (United States)

    Dahal, Ashutosh; Gunasekera, Jagat; Harriger, Leland; Singh, David J.; Singh, Deepak K.; Leland Harriger Collaboration

    Discovery of superconductivity in PbO-type FeSe has generated a lot of interest. Among the samples we synthesize with similar structure, NiSi has showed anomalous but very interesting results. Nickel silicides are important electronic materials that have been used as contacts for field effect transistors, as interconnects and in nanoelectronic devices. The magnetic properties of NiSi are not well known, however. In this presentation, we report a highly unusual magnetic phenomenon in NiSi. The ac susceptibility measurements on NiSi reveal strong frequency dependence of static and dynamic susceptibilities that are primarily diamagnetic at room temperature. The static susceptibility is found to exhibit a strong frequency dependence of the diamagnetic response below 100K, while dynamic susceptibility showed peak type feature at 10KHz frequency around 50K. Detailed neutron scattering measurements on high quality powder sample of NiSi on SPINS cold spectrometer further revealed an inelastic peak around 1.5meV, even though no magnetic order is detected. The inelastic peak dissipates above 100K, which is where the static susceptibility starts to diverge with frequency. Research is supported by U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0014461.

  12. Frequency dependent thermal expansion in binary viscoelasticcomposites

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  13. A Verilog-A Based Fractional Frequency Synthesizer Model for Fast and Accurate Noise Assessment

    Directory of Open Access Journals (Sweden)

    V. R. Gonzalez-Diaz

    2016-04-01

    Full Text Available This paper presents a new strategy to simulate fractional frequency synthesizer behavioral models with better performance and reduced simulation time. The models are described in Verilog-A with accurate phase noise predictions and they are based on a time jitter to power spectral density transformation of the principal noise sources in a synthesizer. The results of a fractional frequency synthesizer simulation is compared with state of the art Verilog-A descriptions showing a reduction of nearly 20 times. In addition, experimental results of a fractional frequency synthesizer are compared to the simulation results to validate the proposed model.

  14. Quantitative interpretation of the magnetic susceptibility frequency dependence

    Science.gov (United States)

    Ustra, Andrea; Mendonça, Carlos A.; Leite, Arua; Jovane, Luigi; Trindade, Ricardo I. F.

    2018-01-01

    Low-field mass-specific magnetic susceptibility (MS) measurements using multi-frequency alternating fields are commonly used to evaluate concentration of ferrimagnetic particles in the transition of superparamagnetic (SP) to stable single domain (SSD). In classical paleomagnetic analyses this measurement serves as a preliminary assessment of rock samples providing rapid, non-destructive, economical and easy information of magnetic properties. The SP-SSD transition is relevant in environmental studies because it has been associated to several geological and biogeochemical processes affecting magnetic mineralogy. MS is a complex function of mineral type and grain-size distribution, as well as measuring parameters such as external field magnitude and frequency. In this work we propose a new technique to obtain quantitative information on grain-size variations of magnetic particles in the SP-SSD transition by inverting frequency dependent susceptibility (FDS). We introduce a descriptive parameter named as `limiting frequency effect' (LFE) that provides an accurate estimation of MS loss with frequency. Numerical simulations show the methodology capability in providing data fitting and model parameters in many practical situations. Real data applications with magnetite nano-particles and core samples from sediments of Poggio le Guaine section of Umbria-Marche Basin (Italy) provides additional information not clearly recognized when interpreting cruder MS data. Caution is needed when interpreting frequency dependence in terms of single relaxation processes, which are not universally applicable and depend upon the nature of magnetic mineral in the material. Nevertheless the proposed technique is a promising tool for SP-SSD content analyses.

  15. Joint Frequency Ambiguity Resolution and Accurate Timing Estimation in OFDM Systems with Multipath Fading

    Directory of Open Access Journals (Sweden)

    Ouyang Shan

    2006-01-01

    Full Text Available A serious disadvantage of orthogonal frequency-division multiplexing (OFDM is its sensitivity to carrier frequency offset (CFO and timing offset (TO. For many low-complexity algorithms, the estimation ambiguity exists when the CFO is greater than one or two subcarrier spacing, and the estimated TO is also prone to exceeding the ISI-free interval within the cyclic prefix (CP. This paper presents a method for joint CFO ambiguity resolution and accurate TO estimation in multipath fading. Maximum-likelihood (ML principle is employed and only one pilot symbol is needed. Frequency ambiguity is resolved and accurate TO can be obtained simultaneously by using the fast Fourier transform (FFT and one-dimensional (1D search. Both known and unknown channel order cases are considered. Computer simulations show that the proposed algorithm outperforms some others in the multipath fading channels.

  16. High-precision, accurate optical frequency reference using a Fabry-Perót diode laser

    Science.gov (United States)

    Chang, Hongrok; Myneni, Krishna; Smith, David D.; Liaghati-Mobarhan, Hassan R.

    2017-06-01

    We show that the optical output of a temperature and current-tuned Fabry-Perót diode laser system, with no external optical feedback and in which the frequency is locked to Doppler-free hyperfine resonances of the 87Rb D2 line, can achieve high frequency stability and accuracy. Experimental results are presented for the spectral linewidth, frequency stability, and frequency accuracy of the source. Although our optical source is limited by a short-term spectral linewidth greater than 2 MHz, beat signal measurements from two such sources demonstrate a frequency stability of 1.1 kHz, or minimum Allan deviation of 4 ×1 0-12, at an integration time τ =15 s and with a frequency accuracy of 60 kHz at τ =300 s. We demonstrate the use of the optical source for the precision measurement of hyperfine level frequency spacings in the 5 P3 /2 excited state of 87Rb and provide an accurate frequency scale for optical spectroscopy.

  17. Accurate Estimation of Low Fundamental Frequencies from Real-Valued Measurements

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2013-01-01

    In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason for this is that the......In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason...... for this is that they employ asymptotic approximations that are violated when the harmonics are not well-separated in frequency, something that happens when the observed signal is real-valued and the fundamental frequency is low. To mitigate this, we analyze the problem and present some exact fundamental frequency estimators...... that are aimed at solving this problem. These esti- mators are based on the principles of nonlinear least-squares, harmonic fitting, optimal filtering, subspace orthogonality, and shift-invariance, and they all reduce to already published methods for a high number of observations. In experiments, the methods...

  18. An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors

    Science.gov (United States)

    Shen, Yanfei; Cui, Jie; Mohammadi, Saeed

    2017-05-01

    A nonlinear and scalable model suitable for predicting high frequency noise of N-type Metal Oxide Semiconductor (NMOS) transistors is presented. The model is developed for a commercial 45 nm CMOS SOI technology and its accuracy is validated through comparison with measured performance of a microwave low noise amplifier. The model employs the virtual source nonlinear core and adds parasitic elements to accurately simulate the RF behavior of multi-finger NMOS transistors up to 40 GHz. For the first time, the traditional long-channel thermal noise model is supplemented with an injection noise model to accurately represent the noise behavior of these short-channel transistors up to 26 GHz. The developed model is simple and easy to extract, yet very accurate.

  19. Accurate frequency of the 119 micron methanol laser from tunable far-infrared absorption spectroscopy

    Science.gov (United States)

    Inguscio, M.; Zink, L. R.; Evenson, K. M.; Jennings, D. A.

    1990-01-01

    High-accuracy absorption spectroscopy of CH3OH in the far infrared is discussed. In addition to 22 transitions in the ground state, the frequency of the (n, tau, J, K), (0, 1, 16, 8) to (0, 2, 15, 7) transition in the nu5 excited vibrational level, which is responsible for the laser emission at 119 microns, was measured. The measured frequency is 2,522,782.57(10) MHz at zero pressure, with a pressure shift of 6.1(32) kHz/Pa (0.805/420/ MHz/torr). An accurate remeasurement of the laser emission frequency has also been performed, and the results are in good agreement.

  20. Accurate Frequency Estimation Based On Three-Parameter Sine-Fitting With Three FFT Samples

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2015-09-01

    Full Text Available This paper presents a simple DFT-based golden section searching algorithm (DGSSA for the single tone frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT and Discrete Fourier Transform (DFT are inevitable to cause the spectrum leakage and fence effect which lead to a low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-noise ratio (SNR and a low resolution. This method firstly uses three FFT samples to determine the frequency searching scope, then – besides the frequency – the estimated values of amplitude, phase and dc component are obtained by minimizing the least square (LS fitting error of three-parameter sine fitting. By setting reasonable stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB. The simulation results show that the root mean square error (RMSE of the frequency estimation curve is consistent with the tendency of CRLB as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation is less than 1.5 times the CRLB with SNR = 20 dB and N = 512.

  1. Small arteries can be accurately studied in vivo, using high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1993-01-01

    We have validated measurements of diameters of the superficial temporal artery and other small arteries in man with a newly developed 20 MHz ultrasound scanner with A, B and M-mode imaging. The diameter of a reference object was 1.202 mm vs. 1.205 mm as measured by stereomicroscopy (nonsignifican......-gauge plethysmography (nonsignificant). Pulsations were 4.6% in the radial artery. We conclude that high frequency ultrasound provides an accurate and reproducible measure of the diameter of small and medium sized human arteries in vivo....

  2. Temperature dependencies of frequency characteristics of HTSC RLC curcuit

    Science.gov (United States)

    Buniatyan, Vahe V.; Aroutiounian, V. M.; Shmavonyan, G. Sh.; Buniatyan, Vaz. V.

    2006-05-01

    Analytical expressions of temperature dependencies of magnitude-frequency and phase-frequency characteristics of a HTSC RLC parallel circuit are obtained, where the resistance and inductance are non-linearly depended on the optical signal modulated by the intensity. It is shown that the magnitude-frequency and phase-frequency characteristics of circuits can be controlled by choosing the parameters of the HTSC thin film and optical "pump".

  3. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM

    Directory of Open Access Journals (Sweden)

    Kfir Kuchuk

    2015-01-01

    Full Text Available The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  4. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    Science.gov (United States)

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  5. Frequency-dependent energy harvesting via magnetic shape memory alloys

    Science.gov (United States)

    Sayyaadi, Hassan; Askari Farsangi, Mohammad Amin

    2015-11-01

    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday’s law of magnetic field induction. It has been shown that, in order to harvest the maximum RMS voltage in the MSMA-based energy harvester, an optimum value of bias magnetic field exists, which is the corresponding magnetic field for the start of pseudoelasticity behavior. In addition, to achieve a more compact energy harvester with higher energy density, a specimen with a lower aspect ratio can be chosen. As the main novelty of the paper, it is found that the dynamic effects play a major role in determining the harvested voltage and power, especially for high excitation frequency or specimen thickness.

  6. Frequency-Dependent Streaming Potentials: A Review

    Directory of Open Access Journals (Sweden)

    L. Jouniaux

    2012-01-01

    which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability. We review the experimental setups built to be able to perform dynamic measurements. And we present some measurements and calculations of the dynamic streaming potential.

  7. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    and economical gain, such severe network changes necessitate correct estimation and optimisation of load conditions in the cable grid. Both IEC and IEEE have published standards for rating transmission cables' current carrying capacity. These standards are based on assumptions of a number of parameters......, such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...

  8. Accurate determination of absolute carrier-envelope phase dependence using photo-ionization.

    Science.gov (United States)

    Sayler, A M; Arbeiter, M; Fasold, S; Adolph, D; Möller, M; Hoff, D; Rathje, T; Fetić, B; Milošević, D B; Fennel, T; Paulus, G G

    2015-07-01

    The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction.

  9. Frequency-dependent ultrasound-induced transformation in E. coli.

    Science.gov (United States)

    Deeks, Jeremy; Windmill, James; Agbeze-Onuma, Maduka; Kalin, Robert M; Argondizza, Peter; Knapp, Charles W

    2014-12-01

    Ultrasound-enhanced gene transfer (UEGT) is continuing to gain interest across many disciplines; however, very few studies investigate UEGT efficiency across a range of frequencies. Using a variable frequency generator, UEGT was tested in E. coli at six ultrasonic frequencies. Results indicate frequency can significantly influence UEGT efficiency positively and negatively. A frequency of 61 kHz improved UEGT efficiency by ~70 % higher, but 99 kHz impeded UEGT to an extent worse than no ultrasound exposure. The other four frequencies (26, 133, 174, and 190 kHz) enhanced transformation compared to no ultrasound, but efficiencies did not vary. The influence of frequency on UEGT efficiency was observed across a range of operating frequencies. It is plausible that frequency-dependent dynamics of mechanical and chemical energies released during cavitational-bubble collapse (CBC) are responsible for observed UEGT efficiencies.

  10. Comparison of Bergeron and Frequency-dependent cable models for the simulation of electromagnetic transients

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da

    2016-01-01

    The simulation of electromagnetic transients involving underground cables is very time consuming, when compared with simulations involving overhead lines, and Bergeron models are often used instead of the more accurate frequency-dependent models, in order to reduce the simulation time. This paper...

  11. Capacitance of semiconductor-electrolyte junction and its frequency dependence

    Science.gov (United States)

    Wang, Y.-B.; Yuan, R.-K.; Willander, M.

    1996-11-01

    The frequency dependent capacitance of semiconductor-electrolyte junction and its relationship to the surface roughness of the semiconductor and the ions in the electrolyte are discussed. Due to very low mobility of the ions, the observed capacitance can be dominated by the Helmholtz double-layer of the electrolyte rather than the space charge layer of the semiconductor. The capacitance will also depend on the frequency. This, often observed power-law frequency dependence of capacitance is ascribed to the contribution of constant phase angle impedance. The power-law exponent can easily be related to the fractal dimension if the semiconductor surface can be described by fractal geometry.

  12. Frequency-dependent fitness induces multistability in coevolutionary dynamics.

    Science.gov (United States)

    Arnoldt, Hinrich; Timme, Marc; Grosskinsky, Stefan

    2012-12-07

    Evolution is simultaneously driven by a number of processes such as mutation, competition and random sampling. Understanding which of these processes is dominating the collective evolutionary dynamics in dependence on system properties is a fundamental aim of theoretical research. Recent works quantitatively studied coevolutionary dynamics of competing species with a focus on linearly frequency-dependent interactions, derived from a game-theoretic viewpoint. However, several aspects of evolutionary dynamics, e.g. limited resources, may induce effectively nonlinear frequency dependencies. Here we study the impact of nonlinear frequency dependence on evolutionary dynamics in a model class that covers linear frequency dependence as a special case. We focus on the simplest non-trivial setting of two genotypes and analyse the co-action of nonlinear frequency dependence with asymmetric mutation rates. We find that their co-action may induce novel metastable states as well as stochastic switching dynamics between them. Our results reveal how the different mechanisms of mutation, selection and genetic drift contribute to the dynamics and the emergence of metastable states, suggesting that multistability is a generic feature in systems with frequency-dependent fitness.

  13. Task, muscle and frequency dependent vestibular control of posture

    NARCIS (Netherlands)

    Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular

  14. Ultrasonic Characterization of Tissues via Backscatter Frequency Dependence

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.

    1997-01-01

    Phantom and patient studies were performed to assess the potential of backscatter frequency dependence as a useful parameter for tissue characterization. A commercial phased-array ultrasonic scanner was adapted to allow digitization of the intermediate-frequency ultrasonic data, Studies of agar...

  15. Frequency dependence of junction capacitance of BPW34 and ...

    Indian Academy of Sciences (India)

    This article investigates the frequency dependence of small-signal capacitance of silicon BPW34 and BPW41 (Vishay) p-i-n photodiodes. We show that the capacitance-frequency characteristics of these photodiodes are well-described by the Schibli and Milnes model. The activation energy and the concentration of the ...

  16. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  17. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    Science.gov (United States)

    Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all

  18. Frequency dependence of elastic properties of acoustic foams

    Science.gov (United States)

    Etchessahar, M.; Sahraoui, S.; Benyahia, L.; Tassin, J. F.

    2005-03-01

    Polyurethane (PU) and other plastic foams are widely used as passive acoustic absorbers. For optimal design, it is often necessary to know the viscoelastic properties of these materials in the frequency range relevant to their application. A nonresonance technique (dynamic stiffness) based on a forced vibrations procedure is used to investigate the frequency dependent complex shear modulus of a PU foam. This modulus is first measured, in a quasistatic configuration, in the frequency range (0.016-16 Hz) at different temperatures between 0 and 20 °C. It is afterwards predicted over a wide frequency range (0.01-3000 Hz) using the frequency-temperature superposition principle. The validation of this principle is discussed through quasistatic experiments. Under the assumption that Poisson's ratio of polymeric foams is real and frequency independent on the frequency range used, the frequency dependence of the complex shear modulus obtained is used to predict the complex stiffness of the acoustic foam on a wide frequency range. .

  19. IGS-global ionospheric maps for accurate computation of GPS single- frequency ionospheric delay-simulation study

    Science.gov (United States)

    Farah, A.

    The Ionospheric delay is still one of the largest sources of error that affects the positioning accuracy of any satellite positioning system. This problem could be solved due to the dispersive nature of the Ionosphere by combining simultaneous measurements of signals at two different frequencies but it is still there for single- frequency users. Much effort has been made in establishing models for single- frequency users to make this effect as small as possible. These models vary in accuracy, input data and computational complexity, so the choice between the different models depends on the individual circumstances of the user. From the simulation point of view, the model needed should be accurate with a global coverage and good description to the Ionosphere's variable nature with both time and location. The author reviews some of these established models, starting with the BENT model, the Klobuchar model and the IRI (International Reference Ionosphere) model. Since quiet a long time, Klobuchar model considers the most widely used model ever in this field, due to its simplicity and time saving. Any GPS user could find Klobuchar model's coefficients in the broadcast navigation message. CODE, Centre for Orbit Determination in Europe provides a new set of coefficients for Klobuchar model, which gives more accurate results for the Ionospheric delay computation. IGS (International GPS Service) services include providing GPS community with a global Ionospheric maps in IONEX-format (IONosphere Map Exchange format) which enables the computation of the Ionospheric delay at the desired location and time. The study was undertaken from GPS-data simulation point of view. The aim was to select a model for the simulation of GPS data that gives a good description of the Ionosphere's nature with a high degree of accuracy in computing the Ionospheric delay that yields to better-simulated data. A new model developed by the author based on IGS global Ionospheric maps. A comparison

  20. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  1. Operational Risk Aggregation across Business Lines Based on Frequency Dependence and Loss Dependence

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2014-01-01

    Full Text Available In loss distribution approach (LDA, the most popular approach in operational risk modeling, frequency dependence and loss distribution dependence across business lines are two dependences which banks should consider. In practice, mainly for simplicity, many banks only model frequency dependence although they think that the impact of frequency dependence is insignificant. In this study, two approaches, respectively, models frequency dependence and loss distribution dependence, are introduced. Both approaches are modeled by copula function, which is capable of capturing nonlinear correlation. Based on the most comprehensive operational risk dataset of Chinese banking as far as we know, the operational risk capital charge of the overall Chinese banking is calculated by the two approaches. The results show that there is an obvious distinction between the capital calculated by modeling frequency dependence and the capital calculated by modeling loss dependence. The approach with very limited attention exactly yields a much larger capital result. So it is advised in this paper that banks should not just rely on the approach to modeling frequency dependence for it is natural and easy to deal with. A safer and more effective way for banks is to comprehensively take the results of the two kinds of approach into consideration.

  2. Accurate high-harmonic spectra from time-dependent two-particle reduced density matrix theory

    CERN Document Server

    Lackner, Fabian; Sato, Takeshi; Ishikawa, Kenichi L; Burgdörfer, Joachim

    2016-01-01

    The accurate description of the non-linear response of many-electron systems to strong-laser fields remains a major challenge. Methods that bypass the unfavorable exponential scaling with particle number are required to address larger systems. In this paper we present a fully three-dimensional implementation of the time-dependent two-particle reduced density matrix (TD-2RDM) method for many-electron atoms. We benchmark this approach by a comparison with multi-configurational time-dependent Hartree-Fock (MCTDHF) results for the harmonic spectra of beryllium and neon. We show that the TD-2RDM is very well-suited to describe the non-linear atomic response and to reveal the influence of electron-correlation effects.

  3. Compact model of power MOSFET with temperature dependent Cauer RC network for more accurate thermal simulations

    Science.gov (United States)

    Marek, Juraj; Chvála, Aleš; Donoval, Daniel; Príbytný, Patrik; Molnár, Marián; Mikolášek, Miroslav

    2014-04-01

    A new, more accurate SPICE-like model of a power MOSFET containing a temperature dependent thermal network is described. The designed electro-thermal MOSFET model consists of several parts which represent different transistor behavior under different conditions such as reverse bias, avalanche breakdown and others. The designed model is able to simulate destruction of the device as thermal runaway and/or overcurrent destruction during the switching process of a wide variety of inductive loads. Modified thermal equivalent circuit diagrams were designed taking into account temperature dependence of thermal resistivity. The potential and limitations of the new models are presented and analyzed. The new model is compared with the standard and empirical models and brings a higher accuracy for rapid heating pulses. An unclamped inductive switching (UIS) test as a stressful condition was used to verify the proper behavior of the designed MOSFET model.

  4. Fluctuation-dissipation theorem for frequency-dependent specific heat

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Nielsen, Johannes K.

    1996-01-01

    A derivation of the fluctuation-dissipation (FD) theorem for the frequency-dependent specific heat of a system described by a master equation is presented. The FD theorem is illustrated by a number of simple examples, including a system described by a linear Langevin equation, a two-level system......, and a system described by the energy master equation. It is shown that for two quite different models with low-energy cutoffs—a collection of two-level systems and a system described by the energy master equation—the frequency-dependent specific heat in dimensionless units becomes universal at low temperatures......, i.e., independent of both energy distribution and temperature. These two models give almost the same universal frequency-dependent specific heat, which compares favorably to experiments on supercooled alcohols....

  5. Comment on “Frequency-dependent dispersion in porous media”

    KAUST Repository

    Davit, Yohan

    2012-07-10

    In a recent paper, Valdès-Parada and Alvarez-Ramirez used the technique of volume averaging to derive a "frequency-dependent" dispersion tensor, Dγ*, the goal of which is to describe solute transport in porous media undergoing periodic processes. We describe two issues related to this dispersion tensor. First, we demonstrate that the definition of Dγ* is erroneous and derive a corrected version, Dγ*c. With this modification, the approach of Valdès-Parada and Alvarez-Ramirez becomes strictly equivalent to the one devised by Moyne. Second, we show that the term "frequency-dependent dispersion" is misleading because Dγ* and Dγ*c do not depend on the process operating frequency, χ. The study carried out by Valdès-Parada and Alvarez-Ramirez represents a spectral analysis of the relaxation of Dγ* towards its steady-state, independent of any periodic operation or excitation. © 2012 American Physical Society.

  6. SWIFT-Tyre: an accurate tyre model for ride and handling studies also at higher frequencies and short road wavelengths

    NARCIS (Netherlands)

    Oosten, J.J.M. van; Pacejka, H.B.

    2000-01-01

    As is well known, Magic Formula tyre modelling (MF-Tyre is a part of ADAMS/Tire) allows an accurate and efficient description of tyre-road interaction forces required for any usual vehicle handling simulation. When it comes to modelling of tyre behaviour at higher frequencies and short road

  7. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  8. Frequency-dependent loudness balancing in bimodal cochlear implant users

    NARCIS (Netherlands)

    Veugen, L.C.E.; Chalupper, J.; Snik, A.F.M.; Opstal, A.J. van; Mens, L.H.M.

    2016-01-01

    Conclusion In users of a cochlear implant (CI) and a hearing aid (HA) in contralateral ears, frequency-dependent loudness balancing between devices did, on average, not lead to improved speech understanding as compared to broadband balancing. However, nine out of 15 bimodal subjects showed

  9. Tuning of human modulation filters is carrier-frequency dependent.

    Directory of Open Access Journals (Sweden)

    Andrew J R Simpson

    Full Text Available Recent studies employing speech stimuli to investigate 'cocktail-party' listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz and phonemic (20 Hz rates. The data suggest that cortical modulation filters (CMFs are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an 'inverted' adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension. This suggests that the human auditory system is optimized to track rapid (phonemic modulations at high sound-frequencies and slow (prosodic/syllabic modulations at low frequencies.

  10. Frequency-dependent seismic reflection coefficient for discriminating gas reservoirs

    Science.gov (United States)

    Xu, Duo; Wang, Yanghua; Gan, Qigan; Tang, Jianming

    2011-12-01

    The asymptotic equation of wave propagation in fluid-saturated porous media is available for calculating the normal reflection coefficient within a seismic frequency band. This frequency-dependent reflection coefficient is expressed in terms of a dimensionless parameter ɛ, which is the product of the reservoir fluid mobility (i.e. inverse viscosity), fluid density and the frequency of the signal. In this paper, we apply this expression to the Xinchang gas field, China, where reservoirs are in super-tight sands with very low permeability. We demonstrate that the variation in the reflection coefficient at a gas-water contact as a transition zone within a sand formation is observable within the seismic frequency band. Then, we conduct seismic inversion to generate attributes which first indicate the existence of fluid (either gas or water), and then discriminate a gas reservoir from a water reservoir.

  11. Tuning of Human Modulation Filters Is Carrier-Frequency Dependent

    Science.gov (United States)

    Simpson, Andrew J. R.; Reiss, Joshua D.; McAlpine, David

    2013-01-01

    Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies. PMID:24009759

  12. Accurate Non-adiabatic Quantum Dynamics from Pseudospectral Sampling of Time-dependent Gaussian Basis Sets

    CERN Document Server

    Heaps, Charles W

    2016-01-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schr\\"{o}dinger equation with $N$ Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from $\\mathcal{O}(N^2)$ to $\\mathcal{O}(N)$. By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems; the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-d...

  13. Accurate calculation methods for natural frequencies of plates with special attention to the higher modes

    NARCIS (Netherlands)

    Oosterhout, G.M.; van der Hoogt, Peter; Spiering, R.M.E.J.

    1995-01-01

    Various computational methods have been studied with respect to their suitability for obtaining very accurate solutions of plate vibration problems, especially for the higher modes. Because of the interest in the higher modes, also higher order effects such as transverse shear deformation and

  14. FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Shannon, R. M. [CSIRO Astronomy and Space Science, Box 76, Epping, NSW 1710 (Australia); Stinebring, D. R., E-mail: cordes@astro.cornell.edu, E-mail: ryan.shannon@csiro.au, E-mail: dan.stinebring@oberlin.edu [Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 (United States)

    2016-01-20

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency{sup 2}). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ∼ 4 × 10{sup −5} pc cm{sup −3} for pulsars at ∼1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm{sup −3} but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  15. Implications of density-dependent population growth for frequency and density-dependent selection

    Energy Technology Data Exchange (ETDEWEB)

    Smouse, P.E.

    1976-01-01

    The relationship between density-dependent population growth and frequency- and density-dependent selection was investigated. For the haploid asexual case, Malthusian growth leads to constant birth and death rates and constant fitness values. A more general Lotka-Volterrra formulation leads to both density- and frequency-dependent selection. The more general formulation is necessary but not sufficient for polymorphic coexistence in asexual forms. For the diploid sexual case, Malthusian growth leads to frequency-dependent population trajectories, but the basic birth and death rates are constant. A density-dependent model, analogous to the Lotka-Volterra model of the asexual case, leads to both frequency- and density-dependent fitness values and selection differentials. If selective differentials are solely reproductive in origin, whether density dependent or independent, Hardy-Weinberg frequencies characterize the polymorphic equilibrium, when it exists. This is not the case when selection differentials involve survival components, whether density dependent or independent. It is shown that heterosis is not necessary to achieve stable polymorphism and that the polymorphic condition can be maintained by certain types of intergenotypic competition as well.

  16. Frequency-dependent attenuation of Love waves and its estimation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ping Li [Karlsruhe Univ. (T.H.) (Germany)

    1995-12-31

    Absorption analysis of Love channel waves plays an important role in in-seam seismic exploration, because the usefulness of this method in a particular locality depends on the rate at which Love-type channel waves are attenuated during the passage through the coal seam. In the absence of any evidence of reflections, it is always important to know at what range such features would have been detected in case of their presence. Obviously this is determined by the number of factor, for example, the distance and especially the absorption. By introducing the complex propagation functions into the known dispersion relation of Love waves for a simple symmetric homogeneous three-layered linear elastic model, the frequency-dependent attenuation relation can be explicitly given assuming that the quality factor of the coal (Q{sub {beta}1}) and the country rock (Q{sub {beta}2}) is constant, The attenuation coefficient of the Love waves becomes a non-linear function of the frequency because of the velocity dispersion. In this case the spectral ratio method can not be applied since it can only estimate the frequency-independent component Q. Therefore, a modification of the spectral ratio method is presented to inverse the frequency-dependent Q of Love-waves. (author). 7 refs., 3 figs

  17. Explicitly correlated frequency-independent second-order green's function for accurate ionization energies.

    Science.gov (United States)

    Ohnishi, Yu-Ya; Ten-No, Seiichiro

    2016-10-15

    Explicitly correlated second-order Green's function (GF2-F12) is presented and applied to polycyclic aromatic hydrocarbons (PAHs), oligothiophene, and porphyrins. GF2 suffers from slow convergence of orbital expansions as in the ordinary post Hartree-Fock methods in ab initio theory, albeit the method is capable of providing quantitatively accurate ionization energies (IE) near the complete basis set limit. This feature is significantly mitigated by introducing F12 terms of explicitly correlated electronic structure theory. It is demonstrated that GF2-F12 presents accurate IE with augmented triple-zeta quality of basis sets. The errors from experimental results are typically less than 0.15 eV for PAHs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Frequency Dependence Hearing Loss Evaluation in Perforated Tympanic Membrane.

    Science.gov (United States)

    Dawood, Mohammed Radef

    2017-10-01

    Introduction  Tympanic membrane perforation is a relatively common problem that predisposes patients to varying degrees of conductive hearing loss. Objective  The objective of this study is to evaluate and analyze the frequency dependence hearing loss in tympanic membrane perforation based on the size and the site of perforation. Methods  For the study, I selected 71 patients' (89) ears for the cross-sectional study with tympanic membrane perforations; I examined the size and the site of perforations under the microscope and classified them into small, moderate, large, and subtotal perforations, and into anterior central, posterior central, malleolor central, and big central perforations. I measured mean level of speech frequencies hearing loss, and its relation with the site and the size of the perforation analyzed. Results  The mean hearing loss at different sizes of the perforation at all speech frequencies was 37.4 dB, with ABG of 26.6 dB, and its maximum loss was detected in subtotal perforation of 42.3 dB, with ABG of 33.7 dB, at 500 Hz frequency, while in relation to the sites, it was 38.2 dB, with ABG of 26.8 dB, and its maximum loss was detected in big central site perforation of 42.1 dB, with ABG of 33.6 dB, at 500 Hz frequency. Conclusions  The hearing loss was proportionally related with the sizes of the perforations, and the posterior site had greater impact on the hearing than anterior site perforations. This was also applied to the frequency dependence hearing level, as was detected to be worse at lower frequencies as 500 Hz, than those of 1000-2000 Hz.

  19. Frequency-dependent magneto-impedance spectra in manganite oxides

    CERN Document Server

    Fu, C M; Lin, M L; Wen, Z H

    2000-01-01

    We present a theoretical analysis which explains the specific feature of frequency dependence of the impedance on the sintered manganese oxides, based on the classical electromagnetism. The occurrence of dielectric and magnetization response has to be taken into account in order to obtain good agreement of experimental data with the theoretical expression in a good dielectric approximation. The result implies that the specific feature of impedance spectra may be related to the interplay of high-frequency electromagnetic field with carriers in the complex dielectric as well as magnetic states.

  20. Accurate measurements of transition frequencies and isotope shifts of laser-trapped francium.

    Science.gov (United States)

    Sanguinetti, S; Calabrese, R; Corradi, L; Dainelli, A; Khanbekyan, A; Mariotti, E; de Mauro, C; Minguzzi, P; Moi, L; Stancari, G; Tomassetti, L; Veronesi, S

    2009-04-01

    An interferometric method is used to improve the accuracy of the 7S-7P transition frequencies of three francium isotopes by 1 order of magnitude. The deduced isotope shifts for 209-211Fr confirm the ISOLDE data. The frequency of the D2 transition of 212Fr--the accepted reference for all Fr isotope shifts--is revised, and a significant difference with the ISOLDE value is found. Our results will be a benchmark for the accuracy of the theory of Fr energy levels, a necessary step to investigate fundamental symmetries.

  1. Spatial-frequency dependent binocular imbalance in amblyopia

    Science.gov (United States)

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  2. Do wavelet filters provide more accurate estimates of reverberation times at low frequencies

    DEFF Research Database (Denmark)

    Sobreira Seoane, Manuel A.; Pérez Cabo, David; Agerkvist, Finn T.

    2016-01-01

    It has been amply demonstrated in the literature that it is not possible to measure acoustic decays without significant errors for low BT values (narrow filters and or low reverberation times). Recently, it has been shown how the main source of distortion in the time envelope of the acoustic decay...... of the reverberation time in the frequency band of interest....

  3. Frequency-dependent complex modulus of the uterus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Miklos Z [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Hobson, Maritza A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Varghese, Tomy [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Harter, Josephine [Department of Surgical Pathology, University of Wisconsin, Madison, WI 53706 (United States); Kliewer, Mark A [Department of Radiology, University of Wisconsin, Madison, WI 53706 (United States); Hartenbach, Ellen M [Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53706 (United States); Zagzebski, James A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-08-07

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa.

  4. Frequency-Dependent Cohesive Zone Models for Fatigue

    Science.gov (United States)

    Salih, S.; Davey, K.; Zou, Z.

    2017-05-01

    This paper is concerned with a new cohesive zone model (CZM) to better describe the effects of rate and cyclic loading. Rate is known to affect the manner in which cracks propagate in materials, yet there presently exists no rate-dependent cohesive model for fatigue simulation. The frequency of the applied cyclic load is recognised to influence crack growth rates with crack growth significantly different at lower frequencies due to microstructural effects or other damage mechanisms such as creep or corrosion. A rate-dependent trapezoidal cohesive model is presented that has the ability to capture this behaviour and shows slower rates of crack propagation with higher loading frequencies. This is achieved by allowing the cohesive fracture energy to increase with frequency up to a specified limit. On unloading the cohesive model retains material separation, which accumulates with the number of loading cycles, leading to final failure. An experimental fatigue investigation is currently underway to validate the new cohesive model, which has been coded in a UMAT subroutine and implemented in ABAQUS.

  5. Frequency domain zero padding for accurate autofocusing based on digital holography

    Science.gov (United States)

    Shin, Jun Geun; Kim, Ju Wan; Eom, Tae Joong; Lee, Byeong Ha

    2018-01-01

    The numerical refocusing feature of digital holography enables the reconstruction of a well-focused image from a digital hologram captured at an arbitrary out-of-focus plane without the supervision of end users. However, in general, the autofocusing process for getting a highly focused image requires a considerable computational cost. In this study, to reconstruct a better-focused image, we propose the zero padding technique implemented in the frequency domain. Zero padding in the frequency domain enhances the visibility or numerical resolution of the image, which allows one to measure the degree of focus with more accuracy. A coarse-to-fine search algorithm is used to reduce the computing load, and a graphics processing unit (GPU) is employed to accelerate the process. The performance of the proposed scheme is evaluated with simulation and experiment, and the possibility of obtaining a well-refocused image with an enhanced accuracy and speed are presented.

  6. Task, muscle and frequency dependent vestibular control of posture

    OpenAIRE

    Forbes, Patrick A.; Gunter P Siegmund; Schouten, Alfred C.; Blouin, Jean-Sébastien

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwid...

  7. Frequency dependence of the effective elastic moduli of cavernous bodies

    Science.gov (United States)

    Sibiryakov, E. B.

    2014-09-01

    The dependence of the effective parameters of microheterogeneous media on the frequency and structure of the pore space is obtained using the boundary integral equation method. The potential method is first used to solve dynamic three-dimensional elastic problems in multiply connected domains in the case of stationary oscillations. It is shown that if the wavelength corresponds to a finite number of blocks, the effective elastic moduli decrease.

  8. WWVB: A Half Century of Delivering Accurate Frequency and Time by Radio

    Science.gov (United States)

    Lombardi, Michael A; Nelson, Glenn K

    2014-01-01

    In commemoration of its 50th anniversary of broadcasting from Fort Collins, Colorado, this paper provides a history of the National Institute of Standards and Technology (NIST) radio station WWVB. The narrative describes the evolution of the station, from its origins as a source of standard frequency, to its current role as the source of time-of-day synchronization for many millions of radio controlled clocks. PMID:26601026

  9. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM

    OpenAIRE

    Kfir Kuchuk; Uri Sivan

    2015-01-01

    Summary The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic...

  10. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  11. Linearized Modeling Methods of AC-DC Converters for an Accurate Frequency Response

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    difficulties in modeling are discussed. A comparison of these methods is presented. Simulation results show that the harmonic state-space modeling method provides an efficient way to analyze both steady-state frequency coupling and dynamic harmonic interactions in power-electronic-based power systems.......Wideband harmonics and resonances are challenging the stability and power quality of emerging power-electronic-based power systems, and therefore, harmonic modeling and analysis of power converters are becoming even more important. However, the complex interactions on both ac and dc sides...

  12. Predator Perspective Drives Geographic Variation in Frequency-Dependent Polymorphism.

    Science.gov (United States)

    Holmes, Iris A; Grundler, Maggie R; Davis Rabosky, Alison R

    2017-10-01

    Color polymorphism in natural populations can manifest as a striking patchwork of phenotypes in space, with neighboring populations characterized by dramatic differences in morph composition. These geographic mosaics can be challenging to explain in the absence of localized selection because they are unlikely to result from simple isolation-by-distance or clinal variation in selective regimes. To identify processes that can lead to the formation of geographic mosaics, we developed a simulation-based model to explore the influence of predator perspective, selection, migration, and genetic linkage of color loci on allele frequencies in polymorphic populations over space and time. Using simulated populations inspired by the biology of Heliconius longwing butterflies, Cepaea land snails, Oophaga poison frogs, and Sonora ground snakes, we found that the relative sizes of predator and prey home ranges can produce large differences in morph composition between neighboring populations under both positive and negative frequency-dependent selection. We also demonstrated the importance of the interaction of predator perspective with the type of frequency dependence and localized directional selection across migration and selection intensities. Our results show that regional-scale predation can promote the formation of phenotypic mosaics in prey species, without the need to invoke spatial variation in selective regimes. We suggest that predator behavior can play an important and underappreciated role in the formation and maintenance of geographic mosaics in polymorphic species.

  13. Filter frequency response of time dependent signal using Laplace transform

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-16

    We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/tc)2 e-t/t$_c$, where tc = const. We consider lowpass, highpass and bandpass filters.

  14. Dependence of enhanced asymmetry-induced transport on collision frequency

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D. L. [Occidental College, Physics Department, Los Angeles, California 90041 (United States)

    2014-07-15

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  15. Task, muscle and frequency dependent vestibular control of posture

    Directory of Open Access Journals (Sweden)

    Patrick A Forbes

    2015-01-01

    Full Text Available The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3. This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz. In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  16. Task, muscle and frequency dependent vestibular control of posture.

    Science.gov (United States)

    Forbes, Patrick A; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system's contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  17. On the evolution of personalities via frequency-dependent selection.

    Science.gov (United States)

    Wolf, Max; McNamara, John M

    2012-06-01

    Personality differences can be found in a wide range of species across the animal kingdom, but why natural selection gave rise to such differences remains an open question. Frequency-dependent selection is a potent mechanism explaining variation; it does not explain, however, the other two key features associated with personalities, consistency and correlations. Using the hawk-dove game and a frequency-dependent foraging game as examples, we here show that this changes fundamentally whenever one takes into account the physiological architecture underlying behavior (e.g., metabolism). We find that the inclusion of physiology changes the evolutionary predictions concerning consistency and correlations: while selection gives rise to inconsistent individuals and stochastically fluctuating behavioral correlations in scenarios that neglect physiology, we find high levels of behavioral consistency and tight and stable trait correlations in scenarios that incorporate physiology. The coevolution of behavioral and physiological traits also gives rise to adaptive physiological differences that are systematically associated with behavioral differences. As well as providing a framework for understanding behavioral consistency and behavioral correlations, our work thus also provides an explanation for systematic physiological differences within populations, a phenomenon that appears to exist in a wide range of species but that, up to now, has been poorly understood.

  18. Estimation of frequency-dependent electrokinetic forces on tin oxide nanobelts in low frequency electric fields.

    Science.gov (United States)

    Kumar, Surajit; Hesketh, Peter J

    2010-08-13

    A novel experimental approach is used for studying the response of ethanol-suspended SnO(2) nanobelts under the influence of low frequency ac electric fields. The electrically generated forces are estimated by analyzing the angular motion of the nanobelt, induced by repulsive forces originating predominantly from negative dielectrophoresis (DEP) on planar microelectrodes. The nanobelt motion is experimentally recorded in real time in the low frequency range (drag for long nano-objects is developed and used to deduce estimates of the frequency-dependent DEP force and torque magnitudes from the angular velocity data. Additional experiments, performed in a parallel plate electrode configuration in a fluidic channel to investigate the effect of dc and very low frequency ac (approximately Hz) electric fields, indicate the presence of electrophoresis in the ethanol-suspended SnO(2) nanobelts. The experimentally observed nanobelt motion is analyzed using the equation of motion, and an order-of-magnitude estimate of the nanobelt surface charge density is obtained.

  19. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†

    Directory of Open Access Journals (Sweden)

    Alexandre Presas

    2017-03-01

    Full Text Available To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs, which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the

  20. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†.

    Science.gov (United States)

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-03-22

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating

  1. Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

    Science.gov (United States)

    Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping

    2018-01-01

    In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

  2. Fast, accurate, and robust frequency offset estimation based on modified adaptive Kalman filter in coherent optical communication system

    Science.gov (United States)

    Yang, Yanfu; Xiang, Qian; Zhang, Qun; Zhou, Zhongqing; Jiang, Wen; He, Qianwen; Yao, Yong

    2017-09-01

    We propose a joint estimation scheme for fast, accurate, and robust frequency offset (FO) estimation along with phase estimation based on modified adaptive Kalman filter (MAKF). The scheme consists of three key modules: extend Kalman filter (EKF), lock detector, and FO cycle slip recovery. The EKF module estimates time-varying phase induced by both FO and laser phase noise. The lock detector module makes decision between acquisition mode and tracking mode and consequently sets the EKF tuning parameter in an adaptive manner. The third module can detect possible cycle slip in the case of large FO and make proper correction. Based on the simulation and experimental results, the proposed MAKF has shown excellent estimation performance featuring high accuracy, fast convergence, as well as the capability of cycle slip recovery.

  3. Accurate Lineshapes from Sub-1 cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.

    2015-02-26

    Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.

  4. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  5. Frequency dependence of junction capacitance of BPW34 and ...

    Indian Academy of Sciences (India)

    Capacitance–frequency measurements were carried out using Hewlett Packard HP. 4192A impedance analyser operating at frequencies 100 Hz to 10 MHz. The de- vice was mounted in the sampler holder of the helium cryostat (Oxford) and the measurements were made in vacuum at temperatures between 100 K and 300 ...

  6. The nest site lottery: how selectively neutral density dependent growth suppression induces frequency dependent selection.

    Science.gov (United States)

    Argasinski, K; Broom, M

    2013-12-01

    Modern developments in population dynamics emphasize the role of the turnover of individuals. In the new approaches stable population size is a dynamic equilibrium between different mortality and fecundity factors instead of an arbitrary fixed carrying capacity. The latest replicator dynamics models assume that regulation of the population size acts through feedback driven by density dependent juvenile mortality. Here, we consider a simplified model to extract the properties of this approach. We show that at the stable population size, the structure of the frequency dependent evolutionary game emerges. Turnover of individuals induces a lottery mechanism where for each nest site released by a dead adult individual a single newborn is drawn from the pool of newborn candidates. This frequency dependent selection leads towards the strategy maximizing the number of newborns per adult death. However, multiple strategies can maximize this value. Among them, the strategy with the greatest mortality (which implies the greatest instantaneous growth rate) is selected. This result is important for the discussion about universal fitness measures and which parameters are maximized by natural selection. This is related to the fitness measures R0 and r, because the number of newborns per single dead individual equals the lifetime production of newborn R0 in models without aging. We thus have a two-stage procedure, instead of a single fitness measure, which is a combination of R0 and r. According to the nest site lottery mechanism, at stable population size, selection favors strategies with the greatest r, i.e. those with the highest turnover, from those with the greatest R0. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The Frequency Dependent Characteristics of the 2010 Chile Earthquake

    Science.gov (United States)

    Kiser, E.; Ishii, M.

    2010-12-01

    The 2010 Chile earthquake is important both because of its magnitude (Mw 8.8), and its spatial relationship to geological features (e.g., the Juan Fernandez Ridge) and past large events (e.g., the1960 Mw 9.5 Chile earthquake). To determine the spatio-temporal relationship of the rupture propagation, we use seismic data from the USArray Transportable Array (TA) and apply a back-projection method. The TA data are filtered into three frequency ranges, 1-5 Hz, 0.1 - 0.5 Hz, and 0.05 - 0.01 Hz. The back-projection results from these three frequency ranges reveal unique aspects of the Chilean earthquake. The highest frequency data (1-5 Hz) show that slip occurred on two separate segments. The initial low-amplitude rupture is bilateral and has rupture velocities as low as 0.8 km/s near its southern end, near the Arauco Peninsula. The second high-amplitude segment is updip and to the north of the initial rupture and has a much higher rupture velocity (3.0 km/s). The gap between the two rupture regions and their timing suggests that the initial rupture triggered the second rupture. A similar rupture pattern is obtained using the intermediate-frequency data (0.1-0.5 Hz). However, for the second, northern rupture, the energy at intermediate-frequency lags behind the high-frequency energy. This observation suggests that slower slip is following the rupture front, which supports the hypothesis that fault lubrication is an important factor for the slips associated with giant earthquakes. Finally, the results using the lowest-frequency data (0.01-0.05 Hz) show a much different picture of the rupture than the other two frequency ranges. Here, the highest amplitude energy is at the southern extent of the initial rupture, near the Arauco Peninsula. These lowest-frequency results agree well with the available geodetic observations, which show largest deformation south of the epicenter. In general, it appears that the northern rupture, which corresponds to the area of the 1985

  8. Frequency and Magnetic Field Dependence of the Skin Depth in Co-rich Soft Magnetic Microwires

    Directory of Open Access Journals (Sweden)

    A. Zhukov

    2016-11-01

    Full Text Available We studied giant magnetoimpedance (GMI effect in magnetically soft amorphous Co-rich microwires in the extended frequency range. From obtained experimentally dependences of GMI ratio on magnetic field and different frequencies we estimated the penetration depth and its dependence on applied magnetic field and frequency

  9. Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andrews, John M. [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States)

    2014-07-01

    Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.

  10. Frequency dependence of microflows upon acoustic interactions with fluids

    Science.gov (United States)

    Tiller, Benjamin; Reboud, Julien; Tassieri, Manlio; Wilson, Rab; Cooper, Jonathan M.

    2017-12-01

    Rayleigh surface acoustic waves (SAWs), generated on piezoelectric substrates, can interact with liquids to generate fast streaming flows. Although studied extensively, mainly phenomenologically, the effect of the SAW frequency on streaming in fluids in constrained volumes is not fully understood, resulting in sub-optimal correlations between models and experimental observations. Using microfluidic structures to reproducibly define the fluid volume, we use recent advances modeling the body force generated by SAWs to develop a deeper understanding of the effect of acoustic frequency on the magnitude of streaming flows. We implement this as a new predictive tool using a finite element model of fluid motion to establish optimized conditions for streaming. The model is corroborated experimentally over a range of different acoustic excitation frequencies enabling us to validate a design tool, linking microfluidic channel dimensions with frequencies and streaming efficiencies. We show that in typical microfluidic chambers, the length and height of the chamber are critical in determining the optimum frequency, with smaller geometries requiring higher frequencies.

  11. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins.

    Directory of Open Access Journals (Sweden)

    Daniel R Romano

    2017-11-01

    Full Text Available A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse's molecular composition. In hippocampal neurons, calcium ion (Ca2+ flux through N-methyl-D-aspartate (NMDA receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP or long-term depression (LTD, respectively. The calcium-sensor calmodulin (CaM acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are "tuned" to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters could replicate counter-intuitive experimental observations of decreased activation of Ca2

  12. Frequency dependent capacitance studies of the CdS/Cu/sub 2/S thin-film solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hmurcik, L.V.; Serway, R.A.

    1982-05-01

    Measurements of the dark capacitance of CdS cells as a function of the frequency of the applied signal voltage have shown that the capacitance varies with frequency according to the relation C-C/sub infinity/ = (C/sub 0/-C/sub infinity/)/(1+..omega../sup 2/tau/sup 2/), where tau is the time constant associated with interfacial and deep bulk states. Photocapacitance studies show that the CdS cell can be treated according to the frequency dependent model of Schibli and Milnes. Under the influence of light, Capprox.1/(..omega..)/sup 1/2/. Further work demonstrates that the simple planar junction model most often used to describe the CdS cell is accurate at high frequencies.

  13. Structural and frequency dependencies of a.c. and dielectric ...

    Indian Academy of Sciences (India)

    regions. Benamara et al [7] have investigated the effect of surface ... A Ashery et al. To the best of our knowledge, there are little reports on the growth of InSb/InP heterojunction device by LPE [11–13]. Moreover, there are no enough efforts concerning the con- ..... increase with increasing frequency and follows a universal.

  14. Differential frequency-dependent delay from the pulsar magnetosphere

    NARCIS (Netherlands)

    Hassall, T. E.; Stappers, B. W.; Weltevrede, P.; Hessels, J. W. T.; Alexov, A.; Coenen, T.; Karastergiou, A.; Kramer, M.; Keane, E. F.; Kondratiev, V. I.; van Leeuwen, J.; Noutsos, A.; Pilia, M.; Serylak, M.; Sobey, C.; Zagkouris, K.; Fender, R.; Bell, M. E.; Broderick, J.; Eisloeffel, J.; Falcke, H.; Griessmeier, J. -M.; Kuniyoshi, M.; Miller-Jones, J. C. A.; Wise, M. W.; Wucknitz, O.; Zarka, P.; Asgekar, A.; Batejat, F.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Brueggen, M.; Butcher, H. R.; Ciardi, B.; de Gasperin, F.; de Reijer, J. -P.; Duscha, S.; Fallows, R. A.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Gunst, A. W.; Heald, G.; Hoeft, M.; Juette, E.; Maat, P.; McKean, J. P.; Norden, M. J.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Rottgering, H.; Sluman, J.; Tang, Y.; Tasse, C.; Vermeulen, R.; van Weeren, R. J.; Wijnholds, S. J.; Yatawatta, S.

    Some radio pulsars show clear "drifting subpulses", in which subpulses are seen to drift in pulse longitude in a systematic pattern. Here we examine how the drifting subpulses of PSR B0809+74 evolve with time and observing frequency. We show that the subpulse period (P-3) is constant on timescales

  15. Frequency dependence of orthogonal polarisation modes in pulsars

    NARCIS (Netherlands)

    Smits, J.M.; Stappers, B.W.; Edwards, R.T.; Kuijpers, J.; Ramachandran, R.

    2006-01-01

    We have carried out a study of the orthogonal polarisation mode behaviour as afunction of frequency of 18pulsars, using average pulsar data from the European Pulsar Network(EPN). Assuming that the radiation consists of two100% polarised completely orthogonal superposed modes we separated these

  16. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.

    Science.gov (United States)

    Sütterlin, R; Priori, R; Larsson, A; LoMauro, A; Frykholm, P; Aliverti, A

    2014-01-01

    Superimposed high-frequency jet ventilation (SHFJV) has proved to be safe and effective in clinical practice. However, it is unclear which frequency range optimizes ventilation and gas exchange. The aim of this study was to systematically compare high-frequency jet ventilation (HFJV) with HFJV by assessing chest wall volume variations (ΔEEV(CW)) and gas exchange in relation to variable high frequency. SHFJV or HFJV were used alternatively to ventilate the lungs of 10 anaesthetized pigs (21-25 kg). The low-frequency component was kept at 16 min(-1) in SHFJV. In both modes, high frequencies ranging from 100 to 1000 min(-1) were applied in random order and ventilation was maintained for 5 min in all modalities. Chest wall volume variations were obtained using opto-electronic plethysmography. Airway pressures and arterial blood gases were measured repeatedly. SHFJV increased ΔEEV(CW) compared with HFJV; the difference ranged from 43 to 68 ml. Tidal volume (V(T)) was always >240 ml during SHFJV whereas during HFJV ranged from 92 ml at the ventilation frequency of 100 min(-1) to negligible values at frequencies >300 min(-1). We observed similar patterns for Pa(O₂) and Pa(CO₂). SHFJV provided generally higher, frequency-independent oxygenation (Pa(O₂) at least 32.0 kPa) and CO₂ removal (Pa(CO₂) ∼5.5 kPa), whereas HFJV led to hypoxia and hypercarbia at higher rates (Pa(O₂) 10 kPa at f(HF)>300 min(-1)). In a porcine model, SHFJV was more effective in increasing end-expiratory volume than single-frequency HFJV, but both modes may provide adequate ventilation in the absence of airway obstruction and respiratory disease, except for HFJV at frequencies ≥300 min(-1).

  17. The Effect of Exposure Duration on Stereopsis and Its Dependency on Spatial Frequency

    Science.gov (United States)

    Lee, Seungbae; Shioiri, Satoshi; Yaguchi, Hirohisa

    2004-07-01

    To investigate the effect of exposure duration on stereopsis and its spatial frequency dependency, we measured disparity threshold for the depth discrimination varying stimulus exposure duration between 0.05 and 2 s for three spatial frequencies (0.23, 0.94 and 3.75 c/deg). The results showed that disparity threshold decreased with increase in exposure duration up to a certain duration, beyond which it was approximately constant (the duration is called critical duration). The critical duration was about 150 ms for gratings with low and middle spatial frequencies (0.23 and 0.94 c/deg) while the duration was about 750 ms for gratings with high spatial frequency (3.75 c/deg). This suggests that temporal integration property varies dependently on stimulus spatial frequency. We also attempted to relate the spatial frequency dependency of the temporal integration property to the differences in temporal frequency tuning to different spatial frequency stimuli.

  18. Ion–Cyclotron Resonance Frequency Interval Dependence on the O ...

    Indian Academy of Sciences (India)

    The frequency intervals in which O VI ions get in resonance with ion–cyclotron waves are calculated using the kinetic model, for the latest six values found in literature on O VI ion number densities in the 1.5–3 region of the NPCH. It is found that the common resonance interval is 1.5 kHz to 3 kHz. The -variations of wave ...

  19. Frequency Dependence of Damping and Compliance in Loudspeaker Suspensions

    DEFF Research Database (Denmark)

    Thorborg, Knud; Tinggaard, Carsten; Agerkvist, Finn T.

    2010-01-01

    A loudspeakers suspension is commonly not, even by small signals, to be regarded as a simple spring following Hooke’s law – as otherwise presumed by traditional theory. Different types of polymers (rubber or plastic, either vulcanized, foamed or TPE) used for surrounds - besides impregnated texti...... lower frequencies. The LOG-model is found to give good agreement with measurements, also for loudspeakers with low loss surrounds. However, it is not supported by a theory explaining visco-elastic properties in a physical way. Surrounds today are mostly made from SBR rubber for which...

  20. On Polarization and Frequency Dependence of Diffuse Indoor Propagation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2011-01-01

    The room electromagnetics (RE) theory describes the radio propagation in a single room assuming diffuse scat- tering. A main characteristic is the exponential power-delay profile (PDP) decaying with the so-called reverberation time (RT) parameter, depending only on the wall area, the volume...

  1. Frequency-Dependent FDTD Algorithm Using Newmark’s Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2014-01-01

    Full Text Available According to the characteristics of the polarizability in frequency domain of three common models of dispersive media, the relation between the polarization vector and electric field intensity is converted into a time domain differential equation of second order with the polarization vector by using the conversion from frequency to time domain. Newmark βγ difference method is employed to solve this equation. The electric field intensity to polarizability recursion is derived, and the electric flux to electric field intensity recursion is obtained by constitutive relation. Then FDTD iterative computation in time domain of electric and magnetic field components in dispersive medium is completed. By analyzing the solution stability of the above differential equation using central difference method, it is proved that this method has more advantages in the selection of time step. Theoretical analyses and numerical results demonstrate that this method is a general algorithm and it has advantages of higher accuracy and stability over the algorithms based on central difference method.

  2. Frequency dependent conductivity of vortex cores in type II superconductors

    Science.gov (United States)

    Hsu, Theodore C.

    1993-08-01

    Recent experiments by Karraï et al. probed vortices in YBa 2Cu 3O 7 at frequencies near the “minigap” between discrete core states, Δ 2/ EF. EF is the Fermi energy and Δ is the bulk energy gap. Here we calculate the conductivity, σ(ω), of vortices using a novel, microscopic description of single vortex dynamics based on the Bogoliubov-deGennes equations and self-consistency through the gap equation. It is applicable to the low temperature, clean, type II limit. An equation of motion for vortex cores valid at non-zero frequencies, including Magnus, drag, and pinning forces, is derived. The cyclotron resonance as well as structure at the minigap appear in σ(ω). The expected dipole transition between localized states is hidden because the vortex is a self-consistent potential. Unless translation invariance is broken, single particle properties are invisible to a long wavelength probe. Upon adding drag and pinning, dissipation near h̵hω≈Δ 2/ EF appears.

  3. Strain-threshold- and frequency-dependent seismic simulation of nonlinear soils

    Science.gov (United States)

    Wang, Duguo; Zhao, Chenggang

    2014-12-01

    A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent. However, historical earthquake records and laboratory test results indicate that nonlinear soil behavior is frequency-dependent. Several frequency-dependent equivalent linear methods (FDEQL) related to the Fourier amplitude of shear strain time history have been developed to take into account the frequency-dependent soil behavior. Furthermore, the shear strain threshold plays an important role in soil behavior. For shear strains below the elastic shear strain threshold, soil behaves essentially as a linear elastic material. To consider the effect of elastic-shear-strain-threshold- and frequency-dependent soil behavior on wave propagation, the shear-strain-threshold- and frequency-dependent equivalent linear method (TFDEQL) is proposed. A series of analyses is implemented for EQL, FDEQL, and TFDEQL methods. Results show that elastic-shear-strain-threshold- and frequency-dependent soil behavior plays a great influence on the computed site response, especially for the high-frequency band. Also, the effect of elastic-strain-threshold- and frequency-dependent soil behavior on the site response is analyzed from relatively weak to strong input motion, and results show that the effect is more pronounced as input motion goes from weak to strong.

  4. Assessing frequency-dependent site polarisabilities in linear response polarisable embedding

    DEFF Research Database (Denmark)

    Nørby, Morten S.; Vahtras, Olav; Norman, Patrick

    2017-01-01

    In this paper, we discuss the impact of using a frequency-dependent embedding potential in quantum chemical embedding calculations of response properties. We show that the introduction of a frequency-dependent embedding potential leads to further model complications upon solving the central...

  5. New fast accurately conservative scheme for solving numerically the time-dependent isotropic Fokker-Planck equation

    Science.gov (United States)

    Boukandou-Mombo, Charlotte; Bakrim, Hassan; Claustre, Jonathan; Margot, Joëlle; Matte, Jean-Pierre; Vidal, François

    2017-11-01

    We present a new numerical method for solving the time-dependent isotropic Fokker-Planck equation. We show analytically and numerically that the numerical scheme provides accurate particle and energy density conservation in practical conditions, an equilibrium solution close to the Maxwellian distribution, and the decrease of entropy with time. The slight nonconservation of particle and energy density is only due to the finite value of the upper bound of the energy grid. Additionally, the totally implicit scheme proves to provide positive solutions and to be unconditionally stable. The implicit forms of the scheme can be set as a nonlinear tridiagonal system of equations and solved iteratively. For a uniform grid in energy with N points, the number of operations required to compute the solution at a given time is only O(N) , in contrast to the totally explicit variant, which requires O(N3) operations due to the restriction on the time step. The time-centered variant is more accurate than the totally implicit one, and uses an equivalent CPU time, but does not provide positive solutions for very large timesteps. The results of the method are analyzed for the classical problem of an initially Gaussian distribution as well as for an initially quasi-truncated Maxwellian distribution.

  6. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  7. Frequency Dependence of Single-Event Upset in Highly Advanced PowerPC Microprocessors

    Science.gov (United States)

    Irom, Farokh; Farmanesh, Farhad; White, Mark; Kouba, Coy K.

    2006-01-01

    Single-event upset effects from heavy ions were measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes at three frequencies of 500, 1066 and 1600 MHz. Frequency dependence of single-event upsets is discussed. The results of our studies suggest the single-event upset in registers and D-Cache tend to increase with frequency. This might have important implications for the overall single-event upset trend as technology moves toward higher frequencies.

  8. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  9. Somatic currents contribute to frequency-dependent spike-broadening in supraoptic neuroendocrine cells.

    Science.gov (United States)

    O'Regan, M H; Cobbett, P

    1993-10-29

    Voltage-gated K and Ca currents were recorded in acutely dissociated neuroendocrine cells of the supraoptic nucleus. The effect of repeated activation of the currents by trains of (10) voltage pulses over a range of pulse-repetition frequencies were examined. There was a significant reduction of K-current amplitude and a significant increase of Ca-current amplitude during trains with high repetition frequencies. Frequency-dependent changes in K and Ca conductances may contribute to frequency-dependent spike-broadening which is exhibited during bursts of action potentials generated by these neurons.

  10. An efficient realization of frequency dependent boundary conditions in an acoustic finite-difference time-domain model

    DEFF Research Database (Denmark)

    Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.

    2008-01-01

    The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...... to this problem exist, most of them have high computational costs, and stability cannot always be ensured. In this work, a solution is proposed based on "mixing modelling strategies"; this involves separating the FDTD mesh and the boundary conditions (a digital filter representation of the impedance...

  11. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12.

    Science.gov (United States)

    Martirosyan, Varsik; Baghdasaryan, Naira; Ayrapetyan, Sinerik

    2013-09-01

    In the present work, the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF EMF) on Escherichia coli K-12 growth have been studied. The frequency-dependent effects of ELF EMF have shown that it can either stimulate or inhibit the growth of microbes. However, the mechanism by which the ELF EMF affects the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of ELF EMF on microbes may be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz, B = 0.4 mT, 30 min) of ELF EMF on the bacterial growth were studied in both cases where the microbes were in the culture media during the exposure and where culture media was preliminarily exposed to the ELF EMF before the addition of bacteria. For investigating the cell proliferation, the radioactive [(3)H]-thymidine assay was carried out. It has been shown that EMF at 4 Hz exposure has pronounced stimulation while at 8 Hz it has inhibited cell proliferation.

  12. Ultrasonic Measurement of Change in Elasticity due to Endothelium Dependent Relaxation Response by Accurate Detection of Artery-Wall Boundary

    Science.gov (United States)

    Kaneko, Takuya; Hasegawa, Hideyuki; Kanai, Hiroshi

    2007-07-01

    Ross hypothesized that an endothelial dysfunction is considered to be an initial step in atherosclerosis. Endothelial cells, which release nitric oxide (NO) in response to shear stress from blood flow, have a function of relaxing smooth muscle in the media of the arterial wall. For the assessment of the endothelial function, there is a conventional method in which the change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) is measured with ultrasound. However, despite the fact that the collagen-rich hard adventitia does not respond to NO, the conventional method measures the change in diameter depending on the mechanical property of the entire wall including the adventitia. Therefore, we developed a method of measuring the change in the thickness and the elasticity of the brachial artery during a cardiac cycle using the phased tracking method for the evaluation of the mechanical property of only the intima-media region. In this study, the initial positions of echoes from the lumen-intima and media-adventitia boundaries are determined using complex template matching to accurately estimate the minute change in the thickness and the elasticity of the brachial and radial arteries. The ambiguity in the determination of such boundaries was eliminated using complex template matching, and the change in elasticity measured by the proposed method was larger than the change in inner diameter obtained by the conventional method.

  13. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    Science.gov (United States)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  14. Comment on ``Harmonic oscillator with time-dependent mass and frequency and a perturbative potential''

    Science.gov (United States)

    Maamache, M.; Bencheikh, K.; Hachemi, H.

    1999-04-01

    The correct wave function for the problem of a harmonic oscillator of time-dependent mass and frequency is obtained following the same approach used in the paper of Dantas et al. [Phys. Rev. A 45, 1320 (1992)].

  15. Coherent states and uncertainty relations for the damped harmonic oscillator with time-dependent frequency

    Science.gov (United States)

    Yeon, Kyu-Hwang; Um, Chung-In; George, Thomas F.; Pandey, Lakshmi N.

    1993-01-01

    Starting with evaluations of propagator and wave function for the damped harmonic oscillator with time-dependent frequency, exact coherent states are constructed. These coherent states satisfy the properties which coherent states should generally have.

  16. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them w...

  17. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans.

    Science.gov (United States)

    van de Berg, Raymond; Guinand, Nils; Nguyen, T A Khoa; Ranieri, Maurizio; Cavuscens, Samuel; Guyot, Jean-Philippe; Stokroos, Robert; Kingma, Herman; Perez-Fornos, Angelica

    2014-01-01

    The vestibulo-ocular reflex (VOR) shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR) elicited by a vestibular implant, showed the same frequency-dependency. Twelve vestibular electrodes implanted in seven patients with bilateral vestibular hypofunction (BVH) were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5, 1, and 2 Hz. The main characteristics of the eVOR were evaluated and compared to the "natural" VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies. A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the "natural" VOR. Other characteristics of the (e)VOR (angle, habituation-index, and asymmetry) showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited) frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the "normal" vestibular system.

  18. Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models

    Science.gov (United States)

    Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura

    2014-09-01

    Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.

  19. The vestibular implant: Frequency-dependency of the electrically evoked Vestibulo-Ocular Reflex in humans

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2015-01-01

    Full Text Available The Vestibulo-Ocular Reflex (VOR shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR elicited by a vestibular implant, showed the same frequency-dependency.Twelve vestibular electrodes implanted in 7 patients with bilateral vestibular hypofunction were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5Hz, 1Hz, and 2Hz. The main characteristics of the eVOR were evaluated and compared to the natural VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies.A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the natural VOR. Other characteristics of the (eVOR (angle, habituation-index, and asymmetry showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the normal vestibular system.

  20. Frequency Dependent Harmonic Powers in a Modified Uni-Traveling Carrier (MUTC) Photodetector

    Science.gov (United States)

    2017-01-27

    bias null) in the second order intermodulation distortion (IMD2) is different for the sum frequency and difference frequency. We obtained agreement with...the experimental results. The bias null that appears in the IMD2 is due to the Franz-Keldysh effect. The bias null depends on the electric field in...bias null depends on the recombination rate in the p-absorption region because the electric field decreases in the intrinsic region when the

  1. Frequency dependence of the pump-to-signal RIN transfer in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Pakarzadeh Dezfuli Nezhad, Hassan; Rottwitt, Karsten; Zakery, A.

    2009-01-01

    Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams.......Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams....

  2. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies.

    Directory of Open Access Journals (Sweden)

    Marie L Hale

    Full Text Available One of the most common questions asked before starting a new population genetic study using microsatellite allele frequencies is "how many individuals do I need to sample from each population?" This question has previously been answered by addressing how many individuals are needed to detect all of the alleles present in a population (i.e. rarefaction based analyses. However, we argue that obtaining accurate allele frequencies and accurate estimates of diversity are much more important than detecting all of the alleles, given that very rare alleles (i.e. new mutations are not very informative for assessing genetic diversity within a population or genetic structure among populations. Here we present a comparison of allele frequencies, expected heterozygosities and genetic distances between real and simulated populations by randomly subsampling 5-100 individuals from four empirical microsatellite genotype datasets (Formica lugubris, Sciurus vulgaris, Thalassarche melanophris, and Himantopus novaezelandia to create 100 replicate datasets at each sample size. Despite differences in taxon (two birds, one mammal, one insect, population size, number of loci and polymorphism across loci, the degree of differences between simulated and empirical dataset allele frequencies, expected heterozygosities and pairwise F(ST values were almost identical among the four datasets at each sample size. Variability in allele frequency and expected heterozygosity among replicates decreased with increasing sample size, but these decreases were minimal above sample sizes of 25 to 30. Therefore, there appears to be little benefit in sampling more than 25 to 30 individuals per population for population genetic studies based on microsatellite allele frequencies.

  3. Recognition of speech in noise after application of time-frequency masks: Dependence on frequency and threshold parameters

    Science.gov (United States)

    Sinex, Donal G.

    2013-01-01

    Binary time-frequency (TF) masks can be applied to separate speech from noise. Previous studies have shown that with appropriate parameters, ideal TF masks can extract highly intelligible speech even at very low speech-to-noise ratios (SNRs). Two psychophysical experiments provided additional information about the dependence of intelligibility on the frequency resolution and threshold criteria that define the ideal TF mask. Listeners identified AzBio Sentences in noise, before and after application of TF masks. Masks generated with 8 or 16 frequency bands per octave supported nearly-perfect identification. Word recognition accuracy was slightly lower and more variable with 4 bands per octave. When TF masks were generated with a local threshold criterion of 0 dB SNR, the mean speech reception threshold was −9.5 dB SNR, compared to −5.7 dB for unprocessed sentences in noise. Speech reception thresholds decreased by about 1 dB per dB of additional decrease in the local threshold criterion. Information reported here about the dependence of speech intelligibility on frequency and level parameters has relevance for the development of non-ideal TF masks for clinical applications such as speech processing for hearing aids. PMID:23556604

  4. P300 ERP Component Depends on Both Spatial Frequency and Contrast

    Directory of Open Access Journals (Sweden)

    Li-Ting Tsai

    2011-05-01

    Full Text Available Contrast perception depends on not only the early visual responses, but also top-down modulations. We measured how does P300, a well-documented event-related potential (ERP index for top-down influence, change with both spatial frequency and contrast. ERP were acquired from 10 participants, aged 18–50 years, when they were performing a visual oddball task. The target was a Gabor patch whose spatial frequency was either 4 or 8 cy/degree and contrasts 90% or 30%. The probability of target presence in a trial was 30%. All target stimuli produced a reliable P300 component. At the low spatial frequency, the amplitude of P300 was larger and the latency was shorter for the low contrast patterns than for the higher contrast ones for all electrodes. Such difference was not observed in high spatial frequency patterns. The latency was slightly longer for high spatial frequency patterns than the low spatial frequency ones. Our results showed an interaction between spatial frequency and contrast in P300. The characteristics of P300 at low spatial frequency correlated with task difficulty, but not at high spatial frequency. This suggests that the top-down influence on contrast perception may be spatial frequency depended.

  5. Frequency dependent magneto-transport in charge transfer Co(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Bikash Kumar; Saha, Shyamal K., E-mail: cnssks@iacs.res.in

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co{sub 2}(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H{sup +}-2-thiolate){sub 5}](OAc){sub 4} metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence.

  6. Modelling the ancestral sequence distribution and model frequencies in context-dependent models for primate non-coding sequences

    Directory of Open Access Journals (Sweden)

    Baele Guy

    2010-08-01

    Full Text Available Abstract Background Recent approaches for context-dependent evolutionary modelling assume that the evolution of a given site depends upon its ancestor and that ancestor's immediate flanking sites. Because such dependency pattern cannot be imposed on the root sequence, we consider the use of different orders of Markov chains to model dependence at the ancestral root sequence. Root distributions which are coupled to the context-dependent model across the underlying phylogenetic tree are deemed more realistic than decoupled Markov chains models, as the evolutionary process is responsible for shaping the composition of the ancestral root sequence. Results We find strong support, in terms of Bayes Factors, for using a second-order Markov chain at the ancestral root sequence along with a context-dependent model throughout the remainder of the phylogenetic tree in an ancestral repeats dataset, and for using a first-order Markov chain at the ancestral root sequence in a pseudogene dataset. Relaxing the assumption of a single context-independent set of independent model frequencies as presented in previous work, yields a further drastic increase in model fit. We show that the substitution rates associated with the CpG-methylation-deamination process can be modelled through context-dependent model frequencies and that their accuracy depends on the (order of the Markov chain imposed at the ancestral root sequence. In addition, we provide evidence that this approach (which assumes that root distribution and evolutionary model are decoupled outperforms an approach inspired by the work of Arndt et al., where the root distribution is coupled to the evolutionary model. We show that the continuous-time approximation of Hwang and Green has stronger support in terms of Bayes Factors, but the parameter estimates show minimal differences. Conclusions We show that the combination of a dependency scheme at the ancestral root sequence and a context-dependent

  7. Frequency-dependent attenuation of seismic waves in the Pannonian basin

    Science.gov (United States)

    Süle, Bálint

    2017-04-01

    The attenuation of S waves have been estimated for the territory of Hungary (central Pannonian basin). Waveforms of 310 local eartquakes (0.8 < ML < 4.8) were analyzed. The events were recorded at hipocentral distances between 20 and 100 km. For estimating the frequency-dependent attenuation of S waves (OS) the coda normalization method was applied in the frequency range from 1.5 to 24 Hz. The results show strong attenuation of S waves along the ray paths. By fitting a power-law frequency dependence model the relation QS = 92 ṡ f0.93 is obtained.

  8. Homodyne and heterodyne optical interferometry for frequency dependent piezoelectric displacement measurement

    Science.gov (United States)

    Delahoussaye, Keith; Guo, Ruyan; Bhalla, Amar

    2014-09-01

    The electromechanical coupling in piezoelectric materials has been widely studied however a unified view of this interaction as function of frequencies using different measurement techniques has not previously been available. This study examines and compares multiple optical based homodyne and heterodyne interferometry techniques for displacement measurement over a wide range of frequencies and including a comparison made by using a commercial Laser Doppler Vibrometer. Ferroelectric lead titanate PbTiO3 with high ferroelectric strain is studied in this work. Frequency dependence of the electromechanical displacement is obtained using multiple techniques and the emphasis is given to near resonant frequency interrogations.

  9. Negative frequency-dependent preferences and variation in male facial hair.

    Science.gov (United States)

    Janif, Zinnia J; Brooks, Robert C; Dixson, Barnaby J

    2014-01-01

    Negative frequency-dependent sexual selection maintains striking polymorphisms in secondary sexual traits in several animal species. Here, we test whether frequency of beardedness modulates perceived attractiveness of men's facial hair, a secondary sexual trait subject to considerable cultural variation. We first showed participants a suite of faces, within which we manipulated the frequency of beard thicknesses and then measured preferences for four standard levels of beardedness. Women and men judged heavy stubble and full beards more attractive when presented in treatments where beards were rare than when they were common, with intermediate preferences when intermediate frequencies of beardedness were presented. Likewise, clean-shaven faces were least attractive when clean-shaven faces were most common and more attractive when rare. This pattern in preferences is consistent with negative frequency-dependent selection.

  10. Time-domain analysis of frequency dependent inertial wave forces on cylinders

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    Mono-pile structures are attractive for small well-head platforms and foundation of offshore wind turbines at moderate water depth. Their diameter of several meters makes them prone to simultaneous occurrence of frequency-dependent inertial forces and non-linear drag. The present paper presents a...... a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...

  11. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    Science.gov (United States)

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  12. Generalized Doppler and aberration kernel for frequency-dependent cosmological observables

    Science.gov (United States)

    Yasini, Siavash; Pierpaoli, Elena

    2017-11-01

    We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.

  13. Precise Frequency and Period Measurements for Slow Slew Rate Signals Based on the Modified Method of the Dependent Count

    Directory of Open Access Journals (Sweden)

    Sergey Y. Yurish

    2009-08-01

    Full Text Available This paper describes an application of novel modified method of the dependent count for measuring the frequency (period of slow slew rate signals (common for the conversion-to-digital of resistance, capacitance, inductance or resistive-sensor–bridge signals based on direct connection to a microcontroller. The AVR 8-bit ATmega168-20PI microcontroller (Atmel, based on advanced reduced instruction set computing architecture, was used. The modified method of the dependent count improves the accuracy of period measurements for the slow slew rate signals of triangular, sine, exponential rise and fall, as well as rectangular waveforms, by 2-to-3 orders in comparison with the accuracy achieved with classical indirect counting in all frequency ranges. The error is evaluated from the statistical characteristics and histograms of measured pulse periods, quantitatively confirming the advantages of the modified method for frequency (period measurements for non-square pulse signals. Measurements are further improved (becoming about 1.5 times more accurate for some waveforms when an external Schmitt trigger is used.

  14. Dependence of the ray transference of model eyes on the frequency of light

    Directory of Open Access Journals (Sweden)

    Tanya Evans

    2016-03-01

    Full Text Available The transference defines the first-order character of an optical system; almost all the system’s optical properties can be calculated from it. It is useful, therefore, to have some idea of how it depends on the frequency of light. We examine the dependence for two Gaussian eyes. It turns out to be nearly linear for all four fundamental properties. The result is an equation for the dependence of the transference on frequency which is almost symplectic. We also transform the transference into Hamiltonian space, obtain equations for the least-squares straight line for the three independent transformed properties and map them back to the group of transferences. The result is an equation for the dependence of the transference on frequency which is exactly symplectic and therefore representative of an optical system. The results may approximate those of real eyes and give estimates of the dependence of almost all optical properties on frequency.Keywords: ray transference; frequency; symplecticity

  15. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Alonso, José Luis [Grupo de Espectroscopía Molecular (GEM), Unidad Asociada CSIC, Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Universidad de Valladolid, E-47005 Valladolid (Spain); Gauss, Jürgen, E-mail: cristina.puzzarini@unibo.it [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.

  16. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Energy Technology Data Exchange (ETDEWEB)

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing 401121 (China); Song, Dan; Lei, Guangrong [National Engineering Research Center of Ultrasound Medicine, Chongqing 401121 (China); Lin, Zhou; Zhang, Dong, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Wu, Junru [Department of Physics, University of Vermont, Burlington, VT 05405 (United States)

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  17. Frequency and Temperature Dependence of Electrical Breakdown at 21, 30 and 39 GHz

    CERN Document Server

    Braun, Hans Heinrich; Wilson, Ian H; Wuensch, Walter

    2003-01-01

    A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  18. Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication.

    Science.gov (United States)

    Shin, Dongkwan; Cho, Kwang-Hyun

    2013-01-01

    The brain requires task-dependent interregional coherence of information flow in the anatomically connected neural network. However, it is still unclear how a neuronal group can flexibly select its communication target. In this study, we revealed a hidden routing mechanism on the basis of recurrent connections. Our simulation results based on the spike response model show that recurrent connections between excitatory and inhibitory neurons modulate the resonant frequency of a local neuronal group, and that this modulation enables a neuronal group to receive selective information by filtering a preferred frequency component. We also found that the recurrent connection facilitates the successful routing of any necessary information flow between neuronal groups through frequency-dependent resonance of synchronized oscillations. Taken together, these results suggest that recurrent connections act as a phase-locking neuronal tuner which determines the resonant frequency of a local group and thereby controls the preferential routing of incoming signals.

  19. Accurate estimation of haplotype frequency from pooled sequencing data and cost-effective identification of rare haplotype carriers by overlapping pool sequencing.

    Science.gov (United States)

    Cao, Chang-Chang; Sun, Xiao

    2015-02-15

    A variety of hypotheses have been proposed for finding the missing heritability of complex diseases in genome-wide association studies. Studies have focused on the value of haplotype to improve the power of detecting associations with disease. To facilitate haplotype-based association analysis, it is necessary to accurately estimate haplotype frequencies of pooled samples. Taking advantage of databases that contain prior haplotypes, we present Ehapp based on the algorithm for solving the system of linear equations to estimate the frequencies of haplotypes from pooled sequencing data. Effects of various factors in sequencing on the performance are evaluated using simulated data. Our method could estimate the frequencies of haplotypes with only about 3% average relative difference for pooled sequencing of the mixture of 10 haplotypes with total coverage of 50×. When unknown haplotypes exist, our method maintains excellent performance for haplotypes with actual frequencies >0.05. Comparisons with present method on simulated data in conjunction with publicly available Illumina sequencing data indicate that our method is state of the art for many sequencing study designs. We also demonstrate the feasibility of applying overlapping pool sequencing to identify rare haplotype carriers cost-effectively. Ehapp (in Perl) for the Linux platforms is available online (http://bioinfo.seu.edu.cn/Ehapp/). xsun@seu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Frequency dependence of electron spin-lattice relaxation for semiquinones in alcohol solutions.

    Science.gov (United States)

    Elajaili, Hanan B; Biller, Joshua R; Eaton, Sandra S; Eaton, Gareth R

    2014-10-01

    The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH(-). The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The larmor frequency shift in magnetically heterogeneous media depends on their mesoscopic structure.

    Science.gov (United States)

    Ruh, Alexander; Scherer, Harald; Kiselev, Valerij G

    2017-05-19

    Recent studies have addressed the determination of the NMR precession frequency in biological tissues containing magnetic susceptibility differences between cell types. The purpose of this study is to investigate the dependence of the precession frequency on medium microstructure using a simple physical model. This dependence is governed by diffusion of NMR-visible molecules in magnetically heterogeneous microenvironments. In the limit of fast diffusion, the precession frequency is determined by the average susceptibility-induced magnetic field, whereas in the limit of slow diffusion it is determined by the average local phase factor of precessing spins. The main method used is Monte Carlo simulation of isotropic suspensions of impermeable magnetized spheres. In addition, NMR spectroscopy was performed in aqueous suspensions of polystyrene microbeads. The precession frequency depends on the structural organization of magnetized objects in the medium. Monte Carlo simulations demonstrated a nonmonotonic transition between the regimes of fast and slow diffusion. NMR experiments confirmed the transition, but were unable to confirm its precise form. Results for a given pattern of structural organization obey a scaling law. The NMR precession frequency exhibits a complex dependence on medium structure. Our results suggest that the commonly assumed limit of fast water diffusion holds for biological tissues with small cells. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Frequency Dependence of Single-event Upset in Advanced Commerical PowerPC Microprocessors

    Science.gov (United States)

    Irom, Frokh; Farmanesh, Farhad F.; Swift, Gary M.; Johnston, Allen H.

    2004-01-01

    This paper examines single-event upsets in advanced commercial SOI microprocessors in a dynamic mode, studying SEU sensitivity of General Purpose Registers (GPRs) with clock frequency. Results are presented for SOI processors with feature sizes of 0.18 microns and two different core voltages. Single-event upset from heavy ions is measured for advanced commercial microprocessors in a dynamic mode with clock frequency up to 1GHz. Frequency and core voltage dependence of single-event upsets in registers is discussed.

  3. A metamaterial having a frequency dependent elasticity tensor and a zero effective mass density

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Graeme [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States); Seppecher, Pierre [Institut de Mathematiques de Toulon, Universite du Sud Toulon-Var, BP 132, 83957 La Garde Cedex (France)

    2012-07-15

    Within the context of linear elasticity we show that a two-terminal network of springs and masses, can respond exactly the same as a normal spring, but with a frequency dependent spring constant. A network of such springs can have a frequency dependent effective elasticity tensor but zero effective mass density. The internal masses influence the elasticity tensor, but do not contribute to the effective mass density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence

    Science.gov (United States)

    Matsunaga, Hisao; Takakuwa, Osamu; Yamabe, Junichiro; Matsuoka, Saburo

    2017-06-01

    In the context of the fatigue life design of components, particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles, it is important to understand the hydrogen-induced, fatigue crack growth (FCG) acceleration in steels. As such, the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper, with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further, this frequency dependence is debated by introducing some potentially responsible elements, along with new experimental data obtained by the authors. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  5. Frequency dependent loss analysis and minimization of system losses in switchmode audio power amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2014-01-01

    In this paper, frequency dependent losses in switch-mode audio power amplifiers are analyzed and a loss model is improved by taking the voltage dependence of the parasitic capacitance of MOSFETs into account. The estimated power losses are compared to the measurement and great accuracy is achieved....... By choosing the optimal switching frequency based on the proposed analysis, the experimental results show that system power losses of the reference design are minimized and an efficiency improvement of 8 % in maximum is achieved without compromising audio performances....

  6. Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Djuraev Ulugbek

    2017-01-01

    Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.

  7. Security and Hyper-accurate Positioning Monitoring with Automatic Dependent Surveillance-Broadcast (ADS-B) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightning Ridge Technologies, working in collaboration with The Innovation Laboratory, Inc., extend Automatic Dependent Surveillance Broadcast (ADS-B) into a safe,...

  8. Security and Hyper-accurate Positioning Monitoring with Automatic Dependent Surveillance-Broadcast (ADS-B) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightning Ridge Technologies, LLC, working in collaboration with The Innovation Laboratory, Inc., extend Automatic Dependent Surveillance ? Broadcast (ADS-B) into a...

  9. Frequency dependent attenuation of seismic waves for Delhi and surrounding area, India

    Directory of Open Access Journals (Sweden)

    Babita Sharma

    2015-06-01

    Full Text Available The attenuation properties of Delhi & surrounding region have been investigated using 62 local earthquakes recorded at nine stations. The frequency dependent quality factors Qa (using P-waves and Qb (using S-waves have been determined using the coda normalization method. Quality factor of coda-waves (Qc has been estimated using the single backscattering model in the frequency range from 1.5 Hz to 9 Hz. Wennerberg formulation has been used to estimate Qi (intrinsic attenuation parameter and Qs (scattering attenuation parameter for the region. The values Qa, Qb, Qc, Qi and Qs estimated are frequency dependent in the range of 1.5Hz-9Hz. Frequency dependent relations are estimated as Qa=52f1.03, Qb=98f1.07 and Qc=158f0.97. Qc estimates lie in between the values of Qi and Qs but closer to Qi at all central frequencies. Comparison between Qi and Qs shows that intrinsic absorption is predominant over scattering for Delhi and surrounding region. 

  10. Age-Dependent Increase of Absence Seizures and Intrinsic Frequency Dynamics of Sleep Spindles in Rats

    Directory of Open Access Journals (Sweden)

    Evgenia Sitnikova

    2014-01-01

    Full Text Available The risk of neurological diseases increases with age. In WAG/Rij rat model of absence epilepsy, the incidence of epileptic spike-wave discharges is known to be elevated with age. Considering close relationship between epileptic spike-wave discharges and physiologic sleep spindles, it was assumed that age-dependent increase of epileptic activity may affect time-frequency characteristics of sleep spindles. In order to examine this hypothesis, electroencephalograms (EEG were recorded in WAG/Rij rats successively at the ages 5, 7, and 9 months. Spike-wave discharges and sleep spindles were detected in frontal EEG channel. Sleep spindles were identified automatically using wavelet-based algorithm. Instantaneous (localized in time frequency of sleep spindles was determined using continuous wavelet transform of EEG signal, and intraspindle frequency dynamics were further examined. It was found that in 5-months-old rats epileptic activity has not fully developed (preclinical stage and sleep spindles demonstrated an increase of instantaneous frequency from beginning to the end. At the age of 7 and 9 months, when animals developed matured and longer epileptic discharges (symptomatic stage, their sleep spindles did not display changes of intrinsic frequency. The present data suggest that age-dependent increase of epileptic activity in WAG/Rij rats affects intrinsic dynamics of sleep spindle frequency.

  11. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels

    DEFF Research Database (Denmark)

    Diness, Thomas Goldin; Hansen, Rie Schultz; Olesen, Søren-Peter

    2006-01-01

    To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3Hz....... The activity of HERG1 channels was inhibited down to 65% at high frequencies. In contrast, hKCNQ1 channel activity was increased up to 525% at high frequencies. The general frequency-dependent modulation of the channels was unaffected by both co-expression of hKCNQ1 and HERG1 channels, and by the presence...... of the beta-subunits KCNE1 and KCNE2. In addition, the functional role of HERG1 in native guinea pig cardiac myocytes was demonstrated at different pacing frequencies by application of 10microM of the new HERG1 activator, NS1643. In conclusion, we have demonstrated that HERG1 and hKCNQ1 channels are inversely...

  12. Frequency-dependent seed predation by rodents on Sonoran Desert winter annual plants.

    Science.gov (United States)

    Horst, Jonathan L; Venable, D Lawrence

    2018-01-01

    Numerous mechanisms may allow species to coexist. We tested for frequency-dependent predation, a mechanism predicted by theory and established as a foraging behavior for many types of animals. Our field test included multiple prey species exposed in situ to multiple predator species and individuals to determine whether the prey species experienced predation patterns that were frequency dependent. The prey were seeds of three species of Sonoran Desert winter annual plants while the predator species were a guild of nocturnal seed foraging heteromyid and murid rodents that co-occur naturally in the same community as the desert annuals at Tumamoc Hill near Tucson. Seeds of one species were much preferred over the other two. Nonetheless, we found the net effect of rodent foraging to be positively frequency dependent (the preference for each species is higher when it is common than when it is uncommon) as has been previously hypothesized. This frequency-dependent predation should function as a species coexistence promoting mechanism in concert with the storage effect that has been previously demonstrated for this system. © 2017 by the Ecological Society of America.

  13. A discrete solvent reaction field model for calculating frequency-dependent hyperpolarizabilities of molecules in solution

    NARCIS (Netherlands)

    Jensen, L; van Duijnen, PT; Snijders, JG

    2003-01-01

    We present a discrete solvent reaction field (DRF) model for the calculation of frequency-dependent hyperpolarizabilities of molecules in solution. In this model the solute is described using density functional theory (DFT) and the discrete solvent molecules are described with a classical

  14. Frequency-dependent noise characteristics in a gas-to-liquid plant ...

    African Journals Online (AJOL)

    Frequency-dependent noise characteristics in a gas-to-liquid plant in the swamp area of the Niger delta. GI Alaminiokuma, VB Omubo-Pepple, MA Briggs-Kamara. Abstract. No Abstract. Global Journal of Pure and Applied Sciences Vol. 13 (2) 2007: pp. 305-312. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  15. Frequency-dependent effects of the pyrethroid insecticide decamethrin in frog myelinated nerve fibres

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Bercken, J. van den

    1979-01-01

    The pyrethroid insectide decamethrin (10−6M) caused a frequency-dependent depression of the action potential in frog myelinated nerve fibres which was associated with a progressive membrane depolarisation brought about by summation of depolarising after-potentials. Voltage clamp experiments with

  16. Frequency-Dependent Social Dominance in a Color Polymorphic Cichlid Fish

    NARCIS (Netherlands)

    Dijkstra, Peter; Lindström, Jan; Metcalfe, Neil B.; Hemelrijk, Charlotte K.; Brendel, Mischa; Seehausen, Ole; Groothuis, Ton G.G.

    2010-01-01

    A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency-dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia.

  17. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  18. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency

  19. Staurosporine Inhibits Frequency-Dependent Myofilament Desensitization in Intact Rabbit Cardiac Trabeculae

    Directory of Open Access Journals (Sweden)

    Kenneth D. Varian

    2012-01-01

    Full Text Available Myofilament calcium sensitivity decreases with frequency in intact healthy rabbit trabeculae and associates with Troponin I and Myosin light chain-2 phosphorylation. We here tested whether serine-threonine kinase activity is primarily responsible for this frequency-dependent modulations of myofilament calcium sensitivity. Right ventricular trabeculae were isolated from New Zealand White rabbit hearts and iontophoretically loaded with bis-fura-2. Twitch force-calcium relationships and steady state force-calcium relationships were measured at frequencies of 1 and 4 Hz at 37 °C. Staurosporine (100 nM, a nonspecific serine-threonine kinase inhibitor, or vehicle (DMSO was included in the superfusion solution before and during the contractures. Staurosporine had no frequency-dependent effect on force development, kinetics, calcium transient amplitude, or rate of calcium transient decline. The shift in the pCa50 of the force-calcium relationship was significant from 6.05±0.04 at 1 Hz versus 5.88±0.06 at 4 Hz under control conditions (vehicle, P<0.001 but not in presence of staurosporine (5.89±0.08 at 1 Hz versus 5.94±0.07 at 4 Hz, P=NS. Phosphoprotein analysis (Pro-Q Diamond stain confirmed that staurosporine significantly blunted the frequency-dependent phosphorylation at Troponin I and Myosin light chain-2. We conclude that frequency-dependent modulation of calcium sensitivity is mediated through a kinase-specific effect involving phosphorylation of myofilament proteins.

  20. Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach

    Directory of Open Access Journals (Sweden)

    Ali Fellah Jahromi

    2015-01-01

    Full Text Available Magnetorheological dampers have been widely used in civil and automotive industries. The nonlinear behavior of MR fluid makes MR damper modeling a challenging problem. In this paper, a frequency dependent MR damper model is proposed based on Spencer MR damper model. The parameters of the model are identified using an experimental data based hybrid optimization approach which is a combination of Genetic Algorithm and Sequential Quadratic Programming approach. The frequency in the proposed model is calculated using measured relative velocity and relative displacement between MR damper ends. Therefore, the MR damper model will be function of frequency. The mathematical model is validated using the experimental results which confirm the improvement in the accuracy of the model and consistency in the variation damping with the frequency.

  1. Hydrostatic pressure dependence of Brillouin frequency shift in polymer optical fibers

    Science.gov (United States)

    Mizuno, Yosuke; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro

    2018-01-01

    We experimentally investigate the pressure dependence of the Brillouin frequency shift (BFS) in a polymer optical fiber. The BFS dependence on pressure shows a hysteresis, but after several cycles of increasing/decreasing pressure, the hysteresis is mitigated. The pressure dependence coefficient at this state is +4.3 MHz/MPa, the absolute value of which is 5.8 times as large as that of bare silica fibers (the sign is opposite). The reason for this unique behavior is discussed. This result indicates that, by using plastic optical fibers instead of silica fibers, distributed pressure sensing with a higher sensitivity is potentially feasible.

  2. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    Science.gov (United States)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.

  3. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems.

    Science.gov (United States)

    Krajnak, Kristine; Miller, G R; Waugh, Stacey

    2018-01-01

    Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.

  4. Effect of neutron flux on the frequency dependencies of electrical conductivity of silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, E.; Garibli, A., E-mail: elchin.huse@yahoo.com [National Nuclear Research Center, Department of Nanotechnology and Radiation Material Science, 1073, Inshaatchilar pr. 4, Baku (Azerbaijan)

    2016-11-01

    It has been reviewed the frequency dependencies of electrical conductivity of nanoparticles affected by neutron flux at different times and initial state, at various constant temperatures such as 100, 200, 300 and 400 K. Measurements have been carried out at each temperature at the different 97 values of frequency in the 1 Hz - 1 MHz range. From interdependence between real and imaginary parts of electrical conductivity it has been determined the type of conductivity. Moreover, in the work it is given the mechanism of electrical conductivity according to the obtained results. (Author)

  5. An analysis of boundary-effects in obtaining the frequency dependent specific heat by effusivity measurements

    DEFF Research Database (Denmark)

    Christensen, Tage Emil; Behrens, Claus

    The frequency dependent specific heat is a significant response function characterizing the glass transition. Contrary to the dielectric response it is not easily measured over many decades. The introduction of the 3-omega method, where the temperature oscillations at a planar oscillatoric heat...... generator is measured, made this possible. The method relied on a 1-d solution to the heat diffusion equation. There have been attempts to invoke the boundary effects to first order. However we present the fully 3-d solution to the problem including these effects. The frequency range can hereby...

  6. Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene

    Science.gov (United States)

    Bhalla, Pankaj

    2017-03-01

    We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity κe (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, κe (T) ∼T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that κe (T) shows T 1 / 2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re [κe (ω , T) ] follows ω-2 behavior at the low frequency and becomes frequency independent at the high frequency.

  7. A Polarization-Dependent Frequency-Selective Metamaterial Absorber with Multiple Absorption Peaks

    Directory of Open Access Journals (Sweden)

    Guangsheng Deng

    2017-06-01

    Full Text Available A polarization-dependent, frequency-selective metamaterial (MM absorber based on a single-layer patterned resonant structure intended for F frequency band is proposed. The design, fabrication, and measurement for the proposed absorber are presented. The absorber’s absorption properties at resonant frequencies have unique characteristics of a single-band, dual-band, or triple-band absorption for different polarization of the incident wave. The calculated surface current distributions and power loss distribution provide further understanding of physical mechanism of resonance absorption. Moreover, a high absorption for a wide range of TE-polarized oblique incidence was achieved. Hence, the MM structure realized on a highly flexible polyimide film, makingthe absorber suitable for conformal geometry applications. The proposed absorber has great potential in the development of polarization detectors and polarizers.

  8. Digital system accurately controls velocity of electromechanical drive

    Science.gov (United States)

    Nichols, G. B.

    1965-01-01

    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  9. Study of frequency- and temperature-dependent electrical transport in heavy fermion systems

    Science.gov (United States)

    Baral, P. C.

    2017-05-01

    This paper focuses on the frequency- and temperature-dependent electrical transport properties of heavy fermion (HF) systems. For this, Kondo lattice model (KLM) with Coulomb correlation between f-f electrons at the same site is considered. The Hamiltonian is treated in mean-field approximation (MFA) for the Kondo hybridization and Heisenberg-type interaction to get mean-field Hamiltonian and it is written after the Fourier transformation. The Hartree-Fock-type approximation is considered for the Coulomb repulsion between f-f electrons, the perturbed part of the Hamiltonian. The two Green’s functions for the conduction and f-electrons are calculated to define the self-energy. Then the frequency- and temperature-dependent optical conductivity and resistivity are calculated by using the Kubo’s formula within the linear dynamical response approach. They are studied by varying the model parameters. The anomalies and results obtained are compared with experimental data.

  10. Temperature and frequency dependence of AC conductivity and modulus in Cr-Doped ZnO

    Science.gov (United States)

    Junais, P. M.; Govindaraj, G.

    2017-05-01

    A nanocrystalline Cr-doped ZnO has been prepared by refluxing method. The samples were characterized using XRD and impedance spectroscopy. The XRD pattern shows the crystalline nature of the sample and well confirms the successful doping Cr into the host lattice. The conductivity of the sample measured in the temperature range 303-603K and in the frequency range 10Hz-1MHz. The temperature dependent dc conductivity and hopping frequency show Arrhenius behavior. AC conductivity data were analyzed using Jonscher's power law. Modulus data were analyzed using Bergman modified KWW function. Temperature dependent capacitance shows a sharp peak at 540K which may be due to ferroelectric nature of the material.

  11. Testing of Dependencies between Stock Returns and Trading Volume by High Frequency Data

    OpenAIRE

    Piotr Gurgul; Robert Syrek

    2013-01-01

    This paper is concerned with a dependence analysis of returns, return volatility and trading volume for five companies listed on the Vienna Stock Exchange and five from the Warsaw Stock Exchange. Taking into account high frequency data for these companies, tests based on a comparison of Bernstein copula densities using the Hellinger distance were conducted. The paper presents some patterns of causal and other relationships between stock returns, realized volatility and expected and unexpected...

  12. Pressure at the ISM-halo interface: A reheating frequency dependence

    Directory of Open Access Journals (Sweden)

    Ćirković M.M.

    1998-01-01

    Full Text Available The dependence of the thermal pressure of hot galactic halos on a model parameter describing the frequency of major reheating episodes during galactic history is investigated. Pressure on the interface between interstellar medium and the halo gas is especially interesting, since empirical evidence here offers one of the simplest constraints on halo models. It is shown that two-phase model of Mo & Miralda-Escudé is sufficiently robust with respect to uncertainties in the average interval between reheating.

  13. Frequency-dependent selection maintains clonal diversity in an asexual organism

    OpenAIRE

    Weeks, Andrew R.; Hoffmann, Ary A.

    2008-01-01

    Asexual organisms can be genetically variable and evolve through time, yet it is not known how genetic diversity is maintained in populations. In sexual organisms, negative frequency-dependent selection plays a role in maintaining diversity at some loci, but in asexual organisms, this mechanism could provide a general explanation for persistent genetic diversity because it acts on the whole genome and not just on some polymorphisms within a genome. Using field manipulations, we show that nega...

  14. Frequency-dependent changes in sensorimotor and pain affective systems induced by empathy for pain

    OpenAIRE

    Motoyama Y; Ogata K; Hoka S; Tobimatsu S

    2017-01-01

    Yoshimasa Motoyama,1,2,* Katsuya Ogata,1,* Sumio Hoka,2 Shozo Tobimatsu1 1Department of Clinical Neurophysiology, Neurological Institute, 2Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan *These authors contributed equally to this work Background: Empathy for pain helps us to understand the pain of others indirectly. To better comprehend the processing of empathic pain, we report the frequency-dependent mo...

  15. Frequency-dependent selection by wild birds promotes polymorphism in model salamanders

    OpenAIRE

    Shook Kim; Fitzpatrick Benjamin M; Izally Reuben

    2009-01-01

    Abstract Background Co-occurrence of distinct colour forms is a classic paradox in evolutionary ecology because both selection and drift tend to remove variation from populations. Apostatic selection, the primary hypothesis for maintenance of colour polymorphism in cryptic animals, proposes that visual predators focus on common forms of prey, resulting in higher survival of rare forms. Empirical tests of this frequency-dependent foraging hypothesis are rare, and the link between predator beha...

  16. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation.

    Science.gov (United States)

    Chen, Wen; Fang, Jun; Pang, Guofei; Holm, Sverre

    2017-01-01

    This paper proposes a fractional biharmonic operator equation model in the time-space domain to describe scattering attenuation of acoustic waves in heterogeneous media. Compared with the existing models, the proposed fractional model is able to describe arbitrary frequency-dependent scattering attenuation, which typically obeys an empirical power law with an exponent ranging from 0 to 4. In stark contrast to an extensive and rapidly increasing application of the fractional derivative models for wave absorption attenuation in the literature, little has been reported on frequency-dependent scattering attenuation. This is largely because the order of the fractional Laplacian is from 0 to 2 and is infeasible for scattering attenuation. In this study, the definition of the fractional biharmonic operator in space with an order varying from 0 to 4 is proposed, as well as a fractional biharmonic operator equation model of scattering attenuation which is consistent with arbitrary frequency power-law dependency and obeys the causal relation under the smallness approximation. Finally, the correlation between the fractional order and the ratio of wavelength to the diameter of the scattering heterogeneity is investigated and an expression on exponential form is also provided.

  17. Conceptual design of an apparatus for measuring frequency-dependent streaming potential of porous media

    Science.gov (United States)

    Tardif, Eric; Walker, Emilie; Glover, Paul; Ruel, Jean

    2010-05-01

    Electro-kinetic phenomena link fluid flow and electrical flow in porous and fractured media such that a hydraulic flow will generate an electrical current and vice versa. Such a link is likely to be extremely useful, especially in the development of the theory of the electro-seismic method. However, surprisingly little experimental determination, numerical modeling and theoretical development have taken place, and what exists is for steady state flow. There have been only a few attempts at making experimental determinations of the frequency-dependent streaming potential coupling coefficient because of their difficulty, and only one rare measurement made on rocks. Here we have considered six different approaches to making laboratory determinations of the frequency-dependent streaming potential coupling coefficient. In each case, we have quantified the practical difficulties involved in each method. We conclude that the electro-magnetic drive and the piezo-electric are the only approaches that are practicable with current technology. We have also constructed a simplified trial apparatus using the electro-magnetic drive to test the conceptual design with samples in the form of sands and beads. Tests with this apparatus on Ottawa sandstone and glass bead packs have shown that high quality measurements of the frequency-dependent streaming potential coupling coefficient can be made, and we are currently extending its frequency range. Tests have indicated that it is important to ascertain whether the measured frequency-dependent streaming potential coupling coefficient is independent of the volume of fluid passing through the sample per cycle. We have used our experience with the trial apparatus to design a new apparatus for a 1 cm diameter sample, and with the help of an engineering approach we have determined the range of possible sample permeabilities for samples between 0.5 and 2 cm in length. The new cell will have a maximum confining pressure of compressed nitrogen

  18. Simulation of Accurate Vibrationally Resolved Electronic Spectra: the Integrated Time-Dependent and Time-Independent Framework

    Science.gov (United States)

    Baiardi, Alberto; Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien

    2014-06-01

    Two parallel theories including Franck-Condon, Herzberg-Teller and Duschinsky (i.e., mode mixing) effects, allowing different approximations for the description of excited state PES have been developed in order to simulate realistic, asymmetric, electronic spectra line-shapes taking into account the vibrational structure: the so-called sum-over-states or time-independent (TI) method and the alternative time-dependent (TD) approach, which exploits the properties of the Fourier transform. The integrated TI-TD procedure included within a general purpose QM code [1,2], allows to compute one photon absorption, fluorescence, phosphorescence, electronic circular dichroism, circularly polarized luminescence and resonance Raman spectra. Combining both approaches, which use a single set of starting data, permits to profit from their respective advantages and minimize their respective limits: the time-dependent route automatically includes all vibrational states and, possibly, temperature effects, while the time-independent route allows to identify and assign single vibronic transitions. Interpretation, analysis and assignment of experimental spectra based on integrated TI-TD vibronic computations will be illustrated for challenging cases of medium-sized open-shell systems in the gas and condensed phases with inclusion of leading anharmonic effects. 1. V. Barone, A. Baiardi, M. Biczysko, J. Bloino, C. Cappelli, F. Lipparini Phys. Chem. Chem. Phys, 14, 12404, (2012) 2. A. Baiardi, V. Barone, J. Bloino J. Chem. Theory Comput., 9, 4097-4115 (2013)

  19. On the Frequency Dependency of Radio Channel's Delay Spread: Analyses and Findings From mmMAGIC Multi-frequency Channel Sounding

    OpenAIRE

    Nguyen, Sinh L. H.; Medbo, Jonas; Peter, Michael; Karttunen, Aki; Haneda, Katsuyuki; Bamba, Aliou; D'Errico, Raffaele; Iqbal, Naveed; Diakhate, Cheikh; Conrat, Jean-Marc

    2017-01-01

    This paper analyzes the frequency dependency of the radio propagation channel's root mean square (rms) delay spread (DS), based on the multi-frequency measurement campaigns in the mmMAGIC project. The campaigns cover indoor, outdoor, and outdoor-to-indoor (O2I) scenarios and a wide frequency range from 2 to 86 GHz. Several requirements have been identified that define the parameters which need to be aligned in order to make a reasonable comparison among the different channel sounders employed...

  20. Trade-off between toxicity and signal detection orchestrated by frequency- and density-dependent genes.

    Directory of Open Access Journals (Sweden)

    Laury Arthaud

    Full Text Available Behaviors in insects are partly highly efficient Bayesian processes that fulfill exploratory tasks ending with the colonization of new ecological niches. The foraging (for gene in Drosophila encodes a cGMP-dependent protein kinase (PKG. It has been extensively described as a frequency-dependent gene and its transcripts are differentially expressed between individuals, reflecting the population density context. Some for transcripts, when expressed in a population at high density for many generations, concomitantly trigger strong dispersive behavior associated with foraging activity. Moreover, genotype-by-environment interaction (GEI analysis has highlighted a dormant role of for in energetic metabolism in a food deprivation context. In our current report, we show that alleles of for encoding different cGMP-dependent kinase isoforms influence the oxidation of aldehyde groups of aromatic molecules emitted by plants via Aldh-III and a phosphorylatable adaptor. The enhanced efficiency of oxidation of aldehyde odorants into carboxyl groups by the action of for lessens their action and toxicity, which should facilitate exploration and guidance in a complex odor environment. Our present data provide evidence that optimal foraging performance requires the fast metabolism of volatile compounds emitted by plants to avoid neurosensory saturation and that the frequency-dependent genes that trigger dispersion influence these processes.

  1. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    Science.gov (United States)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear

  2. Accurate repositioning of the human thumb against unpredictable dynamic loads is dependent upon peripheral feed-back.

    Science.gov (United States)

    Day, B L; Marsden, C D

    1982-06-01

    1. The strategy of accurate movement of the human thumb has been studied in nine subjects. An open-loop hypothesis, which states that a new final position is defined by re-setting the agonist/antagonist spring constants, was tested2. Subjects were trained to flex the top joint of the thumb rapidly through 20 deg in about a third of a second from a fixed starting position against a load. Occasionally, and unpredictably, the viscous friction of the load was altered prior to it's being moved. The spring hypothesis predicts that such a change in load should have no effect on final position accuracy.3. Under normal conditions no final position error developed when the viscous friction was increased. A small overshoot occurred when the viscous friction was decreased.4. The electromyogram recorded from surface electrodes over the belly of flexor pollicis longus in the forearm revealed an increase in activity in response to an increase in viscous friction and a decrease in activity when the viscous friction was reduced.5. When the joint and cutaneous afferents from the thumb were anaesthetized, the e.m.g. response to a change in viscous friction was severely attenuated and consistent final position errors developed.6. Even though the compensatory open-loop muscle properties went some way towards maintaining accuracy, the change in final position error that occurred as a result of thumb anaesthesia correlated well (r = 0.84) with the amount of muscle e.m.g. response that was lost.7. The latency of the e.m.g. response to a change in viscous friction was compared to that of a voluntary response by asking the subject to push down or let go upon perception of the load change. Approximately the first 100 ms of the e.m.g. response was unaffected by the voluntary intervention of the subject.8. We conclude that the spring hypothesis does not explain human thumb movement. It is argued that the long-latency stretch reflex machinery is responsible for some automatic compensation for

  3. Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    of the correlation hole characteristic of any local kernel. This new class of renormalized kernels gives a significantly better description of the short-range correlations in covalent bonds compared to the random phase approximation (RPA) and yields a fourfold improvement of RPA binding energies in both molecules......We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence...... and solids. We also consider examples of barrier heights in chemical reactions, molecular adsorption, and graphene interacting with metal surfaces, which are three examples where the RPA has been successful. In these cases, the renormalized kernel provides results that are of equal quality or even slightly...

  4. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  5. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  6. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    Science.gov (United States)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  7. Stress-dependent elastic properties of shales—laboratory experiments at seismic and ultrasonic frequencies

    Science.gov (United States)

    Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.

    2018-01-01

    Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in

  8. Occurrence of fatigue induced by a whole-body vibration session is not frequency dependent.

    Science.gov (United States)

    Zory, Raphael F; Raphael, Zory F; Aulbrook, Wesley; Wesley, Aulbrook; Keir, Daniel A; Daniel, Keir A; Serresse, Olivier; Olivier, Serresse

    2013-09-01

    The aim of this study was to determine whether neuromuscular adaptations (magnitude and location) induced by isometric exercise performed on an oscillating platform are dependent on whole-body vibration (WBV) frequency. Eleven young men performed 4 separate fatigue sessions of static squatting exercise at 3 frequencies of WBV (V20, V40, and V60) and 1 session without vibration (V0). Isometric torque and electromyographic activity of the vastus lateralis, rectus femoris, and biceps femoris were recorded during maximal voluntary and evoked contractions of the knee extensor muscles before and after each fatigue session to examine both peripheral and central adaptations. Isometric torque decreased significantly after each of the 4 frequency sessions (V0: -9.4 ± 6.1%, p = 0.003; V20: -8.1 ± 9.9%, p = 0.010; V40: -11.9 ± 12.7%, p = 0.011; and V60: -7.8 ± 9.2%, p = 0.001, respectively), but this reduction was not significantly different between frequencies. The torque produced by evoked contraction significantly decreased from pre-exercise values after each session (V0: -14.9 ± 15.6%, p = 0.012; V20: -15.8 ± 16.4%, p = 0.010; V40: -21.0 ± 14.3%, p = 0.004; and V60: -17.3 ± 11.6%, p = 0.005, respectively); however, there was no effect of vibration frequency. In both conditions, the maximal voluntary contraction torque reduction observed was mainly attributable to peripheral fatigue and was not because of central modifications of the neuromuscular system. The present study demonstrates that the frequency of vibration does not significantly influence the magnitude and location of neuromuscular fatigue, suggesting that adding WBV to static squat exercise (on a vertically oscillating platform) does not provide an additional training stimulus.

  9. Frequency Dependencies of the Exchange Spin Wave Reflection Coefficient on a One-Dimensional Magnon Crystal with Complex Interfaces

    Directory of Open Access Journals (Sweden)

    Serhii O. Reshetniak

    2017-09-01

    Conclusions. It is shown that the frequency dependencies are periodic, points of full transmission and areas, full of reflection. Decreasing exchange parameter value in interface causes the increase of reflectance coefficient. Changing the material parameters we get the necessary intensity value of the reflection coefficient depending on the frequency at a constant value of the external magnetic field.

  10. Human Commercial Models' Eye Colour Shows Negative Frequency-Dependent Selection.

    Science.gov (United States)

    Forti, Isabela Rodrigues Nogueira; Young, Robert John

    2016-01-01

    In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male) and Brazil (400 female and 400 male) to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (PBrazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour) it is hard to modify, hide or disguise, and it is highly polymorphic.

  11. Tuning of gravity-dependent and gravity-independent vertical angular VOR gain changes by frequency of adaptation.

    Science.gov (United States)

    Yakushin, Sergei B

    2012-06-01

    The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1-4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz.

  12. Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes

    Energy Technology Data Exchange (ETDEWEB)

    Farengo, R. [Comisión Nacional de Energía Atómica, Centro Atómico Bariloche e Instituto Balseiro, 8400 Bariloche, RN (Argentina); Ferrari, H. E. [Comisión Nacional de Energía Atómica, Centro Atómico Bariloche e Instituto Balseiro, 8400 Bariloche, RN (Argentina); CONICET, 8400 Bariloche, RN (Argentina); Garcia-Martinez, P. L. [CONICET, 8400 Bariloche, RN (Argentina); Firpo, M.-C.; Ettoumi, W. [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, 91128, Palaiseau cedex (France); Lifschitz, A. F. [Laboratoire d' Optique Appliquee, ENSTA, CNRS, Ecole Polytechnique, 91761 Palaiseau cedex (France)

    2014-08-15

    The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18 keV and 3.5 MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E≳1 MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1 MeV, depending on the mode frequency. These results can have important implications for ash removal.

  13. Low-frequency-dependent electro-optic properties of potassium lithium tantalate niobate single crystals

    Science.gov (United States)

    Li, Yang; Li, Jun; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2013-05-01

    A series of lead-free ferroelectric potassium lithium tantalate niobate K0.95Li0.05Ta1-xNbxO3 (x = 0.78, 0.69, 0.60, 0.52) single crystals were grown using the top-seeded melt growth method. The low-frequency-dependent linear electro-optic properties of K0.95Li0.05Ta1-xNbxO3 single crystals in the tetragonal state were investigated using the Senarmont method, autoscanning Mach-Zehnder interferometer technique and AC measurement method at room temperature. The electro-optic measurements were taken with continuous low frequency (from 1 kHz to 100 kHz) of a sinusoidal electric field, and large electro-optic responses were observed. For every component, the values of the electro-optic coefficients γ33, γ13 and γc decrease with the increase of frequency. However, the γ51 shows low sensitivity to the change of frequency. γ33, γ13 and γc increase with tantalum content, but γ51 decreases with the increase of tantalum content. The electro-optic properties of high-optical-quality K0.95Li0.05Ta1-xNbxO3 single crystals forecast their outstanding potential in various electro-optic applications.

  14. The dependence of frequency distributions on multiple meanings of words, codes and signs

    Science.gov (United States)

    Yan, Xiaoyong; Minnhagen, Petter

    2018-01-01

    The dependence of the frequency distributions due to multiple meanings of words in a text is investigated by deleting letters. By coding the words with fewer letters the number of meanings per coded word increases. This increase is measured and used as an input in a predictive theory. For a text written in English, the word-frequency distribution is broad and fat-tailed, whereas if the words are only represented by their first letter the distribution becomes exponential. Both distribution are well predicted by the theory, as is the whole sequence obtained by consecutively representing the words by the first L = 6 , 5 , 4 , 3 , 2 , 1 letters. Comparisons of texts written by Chinese characters and the same texts written by letter-codes are made and the similarity of the corresponding frequency-distributions are interpreted as a consequence of the multiple meanings of Chinese characters. This further implies that the difference of the shape for word-frequencies for an English text written by letters and a Chinese text written by Chinese characters is due to the coding and not to the language per se.

  15. Geometry dependence of temperature coefficient of resonant frequency in highly sensitive resonant thermal sensors

    Science.gov (United States)

    Inomata, Naoki; Ono, Takahito

    2017-08-01

    In this paper, the geometry dependence of the temperature coefficient of resonant frequency (TCRF) is investigated and compared with a theoretical thermal stress change using Si mechanical microresonators. The used resonators have Y, T, I (conventional double-supported type) and arrow shapes, and in each shape the resonant frequency change of the resonator is measured in relation to changes in the amount of heat input to the resonator. The change trend in the experimental resonant frequency and the theoretical thermal stress in changing the temperature are consist. The TCRF in each resonator is Y: -653, T: -162, I: -417, and the arrow is 174 ppm/K. These absolute values are much higher than those of conventional cantilevered Si resonators (-34.9 ppm/K). In addition, the frequency fluctuations based on Allan deviation are experimentally evaluated considering the theoretical thermal fluctuation noise. It is considered that use of this technique to improve the TCRF of resonators by changing the geometry has the possibility of creating a sensor with highly sensitive thermal detection.

  16. Frequency-dependent tsunami-amplification factor derived from tsunami numerical simulations

    Science.gov (United States)

    Tsushima, H.

    2016-12-01

    I develop frequency-dependent tsunami-amplification factor for real-time correction of tsunami site response for tsunami early warning. A tsunami waveform at an observing point can be modeled by convolution of source, path and site effects in time domain. When we compare tsunami waveforms at observing points between outside and inside a bay, source and path effects can be regarded as equal. Thus, spectral ratio of the two waveforms gives frequency-dependent tsunami-amplification factor. If such amplification factor is prepared in advance of earthquake, its real-time convolution to offshore tsunami waveform provides tsunami prediction at coastal site. In this study, numerical tsunami simulations from many earthquakes were performed to synthesize tsunami waveforms that were used in spectral-ratio analysis. Then, I calculate average of the resulted spectral ratios to obtain frequency-dependent tsunami-amplification factor. Source models of magnitude 7.5-8.7 interplate earthquakes were assumed at 26 locations along the Japan-Kuril trenches, and then the resultant tsunamis were calculated numerically to synthesize 4-hour tsunami waveforms at observing points along the Japanese coast. Two tsunami simulations were performed for each source: one is based on nonlinear long wave theory, and the other is based on linear long wave theory. I focus on tsunami-amplification factor at Miyako bay, northeastern Japan. The resultant tsunami-height spectral ratio between the center of Miyako bay and the outside show two peaks at wave-periods of 20 and 40 min. These peak amplitudes derived from the nonlinear tsunami simulations are smaller than those from the linear simulations. It may be caused by energy attenuation due to bottom friction. On the other hand, in the spectral ratio between the closed-off section of the bay and the outside, peak at 20-min period cannot be seen. This indicates that frequency-dependent amplification factor may depend on location even in the same bay. These

  17. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2006-05-01

    Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.

  18. Frequency-Dependent Multi-Well Cardiotoxicity Screening Enabled by Optogenetic Stimulation

    Directory of Open Access Journals (Sweden)

    Susanne Rehnelt

    2017-12-01

    Full Text Available Side effects on cardiac ion channels causing lethal arrhythmias are one major reason for drug withdrawals from the market. Field potential (FP recording from cardiomyocytes, is a well-suited tool to assess such cardiotoxic effects of drug candidates in preclinical drug development, but it is currently limited to the spontaneous beating of the cardiomyocytes and manual analysis. Herein, we present a novel optogenetic cardiotoxicity screening system suited for the parallel automated frequency-dependent analysis of drug effects on FP recorded from human-induced pluripotent stem cell-derived cardiomyocytes. For the expression of the light-sensitive cation channel Channelrhodopsin-2, we optimised protocols using virus transduction or transient mRNA transfection. Optical stimulation was performed with a new light-emitting diode lid for a 96-well FP recording system. This enabled reliable pacing at physiologically relevant heart rates and robust recording of FP. Thereby we detected rate-dependent effects of drugs on Na+, Ca2+ and K+ channel function indicated by FP prolongation, FP shortening and the slowing of the FP downstroke component, as well as generation of afterdepolarisations. Taken together, we present a scalable approach for preclinical frequency-dependent screening of drug effects on cardiac electrophysiology. Importantly, we show that the recording and analysis can be fully automated and the technology is readily available using commercial products.

  19. Temperature and Frequency Dependent Empirical Models of Dielectric Properties of Sunflower and Olive Oil

    Directory of Open Access Journals (Sweden)

    J. Vrba

    2013-12-01

    Full Text Available In this article, a known concept and measurement probe geometry for the estimation of the dielectric properties of oils have been adapted. The new probe enables the~measurement in the frequency range of 1 to 3000 MHz. Additionally, the measurement probe has been equipped with a~heat exchanger, which has enabled us to measure the dielectric properties of sunflower and olive oil as well as of two commercial emulsion concentrates. Subsequently, corresponding linear empirical temperature and frequency dependent models of the dielectric properties of the above mentioned oils and concentrates have been created. The dielectric properties measured here as well as the values obtained based on the empirical models created here match the data published in professional literature very well.

  20. Effect of frequency on amplitude-dependent internal friction in niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Naoki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)]. E-mail: ide@nitech.ac.jp; Atsumi, Tomohiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishino, Yoichi [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2006-12-20

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10{sup -9} was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency.

  1. Frequency-dependent responses in third generation gravitational-wave detectors

    Science.gov (United States)

    Essick, Reed; Vitale, Salvatore; Evans, Matthew

    2017-10-01

    Interferometric gravitational-wave detectors are dynamic instruments. Changing gravitational-wave strains influence the trajectories of null geodesics and therefore modify the interferometric response. These effects will be important when the associated frequencies are comparable to the round-trip light travel time down the detector arms. The arms of advanced detectors currently in operation are short enough that the strain can be approximated as static, but planned 3rd generation detectors, with arms an order of magnitude longer, will need to account for these effects. We investigate the impact of neglecting the frequency-dependent detector response for compact binary coalescences and show that it can introduce large systematic biases in localization, larger than the statistical uncertainty for 1.4 -1.4 M⊙ neutron star coalescences at z ≲1.7 . Analysis of 3rd generation detectors therefore must account for these effects.

  2. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Atsushi; Yokono, Takafumi [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Yokono, Takafumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Information Sciences and Electronics

    2000-06-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency {omega}. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with {omega} > or approx. 1 kHz. (author)

  3. Geometrical dependence of the low-frequency noise in superconducting flux qubits

    Science.gov (United States)

    Lanting, T.; Berkley, A. J.; Bumble, B.; Bunyk, P.; Fung, A.; Johansson, J.; Kaul, A.; Kleinsasser, A.; Ladizinsky, E.; Maibaum, F.; Harris, R.; Johnson, M. W.; Tolkacheva, E.; Amin, M. H. S.

    2009-02-01

    A general method for directly measuring the low-frequency flux noise (below 10 Hz) in compound Josephson-junction superconducting flux qubits has been used to study a series of 85 devices of varying design. The variation in flux noise across sets of qubits with identical designs was observed to be small. However, the levels of flux noise systematically varied between qubit designs with strong dependence upon qubit wiring length and wiring width. Furthermore, qubits fabricated above a superconducting ground plane yielded lower noise than qubits without such a layer. These results support the hypothesis that local impurities in the vicinity of the qubit wiring are a key source of low-frequency flux noise in superconducting devices.

  4. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  5. Dielectric Characterization of composite building materials depending on the volume fraction for Mobile Phone Frequencies

    Directory of Open Access Journals (Sweden)

    Terhzaz Jaouad

    2014-04-01

    Full Text Available This W presents a new technique of Dielectric Characterization of composites building materials. This technique is based on the modeling of an open coaxial cell with a mathematical formulation that links the admittances of the filled and empty cell to the complex permittivity ε* of materials characterization. We applied this technique to the dielectric characterization of some building materials powder in the frequency band (100MHz-4GHz. We also characterize some composite materials (sand- brick, cement- sand, and cement-brick depending on the volume fraction for Mobile Phone Frequencies. We made a comparison with the laws of mixtures to identify the most appropriate law to render the dielectric behavior of these materials.

  6. Recovery of electromyograph median frequency after lumbar muscle fatigue analysed using an exponential time dependence model.

    Science.gov (United States)

    Elfving, Britt; Liljequist, David; Dedering, Asa; Németh, Gunnar

    2002-11-01

    The recovery of the median frequency of the power spectrum of the electromyogram (EMG) after fatigue has been studied to obtain reference data for healthy subjects (n = 55). In a seated position, the subjects performed a 45 s isometric back muscle contraction at 80% of maximal voluntary contraction, followed by 5 s contractions after 1, 2, 3, and 5 min in the recovery phase. In an additional reliability study (n = 11), this was performed six times. Surface EMG was recorded on four sites, namely, bilaterally from the lumbar muscles at the level of the first (L1) and fifth (L5) vertebrae. By non-linear regression, an exponential time dependence model was used to analyse the recovery of median frequency, giving recovery half-time as a resulting measure. Agreement with exponential time dependence was very good (coefficient of determination r(2) = 0.98) in the analysis of mean data (n = 55), with recovery half-times in the range 32-39 s on the four recording sites. Analysis of individual recordings, for which r(2) values in general were lower, revealed further details. Median values of the half-times in general agreed well with the half-times obtained from the analysis of mean data. Recovery half-time and median frequency slope during contraction were not correlated; this is in agreement with what may be expected from an exponential time dependence. Non-significant negative slopes occurred on apparently randomly selected sites, possibly indicating varying muscle coordination in the seated test method. The reliability of the half-time was not sufficient to allow for follow-up measurements on individuals, due to the fluctuations of the recovery data in recordings from individuals.

  7. Frequency dependence of CA3 spike phase response arising from h-current properties

    Directory of Open Access Journals (Sweden)

    Melodie eBorel

    2013-12-01

    Full Text Available The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarisation-activated mixed cation current (Ih, which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their intrinsic membrane properties. We found that both CA3 and CA1 pyramidal neurons show a voltage sag in response to negative current steps but that this voltage sag is significantly smaller in CA3 cells. Moreover, CA3 pyramidal neurons have less prominent resonance properties compared to CA1 pyramidal neurons. This is consistent with differential expression of Ih by the two cell types. Despite their distinct intrinsic membrane properties, both CA3 and CA1 pyramidal neurons displayed bidirectional spike phase control by excitatory conductance inputs during theta oscillations. In particular, excitatory inputs delivered at the descending phase of a dynamic clamp-induced membrane potential oscillation delayed the subsequent spike by nearly 50 mrad. The effect was shown to be mediated by Ih and was counteracted by increasing inhibitory conductance driving the membrane potential oscillation. Using our experimental data to feed a computational model, we showed that differences in Ih between CA3 and CA1 pyramidal neurons could predict frequency-dependent differences in phase response properties between these cell types. We confirmed experimentally such frequency-dependent spike phase control in CA3 neurons. Therefore, a decrease in theta frequency, which is observed in intact animals during novelty, might switch the CA3 spike phase response from unidirectional to bidirectional and thereby promote encoding of the new context.

  8. Resolution theory and static- and frequency dependent cross-talk in piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, Stephen [ORNL; Guo, Senli [ORNL; Kumar, Amit [ORNL; Rodriguez, Brian [University College, Dublin; Proksch, Roger [Asylum Research, Santa Barbara, CA; Kalinin, Sergei V [ORNL

    2010-01-01

    Probing materials functionality locally by scanning probe microscopy requires reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, i.e. instrumental and topographical cross-talk. Here we develop the linear resolution theory framework to describe the cross-talk effects, and apply it for elucidation of frequency dependent cross-talk mechanisms in the Piezoresponse Force Microscopy. The use of band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of functional fit approach and multivariate statistical analysis methods for data identification in band excitation SPM is explored.

  9. Some properties of frequency dependent linear transformations in digital filter design

    Science.gov (United States)

    Constantinides, A. G.; Tzanettis, E.

    The aim of the present study is to provide a theoretical framework from which the properties of known frequency-dependent linear transformation methods for digital filter design can be derived and further methods can be developed. The results obtained apply to all the subcases of linear transformations described in the literature, e.g., wave digital filters, and IVR and MTR transformations. It is found that the bilinear transformation used for the transition from the analog to digital domain imposes a constraint that limits the degree of freedom in the design. The constraint affects both the values of the multipliers within the filter and the simplicity of the derived structures.

  10. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  11. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Science.gov (United States)

    McCracken, Clinton B; Kiss, Zelma H T

    2014-01-01

    High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects of

  12. Earth’s Structure as the Cause of Frequency-Dependent t* and Q

    Science.gov (United States)

    Morozov, I. B.

    2009-12-01

    Frequency-dependent attenuation observations are sensitive to the Earth’s structure, which to the first-order can be described by the geometrical spreading (GS). GS is spatially variable, and with its traditional compensation, its residuals appear as uncertainties in both Q0 and η parameters of the frequency-dependent attenuation law Q(f)=Q0fη, or as frequency-dependent uncertainties in t* values. These uncertainties can be removed by using the attenuation coefficient. The fundamental difference of this interpretation from the traditional Q(f) and t*(f) is in its allowing a non-zero temporal attenuation coefficient at f=0: χ(f)=γ+πf/Qe. The value of γ is interpreted as the residual GS, and Qe - effective attenuation quality. The method is applicable to all types of attenuation measurements and shows that significant levels of η may often be caused by non-zero γ. Here, I compare the χ(f) interpretation to the traditional t* and Q-based results by using three well-known real-data examples, which were key to establishing the frequency dependent Q concept. First, the observed increase of body P-wave attenuation from tP*≈0.2s at short periods to ~1-2 s at long periods is interpreted as apparent and related to an only ~6% bias in the underlying assumed GS. After a correction for this GS bias, tP* becomes ≈0.2 s and independent of the frequency. In the second example, local-earthquake coda, Lg, and Pn Q in several areas are re-examined, and their frequency dependencies are also explained by the variations of GS, i.e., by the structural variability of the lithosphere. The third example gives a simple phenomenological explanation for the apparent absorption band within the whole Earth (see Figure). Short-period crustal body waves are characterized by positive γSP values of (0.6 - 2.0) 10-2 s-1, which could be caused by the upper-crustal reflectivity. Long-period surface and normal-mode waves show negative γLP ≈ -1.9 10-5 s-1, interpreted as related to

  13. Neural development of binaural tuning through Hebbian learning predicts frequency-dependent best delays.

    Science.gov (United States)

    Fontaine, Bertrand; Brette, Romain

    2011-08-10

    Birds use microsecond differences in the arrival times of the sounds at the two ears to infer the location of a sound source in the horizontal plane. These interaural time differences (ITDs) are encoded by binaural neurons which fire more when the ITD matches their "best delay." In the textbook model of sound localization, the best delays of binaural neurons reflect the differences in axonal delays of their monaural inputs, but recent observations have cast doubts on this classical view because best delays were found to depend on preferred frequency. Here, we show that these observations are in fact consistent with the notion that best delays are created by differences in axonal delays, provided ITD tuning is created during development through spike-timing-dependent plasticity: basilar membrane filtering results in correlations between inputs to binaural neurons, which impact the selection of synapses during development, leading to the observed distribution of best delays.

  14. Testing of Dependencies between Stock Returns and Trading Volume by High Frequency Data

    Directory of Open Access Journals (Sweden)

    Piotr Gurgul

    2013-09-01

    Full Text Available This paper is concerned with a dependence analysis of returns, return volatility and trading volume for five companies listed on the Vienna Stock Exchange and five from theWarsaw Stock Exchange. Taking into account high frequency data for these companies, tests based on a comparison of Bernstein copula densities using the Hellinger distance were conducted. The paper presents some patterns of causal and other relationships between stock returns, realized volatility and expected and unexpected trading volume. There is a linear causality running from realized volatility to expected trading volume, and a lack of nonlinear dependence in the opposite direction. The authors detected strong linear and nonlinear causality from stock returns to expected trading volume. They did not find causality running in the opposite direction. In addition, the existence of fractional cointegration was examined. Despite the equality of the long memory parameters of realized volatility and trading volumes, they do not move together in the long term horizon.

  15. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.

    Science.gov (United States)

    Dao, Duy; Salehizadeh, S M A; Noh, Yeonsik; Chong, Jo Woon; Cho, Chae Ho; McManus, Dave; Darling, Chad E; Mendelson, Yitzhak; Chon, Ki H

    2017-09-01

    Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, "TifMA," based on using the time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term "nonusable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach

  16. Rapid, Sensitive, and Accurate Evaluation of Drug Resistant Mutant (NS5A-Y93H Strain Frequency in Genotype 1b HCV by Invader Assay.

    Directory of Open Access Journals (Sweden)

    Satoshi Yoshimi

    Full Text Available Daclatasvir and asunaprevir dual oral therapy is expected to achieve high sustained virological response (SVR rates in patients with HCV genotype 1b infection. However, presence of the NS5A-Y93H substitution at baseline has been shown to be an independent predictor of treatment failure for this regimen. By using the Invader assay, we developed a system to rapidly and accurately detect the presence of mutant strains and evaluate the proportion of patients harboring a pre-treatment Y93H mutation. This assay system, consisting of nested PCR followed by Invader reaction with well-designed primers and probes, attained a high overall assay success rate of 98.9% among a total of 702 Japanese HCV genotype 1b patients. Even in serum samples with low HCV titers, more than half of the samples could be successfully assayed. Our assay system showed a better lower detection limit of Y93H proportion than using direct sequencing, and Y93H frequencies obtained by this method correlated well with those of deep-sequencing analysis (r = 0.85, P <0.001. The proportion of the patients with the mutant strain estimated by this assay was 23.6% (164/694. Interestingly, patients with the Y93H mutant strain showed significantly lower ALT levels (p=8.8 x 10-4, higher serum HCV RNA levels (p=4.3 x 10-7, and lower HCC risk (p=6.9 x 10-3 than those with the wild type strain. Because the method is both sensitive and rapid, the NS5A-Y93H mutant strain detection system established in this study may provide important pre-treatment information valuable not only for treatment decisions but also for prediction of disease progression in HCV genotype 1b patients.

  17. State-Dependent Rhythmogenesis and Frequency Control in a Half-Center Locomotor CPG.

    Science.gov (United States)

    Ausborn, Jessica; Snyder, Abigail C; Shevtsova, Natalia A; Rybak, Ilya A; Rubin, Jonathan E

    2017-10-04

    The spinal locomotor central pattern generator (CPG) generates rhythmic activity with alternating flexion and extension phases. This rhythmic pattern is likely to result from inhibitory interactions between neural populations representing flexor and extensor half-centers. However, it is unclear whether the flexor-extensor CPG has a quasi-symmetric organization with both half-centers critically involved in rhythm generation, features an asymmetric organization with flexor-driven rhythmogenesis, or comprises a pair of intrinsically rhythmic half-centers. There are experimental data that support each of the above concepts but appear to be inconsistent with the others. In this theoretical/modeling study, we present and analyze a CPG model architecture that can operate in different regimes consistent with the above three concepts depending on conditions, which are defined by external excitatory drives to CPG half-centers. We show that control of frequency and phase durations within each regime depends on network dynamics, defined by the regime-dependent expression of the half-centers' intrinsic rhythmic capabilities and the operating phase transition mechanisms (escape versus release). Our study suggests state-dependency in locomotor CPG operation and proposes explanations for seemingly contradictory experimental data. Copyright © 2017, Journal of Neurophysiology.

  18. Frequency Dependence of Kidney Injury Induced by Contrast-Aided Diagnostic Ultrasound in Rats

    Science.gov (United States)

    Miller, Douglas L.; Dou, Chunyan; Wiggins, Roger C.

    2008-01-01

    This study was performed to examine the frequency dependence of glomerular capillary hemorrhage (GCH) induced by contrast aided diagnostic ultrasound in rats. Diagnostic ultrasound (DUS) scanners were utilized for exposure at 3.2, 5.0 and 7.4 MHz, and previously published data at 1.5 and 2.5 MHz also was included. A laboratory exposure system was used to simulate DUS exposure at 1.0, 1.5, 2.25, 3.5, 5.0 and 7.5 MHz with higher peak rarefactional pressure amplitudes (PRPAs) than were available from our DUS systems. The right kidneys of rats mounted in a water bath were exposed to intermittent image pulse sequences at 1 s intervals during infusion of diluted ultrasound contrast agent. The percentage of GCH was zero for low PRPAs, and then rapidly increased with increasing PRPAs above an apparent threshold, pt. The values of pt were approximately proportional to the ultrasound frequency, f, such that pt/f was approximately 0.5 MPa/MHz for DUS and 0.6 MPa/MHz for laboratory-system exposures. The increasing thresholds with increasing frequency limited the GCH effect for contrast aided DUS, and no GCH was seen for DUS at 5.0 or 7.4 MHz for the highest available PRPAs. PMID:18485567

  19. Frequency-Dependent Streaming Potential of Porous Media—Part 1: Experimental Approaches and Apparatus Design

    Directory of Open Access Journals (Sweden)

    P. W. J. Glover

    2012-01-01

    Full Text Available Electrokinetic phenomena link fluid flow and electrical flow in porous and fractured media such that a hydraulic flow will generate an electrical current and vice versa. Such a link is likely to be extremely useful, especially in the development of the electroseismic method. However, surprisingly few experimental measurements have been carried out, particularly as a function of frequency because of their difficulty. Here we have considered six different approaches to make laboratory determinations of the frequency-dependent streaming potential coefficient. In each case, we have analyzed the mechanical, electrical, and other technical difficulties involved in each method. We conclude that the electromagnetic drive is currently the only approach that is practicable, while the piezoelectric drive may be useful for low permeability samples and at specified high frequencies. We have used the electro-magnetic drive approach to design, build, and test an apparatus for measuring the streaming potential coefficient of unconsolidated and disaggregated samples such as sands, gravels, and soils with a diameter of 25.4 mm and lengths between 50 mm and 300 mm.

  20. Frequency dependent power fluctuations: a feature of the ESR system or physical?

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    Full Text Available The k-dependence of the received power in high signal-to-noise ratio (SNR conditions, occurring for naturally enhanced ion-acoustic lines (NEIALs and for real satellites, is investigated by using the EISCAT Svalbard Radar (ESR, where the data are recorded in eight separate channels using different frequencies. For the real satellites we find large variations of the relative powers from event to event, which is probably due to a different number of pulses catching the satellite over the integration period. However, the large power difference remains unexpected in one case. Over short time scale (< 10 s the relative power difference seems to be highly stable. For most NEIAL events the differences between channels are within noise level. In a few cases variations of the relative power well above both the estimated and expected 1-sigma level occur over a signal preintegrated profile. We thus suggest that the frequency dependence of the power in NEIAL events has its origin in the scattering medium itself as the most plausible explanation.

    Key words: Ionosphere (auroral ionosphere; plasma waves and instabilities; instruments and techniques

  1. Dependence of locked mode behavior on frequency and polarity of a rotating external magnetic perturbation

    Science.gov (United States)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2018-02-01

    Active control and stabilization of locked modes (LM) via rotating external magnetic perturbations are numerically investigated under a realistic low resistivity condition. To explore plasma responses to rotating and/or static external magnetic perturbations, we have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’. By using AEOLUS-IT, dependencies of mode behavior on frequency and polarity of the rotating magnetic perturbation are successfully clarified. Here, the rotational direction of the rotating magnetic perturbation to the equilibrium plasma rotation in the laboratory frame is referred to as ‘polarity’. The rotating magnetic perturbation acts on the background rotating plasma in the presence of a static field. Under such circumstances, there exist bifurcated states of the background rotating plasma, which should be taken into account when studying the dependence of the mode behavior on the rotating magnetic perturbation. It is found that there exist an optimum frequency and polarity of the rotating magnetic perturbation to control the LM, and that the LM is effectively stabilized by a co-polarity magnetic perturbation in comparison with a counter-polarity one.

  2. 38 CFR 3.30 - Frequency of payment of improved pension and parents' dependency and indemnity compensation (DIC).

    Science.gov (United States)

    2010-07-01

    ... improved pension and parents' dependency and indemnity compensation (DIC). 3.30 Section 3.30 Pensions... Dependency and Indemnity Compensation General § 3.30 Frequency of payment of improved pension and parents' dependency and indemnity compensation (DIC). Payment shall be made as shown in paragraphs (a), (b), (c), (d...

  3. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    Science.gov (United States)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-12-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed

  4. Improved fluid simulations of radio-frequency plasmas using energy dependent ion mobilities

    Energy Technology Data Exchange (ETDEWEB)

    Greb, Arthur; Niemi, Kari; O' Connell, Deborah; Gans, Timo [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Ennis, Gerard J.; MacGearailt, Niall [Intel Ireland Ltd., Leixlip (Ireland)

    2013-05-15

    Symmetric and asymmetric capacitively coupled radio-frequency plasmas in oxygen at 40 Pa, 300 V voltage amplitude and a discharge gap of 40 mm are investigated by means of one-dimensional numerical semi-kinetic fluid modeling on the basis of a simplified reaction scheme including the dominant positive and negative ions, background gas, and electrons. An improved treatment, by accounting for the dependence of ion mobilities on E/N, is compared to the standard approach, based on using zero-field mobility values only. The charged particle dynamics as a result of direct electron impact ionization of oxygen, secondary electron release from the electrodes, the spatial distribution of all involved particles as well as impact of geometry and model modification on ion energies is analyzed and compared to independent simulations and experiments.

  5. Strain-dependent partial slip on rock fractures under seismic-frequency torsion

    Science.gov (United States)

    Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.

    2017-05-01

    Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit our measured stress-strain curves and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.

  6. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, S; Guo, S; Kumar, A; Kalinin, S V [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rodriguez, B J [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Proksch, R [Asylum Research, Santa Barbara, CA 93117 (United States)

    2010-10-08

    Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.

  7. Evaluation of frequency-dependent ultrasound attenuation in transparent medium using focused shadowgraph technique

    Science.gov (United States)

    Iijima, Yukina; Kudo, Nobuki

    2017-07-01

    Acoustic fields of a short-pulsed ultrasound propagating through a transparent medium with ultrasound attenuation were visualized by the focused shadowgraph technique. A brightness waveform and its spatial integrations were derived from a visualized field image and compared with a pressure waveform measured by a membrane hydrophone. The experimental results showed that first-order integration of the brightness wave has good agreement with the pressure waveforms. Frequency-dependent attenuation of the pulse propagating through castor oil was derived from brightness and pressure waveforms, and attenuation coefficients determined from focused shadowgraphy and hydrophone techniques showed good agreement. The results suggest the usefulness of the shadowgraph technique not only for the visualization of ultrasound fields but also for noncontact estimation of rough pressure waveforms and correct ultrasound attenuation.

  8. Study on Frequency Dependency of ON-Resistance and Pulse-Loss Calculation of MOSFETs for Switch Mode Power Supply

    Science.gov (United States)

    Yamamura, Hideho; Sato, Ryohei; Iwata, Yoshiharu

    Global efforts toward energy conservation, increasing data centers, and the increasing use of IT equipments are leading to a demand in reduced power consumption of equipments, and power efficiency improvement of power supply units is becoming a necessity. MOSFETs are widely used for their low ON-resistances. Power efficiency is designed using time-domain circuit simulators, except for transformer copper-loss, which has frequency dependency which is calculated separately using methods based on skin and proximity effects. As semiconductor technology reduces the ON-resistance of MOSFETs, frequency dependency due to the skin effect or proximity effect is anticipated. In this study, ON-resistance of MOSFETs are measured and frequency dependency is confirmed. Power loss against rectangular current pulse is calculated. The calculation method for transformer copper-loss is expanded to MOSFETs. A frequency function for the resistance model is newly developed and parametric calculation is enabled. Acceleration of calculation is enabled by eliminating summation terms. Using this method, it is shown that the frequency dependent component of the measured MOSFETs increases the dissipation from 11% to 32% at a switching frequency of 100kHz. From above, this paper points out the importance of the frequency dependency of MOSFETs' ON-resistance, provides means of calculating its pulse losses, and improves loss calculation accuracy of SMPSs.

  9. NMDA Receptor-Dependent Metaplasticity by High-Frequency Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Tursonjan Tokay

    2014-01-01

    Full Text Available High-frequency magnetic stimulation (HFMS can elicit N-methyl-D-aspartate (NMDA receptor-dependent long-term potentiation (LTP at Schaffer collateral-CA1 pyramidal cell synapses. Here, we investigated the priming effect of HFMS on the subsequent magnitude of electrically induced LTP in the CA1 region of rat hippocampal slices using field excitatory postsynaptic potential (fEPSP recordings. In control slices, electrical high-frequency conditioning stimulation (CS could reliably induce LTP. In contrast, the same CS protocol resulted in long-term depression when HFMS was delivered to the slice 30 min prior to the electrical stimulation. HFMS-priming was diminished when applied in the presence of the metabotropic glutamate receptor antagonists (RS-α-methylserine-O-phosphate (MSOP and (RS-α-methyl-4-carboxyphenylglycine (MCPG. Moreover, when HFMS was delivered in the presence of the NMDA receptor-antagonist D-2-amino-5-phosphonovalerate (50 µM, CS-induced electrical LTP was again as high as under control conditions in slices without priming. These results demonstrate that HFMS significantly reduced the propensity of subsequent electrical LTP and show that both metabotropic glutamate and NMDA receptor activation were involved in this form of HFMS-induced metaplasticity.

  10. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Brill, J. W.; Shahi, Maryam; Yao, Y. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Payne, Marcia M.; Anthony, J. E. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Edberg, Jesper; Crispin, Xavier [Department of Science and Technology, Organic Electronics, Linköping University, SE-601 74 Norrköping (Sweden)

    2015-12-21

    We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  11. Metabolite identification of triptolide by data-dependent accurate mass spectrometric analysis in combination with online hydrogen/deuterium exchange and multiple data-mining techniques.

    Science.gov (United States)

    Du, Fuying; Liu, Ting; Liu, Tian; Wang, Yongwei; Wan, Yakun; Xing, Jie

    2011-10-30

    Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Investigation on the Minimum Maintenance Discharged Power of a Low-Frequency Driven Electrodeless Compact Fluorescent Lamp-Buffer Gas and Driving Frequency Dependence-

    Science.gov (United States)

    Arakawa, Takeshi; Seki, Katsushi; Katase, Koichi; Hashimotodani, Kiyoshi; Hochi, Akira

    We have investigated the minimum discharged power to maintain lamp plasma in terms of dependence on buffer gas condition and driving frequency of the electrodeless compact fluorescent lamp (ECFL). It is essential for realization of the low-frequency driven ECFL with inductively coupled plasma technique for household use. Considering the point of cost, the driving frequency of the electrodeless discharge lamp should be lowered because high frequency driving (> 1MHz) requires special components for reduction of EMI noise and circuit power loss with the increase in driving frequency. But it is difficult to maintain plasma at low frequency driving, since induced electric fields, which excited with the induction coil is declined and not receive energy for ionization and discharge sufficiently. Here, we indicated that the condition of minimum power to maintain the H-mode (inductively coupled) discharge described as simple functions of buffer gas pressure and driving frequency for a fixed lamp bulb shape and found that the relation can represent the measured data well. Using that relation, we can easily predict optimum buffer gas pressure from driving frequency and required minimum maintenance power on the commercially available (practical) standpoint.

  13. Bards, poets, and cliques: frequency-dependent selection and the evolution of language genes.

    Science.gov (United States)

    Cartwright, Reed A

    2011-09-01

    The ability of humans to communicate via language is a complex, adapted phenotype, which undoubtedly has a recently evolved genetic component. However, the evolutionary dynamics of language-associated alleles are poorly understood. To improve our knowledge of such systems, a population-genetics model for language-associated genes is developed. (The model is general and applicable to social interactions other than communication.) When an allele arises that potentially improves the ability of individuals to communicate, it will experience positive frequency-dependent selection because its fitness will depend on how many other individuals communicate the same way. Consequently, new and rare alleles are selected against, posing a problem for the evolutionary origin of language. However, the model shows that if individuals form language-based cliques, then novel language-associated alleles can sweep through a population. Thus, the origin of language ability can be sufficiently explained by Darwinian processes operating on genetic diversity in a finite population of human ancestors. © Society for Mathematical Biology 2010

  14. Frequency dependent rectifier memristor bridge used as a programmable synaptic membrane voltage generator

    Directory of Open Access Journals (Sweden)

    Oliver Pabst

    2013-03-01

    Full Text Available Reasoned by its dynamical behavior, the memristor enables a lot of new applications in analog circuit design. Since some realizations have been shown (e.g. 2007 by Hewlett Packard, the development of applications with memristors becomes more and more interesting. Besides applications in neural networks and storage devices, analog memristive circuits also promise further applications. Therefore, this article proposes a frequency dependent rectifier memristor bridge for different purposes, for example, using as a programmable synaptic membrane voltage generator for Spike-Time-Dependent-Plasticity and describes the circuit theory. In this context it is shown that the Picard Iteration is one possibility to analytically solve the system of nonlinear state equations of memristor circuits. An intuitive picture of how a memristor works in a network in general is given as well and in this context some research on the dynamical behavior of a HP memristor should be done. After all it is suggested to use the memristor bridge as a neuron.

  15. Geometry and temperature dependence of low-frequency flux noise in dc SQUIDs

    Science.gov (United States)

    Anton, S. M.; Birenbaum, J. S.; O'Kelley, S. R.; Golubev, D. S.; Hilton, G. C.; Cho, H.-M.; Irwin, K. D.; Bolkhovsky, V.; Braje, D. A.; Fitch, G.; Neeley, M.; Johnson, R. C.; Oliver, W. D.; Wellstood, F. C.; Clarke, John

    2013-03-01

    Measurements on dc SQUIDs reveal a flux noise spectral density SΦ (f) =A2 /(f / 1 Hz) α . An analytic model assuming non-interacting spins localized at the surface of the SQUID loop predicts that the mean square noise scales as R/W--the radius and width of the loop, respectively. However, there are no established theories for the scaling of α with geometry or the dependences of A and α on temperature T. To test the predicted geometric scaling of this model experimentally, we measured flux noise in ten SQUIDs with systematically varying geometries. We find that, at fixed T, A2 scales approximately as R. From the measured values of A and α, we estimate the mean square flux noise, which does not scale with R. As T is lowered, α increases significantly and in such a way that the spectra ``pivot'' about an approximately fixed frequency. This phenomenon implies that the mean square noise is temperature-dependent, an effect not predicted by the analytic model. We discuss our attempts to reconcile these discrepancies by considering the locking together of spins to form clusters. This work was supported by ARO, IARPA, and the US Government.

  16. Magnetization and frequency dependent permeability in BSTO/hexaferrite thin films and nanostructured materials

    Science.gov (United States)

    Hajndl, R.; Poddar, P.; Srikanth, H.; Dudney, N. J.

    2003-03-01

    Ferrite-dielectric composite films are excellent systems in which the electromagnetic material properties can be tuned through changes in composition as well as microstructure. We have grown Ba_0.5Sr_0.5TiO_3/BaFe_12O_19 composite thin films of varying volumetric concentrations of ferrite and dielectric components using magnetron sputtering. Optimizing the sputtering conditions and post-deposition annealing led to high quality films without any impurity phases. Static magnetic measurements using a Physical Property Measurement System (PPMS) yielded saturation magnetization values in the range of 100 to 200 emu/cm^3. A novel double transition is observed in the hysteresis loops of the composite films and ascribed to the possibility of the magneto-dielectric coupling between the ferrite grains mixed into the dielectric medium. High energy Co ion implantation was done to achieve surface modification and dramatic reduction in grain size was observed. The magnetic properties also exhibited a strong dependence on the altered microstructure due to the Co ion implantation. We also report our studies of frequency-dependent complex permeability in these films as well as a number of nanocomposite materials. An RF fixture was designed to be able to effectively measure the permeability and loss tangents in nanopowders and spin-coated nanocomposite films of iron and iron oxides. HS acknowledges support from NSF grants ECS-0102622 and ECS-0140047

  17. Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current.

    Science.gov (United States)

    Liu, Pin W; Blair, Nathaniel T; Bean, Bruce P

    2017-10-04

    Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC 50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike

  18. Furosemide depresses the presynaptic fiber volley and modifies frequency-dependent axonal excitability in rat hippocampus.

    Science.gov (United States)

    Andreasen, Mogens; Nedergaard, Steen

    2017-04-01

    The loop diuretic furosemide is known to have anticonvulsant effects, believed to be exerted through blockade of glial Na + -K + -2Cl - cotransport causing altered volume regulation in brain tissue. The possibility that direct effects of furosemide on neuronal properties could also be involved is supported by previous observations, but such effects have not been thoroughly investigated. In the present study we show that furosemide has two opposing effects on stimulus-induced postsynaptic excitation in the nonepileptic rat hippocampal slice: 1 ) an enhancement of e-s coupling, which depended on intact GABA A transmission and was partially mimicked by selective blockade of K + -2Cl - cotransport, and 2 ) a decrement of field excitatory postsynaptic potentials. The balance between these effects varied, depending on the amount of synaptic drive. In addition, the compound action potential (fiber volley) recorded from the stimulated Schaffer collateral axons in stratum radiatum showed a progressive decrease during perfusion of furosemide. This effect was activity-independent, was mimicked by the stilbene derivative DIDS, and could be reproduced on fiber volleys in the alveus. Furosemide also reduced the initial enhancement of the fiber volley observed during trains of high-frequency stimulation (HFS). Results of hyperosmotic expansion of the extracellular volume, with 30 mM sucrose, indicated that both the induction and antagonism of the HFS-induced enhancement were independent of signaling via the extracellular space. Furosemide caused an increased decay of paired-pulse-induced supranormal axonal excitability, which was antagonized by ZD7288. We conclude that furosemide decreases axonal excitability and prevents HFS-induced hyperexcitability via mechanisms downstream of blockage of anion transport, which could include hyperpolarization of axonal membranes. NEW & NOTEWORTHY This study shows that the anion transporter antagonists furosemide and DIDS cause a marked

  19. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Tellier Aurélien

    2011-11-01

    Full Text Available Abstract Background Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes. It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. Results Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur

  20. Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2017-10-01

    Full Text Available Precise azimuth-variant motion compensation (MOCO is an essential and difficult task for high-resolution synthetic aperture radar (SAR imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA, have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.

  1. Stimulus Ratio and Level Dependence of Low- and Mid-Frequency Distortion-Product Otoacoustic Emissions

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2014-01-01

    Active amplifiers within the cochlea generate, as a by-product of their function, distortion-product otoacoustic emissions (DPOAEs) in response to carefully chosen two-tone stimuli. Focus has been on invoking emissions in a mid-frequency range from 500 to 4000 Hz. Below 500 Hz, physiological noise...... examples of low-frequency DPOAEs exist in the literature. Overcoming the decreasing response level and increasing noise level with decreasing frequency may provide a non-invasive window into the inner-ear mechanics of low-frequency hearing. Eighteen out of 21 young human adults screened (19-30 years) had...... audiometrically normal hearing for inclusion in our experiment. DPOAEs were measured with pure-tone stimuli in four configurations: f2 fixed around a mid-frequency (2050-2180 Hz), f2 fixed around a low frequency (512-545 Hz), fdp fixed at a mid-frequency (1231 Hz) and fdp low frequency (246 Hz). Eight stimulus...

  2. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  3. Evolution of learned strategy choice in a frequency-dependent game

    Science.gov (United States)

    Katsnelson, Edith; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon

    2012-01-01

    In frequency-dependent games, strategy choice may be innate or learned. While experimental evidence in the producer–scrounger game suggests that learned strategy choice may be common, a recent theoretical analysis demonstrated that learning by only some individuals prevents learning from evolving in others. Here, however, we model learning explicitly, and demonstrate that learning can easily evolve in the whole population. We used an agent-based evolutionary simulation of the producer–scrounger game to test the success of two general learning rules for strategy choice. We found that learning was eventually acquired by all individuals under a sufficient degree of environmental fluctuation, and when players were phenotypically asymmetric. In the absence of sufficient environmental change or phenotypic asymmetries, the correct target for learning seems to be confounded by game dynamics, and innate strategy choice is likely to be fixed in the population. The results demonstrate that under biologically plausible conditions, learning can easily evolve in the whole population and that phenotypic asymmetry is important for the evolution of learned strategy choice, especially in a stable or mildly changing environment. PMID:21937494

  4. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  5. Temperature- and frequency-dependent dielectric properties of biological tissues within the temperature and frequency ranges typically used for magnetic resonance imaging-guided focused ultrasound surgery.

    Science.gov (United States)

    Fu, Fanrui; Xin, Sherman Xuegang; Chen, Wufan

    2014-02-01

    This study aimed to obtain the temperature- and frequency-dependent dielectric properties of tissues subjected to magnetic resonance (MR) scanning for MR imaging-guided focused ultrasound surgery (MRgFUS). These variables are necessary to calculate radio frequency electromagnetic fields distribution and specific radio frequency energy absorption rate (SAR) in the healthy tissues surrounding the target tumours, and their variation may affect the efficacy of advanced RF pulses. The dielectric properties of porcine uterus, liver, kidney, urinary bladder, skeletal muscle, and fat were determined using an open-ended coaxial probe method. The temperature range was set from 36 °C to 60 °C; and the frequencies were set at 42.58 (1 T), 64 (1.5 T), 128 (3 T), 170 (4 T), 298 (7 T), 400 (9 T), and 468 MHz (11 T). Within the temperature and frequency ranges, the dielectric constants were listed as follows: uterus 49.6-121.64, liver 44.81-127.68, kidney 37.3-169.26, bladder 42.43-125.95, muscle 58.62-171.7, and fat 9.2327-20.2295. The following conductivities were obtained at the same temperature and frequency ranges: uterus 0.5506-1.4419, liver 0.5174-0.9709, kidney 0.8061-1.3625, bladder 0.6766-1.1817, muscle 0.8983-1.3083, and fat 0.1552-0.2316. The obtained data are consistent with the temperature and frequency ranges typically used in MRgFUS and thus can be used as reference to calculate radio frequency electromagnetic fields and SAR distribution inside the healthy tissues subjected to MR scanning for MRgFUS.

  6. Measurement of Frequency, Temperature, RF Field Dependence of Surface Resistance of Superconductors Using a Half Wave Cavity

    Science.gov (United States)

    Park, Hyekyoung; Delayen, Jean

    2017-01-01

    A theory of surface resistance of superconductor was rigorously formulated by Bardeen, Cooper, Schrieffer more than 50 years ago. Since then the accelerator community has been used the theory as a guideline to improve the surface resistance of the superconducting cavity. It has been observed that the surface resistance is dependent on frequency, temperature and rf field strength, and surface preparation. To verify these dependences, a well-controlled study is required. Although many different types of cavities have been tested, the typical superconducting cavities are built for specific frequencies of their application. They do not provide data other than at its own frequency. A superconducting half wave cavity is a cavity that enables us to collect the surface resistance data across frequencies of interest for particle accelerators and evaluate preparation techniques. This paper will present the design of the half wave cavity, its electromagnetic mode characteristics and experimental results. Research supported by NSF Award PHY-1416051.

  7. Frequency-dependent resonance and asymmetric droplet oscillation under ac electrowetting on coplanar electrodes

    Science.gov (United States)

    Hong, F. J.; Jiang, D. D.; Cheng, P.

    2012-08-01

    Sessile droplet oscillations in electrowetting on dielectric with a coplanar-electrode configuration are studied experimentally under the actuation of ac voltage with different frequencies. It was found that the experimental resonance frequencies and the number of lobes at different resonance modes agree reasonably well with a previous linear analysis. Oscillations of contact width and droplet height are in-phase at resonance modes P2n+2 while out-of-phase at P2n with n = 2, 4, 6,…. At certain critical frequencies, the droplet oscillations are very weak and switch from in-phase (out-of-phase) to out-of-phase (in-phase). For the oscillations after resonance frequency but before critical frequency, at low frequency, the large amplitude oscillation of the contact line deforms it from a circle to having lobes; the number of lobes increases with the frequency and their position alternates in the azimuthal direction, through periodical droplet spreading and receding. For the oscillations after critical frequency but before resonance frequency, the droplet oscillation demonstrates droplet waggling with an obvious contact line at normal and abnormal stops, due to the contact line pinning at low frequency, or the transportation of lobes on the droplet surface from one end to the other at high frequency. These asymmetric oscillations will produce a more chaotic fluid flow inside the droplets than symmetric oscillations and could be used purposely to enhance mixing in droplet-based micro-fluidics.

  8. Dependence of Levitation Force on Frequency of an Oscillating Magnetic Levitation Field in a Bulk YBCO Superconductor

    OpenAIRE

    Carter, Hamilton; Pate, Stephen; Goedecke, George

    2012-01-01

    The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disc on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical[1] agreement with the field strength required to levitate the same superconductor with a non-oscilla...

  9. Predicting the Sabine absorption coefficients of fibrous absorbers for various air backing conditions with a frequency-dependent diffuseness correction

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    characteristics of their own configurations. This study aims to predict the absorption coefficient for various mounting conditions from a single measurement of an arbitrary mounting condition by extracting the air flow resistivity of the test specimen and the frequency-dependent effect of the chamber......Fibrous absorbers can be installed with various air backing conditions to fulfil a given low frequency acoustic requirement. Since absorber manufacturers cannot provide the absorption coefficients for all possible mounting conditions, acousticians have difficulties knowing the absorption...

  10. BOLD responses to tactile stimuli in visual and auditory cortex depend on the frequency content of stimulation.

    Science.gov (United States)

    Nordmark, Per F; Pruszynski, J Andrew; Johansson, Roland S

    2012-10-01

    Although some brain areas preferentially process information from a particular sensory modality, these areas can also respond to other modalities. Here we used fMRI to show that such responsiveness to tactile stimuli depends on the temporal frequency of stimulation. Participants performed a tactile threshold-tracking task where the tip of either their left or right middle finger was stimulated at 3, 20, or 100 Hz. Whole-brain analysis revealed an effect of stimulus frequency in two regions: the auditory cortex and the visual cortex. The BOLD response in the auditory cortex was stronger during stimulation at hearable frequencies (20 and 100 Hz) whereas the response in the visual cortex was suppressed at infrasonic frequencies (3 Hz). Regardless of which hand was stimulated, the frequency-dependent effects were lateralized to the left auditory cortex and the right visual cortex. Furthermore, the frequency-dependent effects in both areas were abolished when the participants performed a visual task while receiving identical tactile stimulation as in the tactile threshold-tracking task. We interpret these findings in the context of the metamodal theory of brain function, which posits that brain areas contribute to sensory processing by performing specific computations regardless of input modality.

  11. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    CERN Document Server

    Rebolini, Elisa

    2015-01-01

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of four small molecules: N2, CO2, H2CO, and C2H4. The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  12. Single-Trial Decoding of Visual Attention from Local Field Potentials in the Primate Lateral Prefrontal Cortex Is Frequency-Dependent.

    Science.gov (United States)

    Tremblay, Sébastien; Doucet, Guillaume; Pieper, Florian; Sachs, Adam; Martinez-Trujillo, Julio

    2015-06-17

    Local field potentials (LFPs) are fluctuations of extracellular voltage that may reflect the physiological phenomena occurring within a volume of neural tissue. It is known that the allocation of spatial attention modulates the amplitude of LFPs in visual areas of primates. An issue that remains poorly investigated is whether and how attention modulates LFPs in executive brain areas, such as the lateral prefrontal cortex (LPFC), thought to be involved in the origins of attention. We addressed this issue by recording LFPs from multielectrode arrays implanted in the LPFC of two macaques. We found that the allocation of attention can be reliably decoded on a single-trial basis from ensembles of LFPs with frequencies >60 Hz. Using LFP frequencies <60 Hz, we could not decode the allocation of attention, but we could decode the location of a visual stimulus as well as the endpoint of saccades toward that stimulus. The information contained in the high-frequency LFPs was fully redundant with the information contained in the spiking activity of single neurons recorded from the same electrodes. Moreover, the decoding of attention using γ frequency LFPs was less accurate than using spikes, but it was twice more stable across time. Finally, decorrelating the LFP signals from the different electrodes increased decoding performance in the high frequencies by up to ∼14%. Our findings suggest that LFPs recorded from chronically implanted multielectrode arrays in the LPFC contain information about sensory, cognitive, and motor components of a task in a frequency-dependent manner. Copyright © 2015 the authors 0270-6474/15/359038-12$15.00/0.

  13. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.

    Science.gov (United States)

    Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela; Moriondo, Andrea

    2017-11-01

    Lymph drainage and propulsion are sustained by an extrinsic mechanism, based on mechanical forces acting from the surrounding tissues against the wall of lymphatic vessels, and by an intrinsic mechanism attributable to active spontaneous contractions of the lymphatic vessel muscle. Despite being heterogeneous, the mechanisms underlying the generation of spontaneous contractions share a common biochemical nature and are thus modulated by temperature. In this study, we challenged excised tissues from rat diaphragm and hindpaw, endowed with spontaneously contracting lymphatic vessels, to temperatures from 24°C (hindpaw) or 33°C (diaphragmatic vessels) to 40°C while measuring lymphatic contraction frequency (fc) and amplitude. Both vessel populations displayed a sigmoidal relationship between fc and temperature, each centered around the average temperature of surrounding tissue (36.7 diaphragmatic and 32.1 hindpaw lymphatics). Although the slope factor of the sigmoidal fit to the fc change of hindpaw vessels was 2.3°C·cycles-1·min-1, a value within the normal range displayed by simple biochemical reactions, the slope factor of the diaphragmatic lymphatics was 0.62°C·cycles-1·min-1, suggesting the added involvement of temperature-sensing mechanisms. Lymph flow calculated as a function of temperature confirmed the relationship observed on fc data alone and showed that none of the two lymphatic vessel populations would be able to adapt to the optimal working temperature of the other tissue district. This poses a novel question whether lymphatic vessels might not adapt their function to accommodate the change if exposed to a surrounding temperature, which is different from their normal condition.NEW & NOTEWORTHY This study demonstrates to what extent lymphatic vessel intrinsic contractility and lymph flow are modulated by temperature and that this modulation is dependent on the body district that the vessels belong to, suggesting a possible functional misbehavior

  14. Time-domain representation of frequency dependent inertial forces on offshore structures

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    waves and drag forces. The inertia coefficient has been determined within linear wave theory in terms of the wave-number by MacCamy and Fuchs. For diameters less than about half the water depth this solution can be transformed to frequency form by use of the deep-water dispersion relation. The frequency...

  15. Frequency-dependent variation in reproductive success in Narcissus: implications for the maintenance of stigma-height dimorphism.

    Science.gov (United States)

    Thompson, John D; Barrett, Spencer C H; Baker, Angela M

    2003-05-07

    Negative frequency-dependent selection is a major selective force maintaining sexual polymorphisms. However, empirical demonstrations of frequency-dependent reproductive success are rare, particularly in plants. We investigate this problem by manipulating the frequencies of style morphs in a natural population of Narcissus assoanus, a self-incompatible herb with style-length dimorphism and intra-morph compatibility. We predicted that the reproductive success of morphs would vary negatively with their frequency because of the effects of morph-specific differences in sex-organ position on patterns of pollen transfer. This prediction was generally supported. The fruit and seed set of the two morphs did not differ significantly in plots with 1 : 1 morph ratios. However, short-styled plants produced significantly fewer seeds than long-styled plants in monomorphic plots, and significantly more seeds than long-styled plants in plots with 'long-biased' morph ratios. These patterns indicate that in the absence of physiological barriers to intra-morph mating, negative frequency-dependent selection contributes to the maintenance of stylar polymorphism through inter-morph pollen transfer. Our experimental results also provide insights into the mechanisms governing the biased style-morph ratios in populations of Narcissus species.

  16. Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution

    NARCIS (Netherlands)

    Hillebrand, A.; Barnes, G.R.; Bosboom, J.L.; Berendse, H.W.; Stam, C.J.

    2012-01-01

    The brain consists of functional units with more-or-less specific information processing capabilities, yet cognitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography (MEG) has the temporal resolution to capture these frequency-dependent

  17. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency.

    Science.gov (United States)

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Koda, Shinobu; Yasuda, Keiji

    2017-11-01

    Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98kHz and near to the cavitation threshold at high frequency. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Frequency-dependent changes in the amplitude of low-frequency fluctuations in subcortical ischemic vascular disease (SIVD): a resting-state fMRI study.

    Science.gov (United States)

    Li, Chuanming; Liu, Chen; Yin, Xuntao; Yang, Jun; Gui, Li; Wei, Luqing; Wang, Jian

    2014-11-01

    Resting-state functional magnetic resonance imaging (RS-fMRI) allowed researchers to detect intrinsic brain activity during rest and has been considered an analytical tool for evaluation of dementia. Previously, subcortical ischemic vascular disease (SIVD) has been found decreased amplitude low-frequency fluctuations (ALFF) in a widely frequency range (0.01-0.08Hz) in the bilateral precuneus and increased ALFF values in the bilateral anterior cingulate cortex (ACC), left insula and hippocampus, which showed significant correlations with the cognitive performance. In this study we analyzed the ALFF of 30 patients with SIVD in two different frequency bands (slow-5: 0.01-0.027Hz; slow-4: 0.027-0.073Hz). In the slow-5 band, SIVD patients compared with controls exhibited significant higher ALFF in the bilateral anterior cingulate cortex, right putamen and right supplementary motor area, while lower ALFF in the right precuneus and right angular gyrus. A close correlation was found between the ALFF value of the right angular gyrus and ADL scores. In the slow-4 band, SIVD patients only exhibited increased ALFF in the bilateral anterior cingulate cortex, right putamen, left fusiform gyrus, and no correlation with cognitive scores was found. Our data demonstrate that SIVD patients have widespread abnormal intrinsic neural oscillations, which are dependent on specific frequency bands. ALFF of right angular gyrus at slow-5 band is more specific for SIVD and may be a useful tool to help SIVD diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Frequency Dependent Non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study.

    Directory of Open Access Journals (Sweden)

    Stelios Floros

    Full Text Available The use of microwaves in every day's applications raises issues regarding the non thermal biological effects of microwaves. In this work we employ molecular dynamics simulations to advance further the dielectric studies of protein solutions in the case of lysozyme, taking into consideration possible frequency dependent changes in the structural and dynamic properties of the system upon application of electric field in the microwave region. The obtained dielectric spectra are identical with those derived in our previous work using the Fröhlich-Kirkwood approach in the framework of the linear response theory. Noticeable structural changes in the protein have been observed only at frequencies near its absorption maximum. Concerning Cα position fluctuations, different frequencies affected different regions of the protein sequence. Furthermore, the influence of the field on the kinetics of protein-water as well as on the water-water hydrogen bonds in the first hydration shell has been studied; an extension of the Luzar-Chandler kinetic model was deemed necessary for a better fit of the applied field results and for the estimation of more accurate hydrogen bond lifetime values.

  20. Frequency dependence of the higher harmonics susceptibilities of hydrogen loaded and unloaded melted YBCO samples

    Energy Technology Data Exchange (ETDEWEB)

    Tripodi, P.; Di Gioacchino, D.; Celani, F.; Spallone, A. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shi, D. [Rhodes Hall, Univ. of Cincinnati (United States). Dept. of Material Science and Eng.

    1997-03-01

    They measured the first and higher components of ac susceptibilities of melted YBCO samples before and after hydrogenation by {mu}s pulsed electrolysis. First component was measured versus temperature at fixed frequency while higher harmonics were measured versus frequencies at fixed temperature near critical temperature. All measurements were performed at fixed amplitude of ac magnetic field and zero dc magnetic field. The frequency and temperature behaviour of the harmonic components before and after hydrogenation gave us information on possible dynamic losses in comparison to the flux pinning mechanism.

  1. Frequency Dependence of Helioseismic Measurements of the Center-to-Limb Effect and Flow-induced Travel-time Shifts

    Science.gov (United States)

    Chen, Ruizhu; Zhao, Junwei

    2018-02-01

    Time–distance helioseismology measures acoustic travel times to infer the structure and flow field of the solar interior; however, both the mean travel times and the travel-time shifts suffer systematic center-to-limb variations, which complicate the interpretation and inversions of the time–distance measurements. In particular, the center-to-limb variation in travel-time shifts (CtoL effect) has a significant impact on the inference of the Sun’s meridional circulation, and needs to be removed from the helioseismic measurements, although the observational properties and the physical cause of the CtoL effect have yet to be investigated. In this study, we measure the CtoL effect in the frequency domain using Doppler-velocity data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, and study its properties as a function of disk-centric distance, travel distance, and frequency of acoustic waves. It is found that the CtoL effect has a significant frequency dependence—it reverses sign at a frequency around 5.4 mHz and reaches maximum at around 4.0 mHz before the sign reversal. The tendency of frequency dependence varies with disk-centric distance in a way that both the sign-reversal frequency and the maximum-value frequency decrease closer to the limb. The variation tendency does not change with travel distance, but the variation magnitude is approximately proportional to travel distance. For comparison, the flow-induced travel-time shifts show little frequency dependence. These observational properties provide more clues on the nature of the CtoL effect, and also possibly lead to new ways of effect-removal for a more robust determination of the deep meridional flow.

  2. Exercise-induced changes in EEG alpha power depend on frequency band definition mode.

    Science.gov (United States)

    Gutmann, Boris; Hülsdünker, Thorben; Mierau, Julia; Strüder, Heiko K; Mierau, Andreas

    2017-10-18

    In the majority of studies investigating cortical alpha oscillations the alpha frequency is defined as a fixed band thus, neglecting recommendations in the EEG literature to adjust the alpha band according to the individual alpha peak frequency (iAPF). Based on our previous findings indicating exhaustive exercise induces an increase of the post-exercise iAPF, we scrutinized the influence of exercise on post-exercise alpha power by comparing fixed and iAPF-adjusted alpha frequency bands. Resting EEG was recorded from 13 scalp locations in nine subjects before, immediately after as well as ten minutes following an exhaustive exercise protocol on a cycle ergometer. Lower and upper band alpha power was calculated for fixed and iAPF-adjusted frequency bands. Post-exercise lower alpha power increased in both fixed and individually defined bands while a higher upper alpha power was only observed in the fixed frequency band condition. Further, the increase in iAPF was positively related to the changes in fixed-band upper alpha power. It is concluded that lower alpha power is significantly increased following exhaustive exercise whereas the results for upper alpha power are substantially influenced by the method of frequency band definition. Therefore, caution is indicated when analyzing and interpreting exercise-induced changes in alpha power. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sustained Exocytosis after Action Potential-Like Stimulation at Low Frequencies in Mouse Chromaffin Cells Depends on a Dynamin-Dependent Fast Endocytotic Process

    Science.gov (United States)

    Moya-Díaz, José; Álvarez, Yanina D.; Montenegro, Mauricio; Bayonés, Lucas; Belingheri, Ana V.; González-Jamett, Arlek M.; Cárdenas, Ana M.; Marengo, Fernando D.

    2016-01-01

    Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls). The exocytosis triggered by APls (ETAP) represents a fraction (40%) of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 ± 0.11 s, fast enough to maintain synchronous exocytosis at 0.2–0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ = 0.53 ± 0.01 s). In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz). Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies. PMID:27507935

  4. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Hamilton, E-mail: hcarter3@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Pate, Stephen, E-mail: pate@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Goedecke, George, E-mail: ggoedeck@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-02-14

    Highlights: ► AC magnetic field strength required for levitation is independent of frequency. ► RMS magnetic field strength is in good agreement with DC magnetic field strength. ► Dependence of YBCO levitation force on AC magnetic field frequency is investigated. -- Abstract: The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  5. Frequency-Dependent Amplitude Panning for the Stereophonic Image Enhancement of Audio Recorded Using Two Closely Spaced Microphones

    Directory of Open Access Journals (Sweden)

    Chan Jun Chun

    2016-02-01

    Full Text Available In this paper, we propose a new frequency-dependent amplitude panning method for stereophonic image enhancement applied to a sound source recorded using two closely spaced omni-directional microphones. The ability to detect the direction of such a sound source is limited due to weak spatial information, such as the inter-channel time difference (ICTD and inter-channel level difference (ICLD. Moreover, when sound sources are recorded in a convolutive or a real room environment, the detection of sources is affected by reverberation effects. Thus, the proposed method first tries to estimate the source direction depending on the frequency using azimuth-frequency analysis. Then, a frequency-dependent amplitude panning technique is proposed to enhance the stereophonic image by modifying the stereophonic law of sines. To demonstrate the effectiveness of the proposed method, we compare its performance with that of a conventional method based on the beamforming technique in terms of directivity pattern, perceived direction, and quality degradation under three different recording conditions (anechoic, convolutive, and real reverberant. The comparison shows that the proposed method gives us better stereophonic images in a stereo loudspeaker reproduction than the conventional method without any annoying effects.

  6. The Accuracy of the Digital imaging system and the frequency dependent type apex locator in root canal length measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Rib; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In order to achieve a successful endodontic treatment, root canals must be obturated three-dimensionally without causing any damage to apical tissues. Accurate length determination of the root canal is critical in this case. For this reason, I've used the conventional periapical radiography, Digora (digital imaging system) and Root ZX (the frequency dependent type apex locator) to measure the length of the canal and compare it with the true length obtained by cutting the tooth in half and measuring the length between the occlusal surface and the apical foramen. From the information obtained by these measurements, I was able to evaluate the accuracy and clinical usefulness of each systems, whether the thickness of files used in endodontic therapy has any effect on the measuring systems was also evaluated in an effort to simplify the treatment planning phase of endodontic treatment. 29 canals of 29 sound premolars were measured with no 15, no 20, no 25 files by 3 different dentists each using the periapical radiography, Digora and Root ZX. The measurements were then compared with the true length. The results were as follows; 1. In comparing mean discrepancies between measurements obtained by using periapical radiography (mean error : -0.449 {+-} 0.444 mm), Digora (mean error : -0.417 {+-} 0.415 mm) and Root ZX (mean error : 0.123 {+-} 0.458 mm) with true length, periapical radiography and Digora system had statistically significant differences (p<0.05) in most cases while root zx showed none (p>0.05). 2. By subtracting values obtained by using periapical radiography, Digora and Root ZX from the true length and making a distribution table of their absolute values, the following analysis was possible. In the case of periapical film, 140 out of 261 (53.6%) were clinically acceptable satisfying the margin of error of less than 0.5 mm, 151 out of 261 (53,6%) were acceptable in the Digora system while Root ZX had 197 out of 261 (75.5%) within the limits of 0.5 mm

  7. Cerebral Correlates of Emotional and Action Appraisals During Visual Processing of Emotional Scenes Depending on Spatial Frequency: A Pilot Study.

    Science.gov (United States)

    Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole

    2016-01-01

    Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task's demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal

  8. Cerebral Correlates of Emotional and Action Appraisals During Visual Processing of Emotional Scenes Depending on Spatial Frequency: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Aurélie Campagne

    Full Text Available Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task's demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF and high spatial frequencies (HSF. Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA and parietal regions (e.g. superior and inferior parietal lobules. Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of

  9. Cerebral Correlates of Emotional and Action Appraisals During Visual Processing of Emotional Scenes Depending on Spatial Frequency: A Pilot Study

    Science.gov (United States)

    Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole

    2016-01-01

    Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task’s demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal

  10. GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses

    Directory of Open Access Journals (Sweden)

    Makoto Nishiyama

    2010-06-01

    Full Text Available GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and post-synaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and post-synaptic spiking at θ and γ oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD” at the θ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA with LTP timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”. Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD” to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and β frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing and frequency dependences of long-term synaptic modifications in the hippocampus.

  11. Self-perception and dissatisfaction with weight does not depend on the frequency of physical activity

    Directory of Open Access Journals (Sweden)

    Araújo Denise Sardinha Mendes Soares de

    2003-01-01

    Full Text Available OBJECTIVE: To evaluate the level of satisfaction with body weight and the self-perception of the weight/height ratio and to verify the influence of the frequency of present and past physical activity on these variables. METHODS: Using questionnaires or interviews, we obtained height data, reported and desired weight, self-perception of the weight/height ratio, and the frequency of current physical activity in 844 adults (489 women. Of these, evaluated the frequency of physical activity during high school of 193 individuals,and we measured their height and weight. RESULTS: Less than 2/3 of the individuals had body mass index between 20 and 24.9 kg/m2. A tendency existed to overestimate height by less than 1 cm and to underestimate weight by less than 1kg. Desired weight was less than that reported (p<0.001, and only 20% were satisfied with their current weight. Only 42% of men and 25% of women exercised regularly. No association was found between the frequency of physical activity and the variables height, weight, and body mass index, and the level of satisfaction with current weight. CONCLUSION: Height and weight reported seem to be valid for epidemological studies, and great dissatisfaction with body weight and a distorted self-perception of height/weight ratio exists, especially in women, regardless of the frequency of physical activity.

  12. Temperature-Dependent Mollow Triplet Spectra from a Single Quantum Dot: Rabi Frequency Renormalization and Sideband Linewidth Insensitivity

    DEFF Research Database (Denmark)

    Wei, Yu-Jia; He, Yu; He, Yu-Ming

    2014-01-01

    We investigate temperature-dependent resonance fluorescence spectra obtained from a single self- assembled quantum dot. A decrease of the Mollow triplet sideband splitting is observed with increasing temperature, an effect we attribute to a phonon-induced renormalization of the driven dot Rabi...... frequency. We also present first evidence for a nonperturbative regime of phonon coupling, in which the expected linear increase in sideband linewidth as a function of temperature is canceled by the corresponding reduction in Rabi frequency. These results indicate that dephasing in semiconductor quantum...

  13. Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalization and sideband linewidth insensitivity.

    Science.gov (United States)

    Wei, Yu-Jia; He, Yu; He, Yu-Ming; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven; McCutcheon, Dara P S; Nazir, Ahsan

    2014-08-29

    We investigate temperature-dependent resonance fluorescence spectra obtained from a single self-assembled quantum dot. A decrease of the Mollow triplet sideband splitting is observed with increasing temperature, an effect we attribute to a phonon-induced renormalization of the driven dot Rabi frequency. We also present first evidence for a nonperturbative regime of phonon coupling, in which the expected linear increase in sideband linewidth as a function of temperature is canceled by the corresponding reduction in Rabi frequency. These results indicate that dephasing in semiconductor quantum dots may be less sensitive to changes in temperature than expected from a standard weak-coupling analysis of phonon effects.

  14. Frequency and power dependency of HF-induced ionization signatures in incoherent scatter radar observations

    Science.gov (United States)

    Gustavsson, Bjorn; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Vickers, Hannah; Kosch, Michael

    Incoherent scatter radar observations of high-power HF radio-wave induced enhancements in backscatter from ion-acoustic and plasma waves have been observed with the EISCAT UHF radar during Heating experiments where the pump-frequency passed through the 3rd and 4th harmonic of the electron gyro-frequency. The altitude-variation of the enhancement indicate an asymmetry in HF-induced ionization between pump-frequencies below and above a gyro-resonance. Models for ionospheric electron density response to ionization from HF-accelerated electrons is compared to the very precise observations of the altitude variation of the matching-altitudes. Optical observations of radio induced optical emissions are used to determine the electron acceleration by HF-radio waves.

  15. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces.

    Science.gov (United States)

    Di Bernardo, A; Diesch, S; Gu, Y; Linder, J; Divitini, G; Ducati, C; Scheer, E; Blamire, M G; Robinson, J W A

    2015-09-02

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces.

  16. Analysis of age dependent effects of heat stress on EEG frequency components in rats.

    Science.gov (United States)

    Sinha, Rakesh Kumar

    2009-04-01

    To demonstrate changes in different frequencies of cerebral electrical activity or electroencephalogram (EEG) following exposure to high environmental heat in three different age groups of freely moving' rats. Rats were divided into three groups (i) acute heat stress--subjected to a single exposure for four hours at 38 degrees C; (ii) chronic heat stress--exposed for 21 days daily for one hour at 38 degrees C, and (iii) handling control groups. The digital polygraphic sleep-EEG recordings were performed just after the heat exposure from acute stressed rats and on 22nd day from chronic stressed rats by simultaneous recording of cortical EEG, EOG (electrooculogram), and EMG (electromyogram). Further, power spectrum analyses were performed to analyze the effects of heat stress. The frequency analysis of EEG signals following exposure to high environmental heat revealed that in all three age groups of rats, changes in higher frequency components (beta 2) were significant in all sleep-wake states following both acute and chronic heat stress conditions. After exposure to acute heat, significant changes in EEG frequencies with respect to their control groups were observed, which were reversed partly or fully in four hours of EEG recording. On the other hand, due to repetitive chronic exposure to hot environment, adaptive and long-term changes in EEG frequency patterns were observed. The present study has exhibited that the cortical EEG is sensitive to environmental heat and alterations in EEG frequencies in different sleep-wake states due to heat stress can be differentiated efficiently by EEG power spectrum analysis.

  17. Simplified frequency-dependent formulae for series-impedance matrices of single-core HVAC cables

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da

    2015-01-01

    The installation of HVAC underground cables became more common in recent years, a trend expected to continue in the future. Underground cables are more complex than overhead lines and the calculation of their resistance and reactance can be challenging and time consuming for frequencies that are ......The installation of HVAC underground cables became more common in recent years, a trend expected to continue in the future. Underground cables are more complex than overhead lines and the calculation of their resistance and reactance can be challenging and time consuming for frequencies...

  18. Accurate frequency domain measurement of the best linear time-invariant approximation of linear time-periodic systems including the quantification of the time-periodic distortions

    Science.gov (United States)

    Louarroudi, E.; Pintelon, R.; Lataire, J.

    2014-10-01

    Time-periodic (TP) phenomena occurring, for instance, in wind turbines, helicopters, anisotropic shaft-bearing systems, and cardiovascular/respiratory systems, are often not addressed when classical frequency response function (FRF) measurements are performed. As the traditional FRF concept is based on the linear time-invariant (LTI) system theory, it is only approximately valid for systems with varying dynamics. Accordingly, the quantification of any deviation from this ideal LTI framework is more than welcome. The “measure of deviation” allows us to define the notion of the best LTI (BLTI) approximation, which yields the best - in mean square sense - LTI description of a linear time-periodic LTP system. By taking into consideration the TP effects, it is shown in this paper that the variability of the BLTI measurement can be reduced significantly compared with that of classical FRF estimators. From a single experiment, the proposed identification methods can handle (non-)linear time-periodic [(N)LTP] systems in open-loop with a quantification of (i) the noise and/or the NL distortions, (ii) the TP distortions and (iii) the transient (leakage) errors. Besides, a geometrical interpretation of the BLTI approximation is provided, leading to a framework called vector FRF analysis. The theory presented is supported by numerical simulations as well as real measurements mimicking the well-known mechanical Mathieu oscillator.

  19. Ethyl benzene-induced ototoxicity in rats : a dose-dependent mild-frequency hearing loss

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Baretta, A.B.; Muijser, H.; Smoorenburg, G.F.

    2000-01-01

    Rats were exposed to ethyl benzene at 0, 300, 400 and 550 ppm for 8 hours/day for 5 consecutive days. Three to six weeks after the exposure, auditory function was tested by measuring compound action potentials (CAP) in the frequency range of 1-24 kHz and 2f1-f2 distortion product otoacoustic

  20. Dependence of in-situ Bose condensate size on final frequency of ...

    Indian Academy of Sciences (India)

    2017-03-08

    Mar 8, 2017 ... tion (QUIC) magnetic trap after a radio-frequency (RF) evaporative cooling of the trapped atom cloud. The in-situ absorption images ... Due to dissipative processes involved in resonant inter- action of atoms with light, it is ... the in-situ absorption imaging technique are presented in §4. The results show the ...

  1. Dependence of in-situ Bose condensate size on final frequency of ...

    Indian Academy of Sciences (India)

    We report the results of i n − s i t u characterization of 87 Rb atom cloud in a quadrupole Ioffe configuration (QUIC) magnetic trap after a radio-frequency (RF) evaporative cooling of the trapped atom cloud. The i n − s i t u absorption images of the atom cloud have shown clear bimodal optical density (OD) profiles which ...

  2. Can the frequency-dependent specific heat be measured by thermal effusion methods?

    OpenAIRE

    Christensen, Tage; Olsen, Niels Boye; Dyre, Jeppe C.

    2007-01-01

    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.

  3. Frequency Dependency Analysis of SHF Band Directional Propagation Channel in Indoor Environment

    DEFF Research Database (Denmark)

    Kentaro, Saito; Hanpinitsak, Panawit; Takada, Jun-ichi

    2018-01-01

    In the fifth-generation mobile communication system (5G), the millimeter wave band wireless communication is highly expected that it increases the network capacity drastically. Author's research group has conducted channel measurements in several super high frequency (SHF) bands and investigated ...

  4. Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hagos, Samson M.; Leung, Lai-Yung R.; Yang, Qing; Zhao, Chun; Lu, Jian

    2015-04-01

    This study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of Community Atmosphere Model (CAM4) at 240, 120, 60 and 30 km model resolutions each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of sub-tropical westerlies, atmospheric precipitable water content and profile and to a lesser extent on extra-tropical Rossby wave activity to model resolution and dynamical core. Real world simulations using MPAS at 120 km and 30 km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over southern East Pacific, but there difference is smaller over northern East Pacific. This inter-hemispheric difference is related to the enhancement of convection in over the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over southern East Pacific but have relatively little effect on those over northern East Pacific. In comparison to NCEP2 reanalysis, MPAS real world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier sub-tropics and poleward shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.

  5. Wavevector- and frequency-dependent shear viscosity of water: the modified collective mode approach and molecular dynamics calculations

    Directory of Open Access Journals (Sweden)

    I.P.Omelyan

    2005-01-01

    Full Text Available The transverse momentum time autocorrelation functions and wavevector- and frequency-dependent shear viscosity are calculated for an interaction site model of water using a modified collective mode approach and molecular dynamics simulations. The modified mode approach is based on a formulation which consistently takes into account non-Markovian effects into the kinetic memory kernels. As is demonstrated by comparing the theory results with the molecular dynamics data, the entire frequency dependence of the shear viscosity can be reproduced quantitatively over the whole wavelength range in terms of six generalized collective modes employing the kinetic memory kernel in the non-Markovian approximation of the third order. It is also shown that the results corresponding to the exact atomic and abbreviated molecular descriptions may differ considerably. In the infinite wavevector regime the dynamic correlations are completely determined by a single free motion of the molecules.

  6. The neural code for auditory space depends on sound frequency and head size in an optimal manner.

    Directory of Open Access Journals (Sweden)

    Nicol S Harper

    Full Text Available A major cue to the location of a sound source is the interaural time difference (ITD-the difference in sound arrival time at the two ears. The neural representation of this auditory cue is unresolved. The classic model of ITD coding, dominant for a half-century, posits that the distribution of best ITDs (the ITD evoking a neuron's maximal response is unimodal and largely within the range of ITDs permitted by head-size. This is often interpreted as a place code for source location. An alternative model, based on neurophysiology in small mammals, posits a bimodal distribution of best ITDs with exquisite sensitivity to ITDs generated by means of relative firing rates between the distributions. Recently, an optimal-coding model was proposed, unifying the disparate features of these two models under the framework of efficient coding by neural populations. The optimal-coding model predicts that distributions of best ITDs depend on head size and sound frequency: for high frequencies and large heads it resembles the classic model, for low frequencies and small head sizes it resembles the bimodal model. The optimal-coding model makes key, yet unobserved, predictions: for many species, including humans, both forms of neural representation are employed, depending on sound frequency. Furthermore, novel representations are predicted for intermediate frequencies. Here, we examine these predictions in neurophysiological data from five mammalian species: macaque, guinea pig, cat, gerbil and kangaroo rat. We present the first evidence supporting these untested predictions, and demonstrate that different representations appear to be employed at different sound frequencies in the same species.

  7. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects

    Directory of Open Access Journals (Sweden)

    Faten eMina

    2013-07-01

    Full Text Available A number of studies showed that deep brain stimulation (DBS can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in responding patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG data.We developed a macroscopic (neural mass model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy with a focal cortical dysplasia (FCD. In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, < 2 Hz and high-frequency stimulation (HFS, > 70 Hz while intermediate-frequency stimulation (IFS, around 50 Hz had no effect.Signal processing, clustering and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include a feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and b inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.

  8. Influence of frequency-dependent soil electrical parameters on the evaluation of lightning electromagnetic fields in air and underground

    Science.gov (United States)

    Delfino, Federico; Procopio, Renato; Rossi, Mansueto; Rachidi, Farhad

    2009-06-01

    This paper is aimed at analyzing the influence of the frequency-dependent behavior of the ground electrical parameters (conductivity and ground permittivity) on the electromagnetic field radiated by a cloud-to-ground lightning return stroke. Both radiation in air (over the conducting ground plane) and underground are considered in the analysis. The adopted method is based on the classical Sommerfeld's theory and takes advantage of an efficient ad hoc numerical procedure to face with the slow converging Sommerfeld's integrals. This feature allows the electromagnetic field to be computed without any sort of mathematical approximation and, since it is carried out in the frequency domain, can be used either if the ground permittivity and conductivity are considered constant or if they vary with the working frequency with any functional law. Simulations have been performed to identify the cases in which the approximation of constant ground permittivity and conductivity leads to satisfactory results. It is shown that for soils with water contents of 2% to 10% (ground conductivities in the order of 0.001 to 0.01 S/m), the assumption of constant electrical parameters appears to be reasonable. However, for either very poorly conducting soils (10-4 S/m or so) or highly conducting soils (10-1 S/m), the electromagnetic field components appear to be significantly affected by the frequency dependence of the ground electrical parameters.

  9. Inverse identification of the frequency-dependent mechanical parameters of viscoelastic materials based on the measured FRFs

    Science.gov (United States)

    Sun, Wei; Wang, Zhuo; Yan, Xianfei; Zhu, Mingwei

    2018-01-01

    The mechanical parameters of viscoelastic materials, such as storage modulus and loss factor, have frequency-dependent characteristic and the combination of different polymers usually exhibits various mechanical characteristics, which make the identification of the mechanical parameters of viscoelastic materials become a routine and challenging task. In this study, based on the measured resonance frequencies and frequency response functions (FRFs) of a viscoelastic damping plate, an inverse approach was developed to identify the aforementioned parameters with frequency-dependent characteristic. An analysis model was established with both the viscoelastic material damping and the remaining equivalent viscous damping considered. A response surface method was provided to achieve the matching calculation, which can identify the storage modulus and loss factor simultaneously. A cantilever plate attached with ZN_1 viscoelastic material was chosen to demonstrate the proposed method and the measured and the predicted FRFs were compared with the purpose of assessing the rationality of identification results. The results show that the loss factor of viscoelastic materials would be overestimated if only the material damping was included in the analysis model.

  10. Frequency-dependent reduction of voltage-gated sodium current modulates retinal ganglion cell response rate to electrical stimulation

    Science.gov (United States)

    Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2011-10-01

    The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.

  11. Geonium "K" experiment using spin dependency of cyclotron frequency supports g data of earlier geonium "S" work.

    OpenAIRE

    Mittleman, R; Palmer, F; Gabrielse, G.; Dehmelt, H.

    1991-01-01

    By substituting the relativistic spin state dependence of the cyclotron frequency for the continuous Stern-Gerlach effect and running the geonium atom as a microsynchrocyclotron accelerator we have detected spin flips of the individual trapped electron. In our initial efforts we have been able to obtain a simple symmetric spin resonance about 4-fold narrower instead of a complex asymmetric one and also to support but not as yet seriously test the result of the earlier geonium "S" work, g/2 = ...

  12. A neural measure of behavioral engagement: Task-residual low frequency blood oxygenation level dependent activity in the precuneus

    OpenAIRE

    Zhang, Sheng; Li, Chiang-shan Ray

    2009-01-01

    Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low frequency blood oxygenation level dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit – including the ...

  13. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2015-12-31

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  14. Frequency dependent directivity of guided waves excited by circular transducers in anisotropic composite plates.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Eremin, Artem; Lammering, Rolf; Neumann, Mirko

    2012-08-01

    Lamb wave propagation in fiber-reinforced composite plates is featured by a pronounced directivity of wave energy transfer along the fibers from a point surface source. In the case of non-point (sized) source, the main lobe of radiation diagram may turn with frequency up to the orthogonal to the fibers direction. This effect has been theoretically studied and physically explained in the context of semi-analytical integral-equation based mathematical model. The present paper gives its experimental verification.

  15. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    OpenAIRE

    Juan C. Torres; Ricardo Vergaz; David Barrios; José Manuel Sánchez-Pena; Ana Viñuales; Hans Jürgen Grande; Germán Cabañero

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  16. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices.

    Science.gov (United States)

    Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-05-02

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  17. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Science.gov (United States)

    Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632

  18. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Directory of Open Access Journals (Sweden)

    Juan C. Torres

    2014-05-01

    Full Text Available A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  19. Dependence of a frequency bandwidth on a spill structure in the RF-knockout extraction

    Science.gov (United States)

    Nakanishi, Tetsuya

    2010-09-01

    A spill structure in the RF-knockout extraction was studied on colored noise of the RF-knockout, in order to investigate the diffusion process of particles inside the separatrix. It is found that frequency bands solely around the resonances ( n+1/3 and n+2/3) contribute to the diffusion and the uniform spill, or equivalently uniform diffusion requires to include many bands around the resonances. A particle density distribution inside the separatrix would be modulated in the process of diffusion even if a frequency band covers the single betatron tune spread. With a spectrum of RF knockout including many bands around the resonances, the superposition of modulations by each band would make the unevenness of distribution small. The colored noise with multi-bands is proposed to reduce the power of amplifier, since frequency bands outside around the resonances do not contribute to the extraction. The simulation using the multi-bands spectrum shows the same uniform spill with a wide bandwidth.

  20. Frequency-dependent behavior of the barotropic and baroclinic modes of zonal jet variability

    Science.gov (United States)

    Sheshadri, A.; Plumb, R. A.

    2016-12-01

    Stratosphere-troposphere interactions are frequently described in terms of the leading modes of variability, i.e. the annular modes. An idealized dynamical core model is used to explore the differences between the low- and high- frequency (periods greater and less than 30 days) behavior of the first two principal components of zonal mean zonal wind and eddy kinetic energy, i.e., the barotropic/baroclinic annular modes of variability of the extratropical circulation. The modes show similar spatial characteristics in the different frequency ranges considered, however the ranking of the modes switches in some cases from one range to the other. There is some cancelation in the signatures of eddy heat flux and eddy kinetic energy in the leading low-pass and high-pass filtered zonal wind mode, partly explaining their small signature in the total. At low frequencies, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and the persistence of zonal wind anomalies appears to be sustained primarily by a baroclinic, rather than a barotropic, feedback. On shorter time scales, the behavior is more complicated and transient.

  1. Signature of magnetic-dependent gapless odd frequency states at superconductor / ferromagnet interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jason [Department of Materials Science, 27 Charles Babbage Road, Cambridge, CB30FS (United Kingdom)

    2015-07-01

    The theory of superconductivity developed by Bardeen, Cooper, and Schrieffer (BCS) explains the stabilisation of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap below which the density of states (DoS) is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. In this talk I will present scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb sub-gap superconducting DoS on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results verify odd frequency spin-triplet superconductivity at superconductor / inhomogeneous magnet interfaces.

  2. Multi-resonance frequency spin dependent charge pumping and spin dependent recombination - applied to the 4H-SiC/SiO2 interface

    Science.gov (United States)

    Anders, M. A.; Lenahan, P. M.; Lelis, A. J.

    2017-12-01

    We report on a new electrically detected magnetic resonance (EDMR) approach involving spin dependent charge pumping (SDCP) and spin dependent recombination (SDR) at high (K band, about 16 GHz) and ultra-low (360 and 85 MHz) magnetic resonance frequencies to investigate the dielectric/semiconductor interface in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). A comparison of SDCP and SDR allows for a comparison of deep level defects and defects with energy levels throughout most of the bandgap. Additionally, a comparison of high frequency and ultra-low frequency measurements allows for (1) the partial separation of spin-orbit coupling and hyperfine effects on magnetic resonance spectra, (2) the observation of otherwise forbidden half-field effects, which make EDMR, at least, in principle, quantitative, and (3) the observation of Breit-Rabi shifts in superhyperfine measurements. (Observation of the Breit-Rabi shift helps in both the assignment and the measurement of superhyperfine parameters.) We find that, as earlier work also indicates, the SiC silicon vacancy is the dominating defect in n-MOSFETs with as-grown oxides and that post-oxidation NO anneals significantly reduce their population. In addition, we provide strong evidence that NO anneals result in the presence of nitrogen very close to a large fraction of the silicon vacancies. The results indicate that the presence of nearby nitrogen significantly shifts the silicon vacancy energy levels. Our results also show that the introduction of nitrogen introduces a disorder at the interface. This nitrogen induced disorder may provide at least a partial explanation for the relatively modest improvement in mobility after the NO anneals. Finally, we compare the charge pumping and SDCP response as a function of gate amplitude and charge pumping frequency.

  3. Coda Q and its Frequency Dependence in the Eastern Himalayan and Indo-Burman Plate Boundary Systems

    Science.gov (United States)

    Mitra, S.; Kumar, A.

    2015-12-01

    We use broadband waveform data for 305 local earthquakes from the Eastern Himalayan and Indo-Burman plate boundary systems, to model the seismic attenuation in NE India. We measure the decay in amplitude of coda waves at discreet frequencies (between 1 and 12Hz) to evaluate the quality factor (Qc) as a function of frequency. We combine these measurements to evaluate the frequency dependence of Qc of the form Qc(f)=Qof η, where Qo is the quality factor at 1Hz and η is the frequency dependence. Computed Qo values range from 80-360 and η ranges from 0.85-1.45. To study the lateral variation in Qo and η, we regionalise the Qc by combining all source-receiver measurements using a back-projection algorithm. For a single back scatter model, the coda waves sample an elliptical area with the epicenter and receiver at the two foci. We parameterize the region using square grids. The algorithm calculates the overlap in area and distributes Qc in the sampled grids using the average Qc as the boundary value. This is done in an iterative manner, by minimising the misfit between the observed and computed Qc within each grid. This process is repeated for all frequencies and η is computed for each grid by combining Qc for all frequencies. Our results reveal strong variation in Qo and η across NE India. The highest Qo are in the Bengal Basin (210-280) and the Indo-Burman subduction zone (300-360). The Shillong Plateau and Mikir Hills have intermediate Qo (~160) and the lowest Qo (~80) is observed in the Naga fold thrust belt. This variation in Qo demarcates the boundary between the continental crust beneath the Shillong Plateau and Mikir Hills and the transitional to oceanic crust beneath the Bengal Basin and Indo-Burman subduction zone. Thick pile of sedimentary strata in the Naga fold thrust belt results in the low Qo. Frequency dependence (η) of Qc across NE India is observed to be very high, with regions of high Qo being associated with relatively higher η.

  4. Dependence on the electric power of the immersion-angle dependence of the resonant-frequency shift of a quartz crystal microbalance in a liquid.

    Science.gov (United States)

    Yoshimoto, Minoru; Maruyama, Yasuhiro; Kurosawa, Shigeru; Kanazawa, K Keiji

    2007-04-18

    We have investigated the immersion-angle dependence of the series resonant-frequency shift, DeltaF, of the quartz crystal microbalance, QCM, in a Newtonian liquid from the point of view of the supplied electric power level. In the low electric power levels, the immersion-angle dependence and the transition phenomenon of the DeltaF are observed. However, when the higher electric power levels are supplied to the QCM, the region of the transition phenomenon of the DeltaF decreases rapidly with an increase in the electric power level and disappears above 1.5 dBm. That is, above 1.5 dBm, the DeltaF values have only the values of 90 degrees immersion angle in all immersion angles. We suggest that the electric power is very important factor for the DeltaF in a liquid.

  5. Mapping of permafrost surface and active layer properties using GPR: a comparison of frequency dependencies

    DEFF Research Database (Denmark)

    Gacitua, Guisella; Uribe, José Andrés; Tamstorf, Mikkel Peter

    2011-01-01

    Ground penetrating radar (GPR) was used to detect internal features and conditions in the active layer of Zackenberg valley in North-East Greenland. For about 16 years there has been a monitoring programme that registers the physical and biological processes in the ecosystem.We aim to improve...... the monitoring accuracy of the active layer development and estimated soil water content. We used two different GPR frequencies to study their performance in High-Arctic cryoturbated soils. Here we present the analysis of the signal received by quantifying the power of the signal that is reflected from the top...

  6. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses

    Science.gov (United States)

    Butcher, Michael T.; Bertram, John E.A.; Syme, Douglas A.; Hermanson, John W.; Chase, P. Bryant

    2014-01-01

    Abstract The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5–16 Hz) and strain amplitudes (0.01–0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002–0.05 Wkg−1) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4–7 Hz), SDF (4–5 Hz) and SOL (0.5–1 Hz). Nyquist analysis, reflecting the influence of cross‐bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. PMID:25293602

  7. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses.

    Science.gov (United States)

    Butcher, Michael T; Bertram, John E A; Syme, Douglas A; Hermanson, John W; Chase, P Bryant

    2014-10-01

    The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5-16 Hz) and strain amplitudes (0.01-0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002-0.05 Wkg(-1)) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4-7 Hz), SDF (4-5 Hz) and SOL (0.5-1 Hz). Nyquist analysis, reflecting the influence of cross-bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Resistance to Change and Frequency of Response-Dependent Stimuli Uncorrelated with Reinforcement

    Science.gov (United States)

    Podlesnik, Christopher A.; Jimenez-Gomez, Corina; Ward, Ryan D.; Shahan, Timothy A.

    2009-01-01

    Stimuli uncorrelated with reinforcement have been shown to enhance response rates and resistance to disruption; however, the effects of different rates of stimulus presentations have not been assessed. In two experiments, we assessed the effects of adding different rates of response-dependent brief stimuli uncorrelated with primary reinforcement…

  9. Temperature dependence of low-frequency polarized Raman scattering spectra in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu; Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    In this work, we examined phase transitions in the layered ternary thallium chalcogenide TlInS{sub 2} by studying the temperature dependence of polarized Raman spectra with the aid of the Raman confocal microscope system. The Raman spectra were measured over the temperature range of 77-320 K (which includes the range of successive phase transitions) in the low-frequency region of 35-180 cm{sup -1}. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to phase transitions, while the phonons that showed weak temperature dependence were identified as intralayer vibrations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The Severity, Frequency, and Variety of Crime in Heroin-Dependent Prisoners Enrolled in a Buprenorphine Clinical Trial

    Science.gov (United States)

    Gordon, Michael S.; Kinlock, Timothy W.; Schwartz, Robert P.; Couvillion, Kathryn A.; O’Grady, Kevin E.

    2014-01-01

    Data were obtained on four dimensions of criminal activity (frequency, variety, severity, and income) from male and female prisoners (N = 200) with preincarceration heroin dependence who participated in a randomized clinical trial of buprenorphine treatment. The article examines the above-mentioned dimensions of crime and their relationships with demographic characteristics, substance use, legitimate employment, drug treatment episodes, and psychological problems. Results largely show several important similarities to results on previous prison inmate cohorts with histories of heroin addiction, although the present sample may have more of a tendency toward violent crime than earlier cohorts of heroin-dependent offenders. This study’s findings may have implications for the design of appropriate treatment interventions for prisoners with preincarceration heroin dependence that address not only substance use but also criminal activity. PMID:25392564

  11. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes

    Science.gov (United States)

    Dudchenko, Alexander V.; Chen, Chuxiao; Cardenas, Alexis; Rolf, Julianne; Jassby, David

    2017-07-01

    Water shortages and brine waste management are increasing challenges for coastal and inland regions, with high-salinity brines presenting a particularly challenging problem. These high-salinity waters require the use of thermally driven treatment processes, such as membrane distillation, which suffer from high complexity and cost. Here, we demonstrate how controlling the frequency of an applied alternating current at high potentials (20 Vpp) to a porous thin-film carbon nanotube (CNT)/polymer composite Joule heating element can prevent CNT degradation in ionizable environments such as high-salinity brines. By operating at sufficiently high frequencies, these porous thin-films can be directly immersed in highly ionizable environments and used as flow-through heating elements. We demonstrate that porous CNT/polymer composites can be used as self-heating membranes to directly heat high-salinity brines at the water/vapour interface of the membrane distillation element, achieving high single-pass recoveries that approach 100%, far exceeding standard membrane distillation recovery limits.

  12. The Frequency of Nonmotor Symptoms among Advanced Parkinson Patients May Depend on Instrument Used for Assessment

    Directory of Open Access Journals (Sweden)

    Nelson Hwynn

    2011-01-01

    Full Text Available Background. Nonmotor symptoms (NMS of Parkinson's disease (PD may be more debilitating than motor symptoms. The purpose of this study was to determine the frequency and corecognition of NMS among our advanced PD cohort (patients considered for deep brain stimulation (DBS and caregivers. Methods. NMS-Questionnaire (NMS-Q, a self-administered screening questionnaire, and NMS Assessment-Scale (NMS-S, a clinician-administered scale, were administered to PD patients and caregivers. Results. We enrolled 33 PD patients (23 males, 10 females and caregivers. The most frequent NMS among patients using NMS-Q were gastrointestinal (87.9%, sleep (84.9%, and urinary (72.7%, while the most frequent symptoms using NMS-S were sleep (90.9%, gastrointestinal (75.8%, and mood (75.8%. Patient/caregiver scoring correlations for NMS-Q and NMS-S were 0.670 (<0.0001 and 0.527 (=0.0016, respectively. Conclusion The frequency of NMS among advanced PD patients and correlation between patients and caregivers varied with the instrument used. The overall correlation between patient and caregiver was greater with NMS-Q than NMS-S.

  13. Frequency-dependent performance analysis of a parallel DSP-based computer system

    Science.gov (United States)

    Christou, Ch. S.

    2014-11-01

    The performance of a shared-memory low-cost high-performance DSP-Based multiprocessor system [3] is investigated, by varying the frequency of the core processor from 200MHz to 1GHZ, in steps of 200 MHZ, and keeping constant parameters such as the shared-memory-access-time and the prefetching-workload-size. The innovation of this Parallel DSP-Based computer system is the introduction of two small programmable small fast memories (Twins) between the processor and the shared bus interconnect. While one memory (Twin) transfers data from/to the shared memory, the other Twin supplies the core DSP-processor with data. Results indicate an increase of the shared-bus bottleneck as the core DSP processors' clock-rate increases. Workload of the Twins is processed faster thus greater the demand of the shared-bus. Results show an effectively supported robust parallel shared-memory system where fewer but faster (clocked with higher frequency) processors produce the same execution times as a greater number of slower processors, with most system configurations achieving perfect speedups, mainly due to the twin-prefetching mechanism.

  14. Influence of a drinking quantity and frequency measure on the prevalence and demographic correlates of DSM-IV alcohol dependence.

    Science.gov (United States)

    Keyes, Katherine M; Geier, Timothy; Grant, Bridget F; Hasin, Deborah S

    2009-05-01

    Recent research suggests that adding a quantity/frequency alcohol consumption measure to diagnoses of alcohol use disorders may improve construct validity of the diagnoses for Diagnostic and Statistical Manual of Mental and Behavior Disorders (DSM-V). This study explores the epidemiological impact of including weekly at-risk drinking (WAD) in the DMS-IV diagnostic definition of alcohol dependence via 3 hypothetical reformulations of the current criteria. The sample was the National Epidemiologic Survey on Alcohol and Related Conditions, a nationally representative sample with 43,093 adults aged >18 in the U.S interviewed with the Alcohol Use Disorder and Associated Disabilities Interview Schedule IV. The current (DSM-IV) definition of alcohol dependence was compared with 4 hypothetical alcohol dependence reformulations that included WAD: (1) WAD added as an eighth criteria; (2) WAD required for a diagnosis; (3) adding abuse and dependence criteria together, and including WAD with a 3 of 12 symptom threshold; (4) adding abuse and dependence criteria together, and including WAD with a 5 of 12 symptom threshold. The inclusion of at-risk drinking as an eighth criterion of alcohol dependence has a minimal impact on the sociodemographic correlates of alcohol dependence but substantially increases the prevalence of dependence (from 3.8% to 5.0%). At-risk drinking as a required criterion or as part of a diagnosis that combines abuse with dependence criteria with a higher threshold (5+ criteria) decreases prevalence and has a larger impact on sociodemographic correlates. Blacks, Hispanics, and women are less likely to be included in diagnostic reformulations that include WAD, whereas individuals with low-income and education are more likely to remain diagnosed. Including WAD as either a requirement of diagnosis or as an additional criterion would have a large impact on the prevalence of alcohol dependence in the general population. The inclusion of a quantity/frequency

  15. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  16. Frequency dependent gamma-ray irradiation response of Sm{sub 2}O{sub 3} MOS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, S., E-mail: senolkaya52@gmail.com [Nuclear Radiation Detectors Research and Development Center, AIBU, 14280 Bolu (Turkey); Yilmaz, E. [Nuclear Radiation Detectors Research and Development Center, AIBU, 14280 Bolu (Turkey); Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Kahraman, A. [Nuclear Radiation Detectors Research and Development Center, AIBU, 14280 Bolu (Turkey); Physics Department, Uludag University, 16059 Bursa (Turkey); Karacali, H. [Nuclear Radiation Detectors Research and Development Center, AIBU, 14280 Bolu (Turkey); Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey)

    2015-09-01

    The frequency dependent irradiation influences on Sm{sub 2}O{sub 3} MOS capacitors have been investigated and possible use of Sm{sub 2}O{sub 3} in MOS-based radiation sensor was discussed in this study. To examine their gamma irradiation response over a range of doses, the fabricated MOS capacitors were irradiated up to 30 grays. Capacitance–Voltage (C–V) measurements were recorded for various doses and the influences of irradiation were determined from the mid-gap and flat-band voltage shifts. In addition, the degradations of irradiation have been studied by impedance based leakage current–voltage (J–V) characteristics. The results demonstrate that J–V characteristics have not been significantly change by irradiation and implying that the excited traps have a minor effect on current for given dose ranges. However, the frequency of applied voltage during the C–V measurements affects the irradiation response of devices, significantly. The variations on the electrical characteristics may be attributed to the different time dependency of acceptor and donor-like interface states. In spite of the variations on the device characteristics, low frequency measurements indicate that Sm{sub 2}O{sub 3} is a potential candidate to be used as a dielectric layer in MOS based irradiation sensors.

  17. ASSESSMENT OF FREQUENCY OF ALLOIMMUNIZATION AND ERYTHROCYTE AUTOIMMUNIZATION IN TRANSFUSION DEPENDENT THALASSEMIA PATIENTS

    Directory of Open Access Journals (Sweden)

    S. Ansari

    2008-05-01

    Full Text Available Life-long red blood transfusion remains the main treatment for severe thalassemia. The development of hemolytic alloantibodies and erythrocyte autoantibodies complicated transfusion therapy in thalassemia patients. The frequency causes and prevention of this phenomenon among 80 transfused thalassemia patients were evaluated in Ali Asghar Children's Hospital during 1998-2004 in a cross-sectional study. In our study the mean age at the initiation of transfusion was 1.7 years (SD = 1.94 and mean interval of transfusion 33.73 day (SD = 20.74. Autoimmunization in 15 patients was positive and 8 patients had hemolytic reaction in transfusion. Our data show that alloimmunization to minor erythrocyte antigens and erythrocyte autoimmunization of significant clinical variables, are frequent findings in transfused thalassemia patients. However data suggest that prevalence of immunization in our patients is less than other Asian countries.

  18. Frequency dependence of the complex susceptibility for a spin-1 Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, Riza [Department of Physics, Gaziosmanpasa University, 60250 Tokat (Turkey)], E-mail: rerdem29@hotmail.com

    2009-09-15

    The complex susceptibility or the dynamic susceptibility ({chi}({omega})={chi}'({omega})-i{chi}''({omega})) for a spin-1 Ising system with bilinear and biquadratic interactions is obtained on the basis of Onsager theory of irreversible processes. If the logarithm of the susceptibilities is plotted as a function of the logarithm of frequency, then the real part ({chi}') displays a sequence of plateau regions and the imaginary part ({chi}'') has a sequence of maxima in the ordered or ferromagnetic phase. On the other hand, only one plateau region in {chi}' and one maximum in {chi}'' is observed in the disordered or paramagnetic phase. Argand or Cole-Cole plots ({chi}''-{chi}') for a selection of temperatures are also shown, and a sequence of semicircles is illustrated in the ordered phase and only one semicircle for the disordered phase in these plots.

  19. Frequency dependence of the complex susceptibility for a spin-1 Ising model

    Science.gov (United States)

    Erdem, Rıza

    2009-09-01

    The complex susceptibility or the dynamic susceptibility ( χ( ω)= χ'( ω)- iχ″( ω)) for a spin-1 Ising system with bilinear and biquadratic interactions is obtained on the basis of Onsager theory of irreversible processes. If the logarithm of the susceptibilities is plotted as a function of the logarithm of frequency, then the real part ( χ') displays a sequence of plateau regions and the imaginary part ( χ″) has a sequence of maxima in the ordered or ferromagnetic phase. On the other hand, only one plateau region in χ' and one maximum in χ″ is observed in the disordered or paramagnetic phase. Argand or Cole-Cole plots ( χ″- χ') for a selection of temperatures are also shown, and a sequence of semicircles is illustrated in the ordered phase and only one semicircle for the disordered phase in these plots.

  20. Field dependence of the magnetic eigenmode frequencies in layered nanowires with ferromagnetic and antiferromagnetic ground states: experimental and theoretical study

    Science.gov (United States)

    Gubbiotti, G.; Nguyen, H. T.; Hiramatsu, R.; Tacchi, S.; Madami, M.; Cottam, M. G.; Ono, T.

    2014-09-01

    The magnetic field dependence of the magnetic eigenmode frequencies in 150 nm wide layered permalloy nanowires (NWs) has been studied by the Brillouin light scattering technique. The NWs have the following layering structure Py(30 nm)/Cu(10 nm)/Py(d)/Cu(10 nm)/Py(30 nm) with fixed thickness of the top and bottom stripe and differ by the thickness d of the middle Py stripe (with d = 15, 30, 60 nm). The magnetic field, applied along the length of the wires, has been swept from positive to negative saturation thus exploring both the ferromagnetic and the antiferromagnetic relative orientation of the magnetization in the middle stripe with respect to the outermost ones. In conjunction with the transition between the two different ground states, the mode frequencies undergo an abrupt variation. Moreover the mode frequencies in the antiferromagnetic state are relatively insensitive to the applied field strength. The experimental results (frequencies versus magnetic field strength) have been successfully interpreted by means of a microscopic (Hamiltonian-based) theory which incorporates both the exchange and dipole-dipole interactions as well as effects of single-ion anisotropy and an external magnetic field applied parallel to the NW axis. This model was extended to account for parallel and antiparallel magnetization orientations in the layered NWs, enabling us to also calculate the probability amplitude of each spin-wave eigenmode at any position in the trilayered NWs.

  1. Performance Study of Acoustophoretic Microfluidic Silicon-Glass Devices by Characterization of Material- and Geometry-Dependent Frequency Spectra

    DEFF Research Database (Denmark)

    Garofalo, Fabio; Laurell, Thomas; Bruus, Henrik

    2017-01-01

    The mechanical and electrical response of acoustophoretic microfluidic devices attached to an ac-voltage-driven piezoelectric transducer is studied by means of numerical simulations. The governing equations are formulated in a variational framework that, introducing Lagrangian and Hamiltonian...... densities, is used to derive the weak form for the finite-element discretization of the equations and to characterize the device response in terms of frequency-dependent figures of merit or indicators. The effectiveness of the device in focusing microparticles is quantified by two mechanical indicators......: the average direction of the pressure gradient and the amount of acoustic energy localized in the microchannel. Furthermore, we derive the relations between the Lagrangian, the Hamiltonian, and three electrical indicators: the resonance Q value, the impedance, and the electric power. The frequency response...

  2. Performance study of acoustophoretic microfluidic silicon-glass devices by characterization of material- and geometry-dependent frequency spectra

    CERN Document Server

    Garofalo, Fabio; Bruus, Henrik

    2016-01-01

    The mechanical and electrical response of acoustophoretic microfluidic devices attached to an ac-voltage-driven piezoelectric transducer is studied by means of numerical simulations. The governing equations are formulated in a variational framework that, introducing Lagrangian and Hamiltonian densities, is used to derive the weak form for the finite element discretization of the equations and to characterize the device response in terms of frequency-dependent figures of merit or indicators. The effectiveness of the device in focusing microparticles is quantified by two mechanical indicators: the average direction of the pressure gradient and the amount of acoustic energy localized in the microchannel. Further, we derive the relations between the Lagrangian, the Hamiltonian and three electrical indicators: the resonance Q-value, the impedance and the electric power. The frequency response of the hard-to-measure mechanical indicators is correlated to that of the easy-to-measure electrical indicators, and by int...

  3. Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet

    Science.gov (United States)

    Osinalde, M.; Infante, P.; Domínguez, L.; Blanco, J. M.; del Val, J. J.; Chizhik, A.; González, J.

    2017-12-01

    We report changes of coercivity, induced magnetic anisotropy, magneto-optical domain structure and frequency dependencies of coercivity and energy loss (up to 10 MHz) associated with the structural modifications produced by thermal treatments under applied magnetic field (field annealing) in toroidal wound cores of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy. The thermal treatment (535 °C, 1 h) leads to the typical nanocrystalline structure of α-Fe(Si) nanograins (60-65% relative volume, 10-20 nm average grain size embedded in a residual amorphous matrix, while the magnetic field with the possibility to be applied in two directions to the toroidal core axis, that is in transverse (which is equivalent to the transverse direction of the ribbon) or longitudinal (equivalent to the longitudinal direction of the ribbon), develops a macroscopic uniaxial magnetic anisotropy in the transverse (around 245 J/m3) or longitudinal (around 85 J/m3) direction of the ribbon, respectively. It is remarkable the quasi-unhysteretic character of the cores with these two kinds of field annealing as comparing with that of the as-quenched one. Magneto-optical study by Kerr-effect of the ribbons provides useful information on the domain structure of the surface in agreement with the direction and intensity of the induced magnetic anisotropy. This induced uniaxial magnetic anisotropy plays a very important role on the Hc(f) and EL(f) curves, (f: frequency), being drastic the presence and direction of the induced magnetic anisotropy. In addition, these frequency dependencies show a significant change at the frequency around 100 Hz.

  4. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  5. Resistance to change and frequency of response-dependent stimuli uncorrelated with reinforcement.

    Science.gov (United States)

    Podlesnik, Christopher A; Jimenez-Gomez, Corina; Ward, Ryan D; Shahan, Timothy A

    2009-09-01

    Stimuli uncorrelated with reinforcement have been shown to enhance response rates and resistance to disruption; however, the effects of different rates of stimulus presentations have not been assessed. In two experiments, we assessed the effects of adding different rates of response-dependent brief stimuli uncorrelated with primary reinforcement on relative response rates and resistance to change. In both experiments, pigeons responded on variable-interval 60-s schedules of food reinforcement in two components of a multiple schedule, and brief response-dependent keylight-color changes were added to one or both components. Although relative response rates were not systematically affected in either experiment, relative resistance to presession feeding and extinction were. In Experiment 1, adding stimuli on a variable-interval schedule to one component of a multiple schedule either at a low rate (1 per min) for one group or at a high rate (4 per min) for another group similarly increased resistance to disruption in the components with added stimuli. When high and low rates of stimuli were presented across components (i.e., within subjects) in Experiment 2, however, relative resistance to disruption was greater in the component presenting stimuli at a lower rate. These results suggest that stimuli uncorrelated with food reinforcement do not strengthen responding in the same way as primary reinforcers.

  6. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    Directory of Open Access Journals (Sweden)

    Ben H. Erné

    2013-05-01

    Full Text Available Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid-based hydrogels (PAA. To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  7. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    Science.gov (United States)

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  8. Ferrule material dependence of axial force sensitivity of a tunable optical frequency filter made of fiber fabry-perot etalon

    Science.gov (United States)

    Tateda, Mitsuhiro; Dong, Mohan

    2011-01-01

    Fiber Fabry-Perot etalon (FFPE) is a device designed as an optical frequency filter, and its transmission characteristics change depending on force and temperature. In this paper, axial force sensitivity of three types of FFPE is investigated, whose ferrule materials have different Young's modulus. Force sensitivity of an FFPE whose ferrule material is borosilicate glass was found to be 2.7 GHz/N, while those of FFPEs with glass ceramics and zirconium oxide ferrules were 1.7 and 0.8 GHz/N, respectively. Thus, the theoretical expectation is confirmed experimentally that the axial force sensitivity of FFPE is inversely proportional to Young's modulus of the ferrule material.

  9. A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Hofmann Frank

    2009-09-01

    Full Text Available Abstract Background The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs are also increased in amplitude and/or frequency during long-term potentiation (LTP, it is not known how long such changes persist or whether gene transcription is required. Results We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. Conclusion These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic

  10. Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: Experiment and theory

    DEFF Research Database (Denmark)

    Stobbe, Søren; Johansen, Jeppe; Kristensen, Philip Trøst

    2009-01-01

    of the exciton wave function on quantum dot size. We derive the quantum optics theory of a solid-state emitter in an inhomogeneous environment and compare this theory to our experimental results. Using this model, we extract the frequency dependence of the overlap between the electron and hole wave functions. We......We analyze time-resolved spontaneous emission from excitons confined in self-assembled InAs quantum dots placed at various distances to a semiconductor-air interface. The modification of the local density of optical states due to the proximity of the interface enables unambiguous determination...

  11. Frequency doubling in LiNbO3 using temperature dependent QPM

    DEFF Research Database (Denmark)

    Belmonte, Michele; Skettrup, Torben; Pedersen, Christian

    1999-01-01

    We report the application of temperature-dependent quasi-phase matching (QPM) for second harmonic generation of green light using periodically field poled LiNbO3. In contrast to the usual QPM devices, here the fundamental and second harmonic waves are polarized orthogonally so that the second...... harmonic signal corresponds to the extraordinary wave. This requires the utilization of the d31 component of the nonlinear tensor (i.e. the same component as used for ordinary birefringent phase matching). d31 is smaller than the d33 component usually used in QPM devices and therefore yields a lower...... efficiency. However, the use of QPM in our geometry with orthogonally polarized waves results in a greatly enhanced temperature tunability, which increases the versatility of the devices. Moreover, the domain inversion grating period required in this geometry for first-order QPM at the Nd laser wavelength...

  12. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    Science.gov (United States)

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA

  13. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.

  14. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  15. Modelling transient pipe flow with cavitation and frequency dependent friction. Part II. Friction and numerical-experimental validation

    Directory of Open Access Journals (Sweden)

    Kamil Urbanowicz

    2015-09-01

    Full Text Available Modelling of time-depended hydraulic friction is not an easy issue. As numerous studies have shown, wall shear stress in the pipe can be determined as a sum of the quasi-steady and time-dependent expressions. Time-depended expression is an convolution integral of the local acceleration of the liquid and a weighting function. The weighting function, in general, makes allowance for relation of historic velocity changes and unsteady component of wall shear stress. The original weighting function has usually a very complicated structure, and what is more it makes impossible to do an efficient simulation of dynamical runs. In this paper, in order to enable efficient calculation of unsteady component wall shear stress, new weighting functions are presented as a sum of exponential components. To aim this goal in case of turbulent flow, the scaling procedure proposed by Vitkovsky et al. is used. This method makes very easy the estimation of any new turbulent weighting function. Presented approximated weighting functions are compared with the original counterparts, known from literature in case of laminar and turbulent flows. Using the previously discussed models of cavitation flow CSM, CSMG, CSMA, and the BCM with implemented effective weighting function a series of simulation studies has been made, which showed that the introduced changes in models of unsteady flow with cavitation greatly improve the degree of simulation fit in comparison with experimental results.[b]Keywords[/b]: numerical fluid mechanics, transient flow, cavitation, frequency-dependent friction losses, pipeline, waterhammer

  16. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.

    Science.gov (United States)

    Yamaguchi, T; Matsuoka, T; Koda, S

    2009-03-07

    The theory on the frequency-dependent electric conductivity of electrolyte solutions proposed previously by Yamaguchi et al. [J. Chem. Phys. 127, 234501 (2007)] is extended to include the hydrodynamic interaction between ions. The theory is applied to the aqueous solution of NaCl and the concentration dependence of the conductivity agrees well with that determined by experiments. The effects of the hydrodynamic and relaxation effects are highly nonadditive in the concentrated solution, because the hydrodynamic interaction between ions affects the time-dependent response of the ionic atmosphere. The decrease in the electric conductivity is divided into the contributions of ion pair distribution at various distances. The long-range ionic atmosphere plays a major role at the concentration as low as 0.01 mol/kg, whereas the contribution of the contact ion pair region is important at 1 mol/kg. The magnitude of the contribution of the contact ion pair region is scarcely dependent on the presence of the hydrodynamic interaction. The transport number of cation is calculated to be a decreasing function of concentration as is observed in experiments.

  17. Dependence of a rabbit's reaction on the frequency of repetition of an impulse and current exposition in experiment

    Directory of Open Access Journals (Sweden)

    Koklin А.Е.

    2013-12-01

    Full Text Available Now electroshock devices are used as a civilian weapon for self-defense and as a non-lethal weapon in the police. Therefore, medical-biological safety testing of electroshock devices should be carried out. Development of hygienic regulations is relevant as well. The aim of our work is the study of the biological effects of pulsed current depending on the pulse frequency, pulse amplitude and exposure. Material and methods. We compared the biological effects with varying frequency of the current pulse (50, 400, and 600 Hz with varying exposure (0.25, 0.5 and 1.0 s.. Average pulse power in all cases was equal, and the pulse energy was different. Experiments were performed on rabbits. Biological effects of stun device were evaluated by clinical lesions, as well as electrophysiological parameters: ECG and electro-pneumogram. Results. Response was observed only in the current period (0.25 s, 0.5 s or 1 s was disorientation, convulsing, dyspnea. The degree of severity of the reaction was determined by a combination of pulse repetition frequency and exposure. Immediately after switching off the current noted vocalization, decreased heart rate and breathing. Heart rate and respiration in 5 minutes back to the normal values. Conclusions. In the results of the research has got a comparative classification organism's response (based on a points system as well as the characteristic of the biological response of the individual systems of the body on the parameters of the current pulse.

  18. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    Science.gov (United States)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency ( 50 cm-1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  19. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence

    Science.gov (United States)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2016-07-01

    In the current paper, a nonlinear differential algebraic approach is proposed for the modeling of hysteretic dynamics of polycrystalline ferromagnetic materials. The model is constructed by employing a phenomenological theory to the magnetization orientation switching. For the modeling of hysteresis in polycrystalline ferromagnetic materials, the single crystal model is applied to each magnetic domain along its own principal axis. The overall dynamics of the polycrystalline materials is obtained by taking a weighted combination of the dynamics of all magnetic domains. The weight function for the combination is taken as the distribution function of the principal axes. Numerical simulations are performed and comparisons with its experimental counterparts are presented. The hysteretic dynamics caused by orientation switching processes is accurately captured by the proposed model. Minor hysteresis loops associated with partial-amplitude loadings are also captured. Rate dependence of the hysteresis loops are inherently incorporated into the model due to its differential nature.

  20. Motor demand-dependent improvement in accuracy following low-frequency transcranial magnetic stimulation of left motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Hines, Benjamin; Shuster, Linda; Pergami, Paola; Mathes, Adam

    2011-10-01

    The role of primary motor cortex (M1) in the control of voluntary movements is still unclear. In brain functional imaging studies of unilateral hand performance, bilateral M1 activation is inconsistently observed, and disruptions of M1 using repetitive transcranial magnetic stimulation (rTMS) lead to variable results in the hand motor performance. As the motor tasks differed qualitatively in these studies, it is conceivable that M1 contribution differs depending on the level of skillfulness. The objective of the present study was to determine whether M1 contribution to hand motor performance differed depending on the level of precision of the motor task. Here, we used low-frequency rTMS of left M1 to determine its effect on the performance of a pointing task that allows the parametric increase of the level of precision and thereby increase the level of required precision quantitatively. We found that low-frequency rTMS improved performance in both hands for the task with the highest demand on precision, whereas performance remained unchanged for the tasks with lower demands. These results suggest that the functional relevance of M1 activity for motor performance changes as a function of motor demand. The bilateral effect of rTMS to left M1 would also support the notion of M1 functions at a higher level in motor control by integrating afferent input from nonprimary motor areas.

  1. Quadratic response theory of frequency-dependent first hyperpolarizability. Calculations in the dipole length and mixed-velocity formalisms

    Science.gov (United States)

    Parkinson, William A.; Oddershede, Jens

    1991-06-01

    The quadratic response function (QRF) is evaluated within the random phase approximation (RPA), to compute frequency-dependent first hyperpolarizabilities β(ω,ω). The method treats electron correlation consistent through first order, so the computed values are equivalent to coupled-perturbed Hartree-Fock (CPHF) results. The QRF is obtained by solving systems of linear equations, thus circumventing the RPA eigenvalue problem. The QRF equation of motion is used to develop hyperpolarizability identities in the dipole length and mixed-velocity representations. The two forms of β are equivalent at the RPA level, and provide a useful measure of completeness of basis. The method is applied to the hyperpolarizability of HF and H2O. It is found that basis sets used in previous studies were not saturated for all β components, and that basis sets which satisfy length-velocity sum rules for linear response properties are not sufficient for agreement of quadratic response properties. The calculated dispersion ratios are in good agreement with experimental measurement, indicating that dispersion effects are properly described by frequency-dependent calculations in the RPA at field energies which are small compared to vertical excitation energies.

  2. Frequency dependence of the microwave surface resistance of MgB{sub 2} by coaxial cavity resonator

    Energy Technology Data Exchange (ETDEWEB)

    Agliolo Gallitto, A., E-mail: aurelio.agliologallitto@unipa.it [CNISM and Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo (Italy); Camarda, P.; Li Vigni, M. [CNISM and Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo (Italy); Figini Albisetti, A. [EDISON SpA Research and Development Division, Foro Buonaparte 31, 20121 Milano (Italy); Giunchi, G. [Freelance Consultant, via Teodosio 8, 20131 Milano (Italy)

    2014-08-15

    Highlights: • We investigate the microwave properties of a bulk MgB{sub 2} rod 94.3 mm long. • The MgB{sub 2} rod is used as inner conductor of a coaxial cavity. • The mw surface resistance vs. frequency is studied in the range 1–9 GHz. • R{sub s} vs. f curves follow a f{sup n} law, with n decreasing with the temperature. • Deviations from the quadratic law are highlighted at relatively low temperatures. - Abstract: We report on the microwave (mw) properties of a cylindrical MgB{sub 2} rod prepared by the reactive liquid Mg infiltration technology. The MgB{sub 2} rod, 94.3 mm long, is used as inner conductor of a coaxial cavity having a Cu tube as external conductor. By analyzing the resonance curves of the cavity in the different resonant modes and at different temperatures, we have determined the temperature dependence of the mw surface resistance, R{sub s}, of the MgB{sub 2} material, at fixed frequencies, and the frequency dependence of R{sub s}, at fixed temperatures. Our results show that the R{sub s}(f) curves follow a f{sup n} law, where n decreases on increasing the temperature, starting from n≈2, at T=4.2K, down to n≈0.7 at T⩾T{sub c}. The double-gap nature of MgB{sub 2} manifests itself in the presence of a wide low-T tail in the R{sub s}(T) curves, which can be ascribed to the quasiparticles thermally excited through the π gap even at relatively low temperatures.

  3. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2011-02-28

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  4. A High Resolution/Accurate Mass (HRAM) Data-Dependent MS3 Neutral Loss Screening, Classification, and Relative Quantitation Methodology for Carbonyl Compounds in Saliva

    Science.gov (United States)

    Dator, Romel; Carrà, Andrea; Maertens, Laura; Guidolin, Valeria; Villalta, Peter W.; Balbo, Silvia

    2017-04-01

    Reactive carbonyl compounds (RCCs) are ubiquitous in the environment and are generated endogenously as a result of various physiological and pathological processes. These compounds can react with biological molecules inducing deleterious processes believed to be at the basis of their toxic effects. Several of these compounds are implicated in neurotoxic processes, aging disorders, and cancer. Therefore, a method characterizing exposures to these chemicals will provide insights into how they may influence overall health and contribute to disease pathogenesis. Here, we have developed a high resolution accurate mass (HRAM) screening strategy allowing simultaneous identification and relative quantitation of DNPH-derivatized carbonyls in human biological fluids. The screening strategy involves the diagnostic neutral loss of hydroxyl radical triggering MS3 fragmentation, which is only observed in positive ionization mode of DNPH-derivatized carbonyls. Unique fragmentation pathways were used to develop a classification scheme for characterizing known and unanticipated/unknown carbonyl compounds present in saliva. Furthermore, a relative quantitation strategy was implemented to assess variations in the levels of carbonyl compounds before and after exposure using deuterated d 3 -DNPH. This relative quantitation method was tested on human samples before and after exposure to specific amounts of alcohol. The nano-electrospray ionization (nano-ESI) in positive mode afforded excellent sensitivity with detection limits on-column in the high-attomole levels. To the best of our knowledge, this is the first report of a method using HRAM neutral loss screening of carbonyl compounds. In addition, the method allows simultaneous characterization and relative quantitation of DNPH-derivatized compounds using nano-ESI in positive mode.

  5. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  6. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Science.gov (United States)

    Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O.

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle-Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  7. Calculation of the frequency response and bandwidth in step-index plastic optical fibres using the time-dependent power flow equation

    Science.gov (United States)

    Drljača, B.; Savović, S.; Djordjevich, A.

    2012-05-01

    The power flow equation is used to calculate the frequency response and bandwidth in step-index plastic optical fibres (POFs). The frequency response is specified as a function of distance from the input fibre end. Good agreement is seen between our analytical results and the experimental results from the literature. Mode-dependent attenuation and mode dispersion and coupling are known to be strong in POFs, leading to major implications for their frequency response in data transmission systems.

  8. Analytical model for frequency dependent AC transport current loss of YBCO conductor; YBCO hakumaku dotai no koryu tsuden sonshitsu shuhasu izonsei kaiseki moderu

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, D.; Tsukamoto, O. [Yokohama National University, Kanagawa (Japan)

    2000-05-29

    YBCO film with thickness of about 1 {mu}m on LaAlO{sub 3} single crystal substrate was grown and AC transport current loss was measured over 30-960 Hz. As the result, AC loss showed frequency dependence and Norris model could not explain this fact. Model in which normal conductive zone with cross section of 21 % was formed in outermost layer of wire, could explain frequency dependence of AC loss. (NEDO)

  9. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  10. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter; Van der Klis, Michiel, E-mail: p.m.bult@uva.nl [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  11. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  12. Addition of thymidine to culture media for accurate examination of thymidine-dependent small-colony variants of methicillin-resistant Staphylococcus aureus: a pilot study.

    Science.gov (United States)

    Horiuchi, Kazuki; Matsumoto, Takehisa; Ota, Yusuke; Kasuga, Eriko; Negishi, Tatsuya; Yaguchi, Tomomi; Sugano, Mitsutoshi; Honda, Takayuki

    2015-03-01

    Small-colony variants (SCVs) are slow-growing subpopulations of various auxotrophic bacterial strains. Thymidine-dependent SCVs (TD-SCVs) are unable to synthesize thymidine; hence, these variants fail to grow in a medium without thymidine. In this study, we used 10 TD-SCVs of Staphylococcus aureus, of which four strains possessed mecA. We compared the efficacy of a newly modified medium containing thymidine for the detection of TD-SCVs of methicillin-resistant S. aureus (MRSA) to the efficacy of routinely used laboratory media. We observed that none of the 10 TD-SCVs of S. aureus grew in Mueller-Hinton agar, and four TD-SCVs of MRSA failed to grow on all MRSA screening media, except for the ChromID™ MRSA medium. Laboratory tests conducted using medium with thymidine incorporated showed that thymidine did not affect the minimum inhibitory concentrations of oxacillin and cefoxitin for clinical isolates of S. aureus, and was able to detect MRSA, including TD-SCVs. These findings showed that thymidine-incorporated media are able to detect TD-SCVs of MRSA without altering the properties of other clinically isolated MRSA strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Exploring the role of a nicotine quantity-frequency use criterion in the classification of nicotine dependence and the stability of a nicotine dependence continuum over time.

    Science.gov (United States)

    McBride, Orla; Strong, David R; Kahler, Christopher W

    2010-03-01

    This study investigated (a) the utility of a cigarette quantity-frequency (QF) use criterion as an indicator for nicotine dependence (ND) and (b) the stability of the ND continuum of severity over time. Data from individuals who smoked cigarettes in the year prior to both time points of the National Epidemiologic Survey on Alcohol and Related Conditions were analyzed (n = 6,185). The Alcohol Use Disorder and Associated Disabilities Interview Schedule DSM-IV Version (AUDADIS-IV) assessed for DSM-IV ND and nicotine use. Three QF criteria were created to represent daily consumption of > or = 5 cigarettes, > or = 10 cigarettes, or > or = 20 cigarettes. Confirmatory factor analysis and item response theory analysis were used to explore the latent structure of ND. Differential item functioning (DIF) analysis investigated the stability of the ND continuum over time. A one-factor model, representing the DSM-IV conceptualization of ND, was an acceptable fit to the data at both time points. The inclusion of QF criteria decreased the fit of the one-factor model of ND. DIF in the severity and discrimination parameters of the diagnostic criteria was evident across the time points of the survey. Although QF of cigarette use is related to ND, it appears to be a separate construct. Researchers using the AUDADIS-IV should be aware that the characteristics of the DSM-IV ND criteria do vary slightly across time, even though the changes appear to be relatively small and of minor clinical or practical significance.

  14. Information content in frequency-dependent, multi-offset GPR data for layered media reconstruction using full-wave inversion

    Science.gov (United States)

    De Coster, Albéric; Phuong Tran, Anh; Lambot, Sébastien

    2014-05-01

    Water lost through leaks can represent high percentages of the total production in water supply systems and constitutes an important issue. Leak detection can be tackled with various techniques such as the ground-penetrating radar (GPR). Based on this technology, various procedures have been elaborated to characterize a leak and its evolution. In this study, we focus on a new full-wave radar modelling approach for near-field conditions, which takes into account the antenna effects as well as the interactions between the antenna(s) and the medium through frequency-dependent global transmission and reflection coefficients. This approach is applied to layered media for which 3-D Green's functions can be calculated. The model allows for a quantitative estimation of the properties of multilayered media by using full-wave inversion. This method, however, proves to be limited to provide users with an on-demand assessment as it is generally computationally demanding and time consuming, depending on the medium configuration as well as the number of unknown parameters to retrieve. In that respect, we propose two leads in order to enhance the parameter retrieval step. The first one consists in analyzing the impact of the reduction of the number of frequencies on the information content. For both numerical and laboratory experiments, this operation has been achieved by investigating the response surface topography of objective functions arising from the comparison between measured and modelled data. The second one involves the numerical implementation of multistatic antenna configurations with constant and variable offsets in the model. These two kinds of analyses are then combined in numerical experiments to observe the conjugated effect of the number of frequencies and the offset configuration. To perform the numerical analyses, synthetic Green's functions were simulated for different multilayered medium configurations. The results show that an antenna offset increase leads

  15. Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus

    Science.gov (United States)

    Péréfarres, Frédéric; Thébaud, Gaël; Lefeuvre, Pierre; Chiroleu, Frédéric; Rimbaud, Loup; Hoareau, Murielle; Reynaud, Bernard; Lett, Jean-Michel

    2014-01-01

    Biological invasions are the main causes of emerging viral diseases and they favour the co-occurrence of multiple species or strains in the same environment. Depending on the nature of the interaction, co-occurrence can lead to competitive exclusion or coexistence. The successive fortuitous introductions of two strains of Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL) in Réunion Island provided an ideal opportunity to study the invasion of, and competition between, these worldwide emerging pathogens. During a 7-year field survey, we observed a displacement of the resident TYLCV-Mld by the newcomer TYLCV-IL, with TYLCV-Mld remaining mostly in co-infected plants. To understand the factors associated with this partial displacement, biological traits related to fitness were measured. The better ecological aptitude of TYLCV-IL in single infections was demonstrated, which explains its rapid spread. However, we demonstrate that the relative fitness of virus strains can drastically change between single infections and co-infections. An epidemiological model parametrized with our experimental data predicts that the two strains will coexist in the long run through assistance by the fitter strain. This rare case of unilateral facilitation between two pathogens leads to frequency-dependent selection and maintenance of the less fit strain. PMID:24598426

  16. Pulsed radio-frequency electromagnetic fields: dose-dependent effects on sleep, the sleep EEG and cognitive performance.

    Science.gov (United States)

    Regel, Sabine J; Tinguely, Gilberte; Schuderer, Jürgen; Adam, Martin; Kuster, Niels; Landolt, Hans-Peter; Achermann, Peter

    2007-09-01

    To establish a dose-response relationship between the strength of electromagnetic fields (EMF) and previously reported effects on the brain, we investigated the influence of EMF exposure by varying the signal intensity in three experimental sessions. The head of 15 healthy male subjects was unilaterally exposed for 30 min prior to sleep to a pulse-modulated EMF (GSM handset like signal) with a 10 g-averaged peak spatial specific absorption rate of (1) 0.2 W kg(-1), (2) 5 W kg(-1), or (3) sham exposed in a double-blind, crossover design. During exposure, subjects performed two series of three computerized cognitive tasks, each presented in a fixed order [simple reaction time task, two-choice reaction time task (CRT), 1-, 2-, 3-back task]. Immediately after exposure, night-time sleep was polysomnographically recorded for 8 h. Sleep architecture was not affected by EMF exposure. Analysis of the sleep electroencephalogram (EEG) revealed a dose-dependent increase of power in the spindle frequency range in non-REM sleep. Reaction speed decelerated with increasing field intensity in the 1-back task, while accuracy in the CRT and N-back task were not affected in a dose-dependent manner. In summary, this study reveals first indications of a dose-response relationship between EMF field intensity and its effects on brain physiology as demonstrated by changes in the sleep EEG and in cognitive performance.

  17. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats.

    Science.gov (United States)

    Li, Yan; Zhao, Ziqi; Cai, Jiajia; Gu, Boya; Lv, Yuanyuan; Zhao, Li

    2017-01-01

    A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABA A receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN.

  18. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-06-01

    Full Text Available A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months and old (24 months male Wistar rats were divided into young control (YC, old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks. Exercise training indexes were obtained, including resting heart rate (HR, blood pressure (BP, plasma norepinephrine (NE, and heart weight (HW-to-body weight (BW ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN.

  19. Is it possible to infer the frequency-dependent seismic attenuation of fractured materials from high-strain creep tests?

    Science.gov (United States)

    mallet, celine; quintal, beatriz; caspari, eva; holliger, klaus

    2016-04-01

    The seismic and hydraulic characterization of fractured rocks is an important objective for reservoir development in general and the production of geothermal energy in particular. The attenuation of seismic waves in saturated fractured media is governed by local displacements of the fluid relative to the solid induced by the compressions and extensions associated with the passing wavefield. This phenomenon is generally referred to as wave-induced fluid flow (WIFF). Recent evidence suggests that this energy dissipation mechanism is sensitive to the interconnectivity of the fractures, which offers the perspective of linking seismic observations to the hydraulic properties of fractured rocks. Here, we consider the results of laboratory experiments, which are referred to as creep tests. Such tests consist of applying a constant stress to a water-saturated thermally cracked glass sample and recording the resulting strain response as a function of time. The primary advantages of the considered material are (i) that the fracture network is well documented and (ii) that the homogeneous and non-porous glass matrix limits WIFF to the fracture network. Due to the high stress levels as well as other technical issues, creep tests are not commonly used for laboratory-based measurements of energy dissipation. Therefore, an objective of this study is to explore whether and to what extent such data can be interpreted in terms of the seismic attenuation characteristics of the probed samples, as this might open access to a vast reservoir of corresponding data, notably for cracked materials. Transforming the observed time-dependent stress-strain relation into the Fourier domain, allows us to infer the corresponding frequency-dependent attenuation characteristics, which we then seek to interpret through numerical simulations based on Biot's quasi-static poroelastic equations. The 2D geometry of the fracture network considered in these simulations is derived from a scanning electron

  20. On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage

    Science.gov (United States)

    Nikravan, Afsoun; Badali, Yosef; Altındal, Şemsettin; Uslu, İbrahim; Orak, İkram

    2017-10-01

    In order to interpret the electrical characteristics of fabricated Au/ZnO/n-Si structures as a function of frequency and voltage well, their capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements were carried out in a wide range of frequencies (0.7 kHz-2 MHz) and voltages (± 6 V) by 50 mV steps at room temperature. Both the C- V and G/ ω- V plots have reverse, depletion, and accumulation regions such as a metal-insulator/oxide semiconductor (MIS or MOS) structures. The values of doped-donor atoms ( N D), Fermi energy level ( E F), barrier height (ΦB), and series resistance ( R s) of the structure were obtained as a function of frequency and voltage. While the value of N D decreases with increasing frequency almost as exponentially, the value of depletion width ( W D) increases. The values of C and G/ ω increase with decreasing frequency because the surface states ( N ss) are able to follow the alternating current (AC) signal, resulting in excess capacitance ( C ex) and conductance ( G ex/ ω), which depends on their relaxation time and the frequency of the AC signal. The voltage-dependent profiles of N ss were obtained from both the high-low frequency capacitance and Hill-Colleman methods. The other important parameter R s of the structure was also obtained from the Nicollian and Brews methods as a function of voltage.

  1. The Influence of Amplitude- and Frequency-Dependent Stiffness of Rail Pads on the Random Vibration of a Vehicle-Track Coupled System

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2016-01-01

    Full Text Available The nonlinear curves between the external static loads of Thermoplastic Polyurethane Elastomer (TPE rail pads and their compressive deformations were measured. A finite element model (FEM for a rail-fastener system was produced to determine the nonlinear compressive deformations of TPE rail pads and their nonlinear static stiffness under the static vehicle weight and the preload of rail fastener. Next, the vertical vehicle-track coupled model was employed to investigate the influence of the amplitude- and frequency-dependent stiffness of TPE rail pads on the vehicle-track random vibration. It is found that the static stiffness of TPE rail pads ranges from 19.1 to 37.9 kN/mm, apparently different from the classical secant stiffness of 26.7 kN/mm. Additionally, compared with the nonlinear amplitude- and frequency-dependent stiffness of rail pads, the classical secant stiffness would not only severely underestimate the random vibration acceleration levels of wheel-track coupled system at frequencies of 65–150 Hz but also alter the dominant frequency-distribution of vehicle wheel and steel rail. Considering that these frequencies of 65–150 Hz are the dominant frequencies of ground vibration accelerations caused by low-speed railway, the nonlinear amplitude- and frequency-dependent stiffness of rail pads should be taken into account in prediction of environment vibrations due to low-speed railway.

  2. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    Directory of Open Access Journals (Sweden)

    Sancarlos-González Abel

    2017-12-01

    Full Text Available AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases’ conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases’ conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors. In this way, a general “virtual chart” solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  3. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  4. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  5. In-situ frequency-dependent electromagnetic sensing for monitoring physical and chemical attributes during chemical processing

    Science.gov (United States)

    Rogozinski, Jeffrey David

    The objective of this research was to develop an in-situ sensing technique that monitors the molecular-level response of ions and dipoles to an applied electric field in order to characterize the changes in state of a polymer resin during chemical processing. This technique needs to be capable of monitoring the reaction progress not only in the laboratory setting but also in-situ in the processing tool or reaction environment. Frequency Dependent Electromagnetic Sensing (FDEMS) was selected for this task. This dissertation investigates the applicability of FDEMS to monitoring two types of processing methods: reactive and batch reactor. The reactive processing system examined involves the processing of a high glass transition thermoplastic, either polyethylene ether or polyether imide blended with a thermoset, diglycidyl ether of bisphenol-A and 4,4'-methylene bis (3-chloro 2,6-diethylaniline]. The batch reactor processing systems examined involve the in-situ process control of an industrial batch reactor process involving five different systems: epoxy acrylic, polyester, latex, emulsion for lotions and surfactants.

  6. Dynamical mean-field theory of Holstein model at half filling: Phonon frequency dependence of metal-insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jae Hyun [Department of Physics and Institute for Basic Science Research, Sung Kyun Kwan University, Suwon 440-746 (Korea, Republic of)]. E-mail: ataxtr@hanmail.net; Kang, Hee Soo [Department of Physics and Institute for Basic Science Research, Sung Kyun Kwan University, Suwon 440-746 (Korea, Republic of); Jeon, Gun Sang [School of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Han-Yong [Department of Physics and Institute for Basic Science Research, Sung Kyun Kwan University, Suwon 440-746 (Korea, Republic of)]. E-mail: hychoi@skku.edu

    2007-03-15

    We study the interaction induced zero temperature metal-insulator transition of the Holstein model at half-filling employing the dynamical mean-field theory in combination with Wilson's numerical renormalization group. We calculate the transitions between the insulating and metallic states as coupling constant g and the bare phonon frequency {omega}{sub 0} are varied. For the electron-phonon coupling g smaller than the critical value g{sub c1} the ground state is a metallic state, and for g>g{sub c2} it is the bipolaron insulating state. Between g{sub c1}dependence of g{sub c1} and g{sub c2} on {omega}{sub 0} are computed. The numerical results may be understood in terms of the metal-insulator transition of repulsive Hubbard model and the band narrowing of small polaron physics.

  7. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  8. Temperature dependent of IVR investigated by steady-state and time-frequency resolved CARS for liquid nitrobenzene and nitromethane

    Science.gov (United States)

    Yang, Yanqiang; Zhu, Gangbei; Yan, Lin; Liu, Xiaosong; Yang's Ultrafast Spectroscopy Group Team

    2017-06-01

    Intramolecular vibrational energy redistribution (IVR) is important process in thermal decomposition, shock chemistry and photochemistry. Anti-Stokes Raman scattering is sensitive to the vibrational population in excited states because only vibrational excited states are responsible to the anti-Stokes Raman scattering, does not vibrational ground states. In this report, steady-state anti-Stokes Raman spectroscopy and broad band ultrafast coherent anti-Stokes Raman scattering (CARS) are performed. The steady-state anti-Stokes Raman spectroscopy shows temperature dependent of vibrational energy redistribution in vibrational excited-state molecule, and reveal that, in liquid nitrobenzene, with temperature increasing, vibrational energy is mainly redistributed in NO2 symmetric stretching mode, and phenyl ring stretching mode of νCC. For liquid nitromethane, it is found that, with temperature increasing, vibrational energy concentrate in CN stretching mode and methyl umbrella vibrational mode. In the broad band ultrafast CARS experiment, multiple vibrational modes are coherently excited to vibrational excited states, and the time-frequency resolved CARS spectra show the coincident IVR processes. This work is supported by the National Natural Science Foundation of China (Grant Numbers 21673211 and 11372053), and the Science Challenging Program (Grant Number JCKY2016212A501).

  9. FITNESS CONSEQUENCES OF OUTCROSSING IN IMPATIENS CAPENSIS: TESTS OF THE FREQUENCY-DEPENDENT AND SIB-COMPETITION MODELS.

    Science.gov (United States)

    McCall, Claire; Mitchell-Olds, Thomas; Waller, Donald M

    1989-08-01

    Using field and greenhouse experiments, we tested two hypotheses that could account for the maintenance of outcrossing in Impatiens capensis. Seedlings derived from cleistogamous (CL) and chasmogamous (CH) flowers were grown under competitive conditions while flanked by neighbors that were either related or unrelated. In both experiments, CH progeny sometimes expressed more phenotypic variability than CL progeny. In the greenhouse experiment, CH progeny attained the same weight as CL progeny, and the relatedness of neighboring plants did not affect the growth of either type. In the field experiment, CL and CH progeny performed similarly when grown with related competitors. However, CH progeny were somewhat larger when planted with nonsibs, while CL progeny were somewhat smaller under those conditions. Thus, there is no evidence that either frequency-dependent selection or the avoidance of competition among siblings favors the maintenance of outcrossing in this species. We also modeled the relative variability of selfed and outcrossed progeny under several reproductive systems. When females mate with one male (progeny are full sibs), selfed progeny are often more variable than outcrossed progeny. When females engage in both selfing and outcrossing, variation among progeny is frequently maximized at an intermediate selfing rate. The sib-competition mechanism, under a range of genetic models, is not apt to promote outcrossing, since selfed progeny are commonly more variable than outcrossed progeny. © 1989 The Society for the Study of Evolution.

  10. Hawkes process model with a time-dependent background rate and its application to high-frequency financial data.

    Science.gov (United States)

    Omi, Takahiro; Hirata, Yoshito; Aihara, Kazuyuki

    2017-07-01

    A Hawkes process model with a time-varying background rate is developed for analyzing the high-frequency financial data. In our model, the logarithm of the background rate is modeled by a linear model with a relatively large number of variable-width basis functions, and the parameters are estimated by a Bayesian method. Our model can capture not only the slow time variation, such as in the intraday seasonality, but also the rapid one, which follows a macroeconomic news announcement. By analyzing the tick data of the Nikkei 225 mini, we find that (i) our model is better fitted to the data than the Hawkes models with a constant background rate or a slowly varying background rate, which have been commonly used in the field of quantitative finance; (ii) the improvement in the goodness-of-fit to the data by our model is significant especially for sessions where considerable fluctuation of the background rate is present; and (iii) our model is statistically consistent with the data. The branching ratio, which quantifies the level of the endogeneity of markets, estimated by our model is 0.41, suggesting the relative importance of exogenous factors in the market dynamics. We also demonstrate that it is critically important to appropriately model the time-dependent background rate for the branching ratio estimation.

  11. How does male–male competition generate negative frequency-dependent selection and disruptive selection during speciation?

    Science.gov (United States)

    Border, Shana E

    2018-01-01

    Abstract Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male–male competition in speciation is relatively understudied. Here, we outline how male–male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male–male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male–male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male–male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male–male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions. PMID:29492042

  12. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type.

    Science.gov (United States)

    Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor

    2016-10-01

    Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.

  13. Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation

    Directory of Open Access Journals (Sweden)

    Salentijn Elma MJ

    2012-06-01

    Full Text Available Abstract Background Celiac disease (CD is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins. The CD-toxicity of these proteins and their derived peptides is depending on the presence of specific T-cell epitopes (9-mer peptides; CD epitopes that mediate the stimulation of HLA-DQ2/8 restricted T-cells. Next to the thoroughly characterized major T-cell epitopes derived from the α-gliadin fraction of gluten, γ-gliadin peptides are also known to stimulate T-cells of celiac disease patients. To pinpoint CD-toxic γ-gliadins in hexaploid bread wheat, we examined the variation of T-cell epitopes involved in CD in γ-gliadin transcripts of developing bread wheat grains. Results A detailed analysis of the genetic variation present in γ-gliadin transcripts of bread wheat (T. aestivum, allo-hexaploid, carrying the A, B and D genome, together with genomic γ-gliadin sequences from ancestrally related diploid wheat species, enabled the assignment of sequence variants to one of the three genomic γ-gliadin loci, Gli-A1, Gli-B1 or Gli-D1. Almost half of the γ-gliadin transcripts of bread wheat (49% was assigned to locus Gli-D1. Transcripts from each locus differed in CD epitope content and composition. The Gli-D1 transcripts contained the highest frequency of canonical CD epitope cores (on average 10.1 per transcript followed by the Gli-A1 transcripts (8.6 and the Gli-B1 transcripts (5.4. The natural variants of the major CD epitope from γ-gliadins, DQ2-γ-I, showed variation in their capacity to induce in vitro proliferation of a DQ2-γ-I specific and HLA-DQ2 restricted T-cell clone. Conclusions Evaluating the CD epitopes derived from γ-gliadins in their natural context of flanking protein variation, genome specificity and transcript frequency is a significant step towards accurate quantification of the CD toxicity of bread wheat. This approach can be used to predict relative levels of CD toxicity of

  14. Learning to be different: Acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations

    Science.gov (United States)

    Tinker, M.T.; Mangel, M.; Estes, J.A.

    2009-01-01

    ) Offspring can learn foraging skills from their mothers (matrilineal social learning). (6) Food abundance is limited, such that average individual energy reserves are low Additionally, the following factors increase the likelihood of alternative specializations co-occurring in a predator population: (1) The predator exerts effective top-down control of prey abundance, resulting in frequency-dependent dynamics. (2) There is stochastic Variation in prey population dynamics, but this Variation is neither too extreme in magnitude nor too 'slow' with respect to the time required for an individual forager to learn new foraging skills. For a given predator population, we deduce that the degree of specialization will be highest for those prey types requiring complex capture or handling skills, while prey species that are both profitable and easy to capture and handle will be included in the diet of all individuals. Frequency-dependent benefits of selecting alternative prey types, combined with the ability of foragers to improve their foraging skills by learning, and transmit learned skills to offspring, can result in behaviourally mediated foraging specialization, and also lead to the co-existence of alternative specializations. The extent of such specialization is predicted to be a variable trait, increasing in locations or years when intra-specific competition is high relative to inter-specific competition. ?? 2009 M. Tim Tinker.

  15. Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

    Directory of Open Access Journals (Sweden)

    Jana Vlachová

    2015-03-01

    Full Text Available The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0–20 nm. The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM, where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate (PMMA. The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model. This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor, which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting

  16. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  17. Temperature dependency of cupular mechanics and hair cell frequency selectivity in the fish canal lateral line organ

    NARCIS (Netherlands)

    Wiersinga-Post, JEC; van Netten, SM

    2000-01-01

    The mechanical frequency selectivity of the cupula located in the supraorbital lateral line canal and the frequency selectivity of the hair cells driven by the cupula were measured simultaneously in vivo. Laser interferometry was used to measure cupular mechanics and extracellular receptor

  18. On the source-frequency dependence of fracture-orientation estimates from shear-wave transmission experiments

    Science.gov (United States)

    Santos, Leo K.; de Figueiredo, J. J. S.; Omoboya, Bode; Schleicher, Jörg; Stewart, Robert R.; Dyaur, Nikolay

    2015-03-01

    Shear-wave propagation through anisotropic fractured or cracked media can provide valuable information about these fracture swarms and their orientations. The main goal of this work is to recover information about fracture orientation based on the shear waveforms (S-waveforms). For this study, we carried out ultrasonic S-wave measurements in a synthetic physical model made of epoxy resin (isotropic matrix proxy), with small cylindrical rubber strips as inclusions (artificial cracks) inserted in it to simulate a homogeneous anisotropic medium. In these experiments, we used low, intermediate, and high frequency shear-wave sources, with frequencies 90, 431, and 840 kHz. We integrated and interpreted the resulting S-wave seismograms, cross-correlation panels and anisotropic parameter-analysis curves. We were able to estimate the crack orientation in single-orientation fracture zones. The high frequency peaks associated with scattered S-waves provided interpretable information about the fracture orientations when the propagation direction was parallel to the fracture plane. The analysis was possible utilizing results from frequency-versus-polarization-angle curves. Moreover, we applied a bandpass filtering process to the intermediate and high frequency seismograms in order to obtain low frequency seismograms. A spectral analysis using frequency-wavenumber (F-K) spectra supports this filtering process. The results obtained using an analysis of cross-correlograms and the Thomsen parameter γ extracted from filtered high-frequency data were quite similar to those obtained using a low-frequency source. This highlighted the possibility of using less expensive high-frequency sources to recover information about the fracture set.

  19. Dependences of the attenuation and the backscatter coefficients on the frequency and the porosity in bovine trabecular bone: application of the binary mixture model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of)

    2012-02-15

    The present study aims to investigate the dependences of the attenuation and the backscatter coefficients on the frequency and the porosity in bovine trabecular bone in vitro. The frequency dependent attenuation and backscatter coefficients were measured in 22 bovine femoral trabecular bone samples over a frequency range from 1.4 to 3.0 MHz by using a pair of transducers with a diameter of 12.7 mm and a center frequency of 2.25 MHz. The binary mixture model for ultrasonic scattering in trabecular bone, in which trabecular bone is assumed to be an isotropic binary mixture composed of a bone matrix and marrow, was applied to predict the measurements. The experimental results showed that the attenuation and the backscatter coefficients increased with increasing frequency from 1.4 to 3.0 MHz and decreased with increasing porosity from 66.9 to 91.5%. The predictions of the binary mixture model showed good agreements with the measurements, suggesting that scattering may be the dominant attenuation mechanism in dense bovine trabecular bone at frequencies from 1.4 to 3.0 MHz.

  20. Multifold clock recovery and demultiplexing based on a polarization-dependent phase modulator incorporated frequency-doubling optoelectronic oscillator

    Science.gov (United States)

    Tang, Yu; Wang, Muguang; Sun, Jian; Wu, Beilei; Zhang, Jing; Ding, Qi; Li, Tangjun

    2017-11-01

    A novel multifold clock recovery structure with demultiplexing function based on a frequency-doubling optoelectronic oscillator (FD-OEO) incorporating a common commercial phase modulator (PM) is proposed and experimentally demonstrated. A special phase modulation is obtained thanks to polarization-sensitive feature of LiNbO3 crystal of the PM. The special phase modulated signal is then split two parts connected by two pairs of polarization controllers (PCs) and polarizers to perform polarization interference and phase modulation to intensity modulation conversion. By controlling the PCs, the joint use of PC and polarizer in the loop is to guarantee an OEO with fundamental frequency self-oscillation, while the other outside of the OEO obtains frequency-doubled microwave signal at the output of the photodetector. Additionally, an optical filter can be inserted into the outside branch to only allow ±2nd-order sidebands pass through and realize frequency quadrupling after beating at the PD. Therefore, a prescaled clock at 10 GHz, a line-rate clock at 20 GHz and a 40 GHz frequency-doubled clock can be extracted from the injection-locked OEO respectively when a 2 × 10 Gb / s optical time division multiplexing (OTDM) data signal is injected. A twofold time division demultiplexing is demonstrated. Theoretical analysis is developed, which is validated by an experiment.

  1. Fermi resonance and solvent dependence of the vC=O frequency shifts of Raman spectra: cyclohexanone and 2-cyclohexene-1-one

    CERN Document Server

    Nam, S I; Lee, M S; Jung, Y M

    2001-01-01

    The carbonyl stretching vibration, vC=O of 2-cyclohexene-1-one , is in Fermi resonance with a combination tone. The amount of Fermi resonance interaction between these two modes is dependent upon the amount of solute/solvent interaction due to hydrogen bonding between the carbonyl oxygen and the solvent proton. The corrected vC=O frequency of 2-cyclohexene-1-one occurs at a lower frequency than the observed vC=O mode of cyclohexanone, possibly caused by expanded conjugation effects. The carbonyl stretching modes of cyclic ketones were also affected by interaction with the ROH/CCl sub 4 mixed solvent system.

  2. Frequency dependence of the electrical impedance of electrolytic cells: The role of the ionic adsorption/desorption phenomena and the Stern layer

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, G. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil)]. E-mail: giovanni.barbero@polito.it; Figueiredo Neto, A.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil); Freire, F.C.M. [Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Departamento de Fisica, Universidade Estadual de Maringa, Av. Colombo 5790, 87020-900 Maringa, Parana (Brazil); Scalerandi, M. [Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2006-12-18

    The frequency dependence of the electrical impedance of two cells filled with a water solution of KCl, identical in all the aspects, differing only in the thickness, is investigated. The experimental data for the real and imaginary parts of the electrical impedance of the investigated samples at low frequency can be interpreted by taking into account the adsorption-desorption phenomenon at the limiting surfaces and the presence of a Stern layer. This result allows to use the impedance spectroscopy technique to determine the adsorption and desorption coefficients entering in the kinetic equation at the interface.

  3. Time-Dependent Changes of Albumin Water Solutions After Irradiation by Electromagnetic Waves with Extremely High Radio Frequencies

    Science.gov (United States)

    Shahinyan, Mariam A.; Mikaelyan, Marieta S.; Darbinyan, Meri R.; Vardevanyan, Poghos O.

    The effect of electromagnetic irradiation with extremely high radio frequencies on several parameters of albumin water-saline solutions has been studied and the changes invoked by this irradiation after long time of its effect were observed. It was shown that the electromagnetic irradiation with 51.8GHz frequency, which is resonant for water, is preserved up to 48h after which the system returns to the initial state. It was shown as well that albumin thermostability also enhances and it is preserved during 48h, after that the system tends to return to the initial state.

  4. Stress depended changes in activityof gp red blood cells receptors and its correction by therahertz waves at nitric oxide frequency

    Directory of Open Access Journals (Sweden)

    Kirichuk V.F.

    2011-09-01

    Full Text Available The effect of electromagnetic radiation in the terahertz range frequencies of molecular spectrum of emission and absorption of nitric oxide 150.176–150.664 GHz for the restoration of the impaired carbohydrate component and functional activity glikoproteid receptors of erythrocytes of white rats in a state of acute imm obilization stress. Shown that exposure to electromagnetic waves at these frequencies is the normalization of the increased content of b-D-galactose in the carbohydrate component and the restoration of the impaired activity of the receptors glikoproteid erythrocytes

  5. Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke.

    Directory of Open Access Journals (Sweden)

    Jianfang Zhu

    Full Text Available Resting-state functional magnetic resonance imaging (R-fMRI has been intensively used to assess alterations of inter-regional functional connectivity in patients with stroke, but the regional properties of brain activity in stroke have not yet been fully investigated. Additionally, no study has examined a frequency effect on such regional properties in stroke patients, although this effect has been shown to play important roles in both normal brain functioning and functional abnormalities. Here we utilized R-fMRI to measure the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo, two major methods for characterizing the regional properties of R-fMRI, in three different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.73 Hz; and typical band: 0.01-0.1 Hz in 19 stroke patients and 15 healthy controls. Both the ALFF and ReHo analyses revealed changes in brain activity in a number of brain regions, particularly the parietal cortex, in stroke patients compared with healthy controls. Remarkably, the regions with changed activity as detected by the slow-5 band data were more extensive, and this finding was true for both the ALFF and ReHo analyses. These results not only confirm previous studies showing abnormality in the parietal cortex in patients with stroke, but also suggest that R-fMRI studies of stroke should take frequency effects into account when measuring intrinsic brain activity.

  6. It depends: conditional correlation between frequency of storybook reading and emergent literacy skills in children with language impairments.

    Science.gov (United States)

    Petrill, Stephen A; Logan, Jessica A R; Sawyer, Brook E; Justice, Laura M

    2014-01-01

    The current study examined the association between frequency of storybook reading and emergent literacy in 212 children at risk for language impairment, assessed during the fall semester of kindergarten. Measures included parent-reported storybook reading, as well as direct assessments of print knowledge, letter awareness, and expressive vocabulary. Results suggested nonsignificant to moderate (r = .11 to .25) correlations between frequency of storybook reading and child emergent literacy across the entire range of environment and ability. Quantile regression results suggested that the association was highest at low frequency of storybook reading, particularly for print knowledge, approaching r = .50. Moreover, the association between frequency of storybook reading and emergent literacy was highest at higher levels of emergent literacy for print knowledge, but particularly for letter naming, approaching r = .80. These results suggest that in children with language difficulties, the relationship between aspects of the home environment and emergent literacy is conditional on the quality of the home environment as well as the child's proficiency in emergent literacy skills. © Hammill Institute on Disabilities 2012.

  7. Hydrogen-dependent low frequency noise and its physical mechanism of HfO2 resistance change random access memory

    Science.gov (United States)

    Chen, Y. Q.; Liu, X.; Liu, Y.; Peng, C.; Fang, W. X.; En, Y. F.; Huang, Y.

    2017-12-01

    The effect of hydrogen on low frequency noise characteristics of HfO2 resistance change random access memories (RRAMs) was investigated in this paper. The experimental results show that HfO2 RRAMs after hydrogen treatment take on the better uniformity of switch characteristics and the conduction enhancement behavior. Furthermore, it was found that the low frequency noise characteristics of the HfO2 RRAMs was significantly impacted by the hydrogen treatment, and at three kinds of typical resistance states, the low frequency noises of the HfO2 RRAMs after hydrogen treatment are larger than those of the fresh HfO2 RRAMs. The mechanism could be attributed to H induced oxygen vacancies, which serve as the additional traps for conduction due to the trap-assisted tunneling process. This will result in more random trap/detrap processes in the conducting filament, which gives rise to the larger low frequency noise in the HfO2 RRAMs. The results of this study may be useful in the design and application of HfO2 RRAMs.

  8. Statistical frequency-dependent analysis of trial-to-trial variability in single time series by recurrence plots

    Directory of Open Access Journals (Sweden)

    Tamara eTosic

    2016-01-01

    Full Text Available For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system’s dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the delta-band activity is much less recurrent than alpha-band activity. Moreover, alpha-activity is susceptible to pre-stimuli, while delta-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain.

  9. The meaning of vaguely quantified frequency response options on a quality of life scale depends on respondents’ medical status and age

    Science.gov (United States)

    Schneider, Stefan; Stone, Arthur A.

    2017-01-01

    Purpose Self-report items in quality of life (QoL) scales commonly use vague quantifiers like “sometimes” or “often” to measure the frequency of health-related experiences. This study examined whether the meaning of such vaguely quantified response options differs depending on people’s medical status and age, which may undermine the validity of QoL group comparisons. Methods Respondents (n = 600) rated the frequency of positive and negative QoL experiences using vague quantifiers (never, rarely, sometimes, often, always) and provided open-ended numeric frequency counts for the same items. Negative binomial regression analyses examined whether the numeric frequencies associated with each vague quantifier differed between medical status (no vs. one or more medical conditions) and age (18–40 years vs. 60+ years) groups. Results Compared to respondents without a chronic condition, those with a medical condition assigned a higher numeric frequency to the same vague quantifiers for negative QoL experiences; this effect was not evident for positive QoL experiences. Older respondents’ numeric frequencies were more extreme (i.e., lower at the low end and somewhat higher at the high end of the response range) than those of younger respondents. After adjusting for these effects, differences in QoL became somewhat more pronounced between medical status groups, but not between age groups. Conclusions The results suggest that people with different medical backgrounds and age do not interpret vague frequency quantifiers on a QoL scale in the same way. Open-ended numeric frequency reports may be useful to detect and potentially correct for differences in the meaning of vague quantifiers. PMID:27071685

  10. Frequency-dependent fitness of hybrids between oilseed rape (¤Brassica napus¤) and weedy ¤B. rapa¤ (Brassicaceae)

    DEFF Research Database (Denmark)

    Hauser, T.P.; Damgaard, C.; Bagger Jørgensen, Rikke

    2003-01-01

    Fitness of interspecific hybrids is sometimes high relative to their parents, despite the conventional belief that they are mostly unfit. F-1 hybrids between oilseed rape (Brassica napus) and weedy B. rapa can be significantly more fit than their weedy parents under some conditions; however, under...... other conditions they are less fit. To understand the reasons, we measured the seed production of B. napus, B. rapa, and different generations of hybrid plants at three different densities and in mixtures of different frequencies (including pure stands). Brassica napus, B. rapa, and backcross plants (F...... and reproductive interactions may be responsible for these effects. Our results show that the fitness of both parents and hybrids is strongly frequency-dependent and that the likelihood of introgression of genes between the species thus may depend on the numbers and densities of parents and their various hybrid...

  11. A New Possibility for Production of Sub-picosecond X-ray Pulses using a Time Dependent Radio Frequency Orbit Deflection

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    It is shown that two radio frequency deflecting cavities with slightly different frequencies can be used to produce time-dependent orbit deflection to a few special electron bunches while keeping the majority of the electron bunches unaffected. These special bunches produce an x-ray pulse in which transverse position or angle, or both, are correlated with time. The x-ray pulses are then shortened, either with an asymmetrically cut crystal that acts as a pulse compressor, or with an angular aperture such as a narrow slit positioned downstream. The implementation of this technique creates a highly flexible environment for synchrotrons in which users of most beamlines will be able to easily select between the x-rays originated by the standard electron bunches and the short x-ray pulses originated by the special electron bunches carrying a time-dependent transverse correlation.

  12. High variability in a mating type linked region in the dry rot fungus Serpula lacrymans caused by frequency-dependent selection?

    OpenAIRE

    Sætre Glenn-Peter; Skrede Inger; Engh Ingeborg; Kauserud Håvard

    2010-01-01

    Background The mating type loci that govern the mating process in fungi are thought to be influenced by negative frequency-dependent selection due to rare allele advantage. In this study we used a mating type linked DNA marker as a proxy to indirectly study the allelic richness and geographic distribution of mating types of one mating type locus (MAT A) in worldwide populations of the dry rot fungus Serpula lacrymans. This fungus, which causes serious destruction to wooden ...

  13. The many faces of affect: a multilevel model of drinking frequency/quantity and alcohol dependence symptoms among young adults.

    Science.gov (United States)

    Simons, Jeffrey S; Wills, Thomas A; Neal, Dan J

    2014-08-01

    This research tested a multilevel structural equation model of associations between 3 aspects of affective functioning (state affect, trait affect, and affective lability) and 3 alcohol outcomes (likelihood of drinking, quantity on drinking days, and dependence symptoms) in a sample of 263 college students. Participants provided 49 days of experience sampling data over 1.3 years in a longitudinal burst design. Within-person results: At the daily level, positive affect was directly associated with greater likelihood and quantity of alcohol consumption. Daily negative affect was directly associated with higher consumption on drinking days and with higher dependence symptoms. Between-person direct effects: Affect lability was associated with higher trait negative, but not positive, affect. Trait positive affect was inversely associated with the proportion of drinking days, whereas negative affectivity predicted a greater proportion of drinking days. Affect lability exhibited a direct association with dependence symptoms. Between-person indirect effects: Trait positive affect was associated with fewer dependence symptoms via proportion of drinking days. Trait negative affect was associated with greater dependence symptoms via proportion of drinking days. The results distinguish relations of positive and negative affect to likelihood versus amount of drinking and state versus trait drinking outcomes, and highlight the importance of affect variability for predicting alcohol dependence symptoms. (c) 2014 APA, all rights reserved.

  14. AC losses in parallel conductors (4). Frequency dependence; Chodendo heiretsu dotai ni okeru koryu sonshitsu (4). shuhasu izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Nagasawa, M.; Kajikawa, K. [and others

    1999-11-10

    As a constitution method of superconductive conductor for large current capacity oxide alternating current, which moves at liquid nitrogen temperature, we proposed that it constitutes the parallel conductor using tapelike polycore line with rectangular cross section and conducts the transposition as well as the normal conduction equipment on the way of the winding process. In the report by last time, it was shown that the ac loss density was kept to the wire level by conducting the transposition in the optimum position. And, it was confirmed that that the frequency in which the additive ac loss with the slippage of the transposition position takes the peak changes was possible by the change of attenuation time constant {tau} which is decided by overall length L of the parallel conductor and contact resistance R of the double end. This time, frequency characteristics of the additive ac loss were examined more and more well informed. (NEDO)

  15. Calculations of near-field emissions in frequency-domain into time-dependent data with arbitrary wave form transient perturbations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-09-01

    Full Text Available This paper is devoted on the application of the computational method for calculating the transient electromagnetic (EM near-field (NF radiated by electronic structures from the frequency-dependent data for the arbitrary wave form perturbations i(t. The method proposed is based on the fast Fourier transform (FFT. The different steps illustrating the principle of the method is described. It is composed of three successive steps: the synchronization of the input excitation spectrum I(f and the given frequency data H0(f, the convolution of the two inputs data and then, the determination of the time-domain emissions H(t. The feasibility of the method is verified with standard EM 3D simulations. In addition to this method, an extraction technique of the time-dependent z-transversal EM NF component Xz(t from the frequency-dependent x- and y- longitudinal components Hx(f and Hy(f is also presented. This technique is based on the conjugation of the plane wave spectrum (PWS transform and FFT. The feasibility of the method is verified with a set of dipole radiations. The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs.

  16. Spectrotemporal modulation sensitivity for hearing-impaired listeners: Dependence on carrier center frequency and the relationship to speech intelligibility

    Science.gov (United States)

    Mehraei, Golbarg; Gallun, Frederick J.; Leek, Marjorie R.; Bernstein, Joshua G. W.

    2014-01-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4–32 Hz), spectral ripple density [0.5–4 cycles/octave (c/o)] and carrier center frequency (500–4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4–12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements. PMID:24993215

  17. Experimental and numerical investigation of auto-oscillations in circular YIG films and dependence of their frequency upon the thickness of the film.

    Science.gov (United States)

    Piskun, N. Y.; Peterman, D. W.; Wigen, P. E.

    1996-11-01

    In recent years, high-power ferromagnetic resonance (FMR) experiments with thin circular yttrium-iron-garnet (YIG) films producing fingerlike regions of auto-oscillations as a function of excitation power, static field[1] and temperature[2] have been reported. These fingers are associated with the magnetostatic modes found in the low-power FMR spectra and are characterized by their onset power and frequency (1-10MHz). This work contains the first observations of the thickness depenence of the onset frequency of the fingers depends on the thickness of the film. It has been found that the onset auto-oscillations frequencies decrease with decreasing thickness. It has also been noticed that the magneto-static modes are more narrowly spaced for thinner films. These results indicate that the magneto-static mode spacing determines the auto-oscillation frequency very strongly. The typical values of first finger frequencies were in the range of 1.4 - 3.6 MHz and those of second finger were in the range of 2.7 - 6.4 MHz . Numerical results, based on a microscopic Hamiltonian are in good agreement (within 10% for first finger) with the experimental data. 1. D.W. Peterman, P.J.Shields and P. Wigen, J. Appl. Phys., 73, 10 (1993). 2. P.J.Shields, K.D. Ball and P. Wigen, J. Magn. Magn. Mater. 1043 (1992)

  18. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    Science.gov (United States)

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  19. Multispectral Fitting Validation of the Speed Dependent Voigt Profile at up to 1300K in Water Vapor with a Dual Frequency Comb Spectrometer

    Science.gov (United States)

    Schroeder, Paul James; Cich, Matthew J.; Yang, Jinyu; Drouin, Brian; Rieker, Greg B.

    2017-06-01

    Using broadband, high resolution dual frequency comb spectroscopy, we test the power law temperature scaling relationship with Voigt, Rautian, and quadratic speed dependent Voigt profiles over a temperature range of 296-1300K for pure water vapor. The instrument covers the spectral range from 6800 cm^{-1} to 7200 cm^{-1} and samples the (101)-(000), (200)-(000), (021)-(000), (111)-(010), (210)-(010), and (031)-(010) vibrational bands of water. The data is sampled with a point spacing of 0.0033 cm^{-1} and absolute frequency accuracy of gas temperature within coal gasifiers and other high temperature systems. In order to extract water concentration and temperature, an extended range of lineshape parameters are needed. Lineshape parameters for pure and argon broadened water are obtained for 278 transitions using the multispectral fitting program Labfit, including self-broadening coefficients, power law temperature scaling exponents, and speed dependence coefficients. The extended temperature range of the data provides valuable insight into the application of the speed-dependence corrections of the line profiles, which are shown to have more reasonable line broadening temperature dependencies.

  20. The dependence of the incorporation of methamphetamine into rat hair on dose, frequency of administration and hair pigmentation.

    Science.gov (United States)

    Han, Eunyoung; Park, Yonghoon; Kim, Eunmi; Lee, Sooyeun; Choi, Hwakyung; Chung, Heesun; Song, Joon Myong

    2010-10-15

    In this paper, the incorporation of methamphetamine (MA) into rat hair was studied. The main purpose of this study was to investigate whether MA can be detected or positive hair results can be obtained in hair of rats administered a single dose of MA. The relationship between dose and frequency of administration and the concentrations of MA and its metabolite, amphetamine (AP), in rat hair were evaluated and the MA and AP concentrations in white and pigmented hair were compared. MA was administered to rats as follows: low dose (0.5mg/kg/day), medium dose (2mg/kg/day) and high dose (10mg/kg/day). The frequency of administration was one time per day for 1, 2, 3, 4, 5, 15 and 30 days. Hair and urine samples were collected from rats and analyzed by gas chromatography/mass spectrometry (GC/MS). MA could be identified in pigmented rat hair when MA was administered for 4 or more days at low daily dose and on day 1 following administration of medium and high daily doses. Positive results for MA were obtained from pigmented rat hair when MA was administered for 30 days at low daily dose, for 4 or more days at medium daily dose, or for 2 or more days at high daily dose. The concentrations of MA and AP found in rat hair were proportional to the dose and frequency of administration. The concentrations of MA and AP in pigmented rat hair were 2-10 times higher than those in white rat hair. The results of this study on the incorporation of MA into rat hair can serve as a model to better understand the incorporation of MA into human hair even though there are differences between animal models and human hair. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Deriving Frequency-Dependent Spatial Patterns in MEG-Derived Resting State Sensorimotor Network: A Novel Multiband ICA Technique

    Science.gov (United States)

    Nugent, Allison C.; Luber, Bruce; Carver, Frederick W; Robinson, Stephen E.; Coppola, Richard; Zarate, Carlos A.

    2016-01-01

    Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. PMID:27770478

  2. Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette.

    Science.gov (United States)

    Ying, Liming; White, Samuel S; Bruckbauer, Andreas; Meadows, Lisa; Korchev, Yuri E; Klenerman, David

    2004-02-01

    The study of the properties of DNA under high electric fields is of both fundamental and practical interest. We have exploited the high electric fields produced locally in the tip of a nanopipette to probe the motion of double- and single-stranded 40-mer DNA, a 1-kb single-stranded DNA, and a single-nucleotide triphosphate (dCTP) just inside and outside the pipette tip at different frequencies and amplitudes of applied voltages. We used dual laser excitation and dual color detection to simultaneously follow two fluorophore-labeled DNA sequences with millisecond time resolution, significantly faster than studies to date. A strong trapping effect was observed during the negative half cycle for all DNA samples and also the dCTP. This effect was maximum below 1 Hz and decreased with higher frequency. We assign this trapping to strong dielectrophoresis due to the high electric field and electric field gradient in the pipette tip. Dielectrophoresis in electrodeless tapered nanostructures has potential applications for controlled mixing and manipulation of short lengths of DNA and other biomolecules, opening new possibilities in miniaturized biological analysis.

  3. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation.

    Directory of Open Access Journals (Sweden)

    Terry B Huff

    2011-03-01

    Full Text Available High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.

  4. Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, Jonathan A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, Dominik [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kemper, Alexander F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, James J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Schmitt, Felix T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Li, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Moore, Rob G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kirchmann, Patrick S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Zhi -Xun [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2015-06-01

    Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump–probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.

  5. Analysis of frequency-dependent series resistance and interface states of In/SiO{sub 2}/p-Si (MIS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Birkan Selcuk, A. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Tugluoglu, N. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)], E-mail: ntuglu@taek.gov.tr; Karadeniz, S.; Bilge Ocak, S. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)

    2007-11-15

    In this work, the investigation of the interface state density and series resistance from capacitance-voltage (C-V) and conductance-voltage (G/{omega}-V) characteristics in In/SiO{sub 2}/p-Si metal-insulator-semiconductor (MIS) structures with thin interfacial insulator layer have been reported. The thickness of SiO{sub 2} film obtained from the measurement of the oxide capacitance corrected for series resistance in the strong accumulation region is 220 A. The forward and reverse bias C-V and G/{omega}-V characteristics of MIS structures have been studied at the frequency range 30 kHz-1 MHz at room temperature. The frequency dispersion in capacitance and conductance can be interpreted in terms of the series resistance (R{sub s}) and interface state density (D{sub it}) values. Both the series resistance R{sub s} and density of interface states D{sub it} are strongly frequency-dependent and decrease with increasing frequency. The distribution profile of R{sub s}-V gives a peak at low frequencies in the depletion region and disappears with increasing frequency. Experimental results show that the interfacial polarization contributes to the improvement of the dielectric properties of In/SiO{sub 2}/p-Si MIS structures. The interface state density value of In/SiO{sub 2}/p-Si MIS diode calculated at strong accumulation region is 1.11x10{sup 12} eV{sup -1} cm{sup -2} at 1 MHz. It is found that the calculated value of D{sub it} ({approx}10{sup 12} eV{sup -1} cm{sup -2}) is not high enough to pin the Fermi level of the Si substrate disrupting the device operation.

  6. Lg attenuation, frequency dependence and relative site response of the western United States as revealed by the EarthScope Transportable Array

    Science.gov (United States)

    Gallegos, Andrea; Ranasinghe, Nishath; Ni, James; Sandvol, Eric

    2017-06-01

    Lg attenuation of the western United States is estimated using regional waveforms recorded by EarthScope's Transportable Array, the Berkeley Digital Seismograph Network and the Caltech Regional Seismic Network. Lg attenuation is determined using the two-station method (TSM). 292 events ranging from magnitude 4 to 6.5 in a time range for the years between 2005 and 2010 are used. We have tomographically mapped variations in effective Lg Q at narrow bands with central frequencies of 0.5, 1, 2 and 3 Hz. The relative site responses of individual stations are determined using a reverse TSM at these central frequencies. Both the two-station and reverse TSMs have the advantage of effectively removing site and source effects without requiring a priori models while mapping lateral heterogeneities in the crust. Regions of high attenuation are found along the Snake River Plain, along the northern California-Oregon border, throughout the Basin and Range, Walker Lane, Wasatch Fault and the Rio Grande Rift. Regions of low attenuation are found in the Colorado Plateau, Rocky Mountains, central Nevada and the Columbia Plateau. Overall, Lg Q was found to have a power-law frequency dependence, with an increase in central frequency resulting in an increase in Q. Relative site responses were found to vary strongly with local geology. Hard rock areas such as the Sierra Nevada Mountains and the Snake River Plain show a consistent pattern of negative site response (i.e. deamplification), while areas with a higher degree of sediments, such as the grabens of the Basin and Range, show positive site response (i.e. amplification). Finally, site responses were found to vary with frequency, becoming less variable and more pronounced as frequency increases.

  7. Grading More Accurately

    Science.gov (United States)

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  8. Technology-dependent commons: The example of frequency spectrum for broadcasting in Europe in the 1920s

    Directory of Open Access Journals (Sweden)

    Nina Wormbs

    2011-02-01

    Full Text Available The aim of this paper is to test the design principles, identified as crucial for institutions governing long enduring common pool resources, on the use of the electromagnetic spectrum, a peculiar resource in many respects. The case is the medium wave band for broadcasting in Europe in the 1920s. As the spectrum is a resource dependent on technology for its use, the aim is also to investigate the influence of technology on the governing institutions.

  9. Research of dependence of charges of electric power from frequency of rotation of working organs module for a grade

    Directory of Open Access Journals (Sweden)

    Юрий Иванович Токолов

    2015-07-01

    Full Text Available By experimental researches of the ragged process of growing shallow of grain of wheat in the production of wheat flour on the roller crushing module pilot plant with infinitely variable rotor speed of the motor installed power losses dependence and consumption of motor speed of working bodies, the gap between them and the number of contact points of grain-growing material with fluted shallow rollers.

  10. Characterization of Fibre-Direction Dependent Damping of Glass-Fibre Composites at Low Temperatures and Low Frequencies

    DEFF Research Database (Denmark)

    Kliem, Mathias; Høgsberg, Jan Becker; Dannemann, Martin

    2016-01-01

    a Dynamic Mechanical Analysis (DMA) for five different fibre orientations (0˚ | 30˚ | 45˚ | 60˚ and 90˚) and two different matrix systems (epoxy and a vinyl ester resin). Based on the dynamic characteristics the damping performance of the various composite materials was studied at three temperatures (-10˚C......, 0˚C and 10˚C) and three vibration frequencies (1 Hz, 10 Hz and 30 Hz). It was observed that the loss factor of Glass Fibre Reinforced Vinyl-Ester (GF-VE) was in general slightly higher compared to the Glass Fibre Reinforced Epoxy (GF-EP). The loss factor increased slightly with temperature, while...

  11. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    Science.gov (United States)

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  12. The frequency-dependent AC photoresistance behavior of ZnO thin films grown on different sapphire substrates.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Barzola-Quiquia, José; Videa, Marcelo; Yin, Chunhai; Esquinazi, Pablo

    2017-09-13

    Zinc oxide (ZnO) thin films were grown by pulsed layer deposition under an N 2 atmosphere at low pressures on a- and r-plane sapphire substrates. Structural studies using X-ray diffraction confirmed that all films had a wurtzite phase. ZnO thin films on a- and r-plane sapphire have grown with orientations along the [0002] and [112[combining macron]0] directions, respectively. Room temperature photoluminescence measurements indicate that the presence of native point defects (interstitial zinc, oxygen vacancies, oxygen antisites and zinc vacancies) is more preponderant for ZnO thin films grown on the r-plane sapphire substrate than the sample grown on the a-plane sapphire substrate. Room temperature impedance spectroscopy measurements were performed in an alternating current frequency range from 40 to 10 5 Hz in the dark and under normal light. An unusual positive photoresistance effect is observed at frequencies above 100 kHz, which we suggest to be due to intrinsic defects present in the ZnO thin films. Furthermore, an analysis of the optical time response revealed that the film grown on the r-plane sapphire substrate responds faster (characteristic relaxation times for τ 1 , τ 2 and τ 3 of 0.05, 0.26 and 6.00 min, respectively) than the film grown on the a-plane sapphire substrate (characteristic relaxation times for τ 1 , τ 2 and τ 3 of 0.10, 0.73 and 4.02 min, respectively).

  13. Comparative study of time-dependent effects of 4 and 8 Hz mechanical vibration at infrasound frequency on E. coli K-12 cells proliferation.

    Science.gov (United States)

    Martirosyan, Varsik; Ayrapetyan, Sinerik

    2015-01-01

    The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth.

  14. Microstructural, electrical and frequency-dependent properties of Au/p-Cu2ZnSnS4/n-GaN heterojunction.

    Science.gov (United States)

    Rajagopal Reddy, V; Janardhanam, V; Won, Jonghan; Choi, Chel-Jong

    2017-08-01

    An Au/Cu2ZnSnS4 (CZTS)/n-GaN heterojunction (HJ) is fabricated with a CZTS interlayer and probed its chemical states, structural, electrical and frequency-dependent characteristics by XPS, TEM, I-V and C-V measurements. XPS and TEM results confirmed that the CZTS films are formed on the n-GaN surface. The band gap of deposited CZTS film is found to be 1.55eV. The electrical properties of HJ correlated with the Au/n-GaN Schottky junction (SJ). The Au/CZTS/n-GaN HJ reveals a good rectification nature with high barrier height (0.82eV) compared to the Au/n-GaN SJ (0.69eV), which suggests the barrier height is influenced by the CZTS interlayer. The barrier height values assessed by I-V, Cheung's and Norde functions are closely matched with one other, thus the methods used here are reliable and valid. The extracted interface state density (NSS) of Au/CZTS/n-GaN HJ is lower compared to the Au/n-GaN SJ that suggests the CZTS interlayer plays an important role in the reduction of NSS. Moreover, the capacitance-frequency (C-f) and conductance-frequency (G-f) characteristics of SJ and HJ are measured in the range of 1kHz-1MHz, and found that the capacitance and conductance strappingly dependent on frequency. It is found that the NSS estimated from C-f and G-f characteristics is lower compared to those estimated from I-V characteristics. Analysis confirmed that Poole-Frenkel emission dominates the reverse leakage current in both SJ and HJ, probably related to the structural defects and trap levels in the CZTS interlayer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High frequency stimulation of the subthalamic nucleus leads to presynaptic GABA(B-dependent depression of subthalamo-nigral afferents.

    Directory of Open Access Journals (Sweden)

    Anton Dvorzhak

    Full Text Available Patients with akinesia benefit from chronic high frequency stimulation (HFS of the subthalamic nucleus (STN. Among the mechanisms contributing to the therapeutic success of HFS-STN might be a suppression of activity in the output region of the basal ganglia. Indeed, recordings in the substantia nigra pars reticulata (SNr of fully adult mice revealed that HFS-STN consistently produced a reduction of compound glutamatergic excitatory postsynaptic currents at a time when the tetrodotoxin-sensitive components of the local field potentials had already recovered after the high frequency activation. These observations suggest that HFS-STN not only alters action potential conduction on the way towards the SNr but also modifies synaptic transmission within the SNr. A classical conditioning-test paradigm was then designed to better separate the causes from the indicators of synaptic depression. A bipolar platinum-iridium macroelectrode delivered conditioning HFS trains to a larger group of fibers in the STN, while a separate high-ohmic glass micropipette in the rostral SNr provided test stimuli at minimal intensity to single fibers. The conditioning-test interval was set to 100 ms, i.e. the time required to recover the excitability of subthalamo-nigral axons after HFS-STN. The continuity of STN axons passing from the conditioning to the test sites was examined by an action potential occlusion test. About two thirds of the subthalamo-nigral afferents were occlusion-negative, i.e. they were not among the fibers directly activated by the conditioning STN stimulation. Nonetheless, occlusion-negative afferents exhibited signs of presynaptic depression that could be eliminated by blocking GABA(B receptors with CGP55845 (1 µM. Further analysis of single fiber-activated responses supported the proposal that the heterosynaptic depression of synaptic glutamate release during and after HFS-STN is mainly caused by the tonic release of GABA from co-activated striato

  16. Twisting Motion Frequency Dependent I-V Characteristics of 102 Base Pairs Poly(dG)-Poly(dC) DNA Molecule

    Science.gov (United States)

    Yudiarsah, Efta

    2017-05-01

    The I-V characteristic of 102 base pair Poly(dG)-Poly(dC) DNA molecule have been calculated for several base pairs twisting motion frequencies. The calculation is carried out on doubled-stranded DNA model sandwiched in between two metallic electrodes. The effect is studied by taking into account twisting angle dependent on-site energy and hopping constant in the tight binding Hamiltonian of double-strand DNA model. We use semi-empirical Slater-Koster theory in the twisting angle dependent intra- and inter-strand hopping constant. We consider the temperature dependent sugar-phosphate backbone on-site energy by employing random energy disorder using uniform distribution function. The standard deviation of twisting angle is obtained by assuming that the average kinetic energy of twisting motions is proportional to system temperature. The transfer and scattering matrix methods are used simultaneously in calculating the transmission probability of charge on the molecule. We choose the contacts between molecule and both electrodes such that the main features of transport properties of the molecule do not change much by the presence of metallic electrodes. By assuming the voltage drops symmetrically at the contacts, Landauer-Buttiker Formalism is used in calculating the I-V characteristic of the molecule from transmission probability. The results show that the magnitude of current increases by twisting motion frequency increment. Larger current magnitude increment is observed at higher voltage. The influence of twisting motion frequency on the I-V characteristic is stronger at higher temperature, in the range of considered temperature.

  17. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil.

    Science.gov (United States)

    Magdich, Salwa; Ben Ahmed, Chedlia; Jarboui, Raja; Ben Rouina, Béchir; Boukhris, Makki; Ammar, Emna

    2013-11-01

    Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m(3) ha(-1) year(-1)) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Spatial-frequency- and contrast-dependent visible persistence and reading disorder: no evidence for a basic perceptual deficit.

    Science.gov (United States)

    Schulte-Körne, G; Bartling, J; Deimel, W; Remschmidt, H

    2004-07-01

    The aetiology of dyslexia is still unclear, the most widely and controversially discussed theory is the magnocellular deficit hypothesis. One of the first and most influential paradigms used to investigate this visual deficit in dyslexia is the visible persistence (VP). However results on VP are decisively influenced by the method measuring VP. Lovegrove et al. (1986) repeatedly found a longer VP in reading disabled children which is significantly influenced by spatial frequency and contrast. However, these results were not investigated with the same method to date. Seventy-six unselected 2nd grade students (41 boys, 35 girls) of a rural primary school were investigated with an identical experimental design comparable to the Lovegrove et al. (1986) studies. Comparing reading disabled (n = 17) with controls (n = 34) no evidence for a longer VP in the reading disabled group was found. Additionally, correlation analysis revealed no evidence for a significance of VP for spelling, phoneme awareness and speech discrimination. This study does not encourage either a magnocellular nor parvocellular deficit in dyslexia.

  19. Microstructure and frequency dependent electrical properties of lead-free Na0.5Bi0.5TiO3 perovskite

    Science.gov (United States)

    Praharaj, S.; Kumari, S.; Subramanian, V.; Rout, D.

    2017-05-01

    Single phase Pb-free Na0.5Bi0.5TiO3 ceramics are synthesized with rhombohedral structure. Cold isostatic pressing of NBT green pellets at 200 MPa ensured better sinterability that is reflected in the dense micrograph and uni-modal grain size distribution. Grain, grain boundary and space charge effect contributions towards electrical properties are distinctly observed from the impedance study at different temperature range. Frequency dependence of real Z*, Im Z* and ac conductivity studies provides useful information about relaxation and conduction mechanism.

  20. Metamaterial Lens of Specifiable Frequency-Dependent Focus and Adjustable Aperture for Electron Cyclotron Emission in the DIII-D Tokamak

    Science.gov (United States)

    Hammond, K. C.; Massidda, S. D.; Capecchi, W. J.; Volpe, F. A.

    2013-08-01

    Electron Cyclotron Emission (ECE) of different frequencies originates at different locations in non-uniformly magnetized plasmas. For simultaneous observation of multiple ECE frequencies from the outside edge of a toroidal plasma confinement device (e.g. a tokamak), the focal length of the collecting optics should increase with the frequency to maximize the resolution on a line of sight along the magnetic field gradient. Here we present the design and numerical study of a zoned metamaterial lens with such characteristics, for possible deployment with the 83-130 GHz ECE radiometer in the DIII-D tokamak. The lens consists of a concentric array of miniaturized element phase-shifters. These were reverse-engineered starting from the desired Gaussian beam waist locations and further optimized to account for diffraction and finite-aperture effects that tend to displace the waist. At the same time we imposed high and uniform transmittance, averaged over all phase-shifters. The focal length is shown to increase from 1.32 m to 2.08 m over the frequency range of interest, as desired for low-field DIII-D discharges (B = -1.57 T). Retracting the lens to receded positions rigidly moves the waists accordingly, resulting in a good match—within a fraction of the Rayleigh length—of the EC-emitting layer positions at higher fields (up to B= -2.00 T). Further, it is shown how varying the lens aperture might move the waists "non-rigidly" to better match the non-rigid movement of the EC-emitting layers with the magnetic field. The numerical method presented is very general and can be used to engineer any dependence of the focal length on the frequency, including zero or minimal chromatic aberration.

  1. Frequency-dependent effects of phenytoin on the maximum upstroke velocity of action potentials in guinea-pig papillary muscles.

    Science.gov (United States)

    Kojima, M; Ichiyama, M; Ban, T

    1986-07-01

    Phenytoin, at 50 to 200 micrograms reduced the maximum upstroke velocity of action potentials (Vmax) with increases in frequency from 0.25 to 5 Hz and in the external potassium concentration [( K+]0) from 2.7 to 8.1 mM. The drug-induced shortening of action potential duration was evident at 0.25 to 2 Hz but little at 3 to 5 Hz. Time courses of recovery of Vmax was studied by applying premature responses between the conditioning responses at 1 Hz both in control and in drug-treated preparations. Concerning the time courses of the difference between the Vmax values before and after drug treatments at the same diastolic interval, with increases in drug concentrations the intercepts at APD90 were increased but the time constants were not changed or slightly decreased in 8.1 to 5.4 mM [K+]0, whereas they were increased in 2.7 mM [K+]0. To understand the kinetic behavior of this drug on sodium channels, rate constants for the interaction of phenytoin with three states of channels in terms of Hondeghem-Katzung model were estimated from the above experiments of Vmax. The model most consistent with the present experiments was that with an affinity for inactivated channels 20 times greater than that for resting channels and with a minor affinity for open channels. Phenytoin produced a delay in the time course of recovery of overshoot and action potential duration at 0 mV (APD0), suggesting an additional inhibition of the slow channel by this drug.

  2. Light-dependent and -independent behavioral effects of extremely low frequency magnetic fields in a land snail are consistent with a parametric resonance mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Prato, F.S.; Thomas, A.W. [Univ. of Western Ontario, London, Ontario (Canada)]|[St. Joseph`s Health Centre, London, Ontario (Canada); Kavaliers, M. [Univ. of Western Ontario, London, Ontario (Canada); Cullen, A.P. [Univ. of Waterloo, Ontario (Canada). School of Optometry

    1997-05-01

    Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or analgesia in the terrestrial pulmonate snail, Cepaea nemoralis. Here the authors examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, they consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). They exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (B{sub DC}) and ELF magnetic field amplitude (peak) and direction (B{sub AC}) set according to the predictions of the PRM for Ca{sup 2+}. Analgesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. They found that the magnetic field exposure reduced this opioid-induced analgesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism.

  3. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  4. Frequency-dependent friction and its significance for liquid pipeline simulation; Influencia do fator de atrito com dependencia da frequencia na simulacao de transientes em oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Tepedino, Alexandre F. [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil); Rachid, Felipe B. Freitas [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Transporte de Liquidos e Gases

    2008-07-01

    Unsteady liquid flow in pipelines is usually described by using one-dimensional models and, in a procedure referred to as quasi-steady approximation, friction losses are estimated by formulae derived for steady state flow conditions. The assumption is that the friction loss during transient flow conditions can be approximated by the friction loss obtained for a steady flow with the same average velocity. However, during unsteady flow conditions the velocity profile can be considerably different from the steady flow. The shear stress at the pipe wall and the mean velocity are not in phase. Therefore, friction losses computed according to the quasi-steady approximation are inaccurate. To overcome this, the concept of frequency-dependent friction was proposed, including the time history of the mean flow velocity and acceleration, resulting in better correlation to experimental data. This work presents an investigation of situations in which the use of a frequency-dependent friction model could bring additional improvement for the petroleum and products pipeline simulation. To do so, through computer simulations, the predictions of both quasi-steady and unsteady friction models, for short and long lines, operating under a range of Reynolds numbers, are compared and the significance of the friction model is evaluated. (author)

  5. Correlation between anisotropy of frequency-dependent susceptibility and anisotropy of out-of-phase susceptibility in loess/paleosol sequences

    Science.gov (United States)

    Chadima, Martin; Hrouda, Frantisek; Kadlec, Jaroslav; Jezek, Josef

    2016-04-01

    The preferred orientation of magnetic minerals in loess/paleosol sequences is traditionally investigated through the anisotropy of magnetic susceptibility (AMS). Recently developed techniques of anisotropy of frequency-dependent susceptibility (fdAMS) and anisotropy of out-of-phase susceptibility (opAMS) can assess the magnetic sub-fabrics of viscous particles on transition between SP and SSD. The width of the particle size interval investigated by the fdAMS is controlled by the operating frequencies used. In case of opAMS, the interval is always narrower than that in fdAMS and depends also on the operating frequency used. To demonstrate our approach we present several loess/paleosol sequences from the Czech Republic where the degrees of AMS, fdAMS, and opAMS are significantly lower in paleosols than in loess horizons. This indicates that the preferred orientation of magnetic particles created during pedogenesis is much weaker than that of the particles deposited during loess deposition. In addition, the degrees of fdAMS and opAMS are much higher than that of AMS. This may indicate strong grain anisotropy of viscous magnetic particles, because the fdAMS and opAMS are primarily controlled by them. The principal directions of AMS, fdAMS, and opAMS are mostly roughly co-axial suggesting more or less identical origins of magnetic sub-fabrics according to grain size. Less frequently, the principal directions of fdAMS or opAMS differ from those of AMS probably indicating post-depositional effects on particular grain-size classes. The fdAMS and opAMS show as powerful tools in the investigation of magnetic sub-fabrics due to different grain-size classes of magnetic minerals.

  6. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  7. Transcutaneous Electrical Nerve Stimulation on the PC-5 and PC-6 Points Alleviated Hypotension after Epidural Anaesthesia, Depending on the Stimulus Frequency

    Directory of Open Access Journals (Sweden)

    Young-Chang P. Arai

    2012-01-01

    Full Text Available Neuraxial blockade causes arterial hypotension. Transcutaneous electrical nerve stimulation (TENS at the Neiguan (PC-6 and Jianshi (PC-5 reduces the severity of hypotension after spinal anaesthesia, but did not clarify the optimal stimulus frequency. We hypothesized that the stimulus frequency of TENS at the PC-6 and PC-5 points would influence the severity of hypotension after epidural anaesthesia. 65 ASA I or II male patients presenting for inguinal hernia repair were randomized to five groups: the control group received no treatment; the 2 Hz, 10 Hz, 20 Hz, and 40 Hz groups received TENS at a frequency of 2 Hz, 10 Hz, 20 Hz, and 40 Hz, respectively. The lowest SBP was significantly higher in the 40 Hz group [the control, 84 (74–110 mmHg; the 2 Hz, 96 (62–116 mmHg; the 10 Hz, 100 (68–110 mmHg; the 20 Hz, 96 (64–115 mmHg; the 40 Hz, 104 (75–140 mmHg: P=0.004]. Significantly less patients experienced hypotension in the 40 Hz group [the control, 78%; the 2 Hz, 43%; the 10 Hz, 38%; the 20 Hz, 38%; the 40 Hz, 8%: P=0.008]. TENS on the PC-6 and PC-5 points reduced the severity and incidence of hypotension after epidural anaesthesia, depending on the stimulus frequency.

  8. L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase Treg frequencies in healthy mice in a strain dependent manner.

    Directory of Open Access Journals (Sweden)

    Maaike J Smelt

    Full Text Available Many studies on probiotics are aimed at restoring immune homeostasis in patients to prevent disease recurrence or reduce immune-mediated pathology. Of equal interest is the use of probiotics in sub-clinical situations, which are characterized by reduced immune function or low-grade inflammation, with an increased risk of infection or disease as a consequence. Most mechanistic studies focus on the use of probiotics in experimental disease models, which may not be informative for these sub-clinical conditions. To gain better understanding of the effects in the healthy situation, we investigated the immunomodulatory effects of two Lactobacillus probiotic strains, i.e. L. plantarum WCFS1 and L. salivarius UCC118, and a non-probiotic lactococcus strain, i.e. L. lactis MG1363, in healthy mice. We studied the effect of these bacteria on the systemic adaptive immune system after 5 days of administration. Only L. plantarum induced an increase in regulatory CD103(+ DC and regulatory T cell frequencies in the spleen. However, all three bacterial strains, including L. lactis, reduced specific splenic T helper cell cytokine responses after ex vivo restimulation. The effect on IFN-γ, IL5, IL10, and IL17 production by CD4(+ and CD8(+ T cells was dependent on the strain administered. A shared observation was that all three bacterial strains reduced T helper 2 cell frequencies. We demonstrate that systemic immunomodulation is not only observed after treatment with probiotic organisms, but also after treatment with non-probiotic bacteria. Our data demonstrate that in healthy mice, lactobacilli can balance T cell immunity in favor of a more regulatory status, via both regulatory T cell dependent and independent mechanisms in a strain dependent manner.

  9. Frequency Dependence of Physical Parameters of Microinhomogeneous Media. Space Statistics Dépendance en fréquence des paramètres physiques de milieux microhétérogènes. Statistiques spatiales

    Directory of Open Access Journals (Sweden)

    Kukharenko Y. A.

    2006-12-01

    Full Text Available The diagram technique for calculation of the dynamic properties of an anisotropic media with randomly distributed inclusions (pores, cracks is developed. Statistical description of inclusions is determined by distribution function dependent on five groups of parameters :- over coordinates; - over angles of orientation of shapes;- over angles of orientation of crystallographic axes;- over aspect ratio (in a case of ellipsoidal inclusions;- over types of phase of inclusions. Such statistical approach allows to take into consideration any type and order of correlation interactions between inclusions. The diagram series for an average Green function is (GF constructed. The accurate summation of this series leads to a nonlinear dynamic equation for an average GF (Dyson equation. The kernel of this equation is a mass operator which depends on frequency and can be presented in a form of diagram series on accurate GF. The mass operator coincides with effective complex tensor of elasticity (or conductivity in a local approximation. An expansion of effective dynamic elastic (transport tensor on distribution functions of any order is obtained. It is shown that correlation between homogeneities can produce an effective elastic and transport parameters anisotropy. In correlation approximation the dispersion dependencies of the effective elastic constants are studied. Frequency dependencies of a coefficient anisotropy of the elastic properties as function of statistical distributed inclusions over coordinates (isotropic matrix and isotropic (spherical inclusions are obtained. La technique par diagrammes appliquée au calcul des propriétés dynamiques d'un milieu anisotrope ayant une distribution aléatoire d'inclusions (pores, fissures est ici développée. La description statistique des inclusions est déterminée par une fonction de distribution reposant sur cinq groupes de paramètres : - les coordonnées, - les angles d'orientation des formes, - les

  10. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1.

    Directory of Open Access Journals (Sweden)

    Irina Lonskaya

    Full Text Available Matrix metalloproteinases (MMPs are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP, spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5, a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs. With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies

  11. Modulation of the Object/Background Interaction by Spatial Frequency

    Directory of Open Access Journals (Sweden)

    Yanju Ren

    2011-05-01

    Full Text Available With regard to the relationship between object and background perception in the natural scene images, functional isolation hypothesis and interactive hypothesis were proposed. Based on previous studies, the present study investigated the role of spatial frequency in the relationship between object and background perception in the natural scene images. In three experiments, participants reported the object, background, or both after seeing each picture for 500 ms followed by a mask. The authors found that (a backgrounds were identified more accurately when they contained a consistent rather than an inconsistent object, independently of spatial frequency; (b objects were identified more accurately in a consistent than an inconsistent background under the condition of low spatial frequencies but not high spatial frequencies; (c spatial frequency modulation remained when both objects and backgrounds were reported simultaneously. The authors conclude that object/background interaction is partially dependent on spatial frequency.

  12. Frequency-Dependent Social Transmission and the Interethnic Transfer of Female Genital Modification in the African Diaspora and Indigenous Populations of Colombia.

    Science.gov (United States)

    Ross, Cody T; Campiño, Patricia Joyas; Winterhalder, Bruce

    2015-12-01

    We present a quantitative account based on ethnographic and documentary research of the prevalence of female genital modification (FGMo) in the African diaspora and indigenous populations of Colombia. We use these data to test hypotheses concerning the cultural evolutionary drivers of costly trait persistence, attenuation, and intergroup transmission. The uptake of FGMo by indigenous populations in Colombia is consistent with frequency-dependent hypotheses for the social transmission of the FGMo trait from the African diaspora population in the period following the era of slavery in Colombia. The prevalence and severity of practices related to FGMo decline with level of sociocultural integration into mainstream Colombian culture. Our results provide empirical support for the cultural evolutionary models proposed by Ross et al. (2015) to describe the transmission dynamics of FGMo and other costly traits. Analysis of costly trait dynamics contributes knowledge useful to applied anthropology and may be of interest in policy design and human rights monitoring in Colombia and elsewhere.

  13. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    Science.gov (United States)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  14. High variability in a mating type linked region in the dry rot fungus Serpula lacrymans caused by frequency-dependent selection?

    Directory of Open Access Journals (Sweden)

    Sætre Glenn-Peter

    2010-07-01

    Full Text Available Abstract Background The mating type loci that govern the mating process in fungi are thought to be influenced by negative frequency-dependent selection due to rare allele advantage. In this study we used a mating type linked DNA marker as a proxy to indirectly study the allelic richness and geographic distribution of mating types of one mating type locus (MAT A in worldwide populations of the dry rot fungus Serpula lacrymans. This fungus, which causes serious destruction to wooden constructions in temperate regions worldwide, has recently expanded its geographic range with a concomitant genetic bottleneck. Results High allelic richness and molecular variation was detected in the mating type linked marker as compared to other presumably neutral markers. Comparable amounts of genetic variation appeared in the mating type linked marker in populations from nature and buildings, which contrast the pattern observed with neutral genetic markers where natural populations were far more variable. Some geographic structuring of the allelic variation in the mating type linked marker appeared, but far less than that observed with neutral markers. In founder populations of S. lacrymans, alleles co-occurring in heterokaryotic individuals were more divergent than expected by chance, which agrees with the expectation for populations where few mating alleles exists. The analyzed DNA marker displays trans-species polymorphism wherein some alleles from the closely related species S. himantoides are more similar to those of S. lacrymans than other alleles from S. himantoides. Conclusions Our results support the idea that strong negative frequency-dependent selection maintains high levels of genetic variation in MAT-linked genomic regions, even in recently bottlenecked populations of S. lacrymans.

  15. High variability in a mating type linked region in the dry rot fungus Serpula lacrymans caused by frequency-dependent selection?

    Science.gov (United States)

    Engh, Ingeborg Bjorvand; Skrede, Inger; Saetre, Glenn-Peter; Kauserud, Håvard

    2010-07-12

    The mating type loci that govern the mating process in fungi are thought to be influenced by negative frequency-dependent selection due to rare allele advantage. In this study we used a mating type linked DNA marker as a proxy to indirectly study the allelic richness and geographic distribution of mating types of one mating type locus (MAT A) in worldwide populations of the dry rot fungus Serpula lacrymans. This fungus, which causes serious destruction to wooden constructions in temperate regions worldwide, has recently expanded its geographic range with a concomitant genetic bottleneck. High allelic richness and molecular variation was detected in the mating type linked marker as compared to other presumably neutral markers. Comparable amounts of genetic variation appeared in the mating type linked marker in populations from nature and buildings, which contrast the pattern observed with neutral genetic markers where natural populations were far more variable. Some geographic structuring of the allelic variation in the mating type linked marker appeared, but far less than that observed with neutral markers. In founder populations of S. lacrymans, alleles co-occurring in heterokaryotic individuals were more divergent than expected by chance, which agrees with the expectation for populations where few mating alleles exists. The analyzed DNA marker displays trans-species polymorphism wherein some alleles from the closely related species S. himantoides are more similar to those of S. lacrymans than other alleles from S. himantoides. Our results support the idea that strong negative frequency-dependent selection maintains high levels of genetic variation in MAT-linked genomic regions, even in recently bottlenecked populations of S. lacrymans.

  16. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  17. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  18. Detection of the pedogenic magnetic fraction in volcanic soils developed on basalts using frequency-dependent magnetic susceptibility: comparison of two instruments

    Science.gov (United States)

    Grison, Hana; Petrovsky, Eduard; Kapicka, Ales; Hanzlikova, Hana

    2017-05-01

    In studies of the magnetic properties of soils, the frequency-dependent magnetic susceptibility percentage (χFD%) is often used for the identification of ultrafine magnetically superparamagnetic/stable single-domain (SP/SSD) particles. This parameter is commonly used as an indicator for increased pedogenesis. In strongly magnetic soils, the SP/SSD magnetic signal (mostly bio-pedogenic) may be masked by lithological signals; making pedogenesis hard to detect. In this study, we compare results for the detection of ultrafine SP/SSD magnetic particles in andic soils using two instruments: a Bartington MS2B dual-frequency meter and an AGICO Kappabridge MFK1-FA. In particular, the study focuses on the effect of pedogenesis by investigating the relationship between specific soil magnetic and chemical properties (soil organic carbon and pHH2O). The values of χFD% obtained with the MS2B varied from 2.4 to 5.9 per cent, and mass-specific magnetic susceptibility (χLF) from 283 to 1688 × 10-8 m3 kg-1, while values of χFD% and χLF obtained with the MFK1-FA varied from 2.7 to 8.2 per cent and from 299 to 1859 × 10-8 m3 kg-1, respectively. Our results suggest that the detection of the SP/SSD magnetic fraction can be accomplished by comparing relative trends of χFD% along the soil profile. Moreover, the discrimination between bio-pedogenic and lithogenic magnetic contributions in the SP/SSD fraction is possible by comparing the χFD% and χLF data determined in the fine earth (<2 mm) and the coarse fraction (4-10 mm) samples down the soil profile.

  19. Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type.

    Science.gov (United States)

    Ripley, Brad; Visser, Vernon; Christin, Pascal-Antoine; Archibald, Sally; Martin, Tarryn; Osborne, Colin

    2015-10-01

    Grasses using the C4 photosynthetic pathway dominate frequently burned savannas, where the pathway is hypothesized to be adaptive. However, independent C4 lineages also sort among different fire environments. Adaptations to fire may thus depend on evolutionary history, which could be as important as the possession of the C4 photosynthetic pathway for life in these environments. Here, using a comparative pot experiment and controlled burn, we examined C3 and C4 grasses belonging to four lineages from the same regional flora, and asked the following questions: Do lineages differ in their responses to fire, are responses consistent between photosynthetic types, and are responses related to fire frequency in natural habitats? We found that in the C4 Andropogoneae lineage, frost killed a large proportion of aboveground biomass and produced a large dry fuel load, which meant that only a small fraction of the living tissue was lost in the fire. C3 species from the Paniceae and Danthonioideae lineages generated smaller fuel loads and lost more living biomass, while species from the C4 lineage Aristida generated the smallest fuel loads and lost the most living tissue. Regrowth after the fire was more rapid and complete in the C4 Andropogoneae and C3 Paniceae, but incomplete and slower in the C3 Danthonioideae and C4 Aristida. Rapid recovery was associated with high photosynthetic rates, high specific leaf area, delayed flowering, and frequent fires in natural habitats. Results demonstrated that phylogenetic lineage was more important than photosynthetic type in determining the fire response of these grasses and that fire responses were related to the frequency that natural habitats burned.

  20. Accurate borehole probe calibration

    Energy Technology Data Exchange (ETDEWEB)

    Tchen, T.; Eisler, P. (CSIRO, Mount Waverley, Vic. (Australia). Division of Geomechanics)

    The In Situ Minerals Analysis Group in the CSIRO Division of Geomechanics has developed quantitative borehole logging techniques applicable to iron-ore and coal deposits. They are used currently to determine the formation density, either the iron-ore grades or the raw coal-ash contents, as appropriate, and the borehole diameter. The in-situ analyses depend on probe-calibration equations which were formulated by linear regression analysis that related the probe's spectral outputs with the required geological variable. Calibration equations consisting of a linear combination of first-order terms gave excellent assaying accuracy. The group achieved further improvements in assaying accuracy by developing a more generalised calibration model based on second-order terms and cross-product terms of the probe's spectral parameters. The logging data used for the statistical analysis were recorded in mine development boreholes at three Pilbara iron-ore mines and at a Queensland coal mine. Application of the generalised model, in place of the first-order model, resulted in a reduction of the root mean square (RMS) deviation between assays obtained in the laboratory and by logging, of about 15% relative for iron-ore grades and of about 8% relative for raw coal-ash content. The study also shows that the accuracy obtained using the conventional, non-spectrometric calibration model is inferior to that obtained by using either of the two spectrometric models, where the comparisons made are based on the same set of logging data. 8 refs., 6 figs., 3 tabs.

  1. Accurate measurement of the energy dependence of the process $e^{+} + e^{-} \\to e^{\\pm} + e^{\\mp}$, in the s-range 1.44-9.0 $GeV^{2}$

    CERN Document Server

    Bernardini, M; Brunini, P L; Fiorentino, E; Massam, Thomas; Monari, L; Palmonari, F; Rimondi, F; Zichichi, A

    1973-01-01

    The analysis of 12827 e/sup +/+e/sup -/ to e/sup +or-/+e/sup -or+/ events observed in the s-range 1.44-9.0 GeV/sup 2/ allows measurement of the energy dependence of the cross-section for the most typical QED process, with +or-2% accuracy. Within this limit the data follow QED, with first-order radiative corrections included.

  2. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Science.gov (United States)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2015-08-01

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  3. The design of delay-dependent wide-area DOFC with prescribed degree of stability α for damping inter-area low-frequency oscillations in power system.

    Science.gov (United States)

    Sun, Miaoping; Nian, Xiaohong; Dai, Liqiong; Guo, Hua

    2017-05-01

    In this paper, the delay-dependent wide-area dynamic output feedback controller (DOFC) with prescribed degree of stability is proposed for interconnected power system to damp inter-area low-frequency oscillations. Here, the prescribed degree of stability α is used to maintain all the poles on the left of s=-α in the s-plane. Firstly, residue approach is adopted to select input-output control signals and the schur balanced truncation model reduction method is utilized to obtain the reduced power system model. Secondly, based on Lyapunov stability theory and transformation operation in complex plane, the sufficient condition of asymptotic stability for closed-loop power system with prescribed degree of stability α is derived. Then, a novel method based on linear matrix inequalities (LMIs) is presented to obtain the parameters of DOFC and calculate delay margin of the closed-loop system considering the prescribed degree of stability α. Finally, case studies are carried out on the two-area four-machine system, which is controlled by classical wide-area power system stabilizer (WAPSS) in reported reference and our proposed DOFC respectively. The effectiveness and advantages of the proposed method are verified by the simulation results under different operating conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  5. AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Perley, R. A.; Butler, B. J., E-mail: RPerley@nrao.edu, E-mail: BButler@nrao.edu [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2013-02-15

    We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than {approx}5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.

  6. Short-term variability in QT interval and ventricular arrhythmias induced by dofetilide are dependent on high-frequency autonomic oscillations.

    Science.gov (United States)

    Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y

    2015-06-01

    The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K(+) channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. The short-term variability of beat-to-beat QT interval (STVQT ), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. © 2015 The British Pharmacological Society.

  7. Short-term variability in QT interval and ventricular arrhythmias induced by dofetilide are dependent on high-frequency autonomic oscillations

    Science.gov (United States)

    Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y

    2015-01-01

    Background and Purpose The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K+ channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. Experimental Approach The short-term variability of beat-to-beat QT interval (STVQT), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Key Results Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. Conclusions and Implications These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. PMID:25625756

  8. Common and Low Frequency Variants in MERTK Are Independently Associated with Multiple Sclerosis Susceptibility with Discordant Association Dependent upon HLA-DRB1*15:01 Status.

    Directory of Open Access Journals (Sweden)

    Michele D Binder

    2016-03-01

    Full Text Available Multiple Sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system. The risk of developing MS is strongly influenced by genetic predisposition, and over 100 loci have been established as associated with susceptibility. However, the biologically relevant variants underlying disease risk have not been defined for the vast majority of these loci, limiting the power of these genetic studies to define new avenues of research for the development of MS therapeutics. It is therefore crucial that candidate MS susceptibility loci are carefully investigated to identify the biological mechanism linking genetic polymorphism at a given gene to the increased chance of developing MS. MERTK has been established as an MS susceptibility gene and is part of a family of receptor tyrosine kinases known to be involved in the pathogenesis of demyelinating disease. In this study we have refined the association of MERTK with MS risk to independent signals from both common and low frequency variants. One of the associated variants was also found to be linked with increased expression of MERTK in monocytes and higher expression of MERTK was associated with either increased or decreased risk of developing MS, dependent upon HLA-DRB1*15:01 status. This discordant association potentially extended beyond MS susceptibility to alterations in disease course in established MS. This study provides clear evidence that distinct polymorphisms within MERTK are associated with MS susceptibility, one of which has the potential to alter MERTK transcription, which in turn can alter both susceptibility and disease course in MS patients.

  9. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction

    Science.gov (United States)

    Shao, Xu; Milner, Ben

    2005-08-01

    This work proposes a method to reconstruct an acoustic speech signal solely from a stream of mel-frequency cepstral coefficients (MFCCs) as may be encountered in a distributed speech recognition (DSR) system. Previous methods for speech reconstruction have required, in addition to the MFCC vectors, fundamental frequency and voicing components. In this work the voicing classification and fundamental frequency are predicted from the MFCC vectors themselves using two maximum a posteriori (MAP) methods. The first method enables fundamental frequency prediction by modeling the joint density of MFCCs and fundamental frequency using a single Gaussian mixture model (GMM). The second scheme uses a set of hidden Markov models (HMMs) to link together a set of state-dependent GMMs, which enables a more localized modeling of the joint density of MFCCs and fundamental frequency. Experimental results on speaker-independent male and female speech show that accurate voicing classification and fundamental frequency prediction is attained when compared to hand-corrected reference fundamental frequency measurements. The use of the predicted fundamental frequency and voicing for speech reconstruction is shown to give very similar speech quality to that obtained using the reference fundamental frequency and voicing.

  10. NNLOPS accurate associated HW production

    CERN Document Server

    Astill, William; Re, Emanuele; Zanderighi, Giulia

    2016-01-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross Section Working Group.

  11. A Novel Residual Frequency Estimation Method for GNSS Receivers.

    Science.gov (United States)

    Nguyen, Tu Thi-Thanh; La, Vinh The; Ta, Tung Hai

    2018-01-04

    In Global Navigation Satellite System (GNSS) receivers, residual frequency estimation methods are traditionally applied in the synchronization block to reduce the transient time from acquisition to tracking, or they are used within the frequency estimator to improve its accuracy in open-loop architectures. There are several disadvantages in the current estimation methods, including sensitivity to noise and wide search space size. This paper proposes a new residual frequency estimation method depending on differential processing. Although the complexity of the proposed method is higher than the one of traditional methods, it can lead to more accurate estimates, without increasing the size of the search space.

  12. Accurate measurements in volume data

    NARCIS (Netherlands)

    Oliván Bescós, J.; Bosma, Marco; Smit, Jaap; Mun, S.K.

    2001-01-01

    An algorithm for very accurate visualization of an iso- surface in a 3D medical dataset has been developed in the past few years. This technique is extended in this paper to several kinds of measurements in which exact geometric information of a selected iso-surface is used to derive volume, length,

  13. Frequency dependence of the coercive field of 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal from 0.01 Hz to 5 MHz

    Science.gov (United States)

    Chen, Zhaojiang; Zhang, Yang; Li, Shiyang; Lu, Xuan-Ming; Cao, Wenwu

    2017-05-01

    The frequency dependence of the coercive field Ec in [001]c poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals was investigated as a function of frequency f from 0.01 Hz to 5 MHz. Ec was found to be proportional to f β as predicted by the Ishibashi and Orihara model, but our results showed two frequency regimes separated at around 1.0 MHz with different β values. This change of switching kinetics may be due to the presence of slower relaxation times for non-180° domain switching and heterogeneous nucleation of polar nanoregions, whose contribution to polarization reversal is frozen out beyond 1.0 MHz, leading to a larger β.

  14. On the temperature dependence of the sound attenuation maximum as a function of frequency and magnetic field in a spin-1 Ising model near the critical region

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, Riza; Keskin, Mustafa

    2004-05-31

    Using the lowest approximation of the cluster variation method and Onsager theory, calculations of the sound attenuation ({alpha}) near the critical point in a spin-1 Ising model were performed at different frequencies ({omega}) and different magnetic field values (H) simultaneously and the shift in temperature of the attenuation maximum ({delta}T) was detected. It is found that the attenuation 'peaked' at higher temperatures with decreasing frequency and increasing field values, obeying an approximately exponential function in {omega}-{delta}T plots and linear function in H-{delta}T plots. 'Closed loops' are also observed in the {alpha}-{alpha} plots. These results are in qualitative agreement with the measurements of the ultrasound attenuation near the Neel point in magnetic insulators.

  15. On the temperature dependence of the sound attenuation maximum as a function of frequency and magnetic field in a spin-1 Ising model near the critical region

    Science.gov (United States)

    Erdem, Rıza; Keskin, Mustafa

    2004-05-01

    Using the lowest approximation of the cluster variation method and Onsager theory, calculations of the sound attenuation ( α) near the critical point in a spin-1 Ising model were performed at different frequencies ( ω) and different magnetic field values ( H) simultaneously and the shift in temperature of the attenuation maximum (Δ T) was detected. It is found that the attenuation ‘peaked’ at higher temperatures with decreasing frequency and increasing field values, obeying an approximately exponential function in ω-Δ T plots and linear function in H-Δ T plots. ‘Closed loops’ are also observed in the α- α plots. These results are in qualitative agreement with the measurements of the ultrasound attenuation near the Néel point in magnetic insulators.

  16. Extended analysis of the frequency dependence of the admittance of MIS structures with pulsed-laser-deposited AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Simeonov, S; Bakalova, S; Szekeres, A; Kafedjiijska, E [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grigorescu, S; Socol, G; Mihailescu, I N [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-54, RO-77125, Bucharest-Magurele (Romania)], E-mail: sbakalova@issp.bas.bg

    2008-05-01

    MIS structures with AlN films deposited on p-Si by pulsed laser deposition were prepared and admittance measurements were carried out in the frequency range of 100 Hz - 10 MHz. The density of traps in the AlN film and at the AlN/Si interface was evaluated using the electrical characteristics obtained, and the hopping mechanism of charge transport was determined from the dispersion of the a.c. conductance.

  17. Altered Rich-Club and Frequency-Dependent Subnetwork Organization in Mild Traumatic Brain Injury: A MEG Resting-State Study

    Directory of Open Access Journals (Sweden)

    Marios Antonakakis

    2017-08-01

    Full Text Available Functional brain connectivity networks exhibit “small-world” characteristics and some of these networks follow a “rich-club” organization, whereby a few nodes of high connectivity (hubs tend to connect more densely among themselves than to nodes of lower connectivity. The Current study followed an “attack strategy” to compare the rich-club and small-world network organization models using Magnetoencephalographic (MEG recordings from mild traumatic brain injury (mTBI patients and neurologically healthy controls to identify the topology that describes the underlying intrinsic brain network organization. We hypothesized that the reduction in global efficiency caused by an attack targeting a model's hubs would reveal the “true” underlying topological organization. Connectivity networks were estimated using mutual information as the basis for cross-frequency coupling. Our results revealed a prominent rich-club network organization for both groups. In particular, mTBI patients demonstrated hyper-synchronization among rich-club hubs compared to controls in the δ band and the δ-γ1, θ-γ1, and β-γ2 frequency pairs. Moreover, rich-club hubs in mTBI patients were overrepresented in right frontal brain areas, from θ to γ1 frequencies, and underrepresented in left occipital regions in the δ-β, δ-γ1, θ-β, and β-γ2 frequency pairs. These findings indicate that the rich-club organization of resting-state MEG, considering its role in information integration and its vulnerability to various disorders like mTBI, may have a significant predictive value in the development of reliable biomarkers to help the validation of the recovery from mTBI. Furthermore, the proposed approach might be used as a validation tool to assess patient recovery.

  18. When Is Network Lasso Accurate?

    Directory of Open Access Journals (Sweden)

    Alexander Jung

    2018-01-01

    Full Text Available The “least absolute shrinkage and selection operator” (Lasso method has been adapted recently for network-structured datasets. In particular, this network Lasso method allows to learn graph signals from a small number of noisy signal samples by using the total variation of a graph signal for regularization. While efficient and scalable implementations of the network Lasso are available, only little is known about the conditions on the underlying network structure which ensure network Lasso to be accurate. By leveraging concepts of compressed sensing, we address this gap and derive precise conditions on the underlying network topology and sampling set which guarantee the network Lasso for a particular loss function to deliver an accurate estimate of the entire underlying graph signal. We also quantify the error incurred by network Lasso in terms of two constants which reflect the connectivity of the sampled nodes.

  19. Accurate Accident Reconstruction in VANET

    OpenAIRE

    Kopylova, Yuliya; Farkas, Csilla; Xu, Wenyuan

    2011-01-01

    Part 9: Short Papers; International audience; We propose a forensic VANET application to aid an accurate accident reconstruction. Our application provides a new source of objective real-time data impossible to collect using existing methods. By leveraging inter-vehicle communications, we compile digital evidence describing events before, during, and after an accident in its entirety. In addition to sensors data and major components’ status, we provide relative positions of all vehicles involv...

  20. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.

    Science.gov (United States)

    Khare, Akshay; Arora, Rajat; Banik, Alak; Mehta, Sanjay D

    2016-02-01

    Frequency jumps are common in rubidium frequency sources. They affect the estimation of user position in navigational satellite systems. These jumps must be detected and corrected immediately as they have direct impact on the navigation system integrity. A novel weak frequency jump detector is proposed based on a Kalman filter with a multi-interval approach. This detector can be applied for both "sudden" and "slow" frequency transitions. In this detection method, noises of clock data are reduced by Kalman filtering, for accurate estimation of jump size with less latency. Analysis on in-orbit rubidium atomic frequency standard (RAFS) phase telemetry data shows that the detector can be used for fast detection and correction of weak frequency jumps. Furthermore, performance comparison of different existing frequency jump detection techniques with the proposed detector is discussed. A multialgorithm-based strategy is proposed depending on the jump size and latency for onboard navigation satellites having RAFS as the primary frequency source.

  1. Investigating the dependence of the temperature of high-intensity discharge (HID) lamp electrodes on the operating frequency by pyrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Reinelt, J; Westermeier, M; Ruhrmann, C; Bergner, A; Awakowicz, P; Mentel, J, E-mail: juergen.mentel@ruhr-uni-bochum.de [Ruhr University of Bochum, Electrical Engineering and Plasma Technology, D-44780 Bochum (Germany)

    2011-03-09

    Phase-resolved temperature distributions are determined along a rod-shaped tungsten electrode, by which an ac arc is operated within a model lamp filled with argon. Switched dc and sinusoidal currents are applied with amplitudes of several amperes and operating frequencies being varied between 10 Hz and 10 kHz. The temperature is deduced from the grey body radiation of the electrode being recorded with a spectroscopic measuring system. Phase-resolved values of the electrode tip temperature T{sub tip} and of the power input P{sub in} are determined comparing the measured temperature distributions with the integral of the one-dimensional heat balance with these parameters as integration constants. They are supplemented by phase-resolved measurements of the sum of cathode and anode fall called the electrode sheath voltage. If a switched dc current is applied it is found that both quantities are within the cathodic phase only marginally higher than for a cathode being operated with a dc current. T{sub tip} and P{sub in} start to decrease for low currents and to increase for high currents at the beginning of the anodic phase. But with increasing operating frequency the deviations from the cathodic phase are reduced until they cannot be resolved for frequencies of several kHz. A more pronounced modulation, but the same tendencies, is observed with a sinusoidal current waveform. For 10 kHz a diffuse arc attachment with an almost phase-independent electrode tip temperature, which deviates only marginally from that of a dc cathode, and an electrode sheath voltage proportional to the arc current is established with both current waveforms.

  2. Celiac disease T cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation

    NARCIS (Netherlands)

    Salentijn, E.M.J.; Mitea, D.C.; Goryunova, S.V.; Meer, van der I.M.; Padioleau, I.; Gilissen, L.J.W.J.; Koning, de F.; Smulders, M.J.M.

    2012-01-01

    Background - Celiac disease (CD) is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins. The CD-toxicity of these proteins and their derived peptides is depending on the presence of specific T-cell epitopes (9-mer peptides; CD epitopes) that mediate

  3. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  4. Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach.

    Science.gov (United States)

    Knudsen, Lars; Weibel, Ewald R; Gundersen, Hans Jørgen G; Weinstein, Felix V; Ochs, Matthias

    2010-02-01

    The mean linear intercept (chord) length (L(m)) is a useful parameter of peripheral lung structure as it describes the mean free distance in the air spaces. It is often misinterpreted as a measure of "alveolar size," and its estimation is fraught with a number of pitfalls. We present two methods for the accurate estimation of L(m): 1) the indirect method, which derives L(m) from the volume-to-surface ratio of air spaces estimated by point counting methods, and 2) the direct method, which uses a set of random intercepts and calculates L(m) from their frequency distribution, for which we introduce a new and accurate method. Both methods are efficient and, with proper precautions, unbiased. The meaning of L(m) is assessed in two different examples. In a physiological study, the effect of different inflation levels is studied, showing that L(m) critically depends on lung inflation. In an experimental study on emphysema-like changes in a genetic mouse model, the effect of heterogeneity of air space size is assessed; these results are obtained partly because of differences in lung volume due to altered recoil in the emphysematous lungs. In conclusion, although L(m) is not a robust parameter of internal lung structure because it crucially depends on lung volume, it is still a valid measure for which accurate and efficient methods are available that yield additional parameters such as size distribution or alveolar surface area.

  5. Electronic ampere-hour integrator is accurate to one percent

    Science.gov (United States)

    Paulkovich, J.

    1965-01-01

    Electronic ampere-hour integrator is based on current-to-frequency conversion. It operates on low power and is accurate to one percent. This device can measure the ampere-hour capacity of batteries and can be adapted for other functions.

  6. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya

    2010-11-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.

  7. Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction.

    Science.gov (United States)

    Johansson, Johannes D; Eriksson, Ola; Wren, Joakim; Loyd, Dan; Wårdell, Karin

    2006-09-01

    Radio-frequency brain lesioning is a method for reducing e.g. symptoms of movement disorders. A small electrode is used to thermally coagulate malfunctioning tissue. Influence on lesion size from thermal and electric conductivity of the tissue, microvascular perfusion and preset electrode temperature was investigated using a finite-element model. Perfusion was modelled as an increased thermal conductivity in non-coagulated tissue. The parameters were analysed using a 2(4)-factorial design (n=16) and quadratic regression analysis (n=47). Increased thermal conductivity of the tissue increased lesion volume, while increased perfusion decreased it since coagulation creates a thermally insulating layer due to the cessation of blood perfusion. These effects were strengthened with increased preset temperature. The electric conductivity had negligible effect. Simulations were found realistic compared to in vivo experimental lesions.

  8. Difference in recurrence frequencies of non-muscle-invasive-bladder tumors depending on optimal usage of intravesical immunotherapy of bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Milošević Radovan

    2015-01-01

    Full Text Available Background/Aim. The therapy with intravesical instillation of bacillus Calmette-Guérin (BCG after transurethral resection (TUR of the tumor is the gold standard of treatment of non-muscle invasive bladder cancer (NMIBC. The aim of this study was to compare the frequencies of reccurence between a group of patients submitted to TUR + BCG therapy (group I and a group of patients submitted only to TUR (group II. Methods. The patients with NMIBC, a total of 899, treated in our Institution from January 1, 2007 to March, 2013, were included in this study and divided into two groups: group I and group II. These two groups were divided into three subgroups: solitary first diagnosed tumor ≤ 3 cm (SFDGT, solitary first diagnosed tumor > 3 cm and multiple first diagnosed tumors (MFDGT, and recedive tumors (RCT. Statistical analysis was performed by using χ2-test and Kolmogorov-Smirnov test. Results: In the group I a total of 133 cases had reccurence contrary to 75 in the group II, making a statistically highly significant difference. Analysis of recurrences through the subgroups revealed: in the group I SFDGT recurrence occured in 27 of the cases vs 9 cases in the group II; in the group I MFDGT recurrence occured in 49 of the cases vs 31 in the group II (p < 0.001, and finally, in the group I RCT recurrence occured in 57 cases vs 35 cases in the group II (p < 0.001. Conclusion. The obtained results indicate no difference in the frequency of reccurence between the group I and group II regarding SFDGT, but a very high significant difference regarding those with MFDGT and RCT. These results should be taken into consideration in everyday clinical practise.

  9. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence.

    Science.gov (United States)

    Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu

    2012-11-23

    A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: Family studies indicate a mutation type-dependent sex ratio of mutation frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.; Schmidt, W.; Olek, K. [Univ. of Bonn (Germany)] [and others

    1996-04-01

    The clinical manifestation of hemophilia A is caused by a wide range of different mutations. In this study the factor VIII genes of 147 severe hemophilia A patients-all exclusively from sporadic families-were screened for mutations by use of the complete panel of modern DNA techniques. The pathogenous defect could be characterized in 126 patients (85.7%). Fifty-five patients (37.4%) showed a F8A-gene inversion, 47 (32.0%) a point mutation, 14 (9.5%) a small deletion, 8 (5.4%) a large deletion, and 2 (1.4%) a small insertion. Further, four (2.7%) mutations were localized but could not be sequenced yet. No mutation could be identified in 17 patients (11.6%). Sixteen (10.9%) of the P identified mutations occurred in the B domain. Four of these were located in an adenosine nucleotide stretch at codon 1192, indicating a mutation hotspot. Somatic mosaicisms were detected in 3 (3.9%) of 76 patients` mothers, comprising 3 of 16 de novo mutations in the patients` mothers. Investigation of family relatives allowed detection of a de novo mutation in 16 of 76 two-generation and 28 of 34 three-generation families. On the basis of these data, the male:female ratio of mutation frequencies (k) was estimated as k = 3.6. By use of the quotients of mutation origin in maternal grandfather to patient`s mother or to maternal grandmother, k was directly estimated as k = 15 and k = 7.5, respectively. Considering each mutation type separately, we revealed a mutation type-specific sex ratio of mutation frequencies. Point mutations showed a 5-to-10-fold-higher and inversions a >10-fold- higher mutation rate in male germ cells, whereas deletions showed a >5-fold-higher mutation rate in female germ cells. Consequently, and in accordance with the data of other diseases like Duchenne muscular dystrophy, our results indicate that at least for X-chromosomal disorders the male:female mutation rate of a disease is determined by its proportion of the different mutation types. 68 refs., 1 fig., 5 tabs.

  11. Accurate Modeling of Advanced Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min

    of the incident field, the choice of basis functions, and the technique to calculate the far-field. Based on accurate reference measurements of two offset reflectarrays carried out at the DTU-ESA Spherical NearField Antenna Test Facility, it was concluded that the three latter factors are particularly important...... to the conventional phase-only optimization technique (POT), the geometrical parameters of the array elements are directly optimized to fulfill the far-field requirements, thus maintaining a direct relation between optimization goals and optimization variables. As a result, better designs can be obtained compared...... using the GDOT to demonstrate its capabilities. To verify the accuracy of the GDOT, two offset contoured beam reflectarrays that radiate a high-gain beam on a European coverage have been designed and manufactured, and subsequently measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...

  12. The Accurate Particle Tracer Code

    CERN Document Server

    Wang, Yulei; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusion energy research, computational mathematics, software engineering, and high-performance computation. The APT code consists of seven main modules, including the I/O module, the initialization module, the particle pusher module, the parallelization module, the field configuration module, the external force-field module, and the extendible module. The I/O module, supported by Lua and Hdf5 projects, provides a user-friendly interface for both numerical simulation and data analysis. A series of new geometric numerical methods...

  13. Frequency-dependent electrophysiological remodeling of the AV node by hydroalcohol extract of Crocus sativus L. (saffron) during experimental atrial fibrillation: the role of endogenous nitric oxide.

    Science.gov (United States)

    Khori, Vahid; Alizadeh, Ali Mohammad; Yazdi, Hamidreza; Rakhshan, Elnaz; Mirabbasi, Abbas; Changizi, Shima; Mazandarani, Masumeh; Nayebpour, Mohsen

    2012-06-01

    The study assessed the hydroalcohol extract effects of Crocus sativus L. (saffron) on (i) the basic and rate-dependent electrophysiological properties of the AV node, (ii) remodeling of the AV node during experimental atrial fibrillation (AF) and (iii) the role of nitric oxide (NO) in the effects of saffron on the AV node. Stimulation protocols in isolated AV node were used to quantify AV nodal recovery, facilitation and fatigue in four groups of rabbits (n = 8-16 per group). In addition, the nodal response to AF was evaluated at multiple cycle lengths and during AF. Saffron had a depressant effect on AV nodal rate-dependent properties; further, it increased Wenckebach block cycle length, functional refractory period, facilitation and fatigue (p saffron on the AV node (p Saffron increased the zone of concealment in experimental AF (p saffron. Saffron increased the AV nodal refractoriness and zone of concealment. These depressant effects of saffron were mediated by endogenous NO. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Acupoint-Specific, Frequency-Dependent, and Improved Insulin Sensitivity Hypoglycemic Effect of Electroacupuncture Applied to Drug-Combined Therapy Studied by a Randomized Control Clinical Trial

    Directory of Open Access Journals (Sweden)

    Rong-Tsung Lin

    2014-01-01

    Full Text Available The application of electroacupuncture (EA to specific acupoints can induce a hypoglycemic effect in streptozotocin-induced rats, normal rats, and rats with steroid-induced insulin resistance. EA combined with the oral insulin sensitizer rosiglitazone improved insulin sensitivity in rats and humans with type II diabetes mellitus (DM. There are different hypoglycemic mechanisms between Zhongwan and Zusanli acupoints by EA stimulation. On low-frequency (2 Hz stimulation at bilateral Zusanli acupoints, serotonin was involved in the hypoglycemic effect in normal rats. Moreover, after 15 Hz EA stimulation at the bilateral Zusanli acupoints, although enhanced insulin activity mainly acts on the insulin-sensitive target organs, the muscles must be considered. In addition, 15 Hz EA stimulation at the bilateral Zusanli acupoints has the combined effect of enhancing cholinergic nerve activity and increasing nitric oxide synthase (NOS activity to enhance insulin activity. Despite the well-documented effect of pain control by EA in many systemic diseases, there are few high-quality long-term clinical trials on the hypoglycemic effect of EA in DM. Combination treatment with EA and other medications seems to be an alternative treatment to achieve better therapeutic goals that merit future investigation.

  15. Fast changes in the functional status of release sites during short-term plasticity: involvement of a frequency-dependent bypass of Rac at Aplysia synapses.

    Science.gov (United States)

    Humeau, Yann; Doussau, Frédéric; Popoff, Michel R; Benfenati, Fabio; Poulain, Bernard

    2007-09-15

    Synaptic transmission can be described as a stochastic quantal process defined by three main parameters: N, the number of functional release sites; P, the release probability; and Q, the quantum of response. Many changes in synaptic strength that are observed during expression of short term plasticity rely on modifications in P. Regulation of N has been also suggested. We have investigated at identified cholinergic inhibitory Aplysia synapses the cellular mechanism of post-tetanic potentiation (PTP) expressed under control conditions or after N has been depressed by applying lethal toxin (LT) from Clostridium sordellii or tetanus toxin (TeNT). The analysis of the Ca(2+) dependency, paired-pulse ratio and variance to mean amplitude relationship of the postsynaptic responses elicited at distinct extracellular [Ca(2+)]/[Mg(2+)] elicited during control post-tetanic potentiation (PTP(cont)) indicated that PTP(cont) is mainly driven by an increase in release probability, P. The PTP expressed at TeNT-treated synapses (PTP(TeNT)) was found to be similar to PTP(cont), but scaled to the extent of reduction in N produced by TeNT. Despite LT inducing a decrease in N as TeNT does, the PTP expressed at LT-treated synapses (PTP(LT)) was characterized by exceptionally large amplitude and bi-exponential time course, as compared to PTP(cont) or the PTP(TeNT). Analysis of the Ca(2+) dependency of PTP(LT), paired-pulse ratio and fluctuations in amplitude of the postsynaptic responses elicited during PTP(LT) or the variance to mean amplitude relationship of time-locked postsynaptic responses in a series of subsequent PTP(LT) indicated that an N-driven change is involved in the early phase (1 s time scale) of PTP(LT), while at a later stage PTP(LT) is composed of both N and P increases. Our results suggest that fast switching on of the functional status of the release sites occurs also during the early events of PTP(cont). The early N-driven phase of PTP(LT) is likely to be a functional

  16. Towards an accurate bioimpedance identification

    Science.gov (United States)

    Sanchez, B.; Louarroudi, E.; Bragos, R.; Pintelon, R.

    2013-04-01

    This paper describes the local polynomial method (LPM) for estimating the time-invariant bioimpedance frequency response function (FRF) considering both the output-error (OE) and the errors-in-variables (EIV) identification framework and compare it with the traditional cross— and autocorrelation spectral analysis techniques. The bioimpedance FRF is measured with the multisine electrical impedance spectroscopy (EIS) technique. To show the overwhelming accuracy of the LPM approach, both the LPM and the classical cross— and autocorrelation spectral analysis technique are evaluated through the same experimental data coming from a nonsteady-state measurement of time-varying in vivo myocardial tissue. The estimated error sources at the measurement frequencies due to noise, σnZ, and the stochastic nonlinear distortions, σZNL, have been converted to Ω and plotted over the bioimpedance spectrum for each framework. Ultimately, the impedance spectra have been fitted to a Cole impedance model using both an unweighted and a weighted complex nonlinear least square (CNLS) algorithm. A table is provided with the relative standard errors on the estimated parameters to reveal the importance of which system identification frameworks should be used.

  17. Data on IL-6 c.-174 G>C genotype and allele frequencies in patients with coronary heart disease in dependence of cardiovascular outcome

    Directory of Open Access Journals (Sweden)

    Stefan Reichert

    2016-09-01

    Full Text Available In this data article we present data on the distribution of alleles and genotypes of the interleukin (IL-6 c.-174 G>C polymorphism (rs 1800795 in patients with coronary heart disease (CHD in dependence of the incidence of new cardiovascular events (combined endpoint: myocardial infarction, stroke/TIA, cardiac death, death according to stroke within three years follow-up. Moreover, we investigated putative associations between individual expression of IL-6 genotypes and IL-6 serum level. This investigation is a subanalysis of the article entitled “The Interleukin 6 c.-174 CC genotype is a predictor for new cardiovascular events in patients with coronary heart disease within three years follow-up“ (ClinicalTrials.gov identifier: NCT01045070 (Reichert et al., 2016 [1].

  18. On-Chip Terahertz-Frequency Measurements of Liquids.

    Science.gov (United States)

    Swithenbank, Matthew; Burnett, Andrew D; Russell, Christopher; Li, Lianhe H; Davies, Alexander Giles; Linfield, Edmund H; Cunningham, John E; Wood, Christopher D

    2017-08-01

    Terahertz-frequency-range measurements can offer potential insight into the picosecond dynamics, and therefore function, of many chemical systems. There is a need to develop technologies capable of performing such measurements in aqueous and polar environments, particularly when it is necessary to maintain the full functionality of biological samples. In this study, we present a proof-of-concept technology comprising an on-chip planar Goubau line, integrated with a microfluidic channel, which is capable of low-loss, terahertz-frequency-range spectroscopic measurements of liquids. We also introduce a mathematical model that accounts for changes in the electric field distribution around the waveguide, allowing accurate, frequency-dependent liquid parameters to be extracted. We demonstrate the sensitivity of this technique by measuring a homologous alcohol series across the 0.1-0.8 THz frequency range.

  19. Apparent Attenuation at High Frequencies in Southern California

    Science.gov (United States)

    Lin, Y. P.; Jordan, T. H.

    2016-12-01

    Accurately simulating strong motions for seismic hazard analysis requires accurate 3D models of crustal structure. At low frequencies (job of accounting 3D elastic scattering on wavefield amplitudes. At higher frequencies, however, anelastic attenuation becomes more important, and the elastic scattering depends on unresolved small-scale heterogeneities, giving rise to a complex apparent attenuation structure that depends on both position and frequency. We place constraints on this structure in the band 1-10 Hz through the analysis of earthquake waveforms recorded by the Southern California Seismic Network (SCSN). We localize signals in frequency and time using wavelet transforms, and we account for source structure and geometrical spreading by referencing the spectral amplitudes to values computed from synthetic seismograms. Inversions of large datasets recover an attenuation structure that, when averaged laterally and over frequency, is generally consistent with the tomographic study of Hauksson & Shearer (2006). In particular, we find that the apparent quality factor for P waves (QP) is less than the apparent quality factor for S waves (QS), in contradiction with the classical relation QP 2QS that has been used for most wavefield modeling at low frequencies. The data are consistent with QP anomalies being strongest in the low-Q, near-surface waveguide, suggesting that strong scattering from small-scale heterogeneities may play a role in explaining this discrepancy. The data also require that the apparent attenuation be strongly frequency dependent across the 1-10 Hz band. We use 3D tomographic inversions conditioned on the 3D velocity models to test the hypothesis that the lateral variations in apparent attenuation structure are strongly correlated with velocity variations.

  20. The accurate particle tracer code

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  1. Frequency-dependent seismic attenuation in the eastern United States as observed from the 2011 central Virginia earthquake and aftershock sequence

    Science.gov (United States)

    McNamara, Daniel E.; Gee, Lind; Benz, Harley M.; Chapman, Martin

    2014-01-01

    Ground shaking due to earthquakes in the eastern United States (EUS) is felt at significantly greater distances than in the western United States (WUS) and for some earthquakes it has been shown to display a strong preferential direction. Shaking intensity variation can be due to propagation path effects, source directivity, and/or site amplification. In this paper, we use S and Lg waves recorded from the 2011 central Virginia earthquake and aftershock sequence, in the Central Virginia Seismic Zone, to quantify attenuation as frequency‐dependent Q(f). In support of observations based on shaking intensity, we observe high Q values in the EUS relative to previous studies in the WUS with especially efficient propagation along the structural trend of the Appalachian mountains. Our analysis of Q(f) quantifies the path effects of the northeast‐trending felt distribution previously inferred from the U.S. Geological Survey (USGS) “Did You Feel It” data, historic intensity data, and the asymmetrical distribution of rockfalls and landslides.

  2. Cortisol feedback state governs adrenocorticotropin secretory-burst shape, frequency, and mass in a dual-waveform construct: time of day-dependent regulation.

    Science.gov (United States)

    Keenan, Daniel M; Veldhuis, Johannes D

    2003-11-01

    Quantification of in vivo pituitary hormone secretion requires simultaneous appraisal of implicit 1) secretory-burst waveform, mass, and stochastic pulse timing; 2) basal secretion; 3) biexponential elimination kinetics; and 4) random experimental error (Keenan DM, Licinio J, and Veldhuis JD. Proc Natl Acad Sci USA 98: 4028-4033, 2001). The present study extends this analytic formalism to allow for time of day-dependent waveform adaptation (burst-shape change) at statistically determinable boundary times. Thereby, we test the hypothesis that diurnal mechanisms and glucocorticoid negative feedback jointly govern distinctive facets of the burstlike secretion of ACTH. To this end, we reanalyzed intensively (10 min) sampled 24-h plasma ACTH concentration profiles collected previously under feedback-intact and drug-induced cortisol depletion in nine healthy adults. Akaiki information criterion-based model comparison favored dual (rather than single) secretory-burst representation of 24-h ACTH release in both the intact and low-cortisol setting in eight of nine subjects. Under feedback-intact conditions, analytically predicted waveform changepoints (median clock times 0611 and 1739) flanked an interval of elevated ACTH secretory-burst mass (P renewal process.

  3. Frequency-Dependent Habituation Deficit of the Nociceptive Blink Reflex in Aura With Migraine Headache. Can Migraine Aura Modulate Trigeminal Excitability?

    Science.gov (United States)

    Perrotta, Armando; Anastasio, Maria Grazia; De Icco, Roberto; Coppola, Gianluca; Ambrosini, Anna; Serrao, Mariano; Sandrini, Giorgio; Pierelli, Francesco

    2017-06-01

    To study the influence of the migraine aura on the trigeminal nociception, we investigated the habituation of the nociceptive blink reflex (nBR) R2 responses in aura with migraine headache (AwMH) and comparatively in migraine without aura (MWoA) and healthy subjects (HS). A clear deficit of habituation in trigeminal nociceptive responses has been documented in MWoA; however, similar data in MWA are lacking. Seventeen AwMH, 29 MWoA, and 30 HS were enrolled and a nonrandomized clinical neurophysiological study examining nBR habituation by clinical diagnosis was devised. We delivered a series of 26 electrical stimuli, at different stimulation frequencies (SF) (0.05, 0.1, 0.2, 0.3, 0.5, and 1 Hz), subsequently subdivided in five blocks of five responses for each SF. The mean area values of the second to the fifth block expressed as the percentage of the mean area value of the first block were taken as an index of habituation for each SF. A significant lower mean percentage decrease of the R2 area across all blocks was found at 1, 0.5, 0.3, and 0.2 Hz SF in MWoA and at 0.3 and 0.2 Hz SF in AwMH, when compared to HS. In the most representative fifth block of responses, we found in MWoA vs HS at 1 Hz, 57.0 ± 27.8 vs 30.6 ± 12.0; at 0.5 Hz, 54.8 ± 26.1 vs 32.51 ± 17.7; at 0.3 Hz, 44.7 ± 21.6 vs 27.6 ± 13.2; at 0.2 Hz, 61.3 ± 29.5 vs 32.6 ± 18.0, and in AwMH vs HS at 0.3 Hz, 52.7 ± 24.7 vs 27.6 ± 13.2; at 0.2 Hz, 69.3 ± 38.6 vs 32.6 ± 18.0 as mean ± SD of the R2 area percentage of the first block, respectively. Interestingly, AwMH subjects did not show differences in mean percentage decrease of the R2 area at 1 and 0.5 Hz SF when compared to HS. No differences between groups were found at 0.1 and 0.05 Hz SF. We demonstrated in AwMH a deficit of habituation of the nBR R2 responses after repeated stimulations, although less pronounced than that observed in MWoA of comparable clinical severity. We hypothesize

  4. Effective and Accurate Colormap Selection

    Science.gov (United States)

    Thyng, K. M.; Greene, C. A.; Hetland, R. D.; Zimmerle, H.; DiMarco, S. F.

    2016-12-01

    Science is often communicated through plots, and design choices can elucidate or obscure the presented data. The colormap used can honestly and clearly display data in a visually-appealing way, or can falsely exaggerate data gradients and confuse viewers. Fortunately, there is a large resource of literature in color science on how color is perceived which we can use to inform our own choices. Following this literature, colormaps can be designed to be perceptually uniform; that is, so an equally-sized jump in the colormap at any location is perceived by the viewer as the same size. This ensures that gradients in the data are accurately percieved. The same colormap is often used to represent many different fields in the same paper or presentation. However, this can cause difficulty in quick interpretation of multiple plots. For example, in one plot the viewer may have trained their eye to recognize that red represents high salinity, and therefore higher density, while in the subsequent temperature plot they need to adjust their interpretation so that red represents high temperature and therefore lower density. In the same way that a single Greek letter is typically chosen to represent a field for a paper, we propose to choose a single colormap to represent a field in a paper, and use multiple colormaps for multiple fields. We have created a set of colormaps that are perceptually uniform, and follow several other design guidelines. There are 18 colormaps to give options to choose from for intuitive representation. For example, a colormap of greens may be used to represent chlorophyll concentration, or browns for turbidity. With careful consideration of human perception and design principles, colormaps may be chosen which faithfully represent the data while also engaging viewers.

  5. On the interface trap density and series resistance of tin oxide film prepared on n-type Si (1 1 1) substrate: Frequency dependent effects before and after {sup 60}Co {gamma}-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Karadeniz, S. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)]. E-mail: serdar@taek.gov.tr; Selcuk, A. Birkan [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Tugluoglu, N. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Ocak, S. Bilge [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)

    2007-06-15

    We report the first investigation of the frequency dependent effects of gamma irradiation on interface state density and series resistance determined from capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics in SnO{sub 2}/n-Si structures prepared by spray deposition method. The samples were irradiated using a {sup 60}Co {gamma}-ray source at 500 kGy at room temperature. The C-V and G-V measurements of the samples were performed in the voltage range -6 V to 2 V and at 10 kHz, 100 kHz, 500 kHz and 1 MHz at room temperature before and after 500 kGy irradiation. The measurement capacitance and conductance are corrected for series resistance. It has been seen that the value of the series resistance R {sub s} of sample decreases from 204 {omega} to 55.4 {omega} with increasing the frequency before irradiation while it decreases from 248 {omega} to 60 {omega} with increasing frequency at 500 kGy irradiation. It has been found that and D {sub it} values of MOS structure increases up to 100 kHz and then decreases up to 1 MHz while the R {sub s} increases with increasing irradiation dose for our sample. The interface state density D {sub it} ranges from 1.83 x 10{sup 13} cm{sup -2} eV{sup -1} for before irradiation to 1.54 x 10{sup 13} cm{sup -2} eV{sup -1} for 500 kGy irradiation dose at 500 kHz and decreases with increasing frequency.

  6. Optimal strategies for throwing accurately

    Science.gov (United States)

    Venkadesan, M.; Mahadevan, L.

    2017-04-01

    The accuracy of throwing in games and sports is governed by how errors in planning and initial conditions are propagated by the dynamics of the projectile. In the simplest setting, the projectile path is typically described by a deterministic parabolic trajectory which has the potential to amplify noisy launch conditions. By analysing how parabolic trajectories propagate errors, we show how to devise optimal strategies for a throwing task demanding accuracy. Our calculations explain observed speed-accuracy trade-offs, preferred throwing style of overarm versus underarm, and strategies for games such as dart throwing, despite having left out most biological complexities. As our criteria for optimal performance depend on the target location, shape and the level of uncertainty in planning, they also naturally suggest an iterative scheme to learn throwing strategies by trial and error.

  7. Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science Waveform Receiver Plasma Wave Analysis

    Science.gov (United States)

    Boardsen, Scott A.; Hospodarsky, George B.; Kletzing, Craig A.; Engebretson, Mark J.; Pfaff, Robert F.; Wygant, John R.; Kurth, William S.; Averkamp, Terrance F.; Bounds, Scott R.; Green, Jim L.; hide

    2016-01-01

    We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 21 September 2012 to 1 August 2014. We show that statistically, the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (f(sub cP)) has a distinct funnel-shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extra-ordinary (whistler) mode at wave normal angles (theta(sub k)) near 90 deg. Performing polarization analysis on synthetic waveforms composed from a superposition of extra-ordinary mode plane waves with theta(sub k) randomly chosen between 87 and 90 deg, we show that the uncertainty in the derived wave normal is substantially broadened, with a tail extending down to theta(sub k) of 60 deg, suggesting that another approach is necessary to estimate the true distribution of theta(sub k). We find that the histograms of the synthetically derived ellipticities and theta(sub k) are consistent with the observations of ellipticities and theta(sub k) derived using polarization analysis.We make estimates of the median equatorial theta(sub k) by comparing observed and model ray tracing frequency-dependent probability occurrence with latitude and give preliminary frequency dependent estimates of the equatorial theta(sub k) distribution around noon and 4 R(sub E), with the median of approximately 4 to 7 deg from 90 deg at f/f(sub cP) = 2 and dropping to approximately 0.5 deg from 90 deg at f/f(sub cP) = 30. The occurrence of waves in this mode peaks around noon near the equator at all radial distances, and we find that the overall intensity of these waves increases with AE*, similar to findings of other studies.

  8. Accurate analysis of multitone signals using a DFT

    Science.gov (United States)

    Burgess, John C.

    2004-07-01

    Optimum data windows make it possible to determine accurately the amplitude, phase, and frequency of one or more tones (sinusoidal components) in a signal. Procedures presented in this paper can be applied to noisy signals, signals having moderate nonstationarity, and tones close in frequency. They are relevant to many areas of acoustics where sounds are quasistationary. Among these are acoustic probes transmitted through media and natural sounds, such as animal vocalization, speech, and music. The paper includes criteria for multitone FFT block design and an example of application to sound transmission in the atmosphere.

  9. Frequency standards

    CERN Document Server

    Riehle, Fritz

    2006-01-01

    Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards

  10. Note-accurate audio segmentation based on MPEG-7

    Science.gov (United States)

    Wellhausen, Jens

    2003-12-01

    Segmenting audio data into the smallest musical components is the basis for many further meta data extraction algorithms. For example, an automatic music transcription system needs to know where the exact boundaries of each tone are. In this paper a note accurate audio segmentation algorithm based on MPEG-7 low level descriptors is introduced. For a reliable detection of different notes, both features in the time and the frequency domain are used. Because of this, polyphonic instrument mixes and even melodies characterized by human voices can be examined with this alogrithm. For testing and verification of the note accurate segmentation, a simple music transcription system was implemented. The dominant frequency within each segment is used to build a MIDI file representing the processed audio data.

  11. Accurate diode behavioral model with reverse recovery

    Science.gov (United States)

    Banáš, Stanislav; Divín, Jan; Dobeš, Josef; Paňko, Václav

    2018-01-01

    This paper deals with the comprehensive behavioral model of p-n junction diode containing reverse recovery effect, applicable to all standard SPICE simulators supporting Verilog-A language. The model has been successfully used in several production designs, which require its full complexity, robustness and set of tuning parameters comparable with standard compact SPICE diode model. The model is like standard compact model scalable with area and temperature and can be used as a stand-alone diode or as a part of more complex device macro-model, e.g. LDMOS, JFET, bipolar transistor. The paper briefly presents the state of the art followed by the chapter describing the model development and achieved solutions. During precise model verification some of them were found non-robust or poorly converging and replaced by more robust solutions, demonstrated in the paper. The measurement results of different technologies and different devices compared with a simulation using the new behavioral model are presented as the model validation. The comparison of model validation in time and frequency domains demonstrates that the implemented reverse recovery effect with correctly extracted parameters improves the model simulation results not only in switching from ON to OFF state, which is often published, but also its impedance/admittance frequency dependency in GHz range. Finally the model parameter extraction and the comparison with SPICE compact models containing reverse recovery effect is presented.

  12. 38 CFR 4.46 - Accurate measurement.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect to...

  13. Accurate Modeling of Buck Converters with Magnetic-Core Inductors

    DEFF Research Database (Denmark)

    Astorino, Antonio; Antonini, Giulio; Swaminathan, Madhavan

    2015-01-01

    In this paper, a modeling approach for buck converters with magnetic-core inductors is presented. Due to the high nonlinearity of magnetic materials, the frequency domain analysis of such circuits is not suitable for an accurate description of their behaviour. Hence, in this work, a timedomain mo...... hysteretic behavior to be thoroughly taken into account....

  14. Frequency synthesiser

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, Fabio; Leenaerts, Dominicus Martinus Wilhelmus; Breems, Lucien Johannes; Nauta, Bram

    2010-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  15. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata 741 252, India; Department of Theoretical Physics, Physical Research Laboratory, ... Manuscript received: 9 February 2014; Manuscript revised: 19 March 2014; Accepted: 20 March 2014; Early published: 19 September 2014 ...

  16. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    matically by Wiener [7,8]. He realized the ubiquity of the phenomenon and speculated its involvement in the generation of alpha rhythms in the brain. ..... [6] Y Kuramoto, Chemical oscillations, waves, and turbulence (Dover Publications, Mineola,. New York, 2003). [7] N Wiener, Nonlinear problem in random theory edited by ...

  17. Measurement of shot noise in magnetic tunnel junction and its utilization for accurate system calibration

    Science.gov (United States)

    Tamaru, S.; Kubota, H.; Yakushiji, K.; Fukushima, A.; Yuasa, S.

    2017-11-01

    This work presents a technique to calibrate the spin torque oscillator (STO) measurement system by utilizing the whiteness of shot noise. The raw shot noise spectrum in a magnetic tunnel junction based STO in the microwave frequency range is obtained by first subtracting the baseline noise, and then excluding the field dependent mag-noise components reflecting the thermally excited spin wave resonances. As the shot noise is guaranteed to be completely white, the total gain of the signal path should be proportional to the shot noise spectrum obtained by the above procedure, which allows for an accurate gain calibration of the system and a quantitative determination of each noise power. The power spectral density of the shot noise as a function of bias voltage obtained by this technique was compared with a theoretical calculation, which showed excellent agreement when the Fano factor was assumed to be 0.99.

  18. How flatbed scanners upset accurate film dosimetry.

    Science.gov (United States)

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  19. A stiffly accurate integrator for elastodynamic problems

    KAUST Repository

    Michels, Dominik L.

    2017-07-21

    We present a new integration algorithm for the accurate and efficient solution of stiff elastodynamic problems governed by the second-order ordinary differential equations of structural mechanics. Current methods have the shortcoming that their performance is highly dependent on the numerical stiffness of the underlying system that often leads to unrealistic behavior or a significant loss of efficiency. To overcome these limitations, we present a new integration method which is based on a mathematical reformulation of the underlying differential equations, an exponential treatment of the full nonlinear forcing operator as opposed to more standard partially implicit or exponential approaches, and the utilization of the concept of stiff accuracy which ensures that the efficiency of the simulations is significantly less sensitive to increased stiffness. As a consequence, we are able to tremendously accelerate the simulation of stiff systems compared to established integrators and significantly increase the overall accuracy. The advantageous behavior of this approach is demonstrated on a broad spectrum of complex examples like deformable bodies, textiles, bristles, and human hair. Our easily parallelizable integrator enables more complex and realistic models to be explored in visual computing without compromising efficiency.

  20. Radiative transport in fluorescence-enhanced frequency domain photon migration.

    Science.gov (United States)

    Rasmussen, John C; Joshi, Amit; Pan, Tianshu; Wareing, Todd; McGhee, John; Sevick-Muraca, Eva M

    2006-12-01

    Small animal optical tomography has significant, but potential application for streamlining drug discovery and pre-clinical investigation of drug candidates. However, accurate modeling of photon propagation in small animal volumes is critical to quantitatively obtain accurate tomographic images. Herein we present solutions from a robust fluorescence-enhanced, frequency domain radiative transport equation (RTE) solver with unique attributes that facilitate its deployment within tomographic algorithms. Specifically, the coupled equations describing time-dependent excitation and emission light transport are solved using discrete ordinates (SN) angular differencing along with linear discontinuous finite-element spatial differencing on unstructured tetrahedral grids. Source iteration in conjunction with diffusion synthetic acceleration is used to iteratively solve the resulting system of equations. This RTE solver can accurately and efficiently predict ballistic as well as diffusion limited transport regimes which could simultaneously exist in small animals. Furthermore, the solver provides accurate solutions on unstructured, tetrahedral grids with relatively large element sizes as compared to commonly employed solvers that use step differencing. The predictions of the solver are validated by a series of frequency-domain, phantom measurements with optical properties ranging from diffusion limited to transport limited propagation. Our results demonstrate that the RTE solution consistently matches measurements made under both diffusion and transport-limited conditions. This work demonstrates the use of an appropriate RTE solver for deployment in small animal optical tomography.