WorldWideScience

Sample records for accurate frequency dependent

  1. Accurate determination of frequency dependent three element equivalent circuit for symmetric step microstrip discontinuity

    Science.gov (United States)

    Webster, M. J.; Easter, B.; Hornsby, J. S.

    1990-02-01

    A three element frequency dependent equivalent circuit which characterizes a symmetric step microstrip discontinuity is determined using the method of lines. This method was applied so as to exploit to the full the processing capabilities of the available Cyber 205 computer, and to obtain results with the highest possible accuracy at frequencies in the range 4-16 GHz. Numerical values of scattering parameters are given for three geometries.

  2. [Frequency dependance of compliance].

    Science.gov (United States)

    Gayrard, P

    1975-01-01

    Resistance of peripheral or "small" airways is only a small part of the total pulmonary resistance (Raw). Even considerable obstruction in these airways will have little effect on total resistance. Conversely this will lead to inequality in the time constants of units in parallel, and dynamic lung compliance (C dyn) shall fall as respiratory frequence increases. C dyn is measured from simultaneous recordings of transpulmonary pressure (esophageal balloon) and volume obtained from a volume displacement plethysmograph. If Raw and static compliance are found to be normal, the frequency dependance of compliance will result from peripheral airway obstruction only. Early stages of chronic airway obstruction can be established by this method. However this appear not suitable for wide-scale studies.

  3. Frequency Dependent Attenuation Revisited

    CERN Document Server

    Richard, Kowar; Xavier, Bonnefond

    2009-01-01

    The work is inspired by thermo-and photoacoustic imaging, where recent efforts are devoted to take into account attenuation and varying wave speed parameters. In this paper we study causal equations describing propagation of attenuated pressure waves. We review standard models like frequency power laws and and the thermo-viscous equation. The lack of causality of standard models in the parameter range relevant for photoacoustic imaging requires to derive novel equations. The main ingredients for deriving causal equations are the Kramers-Kronig relation and the mathematical concept of linear system theory. The theoretical results of this work are underpined by numerical experiments.

  4. An Analytic Method for Measuring Accurate Fundamental Frequency Components

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soon Ryul; Park Jong Keun [Seoul National University, Seoul(Korea); Kang, Sang Hee [Myongji University, Seoul (Korea)

    2002-04-01

    This paper proposes an analytic method for measuring the accurate fundamental frequency component of a fault current signal distorted with a DC-offset, a characteristic frequency component, and harmonics. The proposed algorithm is composed of four stages: sine filer, linear filter, Prony's method, and measurement. The sine filter and the linear filter eliminate harmonics and the fundamental frequency component, respectively. Then Prony's method is used to estimate the parameters of the DC-offset and the characteristic frequency component. Finally, the fundamental frequency component is measured by compensating the sine-filtered signal with the estimated parameters. The performance evaluation of the proposed method is presented for a-phase to ground faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault current signals under different fault locations and fault inception angles. It is shown that the analytic method accurately measures the fundamental frequency component regardless of the characteristic frequency component as well as the DC-offset.(author). 19 refs., 4 figs., 4 tabs.

  5. Analysis of frequency dependent pump light absorption

    Science.gov (United States)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  6. Fast Frequency Offset Acquisition and Accurate Tracking in OFDM Systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-shan; ZHAO Ming; LIU Yuan-an

    2004-01-01

    A new carrier frequency offset estimation scheme for Orthogonal Frequency-Division Multiplexing (OFDM) systems is proposed. The carrier frequency offset estimation includes acquisition and tracking. The acquisition range of the proposed algorithm is as large as one half of the overall signal bandwidth. Comparison of the proposed scheme with Schmidl's algorithm by computer simulation illustrates the superior performance of the proposed scheme with regard to estimation accuracy in both AWGN channel and multipath channels.

  7. Accurate frequency referencing for fieldable dual-comb spectroscopy

    CERN Document Server

    Truong, Gar-Wing; Cossel, Kevin C; Baumann, Esther; Klose, Andrew; Giorgetta, Fabrizio R; Swann, William C; Newbury, Nathan R; Coddington, Ian

    2016-01-01

    A fieldable dual-comb spectrometer is described based on a "bootstrapped" frequency referencing scheme in which short-term optical phase coherence between combs is attained by referencing each to a free-running diode laser, whilst high frequency resolution and long-term accuracy is derived from a stable quartz oscillator. This fieldable dual-comb spectrometer was used to measure spectra with full comb-tooth resolution spanning from 140 THz (2.14 um, 4670 cm^-1) to 184 THz (1.63 um, 6140 cm^-1) in the near infrared with a frequency sampling of 200 MHz (0.0067 cm^-1), ~ 120 kHz frequency resolution, and ~ 1 MHz frequency accuracy. High resolution spectra of water and carbon dioxide transitions at 1.77 um, 1.96 um and 2.06 um show that the molecular transmission acquired with this fieldable system did not deviate from those measured with a laboratory-based system (referenced to a maser and cavity-stabilized laser) to within 5.6x10^-4. Additionally, the fieldable system optimized for carbon dioxide quantification...

  8. Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Olesen, Anders Sig; Rottwitt, Karsten

    2011-01-01

    A lightwave synthesized frequency sweeper using a Raman amplifier for loss compensation is presented together with a numerical model capable of predicting the shape of individual pulses as well as the overall envelope of more than 100 pulses. The generated pulse envelope consists of 116 pulses...

  9. The KFM, A Homemade Yet Accurate and Dependable Fallout Meter

    Energy Technology Data Exchange (ETDEWEB)

    Kearny, C.H.

    2001-11-20

    The KFM is a homemade fallout meter that can be made using only materials, tools, and skills found in millions of American homes. It is an accurate and dependable electroscope-capacitor. The KFM, in conjunction with its attached table and a watch, is designed for use as a rate meter. Its attached table relates observed differences in the separations of its two leaves (before and after exposures at the listed time intervals) to the dose rates during exposures of these time intervals. In this manner dose rates from 30 mR/hr up to 43 R/hr can be determined with an accuracy of {+-}25%. A KFM can be charged with any one of the three expedient electrostatic charging devices described. Due to the use of anhydrite (made by heating gypsum from wallboard) inside a KFM and the expedient ''dry-bucket'' in which it can be charged when the air is very humid, this instrument always can be charged and used to obtain accurate measurements of gamma radiation no matter how high the relative humidity. The heart of this report is the step-by-step illustrated instructions for making and using a KFM. These instructions have been improved after each successive field test. The majority of the untrained test families, adequately motivated by cash bonuses offered for success and guided only by these written instructions, have succeeded in making and using a KFM. NOTE: ''The KFM, A Homemade Yet Accurate and Dependable Fallout Meter'', was published by Oak Ridge National Laboratory report in1979. Some of the materials originally suggested for suspending the leaves of the Kearny Fallout Meter (KFM) are no longer available. Because of changes in the manufacturing process, other materials (e.g., sewing thread, unwaxed dental floss) may not have the insulating capability to work properly. Oak Ridge National Laboratory has not tested any of the suggestions provided in the preface of the report, but they have been used by other groups. When using these

  10. Frequency-dependent heat capacity

    DEFF Research Database (Denmark)

    Behrens, Claus Flensted

    and as a thermometer. The aim of the work is to improve and understand this planar heater experiment. I find: • Carbon has advantages as heater material over the traditionally used metal (nickel) heaters. • The thermal coupling to the surrounding temperature bath should not be made through the liquid but through......The frequency–dependent heat capacity of super-cooled glycerol near the glass transition is measured using the 3w detection technique. An electrical conducting thin film with a temperature–dependent electrical resistance is deposited on a substrate. The thin film is used simultaneously as a heater...... the substrate. • Edge effects, as a result of the finite size of the heater, play an important role. The traditionally way of dealing with these effects are not entirely correct. • The Cole–Davidson function with bCD...

  11. Frequency dependence of the subharmonic Shapiro steps.

    Science.gov (United States)

    Tekić, Jasmina; Ivić, Zoran

    2011-05-01

    Frequency dependence of the subharmonic Shapiro steps has been studied in the ac driven overdamped Frenkel-Kontorova model with deformable substrate potential. As potential gets deformed, in addition to the harmonic steps, subharmonic steps appear in the number and size that increase as the frequency of the external force increases. It was found that size of both harmonic and subharmonic steps strongly depend on the frequency where in the high-amplitude limit oscillatory dependence appears. When expressed as a function of period these oscillations of the step size with frequency have the same form as the oscillations of the step size with amplitude. Deformation of the potential has strong influence on these oscillations, and as in the case of amplitude dependence, with the increase of deformation, the same three distinctive types of behavior have been classified.

  12. Frequency-Dependent Attenuation of Blasting Vibration Waves

    Science.gov (United States)

    Zhou, Junru; Lu, Wenbo; Yan, Peng; Chen, Ming; Wang, Gaohui

    2016-10-01

    The dominant frequency, in addition to the peak particle velocity, is a critical factor for assessing adverse effects of the blasting vibration on surrounding structures; however, it has not been fully considered in blasting design. Therefore, the dominant frequency-dependent attenuation mechanism of blast-induced vibration is investigated in the present research. Starting with blasting vibration induced by a spherical charge propagating in an infinite viscoelastic medium, a modified expression of the vibration amplitude spectrum was derived to reveal the frequency dependency of attenuation. Then, ground vibration induced by more complex and more commonly used cylindrical charge that propagates in a semi-infinite viscoelastic medium was analyzed by numerical simulation. Results demonstrate that the absorptive property of the medium results in the frequency attenuation versus distance, whereas a rapid drop or fluctuation occurs during the attenuation of ground vibration. Fluctuation usually appears at moderate to far field, and the dominant frequency generally decreases to half the original value when rapid drop occurs. The decay rate discrepancy between different frequency components and the multimodal structure of vibration spectrum lead to the unsmooth frequency-dependent attenuation. The above research is verified by two field experiments. Furthermore, according to frequency-based vibration standards, frequency drop and fluctuation should be considered when evaluating blast safety. An optimized piecewise assessment is proposed for more accurate evaluation: With the frequency drop point as the breakpoint, the assessment is divided into two independent sections along the propagating path.

  13. Frequency-dependent streaming potentials: a review

    CERN Document Server

    Jouniaux, Laurence; 10.1155/2012/648781

    2012-01-01

    The interpretation of seismoelectric observations involves the dynamic electrokinetic coupling, which is related to the streaming potential coefficient. We describe the different models of the frequency-dependent streaming potential, mainly the Packard's and the Pride's model. We compare the transition frequency separating low-frequency viscous flow and high-frequency inertial flow, for dynamic permeability and dynamic streaming potential. We show that the transition frequency, on a various collection of samples for which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability. We review the experimental setups built to be able to perform dynamic measurements. And we present some measurements and calculations of the dynamic streaming potential.

  14. Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Gimeno, E; Mendez, D I; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2008-06-15

    A modified generalized, rational harmonic balance method is used to construct approximate frequency-amplitude relations for a conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable. The procedure is used to solve the nonlinear differential equation approximately. The approximate frequency obtained using this procedure is more accurate than those obtained using other approximate methods and the discrepancy between the approximate frequency and the exact one is lower than 0.40%.

  15. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  16. Frequency dependent magnetization of superconductor strip

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Kailash Prasad [Landcare Research, Palmerston North (New Zealand); Raj, Ashish [Computer Science in Radiology, Weill Medical College, Cornell University, NY (United States); Brandt, Ernst Helmut [Max-Planck-Institut fuer Metallforschung, POB 800665, D-70506 Stuttgart (Germany); Sastry, Pamidi V P S S, E-mail: thakurk@landcareresearch.co.nz, E-mail: asr2004@med.cornell.edu, E-mail: ehb@mf.mpg.de, E-mail: pamidi@caps.fsu.edu [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States)

    2011-04-15

    The frequency dependence of magnetic ac loss of thin superconductor strip subjected to an ac magnetic field perpendicular to the surface of the strip is investigated by incorporating a flux creep model into the critical state model of Brandt and Indenbom. It is found that the reduced ac loss exhibits a maximum value at a frequency f{sub m}, which is a rapidly varying function of the applied ac magnetic field. At low magnetic field, f{sub m} becomes zero, and ac loss decreases with frequency as a power law ({approx}f{sup -2/n}). Whereas at high magnetic field f{sub m} becomes infinite and ac loss increases with frequency, still following the power law ({approx}f{sup 1/n}). The analytical results are substantiated with experimental data and the results of a 2D finite element simulation.

  17. Frequency dependent changes in NMDAR-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-09-01

    Full Text Available The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or LTD depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ~5-15Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike-timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process.

  18. Accurate Estimation of Low Fundamental Frequencies from Real-Valued Measurements

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2013-01-01

    In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason for this is that the......In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason...... for this is that they employ asymptotic approximations that are violated when the harmonics are not well-separated in frequency, something that happens when the observed signal is real-valued and the fundamental frequency is low. To mitigate this, we analyze the problem and present some exact fundamental frequency estimators...

  19. Frequency Dependent Negative Resistance-A review

    Directory of Open Access Journals (Sweden)

    D.Susan

    2012-08-01

    Full Text Available Inductors are bulky and costly but reducing the size of the inductors reduces the quality factor. There is also a fundamental limitation of using inductor that it cannot be suitable for the micro miniature structure and integrated circuits applications. Because of these limitations, inductors cannot be used in most of the analog circuit applications. Hence simulated inductors are used as an alternative. In case the simulated inductor becomes floating some linear transformation is used which results in the formation of a new D element called the Frequency Dependent Negative Resistance (FDNR. This paper presents an overview of the basic circuits of simulating the Frequency Dependent Negative Resistance and its various applications in analog circuits in the place of floating inductor.

  20. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    Science.gov (United States)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  1. Frequency dependent thermal expansion in binary viscoelasticcomposites

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  2. A Verilog-A Based Fractional Frequency Synthesizer Model for Fast and Accurate Noise Assessment

    Directory of Open Access Journals (Sweden)

    V. R. Gonzalez-Diaz

    2016-04-01

    Full Text Available This paper presents a new strategy to simulate fractional frequency synthesizer behavioral models with better performance and reduced simulation time. The models are described in Verilog-A with accurate phase noise predictions and they are based on a time jitter to power spectral density transformation of the principal noise sources in a synthesizer. The results of a fractional frequency synthesizer simulation is compared with state of the art Verilog-A descriptions showing a reduction of nearly 20 times. In addition, experimental results of a fractional frequency synthesizer are compared to the simulation results to validate the proposed model.

  3. Further result in the fast and accurate estimation of single frequency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new fast and accurate method for estimating the frequency of a complex sinusoid in complex white Gaussian environments is proposed.The new estimator comprises of applications of low-pass filtering,decimation, and frequency estimation by linear prediction.It is computationally efficient yet obtains the Cramer-Rao bound at moderate signal-to-noise ratios.And it is well suited for real time applications requiring precise frequency estimation.Simulation results are included to demonstrate the performance of the proposed method.

  4. Investigation of low frequency electrolytic solution behavior with an accurate electrical impedance method

    Science.gov (United States)

    Ho, Kung-Chu; Su, Vin-Cent; Huang, Da-Yo; Lee, Ming-Lun; Chou, Nai-Kuan; Kuan, Chieh-Hsiung

    2017-01-01

    This paper reports the investigation of strong electrolytic solutions operated in low frequency regime through an accurate electrical impedance method realized with a specific microfluidic device and high resolution instruments. Experimental results show the better repeatability and accuracy of the proposed impedance method. Moreover, all electrolytic solutions appear the so-called relaxation frequency at each peak value of dielectric loss due to relaxing total polarization inside the device. The relaxation frequency of concentrated electrolytes becomes higher owing to the stronger total polarization behavior coming from the higher conductivity as well as the lower resistance in the electrolytic solutions.

  5. Accurate calculation of the intensity dependence of the refractive index using polarized basis sets

    Science.gov (United States)

    Baranowska-Łączkowska, Angelika; Łączkowski, Krzysztof Z.; Fernández, Berta

    2012-01-01

    Using the single and double excitation coupled cluster level of theory (CCSD) and the density functional theory/Becke 3-parameter Lee-Yang and Parr (DFT/B3LYP) methods, we test the performance of the Pol, ZPol, and LPol-n (n = ds, dl, fs, fl) basis sets in the accurate description of the intensity dependence of the refractive index in the Ne atom, and the N2 and the CO molecules. Additionally, we test the aug-pc-n (n = 1, 2) basis sets of Jensen, and the SVPD, TZVPD, and QZVPD bases by Rappoport and Furche. Tests involve calculations of dynamic polarizabilities and frequency dependent second hyperpolarizabilities. The results are interpreted in terms of the medium constants entering the expressions for optically induced birefringences. In all achiral systems, the performance of the LPol-n sets is very good. Also the aug-pc-2 set yields promising results. Accurate CCSD results available in the literature allow us to select the best basis sets in order to carry out DFT/B3LYP calculations of medium constants in larger molecules. As applications, we show results for (R)-fluoro-oxirane and (R)-methyloxirane.

  6. Rapid and accurate measurement of the frequency-frequency correlation function.

    Science.gov (United States)

    Osborne, Derek G; Kubarych, Kevin J

    2013-07-25

    Using an implementation of heterodyne-detected vibrational echo spectroscopy, we show that equilibrium spectral diffusion caused by solvation dynamics can be measured in a fraction of the time required using traditional two-dimensional infrared spectroscopy. Spectrally resolved, heterodyne-detected rephasing and nonrephasing signals, recorded at a single delay between the first two pulses in a photon echo sequence, can be used to measure the full waiting time dependent spectral dynamics that are typically extracted from a series of 2D-IR spectra. Hence, data acquisition is accelerated by more than 1 order of magnitude, while permitting extremely fine sampling of the spectral dynamics during the waiting time between the second and third pulses. Using cymantrene (cyclopentadienyl manganese tricarbonyl, CpMn(CO)3) in alcohol solutions, we compare this novel approach--denoted rapidly acquired spectral diffusion (RASD)--with a traditional method using full 2D-IR spectra, finding excellent agreement. Though this approach is largely limited to isolated vibrational bands, we also show how to remove interference from cross-peaks that can produce characteristic modulations of the spectral dynamics through vibrational quantum beats.

  7. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    CERN Document Server

    Dong, J W; Gao, C; Wang, L J

    2016-01-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The optimized system achieves a high accuracy of 0.3 ps with a 0.1 ps resolution, and a large dynamic range up to 50 km as well as no dead zone.

  8. Optimized frequency dependent photothermal beam deflection spectroscopy

    Science.gov (United States)

    Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M.

    2016-12-01

    In the letter the optimization of the experimental setup for photothermal beam deflection spectroscopy is performed by analyzing the influence of its geometrical parameters (detector and sample position, probe beam radius and its waist position etc) on the detected signal. Furthermore, the effects of the fluid’s thermo-optical properties, for optimized geometrical configuration, on the measurement sensitivity and uncertainty determination of sample thermal properties is also studied. The examined sample is a recently developed CuFeInTe3 material. It is seen from the obtained results, that it is a complex problem to choose the proper geometrical configuration as well as sensing fluid to enhance the sensitivity of the method. A signal enhancement is observed at low modulation frequencies by placing the sample in acetonitrile (ACN), while at high modulation frequencies the sensitivity is higher for measurements made in air. For both, detection in air and acetonitrile the determination of CuFeInTe3 thermal properties is performed. The determined values of thermal diffusivity and thermal conductivity are (0.048  ±  0.002)  ×  10-4 m2 s-1 and 4.6  ±  0.2 W m-1 K-1 and (0.056  ±  0.005)  ×  10-4 m2 s-1 and 4.8  ±  0.4 W m-1 K-1 for ACN and air, respectively. It is seen, that the determined values agree well within the range of their measurement uncertainties for both cases, although the measurement uncertainty is two times lower for the measurements in ACN providing more accurate results. The analysis is performed by the use of recently developed theoretical description based on the complex geometrical optics. It is also shown, how the presented work fits into the current status of photothermal beam deflection spectroscopy.

  9. Accurate frequency of the 119 micron methanol laser from tunable far-infrared absorption spectroscopy

    Science.gov (United States)

    Inguscio, M.; Zink, L. R.; Evenson, K. M.; Jennings, D. A.

    1990-01-01

    High-accuracy absorption spectroscopy of CH3OH in the far infrared is discussed. In addition to 22 transitions in the ground state, the frequency of the (n, tau, J, K), (0, 1, 16, 8) to (0, 2, 15, 7) transition in the nu5 excited vibrational level, which is responsible for the laser emission at 119 microns, was measured. The measured frequency is 2,522,782.57(10) MHz at zero pressure, with a pressure shift of 6.1(32) kHz/Pa (0.805/420/ MHz/torr). An accurate remeasurement of the laser emission frequency has also been performed, and the results are in good agreement.

  10. Accurate Frequency Estimation Based On Three-Parameter Sine-Fitting With Three FFT Samples

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2015-09-01

    Full Text Available This paper presents a simple DFT-based golden section searching algorithm (DGSSA for the single tone frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT and Discrete Fourier Transform (DFT are inevitable to cause the spectrum leakage and fence effect which lead to a low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-noise ratio (SNR and a low resolution. This method firstly uses three FFT samples to determine the frequency searching scope, then – besides the frequency – the estimated values of amplitude, phase and dc component are obtained by minimizing the least square (LS fitting error of three-parameter sine fitting. By setting reasonable stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB. The simulation results show that the root mean square error (RMSE of the frequency estimation curve is consistent with the tendency of CRLB as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation is less than 1.5 times the CRLB with SNR = 20 dB and N = 512.

  11. Frequency dependent polarization analysis of high-frequency seismograms

    Science.gov (United States)

    Park, Jeffrey; Vernon, Frank L., III; Lindberg, Craig R.

    1987-11-01

    We present a multitaper algorithm to estimate the polarization of particle motion as a function of frequency from three-component seismic data. This algorithm is based on a singular value decomposition of a matrix of eigenspectra at a given frequency. The right complex eigenvector zˆ corresonding to the largest singular value of the matrix has the same direction as the dominant polarization of seismic motion at that frequency. The elements of the polarization vector zˆ specify the relative amplitudes and phases of motion measured along the recorded components within a chosen frequency band. The width of this frequency band is determined by the time-bandwidth product of the prolate spheroidal tapers used in the analysis. We manipulate the components of zˆ to determine the apparent azimuth and angle of incidence of seismic motion as a function of frequency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic Telemetered Array in the frequency band 0 ≤ ƒ ≤ 30 Hz. The polarization is not always a smooth function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes within the crustal waveguide and/or receiver site resonances.

  12. The dependency of timbre on fundamental frequency

    Science.gov (United States)

    Marozeau, Jeremy; de Cheveigné, Alain; McAdams, Stephen; Winsberg, Suzanne

    2003-11-01

    The dependency of the timbre of musical sounds on their fundamental frequency (F0) was examined in three experiments. In experiment I subjects compared the timbres of stimuli produced by a set of 12 musical instruments with equal F0, duration, and loudness. There were three sessions, each at a different F0. In experiment II the same stimuli were rearranged in pairs, each with the same difference in F0, and subjects had to ignore the constant difference in pitch. In experiment III, instruments were paired both with and without an F0 difference within the same session, and subjects had to ignore the variable differences in pitch. Experiment I yielded dissimilarity matrices that were similar at different F0's, suggesting that instruments kept their relative positions within timbre space. Experiment II found that subjects were able to ignore the salient pitch difference while rating timbre dissimilarity. Dissimilarity matrices were symmetrical, suggesting further that the absolute displacement of the set of instruments within timbre space was small. Experiment III extended this result to the case where the pitch difference varied from trial to trial. Multidimensional scaling (MDS) of dissimilarity scores produced solutions (timbre spaces) that varied little across conditions and experiments. MDS solutions were used to test the validity of signal-based predictors of timbre, and in particular their stability as a function of F0. Taken together, the results suggest that timbre differences are perceived independently from differences of pitch, at least for F0 differences smaller than an octave. Timbre differences can be measured between stimuli with different F0's.

  13. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    Science.gov (United States)

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  14. Combined nonmetallic electronegativity equalisation and point-dipole interaction model for the frequency-dependent polarisability

    Science.gov (United States)

    Smalø, Hans S.; Åstrand, Per-Olof; Mayer, Alexandre

    2013-07-01

    A molecular mechanics model for the frequency-dependent polarisability is presented. It is a combination of a recent model for the frequency dependence in a charge-dipole model [Nanotechnology 19, 025203, 2008] and a nonmetallic modification of the electronegativity equalisation model rephrased as atom-atom charge-transfer terms [J. Chem. Phys. 131, 044101, 2009]. An accurate model for the frequency-dependent polarisability requires a more accurate partitioning into charge and dipole contributions than the static polarisability, which has resulted in several modifications of the charge-transfer model. Results are presented for hydrocarbons, including among others, alkanes, polyenes and aromatic systems. Although their responses to an electric field are quite different in terms of the importance of charge-transfer contributions, it is demonstrated that their frequency-dependent polarisabilities can be described with the same model and the same set of atom-type parameters.

  15. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  16. Accurate encoding and decoding by single cells: amplitude versus frequency modulation.

    Directory of Open Access Journals (Sweden)

    Gabriele Micali

    2015-06-01

    Full Text Available Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM, where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM, where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel, which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms.

  17. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    Science.gov (United States)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  18. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    Science.gov (United States)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  19. Frequency-Dependent Streaming Potentials: A Review

    Directory of Open Access Journals (Sweden)

    L. Jouniaux

    2012-01-01

    which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability. We review the experimental setups built to be able to perform dynamic measurements. And we present some measurements and calculations of the dynamic streaming potential.

  20. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    Denmark is taking on the exciting project of undergrounding the electricity transmission grid. In 2009 it was decided by the Danish government to underground large parts of the 400 kV and the entire 132-150 kV transmission network before the end of 2030. For ensuring network stability...... and economical gain, such severe network changes necessitate correct estimation and optimisation of load conditions in the cable grid. Both IEC and IEEE have published standards for rating transmission cables' current carrying capacity. These standards are based on assumptions of a number of parameters...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...

  1. Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation

    Science.gov (United States)

    Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn

    2016-08-01

    Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.

  2. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    Science.gov (United States)

    Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all

  3. Frequency Dependence of Attenuation Constant of Dielectric Materials

    Directory of Open Access Journals (Sweden)

    A. S. Zadgaonkar

    1975-01-01

    Full Text Available Different dielectric materials have been studied for frequency dependence of attenuation constant. The sensitive cathode ray oscillograph method has been used to evaluate to the dielectric constant and loss factor, and from these attenuation constants have been calculated. The temperature remaining constant, a regular increase has been observed in attenuation constant, at higher frequencies of electro-magnetic propagating wave.

  4. Directed sample interrogation utilizing an accurate mass exclusion-based data-dependent acquisition strategy (AMEx).

    Science.gov (United States)

    Rudomin, Emily L; Carr, Steven A; Jaffe, Jacob D

    2009-06-01

    The ability to perform thorough sampling is of critical importance when using mass spectrometry to characterize complex proteomic mixtures. A common approach is to reinterrogate a sample multiple times by LC-MS/MS. However, the conventional data-dependent acquisition methods that are typically used in proteomics studies will often redundantly sample high-intensity precursor ions while failing to sample low-intensity precursors entirely. We describe a method wherein the masses of successfully identified peptides are used to generate an accurate mass exclusion list such that those precursors are not selected for sequencing during subsequent analyses. We performed multiple concatenated analytical runs to sample a complex cell lysate, using either accurate mass exclusion-based data-dependent acquisition (AMEx) or standard data-dependent acquisition, and found that utilization of AMEx on an ESI-Orbitrap instrument significantly increases the total number of validated peptide identifications relative to a standard DDA approach. The additional identified peptides represent precursor ions that exhibit low signal intensity in the sample. Increasing the total number of peptide identifications augmented the number of proteins identified, as well as improved the sequence coverage of those proteins. Together, these data indicate that using AMEx is an effective strategy to improve the characterization of complex proteomic mixtures.

  5. Accurate and Simple Time Synchronization and Frequency Offset Correction in OFDM System

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-ming; JIANG Wei-yu; LIU Yuan-an

    2004-01-01

    We present a new synchronization scheme for Orthogonal Frequency-Division Multiplexing (OFDM) systems. In this scheme, time synchronization and carrier frequency offset correction can be performed in one identical training symbol. Time synchronization algorithm is robust and simple operated, and its performance is independent of the carrier frequency offset. We derive the theoretical variance error for our time synchronization algorithm in AWGN channel. We also derive the performance lower bound of our frequency offset correction algorithm. The frequency offset correction algorithm is high accuracy and its performance will degrade very little under multipath fading environment.

  6. On the Casimir Energy of Frequency Dependent Interactions

    CERN Document Server

    Graham, N; Weigel, H

    2014-01-01

    Vacuum polarization (or Casimir) energies can be straightforwardly computed from scattering data for static field configurations whose interactions with the fluctuating field are frequency independent. In effective theories, however,such interactions are typically frequency dependent. As a consequence, the relationship between scattering data and the Green's function is modified, which may or may not induce additional contributions to the vacuum polarization energy. We discuss several examples that naturally include frequency dependent interactions: (i) scalar electrodynamics with a static background potential, (ii) an effective theory that emerges from integrating out a heavy degree of freedom, and (iii) quantum electrodynamics coupled to a frequency dependent dielectric material. In the latter case, we argue that introducing dissipation as required by the Kramers-Kronig relations requires the consideration of the Casimir energy within a statistical mechanics formalism, while in the absence of dissipation we...

  7. Intermittency and transient chaos from simple frequency-dependent selection.

    Science.gov (United States)

    Gavrilets, S; Hastings, A

    1995-08-22

    Frequency-dependent selection is an important determinant of the evolution of gametophytic self-incompatibility systems in plants, aposematic (warning) and cryptic coloration, systems of mimicry, competitive interactions among members of a population, mating preferences, predator-prey and host-parasite interactions, aggression and other behavioural traits. Past theoretical studies of frequency-dependent selection have shown it to be a plausible mechanism for the maintenance of genetic variability in natural populations. Here, through an analysis of a simple deterministic model for frequency-dependent selection, we demonstrate that complex dynamic behaviour is possible under a broad range of parameter values. In particular we show that the model exhibits not only cycles and chaos but also, for a more restricted set of parameters, transient chaos and intermittency: alterations between an apparently deterministic behaviour and apparently chaotic fluctuations. This behaviour, which has not been stressed within the population genetics literature, provides an explanation for erratic dynamics of gene frequencies.

  8. Accurate high-harmonic spectra from time-dependent two-particle reduced density matrix theory

    CERN Document Server

    Lackner, Fabian; Sato, Takeshi; Ishikawa, Kenichi L; Burgdörfer, Joachim

    2016-01-01

    The accurate description of the non-linear response of many-electron systems to strong-laser fields remains a major challenge. Methods that bypass the unfavorable exponential scaling with particle number are required to address larger systems. In this paper we present a fully three-dimensional implementation of the time-dependent two-particle reduced density matrix (TD-2RDM) method for many-electron atoms. We benchmark this approach by a comparison with multi-configurational time-dependent Hartree-Fock (MCTDHF) results for the harmonic spectra of beryllium and neon. We show that the TD-2RDM is very well-suited to describe the non-linear atomic response and to reveal the influence of electron-correlation effects.

  9. SWIFT-Tyre: an accurate tyre model for ride and handling studies also at higher frequencies and short road wavelengths

    NARCIS (Netherlands)

    Oosten, J.J.M. van; Pacejka, H.B.

    2000-01-01

    As is well known, Magic Formula tyre modelling (MF-Tyre is a part of ADAMS/Tire) allows an accurate and efficient description of tyre-road interaction forces required for any usual vehicle handling simulation. When it comes to modelling of tyre behaviour at higher frequencies and short road obstacle

  10. Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters

    Science.gov (United States)

    Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen

    2016-08-01

    The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.

  11. An accurate analytic representation of the temperature dependence of nonresonant nuclear reaction rate coefficients

    Science.gov (United States)

    Shizgal, Bernie D.

    2016-12-01

    There has been intense interest for several decades by different research groups to accurately model the temperature dependence of a large number of nuclear reaction rate coefficients for both light and heavy nuclides. The rate coefficient, k(T) , is given by the Maxwellian average of the reactive cross section expressed in terms of the astrophysical factor, S(E) , which for nonresonant reactions is generally written as a power series in the relative energy E. A computationally efficient algorithm for the temperature dependence of nuclear reaction rate coefficients is required for fusion reactor research and for models of nucleosynthesis and stellar evolution. In this paper, an accurate analytical expression for the temperature dependence of nuclear reaction rate coefficients is provided in terms of τ = 3(b / 2) 2/3 or equivalently, T - 1/3 , where b = B /√{kB T }, B is the Gamow factor and kB is the Boltzmann constant. The methodology is appropriate for all nonresonant nuclear reactions for which S(E) can be represented as a power series in E. The explicit expression for the rate coefficient versus temperature is derived with the asymptotic expansions of the moments of w(E) = exp(- E /kB T - B /√{ E }) in terms of τ. The zeroth order moment is the familiar Gaussian approximation to the rate coefficient. Results are reported for the representative reactions D(d, p)T, D(d, n)3He and 7Li(p, α) α and compared with several different fitting procedures reported in the literature.

  12. On the temperature dependence of amide I frequencies of peptides in solution.

    Science.gov (United States)

    Amunson, Krista E; Kubelka, Jan

    2007-08-23

    The temperature dependence of the amide I vibrational frequencies of peptides in solution was investigated. In D2O, the amide I' bands of both an alpha-helical oligopeptide, the random-coil poly(L-lysine), and the simplest amide, N-methyl acetamide (NMA), exhibit linear frequency shifts of approximately 0.07 cm(-1)/degrees C with increasing temperature. Similar amide I frequency shifts are also observed for NMA in both polar (acetonitrile and DMSO) and nonpolar (1,4-dioxane) organic solvents, thus ruling out hydrogen-bonding strength as the cause of these effects. The experimental NMA amide I frequencies in the organic solvents can be accurately described by a simple theory based on the Onsager reaction field with temperature-dependent solvent dielectric properties and a solute molecular cavity. DFT-level calculations (BPW91/cc-pVDZ) for NMA with an Onsager reaction field confirm the significant contribution of the molecular cavity to the predicted amide I frequencies. Comparison of the computations to experimental data shows that the frequency-dependent response of the reaction field, taken into account by the index of refraction, is crucial for describing the amide I frequencies in polar solvents. The poor predictions of the model for the NMA amide I band in D2O might be due, in part, to the unknown temperature dependence of the refractive index of D2O in the mid-IR range, which was approximated by the available values in the visible region.

  13. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  14. The frequency dependence of scattering imprints on pulsar observations

    CERN Document Server

    Geyer, Marisa

    2016-01-01

    Observations of pulsars across the radio spectrum are revealing a dependence of the characteristic scattering time ($\\tau$) on frequency, which is more complex than the simple power law with a theoretically predicted power law index. In this paper we investigate these effects using simulated pulsar data at frequencies below 300 MHz. We investigate different scattering mechanisms, namely isotropic and anisotropic scattering, by thin screens along the line of sight, and the particular frequency dependent impact on pulsar profiles and scattering time scales of each. We also consider how the screen shape, location and offset along the line of sight lead to specific observable effects. We evaluate how well forward fitting techniques perform in determining $\\tau$. We investigate the systematic errors in $\\tau$ associated with the use of an incorrect fitting method and with the determination of an off-pulse baseline. Our simulations provide examples of average pulse profiles at various frequencies. Using these we co...

  15. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    Science.gov (United States)

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.

  16. Frequency-dependent signal transmission and modulation by neuromodulators

    Directory of Open Access Journals (Sweden)

    Hiroshi T Ito

    2008-12-01

    Full Text Available The brain uses a strategy of labor division, which may allow it to accomplish more elaborate and complicated tasks, but in turn, imposes a requirement for central control to integrate information among different brain areas. Anatomically, the divergence of long-range neuromodulator projections appears well-suited to coordinate communication between brain areas. Oscillatory brain activity is a prominent feature of neural transmission. Thus, the ability of neuromodulators to modulate signal transmission in a frequency-dependent manner adds an additional level of regulation. Here, we review the significance of frequency-dependent signal modulation in brain function and how a neuronal network can possess such properties. We also describe how a neuromodulator, dopamine, changes frequency-dependent signal transmission, controlling information flow from the entorhinal cortex to the hippocampus.

  17. Fluctuation-dissipation theorem for frequency-dependent specific heat

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Nielsen, Johannes K.

    1996-01-01

    A derivation of the fluctuation-dissipation (FD) theorem for the frequency-dependent specific heat of a system described by a master equation is presented. The FD theorem is illustrated by a number of simple examples, including a system described by a linear Langevin equation, a two-level system......, and a system described by the energy master equation. It is shown that for two quite different models with low-energy cutoffs—a collection of two-level systems and a system described by the energy master equation—the frequency-dependent specific heat in dimensionless units becomes universal at low temperatures......, i.e., independent of both energy distribution and temperature. These two models give almost the same universal frequency-dependent specific heat, which compares favorably to experiments on supercooled alcohols....

  18. Comment on “Frequency-dependent dispersion in porous media”

    KAUST Repository

    Davit, Yohan

    2012-07-10

    In a recent paper, Valdès-Parada and Alvarez-Ramirez used the technique of volume averaging to derive a "frequency-dependent" dispersion tensor, Dγ*, the goal of which is to describe solute transport in porous media undergoing periodic processes. We describe two issues related to this dispersion tensor. First, we demonstrate that the definition of Dγ* is erroneous and derive a corrected version, Dγ*c. With this modification, the approach of Valdès-Parada and Alvarez-Ramirez becomes strictly equivalent to the one devised by Moyne. Second, we show that the term "frequency-dependent dispersion" is misleading because Dγ* and Dγ*c do not depend on the process operating frequency, χ. The study carried out by Valdès-Parada and Alvarez-Ramirez represents a spectral analysis of the relaxation of Dγ* towards its steady-state, independent of any periodic operation or excitation. © 2012 American Physical Society.

  19. Frequency Dependence of Longitudinal Correlation Length in the Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    LI Feng-Hua; ZHANG Ren-He

    2008-01-01

    Spatial correlation coefficient is one of the most important parameters for the description of sound propagation in shallow water. Frequency dependence of the longitudinal correlation length is still an open topic. We observe in a shallow water experiment that the longitudinal correlation length in units of wavelength increases with the increase of frequency. This phenomenon has not been seen in the published papers. The theoretical analysis and numerical simulations indicate that the non-linear frequency relationship of the bottom attenuation is the main cause of this phenomenon.

  20. Dynamical gap generation in graphene with frequency dependent renormalization effects

    CERN Document Server

    Carrington, M E; von Smekal, L; Thoma, M H

    2016-01-01

    We study the frequency dependencies in the renormalization of the fermion Greens function for the $\\pi$-band electrons in graphene and their influence on the dynamical gap generation at sufficiently strong interaction. Adopting the effective QED-like description for the low-energy excitations within the Dirac-cone region we self consistently solve the fermion Dyson-Schwinger equation in various approximations for the photon propagator and the vertex function with special emphasis on frequency dependent Lindhard screening and retardation effects.

  1. Accurate Non-adiabatic Quantum Dynamics from Pseudospectral Sampling of Time-dependent Gaussian Basis Sets

    CERN Document Server

    Heaps, Charles W

    2016-01-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schr\\"{o}dinger equation with $N$ Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from $\\mathcal{O}(N^2)$ to $\\mathcal{O}(N)$. By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems; the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-d...

  2. Accurate calibration of the velocity-dependent one-scale model for domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-08

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.

  3. Accurate calculation methods for natural frequencies of plates with special attention to the higher modes

    NARCIS (Netherlands)

    Oosterhout, G.M.; Hoogt, van der P.J.M.; Spiering, R.M.E.J.

    1995-01-01

    Various computational methods have been studied with respect to their suitability for obtaining very accurate solutions of plate vibration problems, especially for the higher modes. Because of the interest in the higher modes, also higher order effects such as transverse shear deformation and rotati

  4. Frequency-Dependent Spherical-Wave Reflection in Acoustic Media: Analysis and Inversion

    Science.gov (United States)

    Li, Jingnan; Wang, Shangxu; Wang, Jingbo; Dong, Chunhui; Yuan, Sanyi

    2017-02-01

    Spherical-wave reflectivity (SWR), which describes the seismic wave reflection in real subsurface media more accurately than plane-wave reflectivity (PWR), recently, again attracts geophysicists' attention. The recent studies mainly focus on the amplitude variation with offset/angle (AVO/AVA) attributes of SWR. For a full understanding of the reflection mechanism of spherical wave, this paper systematically investigates the frequency-dependent characteristics of SWR in a two-layer acoustic medium model with a planar interface. Two methods are used to obtain SWR. The first method is through the calculation of classical Sommerfeld integral. The other is by 3D wave equation numerical modeling. To enhance computation efficiency, we propose to perform wave equation simulation in cylindrical coordinates, wherein we for the first time implement unsplit convolutional perfectly matched layer as the absorbing boundary. Both methods yield the same results, which demonstrate the validity and accuracy of the computation. From both the numerical tests and the theoretical demonstration, we find that the necessary condition when frequency dependence of SWR occurs is that the upper and lower media have different velocities. At the precritical small angle, the SWR exhibits complicated frequency-dependent characteristics for varying medium parameters. Especially when the impedance of upper medium equals that of lower one, the PWR is zero according to geometric seismics. Whereas the SWR is nonzero: the magnitude of SWR decreases with growing frequency, and approaches that of the corresponding PWR at high frequency; the phase of SWR increases with growing frequency, but approaches 90° or -90° at high frequency. At near- and post-critical angles, large difference exists between SWR and PWR, and the difference is particularly great at low frequencies. Finally, we propose a nonlinear inversion method to estimate physical parameters and interface depth of media by utilizing the frequency-dependent

  5. Simultaneous and accurate measurement of the dielectric constant at many frequencies spanning a wide range

    CERN Document Server

    Pérez-Aparicio, Roberto; Cottinet, Denis; Tanase, Marius; Metz, Pascal; Bellon, Ludovic; Naert, Antoine; Ciliberto, Sergio

    2015-01-01

    We present an innovative technique which allows the simultaneous measurement of the dielectric constant of a material at many frequencies, spanning a four orders of magnitude range chosen between 10 --2 Hz and 10 4 Hz. The sensitivity and accuracy are comparable to those obtained using standard single frequency techniques. The technique is based on three new and simple features: a) the precise real time correction of the amplication of a current amplier; b) the specic shape of the excitation signal and its frequency spectrum; and c) the precise synchronization between the generation of the excitation signal and the acquisition of the dielectric response signal. This technique is useful in the case of relatively fast dynamical measurements when the knowledge of the time evolution of the dielectric constant is needed.

  6. Frequency dependent Lg attenuation in south-central Alaska

    Science.gov (United States)

    McNamara, D.E.

    2000-01-01

    The characteristics of seismic energy attenuation are determined using high frequency Lg waves from 27 crustal earthquakes, in south-central Alaska. Lg time-domain amplitudes are measured in five pass-bands and inverted to determine a frequency-dependent quality factor, Q(f), model for south-central Alaska. The inversion in this study yields the frequency-dependent quality factor, in the form of a power law: Q(f) = Q0fη = 220(±30) f0.66(±0.09) (0.75≤f≤12Hz). The results from this study are remarkably consistent with frequency dependent quality factor estimates, using local S-wave coda, in south-central Alaska. The consistency between S-coda Q(f) and Lg Q(f) enables constraints to be placed on the mechanism of crustal attenuation in south-central Alaska. For the range of frequencies considered in this study both scattering and intrinsic attenuation mechanisms likely play an equal role.

  7. Task, muscle and frequency dependent vestibular control of posture

    NARCIS (Netherlands)

    Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular informati

  8. Frequency-dependent dynamic effective properties of porous materials

    Institute of Scientific and Technical Information of China (English)

    Peijun Wei; Zhuping Huang

    2005-01-01

    The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.

  9. Accurate assessment of intragenic recombination frequency within the Duchenne muscular dystrophy gene.

    Science.gov (United States)

    Abbs, S; Roberts, R G; Mathew, C G; Bentley, D R; Bobrow, M

    1990-08-01

    Polymorphic loci that lie at the two extremities of the Duchenne/Becker muscular dystrophy (DMD/BMD) gene have been used to estimate intragenic recombination rates. Multipoint linkage analysis of the CEPH panel of families suggests a total intragenic recombination frequency of nearly 0.12 (confidence intervals 0.041-0.226) over the genomic length of approximately 2 Mb.

  10. Fast and accurate haplotype frequency estimation for large haplotype vectors from pooled DNA data

    Directory of Open Access Journals (Sweden)

    Iliadis Alexandros

    2012-10-01

    Full Text Available Abstract Background Typically, the first phase of a genome wide association study (GWAS includes genotyping across hundreds of individuals and validation of the most significant SNPs. Allelotyping of pooled genomic DNA is a common approach to reduce the overall cost of the study. Knowledge of haplotype structure can provide additional information to single locus analyses. Several methods have been proposed for estimating haplotype frequencies in a population from pooled DNA data. Results We introduce a technique for haplotype frequency estimation in a population from pooled DNA samples focusing on datasets containing a small number of individuals per pool (2 or 3 individuals and a large number of markers. We compare our method with the publicly available state-of-the-art algorithms HIPPO and HAPLOPOOL on datasets of varying number of pools and marker sizes. We demonstrate that our algorithm provides improvements in terms of accuracy and computational time over competing methods for large number of markers while demonstrating comparable performance for smaller marker sizes. Our method is implemented in the "Tree-Based Deterministic Sampling Pool" (TDSPool package which is available for download at http://www.ee.columbia.edu/~anastas/tdspool. Conclusions Using a tree-based determinstic sampling technique we present an algorithm for haplotype frequency estimation from pooled data. Our method demonstrates superior performance in datasets with large number of markers and could be the method of choice for haplotype frequency estimation in such datasets.

  11. FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Shannon, R. M. [CSIRO Astronomy and Space Science, Box 76, Epping, NSW 1710 (Australia); Stinebring, D. R., E-mail: cordes@astro.cornell.edu, E-mail: ryan.shannon@csiro.au, E-mail: dan.stinebring@oberlin.edu [Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 (United States)

    2016-01-20

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency{sup 2}). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ∼ 4 × 10{sup −5} pc cm{sup −3} for pulsars at ∼1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm{sup −3} but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  12. Improving Planck calibration by including frequency-dependent relativistic corrections

    CERN Document Server

    Quartin, Miguel

    2015-01-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10^(-3), due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  13. Improving Planck calibration by including frequency-dependent relativistic corrections

    Science.gov (United States)

    Quartin, Miguel; Notari, Alessio

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  14. On Polarization and Frequency Dependence of Diffuse Indoor Propagation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2011-01-01

    The room electromagnetics (RE) theory describes the radio propagation in a single room assuming diffuse scat- tering. A main characteristic is the exponential power-delay profile (PDP) decaying with the so-called reverberation time (RT) parameter, depending only on the wall area, the volume...... of the room and an absorption coefficient. The PDP is independent on the location in the room, except for the arrival time. Based on measurements in a room with a spherical array of 16 dual- polarized wideband horn antennas, the current work studies how the RE parameters depend on the receiver (Rx) antenna...... polarization and orientation. Also the frequency dependence is investigated, with measurements done at both 2.3 GHz and 5.8 GHz center frequencies. The RE theory was found to fit well to the measurements with a RT in the range 22-25 ns. Only small differences were found due to the polarization and the channel...

  15. Frequency- dependent cell responses to an electromagnetic stimulus

    Science.gov (United States)

    Taghian, Toloo; Sheikh, Abdul; Narmoneva, Daria; Kogan, Andrei

    2013-03-01

    External electric field (EF) acting on cells in the ionic environment can trigger a variety of mechanical and chemical cell responses that regulate cell functions, such as adhesion, migration and cell signaling; thus manipulation of EF can be used in therapeutic applications. To optimize this process, realistic studies of EF interaction with cells are essential. We have developed a combined theoretical-experimental approach to study cell response to the external EF in the native configuration. The cell is modeled as a membrane-enclosed hemisphere which is cultured on a substrate and is surrounded by electrolyte. Maxwell's equations are solved numerically (ANSYS-HFSS) to obtain 3D EF distribution inside and near the cell subjected to an external EF. Theoretical results indicate that the cell response is frequency dependent, where at low frequency EF is excluded from the cell interior while EF penetration into the cell increases for higher frequencies. In both regimes the spatial distribution and strength of induced EF in membrane varies with frequency. Experimental results are consistent with theoretical predictions and show frequency-dependent cell response, including both membrane-initiated and intracellular pathway activation and growth factor release. The authors acknowledge the financial support from the NSF (DMR-1206784 & DMR-0804199 to AK); the NIH (1R21 DK078814-01A1 to DN) and the University of Cincinnati (Interdisciplinary Faculty Research Support Grant to DN and AK).

  16. Differential Frequency-dependent Delay from the Pulsar Magnetosphere

    CERN Document Server

    Hassall, T E; Weltevrede, P; Hessels, J W T; Alexov, A; Coenen, T; Karastergiou, A; Kramer, M; Keane, E F; Kondratiev, V I; van Leeuwen, J; Noutsos, A; Pilia, M; Serylak, M; Sobey, C; Zagkouris, K; Fender, R; Bell, M E; Broderick, J; Eisloffel, J; Falcke, H; Griessmeier, J -M; Kuniyoshi, M; Miller-Jones, J C A; Wise, M W; Wucknitz, O; Zarka, P; Asgekar, A; Batejat, F; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Bruggen, M; Butcher, H R; Ciardi, B; de Gasperin, F; de Reijer, J -P; Duscha, S; Fallows, R A; Ferrari, C; Frieswijk, W; Garrett, M A; Gunst, A W; Heald, G; Hoeft, M; Juette, E; Maat, P; McKean, J P; Norden, M J; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Rottgering, H; Sluman, J; Tang, Y; Tasse, C; Vermeulen, R; van Weeren, R J; Wijnholds, S J; Yatawatta, S

    2013-01-01

    Some radio pulsars show clear drifting subpulses, in which subpulses are seen to drift in pulse longitude in a systematic pattern. Here we examine how the drifting subpulses of PSR B0809+74 evolve with time and observing frequency. We show that the subpulse period (P3) is constant on timescales of days, months and years, and between 14-5100 MHz. Despite this, the shapes of the driftbands change radically with frequency. Previous studies have concluded that, while the subpulses appear to move through the pulse window approximately linearly at low frequencies ( 820 MHz) near to the peak of the average pulse profile. We use LOFAR, GMRT, GBT, WSRT and Effelsberg 100-m data to explore the frequency-dependence of this phase step. We show that the size of the subpulse phase step increases gradually, and is observable even at low frequencies. We attribute the subpulse phase step to the presence of two separate driftbands, whose relative arrival times vary with frequency - one driftband arriving 30 pulses earlier at 2...

  17. Highly Accurate Frequency Calculations of Crab Cavities Using the VORPAL Computational Framework

    Energy Technology Data Exchange (ETDEWEB)

    Austin, T.M.; /Tech-X, Boulder; Cary, J.R.; /Tech-X, Boulder /Colorado U.; Bellantoni, L.; /Argonne

    2009-05-01

    We have applied the Werner-Cary method [J. Comp. Phys. 227, 5200-5214 (2008)] for extracting modes and mode frequencies from time-domain simulations of crab cavities, as are needed for the ILC and the beam delivery system of the LHC. This method for frequency extraction relies on a small number of simulations, and post-processing using the SVD algorithm with Tikhonov regularization. The time-domain simulations were carried out using the VORPAL computational framework, which is based on the eminently scalable finite-difference time-domain algorithm. A validation study was performed on an aluminum model of the 3.9 GHz RF separators built originally at Fermi National Accelerator Laboratory in the US. Comparisons with measurements of the A15 cavity show that this method can provide accuracy to within 0.01% of experimental results after accounting for manufacturing imperfections. To capture the near degeneracies two simulations, requiring in total a few hours on 600 processors were employed. This method has applications across many areas including obtaining MHD spectra from time-domain simulations.

  18. Frequency dependent topological patterns of resting-state brain networks.

    Directory of Open Access Journals (Sweden)

    Long Qian

    Full Text Available The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD, CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks.

  19. Doping dependent frequency response of MQW infrared photodetector

    Science.gov (United States)

    Billaha, Md. Aref; Das, Mukul K.; Kumar, S.

    2017-04-01

    This work is to study the effect of doping concentration in the active layer on the performance of multiple quantum well (MQW) infrared photodetector based on inter sub-band transitions. A theoretical model for the photocurrent and hence, responsivity of the detector in frequency domain is developed considering the effect of doping dependent absorption and carrier capture at the hetero-interfaces. Transit time and capture time limited bandwidth of the detector is computed from the frequency dependent photocurrent. Results show that, besides the usual effect of capture time, doping concentration in the active layer has an important effect on the bandwidth and responsivity of the device particularly for high value of capture time.

  20. A new algorithm for frequency-dependent shear-wave splitting parameters extraction

    Science.gov (United States)

    Zhang, Jian-li; Wang, Yun; Lu, Jun

    2013-10-01

    In the exploration of a fractured reservoir, it is very important for reservoir engineers to get information about fracture sizes, because macro-scale fractures are more significant to the control of reservoir storability and fluid flow even though both micro-scale cracks and macro-scale fractures contribute to the dominant anisotropy. Recently, a poroelastic equivalent medium model was proposed by Chapman, which describes the frequency-dependent anisotropy effect with the fracture size being one of the key parameters. Based on this model, geophysicists have done work to measure fracture sizes from seismic data. However, it is necessary to extract frequency-dependent anisotropy before inverting for fracture size. In this paper, a new algorithm is developed for extracting frequency-dependent anisotropic parameters from surface multi-component seismic data, especially from a common-receiver-gather. Compared with the conventional method of extracting the splitting parameters only for different frequency bands, it is possible to extract splitting parameters for each frequency with the new algorithm. To check the reliability of the algorithm, a common-receiver-all-azimuth-gather is synthesized by the vector convolution method, involving the splitting parameters dependent on frequency. Test results show that the frequency-dependent splitting parameters will be extracted accurately with a general level of noise (the signal to noise ratio, SNR for shot, equals 3). More importantly, under the joint constraints of multi-azimuth data, a satisfactory result will be obtained even if the noise is significant (SNR equals 1). The good performance of the algorithm in a model test indicates its potential for field applications.

  1. Frequency-Dependent Dispersion Measures and Implications for Pulsar Timing

    CERN Document Server

    Cordes, J M; Stinebring, D R

    2016-01-01

    We analyze the frequency dependence of the dispersion measure (DM), the column density of free electrons to a pulsar, caused by multipath scattering from small scale electron-density fluctuations. The DM is slightly different along each propagation path and the transverse spread of paths varies greatly with frequency, yielding time-of-arrival (TOA) perturbations that scale differently than the inverse square of the frequency, the expected dependence for a cold, unmagnetized plasma. We quantify DM and TOA perturbations analytically for thin phase screens and extended media and verify the results with simulations of thin screens. The rms difference between DMs across an octave band near 1.5~GHz $\\sim 4\\times10^{-5}\\,{\\rm pc\\ cm^{-3}}$ for pulsars at $\\sim 1$~kpc distance. TOA errors from chromatic DMs are of order a few to hundreds of nanoseconds for pulsars with DM $\\lesssim 30$~pc~cm$^{-3}$ observed across an octave band but increase rapidly to microseconds or larger for larger DMs and wider frequency ranges....

  2. Task, muscle and frequency dependent vestibular control of posture

    OpenAIRE

    Patrick A Forbes; Gunter P Siegmund; Schouten, Alfred C.; Jean-Sébastien eBlouin

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwid...

  3. Frequency-dependent dielectric function of semiconductors with application to physisorption

    Science.gov (United States)

    Zheng, Fan; Tao, Jianmin; Rappe, Andrew M.

    2017-01-01

    The dielectric function is one of the most important quantities that describes the electrical and optical properties of solids. Accurate modeling of the frequency-dependent dielectric function has great significance in the study of the long-range van der Waals (vdW) interaction for solids and adsorption. In this work we calculate the frequency-dependent dielectric functions of semiconductors and insulators using the G W method with and without exciton effects, as well as efficient semilocal density functional theory (DFT), and compare these calculations with a model frequency-dependent dielectric function. We find that for semiconductors with moderate band gaps, the model dielectric functions, G W values, and DFT calculations all agree well with each other. However, for insulators with strong exciton effects, the model dielectric functions have a better agreement with accurate G W values than the DFT calculations, particularly in high-frequency region. To understand this, we repeat the DFT calculations with scissors correction, by shifting the DFT Kohn-Sham energy levels to match the experimental band gap. We find that scissors correction only moderately improves the DFT dielectric function in the low-frequency region. Based on the dielectric functions calculated with different methods, we make a comparative study by applying these dielectric functions to calculate the vdW coefficients (C3 and C5) for adsorption of rare-gas atoms on a variety of surfaces. We find that the vdW coefficients obtained with the nearly free electron gas-based model dielectric function agree quite well with those obtained from the G W dielectric function, in particular for adsorption on semiconductors, leading to an overall error of less than 7% for C3 and 5% for C5. This demonstrates the reliability of the model dielectric function for the study of physisorption.

  4. Size-Dependent Elastic Modulus and Vibration Frequency of Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lihong Liang

    2011-01-01

    Full Text Available The elastic properties and the vibration characterization are important for the stability of materials and devices, especially for nanomaterials with potential and broad application. Nanomaterials show different properties from the corresponding bulk materials; the valid theoretical model about the size effect of the elastic modulus and the vibration frequency is significant to guide the application of nanomaterials. In this paper, a unified analytical model about the size-dependent elastic modulus and vibration frequency of nanocrystalline metals, ceramics and semiconductors is established based on the inherent lattice strain and the binding energy change of nanocrystals compared with the bulk crystals, and the intrinsic correlation between the elasticity and the vibration properties is discussed. The theoretical predictions for Cu, Ag, Si thin films, nanoparticles, and TiO2 nanoparticles agree with the experimental results, the computational simulations, and the other theoretical models.

  5. An efficient realization of frequency dependent boundary conditions in an acoustic finite-difference time-domain model

    DEFF Research Database (Denmark)

    Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.

    2008-01-01

    The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...

  6. Dependence of enhanced asymmetry-induced transport on collision frequency

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D. L. [Occidental College, Physics Department, Los Angeles, California 90041 (United States)

    2014-07-15

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  7. Frequency-dependent Drude damping in Casimir force calculations

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R, E-mail: raul@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico D.F. 01000 (Mexico)

    2009-04-01

    The Casimir force is calculated between Au thin films that are described by a Drude model with a frequency dependent damping function. The model parameters are obtained from available experimental data for Au thin films. Two cases are considered; annealed and nonannealed films that have a different damping function. Compared with the calculations using a Drude model with a constant damping parameter, we observe changes in the Casimir force of a few percent. This behavior is only observed in films of no more than 300 A thick.

  8. Frequency-Dependent Selection at Rough Expanding Fronts

    CERN Document Server

    Kuhr, Jan-Timm

    2015-01-01

    Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, th...

  9. Highly Accurate Quartic Force Fields, Vibrational Frequencies, and Spectroscopic Constants for Cyclic and Linear C3H3(+)

    Science.gov (United States)

    Huang, Xinchuan; Taylor, Peter R.; Lee, Timothy J.

    2011-01-01

    High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C H + molecular cation, referred to as c-C H + and I-C H +. Specifically the 33 3333 singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants using both vibrational 2nd-order perturbation theory and variational methods to solve the nuclear Schroedinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C H +, 33 obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C H + 33 and I-C H + are the most reliable available for the free gas-phase species and it is hoped that 33 these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations.

  10. Chemical dependency in women. Meeting the challenges of accurate diagnosis and effective treatment.

    OpenAIRE

    1988-01-01

    Women dependent on alcohol or prescribed or nonprescribed psychoactive drugs present special diagnostic challenges to physicians. Chemical dependency likewise has adverse effects on women who are nonusers through the disease of co-dependency. The natural history of chemical dependency in women includes sex-specific differences in presenting signs and symptoms. Collateral medical history may come from a variety of community sources. Diagnoses may also use sex-specific criteria, with simultaneo...

  11. RWM Critical Rotation Frequency and Beta Dependence in NSTX

    Science.gov (United States)

    Sontag, Aaron; Sabbagh, S. A.; Menard, J. E.; Battaglia, D. J.

    2005-10-01

    The resistive wall mode (RWM) can be stabilized by maintaining the plasma toroidal rotation frequency (φφ) above a critical rotation frequency (φcrit). Recent experiments on NSTX seek to determine φcrit and rotation profile effects through actively braking plasma rotation by the application of external magnetic fields. Results from these experiments indicate that maintaining φφ at the q = 2 surface above φA/4q^2 is a necessary condition for RWM stability where φA is the local Alfven frequency. This result is in agreement with a theoretical model derived from a drift-kinetic energy principle. Similarity experiments with DIII-D are being performed to examine the aspect ratio dependence of the φcrit scaling. When φφ at the q = 2 surface drops below φcrit, the growth of internal kink/ballooning modes can prevent the RWM from terminating the discharge. A small beta collapse which drops φcrit, accompanies this mode growth allowing a recovery of RWM rotational stabilization while maintaining βN> βN^no-wall.

  12. Frequency-dependent effects of gravitational lensing within plasma

    CERN Document Server

    Rogers, Adam

    2015-01-01

    The interaction between refraction from a distribution of inhomogeneous plasma and gravitational lensing introduces novel effects to the paths of light rays passing by a massive object. The plasma contributes additional terms to the equations of motion, and the resulting ray trajectories are frequency-dependent. Lensing phenomena and circular orbits are investigated for plasma density distributions $N \\propto 1/r^h$ with $h \\geq 0$ in the Schwarzschild space-time. For rays passing by the mass near the plasma frequency refractive effects can dominate, effectively turning the gravitational lens into a mirror. We obtain the turning points, circular orbit radii, and angular momentum for general $h$. Previous results have shown that light rays behave like massive particles with an effective mass given by the plasma frequency for a constant density $h=0$. We study the behaviour for general $h$ and show that when $h=2$ the plasma term acts like an additional contribution to the angular momentum of the passing ray. W...

  13. Time and frequency dependent rheology of reactive silica gels.

    Science.gov (United States)

    Wang, Miao; Winter, H Henning; Auernhammer, Günter K

    2014-01-01

    In a mixture of sodium silicate and low concentrated sulfuric acid, nano-sized silica particles grow and may aggregate to a system spanning gel network. We studied the influence of the finite solubility of silica at high pH on the mechanical properties of the gel with classical and piezo-rheometers. Direct preparation of the gel sample in the rheometer cell avoided any pre-shear of the gel structure during the filling of the rheometer. The storage modulus of the gel grew logarithmically with time with two distinct growth laws. The system passes the gel point very quickly but still shows relaxation at low frequency, typically below 6 rad/s. We attribute this as a sign of structural rearrangements due to the finite solubility of silica at high pH. The reaction equilibrium between bond formation and dissolution maintains a relatively large bond dissolution rate, which leads to a finite life time of the bonds and behavior similar to physical gels. This interpretation is also compatible with the logarithmic time dependence of the storage modulus. The frequency dependence was more pronounced for lower water concentrations, higher temperatures and shorter reaction times. With two relaxation models (the modified Cole-Cole model and the empirical Baumgaertel-Schausberger-Winter model) we deduced characteristic times from the experimental data. Both models approximately described the data and resulted in similar relaxation times.

  14. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches †

    Science.gov (United States)

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-01-01

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating

  15. Frequency-dependent traveltime tomography using fat rays: application to near-surface seismic imaging

    Science.gov (United States)

    Jordi, Claudio; Schmelzbach, Cedric; Greenhalgh, Stewart

    2016-08-01

    Frequency-dependent traveltime tomography does not rely on the high frequency assumption made in classical ray-based tomography. By incorporating the effects of velocity structures in the first Fresnel volume around the central ray, it offers a more realistic and accurate representation of the actual physics of seismic wave propagation and thus, enhanced imaging of near-surface structures is expected. The objective of this work was to apply frequency-dependent first arrival traveltime tomography to surface seismic data that were acquired for exploration scale and near-surface seismic imaging. We adapted a fat ray tomography algorithm from global-earth seismology that calculates the Fresnel volumes based on source and receiver (adjoint source) traveltime fields. The fat ray tomography algorithm was tested on synthetic model data that mimics the dimensions of two field data sets. The field data sets are presented as two case studies where fat ray tomography was applied for near-surface seismic imaging. The data set of the first case study was recorded for high-resolution near-surface imaging of a Quaternary valley (profile length 10 km). All results of fat ray tomography are compared against the results of classical ray-based tomography. We show that fat ray tomography can provide enhanced tomograms and that it is possible to recover more information on the subsurface when compared to ray tomography. However, model assessment based on the column sum of the Jacobian matrix revealed that especially the deep parts of the structure in the fat ray tomograms might not be adequately covered by fat rays. Furthermore, the performance of the fat ray tomography depends on the chosen input frequency in relation to the scale of the seismic survey. Synthetic data testing revealed that the best results were obtained when the frequency was chosen to correspond to an approximate wavelength-to-target depth ratio of 0.1.

  16. Mass transport and direction dependent battery modeling for accurate on-line power capability prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wiegman, H.L.N. [General Electric Corporate Research and Development, Schenectady, NY (United States)

    2000-07-01

    Some recent advances in battery modeling were discussed with reference to on-line impedance estimates and power performance predictions for aqueous solution, porous electrode cell structures. The objective was to determine which methods accurately estimate a battery's internal state and power capability while operating a charge and sustaining a hybrid electric vehicle (HEV) over a wide range of driving conditions. The enhancements to the Randles-Ershler equivalent electrical model of common cells with lead-acid, nickel-cadmium and nickel-metal hydride chemistries were described. This study also investigated which impedances are sensitive to boundary layer charge concentrations and mass transport limitations. Non-linear impedances were shown to significantly affect the battery's ability to process power. The main advantage of on-line estimating a battery's impedance state and power capability is that the battery can be optimally sized for any application. refs., tabs., figs., append.

  17. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    Science.gov (United States)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  18. Directed Sample Interrogation Utilizing an Accurate Mass Exclusion-Based Data-Dependent Acquisition Strategy (AMEx)

    OpenAIRE

    Rudomin, Emily L.; Carr, Steven A.; Jaffe, Jacob D.

    2009-01-01

    The ability to perform thorough sampling is of critical importance when using mass spectrometry to characterize complex proteomic mixtures. A common approach is to re-interrogate a sample multiple times by LC-MS/MS. However, the conventional data-dependent acquisition methods that are typically used in proteomics studies will often redundantly sample high-intensity precursor ions while failing to sample low-intensity precursors entirely. We describe a method wherein the masses of successfully...

  19. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    Science.gov (United States)

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-12-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate.

  20. Accurate computation and interpretation of spin-dependent properties in metalloproteins

    Science.gov (United States)

    Rodriguez, Jorge

    2006-03-01

    Nature uses the properties of open-shell transition metal ions to carry out a variety of functions associated with vital life processes. Mononuclear and binuclear iron centers, in particular, are intriguing structural motifs present in many heme and non-heme proteins. Hemerythrin and methane monooxigenase, for example, are members of the latter class whose diiron active sites display magnetic ordering. We have developed a computational protocol based on spin density functional theory (SDFT) to accurately predict physico-chemical parameters of metal sites in proteins and bioinorganic complexes which traditionally had only been determined from experiment. We have used this new methodology to perform a comprehensive study of the electronic structure and magnetic properties of heme and non-heme iron proteins and related model compounds. We have been able to predict with a high degree of accuracy spectroscopic (Mössbauer, EPR, UV-vis, Raman) and magnetization parameters of iron proteins and, at the same time, gained unprecedented microscopic understanding of their physico-chemical properties. Our results have allowed us to establish important correlations between the electronic structure, geometry, spectroscopic data, and biochemical function of heme and non- heme iron proteins.

  1. Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation

    Science.gov (United States)

    Qiao, Yao-Bin; Qi, Hong; Zhao, Fang-Zhou; Ruan, Li-Ming

    2016-12-01

    Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure. Project supported by the National Natural Science Foundation of China (Grant No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  2. Frequency dependent capacitance studies of the CdS/Cu2S thin-film solar cell

    Science.gov (United States)

    Hmurcik, L. V.; Serway, R. A.

    1982-05-01

    The dark capacitance of CdS cells has been measured as a function of both bias voltage and operating signal frequency. Results indicate a frequency dependence of the dark current capacitance which can be attributed to deep trapping states in the bulk CdS and at the interface; these states can be characterized by a time constant in the simple relaxation model. Photocapacitance measurements indicate that hole trapping takes place in a narrow region of the i layer near the Cu2S/CdS junction. The results are interpreted in terms of a frequency-dependent model proposed by Schibli and Milnes (1968). It is shown that the simple planar junction model commonly used to describe the CdS cell is accurate at high frequencies.

  3. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    Science.gov (United States)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  4. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  5. Accurate statistics for local sequence alignment with position-dependent scoring by rare-event sampling

    Directory of Open Access Journals (Sweden)

    Rahmann Sven

    2011-02-01

    Full Text Available Abstract Background Molecular database search tools need statistical models to assess the significance for the resulting hits. In the classical approach one asks the question how probable a certain score is observed by pure chance. Asymptotic theories for such questions are available for two random i.i.d. sequences. Some effort had been made to include effects of finite sequence lengths and to account for specific compositions of the sequences. In many applications, such as a large-scale database homology search for transmembrane proteins, these models are not the most appropriate ones. Search sensitivity and specificity benefit from position-dependent scoring schemes or use of Hidden Markov Models. Additional, one may wish to go beyond the assumption that the sequences are i.i.d. Despite their practical importance, the statistical properties of these settings have not been well investigated yet. Results In this paper, we discuss an efficient and general method to compute the score distribution to any desired accuracy. The general approach may be applied to different sequence models and and various similarity measures that satisfy a few weak assumptions. We have access to the low-probability region ("tail" of the distribution where scores are larger than expected by pure chance and therefore relevant for practical applications. Our method uses recent ideas from rare-event simulations, combining Markov chain Monte Carlo simulations with importance sampling and generalized ensembles. We present results for the score statistics of fixed and random queries against random sequences. In a second step, we extend the approach to a model of transmembrane proteins, which can hardly be described as i.i.d. sequences. For this case, we compare the statistical properties of a fixed query model as well as a hidden Markov sequence model in connection with a position based scoring scheme against the classical approach. Conclusions The results illustrate that the

  6. Optimally accurate thermal-wave cavity photopyroelectric measurements of pressure-dependent thermophysical properties of air: theory and experiments.

    Science.gov (United States)

    Kwan, Chi-Hang; Matvienko, Anna; Mandelis, Andreas

    2007-10-01

    An experimental technique for the measurement of thermal properties of air at low pressures using a photopyroelectric (PPE) thermal-wave cavity (TWC) was developed. In addition, two theoretical approaches, a conventional one-dimensional thermal-wave model and a three-dimensional theory based on the Hankel integral, were applied to interpret the thermal-wave field in the thermal-wave cavity. The importance of radiation heat transfer mechanisms in a TWC was also investigated. Radiation components were added to the purely conductive model by linearizing the radiation heat transfer component at the cavity boundary. The experimental results indicate that the three-dimensional model is necessary to describe the PPE signal, especially at low frequencies where thermal diffusion length is large and sideways propagation of the thermal-wave field becomes significant. Radiation is found to be the dominant contributor of the PPE signal at high frequencies and large cavity lengths, where heat conduction across the TWC length is relatively weak. The three-dimensional theory and the Downhill Simplex algorithm were used to fit the experimental data and extract the thermal diffusivity of air and the heat transfer coefficient in a wide range of pressures from 760 to 2.6 Torr. It was shown that judicious adjustments of cavity length and computational best fits to frequency-scanned data using three-dimensional photopyroelectric theory lead to optimally accurate value measurements of thermal diffusivity and heat transfer coefficient at various pressures.

  7. Phased-Array Antenna Beam Squinting Related to Frequency Dependency of Delay Circuits

    NARCIS (Netherlands)

    Garakoui, S.K.; Klumperink, E.A.M.; Nauta, B.; Vliet, F.E. van

    2011-01-01

    Practical time delay circuits do not have a perfectly linear phase-frequency characteristic. When these delay circuits are applied in a phased-array system, this frequency dependency shows up as a frequency dependent beam direction (“beam squinting”). This paper quantifies beam squinting for a linea

  8. Phase-dependent audiometry with low-frequency masking revisited.

    Science.gov (United States)

    Rahne, Torsten; Rasinski, Christine; Neumann, Kerstin

    2010-05-15

    Low-frequency masking is a psychoacoustical phenomenon, describing the modulation of a high-frequency probe tone burst by a low-frequency masker tone. The probe tone threshold is increased, if the probe tone is presented at a low-frequency phases around 90 degrees and 270 degrees . At these phases, the low-frequency masker tone induces a displacement of the basilar membrane of the inner ear which modulates the sensitivity of the inner hair cells. Measuring the modulation depth is partially applied in clinical routine to diagnose the endolymphatic hydrops. Although the modulation depth differs between normal ears and those which reveal an endolymphatic hydrops, the significance of these tests seems debatable. Here, we describe a new experimental setup, completely consisting of commercially available devices. Further, a user interface was developed to enable the application in the clinical routine. The experimental setup was approved with ten normal hearing listeners. All reveal a modulation of the probe stimulus threshold by different phases of the low-frequency masker stimulus. With this experimental setup, custom-made modifications of the essential parameters are feasible. This would be a contribution to solve open questions on the clinical relevance of the low-frequency masking phenomenon.

  9. Dependence of synchronization frequency of Kuramoto oscillators on symmetry of intrinsic frequency in ring network

    Indian Academy of Sciences (India)

    Arindam Saha; R E Amritkar

    2014-12-01

    Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronization. In this article, we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that synchronization frequency of oscillators in a completely connected network is always equal to the mean of the natural frequency distribution. In particular, shape of the natural frequency distribution does not affect the synchronization frequency in this case. Then, we analyse the case of oscillators in a directed ring network, where asymmetry in the natural frequency distribution is seen to shift the synchronization frequency of the network. We also present an estimate of the shift in the frequencies for slightly asymmetric distributions.

  10. Modeling frequency dependence of GaAs MESFET characteristics

    Science.gov (United States)

    Conger, Jeff; Peczalski, Andrzej; Shur, Michael S.

    1994-01-01

    We present a new method of modeling the output conductance dispersion of GaAs MESFET's. High frequency model parameters are extracted and then used to model high frequency output conductance over a wide range of bias conditions. The model is then used to simulate and analyze the effect of output conductance dispersion on the performance of DCFL and SCFL logic gates. Whereas the DCFL performance is not significantly affected by the high frequency effects, the noise margin of SCFL decreases by almost a factor of 30% above 100 kHz, with an associated decrease in the voltage swing and gate delay.

  11. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  12. Frequency Dependence of Measured Massive MIMO Channel Properties

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; Carvalho, Elisabeth De; Nielsen, Jesper Ødum;

    2016-01-01

    A multi-user massive MIMO measurement campaign is conducted to study the channel propagation characteristics (e.g. user correlation, sum of eigenvalues and condition number), focusing on the stability over frequencies and the impact of the array aperture. We use 3 arrays with 64 antennas (6m linear...... array, 2m linear array and 25cm by 28cm squared 2D array) serving 8 users holding a handset with 2 antennas. The study of the measurements shows that the propagation characteristics of the channel are stable for all the measured frequencies. We also observe that user proximity and user handgrip...... stabilize the studied properties of the channel across the frequencies, and in such case the larger the aperture of the array the more stable the properties. The number of base station antennas improves the propagation characteristics of the channel and stabilizes the properties in the frequency domain....

  13. Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andrews, John M. [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States)

    2014-07-01

    Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.

  14. Frequency dependent capacitance studies of the CdS/Cu/sub 2/S thin-film solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hmurcik, L.V.; Serway, R.A.

    1982-05-01

    Measurements of the dark capacitance of CdS cells as a function of the frequency of the applied signal voltage have shown that the capacitance varies with frequency according to the relation C-C/sub infinity/ = (C/sub 0/-C/sub infinity/)/(1+..omega../sup 2/tau/sup 2/), where tau is the time constant associated with interfacial and deep bulk states. Photocapacitance studies show that the CdS cell can be treated according to the frequency dependent model of Schibli and Milnes. Under the influence of light, Capprox.1/(..omega..)/sup 1/2/. Further work demonstrates that the simple planar junction model most often used to describe the CdS cell is accurate at high frequencies.

  15. Refined Monte Carlo method for simulating angle-dependent partial frequency redistributions

    Science.gov (United States)

    Lee, J.-S.

    1982-01-01

    A refined algorithm for generating emission frequencies from angle-dependent partial frequency redistribution functions R sub II and R sub III is described. The improved algorithm has as its basis a 'rejection' technique that, for absorption frequencies x less than 5, involves no approximations. The resulting procedure is found to be essential for effective studies of radiative transfer in optically thick or temperature varying media involving angle-dependent partial frequency redistributions.

  16. Nonlinear frequency-dependent synchronization in the developing hippocampus.

    Science.gov (United States)

    Prida, L M; Sanchez-Andres, J V

    1999-07-01

    Synchronous population activity is present both in normal and pathological conditions such as epilepsy. In the immature hippocampus, synchronous bursting is an electrophysiological conspicuous event. These bursts, known as giant depolarizing potentials (GDPs), are generated by the synchronized activation of interneurons and pyramidal cells via GABAA, N-methyl-D-aspartate, and AMPA receptors. Nevertheless the mechanism leading to this synchronization is still controversial. We have investigated the conditions under which synchronization arises in developing hippocampal networks. By means of simultaneous intracellular recordings, we show that GDPs result from local cooperation of active cells within an integration period prior to their onset. During this time interval, an increase in the number of excitatory postsynaptic potentials (EPSPs) takes place building up full synchronization between cells. These EPSPs are correlated with individual action potentials simultaneously occurring in neighboring cells. We have used EPSP frequency as an indicator of the neuronal activity underlying GDP generation. By comparing EPSP frequency with the occurrence of synchronized GDPs between CA3 and the fascia dentata (FD), we found that GDPs are fired in an all-or-none manner, which is characterized by a specific threshold of EPSP frequency from which synchronous GDPs emerge. In FD, the EPSP frequency-threshold for GDP onset is 17 Hz. GDPs are triggered similarly in CA3 by appropriate periodic stimulation of mossy fibers. The frequency threshold for CA3 GDP onset is 12 Hz. These findings clarify the local mechanism of synchronization underlying bursting in the developing hippocampus, indicating that GDPs are fired when background levels of EPSPs or action potentials have built up full synchronization by firing at specific frequencies (>12 Hz). Our results also demonstrate that spontaneous EPSPs and action potentials are important for the initiation of synchronous bursts in the

  17. Neuron firing frequency dependence on the static magnetic field intensity

    Science.gov (United States)

    Azanza, M. J.; del Moral, A.

    1995-02-01

    The effects of static magnetic field (SMF) of B intensity ( B = 0.003-0.72 T) on neurons are studied. The firing frequency f decreases exponentially with B2 and a threshold field B0 (≈ 0.57 T), where f abruptly drops to zero, is observed. A suitable model is developed where SMF's liberate membrane bounded Ca 2+ ions.

  18. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  19. Cue-dependency and Frequency Effects: Evidence from Chinese

    Institute of Scientific and Technical Information of China (English)

    Gao Dingguo; Yang Zhiliang

    2005-01-01

    The present study disclosed that a) prime stimuli had a significant effect on the object in implicit tests, but not in the explicit condition, and b) greater priming occurred when the study and test fonts coincided than whey they differeds, Moreover,the performance in implicit memory tests was more impaired by a shift from official to printed fonts than by a shift in the reverse direction. In addition, the results also revealed that low frequency materials produced more priming than did high frequency materials in implicit memory tests, but less effect of this variable on priming in explicit memory tests could be obtained with the same target characters. The above results implied that a transfer appropriate processing approach suggested by Roediger, Weldon and Challis (1989) is more acceptable to interpret the dissociation between implicit and explicit memory. The authors also critically commented on the implicit memory tests of Chinese widely used by researchers.

  20. Context specificity of conflict frequency-dependent control.

    Science.gov (United States)

    Vietze, Ina; Wendt, Mike

    2009-07-01

    Interference in the Eriksen flanker task has been shown to be reduced when the (relative) frequency of conflicting stimuli is increased, a modulation thought to reflect a higher degree of processing selectivity under conditions of frequent conflict (Botvinick, Braver, Barch, Carter, & Cohen, 2001). Previous studies suggest that stimulus location acts as a contextual cue, resulting in location-specific adjustment of processing selectivity when different locations are associated with differential conflict frequencies (Corballis & Gratton, 2003; Wendt, Kluwe, & Vietze, 2008). In the current study we extend these findings by showing that not only stimulus location but also stimulus colour can be used for context-specific adjustments. These findings suggest that processing selectivity is adjusted in parallel with current stimulus processing, potentially serving to resolve a current conflict rather than to prepare for an upcoming new conflict.

  1. A WAVELET-BASED MODEL FOR FOVEAL DETECTION OF SPATIAL CONTRAST WITH FREQUENCY DEPENDENT APERTURE EFFECT

    Directory of Open Access Journals (Sweden)

    Hamed Hooshangnejad

    2016-06-01

    Full Text Available The main purpose of this study is to build a Computational model based on ModelFest dataset which is able to predict contrast sensitivity while it benefits from simplicity, efficiency and accuracy, which makes it suitable for hardware implementation, practical uses, online tests, real-time processes, an improved Standard Observer and retina prostheses. It encompasses several components, and in particular, frequency dependent aperture effect (FDAE which is used for the first time on this dataset, which made the model more accurate and closer to reality. Shortcomings of previous models and the necessity of existence of FDAE for more accuracy led us to develop a new model based on Wavelet Transform that gives us the advantage of speed and the capability to process each frequency channels output. Considering our goal for building an efficient model, we introduce a new formula for modeling contrast sensitivity function, which generates lower RMS error and better timing performance. Eventually, this new model leads to having as yet lowest RMS error and solving the problem of long execution time of prior models and reduces them by almost a factor of twenty.

  2. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.

    Science.gov (United States)

    Kim, Dong-Hyun; Chauhan, Munish; Kim, Min-Oh; Jeong, Woo Chul; Kim, Hyung Joong; Sersa, Igor; Kwon, Oh In; Woo, Eung Je

    2015-02-01

    Electrical conductivities of biological tissues show frequency-dependent behaviors, and these values at different frequencies may provide clinically useful diagnostic information. MR-based tissue property mapping techniques such as magnetic resonance electrical impedance tomography (MREIT) and magnetic resonance electrical property tomography (MREPT) are widely used and provide unique conductivity contrast information over different frequency ranges. Recently, a new method for data acquisition and reconstruction for low- and high-frequency conductivity images from a single MR scan was proposed. In this study, we applied this simultaneous dual-frequency range conductivity mapping MR method to evaluate its utility in a designed phantom and two in vivo animal disease models. Magnetic flux density and B(1)(+) phase map for dual-frequency conductivity images were acquired using a modified spin-echo pulse sequence. Low-frequency conductivity was reconstructed from MREIT data by the projected current density method, while high-frequency conductivity was reconstructed from MREPT data by B(1)(+) mapping. Two different conductivity phantoms comprising varying ion concentrations separated by insulating films with or without holes were used to study the contrast mechanism of the frequency-dependent conductivities related to ion concentration and mobility. Canine brain abscess and ischemia were used as in vivo models to evaluate the capability of the proposed method to identify new electrical properties-based contrast at two different frequencies. The simultaneous dual-frequency range conductivity mapping MR method provides unique contrast information related to the concentration and mobility of ions inside tissues. This method has potential to monitor dynamic changes of the state of disease.

  3. Photonic band gap enhancement in frequency-dependent dielectrics.

    Science.gov (United States)

    Toader, Ovidiu; John, Sajeev

    2004-10-01

    We illustrate a general technique for evaluating photonic band structures in periodic d -dimensional microstructures in which the dielectric constant epsilon (omega) exhibits rapid variations with frequency omega . This technique involves the evaluation of generalized electromagnetic dispersion surfaces omega ( k--> ,epsilon) in a (d+1) -dimensional space consisting of the physical d -dimensional space of wave vectors k--> and an additional dimension defined by the continuous, independent, variable epsilon . The physical band structure for the photonic crystal is obtained by evaluating the intersection of the generalized dispersion surfaces with the "cutting surface" defined by the function epsilon (omega) . We apply this method to evaluate the band structure of both two- and three-dimensional (3D) periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into semiconductor-based photonic crystals. We apply our method to two models in which epsilon (omega) describes a resonant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscillators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the full 3D photonic band gap (PBG) can be considerably enhanced. In the second model, we consider a coupled resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielectric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are

  4. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F., E-mail: ferenc.simon@univie.ac.at [Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest (Hungary); Murányi, F. [Foundation for Research on Information Technologies in Society (IT’IS), Zeughausstrasse 43, 8004 Zurich (Switzerland)

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  5. Frequency-dependent optical steering from subwavelength plasmonic structures.

    Science.gov (United States)

    Djalalian-Assl, A; Gómez, D E; Roberts, A; Davis, T J

    2012-10-15

    We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.

  6. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    Science.gov (United States)

    Jackson, M B; Konnerth, A; Augustine, G J

    1991-01-15

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.

  7. Frequency analysis of temperature-dependent interferometric signal for the measurement of the temperature coefficient of refractive index

    Science.gov (United States)

    Zhou, Jianqin; Shen, Jun; Neill, W. Stuart

    2016-07-01

    A method of frequency analysis for the measurement of the temperature coefficient of refractive index (dn/dT) using a Fabry-Perot interferometer was developed and tested against ethanol and water. The temperature-dependent interferometric signal described by Airy's formula was analyzed in both the temperature and frequency domains. By fast Fourier transform, a low-pass filter was designed and employed to eliminate the noise superimposed on the signal. dn/dT was determined accurately from the noise-removed signal by peak analysis. Furthermore, the signal frequency parameters may be utilized for the material thermophysical property characterization. This method lays the foundation for an online dn/dT instrument for monitoring chemical processes.

  8. Temperature dependence of the Raman-active phonon frequencies in indium sulfide

    Science.gov (United States)

    Gasanly, N. M.; Özkan, H.; Aydinli, A.; Yilmaz, İ.

    1999-03-01

    The temperature dependence of the Raman-active mode frequencies in indium sulfide was measured in the range from 10 to 300 K. The analysis of the temperature dependence of the A g intralayer optical modes show that Raman frequency shift results from the change of harmonic frequency with volume expansion and anharmonic coupling to phonons of other branches. The pure-temperature contribution (phonon-phonon coupling) is due to three- and four-phonon processes.

  9. Temperature Dependence of Biological Tissues Complex Permitivity at Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Dagmar Faktorova

    2008-01-01

    Full Text Available In the paper an universal overview of polarizing mechanisms with an emphasis on dipolar materials as the investigated tissues are regarded. Experimental apparatus is presented with giving its specificity as well as the method used at calculation of complex permittivity. The experimental part is aimed at temperature dependence of complex permittivity measurement of pig biological tissues with different properties. Experimental results are presented graphically with the commentary for courses of particular tissues.

  10. Temperature Dependence of Biological Tissues Complex Permitivity at Microwave Frequencies

    OpenAIRE

    Dagmar Faktorova

    2008-01-01

    In the paper an universal overview of polarizing mechanisms with an emphasis on dipolar materials as the investigated tissues are regarded. Experimental apparatus is presented with giving its specificity as well as the method used at calculation of complex permittivity. The experimental part is aimed at temperature dependence of complex permittivity measurement of pig biological tissues with different properties. Experimental results are presented graphically with the commentary for courses o...

  11. Low-frequency ac electroporation shows strong frequency dependence and yields comparable transfection results to dc electroporation.

    Science.gov (United States)

    Zhan, Yihong; Cao, Zhenning; Bao, Ning; Li, Jianbo; Wang, Jun; Geng, Tao; Lin, Hao; Lu, Chang

    2012-06-28

    Conventional electroporation has been conducted by employing short direct current (dc) pulses for delivery of macromolecules such as DNA into cells. The use of alternating current (ac) field for electroporation has mostly been explored in the frequency range of 10kHz-1MHz. Based on Schwan equation, it was thought that with low ac frequencies (10Hz-10kHz), the transmembrane potential does not vary with the frequency. In this report, we utilized a flow-through electroporation technique that employed continuous 10Hz-10kHz ac field (based on either sine waves or square waves) for electroporation of cells with defined duration and intensity. Our results reveal that electropermeabilization becomes weaker with increased frequency in this range. In contrast, transfection efficiency with DNA reaches its maximum at medium frequencies (100-1000Hz) in the range. We postulate that the relationship between the transfection efficiency and the ac frequency is determined by combined effects from electrophoretic movement of DNA in the ac field, dependence of the DNA/membrane interaction on the ac frequency, and variation of transfection under different electropermeabilization intensities. The fact that ac electroporation in this frequency range yields high efficiency for transfection (up to ~71% for Chinese hamster ovary cells) and permeabilization suggests its potential for gene delivery.

  12. Frequency-dependent changes in the amplitude of low-frequency fluctuations in Internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Xiao eLin

    2015-09-01

    Full Text Available Neuroimaging studies have revealed that the task-related functional brain activities are impaired in Internet gaming disorder (IGD subjects. However, little is known about the alternations in spontaneous brain activities about them. Recent studies have proposed that the brain activities of different frequency ranges are generated by different nervous activities and have different physiological and psychological functions. Thus, in this study, we set to explore the spontaneous brain activities in IGD subjects by measuring the fractional amplitude of low-frequency fluctuation (fALFF, to investigate band-specific changes of resting-state fALFF. We subdivided the frequency range into five bands based on literatures. Comparing to healthy controls, the IGD group showed decreased fALFF values in the cerebellum posterior lobe and increased fALFF values in superior temporal gyrus. Significant interactions between frequency bands and groups were found in the cerebellum, the anterior cingulate, the lingual gyrus, the middle temporal gyrus and the middle frontal gyrus. Those brain regions are proved related to the executive function and decision-making. These results revealed the changed spontaneous brain activity of IGD, which contributed to understanding the underlying pathophysiology of IGD.

  13. Linear-In-The-Parameters Oblique Least Squares (LOLS) Provides More Accurate Estimates of Density-Dependent Survival

    Science.gov (United States)

    Vieira, Vasco M. N. C. S.; Engelen, Aschwin H.; Huanel, Oscar R.; Guillemin, Marie-Laure

    2016-01-01

    Survival is a fundamental demographic component and the importance of its accurate estimation goes beyond the traditional estimation of life expectancy. The evolutionary stability of isomorphic biphasic life-cycles and the occurrence of its different ploidy phases at uneven abundances are hypothesized to be driven by differences in survival rates between haploids and diploids. We monitored Gracilaria chilensis, a commercially exploited red alga with an isomorphic biphasic life-cycle, having found density-dependent survival with competition and Allee effects. While estimating the linear-in-the-parameters survival function, all model I regression methods (i.e, vertical least squares) provided biased line-fits rendering them inappropriate for studies about ecology, evolution or population management. Hence, we developed an iterative two-step non-linear model II regression (i.e, oblique least squares), which provided improved line-fits and estimates of survival function parameters, while robust to the data aspects that usually turn the regression methods numerically unstable. PMID:27936048

  14. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K.; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  15. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation

    Science.gov (United States)

    Vu, Thanh-Tung; Higuchi, Masato; Aketagawa, Masato

    2016-10-01

    We propose the use of the sinusoidal frequency modulation technique to improve both the frequency stability of an external cavity laser diode (ECLD) and the measurement accuracy and range of a displacement-measuring interferometer. The frequency of the ECLD was modulated at 300 kHz by modulating the injection current, and it was locked to the b21 hyperfine component of the transition 6-3, P(33), 127I2 (633 nm) by the null method. A relative frequency stability of 6.5  ×  10-11 was achieved at 100 s sampling time. The stabilized ECLD was then utilized as a light source for an unbalanced Michelson interferometer. In the interferometer, the displacement and direction of the target mirror can be determined using a Lissajous diagram based on two consecutive and quadrant-phase harmonics of the interference signal. Generally, the measurement range of the interferometer by the proposed method is limited by the modulation index and the signal-to-noise ratio of the harmonics. To overcome this drawback, suitable consecutive harmonic pairs were selected for the specific measurement ranges to measure the displacement. The displacements determined in the specific ranges by the proposed method were compared with those observed by a commercial capacitive sensor. From the comparison, the proposed method has high precision to determine the displacement. The measurement range was also extended up to 10 m by selecting a suitable modulation index and suitable consecutive pairs of harmonics.

  16. Frequency-dependent dielectric response model for polyimide-poly(vinilydenefluoride) multilayered dielectrics

    Science.gov (United States)

    Di Lillo, Luigi; Bergamini, Andrea; Albino Carnelli, Dario; Ermanni, Paolo

    2012-07-01

    A physical model for the frequency-dependent dielectric response of multilayered structures is reported. Two frequency regimes defined by the relative permittivities and volume resistivities of the layers have been analytically identified and experimentally investigated on a structure consisting of polyimide and poly(vinilydenefluoride) layers. The relative permittivity follows an effective medium model at high frequency while showing a dependence on the volume resistivity at low frequency. In this regime, relative permittivities exceeding those expected from effective medium model are recorded. These findings provide insights into inhomogeneous dielectrics behavior for the development of high energy density dielectric films.

  17. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    Science.gov (United States)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  18. Modeling ballistic effects in frequency-dependent transient thermal transport using diffusion equations

    Science.gov (United States)

    Maassen, Jesse; Lundstrom, Mark

    2016-03-01

    Understanding ballistic phonon transport effects in transient thermoreflectance experiments and explaining the observed deviations from classical theory remains a challenge. Diffusion equations are simple and computationally efficient but are widely believed to break down when the characteristic length scale is similar or less than the phonon mean-free-path. Building on our prior work, we demonstrate how well-known diffusion equations, namely, the hyperbolic heat equation and the Cattaneo equation, can be used to model ballistic phonon effects in frequency-dependent periodic steady-state thermal transport. Our analytical solutions are found to compare excellently to rigorous numerical results of the phonon Boltzmann transport equation. The correct physical boundary conditions can be different from those traditionally used and are paramount for accurately capturing ballistic effects. To illustrate the technique, we consider a simple model problem using two different, commonly used heating conditions. We demonstrate how this framework can easily handle detailed material properties, by considering the case of bulk silicon using a full phonon dispersion and mean-free-path distribution. This physically transparent approach provides clear insights into the nonequilibrium physics of quasi-ballistic phonon transport and its impact on thermal transport properties.

  19. Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor

    Science.gov (United States)

    Zhang, Jun-Hua; Li, Jun; Xiao, Wen; Tan, Ming-You; Zhang, Yun-Ying; Cui, Shi-Ling; Qu, Zhi-Peng

    2016-06-01

    The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.

  20. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12.

    Science.gov (United States)

    Martirosyan, Varsik; Baghdasaryan, Naira; Ayrapetyan, Sinerik

    2013-09-01

    In the present work, the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF EMF) on Escherichia coli K-12 growth have been studied. The frequency-dependent effects of ELF EMF have shown that it can either stimulate or inhibit the growth of microbes. However, the mechanism by which the ELF EMF affects the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of ELF EMF on microbes may be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz, B = 0.4 mT, 30 min) of ELF EMF on the bacterial growth were studied in both cases where the microbes were in the culture media during the exposure and where culture media was preliminarily exposed to the ELF EMF before the addition of bacteria. For investigating the cell proliferation, the radioactive [(3)H]-thymidine assay was carried out. It has been shown that EMF at 4 Hz exposure has pronounced stimulation while at 8 Hz it has inhibited cell proliferation.

  1. Computationally efficient bioelectric field modeling and effects of frequency-dependent tissue capacitance

    Science.gov (United States)

    Tracey, Brian; Williams, Michael

    2011-06-01

    Standard bioelectric field models assume that the tissue is purely resistive and frequency independent, and that capacitance, induction, and propagation effects can be neglected. However, real tissue properties are frequency dependent, and tissue capacitance can be important for problems involving short stimulation pulses. A straightforward interpolation scheme is introduced here that can account for frequency-dependent effects, while reducing runtime over a direct computation by several orders of magnitude. The exact Helmholtz solution is compared to several approximate field solutions and is used to study neural stimulation. Results show that frequency-independent tissue capacitance always acts to attenuate the stimulation pulse, thereby increasing firing thresholds, while the dispersion effects introduced by frequency-dependent capacitance may decrease firing thresholds.

  2. Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift.

    Science.gov (United States)

    Stoeckel, Solenn; Klein, Etienne K; Oddou-Muratorio, Sylvie; Musch, Brigitte; Mariette, Stéphanie

    2012-02-01

    Negative frequency dependent selection (NFDS) is supposed to be the main force controlling allele evolution at the gametophytic self-incompatibility locus (S-locus) in strictly outcrossing species. Genetic drift also influences S-allele evolution. In perennial sessile organisms, evolution of allelic frequencies over two generations is mainly shaped by individual fecundities and spatial processes. Using wild cherry populations between two successive generations, we tested whether S-alleles evolved following NFDS qualitative and quantitative predictions. We showed that allelic variation was negatively correlated with parental allelic frequency as expected under NFDS. However, NFDS predictions in finite population failed to predict more than half S-allele quantitative evolution. We developed a spatially explicit mating model that included the S-locus. We studied the effects of self-incompatibility and local drift within populations due to pollen dispersal in spatially distributed individuals, and variation in male fecundity on male mating success and allelic frequency evolution. Male mating success was negatively related to male allelic frequency as expected under NFDS. Spatial genetic structure combined with self-incompatibility resulted in higher effective pollen dispersal. Limited pollen dispersal in structured distributions of individuals and genotypes and unequal pollen production significantly contributed to S-allele frequency evolution by creating local drift effects strong enough to counteract the NFDS effect on some alleles.

  3. Strongly Frequency-dependent Photoinduced Magnetic Disaccommodation in YIG: 0.001 Ca

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By measuring frequency dependence of photoinduced double peaks of disaccommodation, DA as a function of temperature was observed at very Iow frequency: 0.07~0.30 kHz, in a single crystal of yttrium iron garnet, YIG with small amounts of Ca: 0.001, while only single peak existed at the higher frequency 0.5 kHz. The behavior is explained based on theoretical approach on a domain wall dynamics.

  4. Frequency-dependent polarization-angle-phase-shift in the microwave-induced magnetoresistance oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Han-Chun; Ye, Tianyu; Mani, R. G. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich (Switzerland)

    2015-02-14

    Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.

  5. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels

    DEFF Research Database (Denmark)

    Diness, Thomas Goldin; Hansen, Rie Schultz; Olesen, Søren-Peter;

    2006-01-01

    To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3...

  6. The vestibular implant: Frequency-dependency of the electrically evoked Vestibulo-Ocular Reflex in humans

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2015-01-01

    Full Text Available The Vestibulo-Ocular Reflex (VOR shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR elicited by a vestibular implant, showed the same frequency-dependency.Twelve vestibular electrodes implanted in 7 patients with bilateral vestibular hypofunction were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5Hz, 1Hz, and 2Hz. The main characteristics of the eVOR were evaluated and compared to the natural VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies.A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the natural VOR. Other characteristics of the (eVOR (angle, habituation-index, and asymmetry showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the normal vestibular system.

  7. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans.

    Science.gov (United States)

    van de Berg, Raymond; Guinand, Nils; Nguyen, T A Khoa; Ranieri, Maurizio; Cavuscens, Samuel; Guyot, Jean-Philippe; Stokroos, Robert; Kingma, Herman; Perez-Fornos, Angelica

    2014-01-01

    The vestibulo-ocular reflex (VOR) shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR) elicited by a vestibular implant, showed the same frequency-dependency. Twelve vestibular electrodes implanted in seven patients with bilateral vestibular hypofunction (BVH) were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5, 1, and 2 Hz. The main characteristics of the eVOR were evaluated and compared to the "natural" VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies. A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the "natural" VOR. Other characteristics of the (e)VOR (angle, habituation-index, and asymmetry) showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited) frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the "normal" vestibular system.

  8. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.;

    2015-01-01

    Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them w...

  9. A trapped ion with time-dependent frequency interaction with a laser field

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, J M Vargas; Moya-Cessa, H [INAOE, Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2004-06-01

    We analyse the problem of a trapped ion with time-dependent frequency interacting with a laser field. By using a set of unitary time-dependent transformations we show that this system is equivalent to the interaction between a quantized field and a double level with time-dependent interaction parameters. In passing, we show that in the on-resonance case different vibrational transitions may be achieved by using time-dependent parameters.

  10. Frequency dependence of the pump-to-signal RIN transfer in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Pakarzadeh Dezfuli Nezhad, Hassan; Rottwitt, Karsten; Zakery, A.

    2009-01-01

    Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams.......Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams....

  11. Frequency-dependent moment release of very low frequency earthquakes in the Cascadia subduction zone

    Science.gov (United States)

    Takeo, A.; Houston, H.

    2014-12-01

    Episodic tremor and slip (ETS) has been observed in Cascadia subduction zone at two different time scales: tremor at a high-frequency range of 2-8 Hz and slow slip events at a geodetic time-scale of days-months. The intermediate time scale is needed to understand the source spectrum of slow earthquakes. Ghosh et al. (2014, IRIS abs) recently reported the presence of very low frequency earthquakes (VLFEs) in Cascadia. In southwest Japan, VLFEs are usually observed at a period range around 20-50 s, and coincide with tremors (e.g., Ito et al. 2007). In this study, we analyzed VLFEs in and around the Olympic Peninsula to confirm their presence and estimate their moment release. We first detected VLFE events by using broadband seismograms with a band-pass filter of 20-50 s. The preliminary result shows that there are at least 16 VLFE events with moment magnitudes of 3.2-3.7 during the M6.8 2010 ETS. The focal mechanisms are consistent with the thrust earthquakes at the subducting plate interface. To detect signals of VLFEs below noise level, we further stacked long-period waveforms at the peak timings of tremor amplitudes for tremors within a 10-15 km radius by using tremor catalogs in 2006-2010, and estimated the focal mechanisms for each tremor source region as done in southwest Japan (Takeo et al. 2010 GRL). As a result, VLFEs could be detected for almost the entire tremor source region at a period range of 20-50 s with average moment magnitudes in each 5-min tremor window of 2.4-2.8. Although the region is limited, we could also detect VLFEs at a period range of 50-100 s with average moment magnitudes of 3.0-3.2. The moment release at 50-100 s is 4-8 times larger than that at 20-50 s, roughly consistent with an omega-squared spectral model. Further study including tremor, slow slip events and characteristic activities, such as rapid tremor reversal and tremor streaks, will reveal the source spectrum of slow earthquakes in a broader time scale from 0.1 s to days.

  12. P300 ERP Component Depends on Both Spatial Frequency and Contrast

    Directory of Open Access Journals (Sweden)

    Li-Ting Tsai

    2011-05-01

    Full Text Available Contrast perception depends on not only the early visual responses, but also top-down modulations. We measured how does P300, a well-documented event-related potential (ERP index for top-down influence, change with both spatial frequency and contrast. ERP were acquired from 10 participants, aged 18–50 years, when they were performing a visual oddball task. The target was a Gabor patch whose spatial frequency was either 4 or 8 cy/degree and contrasts 90% or 30%. The probability of target presence in a trial was 30%. All target stimuli produced a reliable P300 component. At the low spatial frequency, the amplitude of P300 was larger and the latency was shorter for the low contrast patterns than for the higher contrast ones for all electrodes. Such difference was not observed in high spatial frequency patterns. The latency was slightly longer for high spatial frequency patterns than the low spatial frequency ones. Our results showed an interaction between spatial frequency and contrast in P300. The characteristics of P300 at low spatial frequency correlated with task difficulty, but not at high spatial frequency. This suggests that the top-down influence on contrast perception may be spatial frequency depended.

  13. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses.

    Science.gov (United States)

    Stone, Emily; Haario, Heikki; Lawrence, J Josh

    2014-12-01

    In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation.

  14. Modelling the ancestral sequence distribution and model frequencies in context-dependent models for primate non-coding sequences

    Directory of Open Access Journals (Sweden)

    Baele Guy

    2010-08-01

    Full Text Available Abstract Background Recent approaches for context-dependent evolutionary modelling assume that the evolution of a given site depends upon its ancestor and that ancestor's immediate flanking sites. Because such dependency pattern cannot be imposed on the root sequence, we consider the use of different orders of Markov chains to model dependence at the ancestral root sequence. Root distributions which are coupled to the context-dependent model across the underlying phylogenetic tree are deemed more realistic than decoupled Markov chains models, as the evolutionary process is responsible for shaping the composition of the ancestral root sequence. Results We find strong support, in terms of Bayes Factors, for using a second-order Markov chain at the ancestral root sequence along with a context-dependent model throughout the remainder of the phylogenetic tree in an ancestral repeats dataset, and for using a first-order Markov chain at the ancestral root sequence in a pseudogene dataset. Relaxing the assumption of a single context-independent set of independent model frequencies as presented in previous work, yields a further drastic increase in model fit. We show that the substitution rates associated with the CpG-methylation-deamination process can be modelled through context-dependent model frequencies and that their accuracy depends on the (order of the Markov chain imposed at the ancestral root sequence. In addition, we provide evidence that this approach (which assumes that root distribution and evolutionary model are decoupled outperforms an approach inspired by the work of Arndt et al., where the root distribution is coupled to the evolutionary model. We show that the continuous-time approximation of Hwang and Green has stronger support in terms of Bayes Factors, but the parameter estimates show minimal differences. Conclusions We show that the combination of a dependency scheme at the ancestral root sequence and a context-dependent

  15. Time-domain analysis of frequency dependent inertial wave forces on cylinders

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    -number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave...

  16. Modeling and experimental verification of frequency-, amplitude-, and magneto-dependent viscoelasticity of magnetorheological elastomers

    Science.gov (United States)

    Xin, Fu-Long; Bai, Xian-Xu; Qian, Li-Jun

    2016-10-01

    Magnetorheological elastomers (MREs), a smart composite, exhibit dual characteristics of both MR materials and particle reinforced composites, i.e., the viscoelasticity of MREs depends on external magnetic field as well as strain amplitude and excitation frequency. In this article, the principle of a frequency-, amplitude-, and magneto-dependent linear dynamic viscoelastic model for isotropic MREs is proposed and investigated. The viscoelasticity of MREs is divided into frequency- and amplitude-dependent mechanical viscoelasticity and frequency-, amplitude-, and magneto-dependent magnetic viscoelasticity. Based on the microstructures of ferrous particles and matrix, the relationships between mechanical shear modulus corresponding to the mechanical viscoelasticity and strain amplitude and excitation frequency are obtained. The relationships between magnetic shear modulus corresponding to the magnetic viscoelasticity with strain amplitude, excitation frequency, and further external magnetic field are derived using the magneto-elastic theory. The influence of magnetic saturation on the MR effect is also considered. The dynamic characteristics of a fabricated isotropic MRE sample under different strain amplitudes, excitation frequencies and external magnetic fields are tested. The parameters of the proposed model are identified with the experimental data and the theoretical expressions of shear storage modulus and shear loss modulus of the MRE sample are obtained. In the light of the theoretical expressions, the loss factors of the MRE sample under different loading conditions are analyzed and compared with the test results to evaluate the effectiveness of the proposed model.

  17. Negative frequency-dependent preferences and variation in male facial hair.

    Science.gov (United States)

    Janif, Zinnia J; Brooks, Robert C; Dixson, Barnaby J

    2014-01-01

    Negative frequency-dependent sexual selection maintains striking polymorphisms in secondary sexual traits in several animal species. Here, we test whether frequency of beardedness modulates perceived attractiveness of men's facial hair, a secondary sexual trait subject to considerable cultural variation. We first showed participants a suite of faces, within which we manipulated the frequency of beard thicknesses and then measured preferences for four standard levels of beardedness. Women and men judged heavy stubble and full beards more attractive when presented in treatments where beards were rare than when they were common, with intermediate preferences when intermediate frequencies of beardedness were presented. Likewise, clean-shaven faces were least attractive when clean-shaven faces were most common and more attractive when rare. This pattern in preferences is consistent with negative frequency-dependent selection.

  18. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Alonso, José Luis [Grupo de Espectroscopía Molecular (GEM), Unidad Asociada CSIC, Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Universidad de Valladolid, E-47005 Valladolid (Spain); Gauss, Jürgen, E-mail: cristina.puzzarini@unibo.it [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.

  19. Frequency dependent loss analysis and minimization of system losses in switchmode audio power amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2014-01-01

    In this paper, frequency dependent losses in switch-mode audio power amplifiers are analyzed and a loss model is improved by taking the voltage dependence of the parasitic capacitance of MOSFETs into account. The estimated power losses are compared to the measurement and great accuracy is achieved...

  20. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    Science.gov (United States)

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  1. The Frequency Dependence of the Added Mass of Quartz Tuning Fork Immersed in He II

    Science.gov (United States)

    Gritsenko, I.; Klokol, K.; Sokolov, S.; Sheshin, G.

    2016-11-01

    We measured the dependences of the resonance frequency of tuning forks immersed in liquid helium at T = 0.365 K in the pressure interval from saturated vapor pressure to 24.8 atm. The quartz tuning forks have been studied with different resonance frequencies of 6.65, 8.46, 12.1, 25.0 and 33.6 kHz in vacuum. The measurements were taken in the laminar flow regime. The experimental data allow us to determine the added mass of a quartz tuning fork in He II. It was found that the added mass per unit length of the prong fork is frequency dependent. Some possible qualitative explanations for such dependence are proposed. In addition, we observed, at T = 0.365 K, the changes in added mass with pressure according to the pressure dependence of He II density.

  2. Dependence of the ray transference of model eyes on the frequency of light

    Directory of Open Access Journals (Sweden)

    Tanya Evans

    2016-03-01

    Full Text Available The transference defines the first-order character of an optical system; almost all the system’s optical properties can be calculated from it. It is useful, therefore, to have some idea of how it depends on the frequency of light. We examine the dependence for two Gaussian eyes. It turns out to be nearly linear for all four fundamental properties. The result is an equation for the dependence of the transference on frequency which is almost symplectic. We also transform the transference into Hamiltonian space, obtain equations for the least-squares straight line for the three independent transformed properties and map them back to the group of transferences. The result is an equation for the dependence of the transference on frequency which is exactly symplectic and therefore representative of an optical system. The results may approximate those of real eyes and give estimates of the dependence of almost all optical properties on frequency.Keywords: ray transference; frequency; symplecticity

  3. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Energy Technology Data Exchange (ETDEWEB)

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing 401121 (China); Song, Dan; Lei, Guangrong [National Engineering Research Center of Ultrasound Medicine, Chongqing 401121 (China); Lin, Zhou; Zhang, Dong, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Wu, Junru [Department of Physics, University of Vermont, Burlington, VT 05405 (United States)

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  4. Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone

    Science.gov (United States)

    Rivière, Jacques; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Fortin, Jérôme; Schubnel, Alexandre; Marone, Chris; Johnson, Paul A.

    2016-04-01

    Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static (f→0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2-3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1f appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. These findings can be used to improve theories relating the macroscopic elastic response to microstructural features.

  5. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    OpenAIRE

    Jackson, M B; Konnerth, A.; Augustine, G.J.

    1991-01-01

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were...

  6. Comparison of Bergeron and Frequency-dependent cable models for the simulation of electromagnetic transients

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da

    2016-01-01

    analyses the simulation errors of different Bergeron models to a reference frequency-dependent model for a 150kV cable. The simulations consider flat and trefoil installation, both-ends bonding and cross-bonding, ideal voltage source and modelling of the area around the cable. The Bergeron model...... the modelling of the area around the cable being energised, the Bergeron model has a small error if tuned for the right frequency....

  7. Analytical calculations of frequency-dependent hypermagnetizabilities and Cotton-Mouton constants using London atomic orbitals

    Science.gov (United States)

    Thorvaldsen, Andreas J.; Ruud, Kenneth; Rizzo, Antonio; Coriani, Sonia

    2008-10-01

    We present the first gauge-origin-independent, frequency-dependent calculations of the hypermagnetizability anisotropy, which determines the temperature-independent contribution to magnetic-field-induced linear birefringence, the so-called Cotton-Mouton effect. A density-matrix-based scheme for analytical calculations of frequency-dependent molecular properties for self-consistent field models has recently been developed, which is also valid with frequency- and field-dependent basis sets. Applying this scheme to Hartree-Fock wave functions and using London atomic orbitals in order to obtain gauge-origin-independent results, we have calculated the hypermagnetizability anisotropy. Our results show that the use of London orbitals leads to somewhat better basis-set convergence for the hypermagnetizability compared to conventional basis sets and that London orbitals are mandatory in order to obtain reliable magnetizability anisotropies.

  8. Vortex precession frequency and its amplitude-dependent shift in cylindrical nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Metlov, Konstantin L., E-mail: metlov@fti.dn.ua [Donetsk Institute for Physics and Technology NAS, Donetsk 83114 (Ukraine)

    2013-12-14

    Frequency of free magnetic vortex precession in circular soft ferromagnetic nano-cylinders (magnetic dots) of various sizes is an important parameter, used in design of spintronic devices (such as spin-torque microwave nano-oscillators) and characterization of magnetic nanostructures. Here, using a recently developed collective-variable approach to non-linear dynamics of magnetic textures in planar nano-magnets, this frequency and its amplitude-dependent shift are computed analytically and plotted for the full range of cylinder geometries. The frequency shift is positive in large planar dots, but becomes negative in smaller and more elongated ones. At certain dot dimensions, a zero frequency shift is realized, which can be important for enhancing frequency stability of magnetic nano-oscillators.

  9. Security and Hyper-accurate Positioning Monitoring with Automatic Dependent Surveillance-Broadcast (ADS-B) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightning Ridge Technologies, working in collaboration with The Innovation Laboratory, Inc., extend Automatic Dependent Surveillance Broadcast (ADS-B) into a safe,...

  10. Security and Hyper-accurate Positioning Monitoring with Automatic Dependent Surveillance-Broadcast (ADS-B) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightning Ridge Technologies, LLC, working in collaboration with The Innovation Laboratory, Inc., extend Automatic Dependent Surveillance ? Broadcast (ADS-B) into a...

  11. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    Science.gov (United States)

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.

  12. Frequency-dependent gating of synaptic transmission and plasticity by dopamine

    Directory of Open Access Journals (Sweden)

    Hiroshi T Ito

    2007-11-01

    Full Text Available The neurotransmitter dopamine (DA plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA pathway to filter the excitatory drive onto pyramidal neurons based on the input frequency. During low-frequency patterns of stimulation, DA depressed excitatory TA inputs to both CA1 pyramidal neurons and local inhibitory GABAergic interneurons via presynaptic inhibition. In contrast, during high-frequency patterns of stimulation, DA potently facilitated the TA excitatory drive onto CA1 pyramidal neurons, owing to diminished feedforward inhibition. Analysis of DA's effects over a broad range of stimulus frequencies indicates that it acts as a high-pass filter, augmenting the response to high-frequency inputs while diminishing the impact of low-frequency inputs. These modulatory effects of DA exert a profound influence on activity-dependent forms of synaptic plasticity at both TA-CA1 and Schaffer-collateral (SC-CA1 synapses. Taken together, our data demonstrate that DA acts as a gate on the direct cortical input to the hippocampus, modulating information flow and synaptic plasticity in a frequency-dependent manner.

  13. An angular frequency dependence on the Aharonov–Casher geometric phase

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, P.M.T.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2015-10-15

    A quantum effect characterized by a dependence of the angular frequency associated with the confinement of a neutral particle to a quantum ring on the quantum numbers of the system and the Aharonov–Casher geometric phase is discussed. Then, it is shown that persistent spin currents can arise in a two-dimensional quantum ring in the presence of a Coulomb-type potential. A particular contribution to the persistent spin currents arises from the dependence of the angular frequency on the geometric quantum phase.

  14. Dynamical gap generation in graphene with frequency-dependent renormalization effects

    Science.gov (United States)

    Carrington, M. E.; Fischer, C. S.; von Smekal, L.; Thoma, M. H.

    2016-09-01

    We study the frequency dependencies in the renormalization of the fermion Green's function for the π -band electrons in graphene and their influence on the dynamical gap generation at sufficiently strong interaction. Adopting the effective QED-like description for the low-energy excitations within the Dirac-cone region, we self-consistently solve the fermion Dyson-Schwinger equation in various approximations for the photon propagator and the vertex function with special emphasis on frequency-dependent Lindhard screening and retardation effects.

  15. Frequency-dependent signal processing in apical dendrites of hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Watanabe, H; Tsubokawa, H; Tsukada, M; Aihara, T

    2014-10-10

    Depending on an animal's behavioral state, hippocampal CA1 pyramidal cells receive distinct patterns of excitatory and inhibitory synaptic inputs. The time-dependent changes in the frequencies of these inputs and the nonuniform distribution of voltage-gated channels lead to dynamic fluctuations in membrane conductance. In this study, using a whole-cell patch-clamp method, we attempted to record and analyze the frequency dependencies of membrane responsiveness in Wistar rat hippocampal CA1 pyramidal cells following noise current injection directly into dendrites and somata under pharmacological blockade of all synaptic inputs. To estimate the frequency-dependent properties of membrane potential, membrane impedance was determined from the voltage response divided by the input current in the frequency domain. The cell membrane of most neurons showed low-pass filtering properties in all regions. In particular, the properties were strongly expressed in the somata or proximal dendrites. Moreover, the data revealed nonuniform distribution of dendritic impedance, which was high in the intermediate segment of the apical dendritic shaft (∼220-260μm from the soma). The low-pass filtering properties in the apical dendrites were more enhanced by membrane depolarization than those in the somata. Coherence spectral analysis revealed high coherence between the input signal and the output voltage response in the theta-gamma frequency range, and large lags emerged in the distal dendrites in the gamma frequency range. Our results suggest that apical dendrites of hippocampal CA1 pyramidal cells integrate synaptic inputs according to the frequency components of the input signal along the dendritic segments receiving the inputs.

  16. Dependence structure of the Korean stock market in high frequency data

    Science.gov (United States)

    Kim, Min Jae; Kwak, Young Bin; Kim, Soo Yong

    2011-03-01

    This paper analyzes the evolution of the dependence structure for various time window intervals, known as Epps effect, using the Trade and Quote data of 663 actively traded stocks in Korean stock market. It is found that the random matrix theory analysis could not represent the dependence structure of the stock market in the microstructure regime. The Cook-Johnson copula is introduced as a parsimonious alternative method to handle this problem, and the existence of the Epps effect is confirmed for the 663 stocks using high frequency data. It was also found that large capitalization companies tend to have a stronger dependence structure, except for the largest capitalization group, since the phenomenon of price level resistance leads to the weak dependence structure in the largest capitalization group. In addition, grouping the industry as a sub-portfolio is an appropriate approach for hour interval traders, whereas this approach is not a strategy recommended for high frequency traders.

  17. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    Science.gov (United States)

    Huang, Y. J.; Chu, K. R.; Thumm, M.

    2015-01-01

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at optical frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.

  18. Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Djuraev Ulugbek

    2017-01-01

    Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.

  19. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    Science.gov (United States)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  20. Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence...

  1. Frequency dependent attenuation of seismic waves for Delhi and surrounding area, India

    Directory of Open Access Journals (Sweden)

    Babita Sharma

    2015-06-01

    Full Text Available The attenuation properties of Delhi & surrounding region have been investigated using 62 local earthquakes recorded at nine stations. The frequency dependent quality factors Qa (using P-waves and Qb (using S-waves have been determined using the coda normalization method. Quality factor of coda-waves (Qc has been estimated using the single backscattering model in the frequency range from 1.5 Hz to 9 Hz. Wennerberg formulation has been used to estimate Qi (intrinsic attenuation parameter and Qs (scattering attenuation parameter for the region. The values Qa, Qb, Qc, Qi and Qs estimated are frequency dependent in the range of 1.5Hz-9Hz. Frequency dependent relations are estimated as Qa=52f1.03, Qb=98f1.07 and Qc=158f0.97. Qc estimates lie in between the values of Qi and Qs but closer to Qi at all central frequencies. Comparison between Qi and Qs shows that intrinsic absorption is predominant over scattering for Delhi and surrounding region. 

  2. Low-frequency (0.7-7.4 mHz) geomagnetic field fluctuations at high latitude. Frequency dependence of the polarization pattern

    Energy Technology Data Exchange (ETDEWEB)

    Lepidi, S.; Cafarella, L. [Istituto Nazionale di Geofisica e Vulcanologia, L' Aquila (Italy); Francia, P. [L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica

    2001-06-01

    A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 m Hz) covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0{sup 0}S geomagnetic latitude) throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  3. Dynamic Acousto-Elasticity: Pressure and Frequency Dependences in Berea Sandstone.

    Science.gov (United States)

    Riviere, J. V.; Pimienta, L.; Latour, S.; Fortin, J.; Schubnel, A.; Johnson, P. A.

    2014-12-01

    Nonlinear elasticity is studied at the laboratory scale with the goal of understanding observations at earth scales, for instance during strong ground motion, tidal forcing and earthquake slip processes. Here we report frequency and pressure dependences on elasticity when applying dynamic acousto-elasticity (DAE) of rock samples, analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on a sample of Berea sandstone subject to 0.5MPa uniaxial load, with sinusoidal oscillating strain amplitudes ranging from 10-6 to 10-5 and at frequencies from 0.1 to 260Hz. In addition, the confining pressure is increased stepwise from 0 to 30MPa. We compare results to previous measurements made at lower (mHz) and higher (kHz) frequencies. Nonlinear elastic parameters corresponding to conditioning effects, third order elastic constants and fourth order elastic constants are quantitatively compared over the pressure and frequency ranges. We observe that the decrease in modulus due to conditioning increases with frequency, suggesting a frequency and/or strain-rate dependence that should be included in nonlinear elastic models of rocks. In agreement with previous measurements, nonlinear elastic effects also decrease with confining pressure, suggesting that nonlinear elastic sources such as micro-cracks, soft bonds and dislocations are turned off as the pressure increases.

  4. Age-Dependent Increase of Absence Seizures and Intrinsic Frequency Dynamics of Sleep Spindles in Rats

    Directory of Open Access Journals (Sweden)

    Evgenia Sitnikova

    2014-01-01

    Full Text Available The risk of neurological diseases increases with age. In WAG/Rij rat model of absence epilepsy, the incidence of epileptic spike-wave discharges is known to be elevated with age. Considering close relationship between epileptic spike-wave discharges and physiologic sleep spindles, it was assumed that age-dependent increase of epileptic activity may affect time-frequency characteristics of sleep spindles. In order to examine this hypothesis, electroencephalograms (EEG were recorded in WAG/Rij rats successively at the ages 5, 7, and 9 months. Spike-wave discharges and sleep spindles were detected in frontal EEG channel. Sleep spindles were identified automatically using wavelet-based algorithm. Instantaneous (localized in time frequency of sleep spindles was determined using continuous wavelet transform of EEG signal, and intraspindle frequency dynamics were further examined. It was found that in 5-months-old rats epileptic activity has not fully developed (preclinical stage and sleep spindles demonstrated an increase of instantaneous frequency from beginning to the end. At the age of 7 and 9 months, when animals developed matured and longer epileptic discharges (symptomatic stage, their sleep spindles did not display changes of intrinsic frequency. The present data suggest that age-dependent increase of epileptic activity in WAG/Rij rats affects intrinsic dynamics of sleep spindle frequency.

  5. Frequency-Dependent Social Dominance in a Color Polymorphic Cichlid Fish

    NARCIS (Netherlands)

    Dijkstra, Peter; Lindström, Jan; Metcalfe, Neil B.; Hemelrijk, Charlotte K.; Brendel, Mischa; Seehausen, Ole; Groothuis, Ton G.G.

    2010-01-01

    A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency-dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia.

  6. An exponential ESS model and its application to frequency-dependent selection.

    Science.gov (United States)

    Li, J; Liu, L

    1989-10-01

    A nonlinear ESS model is put forward, that is, a nonnegative exponential ESS model. For a simple case, we discuss the existence, uniqueness, and stability of an ESS. As an application of the model, we give a quantitative analysis of frequency-dependent selection in population genetics when the rare type has an advantage.

  7. Temperature Dependence of the Radio-Frequency Dielectric Properties of Chicken Meat

    Science.gov (United States)

    Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperature ranging from -20 oC to +25 oC. At a given frequency, the temperature dependence reveals a sharp increase of the dielectric constant and dielectric loss factor a...

  8. Frequency-dependent specific heat from thermal effusion in spherical geometry.

    Science.gov (United States)

    Jakobsen, Bo; Olsen, Niels Boye; Christensen, Tage

    2010-06-01

    We present a method of measuring the frequency-dependent specific heat at the glass transition applied to 5-polyphenyl-4-ether. The method employs thermal waves effusing radially out from the surface of a spherical thermistor that acts as both a heat generator and a thermometer. It is a merit of the method compared to planar effusion methods that the influence of the mechanical boundary conditions is analytically known. This implies that it is the longitudinal rather than the isobaric specific heat that is measured. As another merit the thermal conductivity and specific heat can be found independently. The method has highest sensitivity at a frequency where the thermal diffusion length is comparable to the radius of the heat generator. This limits in practice the frequency range to 2-3 decades. An account of the 3ω technique used including higher-order terms in the temperature dependence of the thermistor and in the power generated is furthermore given.

  9. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.

    Science.gov (United States)

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-29

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.

  10. Frequency dependent attenuation characteristics of coda waves in the Northwestern Himalayan (India) region

    Science.gov (United States)

    Kumar, Sushil; Singh, Priyamvada; Singh, Pitam; Biswal, Shubhasmita; Parija, Mahesh Prasad

    2016-03-01

    Digital seismogram data of 82 earthquakes from the Northwestern Himalayan (India) region recorded at different stations during 2004-2006 were analyzed to study the seismic coda wave attenuation characteristics in this region. We used 132 seismic observations from local earthquakes with a hypocentral distance India) by the Wadia institute of Himalayan Geology, Dehradun. The QC values were estimated at 10 central frequencies: 1.5, 3, 5, 7, 9, 12, 16, 20, 24, and 28 Hz using starting lapse-times of 10, 20, 30, 40, 50, and 60 s and coda window-lengths of 10, 20, 30, 40, and 50 s. The QC fits the frequency dependent power-law, QC =Q0fn . For a 10 s lapse time with a 10-s coda window length QC = 47.42f1.012 and for a 50 s lapse time with a 50 s coda window length, QC = 204.1f0.934 . Q0 (QC at 1 Hz) varied from ∼47 for a 10 s lapse time and a 10 s window length, to ∼204 for a 50 s lapse time and a 50 s window length. An average frequency dependent power law fit for the study region may be given as QC = 116.716f0.9943 . The exponent of the frequency dependence law n ranged from 1.08 to 0.9, which correlates well with values obtained in other seismically and tectonically active and heterogeneous regions of the world. In our study region, QC increases both with respect to lapse time and frequency, i.e., the attenuation decreases as the quality factor is inversely proportional to attenuation. The low QC values or high attenuation at lower frequencies and high QC values or low attenuation at higher frequencies suggest that the heterogeneity decreases with increasing depth in our study region.

  11. Staurosporine Inhibits Frequency-Dependent Myofilament Desensitization in Intact Rabbit Cardiac Trabeculae

    Directory of Open Access Journals (Sweden)

    Kenneth D. Varian

    2012-01-01

    Full Text Available Myofilament calcium sensitivity decreases with frequency in intact healthy rabbit trabeculae and associates with Troponin I and Myosin light chain-2 phosphorylation. We here tested whether serine-threonine kinase activity is primarily responsible for this frequency-dependent modulations of myofilament calcium sensitivity. Right ventricular trabeculae were isolated from New Zealand White rabbit hearts and iontophoretically loaded with bis-fura-2. Twitch force-calcium relationships and steady state force-calcium relationships were measured at frequencies of 1 and 4 Hz at 37 °C. Staurosporine (100 nM, a nonspecific serine-threonine kinase inhibitor, or vehicle (DMSO was included in the superfusion solution before and during the contractures. Staurosporine had no frequency-dependent effect on force development, kinetics, calcium transient amplitude, or rate of calcium transient decline. The shift in the pCa50 of the force-calcium relationship was significant from 6.05±0.04 at 1 Hz versus 5.88±0.06 at 4 Hz under control conditions (vehicle, P<0.001 but not in presence of staurosporine (5.89±0.08 at 1 Hz versus 5.94±0.07 at 4 Hz, P=NS. Phosphoprotein analysis (Pro-Q Diamond stain confirmed that staurosporine significantly blunted the frequency-dependent phosphorylation at Troponin I and Myosin light chain-2. We conclude that frequency-dependent modulation of calcium sensitivity is mediated through a kinase-specific effect involving phosphorylation of myofilament proteins.

  12. Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Kailash Prasad [Landcare Research, Palmerston North 4442 (New Zealand); Raj, Ashish [Computer Science in Radiology, Weill Medical College, Cornell University, NY 10022 (United States); Brandt, Ernst Helmut [Max-Planck-Institut fuer Metallforschung, PO B 800665, D-70506 Stuttgart (Germany); Kvitkovic, Jozef; Pamidi, Sastry V, E-mail: thakurk@landcareresearch.co.nz, E-mail: asr2004@med.cornell.edu, E-mail: ehb@mf.mpg.de, E-mail: kvitkovic@caps.fsu.edu, E-mail: pamidi@caps.fsu.edu [Center for Advanced Power System, Florida State University, Tallahassee, FL 32310 (United States)

    2011-06-15

    The frequency-dependent critical current of a superconductor strip and Roebel cable has been studied using a 2D finite element simulation. It is shown that the critical current of the superconductor increases with frequency as f{sup 1/n}, where n is the exponent of the power law flux creep model. Transport ac loss in a superconductor strip decreases with frequency as f{sup -2/n} when the amplitude of the applied ac current is far less than its critical current. However, when the applied current is large and becomes comparable to the critical current, the transport ac loss decreases with frequency as 1/f. The analytical results are substantiated with available experimental data and the results of a 2D finite element simulation.

  13. Frequency-dependent amplification of stretch-evoked excitatory input in spinal motoneurons.

    Science.gov (United States)

    Powers, Randall K; Nardelli, Paul; Cope, T C

    2012-08-01

    Voltage-dependent calcium and sodium channels mediating persistent inward currents (PICs) amplify the effects of synaptic inputs on the membrane potential and firing rate of motoneurons. CaPIC channels are thought to be relatively slow, whereas the NaPIC channels have fast kinetics. These different characteristics influence how synaptic inputs with different frequency content are amplified; the slow kinetics of Ca channels suggest that they can only contribute to amplification of low frequency inputs (EPSPs), we measured the averaged stretch-evoked EPSPs in cat medial gastrocnemius motoneurons in decerebrate cats at different subthreshold levels of membrane potential. EPSPs were produced by muscle spindle afferents activated by stretching the homonymous and synergist muscles at frequencies of 5-50 Hz. We adjusted the stretch amplitudes at different frequencies to produce approximately the same peak-to-peak EPSP amplitude and quantified the amount of amplification by expressing the EPSP integral at different levels of depolarization as a percentage of that measured with the membrane hyperpolarized. Amplification was observed at all stretch frequencies but generally decreased with increasing stretch frequency. However, in many cells the amount of amplification was greater at 10 Hz than at 5 Hz. Fast amplification was generally reduced or absent when the lidocaine derivative QX-314 was included in the electrode solution, supporting a strong contribution from Na channels. These results suggest that NaPICs can combine with CaPICs to enhance motoneuron responses to modulations of synaptic drive over a physiologically significant range of frequencies.

  14. Digital system accurately controls velocity of electromechanical drive

    Science.gov (United States)

    Nichols, G. B.

    1965-01-01

    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  15. GENERAL APROACH TO MODELING NONLINEAR AMPLITUDE AND FREQUENCY DEPENDENT HYSTERESIS EFFECTS BASED ON EXPERIMENTAL RESULTS

    Directory of Open Access Journals (Sweden)

    Christopher Heine

    2014-08-01

    Full Text Available A detailed description of the rubber parts’ properties is gaining in importance in the current simulation models of multi-body simulation. One application example is a multi-body simulation of the washing machine movement. Inside the washing machine, there are different force transmission elements, which consist completely or partly of rubber. Rubber parts or, generally, elastomers usually have amplitude-dependant and frequency-dependent force transmission properties. Rheological models are used to describe these properties. A method for characterization of the amplitude and frequency dependence of such a rheological model is presented within this paper. Within this method, the used rheological model can be reduced or expanded in order to illustrate various non-linear effects. An original result is given with the automated parameter identification. It is fully implemented in Matlab. Such identified rheological models are intended for subsequent implementation in a multi-body model. This allows a significant enhancement of the overall model quality.

  16. Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries

    Science.gov (United States)

    Barral, N.; Olivier, G.; Alauzet, F.

    2017-02-01

    Anisotropic metric-based mesh adaptation has proved its efficiency to reduce the CPU time of steady and unsteady simulations while improving their accuracy. However, its extension to time-dependent problems with body-fitted moving geometries is far from straightforward. This paper establishes a well-founded framework for multiscale mesh adaptation of unsteady problems with moving boundaries. This framework is based on a novel space-time analysis of the interpolation error, within the continuous mesh theory. An optimal metric field, called ALE metric field, is derived, which takes into account the movement of the mesh during the adaptation. Based on this analysis, the global fixed-point adaptation algorithm for time-dependent simulations is extended to moving boundary problems, within the range of body-fitted moving meshes and ALE simulations. Finally, three dimensional adaptive simulations with moving boundaries are presented to validate the proposed approach.

  17. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes.

    Science.gov (United States)

    Aldrich, R W; Getting, P A; Thompson, S H

    1979-06-01

    1. Action potentials recorded from isolated dorid neurone somata increase in duration, i.e. broaden, during low frequency repetitive firing. Spike broadening is substantially reduced by external Co ions and implicates an inward Ca current. 2. During repetitive voltage clamp steps at frequencies slower than 1 Hz, in 100 mM-tetraethyl ammonium ions (TEA) inward Ca currents do not increase in amplitude. 3. Repetitive action potentials result in inactivation of delayed outward current. Likewise, repetitive voltage clamp steps which cause inactivation of delayed outward current also result in longer duration action potentials. 4. The frequency dependence of spike broadening and inactivation of the voltage dependent component (IK) of delayed outward current are similar. 5. Inactivation of IK is observed in all cells, however, only cells with relative large inward Ca currents show significant spike broadening. Spike broadening apparently results from the frequency dependent inactivation of IK which increases the expression of inward Ca current as a prominent shoulder on the repolarizing phase of the action potential. In addition, the presence of a prolonged Ca current increases the duration of the first action potential thereby allowing sufficient time for inactivation of IK.

  18. Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles

    CERN Document Server

    Derkachova, A

    2008-01-01

    Multipolar plasmon oscillation frequencies and corresponding damping rates for nanospheres formed of the simplest free-electron metals are studied. The possibility of controlling plasmon features by choosing the size and dielectric properties of the sphere surroundings is discussed. Optical properties of the studied metals are described within the Drude-Sommerfeld model of the dielectric function with effective parameters acounting for the contribution of conduction electrons and of interband transitions. No approximation is made in respect of the size of a particle; plasmon size characteristics are described rigorously. The results of our experiment on sodium nanodroplets [1] are compared with the oscillation frequency size dependence of dipole and quadrupole plasmon.

  19. An analysis of boundary-effects in obtaining the frequency dependent specific heat by effusivity measurements

    DEFF Research Database (Denmark)

    Christensen, Tage Emil; Behrens, Claus

    The frequency dependent specific heat is a significant response function characterizing the glass transition. Contrary to the dielectric response it is not easily measured over many decades. The introduction of the 3-omega method, where the temperature oscillations at a planar oscillatoric heat...... generator is measured, made this possible. The method relied on a 1-d solution to the heat diffusion equation. There have been attempts to invoke the boundary effects to first order. However we present the fully 3-d solution to the problem including these effects. The frequency range can hereby...

  20. Effect of neutron flux on the frequency dependencies of electrical conductivity of silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, E.; Garibli, A., E-mail: elchin.huse@yahoo.com [National Nuclear Research Center, Department of Nanotechnology and Radiation Material Science, 1073, Inshaatchilar pr. 4, Baku (Azerbaijan)

    2016-11-01

    It has been reviewed the frequency dependencies of electrical conductivity of nanoparticles affected by neutron flux at different times and initial state, at various constant temperatures such as 100, 200, 300 and 400 K. Measurements have been carried out at each temperature at the different 97 values of frequency in the 1 Hz - 1 MHz range. From interdependence between real and imaginary parts of electrical conductivity it has been determined the type of conductivity. Moreover, in the work it is given the mechanism of electrical conductivity according to the obtained results. (Author)

  1. Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene

    Science.gov (United States)

    Bhalla, Pankaj

    2017-03-01

    We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity κe (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, κe (T) ∼T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that κe (T) shows T 1 / 2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re [κe (ω , T) ] follows ω-2 behavior at the low frequency and becomes frequency independent at the high frequency.

  2. Evidence for Association Between Low Frequency Variants in CHRNA6/CHRNB3 and Antisocial Drug Dependence.

    Science.gov (United States)

    Kamens, Helen M; Corley, Robin P; Richmond, Phillip A; Darlington, Todd M; Dowell, Robin; Hopfer, Christian J; Stallings, Michael C; Hewitt, John K; Brown, Sandra A; Ehringer, Marissa A

    2016-09-01

    Common SNPs in nicotinic acetylcholine receptor genes (CHRN genes) have been associated with drug behaviors and personality traits, but the influence of rare genetic variants is not well characterized. The goal of this project was to identify novel rare variants in CHRN genes in the Center for Antisocial Drug Dependence (CADD) and Genetics of Antisocial Drug Dependence (GADD) samples and to determine if low frequency variants are associated with antisocial drug dependence. Two samples of 114 and 200 individuals were selected using a case/control design including the tails of the phenotypic distribution of antisocial drug dependence. The capture, sequencing, and analysis of all variants in 16 CHRN genes (CHRNA1-7, 9, 10, CHRNB1-4, CHRND, CHRNG, CHRNE) were performed independently for each subject in each sample. Sequencing reads were aligned to the human reference sequence using BWA prior to variant calling with the Genome Analysis ToolKit (GATK). Low frequency variants (minor allele frequency antisocial drug behaviors.

  3. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    Science.gov (United States)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  4. Sensitivity to a Frequency-Dependent Circular Polarization in an Isotropic Stochastic Gravitational Wave Background

    CERN Document Server

    Smith, Tristan L

    2016-01-01

    We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations ($10^{-18}\\ {\\rm Hz} \\lesssim f \\...

  5. A study of frequency dependent electrical and dielectric properties of NiO nanoparticles

    Science.gov (United States)

    Usha, V.; Kalyanaraman, S.; Vettumperumal, R.; Thangavel, R.

    2017-01-01

    Nickel oxide nanoparticles were synthesized using low cost sol-gel method. The structure of as prepared NiO nanoparticles has been confirmed from X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX) spectroscopic analysis. The electrical and dielectric properties were characterized by complex impedance spectroscopy as a function of frequency at different temperatures. To study the dielectric behavior of the nanoparticles different plots like Nyquist plot, modulus plot and Bode plot were used. Also the frequency dependent ac conductivity is analyzed and the activation energy is calculated. The dielectric constant and dielectric loss as a function of frequency at various temperatures are also studied.

  6. Frequency dependence of the magnetoelectric effect in a magnetostrictive-piezoelectric heterostructure

    Institute of Scientific and Technical Information of China (English)

    Yu Guo-Liang; Li Yuan-Xun; Zeng Yu-Qin; Li Jie; Zuo Lin; Li Qiang; Zhang Huai-Wu

    2013-01-01

    The frequency dependence of the magnetoelectric effect in a magnetostrictive-piezoelectric heterostructure is theoretically studied by solving combined magnetic,elastic,and electric equations with boundary conditions.Both the mechanical coupling coefficient and the losses of the magnetostrictive and piezoelectric phases are taken into account.The numerical result indicates that the magnetoelectric coefficient and the resonance frequency are determined by the mechanical coupling coefficient,losses,and geometric parameters.Moreover,at the electromechanical resonance frequency,the module of the magnetoelectric coefficient is mostly contributed by the imaginary part.The relationship between the real and the imaginary parts of the magnetoelectric coefficient fit well to the Cole-Cole circle.The magnetostrictive-piezoelectric heterostructure has a great potential application as miniature and no-secondary coil solid-state transformers.

  7. Frequency dependence of junction capacitance of BPW34 and BPW41 p-i-n photodiodes

    Indian Academy of Sciences (India)

    Habibe Bayhan; Şadan Özden

    2007-04-01

    This article investigates the frequency dependence of small-signal capacitance of silicon BPW34 and BPW41 (Vishay) p-i-n photodiodes. We show that the capacitance-frequency characteristics of these photodiodes are well-described by the Schibli and Milnes model. The activation energy and the concentration of the dominant trap levels detected in BPW34 and BPW41 are 280{330 meV and 1.1 × 1012 - 1.2 × 1012 cm-3, respectively. According to the high-frequency - measurements, the impurity concentrations are determined to be about 5.3 × 1012 and 1.9 × 1013 cm-3 in BPW41 and BPW34, respectively using the method of / (-2) vs. .

  8. Constraints on frequency-dependent violations of Shapiro delay from GW150914

    Directory of Open Access Journals (Sweden)

    Emre O. Kahya

    2016-05-01

    Full Text Available On 14th September 2015, a transient gravitational wave (GW150914 was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 200 Hz within a 0.2 s window allows us to constrain any violations of Shapiro delay and Einstein's equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of O(10−9.

  9. Temperature-Dependence of the Amide-I Frequency Map for Peptides and Proteins

    Institute of Scientific and Technical Information of China (English)

    Chen Han; Jian-ping Wang

    2011-01-01

    In our recent work [Phys.Chem.Chem.Phys.11,9149 (2009)],a molecular-mechanics force field-based amide-I vibration frequency map (MM-map) for peptides and proteins was constructed.In this work,the temperature dependence of the MM-map is examined based on high-temperature molecular dynamics simulations and infrared (IR) experiments.It is shown that the 298-K map works for up to 500-K molecular dynamics trajectories,which reasonably reproduces the 88 ℃ experimental IR results.Linear IR spectra are also simulated for two tripeptides containing natural and unnatural amino acid residues,and the results are in reasonable agreement with experiment.The results suggest the MM-map can be used to obtain the temperature-dependent amide-I local mode frequencies and their distributions for peptide oligomers,which is useful in particular for understanding the IR signatures of the thermally unfolded species.

  10. Characterization of the anamorphic and frequency dependent phenomenon in Liquid Crystal on Silicon displays

    Science.gov (United States)

    Lobato, L.; Lizana, A.; Márquez, A.; Moreno, I.; Iemmi, C.; Campos, J.; Yzuel, M. J.

    2011-04-01

    The diffractive efficiency of Liquid Crystal on Silicon (LCoS) displays can be greatly diminished by the appearance of temporal phase fluctuations in the reflected beam, depolarization effects and also because of phase modulation depths smaller than 2π. In order to maximize the efficiency of the Diffractive Optical Elements (DOEs) implemented in the LCoS device, the Minimum Euclidean Distance principle can be applied. However, not all the diffractive elements can be corrected in the same way due to the anamorphic and frequency dependent phenomenon, which is related to the LCoS response, largely dependending on the period and the spatial orientation of the generated DOE. Experimental evidence for the anamorphic and frequency dependent phenomenon is provided in this paper, as well as a comparative study between the efficiency obtained for binary gratings of different periods

  11. Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducers.

    Science.gov (United States)

    Orr, Leigh-Ann; Mulholland, Anthony J; O'Leary, Richard L; Parr, Agnes; Pethrick, Richard A; Hayward, Gordon

    2007-12-01

    The large number of degrees of freedom in the design of piezoelectric transducers requires a theoretical model that is computationally efficient so that a large number of iterations can be performed in the design optimisation. The materials used are often lossy, and indeed loss can be used to enhance the operational characteristics of these designs. Motivated by these needs, this paper extends the one-dimensional linear systems model to incorporate frequency dependent elastic loss. The reception sensitivity, electrical impedance and electromechanical coupling coefficient of a 1-3 composite transducer, with frequency dependent loss in the polymer filler, are investigated. By plotting these operating characteristics as a function of the volume fraction of piezoelectric ceramic an optimum design is obtained. A device with a non-standard, high shear attenuation polymer is also simulated and this leads to an increase in the electromechanical coupling coefficient. A comparison with finite element simulations is then performed. This shows that the two methods are in reasonable agreement in their electrical impedance profiles in all the cases considered. The plots are almost identical away from the main resonant peak where the frequency location of the peaks are comparable but there is in some cases a 20% discrepancy in the magnitude of the peak value and in its bandwidth. The finite element model also shows that the use of a high shear attenuation polymer filler damps out the unwanted, low frequency modes whilst maintaining a reasonable impedance magnitude.

  12. A Novel Absorbing Boundary Condition for the Frequency-DependentFinite-Difference Time-Domain Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new absorbing boundary condition (ABC) for frequency-dependent finite-difference time-domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD)2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two-dimensions and three-dimensions are calculated and the validity of the ABC is verified.

  13. Frequency dependence and viral diversity imply chaos in an HIV model

    Science.gov (United States)

    Iwami, Shingo; Nakaoka, Shinji; Takeuchi, Yasuhiro

    2006-11-01

    In this paper, we consider the effect of viral diversity on the human immune system with frequency dependent rate of proliferation of CTLs (cytotoxic T-lymphocytes) and rate of elimination of infected cells by CTLs. We show that the interior equilibrium of our model can become unstable without viral diversity and we observe stable periodic orbits. Furthermore, our mathematical models suggest that viral diversity produces strange attractors.

  14. Frequency dependent optical conductivity of strained graphene at T=0 from an effective quantum field theory

    Science.gov (United States)

    Zhang, Shi-Jiang; Pan, Hui; Wang, Hai-Long

    2017-04-01

    An effective quantum field theory (EQFT) graphene sheet with arbitrary one dimensional strain field is derived from a microscopic effective low energy Hamiltonian. The geometric meaning of the strain-induced complex gauge field is clarified. The optical conductivity is also investigated, and a frequency dependent optical conductivity is obtained. The actual value of interband optical conductivity along the deformed direction is C0 + C1/ω2 in spite of the particular strain fields at T=0.

  15. Nitric oxide donors enhance the frequency-dependence of dopamine release in nucleus accumbens

    OpenAIRE

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-01-01

    Abstract Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviours including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber micr...

  16. Spatial Frequency Dependence of the Human Visual Cortex Response on Temporal Frequency Modulation Studied by fMRI

    Directory of Open Access Journals (Sweden)

    A. Mirzajani

    2006-07-01

    Full Text Available Background/Objective: The brain response to temporal frequencies (TF has been already reported. However, there is no study on different TF with respect to various spatial frequencies (SF. Materials and Methods: Functional magnetic resonance imaging (fMRI was done by a 1.5 T General Electric system for 14 volunteers (9 males and 5 females, aged 19–26 years during square-wave reversal checkerboard visual stimulation with different temporal frequencies of 4, 6, 8 and 10 Hz in 2 states of low SF of 0.4 and high SF of 8 cycles/degree (cpd. All subjects had normal visual acuity of 20/20 based on Snellen’s fraction in each eye with good binocular vision and normal visual field based on confrontation test. The mean luminance of the entire checkerboard was 161.4 cd/m2 and the black and white check contrast was 96%. The activation map was created using the data obtained from the block designed fMRI study. Pixels with a Z score above a threshold of 2.3, at a statistical significance level of 0.05, were considered activated. The average percentage blood oxygenation level dependent (BOLD signal change for all activated pixels within the occipital lobe, multiplied by the total number of activated pixels within the occipital lobe, was used as an index for the magnitude of the fMRI signal at each state of TF&SF. Results: The magnitude of the fMRI signal in response to different TF’s was maximum at 6 Hz for a high SF value of 8 cpd; it was however, maximum at a TF of 8 Hz for a low SF of 0.4 cpd. Conclusion: The results of this study agree with those of animal invasive neurophysiologic studies showing SF and TF selectivity of neurons in visual cortex. These results can be useful for vision therapy and selecting visual tasks in fMRI studies.

  17. Transcranial direct current stimulation improves ipsilateral selective muscle activation in a frequency dependent manner.

    Directory of Open Access Journals (Sweden)

    Kazumasa Uehara

    Full Text Available Failure to suppress antagonist muscles can lead to movement dysfunction, such as the abnormal muscle synergies often seen in the upper limb after stroke. A neurophysiological surrogate of upper limb synergies, the selectivity ratio (SR, can be determined from the ratio of biceps brachii (BB motor evoked potentials to transcranial magnetic stimulation prior to forearm pronation versus elbow flexion. Surprisingly, cathodal transcranial direct current stimulation (c-TDCS over ipsilateral primary motor cortex (M1 reduces (i.e. improves the SR in healthy adults, and chronic stroke patients. The ability to suppress antagonist muscles may be exacerbated at high movement rates. The aim of the present study was to investigate whether the selective muscle activation of the biceps brachii (BB is dependent on altering frequency demands, and whether the c-tDCS improvement of SR is dependent on task frequency. Seventeen healthy participants performed repetitive isometric elbow flexion and forearm pronation at three rates, before and after c-tDCS or sham delivered to ipsilateral left M1. Ipsilateral c-tDCS improved the SR in a frequency dependent manner by selectively suppressing BB antagonist excitability. Our findings confirm that c-tDCS is an effective tool for improving selective muscle activation, and provide novel evidence for its efficacy at rates of movement where it is most likely to benefit task performance.

  18. Frequency-dependent selection by wild birds promotes polymorphism in model salamanders

    Directory of Open Access Journals (Sweden)

    Shook Kim

    2009-05-01

    Full Text Available Abstract Background Co-occurrence of distinct colour forms is a classic paradox in evolutionary ecology because both selection and drift tend to remove variation from populations. Apostatic selection, the primary hypothesis for maintenance of colour polymorphism in cryptic animals, proposes that visual predators focus on common forms of prey, resulting in higher survival of rare forms. Empirical tests of this frequency-dependent foraging hypothesis are rare, and the link between predator behaviour and maintenance of variation in prey has been difficult to confirm. Here, we show that predatory birds can act as agents of frequency-dependent selection on terrestrial salamanders. Polymorphism for presence/absence of a dorsal stripe is widespread in many salamander species and its maintenance is a long-standing mystery. Results We used realistic food-bearing model salamanders to test whether selection by wild birds maintains a stripe/no-stripe polymorphism. In experimental manipulations, whichever form was most common was most likely to be attacked by ground-foraging birds, resulting in a survival advantage for the rare form. Conclusion This experiment demonstrates that frequency-dependent foraging by wild birds can maintain colour polymorphism in cryptic prey.

  19. FORWARD MODELING OF PROPAGATING SLOW WAVES IN CORONAL LOOPS AND THEIR FREQUENCY-DEPENDENT DAMPING

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Banerjee, Dipankar [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Magyar, Norbert; Yuan, Ding; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in [Center for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, B-3001, Leuven (Belgium)

    2016-03-20

    Propagating slow waves in coronal loops exhibit a damping that depends upon the frequency of the waves. In this study we aim to investigate the relationship of the damping length (L{sub d}) with the frequency of the propagating wave. We present a 3D coronal loop model with uniform density and temperature and investigate the frequency-dependent damping mechanism for the four chosen wave periods. We include the thermal conduction to damp the waves as they propagate through the loop. The numerical model output has been forward modeled to generate synthetic images of SDO/AIA 171 and 193 Å channels. The use of forward modeling, which incorporates the atomic emission properties into the intensity images, allows us to directly compare our results with the real observations. The results show that the damping lengths vary linearly with the periods. We also measure the contributions of the emission properties on the damping lengths by using density values from the simulation. In addition to that we have also calculated the theoretical dependence of L{sub d} with wave periods and showed that it is consistent with the results we obtained from the numerical modeling and earlier observations.

  20. An efficient and accurate approximation to time-dependent density functional theory for systems of weakly coupled monomers

    Science.gov (United States)

    Liu, Jie; Herbert, John M.

    2015-07-01

    A novel formulation of time-dependent density functional theory (TDDFT) is derived, based on non-orthogonal, absolutely-localized molecular orbitals (ALMOs). We call this approach TDDFT(MI), in reference to ALMO-based methods for describing molecular interactions (MI) that have been developed for ground-state applications. TDDFT(MI) is intended for efficient excited-state calculations in systems composed of multiple, weakly interacting chromophores. The efficiency is based upon (1) a local excitation approximation; (2) monomer-based, singly-excited basis states; (3) an efficient localization procedure; and (4) a one-step Davidson method to solve the TDDFT(MI) working equation. We apply this methodology to study molecular dimers, water clusters, solvated chromophores, and aggregates of naphthalene diimide that form the building blocks of self-assembling organic nanotubes. Absolute errors of 0.1-0.3 eV with respect to supersystem methods are achievable for these systems, especially for cases involving an excited chromophore that is weakly coupled to several explicit solvent molecules. Excited-state calculations in an aggregate of nine naphthalene diimide monomers are ˜40 times faster than traditional TDDFT calculations.

  1. Frequency dependent electrical properties of nano-CdS/Ag junctions

    Science.gov (United States)

    Mohanta, D.; Choudhury, A.

    2005-05-01

    Polymer embedded cadmium sulfide nanoparticles/quantum dots were synthesized by a chemical route using polyvinyl alcohol (lmw) as the desired matrix. In an attempt to measure the electrical properties of nano-CdS/Ag samples, we propose that contribution from surface traps are mainly responsible in determining the I˜ V and C˜ V characteristics in high frequency ranges. To be specific, beyond 1.2 MHz, the carrier injection from the trap centers of the embedded quantum dots is ensured by large current establishment even at negative biasing condition of the junction. The unexpected nonlinear signature of C˜ V response is believed to be due to the fact that while trying to follow very high signal frequency (at least 10-3 of recombination frequency), there is complete abruptness in carrier trapping (charging) or/and detrapping (decay) in a given CdS nanoparticle assembly. The frequency dependent unique role of the trap carriers certainly find application in nanoelectronic devices at a desirable frequency of operation.

  2. Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2013-10-01

    Al/rubrene/p-Si Schottky diode has been fabricated by forming a rubrene layer on p type Si by using the spin coating method. The frequency dependent capacitance–voltage (C–V–f) and conductance–voltage (G–V–f) characteristics of Al/rubrene/p-Si Schottky diyotes has been investigated in the frequency range of 5 kHz–500 kHz at room temperature. The C–V plots show a peak for each frequency. The capacitance of the device decreased with increasing frequency. The decrease in capacitance results from the presence of interface states. The plots of series resistance–voltage (R{sub s}−V) gave a peak in the depletion region at all frequencies. The density of interface states (N{sub ss}) and relaxation time (τ) distribution profiles as a function of applied voltage bias have been determined from the C–V and G–V measurements. The values of the N{sub ss} and τ have been calculated in the ranges of 8.37×10{sup 11}–4.85×10{sup 11} eV{sup −1} cm{sup −2} and 5.17×10{sup −6}–1.02×10{sup −5} s, respectively.

  3. Measurements of frequency dependent shear wave attenuation in sedimentary basins using induced earthquakes

    Science.gov (United States)

    Richter, Tom; Wegler, Ulrich

    2015-04-01

    Modeling of peak ground velocity caused by induced earthquakes requires detailed knowledge about seismic attenuation properties of the subsurface. Especially shear wave attenuation is important, because shear waves usually show the largest amplitude in high frequency seismograms. We report intrinsic and scattering attenuation coefficients of shear waves near three geothermal reservoirs in Germany for frequencies between 2 Hz and 50 Hz. The geothermal plants are located in the sedimentary basins of the upper Rhine graben (Insheim and Landau) and the Molasse basin (Unterhaching). The method optimizes the fit between Green's functions for the acoustic, isotropic radiative transfer theory and observed energy densities of induced earthquakes. The inversion allows the determination of scattering and intrinsic attenuation, site corrections, and spectral source energies for the investigated frequency bands. We performed the inversion at the three sites for events with a magnitude between 0.7 and 2. We determined a transport mean free path of 70 km for Unterhaching. For Landau and Insheim the transport mean free path depends on frequency. It ranges from 2 km (at 2 Hz) to 30 km (at 40 Hz) for Landau and from 9 km to 50 km for Insheim. The quality factor for intrinsic attenuation is constant for frequencies smaller than 10 Hz at all three sites. It is around 100 for Unterhaching and 200 for Landau and Insheim with higher values above 10 Hz.

  4. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation

    Science.gov (United States)

    Ilmoniemi, Risto J.; Mäki, Hanna; Saari, Jukka; Salvador, Ricardo; Miranda, Pedro C.

    2016-01-01

    Background: The behavior of the dendritic or axonal membrane voltage due to transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial decay of the membrane voltage in the case of constant applied electric field. In TMS, however, the induced electric field waveform is typically a segment of a sinusoidal wave, with characteristic frequencies of the order of several kHz. Objective: To show that the high frequency content of the stimulation pulse causes deviations in the spatial profile of the membrane voltage as compared to the steady state. Methods: We derive the cable equation in complex form utilizing the complex frequency-dependent representation of the membrane conductivity. In addition, we define an effective length constant λeff, which governs the spatial decay of the membrane voltage. We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with the complex cable equation and by solving the traditional cable equation numerically. Results: The effective length constant decreases as a function of frequency. For a model dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is decreased by a factor 10 to 0.13 mm. Conclusion: The frequency dependency of the neuronal length constant has to be taken into account when predicting the spatial behavior of the membrane voltage as a response to TMS. PMID:27555808

  5. Dependence of the transference of a reduced eye on frequency of light*

    Directory of Open Access Journals (Sweden)

    T. Evans

    2011-12-01

    Full Text Available In Gaussian optics the transference is a matrix that is a complete representation of the effects of the system on a ray traversing it. Almost all of the familiar optical properties of the system, such asrefractive error and power of the system, can be calculated from the transference. Because of the central importance of the transference it is useful to have some idea of how it depends on the frequencyof light. This paper examines the simplest model eye, the reduced eye. The dependence of the transference is calculated in terms of both frequency andwavelength of light and both dependencies are displayed graphically. The principal matrix logarithms are also calculated and displayed graphically. Chromatic difference in refractive compensation, power and ametropia are obtained for the reduced eye from the transferences.  (S Afr Optom 2011 70(4 149-155

  6. Tuning of gravity-dependent and gravity-independent vertical angular VOR gain changes by frequency of adaptation.

    Science.gov (United States)

    Yakushin, Sergei B

    2012-06-01

    The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1-4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz.

  7. Frequency-dependent viscous flow in channels with fractal rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, A.; Berryman, J.G.

    2010-05-01

    The viscous dynamic permeability of some fractal-like channels is studied. For our particular class of geometries, the ratio of the pore surface area-to-volume tends to {infinity} (but has a finite cutoff), and the universal scaling of the dynamic permeability, k({omega}), needs modification. We performed accurate numerical computations of k({omega}) for channels characterized by deterministic fractal wall surfaces, for a broad range of fractal dimensions. The pertinent scaling model for k({omega}) introduces explicitly the fractal dimension of the wall surface for a range of frequencies across the transition between viscous and inertia dominated regimes. The new model provides excellent agreement with our numerical simulations.

  8. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  9. FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.; Obara, T. [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Iwai, K., E-mail: k.kaneda@pparc.gp.tohoku.ac.jp [National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan)

    2015-08-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entire frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.

  10. Direct Derivation of the Gravitational Red Shift (Einstein Shift) with the frequency dependent Gall metric

    Science.gov (United States)

    Gall, Clarence A.

    1999-05-01

    When an electromagnetic radiation (EMR) source is in uniform motion with respect to an observer, a spectral (Doppler) shift in frequency is seen (blue as it approaches, red as it recedes). Since special relativity is limited to coordinate systems in uniform relative motion, this theory should be subject to this condition. On the other hand, the gravitational red shift (Einstein; Relativity: The Special and the General Theory, Crown,(1961), p.129) claims that EMR frequency decreases as the gravitational field, where the source is located, increases. As a gravitational effect, one would expect its derivation from a solution of the general relativistic field equations (R_μσ=0). Up to now, it has only been possible to derive it indirectly, by comparing the gravitational field to a (centrifugal) field produced by coordinate systems in relative rotational motion as an approximation of special relativity. Since rotation implies acceleration, it does not meet the conditions of special relativity so this is unsatisfactory. This work shows that the problem lies in the Schwarzschild metric which is independent of EMR frequency. By contrast it is easy to deduce the gravitational red shift from the frequency dependent Gall metric (Gall in AIP Conference Proceedings 308, The Evolution of X-Ray Binaries,(1993), p. 87).

  11. Frequency Dependence of Polarization of Zebra Pattern in Type-IV Solar Radio Bursts

    CERN Document Server

    Kaneda, Kazutaka; Iwai, Kazumasa; Tsuchiya, Fuminori; Obara, Takahiro

    2015-01-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZP. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50-70 percent right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50-70 ms relative to the right-handed component over the entire frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double plasma resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in...

  12. Temperature dependence of low-frequency optical phonons in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2015-06-15

    The unpolarized Stocks component of the Raman spectra of the layered ternary thallium dichalcogenide, TlInS{sub 2} was studied with the aid of a Raman confocal microscope system in the low-frequency region of 35-150 cm{sup -1} over the temperature range that embraced the region of the successive phase transitions in this crystal. The observed spectra were deconvoluted into Lorentzian peaks to single-out the contribution of each Raman mode. The temperature dependence of the Raman frequency and broadening associated with each mode was then obtained. The irregular temperature behaviour of most modes was disclosed in the proximity of phase transitions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Temperature and Frequency Dependent Empirical Models of Dielectric Properties of Sunflower and Olive Oil

    Directory of Open Access Journals (Sweden)

    J. Vrba

    2013-12-01

    Full Text Available In this article, a known concept and measurement probe geometry for the estimation of the dielectric properties of oils have been adapted. The new probe enables the~measurement in the frequency range of 1 to 3000 MHz. Additionally, the measurement probe has been equipped with a~heat exchanger, which has enabled us to measure the dielectric properties of sunflower and olive oil as well as of two commercial emulsion concentrates. Subsequently, corresponding linear empirical temperature and frequency dependent models of the dielectric properties of the above mentioned oils and concentrates have been created. The dielectric properties measured here as well as the values obtained based on the empirical models created here match the data published in professional literature very well.

  14. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Atsushi; Yokono, Takafumi [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Yokono, Takafumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Information Sciences and Electronics

    2000-06-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency {omega}. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with {omega} > or approx. 1 kHz. (author)

  15. Frequency-dependent environmental fatigue crack propagation in the 7XXX alloy/aqueous chloride system

    Science.gov (United States)

    Gasem, Zuhair Mattoug

    The need to predict the fatigue performance of aging aerospace structures has focused interest on environmentally assisted cracking in thick-section damage-tolerant aluminum alloys (AA). The objective of this research is to characterize and understand the time-dependent processes that govern environmental fatigue crack propagation (EFCP) in 7XXX series aluminum alloys exposed to an aggressive environment. Results are utilized to identify the rate-controlling step in growth enhancement in order to develop a mechanistic model describing the time dependency of EFCP. Aluminum alloy 7075, tested in the sensitive (SL) orientation and exposed to aqueous chloride solution, is studied. Da/dNcrit for different D K levels depends on 1/√fcrit, as predicted by process zone hydrogen-diffusion-limited crack growth modeling. A model based on hydrogen diffusion controlled growth is modified to include a stress-dependent critical hydrogen concentration normalized with the crack tip hydrogen concentration (Ccrit/CS). It is proposed that da/dNcrit for a given D K and R corresponds to the distance ahead of the crack tip where the local tensile stress associated with Kmax is maximum. The reversed plasticity estimate of this location equals da/dNcrit for two aging conditions of 7075 (SL)/NaCl at R = 0.1. The EFCP dependencies on alloy microstructure (T6 vs. T7), crack orientation (SL vs. LT), and stress ratio are measured and interpreted based on their effect on da/dN crit and fcrit as well as environmental closure. Chromate addition to the chloride solution eliminates the environmental acceleration of crack growth and reduces corrosion-product induced closure. In chromate-inhibited solution, the frequency dependence of EFCP in 7075 (SL) is unique. Da/dN is reduced at moderate and low frequencies to a value similar to crack growth rate in moist air, probably due to formation of a passive film which inhibits hydrogen uptake. Inhibition is mitigated by increasing frequency or increasing

  16. Frequency dependence of CA3 spike phase response arising from h-current properties

    Directory of Open Access Journals (Sweden)

    Melodie eBorel

    2013-12-01

    Full Text Available The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarisation-activated mixed cation current (Ih, which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their intrinsic membrane properties. We found that both CA3 and CA1 pyramidal neurons show a voltage sag in response to negative current steps but that this voltage sag is significantly smaller in CA3 cells. Moreover, CA3 pyramidal neurons have less prominent resonance properties compared to CA1 pyramidal neurons. This is consistent with differential expression of Ih by the two cell types. Despite their distinct intrinsic membrane properties, both CA3 and CA1 pyramidal neurons displayed bidirectional spike phase control by excitatory conductance inputs during theta oscillations. In particular, excitatory inputs delivered at the descending phase of a dynamic clamp-induced membrane potential oscillation delayed the subsequent spike by nearly 50 mrad. The effect was shown to be mediated by Ih and was counteracted by increasing inhibitory conductance driving the membrane potential oscillation. Using our experimental data to feed a computational model, we showed that differences in Ih between CA3 and CA1 pyramidal neurons could predict frequency-dependent differences in phase response properties between these cell types. We confirmed experimentally such frequency-dependent spike phase control in CA3 neurons. Therefore, a decrease in theta frequency, which is observed in intact animals during novelty, might switch the CA3 spike phase response from unidirectional to bidirectional and thereby promote encoding of the new context.

  17. Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system

    Science.gov (United States)

    Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.

    2012-10-01

    The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.

  18. Investigating the frequency dependence of mantle Q by stacking P and PP spectra

    Science.gov (United States)

    Warren, Linda M.; Shearer, Peter M.

    2000-11-01

    Using seismograms from globally distributed, shallow earthquakes between 1988 and 1998, we compute spectra for P arrivals from epicentral distances of 40° to 80° and PP arrivals from 80° to 160°. Selecting records with estimated signal-to-noise ratios greater than 2, we find 17,836 P and 14,721 PP spectra. We correct each spectrum for the known instrument response and for an ω-2 source model that accounts for varying event sizes. Next, we stack the logarithms of the P and PP spectra in bins of similar source-receiver range. The stacked log spectra, denoted as log(DP') and log(DPP'), appear stable between about 0.16 and 0.86 Hz, with noise and/or bias affecting the results at higher frequencies. Assuming that source spectral differences are randomly distributed, then for shallow events, when the PP range is twice the P range, the average residual source spectrum may be estimated as 2 log(DP')-log(DPP'), and the average P wave attenuation spectrum may be estimated as log(DPP') - log(DP'). The residual source spectral estimates exhibit a smooth additional falloff as ω-0.15±0.05 between 0.16 and 0.86 Hz, indicating that ω-2.15±0.05 is an appropriate average source model for shallow events. The attenuation spectra show little distance dependence over this band and have a P wave t¯* value of ˜0.5 s. We use t¯* measurements from individual P and PP spectra to invert for a frequency-independent Q model and find that the upper mantle is nearly 5 times as attenuating as the lower mantle. Frequency dependence in Qα is difficult to resolve directly in these data but, as previous researchers have noted, is required to reconcile these values with long-period Q estimates. Using Q model QL6 [Durek and Ekström, 1996] as a long-period constraint, we experiment with fitting our stacked log spectra with an absorption band model. We find that the upper corner frequency f2 in the absorption band must be depth-dependent to account for the lack of a strong distance

  19. Resolution theory and static- and frequency dependent cross-talk in piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, Stephen [ORNL; Guo, Senli [ORNL; Kumar, Amit [ORNL; Rodriguez, Brian [University College, Dublin; Proksch, Roger [Asylum Research, Santa Barbara, CA; Kalinin, Sergei V [ORNL

    2010-01-01

    Probing materials functionality locally by scanning probe microscopy requires reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, i.e. instrumental and topographical cross-talk. Here we develop the linear resolution theory framework to describe the cross-talk effects, and apply it for elucidation of frequency dependent cross-talk mechanisms in the Piezoresponse Force Microscopy. The use of band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of functional fit approach and multivariate statistical analysis methods for data identification in band excitation SPM is explored.

  20. Frequency-dependent action potential prolongation in Aplysia pleural sensory neurones.

    Science.gov (United States)

    Edstrom, J P; Lukowiak, K D

    1985-10-01

    The effects of repetitive activity on action-potential shape in Aplysia californica pleural sensory cells are described. Action potentials were evoked by intracellular current injection at frequencies between 7.41 and 0.2 Hz. In contrast to other molluscan neurons having brief action potentials, it was found that at these firing rates the normally brief action potential develops a prominent shoulder or plateau during the repolarization phase. Higher stimulus rates broaden the action potential more rapidly and to a greater extent than lower stimulus rates. Inactivation is slow relative to activation; effects of 3-s 6-Hz trains are detectable after 1 min rest. The amplitude of the plateau voltage reaches a maximum of 50-70 mV at the highest stimulus rates tested. Frequency-dependent increases in action-potential duration measured at half-amplitude normally range between 6 and 15 ms. Cadmium, at concentrations between 0.05 and 0.5 mM, antagonizes frequency-dependent broadening. The increases in duration induced by repetitive activity are more sensitive to cadmium than are the increases in plateau amplitude. Tetraethylammonium, at concentrations between 0.5 and 10 mM, slightly increases the duration and amplitude of single action potentials. During repetitive activity at high stimulus rates the maximum duration and rate of broadening are both increased but the amplitude of the plateau potential is not affected by these tetraethylammonium concentrations. Above 10 mM, tetraethylammonium greatly increases the duration and amplitude of single action potentials as well as the rates of action-potential duration and amplitude increase during repetitive activity. These high tetraethylammonium concentrations also cause the normally smoothly increasing duration and amplitude to reach a maximum value early in a train and then decline slowly during the remainder of the train. The consequences of frequency-dependent spike broadening in these neurons have not yet been investigated

  1. Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    OpenAIRE

    Zycki, P. T.; A. Niedzwiecki(University of Lodz, Poland); Sobolewska, M. A.

    2007-01-01

    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretio...

  2. RADIAL DEPENDENCE OF THE FREQUENCY BREAK BETWEEN FLUID AND KINETIC SCALES IN THE SOLAR WIND FLUCTUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, R.; Trenchi, L., E-mail: roberto.bruno@iaps.inaf.it [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2014-06-01

    We investigate the radial dependence of the spectral break separating the inertial from the dissipation range in power density spectra of interplanetary magnetic field fluctuations, between 0.42 and 5.3 AU, during radial alignments between MESSENGER and WIND for the inner heliosphere and between WIND and ULYSSES for the outer heliosphere. We found that the spectral break moves to higher and higher frequencies as the heliocentric distance decreases. The radial dependence of the corresponding wavenumber is of the kind κ {sub b} ∼ R {sup –1.08}, in good agreement with that of the wavenumber derived from the linear resonance condition for proton cyclotron damping. These results support conclusions from previous studies which suggest that a cyclotron-resonant dissipation mechanism must participate in the spectral cascade together with other possible kinetic noncyclotron-resonant mechanisms.

  3. Bards, poets, and cliques: frequency-dependent selection and the evolution of language genes.

    Science.gov (United States)

    Cartwright, Reed A

    2011-09-01

    The ability of humans to communicate via language is a complex, adapted phenotype, which undoubtedly has a recently evolved genetic component. However, the evolutionary dynamics of language-associated alleles are poorly understood. To improve our knowledge of such systems, a population-genetics model for language-associated genes is developed. (The model is general and applicable to social interactions other than communication.) When an allele arises that potentially improves the ability of individuals to communicate, it will experience positive frequency-dependent selection because its fitness will depend on how many other individuals communicate the same way. Consequently, new and rare alleles are selected against, posing a problem for the evolutionary origin of language. However, the model shows that if individuals form language-based cliques, then novel language-associated alleles can sweep through a population. Thus, the origin of language ability can be sufficiently explained by Darwinian processes operating on genetic diversity in a finite population of human ancestors.

  4. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    CERN Document Server

    Peterlin, Primoz

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modelled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kHz range, and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied AC electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys. J. 95:L19--L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of m...

  5. The influence of frequency-dependent radiative transfer on the structures of radiative shocks

    CERN Document Server

    Vaytet, N; Audit, E; Chabrier, G

    2013-01-01

    Radiative shocks are shocks in a gas where the radiative energy and flux coming from the very hot post-shock material are non-negligible in the shock's total energy budget, and are often large enough to heat the material ahead of the shock. Many simulations of radiative shocks, both in the contexts of astrophysics and laboratory experiments, use a grey treatment of radiative transfer coupled to the hydrodynamics. However, the opacities of the gas show large variations as a function of frequency and this needs to be taken into account if one wishes to reproduce the relevant physics. We have performed radiation hydrodynamics simulations of radiative shocks in Ar using multigroup (frequency dependent) radiative transfer with the HERACLES code. The opacities were taken from the ODALISC database. We show the influence of the number of frequency groups used on the dynamics and morphologies of subcritical and supercritical radiative shocks in Ar gas, and in particular on the extent of the radiative precursor. We fin...

  6. Distortion product otoacoustic emission generation mechanisms and their dependence on stimulus level and primary frequency ratio.

    Science.gov (United States)

    Botti, Teresa; Sisto, Renata; Sanjust, Filippo; Moleti, Arturo; D'Amato, Luisa

    2016-02-01

    In this study, a systematic analysis of the dependence on stimulus level and primary frequency ratio r of the different components of human distortion product otoacoustic emissions has been performed, to check the validity of theoretical models of their generation, as regards the localization of the sources and the relative weight of distortion and reflection generation mechanisms. 2f1 - f2 and 2f2 - f1 distortion product otoacoustic emissions of 12 normal hearing ears from six human subjects have been measured at four different levels, in the range [35, 65] dB sound pressure level, at eight different ratios, in the range [1.1, 1.45]. Time-frequency filtering was used to separate distortion and reflection components. Numerical simulations have also been performed using an active nonlinear cochlear model. Both in the experiment and in the simulations, the behavior of the 2f1 - f2 distortion and reflection components was in agreement with previous measurements and with the predictions of the two-source model. The 2f2 - f1 response showed a rotating-phase component only, whose behavior was in general agreement with that predicted for a component generated and reflected within a region basal to the characteristic place of frequency 2f2 - f1, although alternative interpretations, which are also discussed, cannot be ruled out.

  7. Frequency-Dependent Streaming Potential of Porous Media—Part 1: Experimental Approaches and Apparatus Design

    Directory of Open Access Journals (Sweden)

    P. W. J. Glover

    2012-01-01

    Full Text Available Electrokinetic phenomena link fluid flow and electrical flow in porous and fractured media such that a hydraulic flow will generate an electrical current and vice versa. Such a link is likely to be extremely useful, especially in the development of the electroseismic method. However, surprisingly few experimental measurements have been carried out, particularly as a function of frequency because of their difficulty. Here we have considered six different approaches to make laboratory determinations of the frequency-dependent streaming potential coefficient. In each case, we have analyzed the mechanical, electrical, and other technical difficulties involved in each method. We conclude that the electromagnetic drive is currently the only approach that is practicable, while the piezoelectric drive may be useful for low permeability samples and at specified high frequencies. We have used the electro-magnetic drive approach to design, build, and test an apparatus for measuring the streaming potential coefficient of unconsolidated and disaggregated samples such as sands, gravels, and soils with a diameter of 25.4 mm and lengths between 50 mm and 300 mm.

  8. Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    CERN Document Server

    Zycki, P T; Sobolewska, M A

    2007-01-01

    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretion flow oscillates, while the cold disc is absent at the QPO radius. We find that the QPO spectra are generally similar to the spectrum of radiation emitted at the QPO radius, and they are broadened by the relativistic effects. In particular, the QPO spectrum contains the disc component in the oscillating disc with a corona scenario. We also review the available data on energy dependencies of high frequency QPO, and we point out that they appear to lack the disc component in their energy spectra. This would suggest the hot...

  9. FEM-calculations on the frequency dependence of hysteretic losses in coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Sander, M; Grilli, F, E-mail: michael.sander@kit.ed [Karlsruhe Institute of Technology, Institute for Technical Physics (ITEP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-06-01

    Calculations based on two different finite-element models have been carried out to investigate the flux flow behaviour of High Temperature Superconductors (HTS), in particular of Coated Conductors (CC) based on 123-HTS. The models allow the simulation of the response of the CC to various experimental operating conditions: e.g. a fast ramping of the transport current typically done in measurements of the critical current I{sub c} or sinusoidal changes of an external magnetic field typically used in AC loss measurements. The models also allow calculating the response to arbitrary combinations of current and field changes. The superconductor is modelled by using either a simple power-law E(J) characteristic or one which also accounts for field and temperature dependences. The obtained results go beyond Bean's approximation, which is mostly employed for interpreting such flux penetration effects. One consequence is that hysteretic losses, which in Bean's model are frequency independent, show a dependence on the time scales of current or field changes. The field and frequency ranges where such deviations from Bean's model should be taken into account are discussed.

  10. The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission.

    Science.gov (United States)

    Kendal, Jeremy; Giraldeau, Luc-Alain; Laland, Kevin

    2009-09-21

    Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.

  11. Method of frequency dependent correlations: investigating the variability of total solar irradiance

    Science.gov (United States)

    Pelt, J.; Käpylä, M. J.; Olspert, N.

    2017-03-01

    Context. This paper contributes to the field of modeling and hindcasting of the total solar irradiance (TSI) based on different proxy data that extend further back in time than the TSI that is measured from satellites. Aims: We introduce a simple method to analyze persistent frequency-dependent correlations (FDCs) between the time series and use these correlations to hindcast missing historical TSI values. We try to avoid arbitrary choices of the free parameters of the model by computing them using an optimization procedure. The method can be regarded as a general tool for pairs of data sets, where correlating and anticorrelating components can be separated into non-overlapping regions in frequency domain. Methods: Our method is based on low-pass and band-pass filtering with a Gaussian transfer function combined with de-trending and computation of envelope curves. Results: We find a major controversy between the historical proxies and satellite-measured targets: a large variance is detected between the low-frequency parts of targets, while the low-frequency proxy behavior of different measurement series is consistent with high precision. We also show that even though the rotational signal is not strongly manifested in the targets and proxies, it becomes clearly visible in FDC spectrum. A significant part of the variability can be explained by a very simple model consisting of two components: the original proxy describing blanketing by sunspots, and the low-pass-filtered curve describing the overall activity level. The models with the full library of the different building blocks can be applied to hindcasting with a high level of confidence, Rc ≈ 0.90. The usefulness of these models is limited by the major target controversy. Conclusions: The application of the new method to solar data allows us to obtain important insights into the different TSI modeling procedures and their capabilities for hindcasting based on the directly observed time intervals.

  12. Frequency and Field Dependences of Giant Magneto-Impedance Effect in Sandwiched FeCuCrVSiB Films

    Institute of Scientific and Technical Information of China (English)

    DAI You-Yong; XIAO Shu-Qin; LIU Yi-Hua; ZHANG Lin; WU Hou-Zheng; ZHANG Yan-Zhong

    2001-01-01

    The giant magneto-impedance (GMI) effect has been investigated in sandwiched FeCuCrVSiB films annealed at 300 ℃ for 1.5 h. The frequency and field dependences of the GMI have been observed in the frequency range from 50 kHz to 13 MHz. The GMI ratio increases at first with increasing frequency, and reaches its maximum value of 136% at a very low characteristic frequency of about 4 MHz, and then decreases with further increasing frequency. These superior properties are related to the special structure of the sandwiched films.

  13. Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels, and frequency dependence

    Science.gov (United States)

    van Roekeghem, Ambroise; Vaugier, Loïg; Jiang, Hong; Biermann, Silke

    2016-09-01

    We calculate the strength of the frequency-dependent on-site electronic interactions in the iron pnictides LaFeAsO, BaFe2As2 , BaRu2As2 , and LiFeAs and the chalcogenide FeSe from first principles within the constrained random phase approximation. We discuss the accuracy of an atomiclike parametrization of the two-index density-density interaction matrices based on the calculation of an optimal set of three independent Slater integrals, assuming that the angular part of the Fe d localized orbitals can be described within spherical harmonics as for isolated Fe atoms. We show that its quality depends on the ligand-metal bonding character rather than on the dimensionality of the lattice: it is excellent for ionic-like Fe-Se (FeSe) chalcogenides and a more severe approximation for more covalent Fe-As (LaFeAsO, BaFe2As2 ) pnictides. We furthermore analyze the relative importance of different screening channels, with similar conclusions for the different pnictides but a somewhat different picture for the benchmark oxide SrVO3: the ligand channel does not appear to be dominant in the pnictides, while oxygen screening is the most important process in the oxide. Finally, we analyze the frequency dependence of the interaction. In contrast to simple oxides, in iron pnictides its functional form cannot be simply modeled by a single plasmon, and the actual density of modes enters the construction of an effective Hamiltonian determining the low-energy properties.

  14. Frequency Dependent Electrical Properties of Ferroelectric Ba0.8Sr0.2TiO3 Thin Film

    Directory of Open Access Journals (Sweden)

    Ala’eddin A. SAIF

    2011-07-01

    Full Text Available The frequency dependent electrical parameters, such as impedance, electric modulus, dielectric constant and AC conductivity for ferroelectric Ba0.8Sr0.2TiO3 thin film have been investigated within the range of 1 Hz and 106 Hz at room temperature. Z* plane shows two regions corresponding to the bulk mechanism and the distribution of the grain boundaries-electrodes process. M" versus frequency plot reveals a relaxation peak, which is not observed in the ε″ plot and it has been found that this peak is a non-Debye-type. The frequency dependent conductivity plot shows three regions of conduction processes, i. e., a low-frequency region due to DC conduction, a mid-frequency region due to translational hopping motions and a high-frequency region due to localized hopping and/or reorientational motion.http://dx.doi.org/10.5755/j01.ms.17.2.490

  15. EFFECTS OF LOW-FREQUENCY ELECTROACUPUNCTURE ON THE IMMUNOLOGIC FUNCTION IN MORPHINE DEPENDENCE RATS

    Institute of Scientific and Technical Information of China (English)

    韩肖华; 吴绪平; 刘又香; 章敏; 王亚文

    2003-01-01

    Objective: To observe the effect of low-frequency electroacupuncture (EA) on the immunologic tunc-tion in morphine dependence rats. Methods: Forty SD rats were used in this study. Morphine-dependence model wasestablished by intraperitoneal injection of morphine hydrochloride continuously for 5 days and hastened by administra-tion (i. p) of Naloxone. These rats were randomly divided into control, model, EA and auto-demorphinization groupswith 10 cases being in each group. In EA group, "Guanyuan"(CV 4),"Mingmen"(GV 4), etc. were punctured andstimulated electrically. Positive T lymphocyte subgroups, CD+4 and CD8+ in the peripheral blood were detected with flu-orescence immuno-assay. Results: In model group, sertrn percentage of CD+4 and CD+4/CD+8 decreased considerablyin comparison with those of control group (P< 0.01 ); while in EA group, CD+4 level and CD+4/CD+8 increased signifi-cantly compared with those of model group ( P < 0.01); and no significant differences were found between auto-demor-phinization group and model group and between EA and control groups in these two indexes. Conclusion: Low-frequen-cy EA can promote the restoration of the immune function of morphine dependence rats.

  16. Algebraic processing technique for extracting frequency-dependent shear-wave splitting parameters in an anisotropic medium

    Science.gov (United States)

    Han, Kai-Feng; Zeng, Xin-Wu

    2011-06-01

    Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth (1993), a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed. By using this dual source cumulative rotation technique in the frequency-domain (DCTF), anisotropic parameters, including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves, can be estimated for each frequency component in the frequency domain. It avoids the possible error which comes from using a narrow-band filter in the current commonly used method. By using synthetic seismograms, the feasibility and validity of the technique was tested and a comparison with the currently used method was also given. The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF. In the presence of larger scale fractures, substantial frequency dependence would be found in the seismic frequency range, which implies that dispersion would occur at seismic frequencies. Our study shows that shear-wave anisotropy decreases as frequency increases.

  17. Orientation, temperature, and frequency dependence of nonresonant microwave absorption in HTSC powders

    Energy Technology Data Exchange (ETDEWEB)

    Gould, A.; Huang, M.; Bhagat, S.M. (Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (USA) Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742-4111 (USA)); Tyagi, S. (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 11004 (USA))

    1991-04-15

    Hysteresis in the microwave-power absorption of HTSC powders was studied as a function of temperature ({ital T}), field-sweep amplitude ({ital H}{sub max}), and orientation between the dc field ({bold H}{sub dc}) and the wave vector of the microwaves ({bold k}). It was found that (i) the sizable low-temperature hysteresis effects occur only if {bold H}{sub dc}{parallel}{bold k}, (ii) the temperature and frequency dependence of the hysteresis is strongly affected by {ital H}{sub max}, (iii) the high- and low-temperature virgin curves are quite different, and (iv) the minimum of the absorption signal increases with {ital H}{sub max} and {ital T}. The low-temperature hysteresis loops were found to be similar to loops obtained from nonlinear equations describing cusp catastrophes.

  18. Picosecond laser-induced breakdown at 5321 and 5347 A - Observation of frequency-dependent behavior

    Science.gov (United States)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1977-01-01

    A study is presented of picosecond laser-induced breakdown at 3547 and 5321 A of several materials. The thresholds obtained for breakdown at 5321 A are compared to previous results obtained at 1.064 microns using the same laser system. This comparison illustrates the transition of bulk laser-induced breakdown as it becomes increasingly frequency dependent. UV picosecond pulses are obtained by mixing 5321 A and 1.064 micron pulses in a KH2PO4 crystal. Upper and lower bounds on the 3547 A breakdown threshold are defined, although some effects of walk-off distortion and self-focusing are observed. The results are discussed with reference to models for the intrinsic processes involved in the breakdown, i.e., avalanche and multiphoton ionization.

  19. The amplitudes of interplanetary fluctuations - Stream structure, heliocentric distance, and frequency dependence

    Science.gov (United States)

    Roberts, D. A.; Goldstein, M. L.; Klein, L. W.

    1990-01-01

    A study is presented of the heliocentric distance, frequency, and stream structure dependence of the amplitudes of interplanetary fluctuations in the velocity and magnetic field from 0.3 to nearly 20 AU and for spacecraft-frame periods of 10 days to a few hours. Evidence is presented that, at a given heliocentric distance, the amplitude of the magnetic field fluctuations is proportional to the magnitude of the field, nearly independently of the solar wind speed. The radial evolution of magnetic fluctuations is shown to be nearly consistent with WKB expectations except at smaller scales in the inner heliosphere and at the largest scales in the outer heliosphere. While the large-scale velocity fluctuations are kinetic energy-dominated in the inner heliosphere due to the presence of streams, the magnetic fluctuation energy eventually comes to be slightly dominant over the kinetic energy at all scales. The theoretical implications of the results are considered.

  20. Frequency thermal response and cooling performance in a microscopic system with a time-dependent perturbation

    Science.gov (United States)

    Beraha, N.; Soba, A.; Carusela, M. F.

    2016-12-01

    Following the nonequilibrium Green's function formalism we study the thermal transport in a composite chain subject to a time-dependent perturbation. The system is formed by two finite linear asymmetric harmonic chains subject to an on-site potential connected together by a time-modulated coupling. The ends of the chains are coupled to two phononic reservoirs at different temperatures. We present the relevant equations used to calculate the heat current along each segment. We find that the system presents different transport regimes according the driving frequency and temperature gradients. One of the regimes corresponds to a heat pump against thermal gradient, thus a characterization of the cooling performance of the device is presented.

  1. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, S; Guo, S; Kumar, A; Kalinin, S V [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rodriguez, B J [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Proksch, R [Asylum Research, Santa Barbara, CA 93117 (United States)

    2010-10-08

    Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.

  2. Dependence of ultrasonic scattering on frequency and microarchitecture in trabecular bone: Theory and experiment

    Science.gov (United States)

    Wear, Keith A.

    2002-05-01

    Measurements of ultrasonic properties of calcaneus (heel bone) have been shown to be effective for the diagnosis of osteoporosis. However, the mechanisms underlying the interaction between ultrasound and bone are currently not well understood. A model that predicts backscatter from trabecular bone has been developed. Scattering is assumed to originate from the surfaces of trabeculae, which are modeled as long, thin, elastic cylinders with radii small compared with the ultrasonic wavelength. Experimental measurements of backscatter using broadband ultrasound centered at 500 kHz from 43 trabecular bone samples (from human calcaneus) in vitro have been performed. Microcomputed tomography has been performed on all 43 samples in order to measure microarchitectural features. The theory correctly predicts the measured dependences of backscatter on ultrasonic frequency and trabecular thickness. [Funding from the FDA Office of Womens Health is gratefully acknowledged.

  3. Frequency-dependent polarizabilities and shielding factors for confined one-electron systems

    Science.gov (United States)

    Montgomery, H. E., Jr.; Pupyshev, Vladimir I.

    2017-01-01

    Frequency-dependent dipole polarizabilities and shielding factors are calculated for the ground state of spherically symmetric screened one-electron systems embedded in an impenetrable spherical cavity. Coulomb, Yukawa, Hulthén and exponential cosine-screened Coulomb potentials are considered. In contrast to free systems, Dirichlet boundary conditions introduce a contribution to the shielding factor that results from an integral over the surface of the confining boundary. This is a fundamental difference between free and confined systems and results in unexpected modifications to some of the classic relations for free systems. The methods derived also give a simple expression for the polarizability of the confined harmonic oscillator as an example of extending the methods of this work to potentials beyond the four studied.

  4. Long range dependence in the high frequency USD/INR exchange rate

    Science.gov (United States)

    Kumar, Dilip

    2014-02-01

    Using high frequency data, this paper examines the long memory property in the unconditional and conditional volatility of the USD/INR exchange rate at different time scales using the Local Whittle (LW), the Exact Local Whittle (ELW) and the FIAPARCH models. Results indicate that the long memory property remains quite stable across different time scales for both unconditional and conditional volatility measures. Results from the non-overlapping moving window approach indicate that the extreme events (such as the subprime crisis and the European debt crisis) resulted in highly persistent behavior of the USD/INR exchange rate and thus lead to market inefficiency. This paper also examines the long memory property in the realized volatility based on different time scale data. Results indicate that the realized volatility measures based on different scales of the high frequency data exhibit a consistent and stable long memory property. However, the realized volatility measures based on daily data exhibit lower degree of long-range dependence. This study has implications for traders and investors (with different trading horizons) and can be helpful in predicting expected future volatility and in designing and implementing trading strategies at different time scales.

  5. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Brill, J. W.; Shahi, Maryam; Yao, Y. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Payne, Marcia M.; Anthony, J. E. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Edberg, Jesper; Crispin, Xavier [Department of Science and Technology, Organic Electronics, Linköping University, SE-601 74 Norrköping (Sweden)

    2015-12-21

    We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  6. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    Science.gov (United States)

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  7. Frequency-Dependent Scattering Observed in P- and Surface-Wave Arrivals From South India

    Science.gov (United States)

    Rai, A. K.

    2017-03-01

    Anomalies in polarization angles of teleseismic waves have been used to understand effect of scattered arrivals from subsurface heterogeneities. Seismological data recorded in southern India show polarization anomalies up to 5° for several stations. These anomalies are most pronounced for earthquakes from western and southern azimuths. Furthermore, stations located near the boundary of Dharwar craton and southern Granulites are more affected by scattered waves. Considering that many of the nearby stations show similar patterns of polarization anomalies, it is likely that the source of scattered energy is located at shallower depths. The non-stationary nature of seismic arrivals warrants determination of frequency-dependent polarization. Result obtained using multi-taper spectral analysis method indicates that data are contaminated at frequencies greater than 2 Hz for most of the stations. Furthermore, surface-wave records also indicate off-azimuth arrivals, and quasi-Love waves indicating heterogeneities or anisotropy in the subsurface. These small-scale heterogeneities that may be located in crust may be important for studies using converted phases and ground motion prediction studies.

  8. Advances in frequency-domain fluorometry, gigahertz instrumentation, time-dependent photomigration, and fluorescence lifetime imaging

    Science.gov (United States)

    Lakowicz, Joseph R.; Gryczynski, Ignacy; Szmacinski, Henryk; Nowaczyk, Kazimierz; Johnson, Michael L.

    1992-02-01

    During the past seven years, there have been remarkable advances in the frequency-domain method for measurement of time-resolved emission or light scattering. In this presentation we describe the recent extension of the frequency range to 10 GHz using a specially designed microchannel plate PMT. Experimental data will be shown for measurement of picosecond rotational diffusion and for sub-picosecond resolution of time delays. The resolution of ps to ns timescale processes is not obtained at the expense of sensitivity or is it shown by measurements on the intrinsic tryptophan emission from hemoglobin. We also describe a time- resolved reflectance imaging experiment on a scattering medium containing an absorbing object. Time-resolved imaging of the back-scattered light is realized by means of a RF-phase- sensitive camera, synchronized to the laser pulses. By processing the stored images, a final image can be created, the contrast of which is based only on time differences of the back- scattered photons. This image reveals the presence and position of the absorber within the scattering medium. And finally, we describe a new methodology, fluorescence lifetime imaging (FLIM), in which the contrast depends on the fluorescence lifetime at each point in a two-dimensional image, and not the local concentration and/or intensity of the fluorophore. We used FLIM to create lifetime images of NADH when free in solution and when bound to malate dehydrogenase. FLIM has numerous potential applications in cell biology and imaging.

  9. Frequency-Dependent Scattering Observed in P- and Surface-Wave Arrivals From South India

    Science.gov (United States)

    Rai, A. K.

    2016-12-01

    Anomalies in polarization angles of teleseismic waves have been used to understand effect of scattered arrivals from subsurface heterogeneities. Seismological data recorded in southern India show polarization anomalies up to 5° for several stations. These anomalies are most pronounced for earthquakes from western and southern azimuths. Furthermore, stations located near the boundary of Dharwar craton and southern Granulites are more affected by scattered waves. Considering that many of the nearby stations show similar patterns of polarization anomalies, it is likely that the source of scattered energy is located at shallower depths. The non-stationary nature of seismic arrivals warrants determination of frequency-dependent polarization. Result obtained using multi-taper spectral analysis method indicates that data are contaminated at frequencies greater than 2 Hz for most of the stations. Furthermore, surface-wave records also indicate off-azimuth arrivals, and quasi-Love waves indicating heterogeneities or anisotropy in the subsurface. These small-scale heterogeneities that may be located in crust may be important for studies using converted phases and ground motion prediction studies.

  10. Accurate Chromosome Segregation at First Meiotic Division Requires AGO4, a Protein Involved in RNA-Dependent DNA Methylation in Arabidopsis thaliana.

    Science.gov (United States)

    Oliver, Cecilia; Santos, Juan Luis; Pradillo, Mónica

    2016-10-01

    The RNA-directed DNA methylation (RdDM) pathway is important for the transcriptional repression of transposable elements and for heterochromatin formation. Small RNAs are key players in this process by regulating both DNA and histone methylation. Taking into account that methylation underlies gene silencing and that there are genes with meiosis-specific expression profiles, we have wondered whether genes involved in RdDM could play a role during this specialized cell division. To address this issue, we have characterized meiosis progression in pollen mother cells from Arabidopsis thaliana mutant plants defective for several proteins related to RdDM. The most relevant results were obtained for ago4-1 In this mutant, meiocytes display a slight reduction in chiasma frequency, alterations in chromatin conformation around centromeric regions, lagging chromosomes at anaphase I, and defects in spindle organization. These abnormalities lead to the formation of polyads instead of tetrads at the end of meiosis, and might be responsible for the fertility defects observed in this mutant. Findings reported here highlight an involvement of AGO4 during meiosis by ensuring accurate chromosome segregation at anaphase I.

  11. Frequency-dependent effect of nitric oxide donor nitroglycerin on bone.

    Science.gov (United States)

    Wimalawansa, S; Chapa, T; Fang, L; Yallampalli, C; Simmons, D; Wimalawansa, S

    2000-06-01

    Recently, we showed that supplementation with nitric oxide (NO) via donor nitroglycerin (NG) alleviated the ovariectomy and corticosteroid-induced bone loss in rats. In humans, high doses or frequent applications of NG (i.e., for angina) lead to rapid loss of its efficacy in relieving angina. To examine whether there is a similar effect on the loss of efficacy of NG on bone, we examined the frequency-dependent effects of NG on bone mineral density (BMD), bone mass, trabecular bone volumes (BV/TV), and blood pressure in rats. Thirty 7-month-old female Brown Norway rats underwent ovariectomy, and an additional six rats were sham-operated. The ovariectomized rats were treated either with vehicle (ovariectomized control), 17beta-estradiol (E2; positive control), or 0.2 mg NG (via dermal application) once, twice, or three times a day. Before and at the end of the 10-week treatment period, BMD of the lumbar spine was measured by dual-energy X-ray absorptiometric (DXA) scanning and expressed as a percentage change. BMD in ovariectomized rats was significantly lower (-2.5 +/- 2.0%) compared with the sham-operated rats (+6.3 +/- 5.3%; p < 0.01). Estrogen therapy completely abolished the ovariectomy-induced potential bone loss (+5.9 +/- 3.4%). Application of NG once daily also completely prevented (+6.2 +/- 2.8%; p < 0.01) the ovariectomy-induced bone loss (i.e., it was as effective as estrogen). However, the beneficial effects of NG on BMD were significantly reduced with increased frequency of application of NG (+1.9 +/- 2.1%, twice a day and -0.2 +/- 3.3% three times a day). Estrogen or once daily administration of NG preserved femur weights, BV/TV, and decreased urinary deoxypyridinoline levels as expected. However, a higher level of serum osteocalcin and bone-specific alkaline phosphatase levels were maintained only with once daily administration of NG. There were no adverse effects of these doses of NG on blood pressure, but a tendency to lower blood pressure was

  12. Dependence of Brillouin frequency shift on water absorption ratio in polymer optical fibers

    Science.gov (United States)

    Minakawa, Kazunari; Koike, Kotaro; Hayashi, Neisei; Koike, Yasuhiro; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We studied the dependence of the Brillouin frequency shift (BFS) on the water-absorption ratio in poly(methyl methacrylate)-based polymer optical fibers (POFs) to clarify the effect of the humidity on POF-based Brillouin sensors. The BFS, deduced indirectly using an ultrasonic pulse-echo technique, decreased monotonically as the water absorption ratio increased, mainly because of the decrease in the Young's modulus. For the same water absorption ratio, the BFS change was larger at a higher temperature. The maximal BFS changes (absolute values) at 40, 60, and 80 °C were 158, 285, and 510 MHz, respectively (corresponding to the temperature changes of ˜9 °C, ˜16 °C, and ˜30 °C). Thus, some countermeasure against the humidity is indispensable in implementing strain/temperature sensors based on Brillouin scattering in POFs, especially at a higher temperature. On the other hand, Brillouin-based distributed humidity sensors might be developed by exploiting the BFS dependence on water absorption in POFs.

  13. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Tellier Aurélien

    2011-11-01

    Full Text Available Abstract Background Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes. It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. Results Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur

  14. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

    Science.gov (United States)

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  15. Mathematical modelling of frequency-dependent hysteresis and energy loss of FeBSiC amorphous alloy

    Science.gov (United States)

    Koprivica, Branko; Milovanovic, Alenka; Mitrovic, Nebojsa

    2017-01-01

    The aim of this paper is to present a novel mathematical model of frequency-dependent magnetic hysteresis. The major hysteresis loop in this model is represented by the ascending and descending curve over an arctangent function. The parameters of the hysteresis model have been calculated from a measured hysteresis loop of the FeBSiC amorphous alloy sample. A number of measurements have been performed with this sample at different frequencies of the sinusoidal excitation magnetic field. A variation of the coercive magnetic field with the frequency has been observed and used in the modelling of frequency-dependent hysteresis with the proposed model. A comparison between measured and modelled hysteresis loops has been presented. Additionally, the areas of the obtained hysteresis loops, representing the energy loss per unit volume, have been calculated and the dependence of the energy loss on the frequency is shown. Furthermore, two models of the frequency dependence of the coercivity and two models of the energy loss separation have been used for fitting the experimental and simulation results. The relations between these models and their parameters have been observed and analysed. Also, the relations between parameters of the hysteresis model and the parameters of the energy loss separation models have been analysed and discussed.

  16. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  17. Text Dependent Speaker Identification Using a Bayesian network and Mel Frequency Cepstrum Coefficient

    Directory of Open Access Journals (Sweden)

    Mohd. Manjur Alam

    2014-12-01

    Full Text Available Speaker identification is a biometric technique. The objective of automatic speaker recognition is to extract, characterize and recognize the information about speaker identity. Speaker Recognition technology has recently been used in large number of commercial areas successfully such as in voice based biometrics; voice controlled appliances, security control for confidential information, remote access to computers and many more interesting areas. A speaker identification system has two phases which are the training phase and the testing phase. Feature extraction is the first step for each phase in speaker recognition. Many algorithms are suggested by the researchers for feature extraction. In this work, the Mel Frequency Cepstrum Coefficient (MFCC feature has been used for designing a text dependent speaker identification system. While, in the identification phase, the existing reference templates are compared with the unknown voice input. In this thesis, a Bayesian network is used as the training/recognition algorithm which makes the final decision about the specification of the speaker by comparing unknown features to all models in the database and selecting the best matching model. i, e. the highest scored model. The speaker who obtains the highest score is selected as the target speaker.

  18. Plant-soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses.

    Science.gov (United States)

    Chung, Y Anny; Rudgers, Jennifer A

    2016-07-27

    Understanding the mechanisms of species coexistence is key to predicting patterns of species diversity. Historically, the ecological paradigm has been that species coexist by partitioning resources: as a species increases in abundance, self-limitation kicks in, because species-specific resources decline. However, determining coexistence mechanisms has been a particular puzzle for sedentary organisms with high overlap in their resource requirements, such as plants. Recent evidence suggests that plant-associated microbes could generate the stabilizing self-limitation (negative frequency dependence) that is required for species coexistence. Here, we test the key assumption that plant-microbe feedbacks cause such self-limitation. We used competition experiments and modelling to evaluate how two common groups of soil microbes (rhizospheric microbes and biological soil crusts) influenced the self-limitation of two competing desert grass species. Negative feedbacks between the dominant plant competitor and its rhizospheric microbes magnified self-limitation, whereas beneficial interactions between both plant species and biological soil crusts partly counteracted this stabilizing effect. Plant-microbe interactions have received relatively little attention as drivers of vegetation dynamics in dry land ecosystems. Our results suggest that microbial mechanisms can contribute to patterns of plant coexistence in arid grasslands.

  19. Structural and frequency dependencies of a.c. and dielectric characterizations of epitaxial InSb-based heterojunctions

    Indian Academy of Sciences (India)

    A ASHERY; A H ZAKI; M HUSSIEN MOURAD; A M AZAB; A A M FARAG

    2016-08-01

    In this work, heterojunction of InSb/InP was grown by liquid phase epitaxy (LPE). Surface morphology and crystalline structure of the heterojunction were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The frequency and temperature dependences of a.c. conductivity and dielectric properties of the heterojunctions were investigated in the ranges of 100 kHz–5 MHz and 298–628 K, respectively. The a.c. conductivity and its frequency exponents were interpreted in terms of correlated barrier hopping model (CBH), as the dominant conduction mechanism for charge carrier transport. The calculated activation energy, from the Arrhenius plot, was found to decrease with increasing frequency. Experimental results of both dielectric constant $\\epsilon_1$ and dielectric loss $\\epsilon_2$ showed a remarkable dependence of both frequency and temperature.

  20. Measurement of Frequency, Temperature, RF Field Dependence of Surface Resistance of Superconductors Using a Half Wave Cavity

    Science.gov (United States)

    Park, Hyekyoung; Delayen, Jean

    2017-01-01

    A theory of surface resistance of superconductor was rigorously formulated by Bardeen, Cooper, Schrieffer more than 50 years ago. Since then the accelerator community has been used the theory as a guideline to improve the surface resistance of the superconducting cavity. It has been observed that the surface resistance is dependent on frequency, temperature and rf field strength, and surface preparation. To verify these dependences, a well-controlled study is required. Although many different types of cavities have been tested, the typical superconducting cavities are built for specific frequencies of their application. They do not provide data other than at its own frequency. A superconducting half wave cavity is a cavity that enables us to collect the surface resistance data across frequencies of interest for particle accelerators and evaluate preparation techniques. This paper will present the design of the half wave cavity, its electromagnetic mode characteristics and experimental results. Research supported by NSF Award PHY-1416051.

  1. Stimulus Ratio and Level Dependence of Low- and Mid-Frequency Distortion-Product Otoacoustic Emissions

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2014-01-01

    Active amplifiers within the cochlea generate, as a by-product of their function, distortion-product otoacoustic emissions (DPOAEs) in response to carefully chosen two-tone stimuli. Focus has been on invoking emissions in a mid-frequency range from 500 to 4000 Hz. Below 500 Hz, physiological noise...... audiometrically normal hearing for inclusion in our experiment. DPOAEs were measured with pure-tone stimuli in four configurations: f2 fixed around a mid-frequency (2050-2180 Hz), f2 fixed around a low frequency (512-545 Hz), fdp fixed at a mid-frequency (1231 Hz) and fdp low frequency (246 Hz). Eight stimulus...

  2. Dependence of microwave-excitation signal parameters on frequency stability of caesium atomic clock

    Science.gov (United States)

    Petrov, A. A.; Davydov, V. V.; Vologdin, V. A.; Zalyotov, D. V.

    2015-11-01

    New scheme of the microwave - excitation signal for the caesium atomic clock is based on method of direct digital synthesis. The theoretical calculations and experimental research showed decrease step frequency tuning by several orders and improvement the spectral characteristics of the output signal of frequency synthesizer. A range of generated output frequencies is expanded, and the possibility of detuning the frequency of the neighboring resonance of spectral line that makes it possible to adjust the C-field in quantum frequency standard is implemented. Experimental research of the metrological characteristics of the quantum frequency standard on the atoms of caesium - 133 with new design scheme of the microwave - excitation signal showed improvement in daily frequency stability on 1.2*10-14.

  3. Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs

    CERN Document Server

    Hansen, Michael G; Vasilyev, Sergey V; Grisard, Arnaud; Lallier, Eric; Gérard, Bruno; Schiller, Stephan

    2013-01-01

    We demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 \\mu m, which is upconverted to 1.2 \\mu m by sum-frequency generation in orientation-patterned GaAs with the output of a standard high-power cw 1.5 \\mu m fiber laser. Both the 1.2 \\mu m and the 1.5 \\mu m waves are measured by a standard Er:fiber frequency comb. Frequency measurement at the 100 kHz-level, stabilization to sub-10 kHz level, controlled frequency tuning and long-term stability are demonstrated.

  4. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    CERN Document Server

    Rebolini, Elisa

    2015-01-01

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of four small molecules: N2, CO2, H2CO, and C2H4. The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  5. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    Energy Technology Data Exchange (ETDEWEB)

    Ventrillard, I.; Romanini, D.; Mondelain, D.; Campargue, A., E-mail: Alain.Campargue@ujf-grenoble.fr [LIPhy, Université Grenoble Alpes, F-38000 Grenoble (France); LIPhy, CNRS, F-38000 Grenoble (France)

    2015-10-07

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the center of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.

  6. Frequency Scale Factors for Some Double-Hybrid Density Functional Theory Procedures: Accurate Thermochemical Components for High-Level Composite Protocols.

    Science.gov (United States)

    Chan, Bun; Radom, Leo

    2016-08-09

    In the present study, we have obtained geometries and frequency scale factors for a number of double-hybrid density functional theory (DH-DFT) procedures. We have evaluated their performance for obtaining thermochemical quantities [zero-point vibrational energies (ZPVE) and thermal corrections for 298 K enthalpies (ΔH298) and 298 K entropies (S298)] to be used within high-level composite protocols (using the W2X procedure as a probe). We find that, in comparison with the previously prescribed protocol for optimization and frequency calculations (B3-LYP/cc-pVTZ+d), the use of contemporary DH-DFT methods such as DuT-D3 and DSD-type procedures leads to a slight overall improved performance compared with B3-LYP. A major strength of this approach, however, lies in the better robustness of the DH-DFT methods in that the largest deviations are notably smaller than those for B3-LYP. In general, the specific choices of the DH-DFT procedure and the associated basis set do not drastically change the performance. Nonetheless, we find that the DSD-PBE-P86/aug'-cc-pVTZ+d combination has a very slight edge over the others that we have examined, and we recommend its general use for geometry optimization and vibrational frequency calculations, in particular within high-level composite methods such as the higher-level members of the WnX series of protocols. The scale factors determined for DSD-PBE-P86/aug'-cc-pVTZ+d are 0.9830 (ZPVE), 0.9876 (ΔH298), and 0.9923 (S298).

  7. Magnetostriction Dependence of the Relaxation Frequency in the Magnetoimpedance Effect for Amorphous and Nanocrystalline Ribbons

    Institute of Scientific and Technical Information of China (English)

    M.L.Sánchez; V.M.Prida; B.Hernando; G.V.Kurlyandskaya; J.D.Santos; M.Tejedor; M.Vázquez

    2002-01-01

    The magnetoimpedance effect and changes of the relaxation frequency fx are studied in CoFeSiB and CoFeMoSiB amorphous and FeCuNbSiB nanocrystalline ribbons. The evolution of the magnetostriction constant λs and relaxation frequency is analysed for the states with different magnetic anisotropies induced in the same ribbons.A monotonic decrease of the relaxation frequency is observed for shifting of λs towards positive values.

  8. Power dependence of terahertz carrier frequency in a plasma-based two-color generation process

    Science.gov (United States)

    Zhao, Ji; Zhang, Liang-Liang; Luo, Yi-Man; Wu, Tong; Zhang, Cun-Lin; Zhao, Yue-Jin

    2014-12-01

    We conduct a frequency spectrum experiment to investigate terahertz (THz) emissions from laser-induced air plasma under different laser incident powers. The frequency spectra are measured using both air-biased-coherent detection and a Michelson interferometer. The red-shift of the THz pulse carrier frequency is observed as a response to increased pump power. These phenomena are related to plasma collisions and can be explained by the plasma collision model. Based on these findings, it is apparent that the tuning of the THz carrier frequency can be achieved through regulation of the pump beam.

  9. Rupture and frequency-dependent seismic radiation of the 2012 Mw 8.6 Sumatra strike-slip earthquake

    Science.gov (United States)

    Yin, Jiuxun; Yao, Huajian

    2016-06-01

    On 2012 April 11, a great strike-slip earthquake (moment magnitude of Mw 8.6) occurred off the west coast of northern Sumatra area followed by an Mw 8.2 aftershock 2 hr later. Different geophysical data and methods have been used to investigate the mechanism, faulting, seismic radiation and slip propagation of this event, but frequency-dependent features of its rupture process have not been discussed much. In this study, we use a compressive sensing method based on sparsity inversion in the frequency domain to study the frequency-dependent seismic radiation and rupture process of this event. Our results indicate a very complex rupture process concerning at least three different rupture stages on multiple subfaults with nearly conjugate geometries. The main shock has triggered seismicity on a series of ridge-perpendicular or ridge-parallel conjugate strike-slip faults around the Nighty East Ridge. Obvious frequency-dependent rupture process has been presented and discussed. Combining results from slip inversion based on the finite-fault model, we observe that in the beginning stage of the rupture lower frequency radiation appears to originate from the areas with large slip, while the high-frequency radiation is located at the boundary of large-slip region or rupture front. Some radiation probably originates from the repeating slip on the main faults or triggered events on some nearby faults in the rupture area. The complex frequency-dependent seismic radiation patterns observed in this study provide important information for future investigation of rupture physics of this complex strike-slip event.

  10. Design and fabrication of a low-frequency (1-3 MHz) ultrasound transducer for accurate placement of screw implants in the spine

    Science.gov (United States)

    Manbachi, Amir; Lee, Mike; Foster, F. Stuart; Ginsberg, Howard J.; Cobbold, Richard S. C.

    2014-03-01

    In 2012 approximately 800,000 spinal fusion surgeries were performed in the United States, requiring the insertion of screws into the pedicles. Their exact placement is critical and made complex due to limited visibility of the spine, continuous bleeding in the exposed regions, and variability in morphologies. The alarmingly high rate of screw misplacements (up to 20%) reported in the literature is of major concern since such misplacements can place the surrounding vital structures at risk. A potential guidance method for determining the best screw trajectory is by the use of real-time ultrasound imaging similar to that used for intravascular imaging. An endovascular transducer could be inserted into the pedicle to image the anatomy from within and identify bone boundaries. A major challenge of imaging within bone is high signal attenuation. The rapid increase of attenuation with frequency requires much lower frequencies (1-3 MHz) than those used in intravascular imaging. This study describes the custom design and fabrication of 2 MHz ultrasound probes (3.5 mm diameter/ 11 Fr) for pedicle screw guidance. Three transducer designs are explored to provide improved sensitivity and signal to noise ratio, compared to the previously tested transducer within the pedicle. Experimental measurements are compared with the results obtained using various simulation tools. The work reported in this paper represents the first stage in our ultimate goal of developing a 32- element phased array that is capable of generating a radial B-mode image.

  11. AC losses in sintered high-temperature superconductors. Dependence on frequency and intergranular lower critical field

    Energy Technology Data Exchange (ETDEWEB)

    Lofland, S.; Huang, M.X.; Bhagat, S.M. (Dept. of Physics and Center for Superconductivity Research, Univ. of Maryland, College Park (United States))

    1992-12-10

    The intergranular AC susceptibility loss peak in high-Tc superconductors is measured as a function of frequency and field amplitude. The variation of peak temperature with frequency is strongly influenced by the grain size. For large grains, the maximum loss increases with field amplitude. This is ascribed to a non-zero intergranular lower critical field H[sub cl]. (orig.).

  12. Requirements on Needed Frequency Bandwidth Depending on Pulse Waveforms and Their Allowed Distortion

    Science.gov (United States)

    Sigmund, Milan; Brancik, Lubomir

    2016-12-01

    This paper deals with pulse signals influenced by loss of energy in high frequency band. Five types of pulses were tested and evaluated under various conditions. Achieved results can be helpful for some specific tasks in signal transmission. An example presents highest frequency of periodic pulse signals processed on printed circuit board.

  13. Orbital-optimized coupled-electron pair theory and its analytic gradients: accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions.

    Science.gov (United States)

    Bozkaya, Uğur; Sherrill, C David

    2013-08-07

    Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N(6)) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm(-1)) is fortuitously even better than that of CCSD(T) (50 cm(-1)), while the MAEs of CEPA(0) (184 cm(-1)) and CCSD (84 cm(-1)) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol(-1), which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol(-1)), and comparing to MP2 (7.7 kcal mol(-1)) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is

  14. Polarization dependence of the direct two photon transitions of 87Rb atoms by erbium: Fiber laser frequency comb

    Science.gov (United States)

    Dai, Shaoyang; Xia, Wei; Zhang, Yin; Zhao, Jianye; Zhou, Dawei; Wang, Qing; Yu, Qi; Li, Kunqian; Qi, Xianghui; Chen, Xuzong

    2016-11-01

    The femtosecond fiber-based optical frequency combs have been proved to be powerful tools for investigating the energy levels of atoms and molecules. In this paper, an Er-doped fiber femtosecond optical frequency comb has been implemented for studying the polarization dependence of 5S-5D two-photon transitions in thermal gas of atomic rubidium 87 using an entirely symmetrical optical configuration. By changing the polarization states of the counter-propagating light beams, the polarization dependence of direct two photon transition spectrum is demonstrated, and a dramatic variation (up to 5.5 times) of the two-photon transitions strength has been observed. The theory for the polarization dependence of two photon transition based on the second-order perturbation was established, which is in good agreement with the experimental results. The measurement results indicate that the polarization state manipulation with the existing frequency comb is used for femtosecond optical frequency comb based two photon transition spectroscopic purposes, which will improve the precision measurement of the absolute transition frequency and related applications.

  15. Frequency Dependent Non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study

    Science.gov (United States)

    Floros, Stelios; Liakopoulou-Kyriakides, Maria; Karatasos, Kostas

    2017-01-01

    The use of microwaves in every day’s applications raises issues regarding the non thermal biological effects of microwaves. In this work we employ molecular dynamics simulations to advance further the dielectric studies of protein solutions in the case of lysozyme, taking into consideration possible frequency dependent changes in the structural and dynamic properties of the system upon application of electric field in the microwave region. The obtained dielectric spectra are identical with those derived in our previous work using the Fröhlich-Kirkwood approach in the framework of the linear response theory. Noticeable structural changes in the protein have been observed only at frequencies near its absorption maximum. Concerning Cα position fluctuations, different frequencies affected different regions of the protein sequence. Furthermore, the influence of the field on the kinetics of protein-water as well as on the water-water hydrogen bonds in the first hydration shell has been studied; an extension of the Luzar-Chandler kinetic model was deemed necessary for a better fit of the applied field results and for the estimation of more accurate hydrogen bond lifetime values. PMID:28129348

  16. Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states

    DEFF Research Database (Denmark)

    van Driel, A. F.; Allan, G.; Delerue, C.;

    2005-01-01

    We studied the rate of spontaneous emission from colloidal CdSe and CdTe nanocrystals at room temperature. The decay rate, obtained from luminescence decay curves, increases with the emission frequency in a supralinear way. This dependence is explained by the thermal occupation of dark exciton...

  17. Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells

    Science.gov (United States)

    Adams, T. N. G.; Leonard, K. M.; Minerick, A. R.

    2013-01-01

    Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs. PMID:24396548

  18. Dependence of in-situ Bose condensate size on final frequency of RF-field in evaporative cooling

    Science.gov (United States)

    Mishra, S. R.; Ram, S. P.; Tiwari, S. K.; Rawat, H. S.

    2017-04-01

    We report the results of in-situ characterization of 87Rb atom cloud in a quadrupole Ioffe configuration (QUIC) magnetic trap after a radio-frequency (RF) evaporative cooling of the trapped atom cloud. The in-situ absorption images of the atom cloud have shown clear bimodal optical density (OD) profiles which indicate the Bose-Einstein condensation (BEC) phase transition in the trapped gas. Also, we report here, for the first time, the measured variation in the sizes of the condensate and thermal clouds with the final frequency selected in the frequency scan of the RF-field for evaporative cooling. These results on frequency-dependent sizes of the clouds are consistent with the theoretical understanding of the BEC phenomenon in the trap.

  19. Field dependence of the complex resistivity of YBa_2Cu_3O_7-δ thin films at high frequencies

    Science.gov (United States)

    Wu, Dong Ho; Booth, James C.; Anlage, Steven M.

    1996-03-01

    We have measured the complex resistivity ρ_1(H,ω) + i ρ_2(H,ω) of YBa_2Cu_3O_7-δ thin films with field variation at various fixed frequencies from 45 MHz through 50 GHz.footnote[1]Dong Ho Wu, James C. Booth and Steven M. Anlage, Phys. Rev. Lett. 75 , 525 (1995) Experiments indicate that the real part of the resistivity follows a power law (ρ_1(H) ~ H^n with n>=4) field dependence at frequencies below a characteristic frequency. In contrast, ρ_1(H) follows a single particle model at frequencies above the characteristic frequency, exhibiting a magnetic field crossover at a characteristic field. For all frequencies, the imaginary part of the resistivity shows a peak at a field denoted as H_peak. Analysis suggests that the H_peak discretely decreases with increasing measurement frequency ω for T < T_c. Analysis and interpretation on these behaviors of the complex resistivity will be presented.

  20. Time and frequency dependence of disposable ECG electrode-skin impedance.

    Science.gov (United States)

    Olson, W H; Schmincke, D R; Henley, B L

    1979-01-01

    The magnitude and phase of disposable electrode-skin impedance were studied as functions of time, 0-48 hours, and frequency, 1 Hz-1 kHz. For both unabraded and mildly abraded skin, the impedance decreased as a function of time steadily or exponentially with time constants of several hours. Impedance decreased as a function of frequency by factors of 2 to 20 with greatest change at low frequencies. For heavily abraded skin, the impedance decreased slightly and then increased as a function of time especially at low frequencies. Impedance imbalance between pairs of identical electrodes applied in a like manner to the forearm were often greater than k omega, nearly equal to individual electrode-skin impedances, and decreased with time. Electrode impedance imbalance is particularly important because it affects noise levels in ECG recordings.

  1. Accurate measurement of ultrasonic velocity by eliminating the diffraction effect

    Institute of Scientific and Technical Information of China (English)

    WEI Tingcun

    2003-01-01

    The accurate measurement method of ultrasonic velocity by the pulse interferencemethod with eliminating the diffraction effect has been investigated in VHF range experimen-tally. Two silicate glasses were taken as the specimens, their frequency dependences of longitu-dinal velocities were measured in the frequency range 50-350 MHz, and the phase advances ofultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoreticalexpression. For the frequency dependences of longitudinal velocities, the measurement resultswere in good agreement with the simulation ones in which the phase advances were included.It has been shown that the velocity error due to diffraction effect can be corrected very well bythis method.

  2. Sustained Exocytosis after Action Potential-Like Stimulation at Low Frequencies in Mouse Chromaffin Cells Depends on a Dynamin-Dependent Fast Endocytotic Process

    Science.gov (United States)

    Moya-Díaz, José; Álvarez, Yanina D.; Montenegro, Mauricio; Bayonés, Lucas; Belingheri, Ana V.; González-Jamett, Arlek M.; Cárdenas, Ana M.; Marengo, Fernando D.

    2016-01-01

    Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls). The exocytosis triggered by APls (ETAP) represents a fraction (40%) of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 ± 0.11 s, fast enough to maintain synchronous exocytosis at 0.2–0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ = 0.53 ± 0.01 s). In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz). Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies. PMID:27507935

  3. SUSTAINED EXOCYTOSIS AFTER ACTION POTENTIAL-LIKE STIMULATION AT LOW FREQUENCIES IN MOUSE CHROMAFFIN CELLS DEPENDS ON A DYNAMIN-DEPENDENT FAST ENDOCYTOTIC PROCESS

    Directory of Open Access Journals (Sweden)

    José Moya-Díaz

    2016-07-01

    Full Text Available Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls. The exocytosis triggered by APls (ETAP represents a fraction (40% of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 +/- 0.11 s, fast enough to maintain synchronous exocytosis at 0.2-0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ=0.53±0.01 s. In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz. Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies.

  4. Ribbon thickness dependence of the Magnetic Alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons

    Science.gov (United States)

    Nomura, M.; Shimada, T.; Tamura, F.; Yamamoto, M.; Hara, K.; Hasegawa, K.; Ohmori, C.; Takata, K.; Toda, M.; Yoshii, M.; Schnase, A.

    2014-06-01

    We employ Magnetic Alloy (MA) core loaded RF cavities for the J-PARC synchrotrons to achieve a high field gradient. The MA core has a laminated structure of 18 μm thick ribbon layers. We have been developing high shunt impedance MA cores to prepare for an increase of beam power. At low frequencies, it is well known that the eddy current loss in the ribbon is proportional to the square of the ribbon thickness. The MA core shunt impedance can be increased by using thinner ribbons. On the other hand, at high frequencies, the MA core magnetic characteristics are largely different from low frequencies. Using thinner ribbons might be effective to increase the MA core shunt impedance in the accelerating frequency region of the J-PARC synchrotrons. We reviewed the theoretical calculations of the ribbon thickness dependence of the MA core magnetic characteristics and we derived the ribbon thickness dependence from measured data. The measured data show that the MA core shunt impedance is inversely proportional to the ribbon thickness in the accelerating frequency region of the J-PARC synchrotrons, which is consistent with our calculations.

  5. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Hamilton, E-mail: hcarter3@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Pate, Stephen, E-mail: pate@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Goedecke, George, E-mail: ggoedeck@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-02-14

    Highlights: ► AC magnetic field strength required for levitation is independent of frequency. ► RMS magnetic field strength is in good agreement with DC magnetic field strength. ► Dependence of YBCO levitation force on AC magnetic field frequency is investigated. -- Abstract: The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  6. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    Science.gov (United States)

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype.

  7. Resonance frequency dependence on out-of-plane forces for square silicon membranes: applications to a MEMS gradiometer

    CERN Document Server

    Lucas del Pozo, Irene; Michelena, M D; de Manuel, V; Duch, M; Esteve, J; Plaza, J A

    2010-01-01

    The dynamic properties of membranes have been object of many researches since they can be used as sensor heads in different devices. Some methods have been proposed to solve the problem of determining the resonance frequencies and their dependence on the stress caused by forces applied on the membrane surface. The problem of the vibrating rectangular membrane under a stress caused by a uniform in-plane force is well known. However, the resonance frequency behaviour when the force is out-of-plane instead of in-plane, is not so well understood and documented. A gradiometer which uses a silicon square membrane with a magnet fixed on it as a sensor head has been developed in a previous work. This device reports a quadratic dependence of the frequency on the out-of-plane magnetic force. In this work, simulations to obtain the dependence of the frequency of the fundamental flexural mode on the stress have been performed. It has been studied the influence of in-plane and out-of-plane forces applied to the membrane. ...

  8. Predicting the Sabine absorption coefficients of fibrous absorbers for various air backing conditions with a frequency-dependent diffuseness correction

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    Fibrous absorbers can be installed with various air backing conditions to fulfil a given low frequency acoustic requirement. Since absorber manufacturers cannot provide the absorption coefficients for all possible mounting conditions, acousticians have difficulties knowing the absorption...... characteristics of their own configurations. This study aims to predict the absorption coefficient for various mounting conditions from a single measurement of an arbitrary mounting condition by extracting the air flow resistivity of the test specimen and the frequency-dependent effect of the chamber...... on the measured absorption coefficients. With two homogeneous fibrous absorbers, the predicted absorption coefficients agree well with the measurements....

  9. Self-perception and dissatisfaction with weight does not depend on the frequency of physical activity

    Directory of Open Access Journals (Sweden)

    Araújo Denise Sardinha Mendes Soares de

    2003-01-01

    Full Text Available OBJECTIVE: To evaluate the level of satisfaction with body weight and the self-perception of the weight/height ratio and to verify the influence of the frequency of present and past physical activity on these variables. METHODS: Using questionnaires or interviews, we obtained height data, reported and desired weight, self-perception of the weight/height ratio, and the frequency of current physical activity in 844 adults (489 women. Of these, evaluated the frequency of physical activity during high school of 193 individuals,and we measured their height and weight. RESULTS: Less than 2/3 of the individuals had body mass index between 20 and 24.9 kg/m2. A tendency existed to overestimate height by less than 1 cm and to underestimate weight by less than 1kg. Desired weight was less than that reported (p<0.001, and only 20% were satisfied with their current weight. Only 42% of men and 25% of women exercised regularly. No association was found between the frequency of physical activity and the variables height, weight, and body mass index, and the level of satisfaction with current weight. CONCLUSION: Height and weight reported seem to be valid for epidemological studies, and great dissatisfaction with body weight and a distorted self-perception of height/weight ratio exists, especially in women, regardless of the frequency of physical activity.

  10. Classical and quantum harmonic oscillators with time dependent mass and frequency: A new class of exactly solvable model

    Science.gov (United States)

    Mandal, Swapan

    2017-03-01

    The classical harmonic oscillator with time dependent mass and frequency is investigated to obtain a closed form exact analytical solution. It is found that the closed form analytical solutions are indeed possible if the time dependent mass of the oscillator is inversely proportional to the time dependent frequency. The scaled wronskian obtained from the linearly independent solutions of the equation of motion of the classical oscillator is used to obtain the solution corresponding to its quantum mechanical counterpart. The analytical solution of the present oscillator is used to obtain the squeezing effects of the input coherent light. In addition to the possibilities of getting the squeezed states, the present solution will be of use for investigating various quantum statistical properties of the radiation fields. As an example, we investigate the antibunching of the input thermal (chaotic) light coupled to the oscillator. Therefore, the appearance of the photon antibunching does not warrant the squeezing and vice-versa. The exact solution is obtained at the cost of the stringent condition where the product of time dependent mass and frequency of the oscillator is time invariant.

  11. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces.

    Science.gov (United States)

    Di Bernardo, A; Diesch, S; Gu, Y; Linder, J; Divitini, G; Ducati, C; Scheer, E; Blamire, M G; Robinson, J W A

    2015-01-01

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces.

  12. Frequency Dependence of Rotor's Free Falling Acceleration and Inequality of Inertial and Gravity Masses

    CERN Document Server

    Dmitriev, Alexander L

    2011-01-01

    Results of measurements of free falling acceleration of a closed container with a rotor of a mechanical gyroscope placed inside it on the frequency of the rotor rotation are briefly described. Time of separate accelerations measurements is 40 ms, the period of sampling is from 0.5 up to 1.0 minute. In rotation's frequencies range of 20-400 Hz, the negative changes of free falling container acceleration prevail. On individual frequencies the "resonant" maxima and minima of acceleration are observed. The obtained data apparently contradict the equivalence principle of inertial and gravitating masses. The expediency of development of ballistic gravimetry of high time resolution with use of rotating or oscillating test bodies is noted.

  13. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.

    Science.gov (United States)

    Rosenbaum, Robert; Rubin, Jonathan; Doiron, Brent

    2012-01-01

    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse.

  14. Analysis of Age Dependent Effects of Heat Stress on EEG Frequency Components in Rats

    Institute of Scientific and Technical Information of China (English)

    RAKESH KUMAR SINHA

    2009-01-01

    Objective To demonstrate changes in different frequencies of cerebral electrical activity or electroencephalogram (EEG) following exposure to high environmental heat in three different age groups of freely moving rats. Methods Rats were divided into three groups (i) acute heat stress - subjected to a single exposure for four hours at 38 ℃; (ii) chronic heat stress -exposed for 21 days daily for one hour at 38 ℃, and (iii) handling control groups. The digital polygraphic sleep-EEG recordings were performed just after the heat exposure from acute stressed rats and on 22nd day from chronic stressed rats by simultaneous recording of cortical EEG EOG (electrooculogram), and EMG (electromyogram). Further, power spectrum analyses were performed to analyze the effects of heat stress. Results The frequency analysis of EEG signals following exposure to high environmental heat revealed that in all three age groups of rats, changes in higher frequency components (β2) were significant in all sleep-wake states following both acute and chronic heat stress conditions. After exposure to acute heat, significant changes in EEG frequencies with respect to their control groups were observed, which were reversed partly or fully in four hours of EEG recording. On the other hand, due to repetitive chronic exposure to hot environment, adaptive and long-term changes in EEG frequency patterns were observed. Conclusion The present study has exhibited that the cortical EEG is sensitive to environmental heat and alterations in EEG frequencies in different sleep-wake states due to heat stress can be differentiated efficiently by EEG power spectrum analysis.

  15. Modeling and Scaling of Hysteresis in Magnetic Materials. Frequency, Pick of Induction and Temperature Dependence

    CERN Document Server

    Sokalski, Krzysztof Z

    2015-01-01

    Recently introduced model of magnetic hysteresis was extended into set of the following features: frequency, pick of induction and temperature of specimen. Group theoretical classification of hysteresis loops' sets is presented. An effect analogous to the Zeeman splitting has been revealed in the set of the all hysteresis loops.

  16. Stepped Frequency GPR for Utility Line Detection using Polarization Dependent Scattering

    DEFF Research Database (Denmark)

    Jensen, Ole Kiel; Gregersen, Ole

    2000-01-01

    filtering with averaging over small horizontal displacements. A stepped frequency measurement system is used. The method often implies long measurement times, but this problem is overcome by development of fast RF-electronics. Standard signal processors are used for real-time data processing. Several...

  17. Ethyl benzene-induced ototoxicity in rats : a dose-dependent mild-frequency hearing loss

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Baretta, A.B.; Muijser, H.; Smoorenburg, G.F.

    2000-01-01

    Rats were exposed to ethyl benzene at 0, 300, 400 and 550 ppm for 8 hours/day for 5 consecutive days. Three to six weeks after the exposure, auditory function was tested by measuring compound action potentials (CAP) in the frequency range of 1-24 kHz and 2f1-f2 distortion product otoacoustic emissio

  18. Simplified frequency-dependent formulae for series-impedance matrices of single-core HVAC cables

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da

    2015-01-01

    The installation of HVAC underground cables became more common in recent years, a trend expected to continue in the future. Underground cables are more complex than overhead lines and the calculation of their resistance and reactance can be challenging and time consuming for frequencies that are ...

  19. Can the frequency-dependent specific heat be measured by thermal effusion methods?

    OpenAIRE

    Christensen, Tage; Olsen, Niels Boye; Dyre, Jeppe C.

    2007-01-01

    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.

  20. The Frequency-Predictability Interaction in Reading: It Depends Where You're Coming from

    Science.gov (United States)

    Hand, Christopher J.; Miellet, Sebastien; O'Donnell, Patrick J.; Sereno, Sara C.

    2010-01-01

    A word's frequency of occurrence and its predictability from a prior context are key factors determining how long the eyes remain on that word in normal reading. Past reaction-time and eye movement research can be distinguished by whether these variables, when combined, produce interactive or additive results, respectively. Our study addressed…

  1. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input

    Science.gov (United States)

    Happel, Max F. K.; Ohl, Frank W.

    2017-01-01

    Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI) of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD) analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex. PMID:28046062

  2. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Science.gov (United States)

    Carter, Hamilton; Pate, Stephen; Goedecke, George

    2013-02-01

    The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  3. Temperature and frequency dependent dielectric properties of Ni–Mg–Zn–Co ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S.B., E-mail: sarjeraopatil97@gmail.com [Krantisinh Nana Patil College, Walwa, Sangli 416313, Maharashtra (India); Patil, R.P. [Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi 416206, Maharashtra (India); Ghodake, J.S. [Department of Physics, Padmabhushan Dr. Vasantraodada Patil College, Tasgaon, Sangli 416312, Maharashtra (India); Chougule, B.K. [Materials Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, Maharashtra (India)

    2014-01-15

    The ferrites having general formula Ni{sub 0.5−x}Mg{sub x−0.01}Zn{sub 0.5−y}Co{sub y+0.01}Fe{sub 2}O{sub 4} (x=0.1, 0.2, 0.3, 0.4 and y=0.1, 0.2, 0.3, 0.4) were prepared by ceramic method. The X-ray diffraction studies of compositions reveal formation of single-phase cubic spinal structure. Dielectric properties such as dielectric constant ε′, dielectric loss tangent (tan δ), and ac resistivity were measured at room temperature as a function of frequency in the range from 1 kHz to 1 MHz. The plots of dielectric constant ε′ vs frequency show a normal dielectric behavior of spinel ferrites. The variation of loss tangent (tan δ) as a function of frequency shows a decreasing trend for all the samples except for the composition with x=0.3 and y=0.1, and y=0.2. The variation of ac resistivity with frequency of all the samples shows a decreasing trend with increase in frequency, a normal behavior of ferrites. All the variations are explained on the basis of Fe{sup 2+}/Fe{sup 3+} ion concentration on octahedral sites as well as the electronic hopping between Fe{sup 2+}↔Fe{sup 3+} ions. - Highlights: • Ni{sub 0.5−x}Mg{sub x−0.01}Zn{sub 0.5−y}Co{sub y+0.01}Fe{sub 2}O{sub 4} were prepared by ceramic method. • Single-phase cubic spinal structure. • Normal dielectric behavior.

  4. Magnetic field dependence of the lowest-frequency edge-localized spin wave mode in a magnetic nanotriangle.

    Science.gov (United States)

    Lin, C S; Lim, H S; Wang, Z K; Ng, S C; Kuok, M H; Adeyeye, A O

    2011-03-01

    An understanding of the spin dynamics of nanoscale magnetic elements is important for their applications in magnetic sensing and storage. Inhomogeneity of the demagnetizing field in a non-ellipsoidal magnetic element results in localization of spin waves near the edge of the element. However, relative little work has been carried out to investigate the effect of the applied magnetic fields on the nature of such localized modes. In this study, micromagnetic simulations are performed on an equilateral triangular nanomagnet to investigate the magnetic field dependence of the mode profiles of the lowest-frequency spin wave. Our findings reveal that the lowest-frequency mode is localized at the base edge of the equilateral triangle. The characteristics of its mode profile change with the ground state magnetization configuration of the nanotriangle, which, in turn, depends on the magnitude of the in-plane applied magnetic field.

  5. The neural code for auditory space depends on sound frequency and head size in an optimal manner.

    Directory of Open Access Journals (Sweden)

    Nicol S Harper

    Full Text Available A major cue to the location of a sound source is the interaural time difference (ITD-the difference in sound arrival time at the two ears. The neural representation of this auditory cue is unresolved. The classic model of ITD coding, dominant for a half-century, posits that the distribution of best ITDs (the ITD evoking a neuron's maximal response is unimodal and largely within the range of ITDs permitted by head-size. This is often interpreted as a place code for source location. An alternative model, based on neurophysiology in small mammals, posits a bimodal distribution of best ITDs with exquisite sensitivity to ITDs generated by means of relative firing rates between the distributions. Recently, an optimal-coding model was proposed, unifying the disparate features of these two models under the framework of efficient coding by neural populations. The optimal-coding model predicts that distributions of best ITDs depend on head size and sound frequency: for high frequencies and large heads it resembles the classic model, for low frequencies and small head sizes it resembles the bimodal model. The optimal-coding model makes key, yet unobserved, predictions: for many species, including humans, both forms of neural representation are employed, depending on sound frequency. Furthermore, novel representations are predicted for intermediate frequencies. Here, we examine these predictions in neurophysiological data from five mammalian species: macaque, guinea pig, cat, gerbil and kangaroo rat. We present the first evidence supporting these untested predictions, and demonstrate that different representations appear to be employed at different sound frequencies in the same species.

  6. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects

    Directory of Open Access Journals (Sweden)

    Faten eMina

    2013-07-01

    Full Text Available A number of studies showed that deep brain stimulation (DBS can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in responding patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG data.We developed a macroscopic (neural mass model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy with a focal cortical dysplasia (FCD. In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, < 2 Hz and high-frequency stimulation (HFS, > 70 Hz while intermediate-frequency stimulation (IFS, around 50 Hz had no effect.Signal processing, clustering and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include a feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and b inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.

  7. The neural code for auditory space depends on sound frequency and head size in an optimal manner.

    Science.gov (United States)

    Harper, Nicol S; Scott, Brian H; Semple, Malcolm N; McAlpine, David

    2014-01-01

    A major cue to the location of a sound source is the interaural time difference (ITD)-the difference in sound arrival time at the two ears. The neural representation of this auditory cue is unresolved. The classic model of ITD coding, dominant for a half-century, posits that the distribution of best ITDs (the ITD evoking a neuron's maximal response) is unimodal and largely within the range of ITDs permitted by head-size. This is often interpreted as a place code for source location. An alternative model, based on neurophysiology in small mammals, posits a bimodal distribution of best ITDs with exquisite sensitivity to ITDs generated by means of relative firing rates between the distributions. Recently, an optimal-coding model was proposed, unifying the disparate features of these two models under the framework of efficient coding by neural populations. The optimal-coding model predicts that distributions of best ITDs depend on head size and sound frequency: for high frequencies and large heads it resembles the classic model, for low frequencies and small head sizes it resembles the bimodal model. The optimal-coding model makes key, yet unobserved, predictions: for many species, including humans, both forms of neural representation are employed, depending on sound frequency. Furthermore, novel representations are predicted for intermediate frequencies. Here, we examine these predictions in neurophysiological data from five mammalian species: macaque, guinea pig, cat, gerbil and kangaroo rat. We present the first evidence supporting these untested predictions, and demonstrate that different representations appear to be employed at different sound frequencies in the same species.

  8. Frequency dependence of the magnetostrictive phenomenon in Metglas® 2605SA1 ribbon: A minor-loop case

    Directory of Open Access Journals (Sweden)

    S. U. Jen

    2014-12-01

    Full Text Available Frequency dependence of magnetostrictive phenomenon of as-cast 2605SA1 ribbon was studied. We applied a sinusoidal sweeping field (H, with a fixed frequency (f, along length (L of the ribbon, and simultaneously recorded the longitudinal magnetostriction (λ∥ and the transverse magnetostriction (λ⊥ as a function of time (t, respectively. f was varied from 0.07 to 122 Hz. In the low-f case (f =0.07 Hz, we observed the frequency-doubling (FD feature in λ∥(t and λ⊥(t curves; i.e., only even harmonic magnetostrictive signals showed up. In the high-f case (f = 122 Hz, we observed the no-frequency-doubling (NFD feature; i.e., both odd and even harmonic magnetostrictive signals showed up. A theory, based on the balance among various torques acting on magnetization, is developed to explain the f dependence of the magnetostriction phenomenon observed. From this theory, we conclude that only when the reflection symmetry of the system is reserved, i.e., when the equivalent easy axis (EEA is perpendicular to L, will λ∥(t and λ⊥(t have the true-frequency-doubling (TFD feature. However, for the as-cast 2605SA1 ribbon, EEA is not perpendicular to L. Thus, strictly speaking, we should observe the NFD feature only. Nevertheless, in the low-f limit, we can show that the FD feature is somewhat allowed under the condition, b/α being close to 1, where b and α are the two parameters used in the theory. From experimental data, this condition is met for as-cast 2605SA1. To make a distinction from TFD, this low-f feature is called close-frequency-doubling (CFD in this paper. In general, the theory explains all the experimental results fairly well.

  9. CaMKII inhibition targeted to the sarcoplasmic reticulum inhibits frequency dependent acceleration of relaxation and Ca2+ current facilitation

    OpenAIRE

    Picht, Eckard; DeSantiago, Jaime; Huke, Sabine; Kaetzel, Marcia A.; Dedman, John R.; Bers, Donald M.

    2006-01-01

    Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) in heart has been implicated in Ca2+ current (ICa) facilitation, enhanced sarcoplasmic reticulum (SR) Ca2+ release and frequency dependent acceleration of relaxation (FDAR) via enhanced SR Ca2+ uptake. However, questions remain about how CaMKII may work in these three processes. Here we tested the role of CaM-KII in these processes using transgenic mice (SR-AIP) that express four concatenated repeats of the CaMKII inhibitory peptide...

  10. Frequency-dependent reduction of voltage-gated sodium current modulates retinal ganglion cell response rate to electrical stimulation

    Science.gov (United States)

    Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2011-10-01

    The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.

  11. Influence of frequency-dependent soil electrical parameters on the evaluation of lightning electromagnetic fields in air and underground

    Science.gov (United States)

    Delfino, Federico; Procopio, Renato; Rossi, Mansueto; Rachidi, Farhad

    2009-06-01

    This paper is aimed at analyzing the influence of the frequency-dependent behavior of the ground electrical parameters (conductivity and ground permittivity) on the electromagnetic field radiated by a cloud-to-ground lightning return stroke. Both radiation in air (over the conducting ground plane) and underground are considered in the analysis. The adopted method is based on the classical Sommerfeld's theory and takes advantage of an efficient ad hoc numerical procedure to face with the slow converging Sommerfeld's integrals. This feature allows the electromagnetic field to be computed without any sort of mathematical approximation and, since it is carried out in the frequency domain, can be used either if the ground permittivity and conductivity are considered constant or if they vary with the working frequency with any functional law. Simulations have been performed to identify the cases in which the approximation of constant ground permittivity and conductivity leads to satisfactory results. It is shown that for soils with water contents of 2% to 10% (ground conductivities in the order of 0.001 to 0.01 S/m), the assumption of constant electrical parameters appears to be reasonable. However, for either very poorly conducting soils (10-4 S/m or so) or highly conducting soils (10-1 S/m), the electromagnetic field components appear to be significantly affected by the frequency dependence of the ground electrical parameters.

  12. Modulation-frequency dependencies of the intensity and the phase delay of photoinduced absorption from conjugated polymers

    Science.gov (United States)

    Furukawa, Yukio

    2000-03-01

    The modulation-frequency dependencies of the intensity and the phase delay of photoinduced infrared absorption from poly(p-phenylene) have been observed and simulated numerically on the basis of a model based on second-order kinetics involving a neutralization recombination process between the positive and negative charge carriers (polarons) that are formed from a photogenerated polaron pair (interchain charge-transfer exciton). The rate constant of the bimolecular recombination has been obtained.

  13. Capacitively-Coupled Resistivity measurements to determine frequency dependent electrical parameters in periglacial environment - theoretical considerations and first field tests.

    Science.gov (United States)

    Przyklenk, A.; Hördt, A.; Radić, T.

    2016-05-01

    Capacitively-Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, i.e. the resistivity and the electrical permittivity, by analyzing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion, that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the fist time, we used a novel broadband CCR device "Chameleon" for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependance of the electrical parameters was parameterized in 3 different ways. A Debye Model for pure ices, a Cole-Cole Model for pure ices and a dual Cole-Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low and high frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.

  14. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2015-12-31

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  15. Analysis of frequency- and temperature-dependent interface states in PtSi/p-Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Sellai, A. [Physics Department, P.O. Box 36, Sultan Qaboos University 123, Muscat (Oman)], E-mail: asellai@squ.edu.om; Ouennoughi, Z. [Laboratoire Optoelectronique et Composants, Departement de Physique UFAS Setif Algerie (Algeria)

    2008-12-05

    To yield quantitative information about their interface states, PtSi/p-Si Schottky structures have been studied using conductance and capacitance measurements over a wide range of frequencies (1 kHz to 1 MHz) and at several temperatures (80-140 K). The increase in capacitance at lower frequencies is seen as a signature of interface states, the densities of which are evaluated to be of the order of {approx}10{sup 12} eV{sup -1} cm{sup -2}. The presence of interface states is also evidenced as a peak in the conductance-frequency characteristics that increases in magnitude with decreasing temperatures. The variations of interface conductance are best described by an analytical equation derived assuming an energy-dependent cross-section of these interface states. The conductance data is subsequently used to extract the relaxation times of interface states and their energy distribution with respect to the top of the valence band. Relaxation times, in particular, while temperature dependent with an average value of {approx}4 {mu}s, show a noticeably weak dependence on bias.

  16. Comment on "Orientation dependence of the optical spectra in graphene at high frequencies"

    Science.gov (United States)

    Nguyen, Huy-Viet; Nguyen, V. Hung

    2016-09-01

    Zhang et al. [Phys. Rev. B 77, 241402(R) (2008), 10.1103/PhysRevB.77.241402] reported a theoretical study of the optical spectra of monolayer graphene employing the Kubo formula within a tight-binding model. Their calculations predicted that at high frequencies the optical conductivity of graphene becomes strongly anisotropic. In particular, at frequencies comparable to the energy separation of the upper and lower bands at the Γ point, the optical conductivity is strongly suppressed if the field polarization is along the zigzag direction whereas it is significantly high for the armchair one. We find that, unfortunately, this result is just a consequence of the incorrect determination of the current operator in k space. Here, we present a standard scheme to obtain this operator correctly. As a result, we show that the optical conductivity of monolayer graphene is indeed isotropic, which is consistent with the results of other (both theoretical and experimental) studies in the literature.

  17. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system

    Science.gov (United States)

    Yang, Z. J.; Hull, J. R.; Mulcahy, T. M.; Rossing, T. D.

    1995-08-01

    Using an electromagnetically controlled mechanical pendulum, we measured the energy loss for different amplitudes in a magnetic levitation system that contained high temperature superconductors (HTSs). Two procedures were followed to measure losses at 77 K for frequencies of 93.8 mHz to 80 Hz. In the first procedure, the distance between the permanent magnet and the HTS levitator was the same as that during (field) cooling. In the second procedure, the magnet was lowered (after cooling) closer to the HTS levitator before the measurements were performed. The experimental data show that these two procedures give essentially the same results at the same distance despite different cooling (and magnetization) histories for melt-textured YBaCuO levitators, and the frequency-independent energy loss is a power-law function of amplitude. We attribute the energy loss to magnetic hysteresis in the superconductor.

  18. Frequency dependence of the superparamagnetic transition in a Finemet-type nanocrystalline alloy

    Energy Technology Data Exchange (ETDEWEB)

    Franco, V.; Blazquez, J.S.; Conde, C.F.; Conde, A. [Dpto. Fisica de la Materia Condensada. ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080-Sevilla (Spain); Kiss, L.F.; Kemeny, T. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences. P.O. Box 49, 1525-Budapest (Hungary); Hillier, A.D. [ISIS Facility, CCLRC, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom)

    2004-12-01

    The transition to superparamagnetism in a Cr-containing Finemet alloy has been studied by means of ac susceptibility and muon spin relaxation experiments. The influence of bias field and measuring frequency has been analyzed. The transition temperature is controlled by the interaction between the particles. These results are consistent with previous static magnetic measurements. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Directory of Open Access Journals (Sweden)

    Juan C. Torres

    2014-05-01

    Full Text Available A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  20. Time-domain representation of frequency dependent inertial forces on offshore structures

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    The inertial wave force on a vertical cylinder decreases with decreasing wave length, when the wave length is less than about six times the diameter of the diameter of the cylinder. In structures with a largediameter component like mono-towers the resonance frequency of the structure is typically...... section are uncoupled, and they are easily integrated with e.g. a central difference scheme for the state-space variables. © 2013 Taylor & Francis Group, London....

  1. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra

    Science.gov (United States)

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.

    2016-02-01

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational frequency up-shift time constants for the C12-H wagging mode at 216 fs and for the C10-H wagging mode at 161 fs which are larger than for the C11-H wagging mode at 127 fs, i.e., the C11-H wagging mode arrives at its final frequency while the C12-H and C10-H wagging modes are still up-shifting to their final values, agreeing with the findings of Yan et al. [Biochemistry 43, 10867 (2004)].

  2. Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles

    OpenAIRE

    2008-01-01

    Multipolar plasmon oscillation frequencies and corresponding damping rates for nanospheres formed of the simplest free-electron metals are studied. The possibility of controlling plasmon features by choosing the size and dielectric properties of the sphere surroundings is discussed. Optical properties of the studied metals are described within the Drude-Sommerfeld model of the dielectric function with effective parameters acounting for the contribution of conduction electrons and of interband...

  3. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.

    Directory of Open Access Journals (Sweden)

    Robert Rosenbaum

    Full Text Available Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse.

  4. Maximum entropy analytic continuation for frequency-dependent transport coefficients with nonpositive spectral weight

    Science.gov (United States)

    Reymbaut, A.; Gagnon, A.-M.; Bergeron, D.; Tremblay, A.-M. S.

    2017-03-01

    The computation of transport coefficients, even in linear response, is a major challenge for theoretical methods that rely on analytic continuation of correlation functions obtained numerically in Matsubara space. While maximum entropy methods can be used for certain correlation functions, this is not possible in general, important examples being the Seebeck, Hall, Nernst, and Reggi-Leduc coefficients. Indeed, positivity of the spectral weight on the positive real-frequency axis is not guaranteed in these cases. The spectral weight can even be complex in the presence of broken time-reversal symmetry. Various workarounds, such as the neglect of vertex corrections or the study of the infinite frequency or Kelvin limits, have been proposed. Here, we show that one can define auxiliary response functions that allow one to extract the desired real-frequency susceptibilities from maximum entropy methods in the most general multiorbital cases with no particular symmetry. As a benchmark case, we study the longitudinal thermoelectric response and corresponding Onsager coefficient in the single-band two-dimensional Hubbard model treated with dynamical mean-field theory and continuous-time quantum Monte Carlo. We thereby extend the maximum entropy analytic continuation with auxiliary functions (MaxEntAux method), developed for the study of the superconducting pairing dynamics of correlated materials, to transport coefficients.

  5. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations.

    Science.gov (United States)

    Chen, Zhangguo; Viboolsittiseri, Sawanee S; O'Connor, Brian P; Wang, Jing H

    2012-10-15

    Activation-induced deaminase (AID) catalyses class switch recombination (CSR) and somatic hypermutation (SHM) in B lymphocytes to enhance Ab diversity. CSR involves breaking and rejoining highly repetitive switch (S) regions in the IgH (Igh) locus. S regions appear to be preferential targets of AID. To determine whether S region sequence per se, independent of Igh cis regulatory elements, can influence AID targeting efficiency and mutation frequency, we established a knock-in mouse model by inserting a core Sγ1 region into the first intron of proto-oncogene Bcl6, which is a non-Ig target of SHM. We found that the mutation frequency of the inserted Sγ1 region was dramatically higher than that of the adjacent Bcl6 endogenous sequence. Mechanistically, S region-enhanced SHM was associated with increased recruitment of AID and RNA polymerase II, together with Spt5, albeit to a lesser extent. Our studies demonstrate that target DNA sequences influence mutation frequency via regulating AID recruitment. We propose that the nucleotide sequence preference may serve as an additional layer of AID regulation by restricting its mutagenic activity to specific sequences despite the observation that AID has the potential to access the genome widely.

  6. Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection.

    Science.gov (United States)

    Mattis, Joanna; Brill, Julia; Evans, Suzanne; Lerner, Talia N; Davidson, Thomas J; Hyun, Minsuk; Ramakrishnan, Charu; Deisseroth, Karl; Huguenard, John R

    2014-08-27

    Hippocampal oscillations are critical for information processing, and are strongly influenced by inputs from the medial septum. Hippocamposeptal neurons provide direct inhibitory feedback from the hippocampus onto septal cells, and are therefore likely to also play an important role in the circuit; these neurons fire at either low or high frequency, reflecting hippocampal network activity during theta oscillations or ripple events, respectively. Here, we optogenetically target the long-range GABAergic projection from the hippocampus to the medial septum in rats, and thereby simulate hippocampal input onto downstream septal cells in an acute slice preparation. In response to optogenetic activation of hippocamposeptal fibers at theta and ripple frequencies, we elicit postsynaptic GABAergic responses in a subset (24%) of septal cells, most predominantly in fast-spiking cells. In addition, in another subset of septal cells (19%) corresponding primarily to cholinergic cells, we observe a slow hyperpolarization of the resting membrane potential and a decrease in input resistance, particularly in response to prolonged high-frequency (ripple range) stimulation. This slow response is partially sensitive to GIRK channel and D2 dopamine receptor block. Our results suggest that two independent populations of septal cells distinctly encode hippocampal feedback, enabling the septum to monitor ongoing patterns of activity in the hippocampus.

  7. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects.

    Science.gov (United States)

    Mina, Faten; Benquet, Pascal; Pasnicu, Anca; Biraben, Arnaud; Wendling, Fabrice

    2013-01-01

    A number of studies showed that deep brain stimulation (DBS) can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in "responding" patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG) data. We developed a macroscopic (neural mass) model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy) with a focal cortical dysplasia (FCD). In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, 70 Hz) while intermediate-frequency stimulation (IFS, around 50 Hz) had no effect. Signal processing, clustering, and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include: (a) feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and (b) inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.

  8. Frequency dependence of hysteretic magnetoimpedance in CoFeMoSiB amorphous ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, M.; Hernando, B. E-mail: grande@pinon.ccu.uniovi.es; Sanchez, M.L.; Prida, V.M.; Kurlyandskaya, G.V.; Garcia, D.; Vazquez, M

    2000-06-02

    The hysteretic behaviour of the resistive and reactive components of the complex impedance at different frequencies in Co-based ribbons is presented. Sensitivities of the order of 1.2%/Am{sup -1} at 70 kHz for the reactive component of the MI and 0.63%/Am{sup -1} at 500 kHz for the resistive one were attained in the field range of 80-560 Am{sup -1}. The maximum relative ratio of MI was reached at 120 kHz with a sensitivity of 0.41%/Am{sup -1}.

  9. Mapping of permafrost surface and active layer properties using GPR: a comparison of frequency dependencies

    DEFF Research Database (Denmark)

    Gacitua, Guisella; Uribe, José Andrés; Tamstorf, Mikkel Peter;

    2011-01-01

    of the permafrost and from the internal features in the unfrozen soil. These results will be further used to determine the distribution of dielectric heterogeneities to support water content estimated from the same profiles. Comparing results from 400 and 800 MHz, we found that although both frequencies...... are suitable to measure thickness and to detect features in the active layer, the 400 MHz gives a better impression of the influence of the dielectric contrast effect from top of the permafrost zone which can be used to quantify the soil water content....

  10. Frequency-dependent electrical conductivity of concentrated dispersions of spherical colloidal particles.

    Science.gov (United States)

    Bradshaw-Hajek, B H; Miklavcic, S J; White, L R

    2008-05-06

    This paper outlines the application of a self-consistent cell-model theory of electrokinetics to the problem of determining the electrical conductivity of a dense suspension of spherical colloidal particles. Numerical solutions of the standard electrokinetic equations, subject to self-consistent boundary conditions, are implemented in formulas for the electrical conductivity appropriate to the particle-averaged cell model of the suspension. Results of calculations as a function of frequency, zeta potential, volume fraction, and electrolyte composition, are presented and discussed.

  11. The Frequency of Nonmotor Symptoms among Advanced Parkinson Patients May Depend on Instrument Used for Assessment

    Directory of Open Access Journals (Sweden)

    Nelson Hwynn

    2011-01-01

    Full Text Available Background. Nonmotor symptoms (NMS of Parkinson's disease (PD may be more debilitating than motor symptoms. The purpose of this study was to determine the frequency and corecognition of NMS among our advanced PD cohort (patients considered for deep brain stimulation (DBS and caregivers. Methods. NMS-Questionnaire (NMS-Q, a self-administered screening questionnaire, and NMS Assessment-Scale (NMS-S, a clinician-administered scale, were administered to PD patients and caregivers. Results. We enrolled 33 PD patients (23 males, 10 females and caregivers. The most frequent NMS among patients using NMS-Q were gastrointestinal (87.9%, sleep (84.9%, and urinary (72.7%, while the most frequent symptoms using NMS-S were sleep (90.9%, gastrointestinal (75.8%, and mood (75.8%. Patient/caregiver scoring correlations for NMS-Q and NMS-S were 0.670 (<0.0001 and 0.527 (=0.0016, respectively. Conclusion The frequency of NMS among advanced PD patients and correlation between patients and caregivers varied with the instrument used. The overall correlation between patient and caregiver was greater with NMS-Q than NMS-S.

  12. Frequency-dependent performance analysis of a parallel DSP-based computer system

    Science.gov (United States)

    Christou, Ch. S.

    2014-11-01

    The performance of a shared-memory low-cost high-performance DSP-Based multiprocessor system [3] is investigated, by varying the frequency of the core processor from 200MHz to 1GHZ, in steps of 200 MHZ, and keeping constant parameters such as the shared-memory-access-time and the prefetching-workload-size. The innovation of this Parallel DSP-Based computer system is the introduction of two small programmable small fast memories (Twins) between the processor and the shared bus interconnect. While one memory (Twin) transfers data from/to the shared memory, the other Twin supplies the core DSP-processor with data. Results indicate an increase of the shared-bus bottleneck as the core DSP processors' clock-rate increases. Workload of the Twins is processed faster thus greater the demand of the shared-bus. Results show an effectively supported robust parallel shared-memory system where fewer but faster (clocked with higher frequency) processors produce the same execution times as a greater number of slower processors, with most system configurations achieving perfect speedups, mainly due to the twin-prefetching mechanism.

  13. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    CERN Document Server

    Ade, P A R; Aniano, G; Armitage-Caplan, C; Arnaud, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Burigana, C; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Zotti, G; Delabrouille, J; Désert, F -X; Dickinson, C; Diego, J M; Donzelli, S; Doré, O; Douspis, M; Dunkley, J; Dupac, X; Enßlin, T A; Eriksen, H K; Falgarone, E; Fanciullo, L; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Jaffe, A H; Jaffe, T R; Jones, W C; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lawrence, C R; Leahy, J P; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Magalhães, A M; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Noviello, F; Novikov, D; Novikov, I; Oppermann, N; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Rachen, J P; Reach, W T; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Salerno, E; Sandri, M; Savini, G; Scott, D; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wandelt, B D; Zacchei, A; Zonca, A

    2014-01-01

    Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10 degree radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky-patch. The mean values, $1.63\\pm0.03$ for polarization and $1.52\\pm0.02$ for intensity, for a mean dust temperature of 18.7 K, are close, but significantly different. We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky-p...

  14. Assessment of breadmaking performance of wheat flour dough by means of frequency dependent ultrasound

    Science.gov (United States)

    Braunstein, D.; Page, J. H.; Strybulevych, A.; Peressini, D.; Scanlon, M. G.

    2012-12-01

    Technological performance of wheat flour varies among different wheat varieties. Gluten plays a key role within the solid phase of dough in the formation and the retention of gas bubbles during breadmaking. Rheological tests are usually performed to predict breadmaking potential. The aim here was to investigate the ability of ultrasound to discriminate wheat doughs based on breadmaking qualities. The ultimate goal is the development of an online quality control system currently unavailable in the baked goods industry, rendering this work innovative. Samples were prepared from a strong wheat flour, with one control sample and one added with inulin and distilled monoglycerides, producing doughs of distinct breadmaking quality. Doughs were subjected to density determination, elongation tests, and ultrasound analysis. The ultrasound tests were performed in the frequency range of 300 kHz - 6 MHz. Ultrasonic phase velocity increased with increasing frequency to about 2 MHz, becoming constant and then decreasing from 3 MHz for the control sample. Distinct differences in attenuation coefficient between the fibre-enriched and control doughs were observed. Ultrasound can potentially add to a better understanding of dough quality and can discriminate between doughs of contrasting properties.

  15. Lévy Stable Distribution and [0, 2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen

    2005-01-01

    @@ Absorption of acoustic wave propagation in a large variety of lossy media is characterized by an empirical power law function of frequency, αo|ω|y. It has long been noted that the exponent y ranges from 0 to 2 for diverse media. Recently, the present author [J. Acoust. Soc. Am. 115 (2004) 1424] developed a fractional Laplacian wave equation to accurately model the power law dissipation, which can be further reduced to the fractional Laplacian diffusion equation. The latter is known underlying the Lévy stable distribution theory. Consequently,the parameters y is found to be the Lévy stability index, which is known to be bounded within 0 < y ≤ 2. This finding first provides a theoretical explanation of empirical observations y ∈ [0, 2]. Statistically, the frequencydependent absorption can thus be understood a Lévy stable process, where the parameter y describes the fractal nature of attenuative media.

  16. Multivariate analysis of spectral data with frequency shifts: application to temperature dependent infrared spectra of peptides and proteins.

    Science.gov (United States)

    Kubelka, Jan

    2013-10-15

    Changes in the amide I' IR band with temperature are widely used for elucidation of peptide and protein conformational transitions and folding equilibria. Since amide I' exhibits inherent temperature dependent frequency shifts, standard mixture analysis methods are not applicable. To reliably extract the true thermodynamic states, frequency shifts of the component spectra must be explicitly taken into account. For this purpose, new methods termed shifted multivariate spectra analysis (SMSA) and parametric SMSA (pSMSA) are developed and tested on sets of synthetic data as well as real experimental amide I' spectra for thermal unfolding of an α-helical peptide. SMSA uses no specific functional form for the transition (soft modeling), while the parametric variant (pSMSA) assumes a thermodynamic model (hard modeling). The implementation is optimized specifically for amide I' IR in that it takes advantage of known, linear dependence of the frequencies as well as intensities on temperature. The synthetic data tests demonstrate the robustness of the methods; the initial test parameters are recovered with a high degree of reliability, although the nonparameteric SMSA is subject to the rotational ambiguity. Application to the peptide experimental amide I' data illustrates additional complications encountered with the analysis of real systems, such as correction for the side-chain spectra and interference of spectral shape changes. Nevertheless, the results are in excellent agreement with the independent control using circular dichroism (CD) data. The general applicability and limitations of the methods are discussed along with potential extensions.

  17. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.

  18. Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications

    OpenAIRE

    Fu, W.; El Abbassi, M.; Hasler, T.; M. Jung; M. Steinacher; Calame, M.; Schönenberger,C.; Puebla-Hellmann, G.; Hellmüller, S.; T. Ihn; Wallraff, A.

    2014-01-01

    We performed radiofrequency (RF) reflectometry measurements at 2.4 GHz on electrolyte-gated graphene field-effect transistors (GFETs) utilizing a tunable stub-matching circuit for impedance matching. We demonstrate that the gate voltage dependent RF resistivity of graphene can be deduced even in the presence of the electrolyte which is in direct contact with the graphene layer. The RF resistivity is found to be consistent with its DC counterpart in the full gate voltage range. Furthermore, in...

  19. Torsional stress dependence of reactance and resistance in Fe-rich amorphous wires at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, B. E-mail: grande@pinon.ccu.uniovi.es; Prida, V.M.; Sanchez, M.L.; Tejedor, M.; Vazquez, M.; Feng, L.-Y

    2003-01-01

    Amorphous ferromagnetic wire with a highly positive saturation magnetostriction coefficient, made of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1}, was simultaneously submitted to both, an AC current passing through it and a torsional stress, in order to induce a helical magnetic anisotropy in the wire that modifies its domain structure and therefore the magnetic response of the sample. The aim of this work is to study the reactive, resistive and impedance behaviour in this Fe-rich wire, submitted to different applied torsional stresses, and for several values of the AC current amplitude through the wire (5-20 mA{sub rms}), in the low frequency range, f

  20. Unusual dimensional dependence of resonance frequencies of Au nanocantilevers fabricated with self-organized microstructure

    Directory of Open Access Journals (Sweden)

    Amit Banerjee

    2012-09-01

    Full Text Available Metallic nanocantilevers of gold are fabricated from self-supporting polycrystalline thin film (100 nm by focused ion beam assisted milling and ion induced manipulation processes. The surfactant assisted growth of the thin film leads to self-organized dendrite like morphology. This self-organized dendrite like morphology of the gold film imposes a new characteristic length scale corresponding to the mean size of gold grains present within the branches of the dendrite pattern in the film. The resonance characteristic investigated on cantilevers having different widths shows a significant drop in energy dissipation and hence an enhancement in the resonance amplitude at a characteristic width. At this width the resonance frequency of a vibrating cantilever approaches the theoretically expected value anticipated from an ideal cantilever treated like an elastic continuum.

  1. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent.

    Directory of Open Access Journals (Sweden)

    Roland Fuhrer

    Full Text Available Movement is a key characteristic of higher organisms. During mammalian embryogenesis fetal movements have been found critical to normal tissue development. On the single cell level, however, our current understanding of stem cell differentiation concentrates on inducing factors through cytokine mediated biochemical signaling. In this study, human mesenchymal stem cells and chondrogenesis were investigated as representative examples. We show that pressureless, soft mechanical stimulation precipitated by the cyclic deformation of soft, magnetic hydrogel scaffolds with an external magnetic field, can induce chondrogenesis in mesenchymal stem cells without any additional chondrogenesis transcription factors (TGF-β1 and dexamethasone. A systematic study on the role of movement frequency revealed a classical dose-response relationship for human mesenchymal stem cells differentiation towards cartilage using mere mechanical stimulation. This effect could even be synergistically amplified when exogenous chondrogenic factors and movement were combined.

  2. The origin of the frequency-dependent behaviour of pulsar radio profiles

    CERN Document Server

    Dyks, J

    2014-01-01

    We present further development of a pulsar emission model based on multiple streams diverging away from the magnetic dipole axis, and forming azimuthally-structured fan-shaped beams. It is shown that this geometry, successfully tested on profiles with bifurcated features, naturally solves several classical pulsar problems and avoids some difficulties of the traditional nested cone/core model. This is best visible for profiles with several components, such as those of class T, Q and M, because they most clearly exhibit a range of effects previously interpreted within the conal model. In particular, with no reference to the flaring boundary of the polar magnetic flux tube, the stream model explains the apparent radius-to-frequency mapping (RFM), including its reduced strength for the inner pair of components. The lag of the central component (apparent `core') with respect to the centroids of the flanking (`conal') components can also be naturally explained with no reference to emission rings located at disparat...

  3. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-06-01

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.

  4. A model for the dependence of maximum oscillation frequency on collector to substrate capacitance in bipolar transistors

    Science.gov (United States)

    Armstrong, G. A.; French, W. D.

    1995-08-01

    Parasitic effects associated with the collector degrade the frequency performance of a bipolar transistor. These effects include collector series resistance and collector-substrate capacitance. A simple analytical model has been derived to show the dependence of the maximum oscillation frequency fmax on these parameters. The significance of using bonded SOI material to reduce collector-substrate capacitance is discussed. The analytical model is used to predict the factor of improvement of this technology over conventional diffusion isolated bulk silicon technology. By considering the impact of process optimisation, an improvement in fmax by a factor of between two and three is predicted at maximum power output. By trading off this improvement in fmax for lower power operation, it is possible to achieve a significant reduction in power-delay product.

  5. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters.

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-06-16

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.

  6. Performance study of acoustophoretic microfluidic silicon-glass devices by characterization of material- and geometry-dependent frequency spectra

    CERN Document Server

    Garofalo, Fabio; Bruus, Henrik

    2016-01-01

    The mechanical and electrical response of acoustophoretic microfluidic devices attached to an ac-voltage-driven piezoelectric transducer is studied by means of numerical simulations. The governing equations are formulated in a variational framework that, introducing Lagrangian and Hamiltonian densities, is used to derive the weak form for the finite element discretization of the equations and to characterize the device response in terms of frequency-dependent figures of merit or indicators. The effectiveness of the device in focusing microparticles is quantified by two mechanical indicators: the average direction of the pressure gradient and the amount of acoustic energy localized in the microchannel. Further, we derive the relations between the Lagrangian, the Hamiltonian and three electrical indicators: the resonance Q-value, the impedance and the electric power. The frequency response of the hard-to-measure mechanical indicators is correlated to that of the easy-to-measure electrical indicators, and by int...

  7. Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model.

    Science.gov (United States)

    Li, Jin; Xiong, Bing; Sun, Changzheng; Miao, Di; Luo, Yi

    2015-08-24

    A back-illuminated mesa-structure InGaAs/InP modified uni-traveling-carrier photodiode (MUTC-PD) is fabricated and its frequency response is investigated. A bandwidth of 40 GHz and a saturation photocurrent up to 33 mA are demonstrated. A photocurrent-dependent equivalent circuit model is proposed to analyze the frequency response of the high power MUTC-PDs. The influences of the space-charge screening, self-induced electric field and over-shoot effects are discussed in detail based on the model. Fitted curves obtained from the simple equivalent circuit model are found to be in good agreement with the data measured under different bias voltages and photocurrents.

  8. Temperature and frequency dependent dielectric properties of electrically conducting oxidatively synthesized polyazomethines and their structural, optical, and thermal characterizations

    Science.gov (United States)

    Dineshkumar, Sengottuvelu; Muthusamy, Athianna; Chandrasekaran, J.

    2017-01-01

    Three azomethine diol monomers were synthesized by condensing with methanolic solution of aromatic aldehydes with ethylenediamine. These monomers were oxidatively polymerized using NaOCl as an oxidant. The structures of the monomers and polymers were confirmed by various spectroscopic techniques. Spectral results showed that the repeating units are linked by Csbnd C and Csbnd Osbnd C couplings. The polyazomethines have fluorescent property with high stokes shift. Solid state electrical conductivity of polymers both in I2 doped and undoped states, temperature and frequency dependent dielectric measurements were made by two probe method. The electrical conductivities of polyazomethines were compared based on the charge densities on imine nitrogens obtained from Huckel calculation. The conductivity of polymers increases with increase in iodine vapour contact time. Among the synthesized polymers PHNAE has shown high dielectric constant at low applied frequency of 50 Hz at 393 K due the presence of bulky naphthalene unit in polymer chain.

  9. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-01-01

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light. PMID:27305957

  10. [Frequency, diagnosis and dependance of duodenitis upon the morphological status of the gastric mucosa (author's transl)].

    Science.gov (United States)

    Konstantinidis, T; Wagner, P K

    1978-08-01

    In a attempt to prove the dependence of duodenitis upon the morphological status of the gastric mucosa, a biopsy of the corpus, antrum, and duodenal canal had been made of 354 patients. In 56 cases, a superficial duodenitis was histologically verified; however, this infection had not contaminated the Brunner' glands. A duodenitis was found to be more often associated with surface gastritis of the corpus and antrum than it was with atropic gastritis. A duodenitis was discovered by a biopsy in 16 patients possessing a normal antrum mucosa and in 25 patients having a normal corpus mucosa, thus proving the possibility of isolated duodenitis.

  11. Frequency doubling in LiNbO3 using temperature dependent QPM

    DEFF Research Database (Denmark)

    Belmonte, Michele; Skettrup, Torben; Pedersen, Christian

    1999-01-01

    We report the application of temperature-dependent quasi-phase matching (QPM) for second harmonic generation of green light using periodically field poled LiNbO3. In contrast to the usual QPM devices, here the fundamental and second harmonic waves are polarized orthogonally so that the second...... efficiency. However, the use of QPM in our geometry with orthogonally polarized waves results in a greatly enhanced temperature tunability, which increases the versatility of the devices. Moreover, the domain inversion grating period required in this geometry for first-order QPM at the Nd laser wavelength...

  12. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent.

    Directory of Open Access Journals (Sweden)

    Sankaraleengam Alagapan

    2016-03-01

    Full Text Available Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS and transcranial alternating current stimulation (tACS have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1 stimulation enhanced the targeted oscillation power, (2 this enhancement outlasted stimulation, and (3 the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms.

  13. Resistance to change and frequency of response-dependent stimuli uncorrelated with reinforcement.

    Science.gov (United States)

    Podlesnik, Christopher A; Jimenez-Gomez, Corina; Ward, Ryan D; Shahan, Timothy A

    2009-09-01

    Stimuli uncorrelated with reinforcement have been shown to enhance response rates and resistance to disruption; however, the effects of different rates of stimulus presentations have not been assessed. In two experiments, we assessed the effects of adding different rates of response-dependent brief stimuli uncorrelated with primary reinforcement on relative response rates and resistance to change. In both experiments, pigeons responded on variable-interval 60-s schedules of food reinforcement in two components of a multiple schedule, and brief response-dependent keylight-color changes were added to one or both components. Although relative response rates were not systematically affected in either experiment, relative resistance to presession feeding and extinction were. In Experiment 1, adding stimuli on a variable-interval schedule to one component of a multiple schedule either at a low rate (1 per min) for one group or at a high rate (4 per min) for another group similarly increased resistance to disruption in the components with added stimuli. When high and low rates of stimuli were presented across components (i.e., within subjects) in Experiment 2, however, relative resistance to disruption was greater in the component presenting stimuli at a lower rate. These results suggest that stimuli uncorrelated with food reinforcement do not strengthen responding in the same way as primary reinforcers.

  14. Cell Type-Dependent RNA Recombination Frequency in the Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Wei-Wei Chiang

    2014-01-01

    Full Text Available Japanese encephalitis virus (JEV is one of approximately 70 flaviviruses, frequently causing symptoms involving the central nervous system. Mutations of its genomic RNA frequently occur during viral replication, which is believed to be a force contributing to viral evolution. Nevertheless, accumulating evidences show that some JEV strains may have actually arisen from RNA recombination between genetically different populations of the virus. We have demonstrated that RNA recombination in JEV occurs unequally in different cell types. In the present study, viral RNA fragments transfected into as well as viral RNAs synthesized in mosquito cells were shown not to be stable, especially in the early phase of infection possibly via cleavage by exoribonuclease. Such cleaved small RNA fragments may be further degraded through an RNA interference pathway triggered by viral double-stranded RNA during replication in mosquito cells, resulting in a lower frequency of RNA recombination in mosquito cells compared to that which occurs in mammalian cells. In fact, adjustment of viral RNA to an appropriately lower level in mosquito cells prevents overgrowth of the virus and is beneficial for cells to survive the infection. Our findings may also account for the slower evolution of arboviruses as reported previously.

  15. Cell type-dependent RNA recombination frequency in the Japanese encephalitis virus.

    Science.gov (United States)

    Chiang, Wei-Wei; Chuang, Ching-Kai; Chao, Mei; Chen, Wei-June

    2014-01-01

    Japanese encephalitis virus (JEV) is one of approximately 70 flaviviruses, frequently causing symptoms involving the central nervous system. Mutations of its genomic RNA frequently occur during viral replication, which is believed to be a force contributing to viral evolution. Nevertheless, accumulating evidences show that some JEV strains may have actually arisen from RNA recombination between genetically different populations of the virus. We have demonstrated that RNA recombination in JEV occurs unequally in different cell types. In the present study, viral RNA fragments transfected into as well as viral RNAs synthesized in mosquito cells were shown not to be stable, especially in the early phase of infection possibly via cleavage by exoribonuclease. Such cleaved small RNA fragments may be further degraded through an RNA interference pathway triggered by viral double-stranded RNA during replication in mosquito cells, resulting in a lower frequency of RNA recombination in mosquito cells compared to that which occurs in mammalian cells. In fact, adjustment of viral RNA to an appropriately lower level in mosquito cells prevents overgrowth of the virus and is beneficial for cells to survive the infection. Our findings may also account for the slower evolution of arboviruses as reported previously.

  16. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    Science.gov (United States)

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-05-14

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  17. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    Directory of Open Access Journals (Sweden)

    Ben H. Erné

    2013-05-01

    Full Text Available Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid-based hydrogels (PAA. To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  18. A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Hofmann Frank

    2009-09-01

    Full Text Available Abstract Background The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs are also increased in amplitude and/or frequency during long-term potentiation (LTP, it is not known how long such changes persist or whether gene transcription is required. Results We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. Conclusion These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic

  19. Dependence of Small Planet Frequency on Stellar Metallicity Hidden by Their Prevalence

    Science.gov (United States)

    Zhu, Wei; Wang, Ji; Huang, Chelsea

    2016-12-01

    The dependence of gas giant planet occurrence rate on stellar metallicity has been firmly established. We extend this so-called planet-metallicity correlation to broader ranges of metallicities and planet masses/radii. In particular, we assume that the planet-metallicity correlation is a power law below some critical saturation threshold, and that the probability of hosting at least one planet is unity for stars with metallicity above the threshold. We then are able to explain the discrepancy between the tentative detection and null detection in previous studies regarding the planet-metallicity correlation for small planets. In particular, we find that the null detection of this correlation can be attributed to the combination of high planet occurrence rate and low detection efficiency. Therefore, a planet-metallicity correlation for small planets cannot be ruled out. We propose that stars with metallicities lower than the solar value are better targets for testing the planet-metallicity correlation for small planets.

  20. Dependence of Small Planet Frequency on Stellar Metallicity Hidden by Their Prevalence

    CERN Document Server

    Zhu, Wei; Huang, Chelsea

    2016-01-01

    The dependence of gas giant planet occurrence rate on stellar metallicity has been firmly established. We extend this so-called planet-metallicity correlation to broader ranges of metallicities and planet masses/radii. In particular, we assume that the planet-metallicity correlation is a power law below some critical saturation threshold, and that the probability of hosting at least one planet is unity for stars with metallicity above the threshold. We then are able to explain the discrepancy between the tentative detection and null detection in previous studies regarding the planet-metallicity correlation for small planets. In particular, we find that the null detection of this correlation can be attributed to the combination of high planet occurrence rate and low detection efficiency. Therefore, a planet-metallicity correlation for small planets cannot be ruled out. We propose that stars with metallicities lower than the Solar value are better targets for testing the planet-metallicity correlation for small...

  1. Non-Universal temperature dependencies of the low frequency ac magnetic susceptibility in high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Di Gioacchino, D.; Celani, F.; Tripodi, P. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Testa, A.M. [Consiglio Nazionale per le Ricerche, Monterotondo, RM, (Italy). Istituto di Chimica dei Materiali; Pace, S. [INFM, Univ. Salerno, Salerno (Italy). Dept. of Physics

    1999-07-01

    The paper is organized as follows. In Sec. 2 the non-linear diffusion problem is formulated in terms of a partial differential equation, together with the parallel resistor model for the 1-5 characteristics. To study in some detail the effects of thermally activated processes in different cases, we have chosen different temperature functional dependencies for the pinning potential, U{sub p}(T), and the critical current density, J{sub c}(T), related to particular pinning models. Local magnetic field profiles, magnetization cycles and {chi}n (T) are discussed in Sec. 3. Moreover, a comparison of numerical results with available experimental data and analytical approximated predictions is also presented. Finally, Sec. 4 is devoted to summary and conclusions.

  2. Extracting structural information from the polarization dependence of one- and two-dimensional sum frequency generation spectra.

    Science.gov (United States)

    Laaser, Jennifer E; Zanni, Martin T

    2013-07-25

    We present ways in which pulse sequences and polarizations can be used to extract structural information from one- and two-dimensional vibrational sum frequency generation (2D SFG) spectra. We derive analytic expressions for the polarization dependence of systems containing coupled vibrational modes, and we present simulated spectra to identify the features of different molecular geometries. We discuss several useful polarization combinations for suppressing strong diagonal peaks and emphasizing weaker cross-peaks. We investigate unique capabilities of 2D SFG spectra for obtaining structural information about SFG-inactive modes and for identifying coupled achiral chromophores. This work builds on techniques that have been developed for extracting structural information from 2D IR spectra. This paper discusses how to utilize these concepts in 2D SFG experiments to probe multioscillator systems at interfaces. The sample code for calculating polarization dependence of 1D and 2D SFG spectra is provided in the Supporting Information .

  3. Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse.

    Science.gov (United States)

    Derrick, B E; Martinez, J L

    1994-10-25

    The mossy fiber-CA3 synapse displays an N-methyl-D-aspartate-receptor-independent mu-opioid-receptor-dependent form of long-term potentiation (LTP) that is thought not to display cooperativity or associativity with coactive afferents. However, because mossy fiber LTP requires repetitive synaptic activity for its induction, we reevaluated cooperativity and associativity at this synapse by using trains of mossy fiber stimulation. Moderate-, but not low-, intensity trains induced mossy fiber LTP, indicating cooperativity. Low-intensity mossy fiber trains that were normally ineffective in inducing LTP could induce mossy fiber LTP when delivered in conjunction with trains delivered to commissural-CA3 afferents. Associative mossy fiber LTP also could be induced with single mossy fiber pulses when delivered with commissural trains in the presence of a mu-opioid-receptor agonist. Our findings suggest a frequency-dependent variation of Hebbian associative LTP induction that is regulated by the release of endogenous opioid peptides.

  4. A High Resolution/Accurate Mass (HRAM) Data-Dependent MS3 Neutral Loss Screening, Classification, and Relative Quantitation Methodology for Carbonyl Compounds in Saliva

    Science.gov (United States)

    Dator, Romel; Carrà, Andrea; Maertens, Laura; Guidolin, Valeria; Villalta, Peter W.; Balbo, Silvia

    2016-10-01

    Reactive carbonyl compounds (RCCs) are ubiquitous in the environment and are generated endogenously as a result of various physiological and pathological processes. These compounds can react with biological molecules inducing deleterious processes believed to be at the basis of their toxic effects. Several of these compounds are implicated in neurotoxic processes, aging disorders, and cancer. Therefore, a method characterizing exposures to these chemicals will provide insights into how they may influence overall health and contribute to disease pathogenesis. Here, we have developed a high resolution accurate mass (HRAM) screening strategy allowing simultaneous identification and relative quantitation of DNPH-derivatized carbonyls in human biological fluids. The screening strategy involves the diagnostic neutral loss of hydroxyl radical triggering MS3 fragmentation, which is only observed in positive ionization mode of DNPH-derivatized carbonyls. Unique fragmentation pathways were used to develop a classification scheme for characterizing known and unanticipated/unknown carbonyl compounds present in saliva. Furthermore, a relative quantitation strategy was implemented to assess variations in the levels of carbonyl compounds before and after exposure using deuterated d 3 -DNPH. This relative quantitation method was tested on human samples before and after exposure to specific amounts of alcohol. The nano-electrospray ionization (nano-ESI) in positive mode afforded excellent sensitivity with detection limits on-column in the high-attomole levels. To the best of our knowledge, this is the first report of a method using HRAM neutral loss screening of carbonyl compounds. In addition, the method allows simultaneous characterization and relative quantitation of DNPH-derivatized compounds using nano-ESI in positive mode.

  5. Dependence of a rabbit's reaction on the frequency of repetition of an impulse and current exposition in experiment

    Directory of Open Access Journals (Sweden)

    Koklin А.Е.

    2013-12-01

    Full Text Available Now electroshock devices are used as a civilian weapon for self-defense and as a non-lethal weapon in the police. Therefore, medical-biological safety testing of electroshock devices should be carried out. Development of hygienic regulations is relevant as well. The aim of our work is the study of the biological effects of pulsed current depending on the pulse frequency, pulse amplitude and exposure. Material and methods. We compared the biological effects with varying frequency of the current pulse (50, 400, and 600 Hz with varying exposure (0.25, 0.5 and 1.0 s.. Average pulse power in all cases was equal, and the pulse energy was different. Experiments were performed on rabbits. Biological effects of stun device were evaluated by clinical lesions, as well as electrophysiological parameters: ECG and electro-pneumogram. Results. Response was observed only in the current period (0.25 s, 0.5 s or 1 s was disorientation, convulsing, dyspnea. The degree of severity of the reaction was determined by a combination of pulse repetition frequency and exposure. Immediately after switching off the current noted vocalization, decreased heart rate and breathing. Heart rate and respiration in 5 minutes back to the normal values. Conclusions. In the results of the research has got a comparative classification organism's response (based on a points system as well as the characteristic of the biological response of the individual systems of the body on the parameters of the current pulse.

  6. Frequency-dependent time delays for strong outbursts in four blazars from the Metsahovi and UMRAO monitoring databases

    CERN Document Server

    Pyatunina, T B; Gabuzda, D C; Jorstad, S G; Aller, M F; Aller, H D; Terasranta, H

    2006-01-01

    The combined data of the University of Michigan Radio Astronomy Observatory and Metsahovi Radio Observatory provide us with radio light curves for Active Galactic Nuclei monitored by both observatories from 4.8 to 37 GHz covering time intervals up to ~25 years. We consider here such composite light curves for four gamma-ray blazars that have been nearly continuously monitored at both observatories: 0458-020, 0528+134, 1730-130 and 2230+114. We have decomposed the most prominent outbursts in the light curves of these four blazars into individual components using Gaussian model fitting, and estimated the epochs, amplitudes, and half-widths of these components as functions of frequency. We attempt to distinguish "core outbursts", which show frequency-dependent time delays and are associated with brightening of the core, from "jet outbursts", which appear nearly synchronously at all frequencies and are accompanied by the emergence of new jet components and their subsequent evolution. Available 43 GHz VLBA images ...

  7. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    Science.gov (United States)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency ( 50 cm‑1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  8. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  9. The effects of frequency-dependent quasar evolution on the celestial reference frame

    CERN Document Server

    Shabala, Stanislav; McCallum, Jamie; Titov, Oleg; Blanchard, Jay; Lovell, Jim; Watson, Christopher

    2013-01-01

    We examine the relationship between source position stability and astrophysical properties of radio-loud quasars making up the International Celestial Reference Frame. We construct light curves for 95 most frequently observed ICRF2 quasars at both the geodetic VLBI observing bands. Because the appearance of new quasar components corresponds to an increase in quasar flux density, these light curves allow us to probe source structure on sub-100 microarcsecond scales, much smaller than conventional VLBI imaging. Flux density monitoring also allows us to trace the evolution of quasar structure. We test how source position stability depends on three astrophysical parameters: (1) Flux density variability at X-band; (2) Time lag between S and X-band light curves; (3) Spectral index rms, defined as the variability in the ratio between S and X-band flux densities. We find that small (<0.15 years) time lags between S and X-band light curves and low (<0.10) spectral index variability are excellent indicators of po...

  10. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.

    Science.gov (United States)

    Yamaguchi, T; Matsuoka, T; Koda, S

    2009-03-07

    The theory on the frequency-dependent electric conductivity of electrolyte solutions proposed previously by Yamaguchi et al. [J. Chem. Phys. 127, 234501 (2007)] is extended to include the hydrodynamic interaction between ions. The theory is applied to the aqueous solution of NaCl and the concentration dependence of the conductivity agrees well with that determined by experiments. The effects of the hydrodynamic and relaxation effects are highly nonadditive in the concentrated solution, because the hydrodynamic interaction between ions affects the time-dependent response of the ionic atmosphere. The decrease in the electric conductivity is divided into the contributions of ion pair distribution at various distances. The long-range ionic atmosphere plays a major role at the concentration as low as 0.01 mol/kg, whereas the contribution of the contact ion pair region is important at 1 mol/kg. The magnitude of the contribution of the contact ion pair region is scarcely dependent on the presence of the hydrodynamic interaction. The transport number of cation is calculated to be a decreasing function of concentration as is observed in experiments.

  11. Anisotropy of human muscle via non invasive impedance measurements. Frequency dependence of the impedance changes during isometric contractions

    Science.gov (United States)

    Kashuri, Hektor

    In this thesis we present non invasive muscle impedance measurements using rotatable probes extending the work done by Aaron et al. (1997) by measuring not only the real part of the impedance but the imaginary part as well. The results reveal orientations of underlying muscle fibers via minima in resistance and reactance versus angle curves, suggesting this method as potentially useful for studying muscle properties in clinical and physiological research. Calculations of the current distribution for a slab of material with anisotropic conductivity show that the current distribution depends strongly on the separation of two current electrodes and as well as on its conducting anisotropy. Forearm muscle impedance measurements at 50 kHz done by Shiffman et al. (2003) had shown that both resistance (R) and reactance (X) increase during isometric contraction. We have extended these measurements in the 3 to 100 kHz range and we found that resistance (R) and reactance (X) both increase and their changes increased or decreased at frequency dependent rates. Analysis based on circuit models of changes in R and X during the short contraction pulses showed that the extra cellular fluid resistance increased by 3.9 +/- 1.4 %, while the capacitance increased by 5.6 +/- 2 %. For long contraction pulses at very low frequencies: (1) there was practically no change in R during contraction, which implies that these changes are due to cellular membrane or intracellular effects with the extra cellular water component not participating, and (2) in post contraction stage there were no morphological changes which means that drifts in R can only be due to physiological changes. Following Shiffman et al. (2003) we measured impedance changes of R and X during a triangular shaped pulse of force generated via isometric forearm muscle contraction at 50 kHz. We measured these changes in 3-100 kHz frequency range for a stair case pulse of forces and the results showed that they are frequency

  12. Frequency dependence of the microwave surface resistance of MgB{sub 2} by coaxial cavity resonator

    Energy Technology Data Exchange (ETDEWEB)

    Agliolo Gallitto, A., E-mail: aurelio.agliologallitto@unipa.it [CNISM and Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo (Italy); Camarda, P.; Li Vigni, M. [CNISM and Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo (Italy); Figini Albisetti, A. [EDISON SpA Research and Development Division, Foro Buonaparte 31, 20121 Milano (Italy); Giunchi, G. [Freelance Consultant, via Teodosio 8, 20131 Milano (Italy)

    2014-08-15

    Highlights: • We investigate the microwave properties of a bulk MgB{sub 2} rod 94.3 mm long. • The MgB{sub 2} rod is used as inner conductor of a coaxial cavity. • The mw surface resistance vs. frequency is studied in the range 1–9 GHz. • R{sub s} vs. f curves follow a f{sup n} law, with n decreasing with the temperature. • Deviations from the quadratic law are highlighted at relatively low temperatures. - Abstract: We report on the microwave (mw) properties of a cylindrical MgB{sub 2} rod prepared by the reactive liquid Mg infiltration technology. The MgB{sub 2} rod, 94.3 mm long, is used as inner conductor of a coaxial cavity having a Cu tube as external conductor. By analyzing the resonance curves of the cavity in the different resonant modes and at different temperatures, we have determined the temperature dependence of the mw surface resistance, R{sub s}, of the MgB{sub 2} material, at fixed frequencies, and the frequency dependence of R{sub s}, at fixed temperatures. Our results show that the R{sub s}(f) curves follow a f{sup n} law, where n decreases on increasing the temperature, starting from n≈2, at T=4.2K, down to n≈0.7 at T⩾T{sub c}. The double-gap nature of MgB{sub 2} manifests itself in the presence of a wide low-T tail in the R{sub s}(T) curves, which can be ascribed to the quasiparticles thermally excited through the π gap even at relatively low temperatures.

  13. Electric field dependence of optical phonon frequencies in wurtzite GaN observed in GaN high electron mobility transistors

    Science.gov (United States)

    Bagnall, Kevin R.; Dreyer, Cyrus E.; Vanderbilt, David; Wang, Evelyn N.

    2016-10-01

    the IPE-induced stress from the temperature rise in the ON state and suggests that the IPE-induced stress in the GaN buffer is an order of magnitude smaller than previously believed. Our analysis and experimental results support previous theoretical studies discussing the electric field dependence of optical phonon frequencies apart from the IPE effect and suggest that this is a general phenomenon occurring in all wurtzite and zincblende crystals. The total electric field dependence of the optical phonon frequencies in piezoelectric crystals is a critical consideration in accurately characterizing the stress, strain, electric field, and temperature distributions in microelectronic devices via micro-Raman spectroscopy.

  14. Frequency-dependence of mating success in Poeciliopsis monacha (Pisces, Cyprinodontiformes reproductive complex, Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Neuza Rejane Wille Lima

    2002-06-01

    Full Text Available A diversity of all-female fishes of the genus Poeciliopsis coexists with their sexual ancestor species in streams of western Mexico. All-females are hybrids that depend on the sperm of paternal species to reproduce. Rare-female advantage is one of several hypotheses that attempt to explain how the diversity of all-female biotypes is maintained within the Poeciliopsis reproductive complexes. According to this hypothesis, the uncommon all-female biotype has a mating advantage over the common ones and has been maintained by a dynamic equilibrium process. In the P. monacha reproductive complex at Arroyo de los Platanos the density of two all-female biotypes (P. 2monacha-lucida I and II varies across pools. The objective of this study was to analyse fecundity and mating success of females from this arroyo to test the hypothesis. Female mating success was inversely correlated to their density, supporting this hypothesis.Uma diversidade de fêmeas unissexuadas do gênero Poeciliopsis coexiste com seus ancestrais sexuados em riachos do oeste mexicano. Fêmeas unissexuadas são híbridos que dependem do esperma da espécie parental paternal para se reproduzir. Várias hipóteses, incluindo a vantagem da fêmea rara, procuram explicar como a diversidade do biótipos unissexuados é mantida nos complexos reprodutivos de Poeciliopsis. A hipótese propõem que os biótipos unissexuados menos frequentes tenham vantagem de cruzamento sobre os biótipos mais frequentes e que existe um equilíbrio dinâmico regulando tal processo. No complexo reprodutivo de P. monacha localizado no Arroyo de los Platanos, a densidade de dois biótipos unissexuados (P. 2monacha-lucida I e II variam entre as piscinas formadas. O objetivo do presente estudo foi analisar a fecundidade e o sucesso de cruzamento das fêmea deste riacho para testar a hipótese. O sucesso de cruzamento das fêmeas foi inversamente correlacionado a sua densidade, dando suporte a hipótese levantada.

  15. Frequency band-dependence of S-wave splitting in China mainland and its implications

    Institute of Scientific and Technical Information of China (English)

    LIU; Kun

    2001-01-01

    [1]Liu, T. S., Loess and the Environment, Beijing: China Ocean Press, 1985, 1-251.[2]Chen, L. X., Zhu, Q. G., Luo, H. B. et al., East Asian Monsoon, Beijing: China Meteorology Press, 1991, 28-61.[3]An, Z. S., Liu, T. S., Lu, Y. C. et al., The long-term palaeomonsoon variation recorded by the loess-palaeosol sequence in central China, Quaternary International, 1990, (7/8): 91-95.[4]Guo, Z. T., Liu, T. S., Fedoroff, N. et al., Shift of the monsoon intensity on the Loess Plateau at ca. 0.85 MaBP, Chinese Science Bulletin, 1993, 38(2): 586-591.[5]Chen, J., An, Z. S., Wang, Y. J. et al., Distributions of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka: Implications for paleomonsoon variations, Science in China, Ser. D, 1999, 42(3): 225-232.[6]Chen, J., Wang, Y. J., Ji, J. F. et al., Rb/Sr variations and its climatic stratigraphical significance of a loess-paleosol profile from Luochuan, Shaanxi Province, Quaternary Sciences (in Chinese), 1999, 19(4): 350-356.[7]Guo, Z. T.,Liu, T. S., Fedoroff, N. et al., Climate extremes in loess of China coupled with the strength of deep-water for-mation in the North Atlantic, Global and Planetary Change, 1998, 18: 113-128.[8]Guo, Z. T., Liu, T. S., An, Z. S., Paleosols of the last 0.15 Ma in the Weinan loess section and their paleoclimate signifi-cance, Quaternary Sciences (in Chinese), 1994, 14(3): 256-269.[9]Guo, Z, T,, Fedoroff, N., Liu, T. S., Micromorphology of the loess-paleosol sequence of the last 130 ka in China and pa-leoclimatic event, Science in China (in Chinese), Ser. D, 1996, 26(3): 392-398.[10]Guo, Z., Liu, T., Guiot, J., et al., High frequency pulses of East Asian monsoon climate in the last two glaciations: Link with the North Atlantic, Climate Dynamics, 1996, 12: 701-709.[11]Guo, Z. T., Peng, S. Z., Wei, L. Y. et al., Weathering signals of Millennial-Scale oscillations of the East Asian Summer monsoon over the last 220 ka, Chinese Science

  16. Low-Frequency Variability in the Northern Hemisphere Winter: Geographical Distribution, Structure and Time-Scale Dependence.

    Science.gov (United States)

    Kushnir, Yochanan; Wallace, John M.

    1989-10-01

    Low-frequency variability in wintertime 500 mb height is examined, with emphasis on its structure, geographical distribution, and frequency dependence. A 39-year record of 500 mb geopotential height fields from the NMC analyses is time filtered to partition the fluctuations into frequency bands corresponding to periods of 10-60 days, 60-180 days and > 180 days. Winter is defined as the six month period November through April. Variance, teleconnectivity, and anisotropy fields, and selected loading vectors derived from orthogonal and oblique rotations of the eigenvectors of the temporal correlation matrix for each band are shown and discussed.The variability in all frequency bands exhibits substantial anistropy, with meridionally elongated features arranged as zonally oriented wave trains prevailing over the continents and zonally elongated features organized in the form of north-south oriented dipole patterns prevailing over the oceanic sectors of the hemisphere. The wave trains are most pronounced in the 10-60 day variability, while the dipoles are most pronounced at lower frequencies. Eastward energy dispersion is apparent in the wave trains, but there is no evidence of phase propagation.Most of the `teleconnection patterns' identified in previous studies appear among the more prominent loading vectors. However, in most cases the loading vectors occur in pairs, in which the two patterns are in spatial quadrature with one another and account for comparable fractions of the hemispherically integrated variance. It is argued that such patterns should be interpreted as basis functions that can be linearly combined to form a continuum of anisotropic structures. Evidence of the existence of discrete `modal structures' is found only in the interannual (> 180-day period) variability, where two patterns stand out clearly above the background continuum: the Pacific-North American (PNA) pattern and the North Atlantic Oscillation (NAO). These patterns leave clear imprints upon

  17. Issledovanie temperaturnoi i chastotnoi zavisimostei elektrofizicheskikh svoistv dioksida tseriya [Investigation of the temperature and frequency dependences of the electrical properties of cerium dioxide

    Directory of Open Access Journals (Sweden)

    V. A. Ogorodnik

    1993-05-01

    Full Text Available An experimental study of the electrical properties of CeO2 - temperature and frequency dependences of the conductivity, permittivity and dielectric loss tangent, as well as an interpretation of the results obtained

  18. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival.

  19. Phase speed and frequency-dependent damping of longitudinal intensity oscillations in coronal loop structures observed with AIA/SDO

    CERN Document Server

    Abedini, A

    2016-01-01

    Longitudinal intensity oscillations along coronal loops that are interpreted as signatures of magneto-acoustic waves are observed frequently in different coronal structures. The aim of this paper is to estimate the physical parameters of the slow waves and the quantitative dependence of these parameters on their frequencies in the solar corona loops that are situated above active regions with the Atmospheric Imaging Assembly (AIA) onboard Solar Dynamic Observatory (SDO). The observed data on 2012-Feb-12, consisting of 300 images with an interval of 24 seconds in the 171 $\\rm{\\AA}$ and 193 $\\rm{\\AA}$ passbands is analyzed for evidence of propagating features as slow waves along the loop structures. Signatures of longitudinal intensity oscillations that are damped rapidly as they travel along the loop structures were found, with periods in the range of a few minutes to few tens of minutes. Also, the projected (apparent) phase speeds, projected damping lengths, damping times and damping qualities of filtered int...

  20. High-frequency chest-wall oscillation in a noninvasive-ventilation-dependent patient with type 1 spinal muscular atrophy.

    Science.gov (United States)

    Keating, Joanna M; Collins, Nicola; Bush, Andrew; Chatwin, Michelle

    2011-11-01

    With the recent increased use of noninvasive ventilation, the prognoses of children with neuromuscular disease has improved significantly. However, children with muscle weakness remain at risk for recurrent respiratory infection and atelectasis. We report the case of a young girl with type 1 spinal muscular atrophy who was dependent on noninvasive ventilation, and in whom conventional secretion-clearance physiotherapy became insufficient to clear secretions. We initiated high-frequency chest-wall oscillation (HFCWO) as a rescue therapy, and she had improved self-ventilation time. This is the first case report of HFCWO for secretion clearance in a severely weak child with type 1 spinal muscular atrophy. In a patient with neuromuscular disease and severe respiratory infection and compromise, HFCWO can be used safely in combination with conventional secretion-clearance physiotherapy.

  1. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    Science.gov (United States)

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  2. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  3. Dependence of the atomic level Green-Kubo stress correlation function on wavevector and frequency: molecular dynamics results from a model liquid.

    Science.gov (United States)

    Levashov, V A

    2014-09-28

    We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.

  4. Low-Frequency Dependence of Conductivity and Dielectric Properties of Polyaniline/ZnFe2O4 Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    G. D. Prasanna; H. S. Jayanna; Ashok R Lamani; M. L. Dinesha; C. S. Naveen; G. J. Shankaramurthy

    2011-01-01

    Conducting polyaniline/ZnFe2O4 nanocomposites are synthesized by using a simple and inexpensive one-step in-situ polymerization method in the presence of ZnFe2O4 nanoparticles.The structural,morphological and electrical properties of the samples are characterized by x-ray diffraction,Fourier transform infrared spectra and scanning electron microscopy.These results reveal the formation of polyaniline/ZnFe2O4 nanocomposites.The morphology of these samples is studied by scanning electron microscopy.Further,the ac conductivity (σac) of these composites is investigated in the frequency range of 1 kHz-10 MHz.The presence of polarons and bipolarons are responsible for the frequency dependence of ac conductivity in these nanocomposites.The ac conductivity is found to be constant up to 1 MHz and thereafter it increases steeply.The ac conductivity of 0.695S·cm-1 at room temperature is observed as the maxima for the polyaniline with 40wt% of the ZnFe2O4 nanocomposite.Polymers are known,in general,as a class of heat sensitive,flexible,electrically insulating,amorphous or semicrystalline materials.The electrical properties of polymers can be modified by the addition of inorganic materials.Nanoscale particles as fillers are attractive due to their intriguing properties arising from the nanosize and resulting large surface area.The insertion of nanoscale materials may improve the electrical and dielectric properties of the host polymers.[1]A large number of polymers are now included in the list of conducting polymers,including polyaniline,polypyrrole,polythiophene,polyparaphenylene,polyphenylene sulphide,polyphenylene vinylene,etc.%Conducting polyaniline/ZnFe2O4 nanocomposites are synthesized by using a simple and inexpensive one-step in-situ polymerization method in the presence of ZnFe2OA nanoparticles. The structural, morphological and electrical properties of the samples are characterized by x-ray diffraction, Fourier transform infrared spectra and scanning electron

  5. Is it possible to infer the frequency-dependent seismic attenuation of fractured materials from high-strain creep tests?

    Science.gov (United States)

    mallet, celine; quintal, beatriz; caspari, eva; holliger, klaus

    2016-04-01

    The seismic and hydraulic characterization of fractured rocks is an important objective for reservoir development in general and the production of geothermal energy in particular. The attenuation of seismic waves in saturated fractured media is governed by local displacements of the fluid relative to the solid induced by the compressions and extensions associated with the passing wavefield. This phenomenon is generally referred to as wave-induced fluid flow (WIFF). Recent evidence suggests that this energy dissipation mechanism is sensitive to the interconnectivity of the fractures, which offers the perspective of linking seismic observations to the hydraulic properties of fractured rocks. Here, we consider the results of laboratory experiments, which are referred to as creep tests. Such tests consist of applying a constant stress to a water-saturated thermally cracked glass sample and recording the resulting strain response as a function of time. The primary advantages of the considered material are (i) that the fracture network is well documented and (ii) that the homogeneous and non-porous glass matrix limits WIFF to the fracture network. Due to the high stress levels as well as other technical issues, creep tests are not commonly used for laboratory-based measurements of energy dissipation. Therefore, an objective of this study is to explore whether and to what extent such data can be interpreted in terms of the seismic attenuation characteristics of the probed samples, as this might open access to a vast reservoir of corresponding data, notably for cracked materials. Transforming the observed time-dependent stress-strain relation into the Fourier domain, allows us to infer the corresponding frequency-dependent attenuation characteristics, which we then seek to interpret through numerical simulations based on Biot's quasi-static poroelastic equations. The 2D geometry of the fracture network considered in these simulations is derived from a scanning electron

  6. Study of the lacustrine phytoplankton productivity dependence on solar radiation, on the basis of direct high-frequency measurements

    Science.gov (United States)

    Provenzale, Maria; Ojala, Anne; Heiskanen, Jouni; Erkkilä, Kukka-Maaria; Mammarella, Ivan; Hari, Pertti; Vesala, Timo

    2016-04-01

    One of the main components of the carbon cycle in lakes is phytoplankton. Its in situ photosynthesis and respiration are usually studied with traditional methods (dark and light bottle method, 14C labelling technique). These methods, relying on sampling and incubation, may lead to unrealistic results. They also have a poor temporal resolution, which does not allow the non-linear relationship between photosynthetically active solar radiation (PAR) and photosynthesis to be properly investigated. As a consequence, the phytoplankton net primary productivity (NPP) cannot be parameterised as a function of ambient variables. In 2008 an innovative free-water approach was proposed. It is based on non-dispersive infrared air CO2 probes that, by building an appropriate system, can be used to measure the CO2 concentration in the water at a high-frequency. At that time, the method was tested only on 3 days of data. Here, we deployed it on a boreal lake in Finland for four summers, in order to calculate the NPP and verify its dependence on PAR. The set-up was completed by an eddy-covariance system and water PAR and temperature sensors. In analogy with the procedure typically used in terrestrial ecology, we obtained the phytoplankton NPP computing the mass balance of CO2 in the mixed layer of the lake, i.e. the superficial layer where the conditions are homogeneous and most of the photosynthetic activity takes place. After calculating the NPP , we verified its dependence on PAR. The theoretical model we used was a saturating Michaelis-Menten curve, in which the variables are water temperature and PAR. The equation also contains parameters typical of the phytoplankton communities, which represent their maximum potential photosynthetic rate, their half-saturation constant and their basal respiration. These parameters allow the NPP to be parameterised as a function of T and PAR. For all the analysed year, we found a very good agreement between theory and data (R2 ranged from 0.80 to

  7. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    Science.gov (United States)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  8. Subparsec-scale dynamics of a dusty gas disk exposed to anisotropic AGN radiation with frequency-dependent radiative transfer

    CERN Document Server

    Namekata, Daisuke

    2016-01-01

    We explore the gas dynamics near the dust sublimation radius of active galactic nucleus (AGN). For the purpose, we perform axisymmetric radiation hydrodynamic simulations of a dusty gas disk of radius $\\approx 1\\,\\mathrm{pc}$ around a supermassive black hole of mass $10^{7}\\,\\mathrm{M_{\\odot}}$ taking into account (1) anisotropic radiation of accretion disk, (2) X-ray heating by corona, (3) radiative transfer of infrared (IR) photons reemitted by dust, (4) frequency dependency of direct and IR radiations, and (5) separate temperatures for gas and dust. As a result, we find that for Eddington ratio $\\approx 0.77$, a nearly neutral, dense ($\\approx 10^{6\\operatorname{-}8}\\;\\mathrm{cm^{-3}}$), geometrically-thin ($h/r<0.06$) disk forms with a high velocity ($\\approx 200 \\sim 3000\\;\\mathrm{km/s}$) dusty outflow launched from the disk surface. The disk temperature is determined by the balance between X-ray heating and various cooling, and the disk is almost supported by thermal pressure. Contrary to \\citet{krol...

  9. Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation

    Directory of Open Access Journals (Sweden)

    Salentijn Elma MJ

    2012-06-01

    Full Text Available Abstract Background Celiac disease (CD is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins. The CD-toxicity of these proteins and their derived peptides is depending on the presence of specific T-cell epitopes (9-mer peptides; CD epitopes that mediate the stimulation of HLA-DQ2/8 restricted T-cells. Next to the thoroughly characterized major T-cell epitopes derived from the α-gliadin fraction of gluten, γ-gliadin peptides are also known to stimulate T-cells of celiac disease patients. To pinpoint CD-toxic γ-gliadins in hexaploid bread wheat, we examined the variation of T-cell epitopes involved in CD in γ-gliadin transcripts of developing bread wheat grains. Results A detailed analysis of the genetic variation present in γ-gliadin transcripts of bread wheat (T. aestivum, allo-hexaploid, carrying the A, B and D genome, together with genomic γ-gliadin sequences from ancestrally related diploid wheat species, enabled the assignment of sequence variants to one of the three genomic γ-gliadin loci, Gli-A1, Gli-B1 or Gli-D1. Almost half of the γ-gliadin transcripts of bread wheat (49% was assigned to locus Gli-D1. Transcripts from each locus differed in CD epitope content and composition. The Gli-D1 transcripts contained the highest frequency of canonical CD epitope cores (on average 10.1 per transcript followed by the Gli-A1 transcripts (8.6 and the Gli-B1 transcripts (5.4. The natural variants of the major CD epitope from γ-gliadins, DQ2-γ-I, showed variation in their capacity to induce in vitro proliferation of a DQ2-γ-I specific and HLA-DQ2 restricted T-cell clone. Conclusions Evaluating the CD epitopes derived from γ-gliadins in their natural context of flanking protein variation, genome specificity and transcript frequency is a significant step towards accurate quantification of the CD toxicity of bread wheat. This approach can be used to predict relative levels of CD toxicity of

  10. Expression of Heat Shock Proteins (HSPs) in Aged Skeletal Muscles Depends on the Frequency and Duration of Exercise Training.

    Science.gov (United States)

    Kim, Jeong-Seok; Lee, Young-Hee; Choi, Do-Yourl; Yi, Ho-Keun

    2015-06-01

    long-duration (S1) and multiple short-duration (M1) types than S2 and M2 types of exercise training in soleus (SOL) skeletal muscles.Superoxide dismutase (SODs) showed similar expression as HSPs did. On the contrary, the p-ERK and p-JNK were down regulated. In addition, p-p38 level in the SOL muscle was activated markedly in all exercise groups.Induction of HSPs and SODs by high duration and frequency of exercise training such as S1 and M1 types with concomitant MAPKs pathway depending on the type of muscles.The frequency and duration of exercise training could affect the functional adaptation and protection against aging-induced structural weakness of skeletal muscles through changing expression of related molecules.

  11. Learning to be different: Acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations

    Science.gov (United States)

    Tinker, M.T.; Mangel, M.; Estes, J.A.

    2009-01-01

    ) Offspring can learn foraging skills from their mothers (matrilineal social learning). (6) Food abundance is limited, such that average individual energy reserves are low Additionally, the following factors increase the likelihood of alternative specializations co-occurring in a predator population: (1) The predator exerts effective top-down control of prey abundance, resulting in frequency-dependent dynamics. (2) There is stochastic Variation in prey population dynamics, but this Variation is neither too extreme in magnitude nor too 'slow' with respect to the time required for an individual forager to learn new foraging skills. For a given predator population, we deduce that the degree of specialization will be highest for those prey types requiring complex capture or handling skills, while prey species that are both profitable and easy to capture and handle will be included in the diet of all individuals. Frequency-dependent benefits of selecting alternative prey types, combined with the ability of foragers to improve their foraging skills by learning, and transmit learned skills to offspring, can result in behaviourally mediated foraging specialization, and also lead to the co-existence of alternative specializations. The extent of such specialization is predicted to be a variable trait, increasing in locations or years when intra-specific competition is high relative to inter-specific competition. ?? 2009 M. Tim Tinker.

  12. Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered.

    Science.gov (United States)

    Park, Harold S

    2009-03-18

    There are two major objectives to the present work. The first objective is to demonstrate that, in contrast to predictions from linear surface elastic theory, when nonlinear, finite deformation kinematics are considered, the residual surface stress does impact the resonant frequencies of silicon nanowires. The second objective of this work is to delineate, as a function of nanowire size, the relative contributions of both the residual (strain-independent) and the surface elastic (strain-dependent) parts of the surface stress to the nanowire resonant frequencies. Both goals are accomplished by using the recently developed surface Cauchy-Born model, which accounts for nanoscale surface stresses through a nonlinear, finite deformation continuum mechanics model that leads to the solution of a standard finite element eigenvalue problem for the nanowire resonant frequencies. In addition to demonstrating that the residual surface stress does impact the resonant frequencies of silicon nanowires, we further show that there is a strong size dependence to its effect; in particular, we find that consideration of the residual surface stress alone leads to significant errors in predictions of the nanowire resonant frequency, with an increase in error with decreasing nanowire size. Correspondingly, the strain-dependent part of the surface stress is found to have an increasingly important effect on the resonant frequencies of the nanowires with decreasing nanowire size.

  13. Temperature and frequency dependence of transport phenomena in co-doped rare earth oxides nanoparticles for ITSOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, A. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 44000 (Pakistan); School of Science and Technology, University of Management and Technology, Sialkot Campus, Shahabpura Road, Sialkot 51310 (Pakistan); Saleemi, A.S. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 44000 (Pakistan); Anis-ur-Rehman, M., E-mail: marehman@comsats.edu.pk [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 44000 (Pakistan)

    2015-05-25

    Highlights: • Phase pure ceria (Gd–La and Gd–Nd co-doped) as electrolytes for fuel cells. • Facile synthesis is done with composite mediated hydrothermal method. • Significant variation in transport properties with doping concentration is observed. • The Raman spectra confirmed the targeted doping and increase of vacancy sites. • Maximum conductivity achieved was 1.78 S cm{sup −1} for Ce{sub 0.5}Gd{sub 0.25}Nd{sub 0.25}O{sub δ} at 600 °C. - Abstract: The present study is focused on the conductivity enhancement of the doped ceria. Composite mediated hydrothermal method (CMHM) was employed to produce the material. X-ray diffraction was used to determine phase of nanocrystalline Ce{sub 1−2x}Gd{sub x}La{sub x}O{sub δ} and Ce{sub 1−2x}Gd{sub x}Nd{sub x}O{sub δ} (x = 0.1, 0.25). Conduction mechanism (dc conductivity and ac conductivity) in prepared samples was observed as a function of temperature and frequency. DC conductivity was measured in temperature range 300–700 °C. AC conductivity was measured in frequency range 1 kHz to 3 MHz at temperatures 300, 400, 500, 600, and 700 °C. The enhancement in conductivity was observed due to availability of oxygen vacancy sites which was dependent on composition. The Raman measurements supported the electrical conductivity results and more vacancy sites were observed in Raman spectrum in samples which showed maximum conductivities. The maximum conductivity achieved was 1.78 S cm{sup −1} (at 600 °C) for Ce{sub 0.5}Gd{sub 0.25}Nd{sub 0.25}O{sub δ}, which is quite a higher value in these compounds. This made this material a potential candidate for its use as an electrolyte material for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs)

  14. Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

    Directory of Open Access Journals (Sweden)

    Jana Vlachová

    2015-03-01

    Full Text Available The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0–20 nm. The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM, where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate (PMMA. The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model. This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor, which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting

  15. Experimental study on the relationship between the frequency-dependent shear viscosity and the intermediate scattering function of representative viscous liquids

    Science.gov (United States)

    Yamaguchi, Tsuyoshi

    2016-11-01

    The frequency-dependent shear viscosity of two representative viscous liquids, o-terphenyl and glycerin, was experimentally determined at several temperatures and compared with the intermediate scattering functions reported in the literature. A comparison based on mode-coupling theory succeeded in relating the frequency-dependent shear viscosity with the intermediate scattering function at the main peak of the static structure factor. It suggests that the slow relaxation mode of the shear viscosity of both liquids is governed by the density fluctuation at the main peak of the static structure factor, in spite of the differences in the details of their intermolecular interactions.

  16. Prediction of maximum P- and S-wave amplitude distributions incorporating frequency- and distance-dependent characteristics of the observed apparent radiation patterns

    Science.gov (United States)

    Takemura, Shunsuke; Kobayashi, Manabu; Yoshimoto, Kazuo

    2016-10-01

    Frequency-dependent model of the apparent radiation pattern has been extensively incorporated into engineering and scientific applications for high-frequency seismic waves, but distance-dependent properties have not yet been fully taken into account. We investigated the unified characteristics of frequency and distance dependences in both apparent P- and S-wave radiation patterns during local crustal earthquakes. Observed distortions of the apparent P- and S-wave radiation patterns could be simply modeled by using a function of the normalized hypocentral distance, which is a product of the wave number and hypocentral distance. This behavior suggests that major cause of distortion of the apparent radiation pattern is seismic wave scattering and diffraction within the heterogeneous crust. On the basis of observed normalized hypocentral distance dependency, we proposed a method for prediction of spatial distributions of maximum P- and S-wave amplitudes. Our method incorporating normalized hypocentral distance dependence of the apparent radiation pattern reproduced the observed spatial distributions of maximum P- and S-wave amplitudes over a wide frequency and distance ranges successfully.[Figure not available: see fulltext.

  17. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    Science.gov (United States)

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji

    2015-06-01

    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  18. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    Science.gov (United States)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  19. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    Science.gov (United States)

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  20. Temperature dependency of cupular mechanics and hair cell frequency selectivity in the fish canal lateral line organ

    NARCIS (Netherlands)

    Wiersinga-Post, JEC; van Netten, SM

    2000-01-01

    The mechanical frequency selectivity of the cupula located in the supraorbital lateral line canal and the frequency selectivity of the hair cells driven by the cupula were measured simultaneously in vivo. Laser interferometry was used to measure cupular mechanics and extracellular receptor potential

  1. Frequency Dependence of Δν of Solar-Like Oscillators Investigated: Influence of HeII Ionization Zone

    NARCIS (Netherlands)

    S. Hekker; S. Basu; Y. Elsworth; W.J. Chaplin

    2013-01-01

    Oscillations in solar-like oscillators tend to follow an approximately regular pattern in which oscillation modes of a certain degree and consecutive order appear at regular intervals in frequency, i.e. the so-called large frequency separation. This is true to first order approximation for acoustic

  2. Temperature dependence of frequency dispersion in III–V metal-oxide-semiconductor C-V and the capture/emission process of border traps

    Energy Technology Data Exchange (ETDEWEB)

    Vais, Abhitosh, E-mail: Abhitosh.Vais@imec.be; Martens, Koen; DeMeyer, Kristin [Department of Electrical Engineering, KU Leuven, B-3000 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, Han-Chung; Ivanov, Tsvetan; Collaert, Nadine; Thean, Aaron [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Dou, Chunmeng [Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Xie, Qi; Maes, Jan [ASM International, B-3001 Leuven (Belgium); Tang, Fu; Givens, Michael [ASM International, Phoenix, Arizona 85034-7200 (United States); Raskin, Jean-Pierre [Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universiteé Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium)

    2015-08-03

    This paper presents a detailed investigation of the temperature dependence of frequency dispersion observed in capacitance-voltage (C-V) measurements of III-V metal-oxide-semiconductor (MOS) devices. The dispersion in the accumulation region of the capacitance data is found to change from 4%–9% (per decade frequency) to ∼0% when the temperature is reduced from 300 K to 4 K in a wide range of MOS capacitors with different gate dielectrics and III-V substrates. We show that such significant temperature dependence of C-V frequency dispersion cannot be due to the temperature dependence of channel electrostatics, i.e., carrier density and surface potential. We also show that the temperature dependence of frequency dispersion, and hence, the capture/emission process of border traps can be modeled by a combination of tunneling and a “temperature-activated” process described by a non-radiative multi-phonon model, instead of a widely believed single-step elastic tunneling process.

  3. Comparison of the Frequency-dependent Effects of Amiodarone on Ventricular Electrophysiology in Congestive Heart Failure Canine Models and Normal Dogs

    Institute of Scientific and Technical Information of China (English)

    Zhou Shuxian; Zhang Yuling; Lei Juan; Wu Wei; Zhang Xuming

    2007-01-01

    Objectives To compare the frequency-dependent effects of amiodarone (Ami) on ventricular electrophysiology in right ventricular rapid pacing-induced congestive heart failure (CHF) canine models.Methods Thirty-two dogs were randomized into four groups: the control group, the Ami group in which the normal dogs were given Ami orally 300 mg a day for 4~5 weeks, the CHF group induced by right ventricular rapid pacing ( 240 pulses. min -1 for 4 ~ 5 weeks), and the group of CHF dogs fed with Ami orally 300 mg a day for 4 ~ 5 weeks. The techniques of electrical stimulation and monophasic action potential (MAP) recording were used in the electrophysiology studies. Results The effects of Ami on ventricular MAP duration(MAPD90) and effective refractory period (VERP)were not frequency-dependent in CHF dogs. There was also no frequency-dependent effect on the increase in the ratio of VERP to MAPD90 (VERP/MAPD90). The prolongation of ventricular conduction time was frequencydependent. Conclusions The frequency-dependent effects of Ami on ventricular electrophysiology in CHF dogs were similar to that in normal dogs.

  4. The Frequency-Dependence of the NMR Longitudinal Relaxation Rate, T(1)(-1), of Water in Cysts of the Brine Shrimp

    Science.gov (United States)

    Egan, Thomas F.

    The NMR spin-lattice relaxation rate, T(,1)(' -1), of water is independent of the Larmor frequency, (omega)/2(pi), in the normal rf range. However, T(,1)('-1) of intracellular water in biological systems, which accounts for as much as 80% of the cell mass, is frequency-dependent. This indicates that the NMR properties of water in the cellular environment are influenced by long-correlation time processes due to the interaction of water with proteins and other macromolecular constituents of the cell. In this research, the relaxation rate T(,1)(' -1) of water in the Artemia (brine shrimp) cyst is examined as a function of: (1) the proton NMR Larmor frequency for .01 Artemia cysts between 10 and 500 MHz. At lower Larmor frequencies, below 1 MHz, the relaxation rates of water in brine shrimp cysts are influenced by additional relexation mechanisms; translational diffusion of hydration water is one possibility.

  5. Dependence of in-situ Bose condensate size on frequency of RF-field used for evaporative cooling

    CERN Document Server

    Mishra, S R; Tiwari, S K; Rawat, H S

    2016-01-01

    We report the results of in-situ characterization of $ ^{87}$Rb atom cloud in a quadrupole Ioffe configuration (QUIC) magnetic trap after radio frequency (RF) evaporative cooling of the trapped atom cloud. The in-situ absorption images of the atom cloud have shown clear bimodal optical density (OD) profiles which indicate the Bose-Einstein condensation (BEC) phase transition in the trapped gas. Also, we report the measured variation in the sizes of the condensate and thermal clouds with the final frequency in the frequency scan of the RF-field applied for evaporative cooling. The results are consistent with the theoretical understanding and predictions reported earlier.

  6. Effect of annealing on the temperature-dependent dielectric properties of LaAlO3 at terahertz frequencies

    Directory of Open Access Journals (Sweden)

    Xingquan Zou

    2012-03-01

    Full Text Available We present THz conductivity of LaAlO3 (LAO as a function of temperature and annealing, using terahertz time-domain spectroscopy (THz-TDS. We observed that, after annealing, spectral weight redistribution occurs, such that the real conductivity σ1(ω changed from a featureless and almost frequency-independent spectrum, into one where peaks occur near the phonon frequencies. These phonon frequencies increase with increasing temperature. We attribute the appearance of these absorption peaks to the diffusion and relocation of oxygen vacancies. The dielectric functions of annealed LAO are well fitted with the Drude-Lorentz model.

  7. Energy dependence of r.m.s amplitude of low frequency broadband noise and kHz quasi periodic oscillations in 4U 1608-52

    Science.gov (United States)

    Mandal, Soma

    2016-07-01

    The neutron star low mass X-ray binary 4U 1608-52 is known to show kHz QPOs as well as low frequency broad band noise. The energy dependence of the fractional r.m.s of these variations reflect the underlying radiative mechanism responsible for the phenomena. In this work we compute the energy depedence for 26 instances of kHz QPO observed by RXTE. We typically find as reported before, that the r.m.s increases with energy with slope of ˜0.5. This indicates that the variation is in the hot thermal compotonization component and in particular the QPO is likely to be driven by variation in the thermal heating rate of the hot plasma. For the same data, we compute the energy dependent r.m.s variability of the low frequency broad band noise component by considering the light curves. In contrast to the behaviour seen for the kHz QPO, the energy dependence is nearly flat i.e. the r.m.s. is energy independent. This indicates that the driver here may be the soft photon source. Thus the radiative mechanism driving the low frequency broad band noise and the high frequency QPO are different in nature.

  8. Fermi resonance and solvent dependence of the vC=O frequency shifts of Raman spectra: cyclohexanone and 2-cyclohexene-1-one

    CERN Document Server

    Nam, S I; Lee, M S; Jung, Y M

    2001-01-01

    The carbonyl stretching vibration, vC=O of 2-cyclohexene-1-one , is in Fermi resonance with a combination tone. The amount of Fermi resonance interaction between these two modes is dependent upon the amount of solute/solvent interaction due to hydrogen bonding between the carbonyl oxygen and the solvent proton. The corrected vC=O frequency of 2-cyclohexene-1-one occurs at a lower frequency than the observed vC=O mode of cyclohexanone, possibly caused by expanded conjugation effects. The carbonyl stretching modes of cyclic ketones were also affected by interaction with the ROH/CCl sub 4 mixed solvent system.

  9. Statistical Frequency-Dependent Analysis of Trial-to-Trial Variability in Single Time Series by Recurrence Plots.

    Science.gov (United States)

    Tošić, Tamara; Sellers, Kristin K; Fröhlich, Flavio; Fedotenkova, Mariia; Beim Graben, Peter; Hutt, Axel

    2015-01-01

    For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain.

  10. Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke.

    Directory of Open Access Journals (Sweden)

    Jianfang Zhu

    Full Text Available Resting-state functional magnetic resonance imaging (R-fMRI has been intensively used to assess alterations of inter-regional functional connectivity in patients with stroke, but the regional properties of brain activity in stroke have not yet been fully investigated. Additionally, no study has examined a frequency effect on such regional properties in stroke patients, although this effect has been shown to play important roles in both normal brain functioning and functional abnormalities. Here we utilized R-fMRI to measure the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo, two major methods for characterizing the regional properties of R-fMRI, in three different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.73 Hz; and typical band: 0.01-0.1 Hz in 19 stroke patients and 15 healthy controls. Both the ALFF and ReHo analyses revealed changes in brain activity in a number of brain regions, particularly the parietal cortex, in stroke patients compared with healthy controls. Remarkably, the regions with changed activity as detected by the slow-5 band data were more extensive, and this finding was true for both the ALFF and ReHo analyses. These results not only confirm previous studies showing abnormality in the parietal cortex in patients with stroke, but also suggest that R-fMRI studies of stroke should take frequency effects into account when measuring intrinsic brain activity.

  11. 38 CFR 3.30 - Frequency of payment of improved pension and parents' dependency and indemnity compensation (DIC).

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Frequency of payment of..., Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and... annual rate payable is $228 or more. (b) Improved pension—Quarterly. Payment shall be made every 3...

  12. Does scaling or addition provide the correct frequency dependence of β(-ωσ; ω1, ω2) at the correlated level? An investigation for six molecules

    DEFF Research Database (Denmark)

    Dalskov, Erik K.; Jensen, Hans Jørgen Aa; Oddershede, Jens

    1997-01-01

    The frequency dependent polarizability α(-ωσ; ω1) and the frequency dependent first hyperpolarizability β(-ωσ; ω1, ω2) have been calculated using both self consistent field (SCF) and multiconfigurational SCF (MCSCF) linear and quadratic response functions for six small molecules: BH, CO, HF, H2O...... an underestimation of the frequency dependence if scaling or addition is applied. There does not seem to be a simple way to infer anything about the validity of scaling or addition for β∥ from either the lower lying excitations and their intensities or from the frequency dependence of the dipole polarizability....

  13. Exchange-mediated, nonlinear, out-of-plane magnetic field dependence of the ferromagnetic vortex gyrotropic mode frequency driven by core deformation

    Science.gov (United States)

    Fried, Jasper P.; Fangohr, Hans; Kostylev, Mikhail; Metaxas, Peter J.

    2016-12-01

    We have performed micromagnetic simulations of low-amplitude gyrotropic dynamics of magnetic vortices in the presence of spatially uniform out-of-plane magnetic fields. For disks having small lateral dimensions, we observe a frequency drop-off when approaching the disk's out-of-plane saturation field. This nonlinear frequency response is shown to be associated with a vortex core deformation driven by nonuniform demagnetizing fields that act on the shifted core. The deformation results in an increase in the average out-of-plane magnetization of the displaced vortex state (contrasting the effect of gyrofield-driven deformation at low field), which causes the exchange contribution to the vortex stiffness to switch from positive to negative. This generates an enhanced reduction of the core stiffness at high field, leading to a nonlinear field dependence of the gyrotropic mode frequency.

  14. A New Possibility for Production of Sub-picosecond X-ray Pulses using a Time Dependent Radio Frequency Orbit Deflection

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    It is shown that two radio frequency deflecting cavities with slightly different frequencies can be used to produce time-dependent orbit deflection to a few special electron bunches while keeping the majority of the electron bunches unaffected. These special bunches produce an x-ray pulse in which transverse position or angle, or both, are correlated with time. The x-ray pulses are then shortened, either with an asymmetrically cut crystal that acts as a pulse compressor, or with an angular aperture such as a narrow slit positioned downstream. The implementation of this technique creates a highly flexible environment for synchrotrons in which users of most beamlines will be able to easily select between the x-rays originated by the standard electron bunches and the short x-ray pulses originated by the special electron bunches carrying a time-dependent transverse correlation.

  15. Frequency dependence of magnetic hysteresis in the field-induced microwave absorption in high T/sub c/ superconductors at T << T/sub c/

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, S.; Gould, A.; Shaw, G.; Bhagat, S.M.; Manheimer, M.A.

    1989-04-24

    The high T/sub c/ superconductors Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7/ and Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub 8/ exhibit magnetic hysteresis in the field-induced microwave absorption at low temperatures (T< or approx.16 K). The ''coercive field'' shows a very strong dependence on frequency.

  16. Temperature Dependence of the Raman Frequency of an Internal Mode for SiO2-Moganite Close to the α-β Transition

    Directory of Open Access Journals (Sweden)

    Mustafa Cem Lider

    2012-01-01

    Full Text Available The temperature dependence of the 501 cm−1 frequency of the vibrational mode is analyzed for SiO2-moganite. The experimental data for the heating and cooling cycles of moganite from the literature is used for our analysis. The coexistence of α-β moganite is obtained over a finite temperature interval, and the α-β moganite transition at around 570 K is studied, as observed experimentally.

  17. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    Science.gov (United States)

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  18. Capacitively Coupled Resistivity measurements to determine frequency-dependent electrical parameters in periglacial environment—theoretical considerations and first field tests

    Science.gov (United States)

    Przyklenk, A.; Hördt, A.; Radić, T.

    2016-08-01

    Capacitively Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, that is, the resistivity and the electrical permittivity, by analysing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the first time, we used a novel broad-band CCR device `Chameleon' for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependence of the electrical parameters was parametrized in three different ways: A Debye Model for pure ices, a Cole-Cole Model for pure ices and a dual Cole-Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low- and high-frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.

  19. A More Accurate Fourier Transform

    CERN Document Server

    Courtney, Elya

    2015-01-01

    Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...

  20. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    Science.gov (United States)

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  1. Calculations of near-field emissions in frequency-domain into time-dependent data with arbitrary wave form transient perturbations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-09-01

    Full Text Available This paper is devoted on the application of the computational method for calculating the transient electromagnetic (EM near-field (NF radiated by electronic structures from the frequency-dependent data for the arbitrary wave form perturbations i(t. The method proposed is based on the fast Fourier transform (FFT. The different steps illustrating the principle of the method is described. It is composed of three successive steps: the synchronization of the input excitation spectrum I(f and the given frequency data H0(f, the convolution of the two inputs data and then, the determination of the time-domain emissions H(t. The feasibility of the method is verified with standard EM 3D simulations. In addition to this method, an extraction technique of the time-dependent z-transversal EM NF component Xz(t from the frequency-dependent x- and y- longitudinal components Hx(f and Hy(f is also presented. This technique is based on the conjugation of the plane wave spectrum (PWS transform and FFT. The feasibility of the method is verified with a set of dipole radiations. The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs.

  2. Field-effect and frequency dependent transport in semiconductor-enriched single-wall carbon nanotube network device.

    Science.gov (United States)

    Jaiswal, Manu; Sangeeth, C S Suchand; Wang, Wei; Sun, Ya-Ping; Menon, Reghu

    2009-11-01

    The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.

  3. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    Science.gov (United States)

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  4. 地震模拟振动台阵系统的精细化建模与频响仿真%Accurate Modeling and Frequency Simulation of Shaking Table Array

    Institute of Scientific and Technical Information of China (English)

    高春华; 纪金豹; 闫维明; 王巨科; 李娜

    2015-01-01

    为解决地震模拟振动台建模中的非线性问题,采用Matlab/Simulink中的SimHydraulics、SimMechanics模块对北京工业大学地震模拟振动台九子台阵进行了精细化建模与仿真,分析了伺服阀特性、台面质量及油源压力对系统频响特性的影响,给出了振动台建设中合理的台面质量范围,得出了试验中通常应该采用的理想油源压力。研究结果表明:伺服阀频率对振动台系统频响特性的影响较大而伺服阀的阻尼比对此几乎没有影响。%In order to solve the nonlinear problems in the modeling of shaking table array system, refined modeling and simulation of shaking table 9 -sub array system of Beijing university of technology were carried out using Matlab/Simulink, the characteristics of servo valve, mesa quality and the effect of oil source pressure on the system frequency response characteristics were analyzed. The study shows that the servo valve frequency exerts great influence on the frequency response characteristics of shaking table system while servo valve damping ratio has little impact on the system frequency response characteristics.

  5. Speaking Fluently And Accurately

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    Even after many years of study,students make frequent mistakes in English. In addition, many students still need a long time to think of what they want to say. For some reason, in spite of all the studying, students are still not quite fluent.When I teach, I use one technique that helps students not only speak more accurately, but also more fluently. That technique is dictations.

  6. Frequency-dependent sexual selection with respect to offspring fitness returns is consistent with predictions from rock-paper-scissors dynamics in the European common lizard

    Directory of Open Access Journals (Sweden)

    Patrick S. Fitze

    2014-12-01

    Full Text Available Genetic polymorphism can be maintained over time by negative frequency-dependent (FD selection induced by Rock-paper-scissors (RPS social systems. RPS games produce cyclic dynamics, and have been suggested to exist in lizards, insects, isopods, plants, and bacteria. Sexual selection is predicted to accentuate the survival of the future progeny during negative FD survival selection. More specifically, females are predicted to select mates that produce progeny genotypes that exhibit highest survival during survival selection imposed by adult males. However, no empirical evidence demonstrates the existence of FD sexual selection with respect to fitness payoffs of genetic polymorphisms. Here we tested this prediction using the common lizard Zootoca vivipara, a species with three male color morphs (orange, white, yellow that exhibit morph frequency cycles. In a first step we tested the congruence of the morph frequency change with the predicted change in three independent populations, differing in male color morph frequency and state of the FD morph cycle. Thereafter we ran standardized sexual selection assays in which we excluded alternative mechanisms that potentially induce negative FD selection, and we quantified inter-sexual behavior. The patterns of sexual selection and the observed behavior were in line with context-dependent female mate choice and male behavior played a minor role. Moreover, the strength of the sexual selection was within the magnitude of selection required to produce the observed 3-4-year and 6-8 year morph frequency cycles at low and high altitudes, respectively. In summary, the study provides the first experimental evidence that underpins the crucial assumption of the RPS games suggested to exist in lizards, insects, isopods, and plants; namely, that sexual selection produces negative-FD selection. This indicates that sexual selection, in our study exert by females, might be a crucial driver of the maintenance of genetic

  7. Allele-dependent recombination frequency: homology requirement in meiotic recombination at the hot spot in the mouse major histocompatibility complex.

    Science.gov (United States)

    Yoshino, M; Sagai, T; Lindahl, K F; Toyoda, Y; Moriwaki, K; Shiroishi, T

    1995-05-20

    Meiotic recombination break joints in the mouse major histocompatibility complex (MHC) are clustered within short segments known as hot spots. We systematically investigated the requirement for sequence homology between two chromosomes for recombination activity at the hot spot next to the Lmp2 gene. The results indicated that a high rate of recombination required a high degree of similarity of overall genome structure at the hot spot. In particular, the same copy number of repetitive sequences within the hot spot was essential for a high frequency of recombination, suggesting that recombination in mouse meiosis is more sensitive to heterozygous deletion or insertion of DNA than to mismatches of single-base substitutions.

  8. Modified structural and frequency dependent impedance formalism of nanoscale BaTiO3 due to Tb inclusion

    Science.gov (United States)

    Borah, Manjit; Mohanta, Dambarudhar

    2016-05-01

    We report the effect of Tb-doping on the structural and high frequency impedance response of the nanoscale BaTiO3 (BT) systems. While exhibiting a mixed phase crystal structure, the nano-BT systems are found to evolve with edges, and facets. The interplanar spacing of crystal lattice fringes is ~0.25 nm. The Cole-Cole plots, in the impedance formalism, have demonstrated semicircles which are the characteristic feature of grain boundary resistance of several MΩ. A lowering of ac conductivity with doping was believed to be due to the manifestation of oxygen vacancies and vacancy ordering.

  9. A Bhatnagar-Gross-Krook kinetic model with velocity-dependent collision frequency and corrected relaxation of moments

    Science.gov (United States)

    Alekseenko, Alexander; Euler, Craig

    2016-05-01

    We propose a Bhatnagar-Gross-Krook (BGK) kinetic model in which the collision frequency is a linear combination of polynomials in the velocity variable. The coefficients of the linear combination are determined so as to enforce proper relaxation rates for a selected group of moments. The relaxation rates are obtained by a direct numerical evaluation of the full Boltzmann collision operator. The model is conservative by construction. Simulations of the problem of spatially homogeneous relaxation of hard spheres gas show improvement in accuracy of controlled moments as compared to solutions obtained by the classical BGK, ellipsoidal-statistical BGK and the Shakhov models in cases of strong deviations from continuum.

  10. Accurate Modeling of Advanced Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min

    Analysis and optimization methods for the design of advanced printed re ectarrays have been investigated, and the study is focused on developing an accurate and efficient simulation tool. For the analysis, a good compromise between accuracy and efficiency can be obtained using the spectral domain...... to the POT. The GDOT can optimize for the size as well as the orientation and position of arbitrarily shaped array elements. Both co- and cross-polar radiation can be optimized for multiple frequencies, dual polarization, and several feed illuminations. Several contoured beam reflectarrays have been designed...... using the GDOT to demonstrate its capabilities. To verify the accuracy of the GDOT, two offset contoured beam reflectarrays that radiate a high-gain beam on a European coverage have been designed and manufactured, and subsequently measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...

  11. Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, Jonathan A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, Dominik [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kemper, Alexander F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, James J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Schmitt, Felix T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Li, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Moore, Rob G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kirchmann, Patrick S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Zhi -Xun [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2015-06-01

    Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump–probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.

  12. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex.

    Science.gov (United States)

    Smith, Elliot H; Banks, Garrett P; Mikell, Charles B; Cash, Syndey S; Patel, Shaun R; Eskandar, Emad N; Sheth, Sameer A

    2015-12-01

    The feedback-related negativity (FRN) is a commonly observed potential in scalp electroencephalography (EEG) studies related to the valence of feedback about a subject's performance. This potential classically manifests as a negative deflection in medial frontocentral EEG contacts following negative feedback. Recent work has shown prominence of theta power in the spectral composition of the FRN, placing it within the larger class of "frontal midline theta" cognitive control signals. Although the dorsal anterior cingulate cortex (dACC) is thought to be the cortical generator of the FRN, conclusive data regarding its origin and propagation are lacking. Here we examine intracranial electrophysiology from the human medial and lateral prefrontal cortex (PFC) to better understand the anatomical localization and communication patterns of the FRN. We show that the FRN is evident in both low- and high-frequency local field potentials (LFPs) recorded on electrocorticography. The FRN is larger in medial compared with lateral PFC, and coupling between theta band phase and high-frequency LFP power is also greater in medial PFC. Using Granger causality and conditional mutual information analyses, we provide evidence that feedback-related information propagates from medial to lateral PFC, and that this information transfer oscillates with theta-range periodicity. These results provide evidence for the dACC as the cortical source of the FRN, provide insight into the local computation of frontal midline theta, and have implications for reinforcement learning models of cognitive control.

  13. Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials: intracellular-LFP transfer function.

    Science.gov (United States)

    Bédard, Claude; Rodrigues, Serafim; Roy, Noah; Contreras, Diego; Destexhe, Alain

    2010-12-01

    We examine the properties of the transfer function F(T)=V(m)/V(LFP) between the intracellular membrane potential (V(m)) and the local field potential (V(LFP)) in cerebral cortex. We first show theoretically that, in the subthreshold regime, the frequency dependence of the extracellular medium and that of the membrane potential have a clear incidence on F(T). The calculation of F(T) from experiments and the matching with theoretical expressions is possible for desynchronized states where individual current sources can be considered as independent. Using a mean-field approximation, we obtain a method to estimate the impedance of the extracellular medium without injecting currents. We examine the transfer function for bipolar (differential) LFPs and compare to simultaneous recordings of V(m) and V(LFP) during desynchronized states in rat barrel cortex in vivo. The experimentally derived F(T) matches the one derived theoretically, only if one assumes that the impedance of the extracellular medium is frequency-dependent, and varies as 1/√ω (Warburg impedance) for frequencies between 3 and 500 Hz. This constitutes indirect evidence that the extracellular medium is non-resistive, which has many possible consequences for modeling LFPs.

  14. Temperature- and pressure-dependent study of 35Cl NQR frequency and spin lattice relaxation time in 2,3-dichloroanisole.

    Science.gov (United States)

    Ramu, L; Ramesh, K P; Ramananda, D; Chandramani, R

    2010-08-01

    The temperature and pressure dependence of (35)Cl NQR frequency and spin lattice relaxation time (T(1)) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T(1) were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation of motion of the CH(3) group. T(1) versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH(3) group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules.

  15. Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Samantaray, B., E-mail: iitg.biswanath@gmail.com; Ranganathan, R.; Mandal, P. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Singh, Akhilesh K.; Perumal, A. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039 (India)

    2015-06-15

    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are found to be 2.1, 2 × 10{sup 5} erg/cm{sup 3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.

  16. Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    Directory of Open Access Journals (Sweden)

    B. Samantaray

    2015-06-01

    Full Text Available Perpendicular magnetic anisotropy (PMA and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are found to be 2.1, 2 × 105 erg/cm3 and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.

  17. Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    Science.gov (United States)

    Samantaray, B.; Singh, Akhilesh K.; Perumal, A.; Ranganathan, R.; Mandal, P.

    2015-06-01

    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are found to be 2.1, 2 × 105 erg/cm3 and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.

  18. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    Science.gov (United States)

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  19. Expression of Heat Shock Proteins (HSPs in Aged Skeletal Muscles Depends on the Frequency and Duration of Exercise Training

    Directory of Open Access Journals (Sweden)

    Jeong-Seok Kim, Young-Hee Lee, Do-Yourl Choi, Ho-Keun Yi

    2015-06-01

    Full Text Available The skeletal muscle in aged rats adapts rapidly following a period of exercise. This adaptation includes structural remodeling and biochemical changes such as an up-regulation of antioxidant enzymes, content of stress and heat shock proteins (HSPs. However, the associated molecular mechanisms mediating different types of exercise training-induced adaptations are not yet completely understood. Therefore, the purpose of this study was to investigate the effects of duration and frequency exercise on the expression of HSPs, antioxidant enzymes, and mitogen-activated protein kinase (MAPKs in the skeletal muscles of aged rats. Young (3-month-old and aged (20-month-old male Sprague-Dawley rats were randomly assigned to 6 groups and extensor digitorum longus (EDL; fast twitch muscle fiber and soleus (SOL; slow twitch muscle fiber skeletal muscles were collected immediately. The expression pattern of HSPs in skeletal muscles was decreased in old groups compared with young groups. Especially, HSPs showed lower expression in SOL than EDL muscle. Interestingly, HSPs in aged rats was increased significantly after S1 (single long-duration; 1×30 min, 5 days/week for 6 weeks and M1 types (multiple short-duration; 3×10 min·day−1, 5 days·week−1 for 6 weeks than S2 (single long-duration; 1×30 min, 3 days/week for 6 weeks and M2 (multiple short-duration; 3×10 min·day−1, 3 days·week−1 for 6 weeks types of exercise training. Also, superoxide dismutase (SODs showed similar expression as HSP did. On the contrary, the p-ERK and p-JNK were down regulated. In addition, p-p38 level in the SOL muscle was activated markedly in all exercise groups. These results demonstrate that increasing of HSP expression through duration and frequency exercise can lead to protection and training-induced adaptation against aging-induced structural weakness in skeletal muscles.

  20. Frequency dependence of electron spin relaxation times in aqueous solution for a nitronyl nitroxide radical and perdeuterated-tempone between 250 MHz and 34 GHz.

    Science.gov (United States)

    Biller, Joshua R; Meyer, Virginia M; Elajaili, Hanan; Rosen, Gerald M; Eaton, Sandra S; Eaton, Gareth R

    2012-12-01

    Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide (2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T(2)) or 3-pulse inversion recovery (T(1)) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T(1) measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2,T(1)~T(2), as expected in the fast tumbling regime. At higher frequencies T(2) was shorter than T(1) due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T(1) is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τ(R) are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτ(R) (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1.

  1. Metamaterial Lens of Specifiable Frequency-Dependent Focus and Adjustable Aperture for Electron Cyclotron Emission in the DIII-D Tokamak

    Science.gov (United States)

    Hammond, K. C.; Massidda, S. D.; Capecchi, W. J.; Volpe, F. A.

    2013-08-01

    Electron Cyclotron Emission (ECE) of different frequencies originates at different locations in non-uniformly magnetized plasmas. For simultaneous observation of multiple ECE frequencies from the outside edge of a toroidal plasma confinement device (e.g. a tokamak), the focal length of the collecting optics should increase with the frequency to maximize the resolution on a line of sight along the magnetic field gradient. Here we present the design and numerical study of a zoned metamaterial lens with such characteristics, for possible deployment with the 83-130 GHz ECE radiometer in the DIII-D tokamak. The lens consists of a concentric array of miniaturized element phase-shifters. These were reverse-engineered starting from the desired Gaussian beam waist locations and further optimized to account for diffraction and finite-aperture effects that tend to displace the waist. At the same time we imposed high and uniform transmittance, averaged over all phase-shifters. The focal length is shown to increase from 1.32 m to 2.08 m over the frequency range of interest, as desired for low-field DIII-D discharges (B = -1.57 T). Retracting the lens to receded positions rigidly moves the waists accordingly, resulting in a good match—within a fraction of the Rayleigh length—of the EC-emitting layer positions at higher fields (up to B= -2.00 T). Further, it is shown how varying the lens aperture might move the waists "non-rigidly" to better match the non-rigid movement of the EC-emitting layers with the magnetic field. The numerical method presented is very general and can be used to engineer any dependence of the focal length on the frequency, including zero or minimal chromatic aberration.

  2. Frequency-dependent Study of Ultrapure Solid 4He by Using Rigid Double-pendulum Torsional Oscillator

    Science.gov (United States)

    Choi, Jaewon; Shin, Jaeho; Kim, Eunseong

    2015-03-01

    The physical origin of the period drop found in the torsional oscillator (TO) containing solid 4He was previously interpreted as the appearance of supersolidity. The current consensus is that the increase in the shear modulus leads to the period anomaly. Further studies show that the stiffening effect in TO can be amplified if a TO is not properly designed to be ``rigid.'' In this study, we designed a rigid double-pendulum TO. High purity solid 4He sample (0.6ppb) was grown by the block capillary method. The resonant period of TO starts to decrease from the empty cell data at 80mK. The ratio of the resonant period changes to the total mass loading are 3 . 8 ×10-5 and 2 . 6 ×10-4 for 1st and 2nd mode, respectively. Unlike recent experiment, we could not found a frequency-independent period drop. The upper bound for the putative supersolid fraction is less than 4 ×10-6 . The dissipation peak accompanied with the period drop was also analyzed with Cole-Cole plot and ωτ plot. We conclude that major contribution for the anomalous TO responses comes from the elastic effect.

  3. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil.

    Science.gov (United States)

    Magdich, Salwa; Ben Ahmed, Chedlia; Jarboui, Raja; Ben Rouina, Béchir; Boukhris, Makki; Ammar, Emna

    2013-11-01

    Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m(3) ha(-1) year(-1)) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH.

  4. Spatial-frequency- and contrast-dependent visible persistence and reading disorder: no evidence for a basic perceptual deficit.

    Science.gov (United States)

    Schulte-Körne, G; Bartling, J; Deimel, W; Remschmidt, H

    2004-07-01

    The aetiology of dyslexia is still unclear, the most widely and controversially discussed theory is the magnocellular deficit hypothesis. One of the first and most influential paradigms used to investigate this visual deficit in dyslexia is the visible persistence (VP). However results on VP are decisively influenced by the method measuring VP. Lovegrove et al. (1986) repeatedly found a longer VP in reading disabled children which is significantly influenced by spatial frequency and contrast. However, these results were not investigated with the same method to date. Seventy-six unselected 2nd grade students (41 boys, 35 girls) of a rural primary school were investigated with an identical experimental design comparable to the Lovegrove et al. (1986) studies. Comparing reading disabled (n = 17) with controls (n = 34) no evidence for a longer VP in the reading disabled group was found. Additionally, correlation analysis revealed no evidence for a significance of VP for spelling, phoneme awareness and speech discrimination. This study does not encourage either a magnocellular nor parvocellular deficit in dyslexia.

  5. Study on interface characteristics in amorphous indium-gallium-zinc oxide thin-film transistors by using low-frequency noise and temperature dependent mobility measurements

    Science.gov (United States)

    Wu, Chenfei; Huang, Xiaoming; Lu, Hai; Yu, Guang; Ren, Fangfang; Chen, Dunjun; Zhang, Rong; Zheng, Youdou

    2015-07-01

    In this work, the interface properties of amorphous indium-gallium-zinc oxide thin film transistors annealed at different temperatures ranging from 150 to 250 °C are studied by temperature dependent mobility and low-frequency noise (LFN) characterizations. The dominant scattering mechanism for carrier transport is found to be Coulomb scattering based on gate bias and temperature dependent mobility measurement. Meanwhile, as the annealing temperature increases, the dominant mechanism of LFN within the device channel varies from carrier number fluctuation to carrier mobility fluctuation. The border trap density as well as the distribution properties of charged border traps is deduced. The present results suggest that annealing at higher temperature has a more remarkable effect on removing deeper border traps than traps closer to the channel/dielectric interface.

  6. Femtosecond optical response of Y-Ba-Cu-O thin films: The dependence on optical frequency, excitation intensity, and electric current

    Energy Technology Data Exchange (ETDEWEB)

    Gong, T.; Zheng, L.X.; Xiong, W.; Kula, W.; Kostoulas, Y.; Sobolewski, R.; Fauchet, P.M. (Laboratory for Laser Energetics and Department of Electrical Engineering, University of Rochester, Rochester, New York 14627 (United States))

    1993-06-01

    We have performed a series of femtosecond reflectivity experiments on various Y-Ba-Cu-O thin films at temperatures ranging from 12 to 300 K. In particular, the dependence of the optical response on probing laser frequency, pumping laser intensity, and bias electric current has been measured. Results obtained at room temperature provide quantitative information on the position of the Fermi level in films with different oxygen content. Systematic analysis of the measurements performed in the superconducting state indicates that the optical response associated with nonequilibrium properties of Y-Ba-Cu-O depends strongly on excitation intensity, sample thickness, and bias current. The results cannot be satisfactorily interpreted as the relaxation dynamics of quasiparticles, and a simple two-fluid model is shown to fail to explain data obtained under low laser excitation. Several tentative explanations are proposed, which provide a more comprehensive understanding of the transient optical response of Y-Ba-Cu-O.

  7. Frequency-dependent effects of phenytoin on the maximum upstroke velocity of action potentials in guinea-pig papillary muscles.

    Science.gov (United States)

    Kojima, M; Ichiyama, M; Ban, T

    1986-07-01

    Phenytoin, at 50 to 200 micrograms reduced the maximum upstroke velocity of action potentials (Vmax) with increases in frequency from 0.25 to 5 Hz and in the external potassium concentration [( K+]0) from 2.7 to 8.1 mM. The drug-induced shortening of action potential duration was evident at 0.25 to 2 Hz but little at 3 to 5 Hz. Time courses of recovery of Vmax was studied by applying premature responses between the conditioning responses at 1 Hz both in control and in drug-treated preparations. Concerning the time courses of the difference between the Vmax values before and after drug treatments at the same diastolic interval, with increases in drug concentrations the intercepts at APD90 were increased but the time constants were not changed or slightly decreased in 8.1 to 5.4 mM [K+]0, whereas they were increased in 2.7 mM [K+]0. To understand the kinetic behavior of this drug on sodium channels, rate constants for the interaction of phenytoin with three states of channels in terms of Hondeghem-Katzung model were estimated from the above experiments of Vmax. The model most consistent with the present experiments was that with an affinity for inactivated channels 20 times greater than that for resting channels and with a minor affinity for open channels. Phenytoin produced a delay in the time course of recovery of overshoot and action potential duration at 0 mV (APD0), suggesting an additional inhibition of the slow channel by this drug.

  8. Frequency-Dependent Electrical Transport Properties of 4,4′,4″-Tri(N-carbazolyl)-Triphenylamine Investigated by Impedance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Bi-Xin; CHEN Jiang-Shan; ZHAO Yong-Biao; MA Dong-Ge

    2011-01-01

    Frequency-dependent electrical transport properties of 4, 4′, 4″-tri (N-carbazolyl)-triphenylamine (TCTA ) are analyzed by impedance spectroscopy (IS) as functions of bias and temperature. The Cole-Cole plot shows a single semicircle which indicates that the equivalent circuit can be designed as a single parallel resistor Rp and capacitor Cp network with a series resistance Rs. The bulk capacitance Cp remains unchanged while the resistance Rp decreases along with bias voltage. Conduction mechanism matches well with the space-charge-limited current (SCLC) model with exponential trap charge distributions. The temperature-dependent impedance studies reveal the activation energy of 0.246eV with no phase change in the temperature range 220-320K. These results indicate that the IS method is applicable for organic semiconductors having a wide band gap.%@@ Frequency-dependent electrical transport properties of 4,4′,4″-tri(N-carbazolyl)-triphenylamine(TCTA ) are analyzed by impedance spectroscopy(IS) as functions of bias and temperature.The Cole-Cole plot shows a single semicircle which indicates that the equivalent circuit can be designed as a single parallel resistor Rp and capacitor Cp network with a series resistance Rs.The bulk capacitance Cp remains unchanged while the resistance Rp decreases along with bias voltage.Conduction mechanism matches well with the space-charge-limited current (SCLC) model with exponential trap charge distributions.The temperature-dependent impedance studies reveal the activation energy of 0.246eV with no phase change in the temperature range 220-320K.These results indicate that the IS method is applicable for organic semiconductors having a wide band gap.

  9. Ab initio calculation on accurate analytic potential energy functions and harmonic frequencies of c3∑+g and B1∏u states of dimer 7Li2

    Institute of Scientific and Technical Information of China (English)

    Yu Ben-Hai; Shi De-Heng; Sun Jin-Feng; Zhu Zun-Lue; Liu Yu-Fang; Yang Xiang-Dong

    2007-01-01

    The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometries of c3∑+g and B1∏u states of dimer 7Li2 is made at numerous basis sets by using a symmetryadapted-cluster configuration-interaction (SAC-CI) method in the Gaussian 03 program package. In this paper the difference of the equilibrium geometries obtained by SPES and by OPT is reported. The results obtained by SPES are found to be more reasonable than those obtained by OPT in full active space at the present SAC-CI level of theory. And the conclusion is attained that the cc-PVTZ is a most suitable basis set for these states. The calculated dissociation energies and equilibrium geometries are 0.8818 eV and 0.3090 nm for c3∑+g state, and 0.3668 eV and 0.2932 nm for B1∏u state respectively. The potential energy curves are calculated over a wide internuclear distance range from about 2.5a0 to 37a0 and have a least-squares fit into the Murrell-Sorbie function. According to the calculated analytic potential energy functions, the harmonic frequencies (ωe) and other spectroscopic data (ωeχe, Be and αe) are calculated. Comparison of the theoretical determinations at present work with the experiments and other theories clearly shows that the present work is the most complete effort and thus represents an improvement over previous theoretical results.

  10. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  11. Frequency-dependent friction and its significance for liquid pipeline simulation; Influencia do fator de atrito com dependencia da frequencia na simulacao de transientes em oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Tepedino, Alexandre F. [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil); Rachid, Felipe B. Freitas [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Transporte de Liquidos e Gases

    2008-07-01

    Unsteady liquid flow in pipelines is usually described by using one-dimensional models and, in a procedure referred to as quasi-steady approximation, friction losses are estimated by formulae derived for steady state flow conditions. The assumption is that the friction loss during transient flow conditions can be approximated by the friction loss obtained for a steady flow with the same average velocity. However, during unsteady flow conditions the velocity profile can be considerably different from the steady flow. The shear stress at the pipe wall and the mean velocity are not in phase. Therefore, friction losses computed according to the quasi-steady approximation are inaccurate. To overcome this, the concept of frequency-dependent friction was proposed, including the time history of the mean flow velocity and acceleration, resulting in better correlation to experimental data. This work presents an investigation of situations in which the use of a frequency-dependent friction model could bring additional improvement for the petroleum and products pipeline simulation. To do so, through computer simulations, the predictions of both quasi-steady and unsteady friction models, for short and long lines, operating under a range of Reynolds numbers, are compared and the significance of the friction model is evaluated. (author)

  12. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  13. Effect of Gd3+ doping on structural, optical and frequency-dependent dielectric response properties of pseudo-cubic BaTiO3 nanostructures

    Science.gov (United States)

    Borah, Manjit; Mohanta, Dambarudhar

    2014-06-01

    We report on the structural, optical and dielectric characterization of solid state derived, pseudo-cubic nanoscale barium titanates (BTs) with gadolinium (Gd3+) as substitutional dopant. Referring to X-ray diffractograms, apart from the BT peaks related to perovskite structure, the non-existence of any additional peaks due to byproducts has revealed that Gd3+ has undergone substitutional doping into the BT host lattice. The well-separated BT nanoparticles of typical size ˜10-15 nm were observed through electron microscopy studies. Following a direct, allowed type carrier transition ( n=1/2), a reduction in the optical band gap value (from 3.28 to 3.255 eV) was observed when the Gd-doping level was varied within 0-7 %. Conversely, the Urbach energy followed an increasing trend, from a value of 0.741 to 1.879 eV. Furthermore, the dielectric constant showed a decreasing tendency with doping content and with increasing frequency. However, in the low-frequency region, the loss tangent (tan δ), which is the combined result of orientational polarization and electrical conduction, was found to be quite high in the doped samples as compared to their un-doped counterpart. The frequency-dependent electrical data were also analyzed in the framework of conductivity and impedance formalisms. In particular, the ac conductivity which varies as ˜ ω s approaches ideal Debye behavior ( s→1) for a low Gd level and a higher doping concentration did not show improved dielectric feature of the host. The incorporation of rare-earth (Gd3+) ions into the BT host system could greatly manifest dielectric relaxation and carrier conduction mechanisms, in a given frequency range, and thus can find immense scope in miniaturized nanoelectronic elements including ceramic capacitors and transducers.

  14. Transcutaneous Electrical Nerve Stimulation on the PC-5 and PC-6 Points Alleviated Hypotension after Epidural Anaesthesia, Depending on the Stimulus Frequency

    Directory of Open Access Journals (Sweden)

    Young-Chang P. Arai

    2012-01-01

    Full Text Available Neuraxial blockade causes arterial hypotension. Transcutaneous electrical nerve stimulation (TENS at the Neiguan (PC-6 and Jianshi (PC-5 reduces the severity of hypotension after spinal anaesthesia, but did not clarify the optimal stimulus frequency. We hypothesized that the stimulus frequency of TENS at the PC-6 and PC-5 points would influence the severity of hypotension after epidural anaesthesia. 65 ASA I or II male patients presenting for inguinal hernia repair were randomized to five groups: the control group received no treatment; the 2 Hz, 10 Hz, 20 Hz, and 40 Hz groups received TENS at a frequency of 2 Hz, 10 Hz, 20 Hz, and 40 Hz, respectively. The lowest SBP was significantly higher in the 40 Hz group [the control, 84 (74–110 mmHg; the 2 Hz, 96 (62–116 mmHg; the 10 Hz, 100 (68–110 mmHg; the 20 Hz, 96 (64–115 mmHg; the 40 Hz, 104 (75–140 mmHg: P=0.004]. Significantly less patients experienced hypotension in the 40 Hz group [the control, 78%; the 2 Hz, 43%; the 10 Hz, 38%; the 20 Hz, 38%; the 40 Hz, 8%: P=0.008]. TENS on the PC-6 and PC-5 points reduced the severity and incidence of hypotension after epidural anaesthesia, depending on the stimulus frequency.

  15. L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase Treg frequencies in healthy mice in a strain dependent manner.

    Directory of Open Access Journals (Sweden)

    Maaike J Smelt

    Full Text Available Many studies on probiotics are aimed at restoring immune homeostasis in patients to prevent disease recurrence or reduce immune-mediated pathology. Of equal interest is the use of probiotics in sub-clinical situations, which are characterized by reduced immune function or low-grade inflammation, with an increased risk of infection or disease as a consequence. Most mechanistic studies focus on the use of probiotics in experimental disease models, which may not be informative for these sub-clinical conditions. To gain better understanding of the effects in the healthy situation, we investigated the immunomodulatory effects of two Lactobacillus probiotic strains, i.e. L. plantarum WCFS1 and L. salivarius UCC118, and a non-probiotic lactococcus strain, i.e. L. lactis MG1363, in healthy mice. We studied the effect of these bacteria on the systemic adaptive immune system after 5 days of administration. Only L. plantarum induced an increase in regulatory CD103(+ DC and regulatory T cell frequencies in the spleen. However, all three bacterial strains, including L. lactis, reduced specific splenic T helper cell cytokine responses after ex vivo restimulation. The effect on IFN-γ, IL5, IL10, and IL17 production by CD4(+ and CD8(+ T cells was dependent on the strain administered. A shared observation was that all three bacterial strains reduced T helper 2 cell frequencies. We demonstrate that systemic immunomodulation is not only observed after treatment with probiotic organisms, but also after treatment with non-probiotic bacteria. Our data demonstrate that in healthy mice, lactobacilli can balance T cell immunity in favor of a more regulatory status, via both regulatory T cell dependent and independent mechanisms in a strain dependent manner.

  16. [Dose-Response Dependences for Frequency of RET/PTC Gene Rearrangements in Papillary Thyroid Carcinoma after Irradiation. Simple Pooling Analysis of Molecular Epidemiological Data].

    Science.gov (United States)

    Koterov, A N; Ushenkova, L N; Biryukov, A P

    2016-01-01

    On the basis of all possible publications on the theme included in the previously formed base of sources on molecular epidemiology of RET/PTC rearrangements in thyroid papillary carcinoma a pooled analysis ("simple pooling data") on determination of the dose-effect dependences for RET/PTC frequency in radiogenic carcinomas of various irradiated groups was performed. (They are groups subjected to radiotherapeutic exposure, residents near the Chernobyl nuclear power plant (CNPP) and victims of nuclear bombing). The tendency to Pearson linear correlation (r = 0.746; p = 0.148) between the frequency of RET/PTC and the estimated dose on thyroid in the regions affected by the CNPP accident was revealed. But this tendency was recognized to be random owing to abnormally low values of the indicator for the most contaminated Gomel region. The method tentatively called "case-control" showed reliable differences in thyroid dose values for carcinomas with RET/PTC and without those. The versatility of changes was found: the lack of RET/PTC for radiotherapeutic impacts was associated with higher doses, whereas in case of the CNPP accident and for nuclear bombing victims it was the opposite. Probably, in the first case the "cellular cleaning" phenomenon after exposure to very high doses took place. Search of direct Pearson correlations between average/median thyroid doses on groups and RET/PTC frequency in carcinomas of these groups showed a high reliability for the dose-effect dependences- at the continuous dose scale (for RET/PTC in total and RET/PTC1 respectively: r = 0.830; p = 0.002 and r = 0.906; p = 0.0003); while there was no significant correlation received for RET/PTC3. When using the weighting least square regression analysis (proceeding from the number of carcinomas in samples), the specified regularities remained. Attempts to influence the strength of correlation by exception ofthe data of all the samples connected with the accident on the CNPP did not significantly

  17. Modulation of the Object/Background Interaction by Spatial Frequency

    Directory of Open Access Journals (Sweden)

    Yanju Ren

    2011-05-01

    Full Text Available With regard to the relationship between object and background perception in the natural scene images, functional isolation hypothesis and interactive hypothesis were proposed. Based on previous studies, the present study investigated the role of spatial frequency in the relationship between object and background perception in the natural scene images. In three experiments, participants reported the object, background, or both after seeing each picture for 500 ms followed by a mask. The authors found that (a backgrounds were identified more accurately when they contained a consistent rather than an inconsistent object, independently of spatial frequency; (b objects were identified more accurately in a consistent than an inconsistent background under the condition of low spatial frequencies but not high spatial frequencies; (c spatial frequency modulation remained when both objects and backgrounds were reported simultaneously. The authors conclude that object/background interaction is partially dependent on spatial frequency.

  18. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  19. Dependence of B1+ and B1− Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency

    Science.gov (United States)

    Vaidya, Manushka V.; Collins, Christopher M.; Sodickson, Daniel K.; Brown, Ryan; Wiggins, Graham C.; Lattanzi, Riccardo

    2016-01-01

    In high field MRI, the spatial distribution of the radiofrequency magnetic (B1) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green’s functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit (B1+) and receive (B1−) field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B1 spatial distribution. Results are explained conceptually using Maxwell’s equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing “twisted” transmit and receive field patterns, and asymmetries between |B1+| and |B1−|. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B1 spatial distributions for surface coils and can provide guidance for RF engineers.

  20. Frequency Dependence of Physical Parameters of Microinhomogeneous Media. Space Statistics Dépendance en fréquence des paramètres physiques de milieux microhétérogènes. Statistiques spatiales

    Directory of Open Access Journals (Sweden)

    Kukharenko Y. A.

    2006-12-01

    Full Text Available The diagram technique for calculation of the dynamic properties of an anisotropic media with randomly distributed inclusions (pores, cracks is developed. Statistical description of inclusions is determined by distribution function dependent on five groups of parameters :- over coordinates; - over angles of orientation of shapes;- over angles of orientation of crystallographic axes;- over aspect ratio (in a case of ellipsoidal inclusions;- over types of phase of inclusions. Such statistical approach allows to take into consideration any type and order of correlation interactions between inclusions. The diagram series for an average Green function is (GF constructed. The accurate summation of this series leads to a nonlinear dynamic equation for an average GF (Dyson equation. The kernel of this equation is a mass operator which depends on frequency and can be presented in a form of diagram series on accurate GF. The mass operator coincides with effective complex tensor of elasticity (or conductivity in a local approximation. An expansion of effective dynamic elastic (transport tensor on distribution functions of any order is obtained. It is shown that correlation between homogeneities can produce an effective elastic and transport parameters anisotropy. In correlation approximation the dispersion dependencies of the effective elastic constants are studied. Frequency dependencies of a coefficient anisotropy of the elastic properties as function of statistical distributed inclusions over coordinates (isotropic matrix and isotropic (spherical inclusions are obtained. La technique par diagrammes appliquée au calcul des propriétés dynamiques d'un milieu anisotrope ayant une distribution aléatoire d'inclusions (pores, fissures est ici développée. La description statistique des inclusions est déterminée par une fonction de distribution reposant sur cinq groupes de paramètres : - les coordonnées, - les angles d'orientation des formes, - les

  1. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1.

    Directory of Open Access Journals (Sweden)

    Irina Lonskaya

    Full Text Available Matrix metalloproteinases (MMPs are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP, spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5, a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs. With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies

  2. Frequency-Dependent Social Transmission and the Interethnic Transfer of Female Genital Modification in the African Diaspora and Indigenous Populations of Colombia.

    Science.gov (United States)

    Ross, Cody T; Campiño, Patricia Joyas; Winterhalder, Bruce

    2015-12-01

    We present a quantitative account based on ethnographic and documentary research of the prevalence of female genital modification (FGMo) in the African diaspora and indigenous populations of Colombia. We use these data to test hypotheses concerning the cultural evolutionary drivers of costly trait persistence, attenuation, and intergroup transmission. The uptake of FGMo by indigenous populations in Colombia is consistent with frequency-dependent hypotheses for the social transmission of the FGMo trait from the African diaspora population in the period following the era of slavery in Colombia. The prevalence and severity of practices related to FGMo decline with level of sociocultural integration into mainstream Colombian culture. Our results provide empirical support for the cultural evolutionary models proposed by Ross et al. (2015) to describe the transmission dynamics of FGMo and other costly traits. Analysis of costly trait dynamics contributes knowledge useful to applied anthropology and may be of interest in policy design and human rights monitoring in Colombia and elsewhere.

  3. Plasma-mirror frequency-resolved optical gating for simultaneous retrieval of a chirped vacuum-ultraviolet waveform and time-dependent reflectivity

    Institute of Scientific and Technical Information of China (English)

    Ryuji Itakura; Takayuki Kumada; Motoyoshi Nakano; Hiroshi Akagi

    2016-01-01

    We demonstrate that the methodology of frequency-resolved optical gating(FROG) is applicable to time-resolved reflection spectroscopy of a plasma mirror in the vacuum-ultraviolet(VUV) region. Our recent study [R. Itakura et al. Opt. Express 23, 10914(2015)] has shown that a VUV waveform can be retrieved from a VUV reflection spectrogram of a plasma mirror formed on a fused silica(FS) surface by irradiation with an intense femtosecond laser pulse. Simultaneously, the increase in the reflectivity with respect to the Fresnel reflection of the unexcited FS surface can be obtained as a time-dependent reflectivity of the plasma mirror. In this study, we update the FROG analysis procedure using the least-square generalized projections algorithm. This procedure can reach convergence much faster than the previous one and has no aliasing problem. It is demonstrated that a significantly chirped VUV pulse as long as 1 ps can be precisely characterized.

  4. Frequency and intensity dependence of the sub-band-gap features observed in the surface photovoltage spectrum of semi-insulating GaAs

    Science.gov (United States)

    Sharma, T. K.; Kumar, Shailendra; Rustagi, K. C.

    2002-11-01

    Surface photovoltage spectroscopy studies on thick semi-insulating GaAs wafers are reported in the range 850-950 nm using the chopped light geometry. We observed some interesting sharp features in the sub-band-gap of SI-GaAs, which were reported recently [Appl. Phys. Lett. 79, 1715(2001); Rev. Sci. Instrum. 73, 1835 (2002)]. In this article, we present the dependence of these features on the chopping frequency and the source intensity. The intensity variation in the above-band-gap region and for the A peak (898 nm) in the sub-band-gap region could be fitted with single component while it is necessary to consider more than one component to fit the data for the Q peak (887 nm) in the sub-band-gap region. A model consistent with the observed features is also proposed.

  5. Frequency and temperature dependence of dielectric and electric properties of Ba2-xSm4+2x/3Ti8O24 with structural analysis

    Directory of Open Access Journals (Sweden)

    Narang Sukhleen Bindra

    2015-06-01

    Full Text Available Dielectric ceramics samples of barium titanium oxide doped with samarium, having a complex structural formula of Ba2-xSm4+2x/3Ti8O24 (referred to as BST, were fabricated by a high temperature solid-state reaction technique with varying x (0.0, 0.2, 0.4, 0.6. X-ray diffraction technique was used to check the formation of particular phases. Scanning electron microscope technique was used to study the surface morphology of the samples. The samples were studied in a temperature range of 298 K to 623 K and frequency range of 10 KHz to 1 MHz. The dielectric constant (εr, loss tangent (tan δ, and AC conductivity (σAC were measured on sintered disks of BST samples. The DC resistivity of different compositions was measured at room temperature. Detailed studies of dielectric and electrical properties showed that these properties are strongly dependent on composition, frequency and temperature. The compounds showed stable behavior in lower temperature range (up to 523 K, therefore, they can be used in practical applications in this temperature range.

  6. Effects of low intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies and antibiotics on energy-dependent proton and potassium ion transport by E. coli.

    Science.gov (United States)

    Torgomyan, H

    2012-12-01

    The effects of low intensity (flux capacity 0.06 mW/cm2) coherent electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies and their combined effects with antibiotics--ceftriaxone or kanamycin (0.4 or 15 microM, correspondingly) on E. coli K12 growth and survival have been reported previously. To further study the effects of EMI and antibiotics and mechanisms, decrease in overall energy (glucose)-dependent H+ and K+ fluxes across the cell membrane was investigated in E. coli. The depression of H+ and K+ fluxes rate was maximally achieved with the 73 GHz frequency. The EMI strengthened the effect of N,N'-dicyclohexycarbodiimide (DCCD, an inhibitor of the F0F1-ATPase). The 73 GHz EMI had more influence on H+ efflux inhibition, whereas 70.6 GHz on K+ influx. Also, EMI strengthened the depressive effects of ceftriaxone and kanamycin on the overall and DCCD-inhibited H+ and K+ fluxes. The 73 GHz EMI strengthened the effect of ceftriaxone on both ions fluxes. Kanamycin depressed H+ efflux more as compared to ceftriaxone, which was also strengthened with EMI. The results of E. coli H+ and K+ transport systems activities depression by irradiation and the irradiation effect on DCCD and antibiotics action indicated the EMI and antibiotics causing primary changes in the bacterial membrane.

  7. Invoking the frequency dependence in square modulated light intensity techniques for the measurement of electron time constants in dye-sensitized solar cells

    Science.gov (United States)

    Ghaithan, Hamid M.; Qaid, Saif M.; Hezam, Mahmoud; Siddique, Muhemmad B.; Bedja, Idriss M.; Aldwayyana, Abdullah S.

    2015-08-01

    Dye-sensitized solar cells (DSSCs) have been considered as one of the most promising new generation solar cells. Enormous research efforts have been invested to improve the efficiency of solar energy conversion which is determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. A simple, cheap and trustable laser-induced photovoltage and photocurrent decay (LIPVCD) technique is adopted in this work in order to determine the electron lifetime (τe) and electron transport (τtr) in DSSCs. In LIPVCD technique, DSSC is illuminated by a small squared intensity-modulated laser beam. Time-based response of the DSSC is recorded using a transient digitized oscilloscope for further analysis. Frequency-based response was also investigated in this work. The frequency-dependent measurements turned out to be a powerful method to determine electron time constants in a fast, real-time fashion. Measurements were carried out using a standard dye-sensitized solar cell, and results were in excellent agreement with results obtained from traditional IMVS-MPS measurements. Measurements were also performed for a variety of DSSCs, having various electrodes including TiO2 nanoparticles, TiO2 nanosheets with exposed {001} facets and ZnO vertically aligned nanowires. Results will also be presented and discussed in this work.

  8. Comparison of frequency-distance relationship and Gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Vandana [Department of Nuclear Medicine, The University of Massachusetts Medical Center, 55 Lake Ave North, Worcester, MA 01655 (United States); Department of Electrical Engineering, The University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854 (United States); King, Micgael A.; Glick, Stephen J. [Department of Nuclear Medicine, The University of Massachusetts Medical Center, 55 Lake Ave North, Worcester, MA 01655 (United States); Pan, Tin-Su [The Applied Science Laboratory, General Electric Company, Milwaukee, WI 53201 (United States)

    1998-04-01

    The goal of this investigation was to compare resolution recovery versus noise level of two methods for compensation of distance-dependent resolution (DDR) in SPECT imaging. The two methods of compensation were restoration filtering based on the frequency-distance relationship (FDR) prior to iterative reconstruction, and modelling DDR in the projector/backprojector pair employed in iterative reconstruction. FDR restoration filtering was computationally faster than modelling the detector response in iterative reconstruction. Using Gaussian diffusion to model the detector response in iterative reconstruction sped up the process by a factor of 2.5 over frequency domain filtering in the projector/backprojector pair. Gaussian diffusion modelling resulted in a better resolution versus noise tradeoff than either FDR restoration filtering or solely modelling attenuation in the projector/backprojector pair of iterative reconstruction. For the pixel size investigated herein (0.317 cm), accounting for DDR in the projector/backprojector pair by Gaussian diffusion, or by applying a blurring function based on the distance from the face of the collimator at each distance, resulted in very similar resolution recovery and slice noise level. (author)

  9. A neural measure of behavioral engagement: task-residual low-frequency blood oxygenation level-dependent activity in the precuneus.

    Science.gov (United States)

    Zhang, Sheng; Li, Chiang-Shan Ray

    2010-01-15

    Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low-frequency blood oxygenation level-dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit - including the precuneus and medial prefrontal cortex (mPFC) - showing greater activation during resting as compared to task residuals in 33 individuals. Time series correlations with the posterior cingulate cortex as the seed region showed that connectivity with the precuneus was significantly stronger during resting as compared to task residuals. We hypothesized that if the task-residual BOLD activity in the precuneus reflects engagement, it should account for a certain amount of variance in task-related regional brain activation. In an additional experiment of 59 individuals performing a stop signal task, we observed that the fractional amplitude of low-frequency fluctuation (fALFF) of the precuneus but not the mPFC accounted for approximately 10% of the variance in prefrontal activation related to attentional monitoring and response inhibition. Taken together, these results suggest that task-residual fALFF in the precuneus may be a potential indicator of task engagement. This measurement may serve as a useful covariate in identifying motivation-independent neural processes that underlie the pathogenesis of a psychiatric or neurological condition.

  10. Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Eldh, T.; Heinzelmann, F.; Velalakan, A. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Budach, W. [Duesseldorf Univ. (Germany). Dept. of Radiation Oncology; Belka, C. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Muenchen Univ. (Germany). Dept. of Radiation Oncology; Jendrossek, V. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Duisburg-Essen Univ., Essen (DE). Inst. of Cell Biology (Cancer Research)

    2012-03-15

    Pneumonitis and fibrosis constitute serious adverse effects of radiotherapy in the thoracic region. In this study, time-course and dose-dependence of clinically relevant parameters of radiation-induced lung injury in C57BL/6J mice were analyzed. A well-characterized disease model is necessary for the analysis of the cellular and molecular mechanisms using genetically modified mice. C57BL/6J mice received single dose right hemithorax irradiation with 12.5 or 22.5 Gy. Body weight and breathing frequency were recorded as parameters for health impairment. Lung tissue was collected over 24 weeks for histological analysis. Hemithorax irradiation with 12.5 or 22.5 Gy induced biphasic breathing impairment with the first increase between days 7 and 70. Although breathing impairment was more pronounced in the 22.5 Gy group, it was accompanied in both dose groups by pneumonitis-associated histological changes. A second rise in breathing frequency ratios became visible starting on day 70 with a steady increase until day 210. Again, breathing was more strongly affected in the 22.5 Gy group. However, breathing impairment coincided only in the 22.5 Gy group with a significant increase in collagen deposition in the lung tissue by day 210. Tissue inflammation and fibrosis were observed in the irradiated and the shielded lungs, pointing toward involvement of systemic effects. Hemithorax irradiation induces time-dependent pneumonitis and fibrosis in C57BL/6J mice. While hemithorax irradiation with 12.5 Gy is sufficient to induce lung inflammation, it is below the threshold for collagen deposition and fibrosis development by day 210.

  11. Frequency Dependent Attenuation in Rocks

    Science.gov (United States)

    1990-01-20

    75275 Prof. Steven Day Prof. Robert B. Herrmann Department of Geological Sciences Department of Earth & Atmospheric Sciences San Diego State...6001 Dr. Robert Masse Katie Poley Box 25046, Mail Stop 967 CIA-OSWR/ NED Denver Federal Center Washington, DC 20505 Denver, CO 80225 Art McGarr Mr. Jack...Livermore, CA 94550 Mr. Chris Paine Dr. Lawrence Turnbull Office of Senator Kennedy, SR 315 OSWR/ NED Central Intelligence Agency, Room 5G48 United States

  12. Simultaneous experimental determination of labile proton fraction ratio and exchange rate with irradiation radio frequency power-dependent quantitative CEST MRI analysis.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Xiao, Gang; Wu, Renhua

    2013-01-01

    Chemical exchange saturation transfer (CEST) imaging is sensitive to dilute proteins/peptides and microenvironmental properties, and has been increasingly evaluated for molecular imaging and in vivo applications. However, the experimentally measured CEST effect depends on the CEST agent concentration, exchange rate and relaxation time. In addition, there may be non-negligible direct radio-frequency (RF) saturation effects, particularly severe for diamagnetic CEST (DIACEST) agents owing to their relatively small chemical shift difference from that of the bulk water resonance. As such, the commonly used asymmetry analysis only provides CEST-weighted information. Recently, it has been shown with numerical simulation that both labile proton concentration and exchange rate can be determined by evaluating the RF power dependence of DIACEST effect. To validate the simulation results, we prepared and imaged two CEST phantoms: a pH phantom of serially titrated pH at a fixed creatine concentration and a concentration phantom of serially varied creatine concentration titrated to the same pH, and solved the labile proton fraction ratio and exchange rate per-pixel. For the concentration phantom, we showed that the labile proton fraction ratio is proportional to the CEST agent concentration with negligible change in the exchange rate. Additionally, we found the exchange rate of the pH phantom is dominantly base-catalyzed with little difference in the labile proton fraction ratio. In summary, our study demonstrated quantitative DIACEST MRI, which remains promising to augment the conventional CEST-weighted MRI analysis.

  13. Dose- and time-dependent changes of micronucleus frequency and gene expression in the progeny of irradiated cells: Two components in radiation-induced genomic instability?

    Energy Technology Data Exchange (ETDEWEB)

    Huumonen, Katriina [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Korkalainen, Merja [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Boman, Eeva; Heikkilä, Janne [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Höytö, Anne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Lahtinen, Tapani [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Luukkonen, Jukka [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Viluksela, Matti [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Naarala, Jonne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Juutilainen, Jukka, E-mail: jukka.juutilainen@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland)

    2014-07-15

    Highlights: • Development with time of radiation-induced genomic instability (RIGI) was studied. • Dose–response of micronuclei showed marked time-dependent changes. • A new model assuming two components in RIGI was found to fit with the data. • The persisting component of RIGI seems to be independent of dose above a threshold. • Increasing heterogeneity was characteristic to delayed gene expression changes. - Abstract: Murine embryonic C3H/10T½ fibroblasts were exposed to X-rays at doses of 0.2, 0.5, 1, 2 or 5 Gy. To follow the development of radiation-induced genomic instability (RIGI), the frequency of micronuclei was measured with flow cytometry at 2 days after exposure and in the progeny of the irradiated cells at 8 and 15 days after exposure. Gene expression was measured at the same points in time by PCR arrays profiling the expression of 84 cancer-relevant genes. The micronucleus results showed a gradual decrease in the slope of the dose–response curve between days 2 and 15. The data were consistent with a model assuming two components in RIGI. The first component is characterized by dose-dependent increase in micronuclei. It may persist more than ten cell generations depending on dose, but eventually disappears. The second component is more persistent and independent of dose above a threshold higher than 0.2 Gy. Gene expression analysis 2 days after irradiation at 5 Gy showed consistent changes in genes that typically respond to DNA damage. However, the consistency of changes decreased with time, suggesting that non-specificity and increased heterogeneity of gene expression are characteristic to the second, more persistent component of RIGI.

  14. Accurate tracking control in LOM application

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The fabrication of accurate prototype from CAD model directly in short time depends on the accurate tracking control and reference trajectory planning in (Laminated Object Manufacture) LOM application. An improvement on contour accuracy is acquired by the introduction of a tracking controller and a trajectory generation policy. A model of the X-Y positioning system of LOM machine is developed as the design basis of tracking controller. The ZPETC (Zero Phase Error Tracking Controller) is used to eliminate single axis following error, thus reduce the contour error. The simulation is developed on a Maltab model based on a retrofitted LOM machine and the satisfied result is acquired.

  15. Changes in homologous recombination frequency in Arabidopsis thaliana plants exposed to stress depend on time of exposure during development and on duration of stress exposure.

    Science.gov (United States)

    Rahavi, Seyed Mohammad Reza; Kovalchuk, Igor

    2013-10-01

    In the past, we showed that exposure to abiotic and biotic stresses changes the homologous recombination frequency (HRF) in somatic tissue and in the progeny. In current work we planned to answer the following question: do stress intensity/duration and time during exposure influence changes in somatic HRF and transgenerational changes in HRF? Here, we tested the effects of exposure to UV-C, cold and heat on HRF at 7, 14, 21 and 28 days post germination (dpg). We found that exposure at 14 and 21 dpg resulted in a higher increase in HRF as compared to exposure at 7 dpg; longer exposure to UV-C resulted in a higher frequency of HR, whereas prolonged exposure to cold or heat, especially at later developmental stages, had almost no effect on somatic HRF. Exposure at 7 dpg had a positive effect on somatic growth of plants; plants exposed to stress at this age had larger leaves. The analysis of HRF in the progeny showed that the progeny of plants exposed to stress at 7 dpg had an increase in somatic HRF and showed larger sizes of recombination spots on leaves. The progeny of plants exposed to UV-C at 7 dpg and the progeny of plants exposed to cold or heat at 28 dpg had larger leaves as compared to control plants. To summarize, our experiments showed that changes in somatic and transgenerational HRF depend on the type of stress plants are exposed to, time of exposure during development and the duration of exposure.

  16. Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type.

    Science.gov (United States)

    Ripley, Brad; Visser, Vernon; Christin, Pascal-Antoine; Archibald, Sally; Martin, Tarryn; Osborne, Colin

    2015-10-01

    Grasses using the C4 photosynthetic pathway dominate frequently burned savannas, where the pathway is hypothesized to be adaptive. However, independent C4 lineages also sort among different fire environments. Adaptations to fire may thus depend on evolutionary history, which could be as important as the possession of the C4 photosynthetic pathway for life in these environments. Here, using a comparative pot experiment and controlled burn, we examined C3 and C4 grasses belonging to four lineages from the same regional flora, and asked the following questions: Do lineages differ in their responses to fire, are responses consistent between photosynthetic types, and are responses related to fire frequency in natural habitats? We found that in the C4 Andropogoneae lineage, frost killed a large proportion of aboveground biomass and produced a large dry fuel load, which meant that only a small fraction of the living tissue was lost in the fire. C3 species from the Paniceae and Danthonioideae lineages generated smaller fuel loads and lost more living biomass, while species from the C4 lineage Aristida generated the smallest fuel loads and lost the most living tissue. Regrowth after the fire was more rapid and complete in the C4 Andropogoneae and C3 Paniceae, but incomplete and slower in the C3 Danthonioideae and C4 Aristida. Rapid recovery was associated with high photosynthetic rates, high specific leaf area, delayed flowering, and frequent fires in natural habitats. Results demonstrated that phylogenetic lineage was more important than photosynthetic type in determining the fire response of these grasses and that fire responses were related to the frequency that natural habitats burned.

  17. A Novel Frequency Measurement Method Suitable for a Large Frequency Ratio Condition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; XUAN Zong-Qiang; YU Jian-Guo; WANG Hai; ZHOU Hui; LI Zhi-Qi

    2004-01-01

    @@ As for the obstacles to direct comparison between superhigh and lower frequencies, we accomplish the accurate comparison between low and microwave frequencies with the 105 ratios of the operating frequencies on the basis of phase comparison between the signals whose frequencies are related by an arbitrary integer. This method is simple and accurate, and will be widely used as a special frequency comparison approach.

  18. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  19. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Welch, E. C.; Zhang, P.; He, Z.-H. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Dollar, F. [JILA, University of Colorado, Boulder, Colorado 80309 (United States); Krushelnick, K.; Thomas, A. G. R., E-mail: agrt@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States)

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  20. The design of delay-dependent wide-area DOFC with prescribed degree of stability α for damping inter-area low-frequency oscillations in power system.

    Science.gov (United States)

    Sun, Miaoping; Nian, Xiaohong; Dai, Liqiong; Guo, Hua

    2017-03-24

    In this paper, the delay-dependent wide-area dynamic output feedback controller (DOFC) with prescribed degree of stability is proposed for interconnected power system to damp inter-area low-frequency oscillations. Here, the prescribed degree of stability α is used to maintain all the poles on the left of s=-α in the s-plane. Firstly, residue approach is adopted to select input-output control signals and the schur balanced truncation model reduction method is utilized to obtain the reduced power system model. Secondly, based on Lyapunov stability theory and transformation operation in complex plane, the sufficient condition of asymptotic stability for closed-loop power system with prescribed degree of stability α is derived. Then, a novel method based on linear matrix inequalities (LMIs) is presented to obtain the parameters of DOFC and calculate delay margin of the closed-loop system considering the prescribed degree of stability α. Finally, case studies are carried out on the two-area four-machine system, which is controlled by classical wide-area power system stabilizer (WAPSS) in reported reference and our proposed DOFC respectively. The effectiveness and advantages of the proposed method are verified by the simulation results under different operating conditions.