WorldWideScience

Sample records for accuracy wire scanner

  1. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  2. Twisting wire scanner

    CERN Document Server

    Gharibyan, V; Krouptchenkov, I; Nölle, D; Tiessen, H; Werner, M; Wittenburg, K

    2012-01-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  3. BEPC II wire scanner system

    Institute of Scientific and Technical Information of China (English)

    SUI Yan-Feng; WANG Lin; ZHAO Ying; YUE Jun-Hui; LI Xiao-Ping; CAO Jian-She; MA Li

    2010-01-01

    To monitor the beam profile at the end of the linac non-destructively,a wire scanner as a new diagnostic instrument was designed,manufactured and installed in 2007.Since then,several measurements have been carried out using this device.This paper describes the whole system of the wire scanner and the testing results.

  4. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  5. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  6. Vibration measurements of a wire scanner - Experimental setup and models

    Science.gov (United States)

    Herranz, Juan; Barjau, Ana; Dehning, Bernd

    2016-03-01

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new performance demands a wire travelling speed up to 20 m s-1 and a position measurement accuracy of the order of 1 μm. The vibrations of the mechanical parts of the system and particularly the vibrations of the thin carbon wire have been identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations has been given high priority for the design and operation of the new device. This article presents a new strategy to measure the wire vibrations based on the piezoresistive effect of the wire itself. An electronic readout system based on a Wheatstone bridge is used to measure the variation of the carbon wire resistance, which is directly proportional to the wire elongation caused by the oscillations.

  7. The PS Booster Fast Wire Scanner

    CERN Document Server

    Burger, S; Priestnall, K; Raich, U

    2003-01-01

    The very tight emittance budget for LHC type beams makes precise emittance measurements in the injector complex a necessity. The PS machine uses 2 fast wire scanners per transverse plane for emittance measurement of the circulating beams. In order to ease comparison the same type of wire scanners have been newly installed in the upstream machine, the PS Booster, where each of the 4 rings is equipped with 2 wire scanners measuring the horizontal and vertical profiles. Those wire scanners use new and more modern control and readout electronics featuring dedicated intelligent motor movement controllers, which relieves the very stringent real time constraints due to the very high speed of 20m/s. In order to be able to measure primary beams at the very low injection energy of the Booster (50MeV) secondary emission currents from the wire can be measured as well as secondary particle flows at higher primary particle energies during and after acceleration. The solution adopted for the control of the devices is descri...

  8. Design and experimental tests of free electron laser wire scanners

    Science.gov (United States)

    Orlandi, G. L.; Heimgartner, P.; Ischebeck, R.; Loch, C. Ozkan; Trovati, S.; Valitutti, P.; Schlott, V.; Ferianis, M.; Penco, G.

    2016-09-01

    SwissFEL is a x-rays free electron laser (FEL) driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs) will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH) and at FERMI (Elettra-Sincrotrone Trieste, Italy). In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al (99 )∶Si (1 ) and tungsten (W) wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  9. Cavity Mode Related Wire Breaking of the SPS Wire Scanners and Loss Measurements of Wire Materials

    CERN Document Server

    Caspers, Friedhelm; Jensen, E; Koopman, J; Malo, J F; Roncarolo, F

    2003-01-01

    During the SPS high intensity run 2002 with LHC type beam, the breaking of several of the carbon wires in the wire scanners has been observed in their parking position. The observation of large changes in the wire resistivity and thermionic electron emission clearly indicated strong RF heating that was depending on the bunch length. A subsequent analysis in the laboratory, simulating the beam by two probe antennas or by a powered stretched wire, showed two main problems: i) the housing of the wire scanner acts as a cavity with a mode spectrum starting around 350 MHz and high impedance values around 700 MHz; ii) the carbon wire used so far appears to be an excellent RF absorber and thus dissipates a significant part of the beam-induced power. Different wire materials are compared with the classical cavity mode technique for the determination of the complex permittivity in the range of 2-4 GHz. As a resonator a rectangular TE_01n type device is utilized.

  10. Cavity mode related wire breaking of the SPS Wire Scanners and loss measurements of wire materials

    CERN Document Server

    Roncarolo, Federico

    2003-01-01

    During the SPS high intensity run 2002 with LHC type beam, the breaking of several of the carbon wires in the wire scanners has been observed in their parking position. The observation of large changes in the wire resistivity and thermionic electron emission clearly indicated strong RF heating that was depending on the bunch length. A subsequent analysis in the laboratory, simulating the beam by two probe antennas or by a powered stretched wire, showed two main problems: i) the housing of the wire scanner acts as a cavity with a mode spectrum starting around 350MHz and high impedance values around 700 MHz; ii) the carbon wire used so far appears to be an excellent RF absorber and thus dissipates a significant part of the beam-induced power. Different wire materials are compared with the classical cavity mode technique for the determination of the complex permittivity in the range of 2-4 GHz. As a resonator a rectangular TE01n type device is utilized.

  11. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  12. Vacuum Actuator and Controller Design for a Fast Wire Scanner

    CERN Document Server

    Dehning, B; Herranz Alvarez, J; Koujili, M; Sirvent Blasco, J L

    2012-01-01

    To cope with increasing requirements in terms of accuracy and beam intensity limits a beam wire scanner (BWS) design is under development for the CERN accelerators complex. The main parameters have been determined; the wire speed should be 20 m·s -1 when interacting with the beam and a beam width determination accuracy of 2µm under the harsh radioactive environment should be reached. To meet this goal, the proposed solution locates all moveable parts of the actuator and the angular sensors in the beam vacuum pipe in order to reduce the friction and to allow a direct position measurement. One absolute positioning sensor will be used for the brushless motor feedback and one custom, high precision incremental design will target the beam size determination. The laboratory tests set up for the actuator and the incremental sensor will be presented along with the motor control feedback loops developed with the DSpace environment using Simulink and MatLab tools. Finally, the development of the digital...

  13. Performance Assessment of Wire-Scanners at CERN

    CERN Document Server

    Baud, G; Emery, J; Gras, JJ; Guerrero, A; Piselli, E

    2013-01-01

    This article describes the current fast wire-scanner devices installed in circular accelerators at CERN with an emphasis on the error studies carried out during the last two runs. At present the wire-scanners have similar acquisition systems but are varied in terms of mechanics. Several measurement campaigns were performed aimed at establishing optimal operational settings and to identify and assess systematic errors. In several cases the results led to direct performance improvements while in others this helped in defining the requirements for new detectors.

  14. Secondary particle acquisition system for the CERN beam wire scanners upgrade

    CERN Document Server

    Sirvent, J L; Emery, J; Diéguez, A

    2015-01-01

    The increasing requirements of CERN experiments make essential the upgrade of beam instrumentation in general, and high accuracy beam profile monitors in particular. The CERN Beam Instrumentation Group has been working during the last years on the Wire Scanners upgrade. These systems cross a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected to reconstruct the beam profile. For the new secondary shower acquisition system, it is necessary to perform very low noise measurements with high dynamic range coverage. The aim is to design a system without tuneable parameters and compatible for any beam wire scanner location at the CERN complex. Polycrystalline chemical vapour deposition diamond detectors (pCVD) are proposed as new detectors for this application because of their radiation hardness, fast response and linearity over a high dynamic range. For the detector readout, the acquisition electronics must be designed to exploit the detector capa...

  15. Measurement Report for the PS-boosterWire Scanner

    CERN Document Server

    Vollinger, Christine; Kramer, Patrick; CERN. Geneva. ATS Department

    2017-01-01

    This Note discusses the EM-measurements carried out on the prototype of the PS-Booster wire scanner. The aim of these measurements was to identify intrinsic resonances that are to be evaluated for their contribution to the longitudinal beam impedance of the machine.

  16. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  17. Mechanical optimisation of a high-precision fast wire scanner at CERN

    CERN Document Server

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  18. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    Science.gov (United States)

    Baranov, V. T.; Makhov, S. S.; Savin, D. A.; Terekhov, V. I.

    2016-10-01

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10-20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  19. Design and Test of Wire-Scanners for SwissFEL

    CERN Document Server

    Orlandi, G L; Brands, H; Heimgartner, P; Ischebeck, R; Kammerer, A; Löhl, F; Lüscher, R; Mohanmurthy, P; Ozkan, C; Schlott, V; Schulz, L; Rippstein, B; Seiler, C; Trovati, S; Valitutti, P; Zimoch, D

    2016-01-01

    The SwissFEL light-facility will provide coherent X-rays in the wavelength region 7-0.7 nm and 0.7-0.1 nm. In SwissFEL, view-screens and wire-scanners will be used to monitor the transverse profile of a 200/10pC electron beam with a normalized emittance of 0.4/0.2 mm.mrad and a final energy of 5.8 GeV. Compared to view screens, wire-scanners offer a quasi-non-destructive monitoring of the beam transverse profile without suffering from possible micro-bunching of the electron beam. The main aspects of the design, laboratory characterization and beam-test of the SwissFEL wire-scanner prototype will be discussed.

  20. Interpretation of Wire-Scanner asymmetric profiles in a Low-Energy ring

    CERN Document Server

    AUTHOR|(CDS)2086340; Benedetto, Elena

    2016-01-01

    In the CERN PS Booster, wire-scanner profile measurements performed at injection energy are affected by a strong asymmetry. The shape was reproduced with the code PyORBIT, assuming that the effect is due to the beam evolution during the scans, under the influence of space-charge forces and Multiple Coulomb Scattering at the wire itself. Reproducing the transverse profiles during beam evolution allows to use them reliably as input for simulation benchmarking.

  1. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  2. Quantitative evaluation of three-dimensional facial scanners measurement accuracy for facial deformity

    Science.gov (United States)

    Zhao, Yi-jiao; Xiong, Yu-xue; Sun, Yu-chun; Yang, Hui-fang; Lyu, Pei-jun; Wang, Yong

    2015-07-01

    Objective: To evaluate the measurement accuracy of three-dimensional (3D) facial scanners for facial deformity patients from oral clinic. Methods: 10 patients in different types of facial deformity from oral clinical were included. Three 3D digital face models for each patient were obtained by three facial scanners separately (line laser scanner from Faro for reference, stereophotography scanner from 3dMD and structured light scanner from FaceScan for test). For each patient, registration based on Iterative Closest Point (ICP) algorithm was executed to align two test models (3dMD data & Facescan data) to the reference models (Faro data in high accuracy) respectively. The same boundaries on each pair models (one test and one reference models) were obtained by projection function in Geomagic Stuido 2012 software for trimming overlapping region, then 3D average measurement errors (3D errors) were calculated for each pair models also by the software. Paired t-test analysis was adopted to compare the 3D errors of two test facial scanners (10 data for each group). 3D profile measurement accuracy (3D accuracy) that is integrated embodied by average value and standard deviation of 10 patients' 3D errors were obtained by surveying analysis for each test scanner finally. Results: 3D accuracies of 2 test facial scanners in this study for facial deformity were 0.44+/-0.08 mm and 0.43+/-0.05 mm. The result of structured light scanner was slightly better than stereophotography scanner. No statistical difference between them. Conclusions: Both test facial scanners could meet the accuracy requirement (0.5mm) of 3D facial data acquisition for oral clinic facial deformity patients in this study. Their practical measurement accuracies were all slightly lower than their nominal accuracies.

  3. Design and simulation of the wire scanner for the injector linac of BEPC Ⅱ

    Institute of Scientific and Technical Information of China (English)

    SUI Yan-Feng; MA Hui-Zhou; CAO Jian-She; MA Li

    2008-01-01

    BEPC Ⅱ,the upgrade project of Beijing Electron Positron Collider (BEPC),is an accelerator with large beam current and high luminosity,so an efficient and stable injector is required.Several beam diagnostic and monitoring instruments are used.A new diagnostic instrument--wire scanner,has been designed and will be used to nleasure the profile of the linac beam of BEPC Ⅱ.This paper describes the prototype of this system and the cause of heat generating of the wire.Some simulation results of the heat and force by using finite element method software-ANSYS(R),2) are presented and discussed.

  4. The accuracy of the CAD system using intraoral and extraoral scanners for designing of fixed dental prostheses.

    Science.gov (United States)

    Shimizu, Sakura; Shinya, Akikazu; Kuroda, Soichi; Gomi, Harunori

    2017-07-26

    The accuracy of prostheses affects clinical success and is, in turn, affected by the accuracy of the scanner and CAD programs. Thus, their accuracy is important. The first aim of this study was to evaluate the accuracy of an intraoral scanner with active triangulation (Cerec Omnicam), an intraoral scanner with a confocal laser (3Shape Trios), and an extraoral scanner with active triangulation (D810). The second aim of this study was to compare the accuracy of the digital crowns designed with two different scanner/CAD combinations. The accuracy of the intraoral scanners and extraoral scanner was clinically acceptable. Marginal and internal fit of the digital crowns fabricated using the intraoral scanner and CAD programs were inferior to those fabricated using the extraoral scanner and CAD programs.

  5. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy

    OpenAIRE

    Zhao, Yi-jiao; Xiong, Yu-xue; Wang, Yong

    2017-01-01

    In this study, the practical accuracy (PA) of optical facial scanners for facial deformity patients in oral clinic was evaluated. Ten patients with a variety of facial deformities from oral clinical were included in the study. For each patient, a three-dimensional (3D) face model was acquired, via a high-accuracy industrial “line-laser” scanner (Faro), as the reference model and two test models were obtained, via a “stereophotography” (3dMD) and a “structured light” facial scanner (FaceScan) ...

  6. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy.

    Science.gov (United States)

    Zhao, Yi-Jiao; Xiong, Yu-Xue; Wang, Yong

    2017-01-01

    In this study, the practical accuracy (PA) of optical facial scanners for facial deformity patients in oral clinic was evaluated. Ten patients with a variety of facial deformities from oral clinical were included in the study. For each patient, a three-dimensional (3D) face model was acquired, via a high-accuracy industrial "line-laser" scanner (Faro), as the reference model and two test models were obtained, via a "stereophotography" (3dMD) and a "structured light" facial scanner (FaceScan) separately. Registration based on the iterative closest point (ICP) algorithm was executed to overlap the test models to reference models, and "3D error" as a new measurement indicator calculated by reverse engineering software (Geomagic Studio) was used to evaluate the 3D global and partial (upper, middle, and lower parts of face) PA of each facial scanner. The respective 3D accuracy of stereophotography and structured light facial scanners obtained for facial deformities was 0.58±0.11 mm and 0.57±0.07 mm. The 3D accuracy of different facial partitions was inconsistent; the middle face had the best performance. Although the PA of two facial scanners was lower than their nominal accuracy (NA), they all met the requirement for oral clinic use.

  7. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy

    Science.gov (United States)

    Zhao, Yi-jiao; Xiong, Yu-xue; Wang, Yong

    2017-01-01

    In this study, the practical accuracy (PA) of optical facial scanners for facial deformity patients in oral clinic was evaluated. Ten patients with a variety of facial deformities from oral clinical were included in the study. For each patient, a three-dimensional (3D) face model was acquired, via a high-accuracy industrial “line-laser” scanner (Faro), as the reference model and two test models were obtained, via a “stereophotography” (3dMD) and a “structured light” facial scanner (FaceScan) separately. Registration based on the iterative closest point (ICP) algorithm was executed to overlap the test models to reference models, and “3D error” as a new measurement indicator calculated by reverse engineering software (Geomagic Studio) was used to evaluate the 3D global and partial (upper, middle, and lower parts of face) PA of each facial scanner. The respective 3D accuracy of stereophotography and structured light facial scanners obtained for facial deformities was 0.58±0.11 mm and 0.57±0.07 mm. The 3D accuracy of different facial partitions was inconsistent; the middle face had the best performance. Although the PA of two facial scanners was lower than their nominal accuracy (NA), they all met the requirement for oral clinic use. PMID:28056044

  8. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  9. Design of a high-precision fast wire scanner for the SPS at CERN

    CERN Document Server

    Veness, R; Dehning, B; Emery, J; Herranz Alvarez, J; Koujili, M; Samuelsson, S; Sirvent, J-L

    2012-01-01

    Studies are going on of a new wire scanner concept. All moving parts are inside the beam vacuum and it is specified for use in all the machines across the CERN accelerator complex. Key components have been developed and tested. Work is now focussing on the installation of a prototype for test in the Super Proton Synchrotron (SPS) accelerator. This article presents the specification of the device and constraints on the design for integration in the different accelerators at CERN. The design issues of the mechanical components are discussed and optimisation work shown. Finally, the prototype design, integrating the several components into the vacuum tank is presented.

  10. The Potential of Light Laser Scanners Developed for Unmanned Aerial Vehicles - The Review and Accuracy

    Science.gov (United States)

    Pilarska, M.; Ostrowski, W.; Bakuła, K.; Górski, K.; Kurczyński, Z.

    2016-10-01

    Modern photogrammetry and remote sensing have found small Unmanned Aerial Vehicles (UAVs) to be a valuable source of data in various branches of science and industry (e.g., agriculture, cultural heritage). Recently, the growing role of laser scanning in the application of UAVs has also been observed. Laser scanners dedicated to UAVs consist of four basic components: a laser scanner (LiDAR), an Inertial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS) receiver and an on-board computer. The producers of the system provide users with detailed descriptions of the accuracies separately for each component. However, the final measurement accuracy is not given. This paper reviews state-of-the-art of laser scanners developed specifically for use on a UAV, presenting an overview of several constructions that are available nowadays. The second part of the paper is focussed on analysing the influence of the sensor accuracies on the final measurement accuracy. Mathematical models developed for Airborne Laser Scanning (ALS) accuracy analyses are used to estimate the theoretical accuracies of different scanners with conditions typical for UAV missions. Finally, the theoretical results derived from the mathematical simulations are compared with an experimental use case.

  11. Accuracy evaluation of a lower-cost and four higher-cost laser scanners.

    Science.gov (United States)

    Campanelli, Valentina; Howell, Stephen M; Hull, Maury L

    2016-01-04

    Knowing the accuracy of laser scanners is imperative to select the best scanner to generate bone models. However, errors stated by manufacturers may not apply to bones. The three objectives of this study were to determine: 1) whether the overall error stated by the manufacturers of five laser scanners was different from the root mean squared error (RMSE) computed by scanning a gage block; 2) the repeatability of 3D models generated by the laser scanners when scanning a complex freeform surface such as a distal femur and whether this differed from the repeatability when scanning a gage block; 3) whether the errors for one lower-cost laser scanner are comparable to those of four higher-cost laser scanners. The RMSEs in scanning the gage block were 2 to 52µm lower than the overall errors stated by the manufacturers. The repeatability in scanning the bovine femur 10 times was significantly worse than that in scanning the gage block 10 times. The precision of the lower-cost laser scanner was comparable to that of the higher-cost laser scanners, but the bias was an order of magnitude greater. The contributions of this study are that 1) the overall errors stated by the manufacturers are an upper bound when simple geometric objects like a gage block are scanned, 2) the repeatability is worse on average three times when scanning a complex freeform surface compared to scanning the gage block, and 3) the main difference between the lower-cost and the higher-cost laser scanners is the bias.

  12. Mechanical Design and Evaluation of the MP-11-Like Wire Scanner Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Martinez, Jason P. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory

    2012-05-16

    A wire scanner (WS) is a linearly actuated diagnostic device that uses fiber wires (such as Tungsten or Silicon Carbide) to obtain the position and intensity profile of the proton beam at the Los Alamos Neutron Science Center (LANSCE) particle accelerator. LANSCE will be installing approximately 86 new WS in the near future as part of the LANSCE Risk Mitigation project. These 86 new WS include the replacement of many current WS and some newly added to the current linear accelerator and other beam lines. The reason for the replacement and addition of WS is that many of the existing actuators have parts that are no longer readily available and are difficult to find, thus making maintenance very difficult. One of the main goals is to construct the new WS with as many commercially-available-off-the-shelf components as possible. In addition, faster beam scans (both mechanically and in term of data acquisition) are desired for better operation of the accelerator. This document outlines the mechanical design of the new MP-11-like WS prototype and compares it to a previously built and tested SNS-like WS prototype.

  13. Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner.

    Science.gov (United States)

    Kovacs, L; Zimmermann, A; Brockmann, G; Baurecht, H; Schwenzer-Zimmerer, K; Papadopulos, N A; Papadopoulos, M A; Sader, R; Biemer, E; Zeilhofer, H F

    2006-06-01

    Three-dimensional (3-D) recording of the surface of the human body or anatomical areas has gained importance in many medical specialties. Thus, it is important to determine scanner precision and accuracy in defined medical applications and to establish standards for the recording procedure. Here we evaluated the precision and accuracy of 3-D assessment of the facial area with the Minolta Vivid 910 3D Laser Scanner. We also investigated the influence of factors related to the recording procedure and the processing of scanner data on final results. These factors include lighting, alignment of scanner and object, the examiner, and the software used to convert measurements into virtual images. To assess scanner accuracy, we compared scanner data to those obtained by manual measurements on a dummy. Less than 7% of all results with the scanner method were outside a range of error of 2 mm when compared to corresponding reference measurements. Accuracy, thus, proved to be good enough to satisfy requirements for numerous clinical applications. Moreover, the experiments completed with the dummy yielded valuable information for optimizing recording parameters for best results. Thus, under defined conditions, precision and accuracy of surface models of the human face recorded with the Minolta Vivid 910 3D Scanner presumably can also be enhanced. Future studies will involve verification of our findings using test persons. The current findings indicate that the Minolta Vivid 910 3D Scanner might be used with benefit in medicine when recording the 3-D surface structures of the face.

  14. Design and construction of a new actuator for the LHC wire scanner

    CERN Document Server

    Koujili, Mohamed

    The LHC collides two protons beams with an energy of 7 TeV each resultingin a aimed total particle rate of about 109 Hz. The particle rateis determined by the production cross section, a natural constant and theluminosity accelerator dependent parameter describing the particle beams.The luminosity depends on the number of particles in each beam linearlyand on the transverse dimensions of the particle beam inversely. It increaseswith the particle beam density and therefore the probability of interactions.To optimize the transverse beams sizes, pro_le monitors are used to measureparameter depending changes. Within the LHC, three di_erent typesof pro_le monitors are installed: Wire scanner (WS), Synchrotron lightmonitor and Rest Gas Pro_le Monitor. The WS monitor is considered tobe the most accurate of these monitors and serves as a calibration devicefor the two others. The WS is an electro-mechanical device which measuresthe transverse beam density pro_le in an intermittent way. As the wirepasses through the be...

  15. Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence

    Science.gov (United States)

    Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel

    1989-01-01

    Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.

  16. Accuracy of 3-dimensional curvilinear measurements on digital models with intraoral scanners.

    Science.gov (United States)

    Mack, Spencer; Bonilla, Tammy; English, Jeryl D; Cozad, Benjamin; Akyalcin, Sercan

    2017-09-01

    Our objectives were to evaluate and compare the digital dental models generated from 2 commercial intraoral scanners with manual measurements when performing 3-dimensional surface measurements along a curved line (curvilinear). Dry mandibles (n = 61) with intact dentition were used. The mandibles were digitized using 2 chair-side intraoral scanners: Cadent iTero (Align Technology, San Jose, Calif) and Lythos Digital Impression system (Ormco, Orange, Calif). Digitized 3-dimensional models were converted to individual stereolithography files and used with commercial software to obtain the curvilinear measurements. Manual measurements were carried out directly on the mandibular teeth. Measurements were made on different locations on the dental arch in various directions. One-sample t tests and linear regression analyses were performed. To further graphically examine the accuracy between the different methods, Bland-Altman plots were computed. The level of significance was set at P 0.05). Bland-Altman analysis showed no fixed bias of 1 approach vs the other, and random errors were detected in all comparisons. Although the mean biases of the digital models obtained by the iTero and Lythos scanners, when compared with direct caliper measurements, were low, the comparison of the 2 intraoral scanners yielded the lowest mean bias. No comparison displayed statistical significance for the t scores; this indicated the absence of proportional bias in these comparisons. The intraoral scanners tested in this study produced digital dental models that were comparatively accurate when performing direct surface measurements along a curved line in 3 dimensions. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Accuracy and reproducibility of measurements on plaster models and digital models created using an intraoral scanner.

    Science.gov (United States)

    Camardella, Leonardo Tavares; Breuning, Hero; de Vasconcellos Vilella, Oswaldo

    2017-05-01

    The purpose of the present study was to evaluate the accuracy and reproducibility of measurements made on digital models created using an intraoral color scanner compared to measurements on dental plaster models. This study included impressions of 28 volunteers. Alginate impressions were used to make plaster models, and each volunteers' dentition was scanned with a TRIOS Color intraoral scanner. Two examiners performed measurements on the plaster models using a digital caliper and measured the digital models using Ortho Analyzer software. The examiners measured 52 distances, including tooth diameter and height, overjet, overbite, intercanine and intermolar distances, and the sagittal relationship. The paired t test was used to assess intra-examiner performance and measurement accuracy of the two examiners for both plaster and digital models. The level of clinically relevant differences between the measurements according to the threshold used was evaluated and a formula was applied to calculate the chance of finding clinically relevant errors on measurements on plaster and digital models. For several parameters, statistically significant differences were found between the measurements on the two different models. However, most of these discrepancies were not considered clinically significant. The measurement of the crown height of upper central incisors had the highest measurement error for both examiners. Based on the interexaminer performance, reproducibility of the measurements was poor for some of the parameters. Overall, our findings showed that most of the measurements on digital models created using the TRIOS Color scanner and measured with Ortho Analyzer software had a clinically acceptable accuracy compared to the same measurements made with a caliper on plaster models, but the measuring method can affect the reproducibility of the measurements.

  18. Laser Wire Scanner Compton Scattering Techniques for the Measurement of the Transverse Beam Size of Particle Beams at Future Linear Colliders

    CERN Document Server

    Agapov, I; Blair, G A; Bosser, J; Braun, H H; Bravin, E; Boorman, G; Boogert, S T; Carter, J; D'amico, E; Delerue, N; Howell, D F; Doebert, S; Driouichi, C; Frisch, J; Hutchins, K Honkavaaram S; Kamps, T; Lefevre, T; Lewin, H; Paris, T; Poirier, F; Price, M T; Maccaferi, R; Malton, S; Penn, G; Ross, I N; Ross, M; Schlarb, H; Schmueser, P; Schreiber, S; Sertore, D; Walker, N; Wendt, M; Wittenburg, K

    2014-01-01

    This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).

  19. Quantification of terrestrial laser scanner (TLS) elevation accuracy in oil palm plantation for IFSAR improvement

    Science.gov (United States)

    Muhadi, N. A.; Abdullah, A. F.; Kassim, M. S. M.

    2016-06-01

    In order to ensure the oil palm productivity is high, plantation site should be chosen wisely. Slope is one of the essential factors that need to be taken into consideration when doing a site selection. High quality of plantation area map with elevation information is needed for decision-making especially when dealing with hilly and steep area. Therefore, accurate digital elevation models (DEMs) are required. This research aims to increase the accuracy of Interferometric Synthetic Aperture Radar (IFSAR) by integrating Terrestrial Laser Scanner (TLS) to generate DEMs. However, the focus of this paper is to evaluate the z-value accuracy of TLS data and Real-Time Kinematic GPS (RTK-GPS) as a reference. Besides, this paper studied the importance of filtering process in developing an accurate DEMs. From this study, it has been concluded that the differences of z-values between TLS and IFSAR were small if the points were located on route and when TLS data has been filtered. This paper also concludes that laser scanner (TLS) should be set up on the route to reduce elevation error.

  20. Determining phase-space properties of the IHEP RFQ output beam using the RMS beam widths from wire-scanners

    CERN Document Server

    Peng, Jun; Liu, Hua-Chang; Jiang, Hong-Ping; Li, Peng; Li, Fang; Li, Jian; Liu, Mei-Fei; Mu, Zhen-Cheng; Meng, Cai; Meng, Ming; Ouyang, Hua-Fu; Rong, Lin-Yan; Tian, Jian-Min; Wang, Biao; Wang, Bo; Xu, Tao-Guang; Xu, Xin-An; Yao, Yuan; Xin, Wen-Qu; Zhao, Fu-Xiang; Zeng, Lei; Zhou, Wen-Zhong

    2015-01-01

    A beam line is built after the IHEP RFQ for halo study. To determine transverse emittance and ellipse parameters of the RFQ output beam, beam size data obtained from the first two of 14 wire scanners are employed. By using the transfer matrix method and the least square method, a set of linear equations were set up and solved. The solutions were then applied as initial beam parameters in multi-particle simulations to check the method of calculation. It is shown that difference between the simulated RMS beam size and the measured one at the measurement location is less than 7%, which is acceptable in our experiments.

  1. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  2. Micron-scale laser-wire scanner for the KEK Accelerator Test Facility extraction line

    Science.gov (United States)

    Boogert, Stewart T.; Blair, Grahame A.; Boorman, Gary; Bosco, Alessio; Deacon, Lawrence C.; Karataev, Pavel; Aryshev, Alexander; Fukuda, Masafumi; Terunuma, Nobihiro; Urakawa, Junji; Corner, Laura; Delerue, Nicolas; Foster, Brian; Howell, David; Newman, Myriam; Senanayake, Rohan; Walczak, Roman; Ganaway, Fred

    2010-12-01

    A laser-wire transverse electron beam size measurement system has been constructed and operated at the Accelerator Test Facility (ATF) extraction line at KEK. The construction of the system is described in detail along with the environment of the ATF related to the laser wire. A special set of electron beam optics was developed to generate an approximately 1μm vertical focus at the laser-wire location. The results of our operation at the ATF extraction line are presented, where a minimum rms electron beam size of 4.8±0.3μm was measured, and smaller electron beam sizes can be measured by developing the method further. The beam size at the laser-wire location was changed using quadrupoles and the resulting electron beam size measured, and vertical emittance extracted.

  3. Micron-scale laser-wire scanner for the KEK Accelerator Test Facility extraction line

    Directory of Open Access Journals (Sweden)

    Stewart T. Boogert

    2010-12-01

    Full Text Available A laser-wire transverse electron beam size measurement system has been constructed and operated at the Accelerator Test Facility (ATF extraction line at KEK. The construction of the system is described in detail along with the environment of the ATF related to the laser wire. A special set of electron beam optics was developed to generate an approximately 1  μm vertical focus at the laser-wire location. The results of our operation at the ATF extraction line are presented, where a minimum rms electron beam size of 4.8±0.3  μm was measured, and smaller electron beam sizes can be measured by developing the method further. The beam size at the laser-wire location was changed using quadrupoles and the resulting electron beam size measured, and vertical emittance extracted.

  4. [Accuracy analysis of computer tomography imaging for medical modeling purposes on the example of Siemens Sensation 10 scanner].

    Science.gov (United States)

    Miechowicz, Sławomir; Urbanik, Andrzej; Chrzan, Robert; Grochowska, Anna

    2010-01-01

    Medical model is a material model of human body part, used for better visualization or surgery planning. It may be produced by Rapid Prototyping method, based on data obtained during medical imaging (computer tomography--CT, magnetic resonance--MR). Important problem is to provide proper spatial accuracy of the model, influenced by imaging accuracy of CT and MR scanners. The aim of the study is the accuracy analysis of CT imaging for medical modeling purposes on the example of Siemens Sensation 10 scanner. Using stereolithography technique a physical pattern--phantom in the form of grating was produced. The phantom was measured by a Coordinate Measuring Machine Leitz PMM 12106 to consider production process inaccuracy. Then the phantom was examined using CT scanner Siemens Sensation 10. Phantom measurement error distribution was determined, based on the data obtained. Maximal measurement error, considering both phantom production inaccuracy and CT imaging inaccuracy was +/- 0.87 mm, while considering only CT imaging inaccuracy was not exceeding 0.28 mm. CT acquisition process is by itself the source of measurement errors. So to provide high quality of medical models produced by Rapid Prototyping methods, it is necessary to perform accuracy measurements for every CT scanner used for obtaing data serving as the base for model production.

  5. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner.

    Science.gov (United States)

    Loudon, Sjoukje E; Rook, Caitlin A; Nassif, Deborah S; Piskun, Nadya V; Hunter, David G

    2011-07-07

    Purpose. The Pediatric Vision Scanner (PVS) detects strabismus by identifying ocular fixation in both eyes simultaneously. This study was undertaken to assess the ability of the PVS to identify patients with amblyopia or strabismus, particularly anisometropic amblyopia with no measurable strabismus. Methods. The PVS test, administered from 40 cm and requiring 2.5 seconds of attention, generated a binocularity score (BIN, 0%-100%). We tested 154 patients and 48 controls between the ages of 2 and 18 years. BIN scores of amblyopic children and controls were measured, and 21 children received sequential PVS measurements to detect any changes in BIN resulting from amblyopia treatment. Results. With the pass/refer threshold set at BIN 60%, sensitivity and specificity were 96% for the detection of amblyopia or strabismus. Assuming a 5% prevalence of amblyopia or strabismus, the inferred positive and negative predictive values of the PVS were 56% and 100%, respectively. Fixation accuracy was significantly reduced in amblyopic eyes. In anisometropic amblyopia patients treated successfully, the BIN improved to 100%. Conclusions. The PVS identified children with amblyopia or strabismus with high sensitivity and specificity, while successful treatment restored normal BIN scores in amblyopic patients without strabismus. The results support the hypothesis that the PVS detects strabismus and amblyopia directly. Future strategies for screening by nonspecialists may thus be based on diagnostic detection of amblyopia and strabismus rather than the estimation of risk factors, allowing for rapid, accurate identification of children with amblyopia early in life when it is most amenable to treatment.

  6. Hot-wire accuracy in supersonic turbulence from comparisons with laser-induced fluorescence

    Science.gov (United States)

    Logan, Pamela; Bershader, Daniel; Mckenzie, Robert L.

    1988-01-01

    A hot-wire anemometer and a new, nonintrusive, laser-induced fluorescence (LIF) technique are used to survey a turbulent boundary layer in a supersonic channel flow at Mach no. 2.06. The purpose is to test the accuracy of using the hot wire to measure the fluctuation amplitudes of static temperature and density in a compressible turbulent flow by comparing the results with independent and direct LIF measurements. Several methods of hot-wire calibration and analysis are applied. With each method, the hot-wire response can be related primarily to fluctuations of mass flux and total temperature, from which fluctuations of static temperature and density are calculated. However, these calculations are shown to be valid only if the fluctuations in static pressure are negligible. The acquisition and the analysis of the hot-wire data are often simplified further by neglecting the effects of fluctuations in total temperature. Comparisons of the fluctuation amplitudes of temperature and density obtained by hot-wire and LIF measurements demonstrate that such assumptions might not always be warranted, even in apparently simple flows.

  7. Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2011-03-01

    Full Text Available The temporal stability and static calibration and analysis of the Velodyne HDL‑64E S2 scanning LiDAR system is discussed and analyzed. The mathematical model for measurements for the HDL-64E S2 scanner is updated to include misalignments between the angular encoder and scanner axis of rotation, which are found to be a marginally significant source of error. It is reported that the horizontal and vertical laser offsets cannot reliably be obtained with the current calibration model due to their high correlation with the horizontal and vertical offsets. By analyzing observations from two separate HDL-64E S2 scanners it was found that the temporal stability of the horizontal angle offset is near the quantization level of the encoder, but the vertical angular offset, distance offset and distance scale are slightly larger than expected. This is felt to be due to long term variations in the scanner range, whose root cause is as of yet unidentified. Nevertheless, a temporally averaged calibration dataset for each of the scanners resulted in a 25% improvement in the 3D planar misclosure residual RMSE over the standard factory calibration model.

  8. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner

    NARCIS (Netherlands)

    S.E. Loudon (Sjoukje); C.A. Rook (Caitlin); D.S. Nassif (Deborah); N.V. Piskun (Nadya); D.G. Hunter (David)

    2011-01-01

    textabstractPurpose. The Pediatric Vision Scanner (PVS) detects strabismus by identifying ocular fixation in both eyes simultaneously. This study was undertaken to assess the ability of the PVS to identify patients with amblyopia or strabismus, particularly anisometropic amblyopia with no measurable

  9. Comparison of the Accuracy of Canon KU-1 IOL Measurer and VPLUS A/B Scanner in Axial Length Measurement

    Institute of Scientific and Technical Information of China (English)

    Chuyin Chen; Zhende Lin; Bo Feng; Yonghua Li

    2003-01-01

    Purpose: To evaluate the accuracy of Canon KU-1 IOL measurer (Japanese Canon Company) and VPLUS A/B scanner (French Quantel Company) in axial length (AL)measurement.Methods:Canon KU-1 IOL measurer and VPLUS A/B scanner were used to measure axial length of human cataractous eyes before cataract surgery. Two hundred and twentytwo cases (433 eyes) were involved. The results were compared and the postoperative visual acuity, refractive results were recorded during the follow-ups to evaluate the accuracy of the two instruments.Results:In the 222 cases (433 eyes), the absolute value of the measurement differences was 0.4 mm or above in 35 eyes, 0.8 mm or above in 17 eyes, 1.2 mm or above in 12 eyes,2.0mm or above in 5 eyes. The refractive error was less than 2.0D in all patients. The mean values of ocular axial length by the two methods were 23.82 mm and 23.83 mm respectively and the difference had no statistic significance with compared t test ( P=0.902, two tail, or=0.01).Conclusion:The accurate AL measurements can be obtained with the two instruments and the measurement results should be analyzed comprehensively to obtain accurate values in the complicated cases.

  10. Mapping Topography Changes and Elevation Accuracies Using a Mobile Laser Scanner

    Directory of Open Access Journals (Sweden)

    Harri Kaartinen

    2011-03-01

    Full Text Available Laser measurements have been used in a fluvial context since 1984, but the change detection possibilities of mobile laser scanning (MLS for riverine topography have been lacking. This paper demonstrates the capability of MLS in erosion change mapping on a test site located in a 58 km-long tributary of the River Tenojoki (Tana in the sub-arctic. We used point bars and river banks as example cases, which were measured with the mobile laser scanner ROAMER mounted on a boat and on a cart. Static terrestrial laser scanner data were used as reference and we exploited a difference elevation model technique for describing erosion and deposition areas. The measurements were based on data acquisitions during the late summer in 2008 and 2009. The coefficient of determination (R2 of 0.93 and a standard deviation of error 3.4 cm were obtained as metrics for change mapping based on MLS. The root mean square error (RMSE of MLS‑based digital elevation models (DEM for non-vegetated point bars ranged between 2.3 and 7.6 cm after correction of the systematic error. For densely vegetated bank areas, the ground point determination was more difficult resulting in an RMSE between 15.7 and 28.4 cm.

  11. A protocol for evaluating the accuracy of 3D body scanners

    NARCIS (Netherlands)

    Kouchi, M.; Mochimaru, M.; Bradtmiller, B.; Daanen, H.A.M.; Li, P.; Nacher, B.; Nam, Y.

    2012-01-01

    Scan-derived landmarks locations and surface shapes are more and more used, but there is no commonly accepted protocol for evaluating the accuracy of these measurements. Therefore we propose a protocol for evaluating the accuracy of surface shape and the repeatability of scan-derived landmark locati

  12. A retrospective study to validate an intraoperative robotic classification system for assessing the accuracy of kirschner wire (K-wire) placements with postoperative computed tomography classification system for assessing the accuracy of pedicle screw placements.

    Science.gov (United States)

    Tsai, Tai-Hsin; Wu, Dong-Syuan; Su, Yu-Feng; Wu, Chieh-Hsin; Lin, Chih-Lung

    2016-09-01

    This purpose of this retrospective study is validation of an intraoperative robotic grading classification system for assessing the accuracy of Kirschner-wire (K-wire) placements with the postoperative computed tomography (CT)-base classification system for assessing the accuracy of pedicle screw placements.We conducted a retrospective review of prospectively collected data from 35 consecutive patients who underwent 176 robotic assisted pedicle screws instrumentation at Kaohsiung Medical University Hospital from September 2014 to November 2015. During the operation, we used a robotic grading classification system for verifying the intraoperative accuracy of K-wire placements. Three months after surgery, we used the common CT-base classification system to assess the postoperative accuracy of pedicle screw placements. The distributions of accuracy between the intraoperative robot-assisted and various postoperative CT-based classification systems were compared using kappa statistics of agreement.The intraoperative accuracies of K-wire placements before and after repositioning were classified as excellent (131/176, 74.4% and 133/176, 75.6%, respectively), satisfactory (36/176, 20.5% and 41/176, 23.3%, respectively), and malpositioned (9/176, 5.1% and 2/176, 1.1%, respectively)In postoperative CT-base classification systems were evaluated. No screw placements were evaluated as unacceptable under any of these systems. Kappa statistics revealed no significant differences between the proposed system and the aforementioned classification systems (P system and various postoperative CT-based grading systems. The robotic grading classification system is a feasible method for evaluating the accuracy of K-wire placements. Using the intraoperative robot grading system to classify the accuracy of K-wire placements enables predicting the postoperative accuracy of pedicle screw placements.

  13. Accuracy and efficiency of full-arch digitalization and 3D printing: A comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing.

    Science.gov (United States)

    Wesemann, Christian; Muallah, Jonas; Mah, James; Bumann, Axel

    2017-01-01

    The primary objective of this study was to compare the accuracy and time efficiency of an indirect and direct digitalization workflow with that of a three-dimensional (3D) printer in order to identify the most suitable method for orthodontic use. A master model was measured with a coordinate measuring instrument. The distances measured were the intercanine width, the intermolar width, and the dental arch length. Sixty-four scans were taken with each of the desktop scanners R900 and R700 (3Shape), the intraoral scanner TRIOS Color Pod (3Shape), and the Promax 3D Mid cone beam computed tomography (CBCT) unit (Planmeca). All scans were measured with measuring software. One scan was selected and printed 37 times on the D35 stereolithographic 3D printer (Innovation MediTech). The printed models were measured again using the coordinate measuring instrument. The most accurate results were obtained by the R900. The R700 and the TRIOS intraoral scanner showed comparable results. CBCT-3D-rendering with the Promax 3D Mid CBCT unit revealed significantly higher accuracy with regard to dental casts than dental impressions. 3D printing offered a significantly higher level of deviation than digitalization with desktop scanners or an intraoral scanner. The chairside time required for digital impressions was 27% longer than for conventional impressions. Conventional impressions, model casting, and optional digitization with desktop scanners remains the recommended workflow process. For orthodontic demands, intraoral scanners are a useful alternative for full-arch scans. For prosthodontic use, the scanning scope should be less than one quadrant and three additional teeth.

  14. Phantom-based comparison of the accuracy of point clouds extracted from stereo cameras and laser range scanner

    Science.gov (United States)

    Kumar, Ankur N.; Pheiffer, Thomas S.; Simpson, Amber L.; Thompson, Reid C.; Miga, Michael I.; Dawant, Benoit M.

    2013-03-01

    Using computational models, images acquired pre-operatively can be updated to account for intraoperative brain shift in image-guided surgical (IGS) systems. An optically tracked textured laser range scanner (tLRS) furnishes the 3D coordinates of cortical surface points (3D point clouds) over the surgical field of view and provides a correspondence between these and the pre-operative MR image. However, integration of the acquired tLRS data into a clinically acceptable system compatible throughout the clinical workflow of tumor resection has been challenging. This is because acquiring the tLRS data requires moving the scanner in and out of the surgical field, thus limiting the number of acquisitions. Large differences between acquisitions caused by tumor resection and tissue manipulation make it difficult to establish correspondence and estimate brain motion. An alternative to the tLRS is to use temporally dense feature-rich stereo surgical video data provided by the operating microscope. This allows for quick digitization of the cortical surface in 3D and can help continuously update the IGS system. In order to understand the tradeoffs between these approaches as input to an IGS system, we compare the accuracy of the 3D point clouds extracted from the stereo video system of the surgical microscope and the tLRS for phantom objects in this paper. We show that the stereovision system of the surgical microscope achieves accuracy in the 0.46-1.5mm range on our phantom objects and is a viable alternative to the tLRS for neurosurgical applications.

  15. Comparing the accuracy of terrestrial laser scanner in measuring forest inventory variables to enhance better decision making for potential fire hazards

    Science.gov (United States)

    Ghimire, Suman; Xystrakis, Fotios; Koutsias, Nikos

    2017-04-01

    Forest inventory variables are essential in accessing the potential of wildfire hazard, obtaining above ground biomass and carbon sequestration which helps developing strategies for sustainable management of forests. Effective management of forest resources relies on the accuracy of such inventory variables. This study aims to compare the accuracy in obtaining the forest inventory variables like diameter at breast height (DBH) and tree height from Terrestrial Laser Scanner (Faro Focus 3D X 330) with that from the traditional forest inventory techniques in the Mediterranean forests of Greece. The data acquisition was carried out on an area of 9,539.8 m2 with six plots each of radius 6 m. Computree algorithm was applied for automatic detection of DBH from terrestrial laser scanner data. Similarly, tree height was estimated manually using CloudCompare software for the terrestrial laser scanner data. The field estimates of DBH and tree height was carried out using calipers and Nikon Forestry 550 Laser Rangefinder. The comparison of DBH measured between field estimates and Terrestrial Laser Scanner (TLS), resulted in R squared values ranging from 0.75 to 0.96 at the plot level. An average R2 and RMSE value of 0.80 and 1.07 m respectively was obtained when comparing the tree height between TLS and field data. Our results confirm that terrestrial laser scanner can provide nondestructive, high-resolution, and precise determination of forest inventory for better decision making in sustainable forest management and assessing potential of forest fire hazards.

  16. Diagnostic accuracy of prospective ECG gated coronary computed tomography on a 256 slices scanner: Daily practice experience

    Directory of Open Access Journals (Sweden)

    Ahmed M. Fareed

    2014-03-01

    Conclusions: In a highly prevalence diseased population, prospective ECG-gated CTCA using 256-slice scanner is highly accurate for detection and quantification of the degree of coronary luminal stenosis in comparison to ICA.

  17. Study on Detection of 3D Laser Scanner Positional Accuracy%三维激光扫描仪点位精度检测研究

    Institute of Scientific and Technical Information of China (English)

    王鸣霄; 戴相喜; 王正强

    2013-01-01

    3D laser scanner is a new fast mean to acquire 3d coordinates of ground objects ,has many increasing in-comparable advantages than traditional measuring means and has wide application prospect .Aim to obtain the actual ac-curacy of its scanning data ,so as to confirm its range of application;this paper designed an experiment ,detection accuracy through surveying the same area using both 3 d laser scanner and total station instrument ,finally get the general accuracy information of 3 d laser scanner ,offer data support to confirm its application range .%三维激光扫描仪扫描作为一种新型的地物三维坐标快速获取手段,具有传统测量手段很多无法比拟的优势,具有广阔的应用前景。为了解其扫描所得点的实际精度,以便确定其适用领域,本文设计实验,采用三维激光扫描仪和全站仪重复测量的方法对其进行检测,得到三维激光扫描仪精度的基本情况,为确定其适用范围提供数据支持。

  18. High-Precision Surface Inspection: Uncertainty Evaluation within an Accuracy Range of 15μm with Triangulation-based Laser Line Scanners

    Science.gov (United States)

    Dupuis, Jan; Kuhlmann, Heiner

    2014-06-01

    Triangulation-based range sensors, e.g. laser line scanners, are used for high-precision geometrical acquisition of free-form surfaces, for reverse engineering tasks or quality management. In contrast to classical tactile measuring devices, these scanners generate a great amount of 3D-points in a short period of time and enable the inspection of soft materials. However, for accurate measurements, a number of aspects have to be considered to minimize measurement uncertainties. This study outlines possible sources of uncertainties during the measurement process regarding the scanner warm-up, the impact of laser power and exposure time as well as scanner’s reaction to areas of discontinuity, e.g. edges. All experiments were performed using a fixed scanner position to avoid effects resulting from imaging geometry. The results show a significant dependence of measurement accuracy on the correct adaption of exposure time as a function of surface reflectivity and laser power. Additionally, it is illustrated that surface structure as well as edges can cause significant systematic uncertainties.

  19. 三维激光扫描仪精度测试及应用%Accuracy testing and application of 3D laser scanner

    Institute of Scientific and Technical Information of China (English)

    张铁军; 沈家海; 申文永

    2015-01-01

    The basic principle of 3D laser scanner, and the test methods of its positional accuracy in pile surveying were introduced in this paper. According to engineering requirements, we arranged control points, chose columns under the viaduct in land as observation target, measured the center coordinates respectively using 3D laser scanner and total station, analyzed the measuring accuracy of 3D laser scanner based on total station measuring results, and explored its application in engineering surveying.%介绍了三维激光扫描仪的基本原理及其应用于桩基测量精度分析的测试方法。按照工程需求,布置控制点,选择陆地高架桥下的圆柱作为观测目标,分别用三维激光扫描仪和全站仪测量出圆心坐标,以全站仪测量成果为基准,分析三维激光扫描仪的测量精度,探索其在工程测量中的应用。

  20. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement.

    Science.gov (United States)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan

    2015-04-01

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  1. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju (Korea, Republic of)

    2015-04-15

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  2. Quantitative evaluation for the accuracy of dental model three-dimensional scanner%牙颌模型三维扫描仪精度定量评价

    Institute of Scientific and Technical Information of China (English)

    宋杨; 孙玉春; 赵一姣; 王勇; 吕培军

    2013-01-01

    目的:建立一种牙颌模型三维扫描仪精度的定量评价方法,应用该方法对3Shape D700商品化扫描仪进行精度这一核心指标的定量评价.方法:在三维逆向软件中设计一个整体外形类似于牙弓的标准几何样块,用高精度数控加工技术加工,利用此样块评价分析牙颌模型扫描仪关键技术指标,包括单次扫描精度、空间一致性、重复扫描精度共3项指标.结果:3 Shape D700商品化扫描仪的单次扫描精度结果为(15.00±10.84)μm,和厂家说明书给出的精度结果20μm差异无统计学意义(P=0.053);此外,空间一致性(垂直方向和水平方向,P =0.524)和重复扫描精度(垂直方向P=0.633,水平方向P=0.221)的检测结果差异亦无统计学意义.结论:使用该方法评价牙科扫描仪精度,可以避免手工选点法存在的观察者误差,是有效可行的.%To establish a method to evaluate dental model three-dimensional scanner quantitatively, and to evaluate the accuracy which is a core indicator of 3Shape D700 scanner. Methods; A standard geometric model similar to the dental arch was designed by three-dimensional reverse software and processed by high precision CNC (computer numerical control) processing technology. Core indicators of dental model three-dimensional scanner including single scanning accuracy, space consistency and rescan accuracy were evaluated. Results; The result of single scanning accuracy of 3Shape D700 scanner was (15.00 ±10. 84) μm, and there was no statistics difference between the accuracy given by manufacturer ' s instructions which is 20 μm ( P - 0.053 ) , and same as the results of space consistency ( compare the accuracy in vertical direction and horizontal direction, P =0. 524) and rescan accuracy (compare the rescan accuracy in vertical direction, P = 0.633, and in horizontal direction P = 0.221). Conclusion; It is feasible to evaluate accuracy of dental model three-dimensional scanner by this method, which

  3. Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner.

    Science.gov (United States)

    Mannheim, Julia G; Judenhofer, Martin S; Schmid, Andreas; Tillmanns, Julia; Stiller, Detlef; Sossi, Vesna; Pichler, Bernd J

    2012-06-21

    Quantification accuracy and partial volume effect (PVE) of the Siemens Inveon PET scanner were evaluated. The influence of transmission source activities (40 and 160 MBq) on the quantification accuracy and the PVE were determined. Dynamic range, object size and PVE for different sphere sizes, contrast ratios and positions in the field of view (FOV) were evaluated. The acquired data were reconstructed using different algorithms and correction methods. The activity level of the transmission source and the total emission activity in the FOV strongly influenced the attenuation maps. Reconstruction algorithms, correction methods, object size and location within the FOV had a strong influence on the PVE in all configurations. All evaluated parameters potentially influence the quantification accuracy. Hence, all protocols should be kept constant during a study to allow a comparison between different scans.

  4. Convenient integrating sphere scanner for accurate luminous flux measurements

    Science.gov (United States)

    Winter, S.; Lindemann, M.; Jordan, W.; Binder, U.; Anokhin, M.

    2009-08-01

    Measurement results and applications of a recently developed device for the measurement of the spatial uniformity of integrating spheres are presented. Due to the complexity of their implementation, sphere scanners are mainly used by national metrology institutes to increase the accuracy of relative and absolute luminous flux measurements (Ohno et al 1997 J. IES 26 107-14, Ohno and Daubach 2001 J. IES 30 105-15, Ohno 1998 Metrologia 35 473-8, Hovila et al 2004 Metrologia 41 407-13). The major drawback of traditional scanners for integrating spheres is the necessity of a complex and time-consuming sphere modification, as the lamp holder has to be replaced by a new scanner holder with additional cables for power supply and for communication with the stepping motor control unit (Ohno et al 1997 J. IES 26 107-14). Therefore, with traditional scanners the relative spatial sphere responsivity already changes due to the installation of a special scanner holder. The new scanner simply substitutes the lamp under test: it can be screwed into an E27 lamp socket, as it needs only two electrical contacts. Two wires are simultaneously used for the power supply of the stepping motor control unit, the scanner light source (LED) and for the signal transmission of commands and results. The benefits of scanner-assisted measurements are shown for spotlight lamp calibrations.

  5. The effect of CT scanner parameters and 3D volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible

    Science.gov (United States)

    Whyms, B.J.; Vorperian, H.K.; Gentry, L.R.; Schimek, E.M.; Bersu, E.T.; Chung, M.K.

    2013-01-01

    Objectives This study investigates the effect of scanning parameters on the accuracy of measurements from three-dimensional multi-detector computed tomography (3D-CT) mandible renderings. A broader range of acceptable parameters can increase the availability of CT studies for retrospective analysis. Study Design Three human mandibles and a phantom object were scanned using 18 combinations of slice thickness, field of view, and reconstruction algorithm and three different threshold-based segmentations. Measurements of 3D-CT models and specimens were compared. Results Linear and angular measurements were accurate, irrespective of scanner parameters or rendering technique. Volume measurements were accurate with a slice thickness of 1.25 mm, but not 2.5 mm. Surface area measurements were consistently inflated. Conclusions Linear, angular and volumetric measurements of mandible 3D-CT models can be confidently obtained from a range of parameters and rendering techniques. Slice thickness is the primary factor affecting volume measurements. These findings should also apply to 3D rendering using cone-beam-CT. PMID:23601224

  6. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin T. [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA (United States); Izquierdo-Garcia, David; Catana, Ciprian [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Poynton, Clare B. [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Massachusetts General Hospital, Department of Psychiatry, Boston, MA (United States); University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Chonde, Daniel B. [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Harvard University, Program in Biophysics, Cambridge, MA (United States)

    2017-03-15

    To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. Continuous-valued linear attenuation coefficient maps (''μ-maps'') were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the μ-maps. The accuracy of this probabilistic atlas-based continuous-valued μ-map (''PAC-map'') generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the μ-maps generated from the data acquired at three time points. The proposed method produced continuous-valued μ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based μ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the μ-maps obtained at the three visits being 0.65 ± 0.95 %. Accurate and highly reproducible continuous-valued head μ-maps can be generated from MR data using a probabilistic atlas-based approach. (orig.)

  7. Scanner Art

    Science.gov (United States)

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  8. RIEGL LMS-Z390i三维激光扫描仪测角精度评定方法研究%Research of Methods on the Angle Accuracy Behavior of RIEGL LMS-Z390i Laser Scanner

    Institute of Scientific and Technical Information of China (English)

    张启福; 孙现申; 王贺; 王力

    2012-01-01

    提出了一种新的三维激光扫描仪测角精度评定方法,用TM5100电子经纬仪建立角度基准,以RIEGLLMS-Z390i激光扫描仪观测的点云坐标反算出的角度作为观测值,在考虑轴系误差的影响基础上,建立了平差模型,通过最小二乘解算出激光扫描仪的水平、垂直测角精度分别为0.002 7°、0.001 5°,评定出该方法的可行性.%A new method to assess the angle accuracy of 3D Laser Scanner is presented. TM5100 electronic theodolite was used to set up datum angle,and the angle accuracy of RIEGL LMS-Z390i Laser Scanner was assessed. The observed angle was obtained by 3D coordinate of point-clouds,and the analysed axes errors of 3D Laser Scanner is used to set up the calibration model. According to the least squares adjustment,the angle accuracy were 0. 002 7° and 0. 001 5°, so the new method was feasible.

  9. Diagnostic Accuracy of the Overlapping Infinity Loops, Wire Cube, and Clock Drawing Tests for Cognitive Impairment in Mild Cognitive Impairment and Dementia

    Directory of Open Access Journals (Sweden)

    Thammanard Charernboon

    2017-01-01

    Full Text Available Purpose. To investigate the diagnostic accuracy of the overlapping infinity loops, wire cube, and clock drawing tests (CDT in the detection of mild cognitive impairment (MCI and dementia. Method. The participants were 60 normal controls (NC, 35 patients with MCI, and 47 patients with mild dementia. Results. The results illustrate that infinity loops, cube, or CDT were not able to discriminate between NC and MCI groups. In dementia detection, the CDT had the highest diagnostic accuracy (sensitivity 76.6% and specificity 87.4% followed by infinity loops (sensitivity 63.8% and specificity 91.6% and cube (sensitivity 93.6% and specificity 46.3%. Conclusion. This study demonstrates that the three drawing tests are sensitive detectors of dementia but not MCI.

  10. Diagnostic Accuracy of the Overlapping Infinity Loops, Wire Cube, and Clock Drawing Tests for Cognitive Impairment in Mild Cognitive Impairment and Dementia.

    Science.gov (United States)

    Charernboon, Thammanard

    2017-01-01

    Purpose. To investigate the diagnostic accuracy of the overlapping infinity loops, wire cube, and clock drawing tests (CDT) in the detection of mild cognitive impairment (MCI) and dementia. Method. The participants were 60 normal controls (NC), 35 patients with MCI, and 47 patients with mild dementia. Results. The results illustrate that infinity loops, cube, or CDT were not able to discriminate between NC and MCI groups. In dementia detection, the CDT had the highest diagnostic accuracy (sensitivity 76.6% and specificity 87.4%) followed by infinity loops (sensitivity 63.8% and specificity 91.6%) and cube (sensitivity 93.6% and specificity 46.3%). Conclusion. This study demonstrates that the three drawing tests are sensitive detectors of dementia but not MCI.

  11. Quantitative evaluation of the measurement accuracy of 2 three-dimensional facial scanners%2种三维颜面部扫描仪测量精度的定量评价

    Institute of Scientific and Technical Information of China (English)

    赵一姣; 熊玉雪; 杨慧芳; 吕培军; 孙玉春; 王勇

    2016-01-01

    Objective:To evaluate the actual measurement accuracy of 2 three-dimensional(3D)facial scanners for real person. Methods:3D digital face models of 1 0 volunteers with normal ficial form were obtained by 3dMD and FaceScan facial scanners respec-tively.The measurement values of 1 0 feature lengths and 5 feature angles were measured on each 3D model by the software respective-ly.The reference values of all characteristics were acquired by line laser scanner (Faro)with high accuracy.Statistical and surveying analysis were taken between the measurement values and reference values.Facial morphology measurement error and actual accuracy of facial scanners were obtained finally.Data were statistically analysed.Results:The length measurement accuracy of 3dMD and FaceS-can was(-0.37 ±0.68)mm and (-0.29 ±0.53)mm(P =0.223),the angle measurement accuracy was (-0.22 ±2.1 4)°and (0.1 2 ±2.69)°(P =0.428),respectively.Conclusion:The 3D data of ficial morphology obtained by the 2 scanners are not signifi-cantly different.%目的:对三维颜面部扫描仪进行真人实际测量精度评价。方法:分别应用三维颜面部扫描仪3dMD 和 FaceScan 获取10名正常面型志愿者的三维面相数字模型,测量每个模型上的10个特征线段长度和5个特征角度,并分别与高精度线激光扫描仪(Faro)获取的参考值进行统计学分析和测量学分析,计算面貌特征测量误差与实际测量精度。结果:3dMD 和 FaceS-can 对正常面型人群的长度测量精度分别为(-0.37±0.68)mm 和(-0.29±0.53)mm(P =0.223),角度测量精度分别为(-0.22±2.14)°和(0.12±2.69)°(P =0.428)。结论:2种三维面部扫描仪获取的三维面相数据无显著差异。

  12. Scanner calibration revisited.

    Science.gov (United States)

    Pozhitkov, Alexander E

    2010-07-01

    Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2.) reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  13. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  14. Accuracy of targeted wire guided tube thoracostomy in comparison to classical surgical chest tube placement - A clinical study.

    Science.gov (United States)

    Protic, Alen; Barkovic, Igor; Ivancic, Aldo; Kricka, Ozren; Zuvic-Butorac, Marta; Sustic, Alan

    2015-11-01

    Chest tube malfunction, after the tube thoracostomy, is often the result of an inappropriate chest tube tip position. The aim of this study was to analyse the precision of chest tube placement using the targeted wire guide technique (TWG technique) with curve dilator and to compare it to the classical surgical technique (CS technique). In this clinical study 80 patients with an indication for thoracic drainage, due to pneumothorax or pleural effusion were included. Experimental group contained 39 patients whose chest tube was placed using the TWG technique. The control group contained 41 patients whose chest tube was placed using the CS technique. The comparison of the outcomes of the two techniques applied suggests that the TWG technique was significantly more successful in achieving adequate (precise) chest tube placement, irrespective of patient diagnosis (TWG vs. CS in all patients, 78.4% vs. 36.6%, p<0.001). In the pleural effusion group, TWG and CS had success rates of 78.2% and 37.5% (p=0.005), respectively, while in pneumothorax group, TWG and CS had success rates of 78.6% and 35.3% (p=0.029), respectively. Using a curved dilator and the TWG technique for the thoracic drainage procedure we found statistically significant advantage to the TWG technique in comparison to the CS technique (78% vs. 37%) regarding precise chest tube placement within the pleural cavity. Introducing the materials and technique used in this clinical trial into clinical practice may improve the quality of thoracic drainage, including residual volume of air and/or fluid, poor functioning of the chest tube, and, as a consequence of both, prolonged hospitalisation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. On Improving Accuracy of Finite-Element Solutions of the Effective-Mass Schrödinger Equation for Interdiffused Quantum Wells and Quantum Wires

    Science.gov (United States)

    Topalović, D. B.; Arsoski, V. V.; Pavlović, S.; Čukarić, N. A.; Tadić, M. Ž.; Peeters, F. M.

    2016-01-01

    We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schrödinger equation. The accuracy of the solution is explored as it varies with the range of the numerical domain. The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires. Also, the model of a linear harmonic oscillator is considered for comparison reasons. It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range, which is thus considered to be optimal. This range is found to depend on the number of mesh nodes N approximately as α0 logeα1(α2N), where the values of the constants α0, α1, and α2 are determined by fitting the numerical data. And the optimal range is found to be a weak function of the diffusion length. Moreover, it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schrödinger equation. Supported by the Ministry of Education, Science, and Technological Development of Serbia and the Flemish fund for Scientific Research (FWO Vlaanderen)

  16. Laser Scanner Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, B.

    2005-09-06

    In the Summer of 2004 a request for proposals went out to potential vendors to offer a three-dimensional laser scanner for a number of unique metrology tasks at the Stanford Linear Accelerator Center (SLAC). Specifications were established including range, accuracy, scan density, resolution and field of view in consideration of anticipated department requirements. Four vendors visited the site to present their system and they were asked to perform three unique tests with their system on a two day visit to SLAC. Two of the three tests were created to emulate real-world applications at SLAC while the third was an accuracy and resolution series of experiments. The scope of these tests is presented and some of the vendor's results are included.

  17. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: laser scanner based validation of in vivo cartilage.

    Science.gov (United States)

    Koo, Seungbum; Giori, Nicholas J; Gold, Garry E; Dyrby, Chris O; Andriacchi, Thomas P

    2009-12-01

    Cartilage morphology change is an important biomarker for the progression of osteoarthritis. The purpose of this study was to assess the accuracy of in vivo cartilage thickness measurements from MR image-based 3D cartilage models using a laser scanning method and to test if the accuracy changes with cartilage thickness. Three-dimensional tibial cartilage models were created from MR images (in-plane resolution of 0.55 mm and thickness of 1.5 mm) of osteoarthritic knees of ten patients prior to total knee replacement surgery using a semi-automated B-spline segmentation algorithm. Following surgery, the resected tibial plateaus were laser scanned and made into 3D models. The MR image and laser-scan based models were registered to each other using a shape matching technique. The thicknesses were compared point wise for the overall surface. The linear mixed-effects model was used for statistical test. On average, taking account of individual variations, the thickness measurements in MRI were overestimated in thinner (<2.5 mm) regions. The cartilage thicker than 2.5 mm was accurately predicted in MRI, though the thick cartilage in the central regions was underestimated. The accuracy of thickness measurements in the MRI-derived cartilage models systemically varied according to native cartilage thickness.

  18. Vibrating wire alignment technique

    CERN Document Server

    Xiao-Long, Wang; lei, Wu; Chun-Hua, Li

    2013-01-01

    Vibrating wire alignment technique is a kind of method which through measuring the spatial distribution of magnetic field to do the alignment and it can achieve very high alignment accuracy. Vibrating wire alignment technique can be applied for magnet fiducialization and accelerator straight section components alignment, it is a necessary supplement for conventional alignment method. This article will systematically expound the international research achievements of vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation and the relation between wire amplitude and magnetic induction intensity. On the basis of model analysis this article will introduce the alignment method which based on magnetic field measurement and the alignment method which based on amplitude and phase measurement. Finally, some basic questions will be discussed and the solutions will be given.

  19. Network Security Scanner

    OpenAIRE

    2011-01-01

    Network Security Scanner (NSS) is a tool that allows auditing and monitoring remote network computers for possible vulnerabilities, checks your network for all potential methods that a hacker might use to attack it. Network Security Scanner is a complete networking utilities package that includes a wide range of tools for network security auditing, vulnerability Auditing, scanning, monitoring and more. Network Security Scanner (NSS) is an easy to use, intuitive network security scanner that c...

  20. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  1. Recent micro-CT scanner developments at UGCT

    Science.gov (United States)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  2. Recent micro-CT scanner developments at UGCT

    Energy Technology Data Exchange (ETDEWEB)

    Dierick, Manuel, E-mail: Manuel.Dierick@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van Loo, Denis, E-mail: info@XRE.be [XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Masschaele, Bert [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van den Bulcke, Jan [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Van Acker, Joris, E-mail: Joris.VanAcker@UGent.be [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Cnudde, Veerle, E-mail: Veerle.Cnudde@UGent.be [UGCT-SGIG, Department of Geology and Soil Science, Faculty of Sciences, Ghent University, Krijgslaan 281, S8, 9000 Ghent (Belgium); Van Hoorebeke, Luc, E-mail: Luc.VanHoorebeke@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium)

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography ( (www.ugct.ugent.be)) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kV{sub max}) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  3. Homogeneity and accuracy of the second critical field Bc2 of the NIST SRM-1457 standard NbTi/Cu wire

    NARCIS (Netherlands)

    Haken, ten Bennie; Krooshoop, Erik; Kate, ten Herman H.J.

    1994-01-01

    In the frame work of the VAMAS intercomparison activities the second critical field Bc2 of the standard KIST NbTi/Cu superconductor was investigated in several laboratories in the world. In this paper the specific results obtained in the UT laboratory are reported. On a single piece of wire of 1.5 m

  4. Verification of a CT scanner using a miniature step gauge

    DEFF Research Database (Denmark)

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S.;

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning...

  5. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. Minimizing RF heating of conducting wires in MRI.

    Science.gov (United States)

    Yeung, Christopher J; Karmarkar, Parag; McVeigh, Elliot R

    2007-11-01

    Performing interventions using long conducting wires in MRI introduces the risk of focal RF heating at the wire tip. Comprehensive EM simulations are combined with carefully measured experimental data to show that method-of-moments EM field modeling coupled with heat transfer modeling can adequately predict RF heating with wires partially inserted into the patient-mimicking phantom. The effects of total wire length, inserted length, wire position in the phantom, phantom position in the scanner, and phantom size are examined. Increasing phantom size can shift a wire's length of maximum tip heating from about a half wave toward a quarter wave. In any event, with wires parallel to the scanner bore, wire tip heating is minimized by keeping the patient and wires as close as possible to the central axis of the scanner bore. At 1.5T, heating is minimized if bare wires are shorter than 0.6 m or between approximately 2.4 m and approximately 3.0 m. Heating is further minimized if wire insertion into phantoms equivalent to most aqueous soft tissues is less than 13 cm or greater than 40 cm (longer for fatty tissues, bone, and lung). The methods demonstrated can be used to estimate the absolute amount of heating in order to set RF power safety thresholds.

  8. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  9. Colorimetric Scanner Characterisation

    Directory of Open Access Journals (Sweden)

    Jon Y. Hardeberg

    2003-12-01

    Full Text Available In this paper, methods for the colorimetric characterisation of colour scanners are proposed and evaluated. These methods apply equally to other colour image input devices such as digital cameras. The goal of our characterisation is to establish the relationship between the device-dependent colour space of the scanner and the device-independent CIELAB colour space. The scanner characterisation is based on polynomial regression techniques. Several regression schemes have been tested. The retained method consists in applying a non-linear correction to the scanner RGB values followed by a 3rd order 3D polynomial regression function directly to CIELAB space. This method gives very good results in terms of residual colour differences. This is partly due to the fact that the RMS error that is minimised in the regression corresponds to ΔE*ab which is well correlated to visual colour differences.

  10. 采用体积轮廓扫描仪直接测量口腔印模材料的尺寸变化率%Evaluatoin of the accuracy of 4 impression materials by a 3D optical scanner

    Institute of Scientific and Technical Information of China (English)

    罗子源; 唐亮; 许晶晶; 刘迪生

    2015-01-01

    目的:测量4种临床常用 EP 模材的三维形变率。方法:制作母模及个别托盘,使用2种藻酸盐和2种橡胶 EP 模材在母模上分别制取 EP 模材试件(n =3),用三维轮廓测量扫描仪进行扫描及建模,通过计算机测量模型3个轴向上标记线段长度的变化。结果:在印模120 min 后,Zhermark 藻酸盐在3个轴向上的变化率分别为3.615%、3.037%、2.836%;CAVEX 藻酸盐的变化率分别为2.836%、3.358%、4.276%;在印模8 h 后,Impregum Penta 聚醚橡胶在3个轴向上的变化率分别为0.039%、0.071%、0.057%;ExpressXT Penta H 加成硅橡胶的变化率分别为0.033%、0.088%、0.084%。结论:4种材料线性尺寸变化率均达到 ISO1563∶1990标准,藻酸盐类 EP 模材在3个轴向上的形变率均明显大于橡胶类 EP 模材。%Objective:To study the 3D accuracy of 4 impression materials.Methods:A metal mould with a custom tray was prepared for the measurement.Impression samples of 2 alginate and 2 rubber impression materials were prepared in the metal mould(n =3)re-spectively.The length of three tagged lines,along X,Y,Z axis directions of the samples was measured with a 3D optical scanner.Re-sults:120 min after sampling the variable rates of the length along X,Y,Z axis of Zhermark alginate samples were 3.615%,3.037%and 2.836%,those of CAVEX alginate samples were 2.836%,3.358% and 4.276% respectively;8 h after sampling the variable rates of Impregum Penta polyether rubber samples were 0.039%,0.071% and 0.057%,those of ExpressXT Penta H addition-curing silicone rubber samples were 0.033%,0.088% and 0.084% respectively.Conclusion:The variable rates of the 4 impression materi-als are in accordance with ISO1563∶1990.The variable rate of alginate impression material is greater than that of rubber.

  11. Metal Optics For Laser Profile Scanners

    Science.gov (United States)

    Klauke, T.; Hock, F.

    1987-01-01

    Laser scanners are a valuable tool for qualitiy control in hostile hot and vibrating environments. Their high measuring speed allows time minimisation of disturbing influences. The loss of accuracy of systems due to thermal distortion could be minimised by designing mechanical-optical systems with low temperature gradients and small differences between thermal expansions of the components. For application in the forging production a laser scanner measuring in situ a series of profile lines describing the hot forging tools has been designed using aluminium for all distortion sensitive mechanical and optical components.

  12. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. Cobalt-60 Container Scanner

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper presents a special container scanner in which the radiation source is a conventional radiography 60Co projector of (100-300)×3 .7×1010Bq. With a specia l sensitive array detector, invented by Institute of Nuclear Energy Technology ( INET) of Tsinghua University and other technical innovations, t he characteristics of the 60Co scanner qualify it for use in c ontainer insp ection. Its contrast indicator (CI) and image quality indicator (IQI) for 10 0 mm steel are equal to 0.7% and 2.5%, respectively, and the steel penetration ( SP) is about 240 mm. The 60Co container scanner is much more ec onomical and more reliable than those scanners using an accelerator source. Also, its penetr ation ability is much better than that of an X-ray machine scanner. This paper p resents the system design, the main difficulties and their technical solutions, the inspection characteristics and the special features of the 60Co sc anner.

  17. Portable biochip scanner device

    Energy Technology Data Exchange (ETDEWEB)

    Perov, Alexander (Troitsk, RU); Sharonov, Alexei (Moscow, RU); Mirzabekov, Andrei D. (Darien, IL)

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  18. Biochip scanner device

    Energy Technology Data Exchange (ETDEWEB)

    Perov, Alexander (Troitsk, RU); Belgovskiy, Alexander I. (Mayfield Heights, OH); Mirzabekov, Andrei D. (Darien, IL)

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  19. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  20. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  1. Microarray Scanner for Fluorescence Detection

    Institute of Scientific and Technical Information of China (English)

    Wang Liqiang; Lu zukang; Li Yingsheng; Zheng Xufeng

    2003-01-01

    A novel pseudo confocal microarray scanner is introduced, in which one dimension scanning is performed by a galvanometer optical scanner and a telecentric objective, another dimension scanning is performed by a stepping motor.

  2. Hot-wire anemometer for spirography.

    Science.gov (United States)

    Plakk, P; Liik, P; Kingisepp, P H

    1998-01-01

    The use of a constant temperature hot-wire anemometer flow sensor for spirography is reported. The construction, operating principles and calibration procedure of the apparatus are described, and temperature compensation method is discussed. Frequency response is studied. It is shown that this hot-wire flow transducer satisfies common demands with respect to accuracy, response time and temperature variations.

  3. Wire Chamber

    CERN Multimedia

    1986-01-01

    Two wire chambers made originally for the R807 Experiment at CERN's Intersecting Storage Rings. In 1986 they were used for the PS 201 experiment (Obelix Experiment) at LEAR, the Low Energy Antiproton Ring. The group of researchers from Turin, using the chambers at that time, changed the acquisition system using for the first time 8 bit (10 bit non linear) analog to digital conversion for incoming signals from the chambers. The acquisition system was controlled by 54 CPU and 80 digital signal processors. The power required for all the electronics was 40 kW. For the period, this system was one of the most powerful on-line apparatus in the world. The Obelix Experiment was closed in 1996. To find more about how a wire chamber works, see the description for object CERN-OBJ-DE-038.

  4. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  5. Application of intra-oral dental scanners in the digital workflow of implantology

    NARCIS (Netherlands)

    van der Meer, Wicher J; Andriessen, Frank S; Wismeijer, Daniel; Ren, Yijin

    2012-01-01

    UNLABELLED: Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. MATERIALS AND METHODS: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned wit

  6. Application of intra-oral dental scanners in the digital workflow of implantology

    NARCIS (Netherlands)

    van der Meer, W.J.; Andriessen, F.S.; Wismeijer, D.; Ren, Y.

    2012-01-01

    Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intr

  7. Application of intra-oral dental scanners in the digital workflow of implantology

    NARCIS (Netherlands)

    van der Meer, W.J.; Andriessen, F.S.; Wismeijer, D.; Ren, Y.

    2012-01-01

    Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intr

  8. Vibrating wires for beam diagnostics

    CERN Document Server

    Arutunian, S G; Wittenburg, Kay

    2015-01-01

    A new approach to the technique of scanning by wires is developed. Novelty of the method is that the wire heating quantity is used as a source of information about the number of interacting particles. To increase the accuracy and sensitivity of measurements the wire heating measurement is regenerated as a change of wire natural oscillations frequency. By the rigid fixing of the wire ends on the base an unprecedented sensitivity of the frequency to the temperature and to the corresponding flux of colliding particles. The range of used frequencies (tens of kHz) and speed of processes of heat transfer limit the speed characteristics of proposed scanning method, however, the high sensitivity make it a perspective one for investigation of beam halo and weak beam scanning. Traditional beam profile monitors generally focus on the beam core and loose sensitivity in the halo region where a large dynamic range of detection is necessary. The scanning by a vibrating wire can be also successfully used in profiling and det...

  9. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  10. Nogle muligheder i scanner data

    DEFF Research Database (Denmark)

    Juhl, Hans Jørn

    2000-01-01

    I artiklen gives en diskussion af en række af de muligheder for effektivisering af marketingaktiviteter, der er til stede for såvel mærkevareudbyder som detaillist, ved udnyttelse af information fra scanner data......I artiklen gives en diskussion af en række af de muligheder for effektivisering af marketingaktiviteter, der er til stede for såvel mærkevareudbyder som detaillist, ved udnyttelse af information fra scanner data...

  11. Calibration of Images with 3D range scanner data

    OpenAIRE

    Adalid López, Víctor Javier

    2009-01-01

    Projecte fet en col.laboració amb EPFL 3D laser range scanners are used in extraction of the 3D data in a scene. Main application areas are architecture, archeology and city planning. Thought the raw scanner data has a gray scale values, the 3D data can be merged with colour camera image values to get textured 3D model of the scene. Also these devices are able to take a reliable copy in 3D form objects, with a high level of accuracy. Therefore, they scanned scenes can be use...

  12. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Science.gov (United States)

    2010-07-01

    ... wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. Trolley wires, trolley feeder wires, and bare signal wires shall be insulated...

  13. Estimating Single Tree Stem Volume of Pinus sylvestris Using Airborne Laser Scanner and Multispectral Line Scanner Data

    Directory of Open Access Journals (Sweden)

    Barbara Koch

    2011-05-01

    Full Text Available So far, only a few studies have been carried out in central European forests to estimate individual tree stem volume of pine trees from high resolution remote sensing data. In this article information derived from airborne laser scanner and multispectral line scanner data were tested to predict the stem volume of 178 pines (Pinus sylvestris in a study site in the south-west of Germany. First, tree crowns were automatically delineated using both multispectral and laser scanner data. Next, tree height, crown diameter and crown volume were derived for each crown segment. All combinations of the derived tree features were used as explanatory variables in allometric models to predict the stem volume. A model with tree height and crown diameter had the best performance with respect to the prediction accuracy determined by a leave-one-out cross-validation: Root Mean Square Error (RMSE = 24.02% and Bias = 1.36%.

  14. EGRONOMIC FINGERPRINT SCANNER DESIGN FOR PEOPLE WITH MOTOR NEURON DISEASES

    Directory of Open Access Journals (Sweden)

    Abdulkareem Al-Alwani

    2013-01-01

    Full Text Available Fingerprint devices have evolved with time for authentication and identification purposes. It is used in generic security and social applications where identification and logging is required when entering that premises. In some circumstances the lag time increases due to increase in human entrees such as at immigration points, airports, random security checkups, attendance loggers. The increase in overall time due to individual human delay factors present a major hindrance in smooth security as well as organizational operations. The delay could occur due to non-technical factor such as not placing the fingers firmly in the surface of the device. This is a major cause of concern for senior citizens and people with motor neuron diseases such as Parkinson’s, Huntington’s and Alzheimer’s disease. Therefore, a design is proposed in this research which can help the scanner to acquire fast and precise fingerprint scan of senior citizens and people with motor neuron diseases. This design uses ergonomically designed cover head for the scanner whose working is based on the Poka Yoke principle which assists firm finger placement on the scanner. In this research, 250 fingerprint scans were taken for statistical analysis using a normal fingerprint scanner and our proposed model scanner. Statistical comparison between the two results shows that our proposed model performs much better in terms of time consumption and accuracy.

  15. Development of Stretched wire measurement bench at IDDL, DAVV Indore

    Science.gov (United States)

    Gehlot, Mona; Mishra, G.

    2016-10-01

    A stretched wire magnetic measurement bench is under development at IDDL, DAVV, Indore. In this method a multistrend wire consisting of N turns is stretched inside the undulator to measure the field integrals of the undulators. The wire moved with constant velocity of translation measures the first integral of the undulator field. The cross motion of the wire at the undulator ends measures the second field integral. The measurement accuracy depends on the wire conditions and material properties. In this paper we follow an analytical approach to find the voltage fluctuations due to wire vibrations during the field measurement. It is shown that the voltage fluctuations depend on undulator gap, magnitude of the impulse on the wire. The mass density and the length of the wire also cause sizeable voltage fluctuations. The analytical derived expression is analysed to optimize system parameters for minimum errors during the measurement.

  16. Aircraft Scanners = NASA Digital Aerial Scanners (TMS, TIMS, NS001): Pre 1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners including NS-001 Mutispectral scanner, Daedalus thematic mapper...

  17. EFFECTS OF WIRE LAG IN WIRE ELECTRICAL DISCHARGE MACHINING (WEDM

    Directory of Open Access Journals (Sweden)

    S. K. SINHA

    2010-11-01

    Full Text Available WEDM is very useful wherever complex geometry with tight tolerances needs to be generated on hard materials. In view of modern and sophisticated technology readily available these days, the expectation of accuracy in WEDM is ever-increasing, and therefore, techniques for the improvement in WEDM must be developed. The main cause of inaccuracy is wire-lag, the cause and effect of which is described in the present work, along with a technique to obviate the problem in straight cutting. In a subsequent paper, a software approach (since the problem gets too complicated for improvement of accuracy in contour cutting is described.

  18. A case study in scanner optimisation.

    Science.gov (United States)

    Dudley, N J; Gibson, N M

    2014-02-01

    Ultrasound scanner preset programmes are factory set or tailored to user requirements. Scanners may, therefore, have different settings for the same application, even on similar equipment in a single department. The aims of this study were: (1) to attempt to match the performance of two scanners, where one was preferred and (2) to assess differences between six scanners used for breast ultrasound within our organisation. The Nottingham Ultrasound Quality Assurance software was used to compare imaging performance. Images of a Gammex RMI 404GS test object were collected from six scanners, using default presets, factory presets and settings matched to a preferred scanner. Resolution, low contrast performance and high contrast performance were measured. The performance of two scanners was successfully matched, where one had been preferred. Default presets varied across the six scanners, three different presets being used. The most used preset differed in settings across the scanners, most notably in the use of different frequency modes. The factory preset was more consistent across the scanners, the main variation being in dynamic range (55-70 dB). Image comparisons showed significant differences, which were reduced or eliminated by adjustment of settings to match a reference scanner. It is possible to match scanner performance using the Nottingham Ultrasound Quality Assurance software as a verification tool. Ultrasound users should be aware that scanners may not behave in a similar fashion, even with apparently equivalent presets. It should be possible to harmonise presets by consensus amongst users.

  19. Compensation strategies for PET scanners with unconventional scanner geometry

    CERN Document Server

    Gundlich, B; Oehler, M

    2006-01-01

    The small animal PET scanner ClearPET®Neuro, developed at the Forschungszentrum Julich GmbH in cooperation with the Crystal Clear Collaboration (CERN), represents scanners with an unconventional geometry: due to axial and transaxial detector gaps ClearPet®Neuro delivers inhomogeneous sinograms with missing data. When filtered backprojection (FBP) or Fourier rebinning (FORE) are applied, strong geometrical artifacts appear in the images. In this contribution we present a method that takes the geometrical sensitivity into account and converts the measured sinograms into homogeneous and complete data. By this means artifactfree images are achieved using FBP or FORE. Besides an advantageous measurement setup that reduces inhomogeneities and data gaps in the sinograms, a modification of the measured sinograms is necessary. This modification includes two steps: a geometrical normalization and corrections for missing data. To normalize the measured sinograms, computed sinograms are used that describe the geometric...

  20. Integrating the Gradient of the Thin Wire Kernel

    Science.gov (United States)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  1. Accuracy of the Transverse Emittance Measurements of the CERN Large Hadron Collider

    CERN Document Server

    Roncarolo, Federico; Dehning, Bernd Dehning

    High energy accelerators and storage rings are designed to collide charged particle beams and study their collision products. The production rate of the collision products has to be maximized in order to reduce the statistical uncertainty of the produced events. Monitoring the transverse distribution of the accelerated species allows to measure and optimize the beam transverse emittance, which directly affects the secondary particles production rate. The beam transverse emittance is measured by a class of diagnostics, the transverse profile monitors, designed to observe the particles transverse distributions. This thesis work aims at determining the accuracy of two classes of profile monitors presently installed in the CERN accelerators and foreseen for the Large Hadron Collider (LHC): wire scanners and residual gas monitors. The explanation of the linear dynamics that characterize the particles transverse motion in an accelerator is followed by the description of the principles of operation of the studied mo...

  2. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  3. Scanner color management model based on improved back-propagation neural network

    Institute of Scientific and Technical Information of China (English)

    Xinwu Li

    2008-01-01

    Scanner color management is one of the key techniques for color reproduction in information optics.A new scanner color management model is presented based on analyzing rendering principle of scanning objects.In this model,a standard color target is taken as experimental sample.Color blocks in color shade area are used to substitute complete color space to solve the difficulties in selecting experimental color blocks.Immune genetic algorithm is used to correct back-propagation neural network(BPNN)to speed up the convergence of the model.Experimental results show that the model can improve the accuracy of scanner color management.

  4. 3D handheld laser scanner based approach for automatic identification and localization of EEG sensors.

    Science.gov (United States)

    Koessler, Laurent; Cecchin, Thierry; Ternisien, Eric; Maillard, Louis

    2010-01-01

    This paper describes and assesses for the first time the use of a handheld 3D laser scanner for scalp EEG sensor localization and co-registration with magnetic resonance images. Study on five subjects showed that the scanner had an equivalent accuracy, a better repeatability, and was faster than the reference electromagnetic digitizer. According to electrical source imaging, somatosensory evoked potentials experiments validated its ability to give precise sensor localization. With our automatic labeling method, the data provided by the scanner could be directly introduced in the source localization studies.

  5. Laser identification system based on acousto-optical barcode scanner principles

    Science.gov (United States)

    Khansuvarov, Ruslan A.; Korol, Georgy I.; Preslenev, Leonid N.; Bestugin, Aleksandr R.; Paraskun, Arthur S.

    2016-09-01

    The main purpose of the bar code in the modern world is the unique identification of the product, service, or any of their features, so personal and stationary barcode scanners so widely used. One of the important parameters of bar code scanners is their reliability, accuracy of the barcode recognition, response time and performance. Nowadays, the most popular personal barcode scanners contain a mechanical part, which extremely impairs the reliability indices. Group of SUAI engineers has proposed bar code scanner based on laser beam acoustic deflection effect in crystals [RU patent No 156009 issued 4/16/2015] Through the use of an acousto-optic deflector element in barcode scanner described by a group of engineers SUAI, it can be implemented in the manual form factor, and the stationary form factor of a barcode scanner. Being a wave electronic device, an acousto-optic element in the composition of the acousto-optic barcode scanner allows you to clearly establish a mathematical link between the encoded function of the bar code with the accepted input photodetector intensities function that allows you to speak about the great probability of a bar code clear definition. This paper provides a description of the issued patent, the description of the principles of operation based on the mathematical analysis, a description of the layout of the implemented scanner.

  6. Wire harness twisting aid

    Science.gov (United States)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  7. A New Proton CT Scanner

    CERN Document Server

    Coutrakon, G; Boi, S; Dyshkant, A; Erdelyi, B; Hedin, D; Johnson, E; Krider, J; Rykalin, V; Uzunyan, S A; Zutshi, V; Fordt, R; Sellberg, G; Rauch, J E; Roman, M; Rubinov, P; Wilson, P; Naimuddin, M

    2014-01-01

    The design, construction, and preliminary testing of a second generation proton CT scanner is presented. All current treatment planning systems at proton therapy centers use X-ray CT as the primary imaging modality for treatment planning to calculate doses to tumor and healthy tissues. One of the limitations of X-ray CT is in the conversion of X-ray attenuation coefficients to relative (proton) stopping powers, or RSP. This results in more proton range uncertainty, larger target volumes and therefore, more dose to healthy tissues. To help improve this, we present a novel scanner capable of high dose rates, up to 2~MHz, and large area coverage, 20~x~24~cm$^2$, for imaging an adult head phantom and reconstructing more accurate RSP values.

  8. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  9. Free-space wavelength-multiplexed optical scanner demonstration.

    Science.gov (United States)

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  10. Microfabrication of fiber optic scanners

    Science.gov (United States)

    Fauver, Mark; Crossman-Bosworth, Janet L.; Seibel, Eric J.

    2002-06-01

    A cantilevered optical fiber is micromachined to function as a miniature resonant opto-mechanical scanner. By driving the base of the cantilevered fiber at a resonance frequency using a piezoelectric actuator, the free end of the cantilever beam becomes a scanned light source. The fiber scanners are designed to achieve wide field-of-view (FOV) and high scan frequency. We employ a non-linearly tapered profile fiber to achieve scan amplitudes of 1 mm at scan frequencies above 20 KHz. Scan angles of over 120 degree(s) (full angle) have been achieved. Higher order modes are also employed for scanning applications that require compactness while maintaining large angular FOV. Etching techniques are used to create the non-linearly tapered sections in single mode optical fiber. Additionally, micro-lenses are fabricated on the tips of the etched fibers, with lens diameters as small as 15 microns. Such lenses are capable of reducing the divergence angle of the emitted light to 5 degree(s) (full angle), with greater reduction expected by employing novel lens shaping techniques. Microfabricated optical fiber scanners have display applications ranging from micro-optical displays to larger panoramic displays. Applications for micro-image acquisition include small barcode readers to medical endoscopes.

  11. Reliability of a 3D surface laser scanner for orthodontic applications.

    Science.gov (United States)

    Kusnoto, Budi; Evans, Carla A

    2002-10-01

    A device for recreating three-dimensional (3D) objects on a computer is the surface laser scanner. By triangulating distances between the reflecting laser beam and the scanned surface, the surface laser scanner can detect not only an object's length and width but also its depth. The scanner's ease of use has opened various possibilities in laboratory research and clinical investigation. We assessed the reliability of generating 3D object reconstructions using the Minolta Vivid700 3D surface laser scanner (Minolta USA, Ramsey, NJ). Accuracy and reproducibility were tested on a geometrical calibrated cylinder, a dental study model, and a plaster facial model. Tests were conducted at varying distances between the object and the scanner. It was found that (1) in the calibrated cylinder tests, spatial distance measurement was accurate to 0.5 mm (+/- 0.1 mm) in the vertical dimension and 0.3 mm (+/- 0.3 mm) in the horizontal dimension; (2) in the study model test, molar width was accurate to 0.2 mm (+/- 0.1 mm, P >.05), and palatal vault depth could be measured to 0.7 mm (+/- 0.2 mm, P > 0.05); and (3) for the facial model, an accuracy of 1.9 +/- 0.8 mm was obtained. The findings suggest that the surface laser scanner has great research potential because of its accuracy and ease of use. Treatment changes, growth, surgical simulations, and many other orthodontic applications can be approached 3-dimensionally with this device.

  12. Angular response of hot wire probes

    Science.gov (United States)

    di Mare, L.; Jelly, T. O.; Day, I. J.

    2017-03-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined.

  13. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  14. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. Advanced optical 3D scanners using DMD technology

    Science.gov (United States)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  16. Optimization of PET scanner geometry

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Lars-Eric; Karp, J.S. [Univ. of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2000-12-01

    Modern positron emission tomographs (PET), when used for 3D imaging, have a wide open gantry without intra plane septa and only little shielding. In order to reduce the scatter contamination from activity inside and outside the field-of-view (FOV), and to block radiation originating from activity outside-the-FOV, we have investigated the implementation of septa and additional patient shielding on our existing whole body PET scanner. A series of Monte Carlo simulations, based on EGS4, were performed to predict the potential benefits. Our simulations include point and line sources at various radial and axial positions in the FOV of the scanner, and different sized uniform cylinders (up to 100 cm long and 50 cm in diameter). The scanner itself is based on 6 continuous NaI(Tl) crystals, an axial FOV of 25.6 cm, a ring diameter of 90 cm, and a transaxial FOV of 56 cm. The results show that septa can reduce the relative scatter fraction and effectively block radiation from outside-the-FOV, but they also reduce the sensitivity for true events, leading to a decrease of the trues-to-singles ratio that is not desirable. The use of septa is only advantageous for large objects, if the loss of true events is compensated for by increasing the injected activity. Patient shields that are mounted outside-the-FOV reduce the contamination from scattered and single events without interfering with true events. They are more effective for objects with a small diameter and less effective for objects with a large diameter. (author)

  17. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Science.gov (United States)

    2010-07-01

    ... wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare..., and bare signal wires shall be adequately guarded: (a) At all points where men are required to work or...

  18. Open magnetic resonance imaging (MRI) scanners.

    Science.gov (United States)

    Hailey, D

    2006-11-01

    (1) In most MRI scanners, the patient examination table fits inside a long cylindrical tube. Large patients cannot be accommodated, and some persons experience claustrophobic reactions. Open MRI systems, in which the patient is placed between two plates, overcome these disadvantages. (2) Open MRI scanners are widely used in health care. High-field closed MRI systems are preferred for many examinations. (3) Early versions of open MRI scanners had low magnetic field strength, gave poorer image quality than most closed systems, and required longer examination times. Newer open scanners include machines with higher magnetic field strengths and improved image quality. (4) Closed high magnetic field scanners with short magnets and wide bore tubes offer improved comfort to patients, and may be an alternative to open scanners. (5) There is interest in using open systems for intra-operative and image-guided interventions.

  19. Comparison of working efficiency of terrestrial laser scanner in day and night conditions

    Science.gov (United States)

    Arslan, A. E.; Kalkan, K.

    2013-10-01

    Terrestrial Laser Scanning is a popular and widely used technique to scan existing objects, document historical sites and items, and remodel them if and when needed. Their ability to collect thousands of point data per second makes them an invaluable tool in many areas from engineering to historical reconstruction. There are many scanners in the market with different technical specifications. One main technical specification of laser scanners is range and illumination. In this study, it is tested to be determined the optimal working times of a laser scanner and the scanners consistency with its specifications sheet. In order to conduct this work, series of GNSS measurements in Istanbul Technical University have been carried out, connected to the national reference network, to determine precise positions of target points and the scanner, which makes possible to define a precise distance between the scanner and targets. Those ground surveys has been used for calibration and registration purposes. Two different scan campaigns conducted at 12 am and 11 pm to compare working efficiency of laser scanner in different illumination conditions and targets are measured with a handheld spectro-radiometer in order to determine their reflective characteristics. The obtained results are compared and their accuracies have been analysed.

  20. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape.

    Science.gov (United States)

    Beaumont, Caroline A A; Knoops, Paul G M; Borghi, Alessandro; Jeelani, N U Owase; Koudstaal, Maarten J; Schievano, Silvia; Dunaway, David J; Rodriguez-Florez, Naiara

    2017-06-01

    Three-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed tomography. The purpose of this study was to compare standard anthropometric cranial measurements with measurements taken from images acquired with 3D surface scanners. Two 3D scanners of different cost were used to acquire head shape data from thirteen adult volunteers: M4D scan and Structure Sensor. Head circumference and cephalic index were measured directly on the patients as well as on 3D scans acquired with the two scanners. To compare head volume measurements with a gold standard, magnetic resonance imaging scans were used. Repeatability and accuracy of both devices were evaluated. Intra-rater repeatability for both scanners was excellent (intraclass correlation coefficients > 0.99, p < 0.001). Direct and digital measures of head circumference, cephalic index and head volume were strongly correlated (0.85 < r < 0.91, p < 0.001). Compared to direct measurements, accuracy was highest for M4D scan. Both 3D scanners provide reproducible data of head circumference, cephalic index and head volume and show a strong correlation with traditional measurements. However, care must be taken when using absolute values. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. REMEDY OF WIRE LAG IN WIRE ELECTRICAL DISCHARGE MACHINING (WEDM

    Directory of Open Access Journals (Sweden)

    S. K. SINHA

    2010-12-01

    Full Text Available WEDM is extensively used these days for generating complex geometries with tight tolerances on difficult-tomachine materials. Therefore, demand for improvement in precision has been ever increasing. The main source of inaccuracy is wire-lag, the cause and effect of which is well-known. Research has been going on to overcome this drawback. So far, the techniques suggested for improvement in accuracy are, in general, based on monitoring the machining process at hardware-level, which is not only tedious but involves extra expenditure also. In the present paper, a software approach for improvement in accuracy is described, which does not require any additional investment on the machine, and still gives very good results.

  2. A modified rabbit model of stroke: evaluation using clinical MRI scanner.

    Science.gov (United States)

    Yang, Ji-Ping; Liu, Huai-Jun; Liu, Rui-Chun

    2009-12-01

    Occluding the middle cerebral artery of small animals with an intraluminal filament to build a stroke model has gained increasing acceptance. In light of the growing demand for magnetic resonance imaging (MRI) studies using the clinical MRI scanner, large animal models can be superior to small animal models. In this work, we developed a modified rabbit model of stroke, which was assessed using clinical MRI scanner and compared with a most commonly silicone-coated filament model. We presented a focal cerebral ischemia in rabbits. The key feature of this modified method is the use of a guide wire as a 'nylon suture'. At 3 days after ischemia, the percentage of brain infarct volume, neurobehavioral score, intracranial hemorrhagic incidence and dynamic changes of T(2) and apparent diffusion coefficient values were assessed respectively and compared between the focal cerebral models. Wire-induced models had more severe brain infarct size with less dispersion (32.7 +/- 6.5%, coefficient of variation=0.20) than that with filament models (25.4 +/- 8.9%, coefficient of variation=0.31; pwire, 20/20; filament, 17/20) and less intracranial hemorrhage (wire, 0/20; filament, 3/20) in wire-induced models than in filament-induced rabbits (pwire-induced method can provide a useful tool for the earlier research of ischemia.

  3. Modeling of a piezoelectric micro-scanner

    CERN Document Server

    Chaehoi, A; Cornez, D; Kirk, K

    2008-01-01

    Micro-scanners have been widely used in many optical applications. The micro-scanner presented in this paper uses multimorph-type bending actuators to tilt a square plate mirror. This paper presents a complete analytical model of the piezoelectric micro-scanner. This theoretical model based on strength of material equations calculates the force generated by the multimorphs on the mirror, the profile of the structure and the angular deflection of the mirror. The proposed model, used to optimize the design of the piezoelectric silicon micro-scanner, is intended for further HDL integration, allowing in this way system level simulation and optimization.

  4. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  5. Standardizing CT lung density measure across scanner manufacturers.

    Science.gov (United States)

    Chen-Mayer, Huaiyu Heather; Fuld, Matthew K; Hoppel, Bernice; Judy, Philip F; Sieren, Jered P; Guo, Junfeng; Lynch, David A; Possolo, Antonio; Fain, Sean B

    2017-03-01

    Computed Tomography (CT) imaging of the lung, reported in Hounsfield Units (HU), can be parameterized as a quantitative image biomarker for the diagnosis and monitoring of lung density changes due to emphysema, a type of chronic obstructive pulmonary disease (COPD). CT lung density metrics are global measurements based on lung CT number histograms, and are typically a quantity specifying either the percentage of voxels with CT numbers below a threshold, or a single CT number below which a fixed relative lung volume, nth percentile, falls. To reduce variability in the density metrics specified by CT attenuation, the Quantitative Imaging Biomarkers Alliance (QIBA) Lung Density Committee has organized efforts to conduct phantom studies in a variety of scanner models to establish a baseline for assessing the variations in patient studies that can be attributed to scanner calibration and measurement uncertainty. Data were obtained from a phantom study on CT scanners from four manufacturers with several protocols at various tube potential voltage (kVp) and exposure settings. Free from biological variation, these phantom studies provide an assessment of the accuracy and precision of the density metrics across platforms solely due to machine calibration and uncertainty of the reference materials. The phantom used in this study has three foam density references in the lung density region, which, after calibration against a suite of Standard Reference Materials (SRM) foams with certified physical density, establishes a HU-electron density relationship for each machine-protocol. We devised a 5-step calibration procedure combined with a simplified physical model that enabled the standardization of the CT numbers reported across a total of 22 scanner-protocol settings to a single energy (chosen at 80 keV). A standard deviation was calculated for overall CT numbers for each density, as well as by scanner and other variables, as a measure of the variability, before and after the

  6. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. Photovoltaic Wire Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  8. On-Wire Lithography

    National Research Council Canada - National Science Library

    Lidong Qin; Sungho Park; Ling Huang; Chad A. Mirkin

    2005-01-01

    .... This procedure, termed on-wire lithography, combines advances in template-directed synthesis of nanowires with electrochemical deposition and wet-chemical etching and allows routine fabrication...

  9. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  10. Research regarding wires elastic deformations influence on joints positioning of a wire-driven robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-08-01

    In this paper, we present the influence of driving wires deformation on positioning precision of joints from an elephant's trunk robotic arm. Robotic arms driven by wires have the joint accuracy largely depending on wires rigidity. The joint moment of resistance causes elastic deformation of wires and it is determined by: manipulated object load, weight loads previous to the analyzed joint and inherent resistance moment of joint. Static load analysis emphasizes the particular wires elastic deformation of each driven joint from an elephant's trunk robotic arm with five degrees of freedom. We consider the case of a constant manipulated load. Errors from each driving system of joints are not part of the closed loop system. Thus, precision positioning depends on wires elastic deformation which is about microns and causes angle deviation of joints about tens of minutes of sexagesimal degrees. The closer the joints to base arm the smaller positioning precision of joint. The obtained results are necessary for further compensation made by electronic corrections in the programming algorithm of the elephant's trunk robotic arm to improve accuracy.

  11. A new design of wire locators for drift tubes

    CERN Document Server

    Ilgner, C

    2004-01-01

    Every position-sensitive wire detector needs to solve the problem of wire positioning with a defined accuracy all over its sensitive volume. In particular, thin-walled drift tubes ("straws"), which are currently being attached to large detector units of several tens of square meters of surface, need to be equipped with wire locators along their signal wires. A wire locator has been developed together with an insertion device, especially for medium-sized drift tube systems, which significantly reduces the production time and avoids the danger of applying epoxy glue to the signal wire. The wire locator is being inserted in one single time-saving production step together with the signal wire itself. The proposed design is being compared to the rigid wire locators in use in the COMPASS straw tracking system at CERN. The investigation comprises both wire- centering capability and influence on the efficiency of adjacent detector regions, demonstrating the competitive performance of the proposed new system. Its suff...

  12. CODEX sounding rocket wire grid collimator design

    Science.gov (United States)

    Shipley, Ann; Zeiger, Ben; Rogers, Thomas

    2011-05-01

    CODEX is a sounding rocket payload designed to operate in the soft x-ray (0.1-1.0 kV) regime. The instrument has a 3.25 degree square field of view that uses a one meter long wire grid collimator to create a beam that converges to a line in the focal plane. Wire grid collimator performance is directly correlated to the geometric accuracy of actual grid features and their relative locations. Utilizing a strategic combination of manufacturing and assembly techniques, this design is engineered for precision within the confines of a typical rocket budget. Expected resilience of the collimator under flight conditions is predicted by mechanical analysis.

  13. Laser wire emittance measurement line AT CLIC

    CERN Document Server

    Garcia, H; Blair, G A; Aumeyr, T; Schulte, D; Stulle, F

    2011-01-01

    A precise measurement of the transverse beam size and beam emittances upstream of the final focus is essential for ensuring the full luminosity at future linear colliders. A scheme for the emittance measurements at the RTML line of the CLIC using laser-wire beam profile monitors is described. A lattice of the measurement line is discussed and results of simulations of statistical errors and of their impact on the accuracy of the emittance reconstruction are given. Laser wire systems suitable for CLIC and their main characteristics are discussed.

  14. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  15. Laser Scanner For Automatic Storage

    Science.gov (United States)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  16. Non-Destructive Testing Scanner

    Science.gov (United States)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  17. Combined PET/MRI scanner

    Science.gov (United States)

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  18. 3D whole body scanners revisited

    NARCIS (Netherlands)

    Daanen, H.A.M.; Haar, F.B. ter

    2013-01-01

    An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111-120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and

  19. Long-Range WindScanner System

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Courtney, Michael

    2016-01-01

    The technical aspects of a multi-Doppler LiDAR instrument, the long-range WindScanner system, are presented accompanied by an overview of the results from several field campaigns. The long-range WindScanner system consists of three spatially-separated, scanning coherent Doppler LiDARs and a remot...

  20. On Ground Surface Extraction Using Full-Waveform Airborne Laser Scanner for Cim

    Science.gov (United States)

    Nakano, K.; Chikatsu, H.

    2015-05-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM) were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  1. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    Directory of Open Access Journals (Sweden)

    K. Nakano

    2015-05-01

    Full Text Available Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  2. Evaluating Commercial Scanners for Astronomical Image Digitization

    Science.gov (United States)

    Simcoe, R. J.

    2009-08-01

    Many organizations have been interested in understanding if commercially available scanners are adequate for scientifically useful digitization. These scanners range in price from a few hundred to a few tens of thousands of dollars (USD), often with little apparent difference in performance specifications. This paper describes why the underlying technology used in flatbed scanners tends to effectively limit resolutions to the 600-1200 dots per inch (dpi) range and how the overall system Modulation Transfer Function (MTF) can be used to evaluate the quality of the digitized data for the small feature sizes found in astronomical images. Two scanners, the Epson V750 flatbed scanner and the Nikon Cool Scan 9000ED film strip scanner, are evaluated through their Modulation Transfer Functions (MTF). The MTF of the Harvard DASCH scanner is also shown for comparison. The particular goal of this evaluation was to understand if the scanners could be used for digitizing spectral plates at the University of Toronto. The plates of primary interest were about 15 mm (5/8 inch) wide by 180 mm (7~inches) long and ˜50 mm x 80 mm (2 x 3 inches). The results of the MTF work show that the Epson scanner, despite claims of high resolution, is of limited value for scientific imaging of feature sizes below about 50 μm and therefore not a good candidate for digitizing the spectral plates and problematic for scanning direct plates. The Nikon scanner is better and, except for some frustrating limitations in its software, its performance seems to hold promise as a digitizer for spectral plates in the University of Toronto collection.

  3. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners.

    Science.gov (United States)

    Kovacs, Laszlo; Yassouridis, Alexander; Zimmermann, Alexander; Brockmann, Gernot; Wöhnl, Antonia; Blaschke, Matthias; Eder, Maximilian; Schwenzer-Zimmerer, Katja; Rosenberg, Robert; Papadopulos, Nikolaos A; Biemer, Edgar

    2006-03-01

    The anatomic conditions of the female breast require imaging the breast region 3-dimensionally in a normal standing position for quality assurance and for surgery planning or surgery simulation. The goal of this work was to optimize the imaging technology for the mammary region with a 3-dimensional (3D) laser scanner, to evaluate the precision and accuracy of the method, and to allow optimum data reproducibility. Avoiding the influence of biotic factors, such as mobility, we tested the most favorable imaging technology on dummy models for scanner-related factors such as the scanner position in comparison with the torso and the number of scanners and single shots. The influence of different factors of the breast region, such as different breast shapes or premarking of anatomic landmarks, was also first investigated on dummies. The findings from the dummy models were then compared with investigations on test persons, and the accuracy of measurements on the virtual models was compared with a coincidence analysis of the manually measured values. The best precision and accuracy of breast region measurements were achieved when landmarks were marked before taking the shots and when shots at 30 degrees left and 30 degrees right, relative to the sagittal line, were taken with 2 connected scanners mounted with a +10-degree upward angle. However, the precision of the measurements on test persons was significantly lower than those measured on dummies. Our findings show that the correct settings for 3D imaging of the breast region with a laser scanner can achieve an acceptable degree of accuracy and reproducibility.

  4. Design and control of a Nitinol wire actuated rotary servo

    Science.gov (United States)

    Song, G.

    2007-10-01

    This paper presents the design and control of a rotary servo actuated by a shape memory alloy (SMA) wire. A new rotary servo device using Nitinol type of SMA wire is designed and fabricated in this study. This new rotary actuator utilizes a Nitinol wire wound on a threaded non-conductive rotor. One end of the Nitinol wire is fixed to the rotor and the other end is fixed to the supporting base plate. The rotor is connected to a pre-tensioned torsional spring such that two-way rotation can be achieved. Upon heating of the Nitinol wire using electric current, the wire contracts, causing the rotor to rotate, since the other end of the SMA wire is rigidly connected to the base plate. This rotor design is compact and offers a space-saving solution for the use of SMA wire actuators. To actively control the servo, a sliding-mode based robust control approach is used. The sliding-mode based robust control consists of three components: a standard proportional plus derivative (PD) control term, a feedforward term used as a bias current, and a robust term to increase system stability and concurrently control accuracy. Experimental results confirm the functionality of the Nitinol wire actuated rotary servo and show this device can be precisely controlled using the sliding-mode based robust control approach.

  5. Development of a mixed pixel filter for improved dimension estimation using AMCW laser scanner

    Science.gov (United States)

    Wang, Qian; Sohn, Hoon; Cheng, Jack C. P.

    2016-09-01

    Accurate dimension estimation is desired in many fields, but the traditional dimension estimation methods are time-consuming and labor-intensive. In the recent decades, 3D laser scanners have become popular for dimension estimation due to their high measurement speed and accuracy. Nonetheless, scan data obtained by amplitude-modulated continuous-wave (AMCW) laser scanners suffer from erroneous data called mixed pixels, which can influence the accuracy of dimension estimation. This study develops a mixed pixel filter for improved dimension estimation using AMCW laser scanners. The distance measurement of mixed pixels is firstly formulated based on the working principle of laser scanners. Then, a mixed pixel filter that can minimize the classification errors between valid points and mixed pixels is developed. Validation experiments were conducted to verify the formulation of the distance measurement of mixed pixels and to examine the performance of the proposed mixed pixel filter. Experimental results show that, for a specimen with dimensions of 840 mm × 300 mm, the overall errors of the dimensions estimated after applying the proposed filter are 1.9 mm and 1.0 mm for two different scanning resolutions, respectively. These errors are much smaller than the errors (4.8 mm and 3.5 mm) obtained by the scanner's built-in filter.

  6. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging.

    Science.gov (United States)

    Knoops, Paul G M; Beaumont, Caroline A A; Borghi, Alessandro; Rodriguez-Florez, Naiara; Breakey, Richard W F; Rodgers, William; Angullia, Freida; Jeelani, N U Owase; Schievano, Silvia; Dunaway, David J

    2017-04-01

    Two-dimensional photographs are the standard for assessing craniofacial surgery clinical outcomes despite lacking three-dimensional (3D) depth and shape. Therefore, 3D scanners have been gaining popularity in various fields of plastic and reconstructive surgery, including craniomaxillofacial surgery. Head shapes of eight adult volunteers were acquired using four 3D scanners: 1.5T Avanto MRI, Siemens; 3dMDface System, 3dMD Inc.; M4D Scan, Rodin4D; and Structure Sensor, Occipital Inc. Accuracy was evaluated as percentage of data within a range of 2 mm from the 3DMDface System reconstruction, by surface-to-surface root mean square (RMS) distances, and with facial distance maps. Precision was determined by RMS. Relative to the 3dMDface System, accuracy was the highest for M4D Scan (90% within 2 mm; RMS of 0.71 mm ± 0.28 mm), followed by Avanto MRI (86%; 1.11 mm ± 0.33 mm) and Structure Sensor (80%; 1.33 mm ± 0.46). M4D Scan and Structure Sensor precision were 0.50 ± 0.04 mm and 0.51 ± 0.03 mm, respectively. Clinical and technical requirements govern scanner choice; however, 3dMDface System and M4D Scan provide high-quality results. It is foreseeable that compact, handheld systems will become more popular in the near future.

  7. Immediate Feedback on Accuracy and Performance: The Effects of Wireless Technology on Food Safety Tracking at a Distribution Center

    Science.gov (United States)

    Goomas, David T.

    2012-01-01

    The effects of wireless ring scanners, which provided immediate auditory and visual feedback, were evaluated to increase the performance and accuracy of order selectors at a meat distribution center. The scanners not only increased performance and accuracy compared to paper pick sheets, but were also instrumental in immediate and accurate data…

  8. Cavitation during wire brushing

    Science.gov (United States)

    Li, Bo; Zou, Jun; Ji, Chen

    2016-11-01

    In our daily life, brush is often used to scrub the surface of objects, for example, teeth, pots, shoes, pool, etc. And cleaning rust and stripping paint are accomplished using wire brush. Wire brushes also can be used to clean the teeth for large animals, such as horses, crocodiles. By observing brushing process in water, we capture the cavitation phenomenon on the track of moving brush wire. It shows that the cavitation also can affect the surface. In order to take clear and entire pictures of cavity, a simplified model of one stainless steel wire brushing a boss is adopted in our experiment. A transparent organic tank filled with deionized water is used as a view box. And a high speed video camera is used to record the sequences. In experiment, ambient pressure is atmospheric pressure and deionized water temperature is kept at home temperature. An obvious beautiful flabellate cavity zone appears behind the moving steel wire. The fluctuation of pressure near cavity is recorded by a hydrophone. More movies and pictures are used to show the behaviors of cavitation bubble following a restoring wire. Beautiful tracking cavitation bubble cluster is captured and recorded to show.

  9. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  10. A Cross-Platform Smartphone Brain Scanner

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Stopczynski, Arkadiusz; Stahlhut, Carsten

    We describe a smartphone brain scanner with a low-costwireless 14-channel Emotiv EEG neuroheadset interfacingwith multiple mobile devices. This personal informaticssystem enables minimally invasive and continuouscapturing of brain imaging data in natural settings. Thesystem applies an inverse...

  11. How flatbed scanners upset accurate film dosimetry.

    Science.gov (United States)

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  12. Uncertainty Propagation for Terrestrial Mobile Laser Scanner

    Science.gov (United States)

    Mezian, c.; Vallet, Bruno; Soheilian, Bahman; Paparoditis, Nicolas

    2016-06-01

    Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

  13. Online correction of scanning probe microscopes with pixel accuracy

    DEFF Research Database (Denmark)

    Dirscherl, Kai

    2000-01-01

    In this project ''Online Control of Scanning Probe Microscopes with Pixel Accuracy'', the development of an algorithm is described that enhances the measurement uncertainty of software controlled SPM by one order of magnitude from 2% to 0.2 %. The SPM is globally used as a metrological instruments...... period of 3 .0 µm and a 2-dimensional grating with a reference pitch distance of 200.0 nm are applied as length standards. The non-linearity of the scanner is then traceable to the distances on the samples. The stack scanner is equipped with capacitive sensors that measure the position of the scanner...

  14. Application of intra-oral dental scanners in the digital workflow of implantology.

    Directory of Open Access Journals (Sweden)

    Wicher J van der Meer

    Full Text Available Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared.A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intra-oral scanners: the CEREC (Sirona, the iTero (Cadent and the Lava COS (3M. In software the digital files were imported and the distance between the centres of the cylinders and the angulation between the cylinders was assessed. These values were compared to the measurements made on a high accuracy 3D scan of the master model.The distance errors were the smallest and most consistent for the Lava COS. The distance errors for the Cerec were the largest and least consistent. All the angulation errors were small.The Lava COS in combination with a high accuracy scanning protocol resulted in the smallest and most consistent errors of all three scanners tested when considering mean distance errors in full arch impressions both in absolute values and in consistency for both measured distances. For the mean angulation errors, the Lava COS had the smallest errors between cylinders 1-2 and the largest errors between cylinders 1-3, although the absolute difference with the smallest mean value (iTero was very small (0,0529°. An expected increase in distance and/or angular errors over the length of the arch due to an accumulation of registration errors of the patched 3D surfaces could be observed in this study design, but the effects were statistically not significant.For making impressions of implant cases for digital workflows, the most accurate scanner with the scanning protocol that will ensure the most accurate digital impression should be used. In our study model that was the Lava COS with the high accuracy scanning protocol.

  15. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  16. MEMS temperature scanner: principles, advances, and applications

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  17. Effect of temperature on calibration quality of structured-light three-dimensional scanners.

    Science.gov (United States)

    Adamczyk, M; Kamiński, M; Sitnik, R; Bogdan, A; Karaszewski, M

    2014-08-10

    This paper presents the outcome of research into the effects of ambient temperature changes on structured-light three-dimensional (3D) scanners. The tests were conducted in a thermal chamber and consisted of a comparison of the 3D measurement of a special reference unit (made of a carbon composite) performed at different temperatures, with measurements performed at the calibration temperature. A contact measuring arm with temperature compensation was used as a reference. Based on the results of these experiments, we propose a method that allows us to extend the existing scanner calibration method by using a temperature-correction procedure that is based on linear and nonlinear mathematical models. An exemplary application of this procedure has shown that the range of temperatures in which scanner accuracy is within declared limits can be increased 11-fold.

  18. a Light-Weight Laser Scanner for Uav Applications

    Science.gov (United States)

    Tommaselli, A. M. G.; Torres, F. M.

    2016-06-01

    Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  19. A LIGHT-WEIGHT LASER SCANNER FOR UAV APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. G. Tommaselli

    2016-06-01

    Full Text Available Unmanned Aerial Vehicles (UAV have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  20. Distribution of wire deformation within strands of wire ropes

    Institute of Scientific and Technical Information of China (English)

    MA Jun; GE Shi-rong; ZHANG De-kun

    2008-01-01

    Using ANSYS software, we developed a modeling program for several kinds of wire ropes with metal cores and built a geometric model for the 6x19 IWS wire rope. Through proper grid partitioning, a finite element model for calculating the deformation of wire rope was obtained. Completely constraining one end of the wire rope and applying an axial force to the other end, we established the boundary conditions for solving the model. In addition, we numerically simulated the stress and deformation of the wire, obtaining the deformation distribution of each wire within the wire rope under different laying directions.At the end, a tensile test of the 6x19 IWS wire rope was carried out and the results of simulation and experiment compared.

  1. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  2. Wiring and lighting

    CERN Document Server

    Kitcher, Chris

    2013-01-01

    Wiring and Lighting provides a comprehensive guide to DIY wiring around the home. It sets out the regulations and legal requirements surrounding electrical installation work, giving clear guidelines that will enable the reader to understand what electrical work they are able to carry out, and what the testing and certification requirements are once the work is completed. Topics covered include: Different types of circuits; Types of cables and cable installation under floors and through joists; Isolating, earthing and bonding; Accessory boxes and fixings; Voltage bands; Detailed advice on safe

  3. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  4. Manually operated small envelope scanner system

    Energy Technology Data Exchange (ETDEWEB)

    Sword, Charles Keith

    2017-04-18

    A scanner system and method for acquisition of position-based ultrasonic inspection data are described. The scanner system includes an inspection probe and a first non-contact linear encoder having a first sensor and a first scale to track inspection probe position. The first sensor is positioned to maintain a continuous non-contact interface between the first sensor and the first scale and to maintain a continuous alignment of the first sensor with the inspection probe. The scanner system may be used to acquire two-dimensional inspection probe position data by including a second non-contact linear encoder having a second sensor and a second scale, the second sensor positioned to maintain a continuous non-contact interface between the second sensor and the second scale and to maintain a continuous alignment of the second sensor with the first sensor.

  5. A flexible and wearable terahertz scanner

    Science.gov (United States)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  6. Characterization of the Ferrara animal PET scanner

    CERN Document Server

    Di Domenico, G; Damiani, C; Del Guerra, A; Gilardi, M C; Motta, A; Zavattini, G

    2002-01-01

    A dedicated small animal PET scanner, YAPPET, was designed and built at Ferrara University. Each detector consists of a 20x20 matrix of 2x2x30 mm sup 3 YAP:Ce finger-like crystals glued together and directly coupled to a Hamamatsu position sensitive photomultiplier. The scanner is made from four detectors positioned on a rotating gantry at a distance of 7.5 cm from the center and the field of view (FOV) is 4 cm both in the transaxial direction and in the axial direction. The system operates in 3D acquisition mode. The performance parameters of YAPPET scanner such as spatial, energy and time resolution, as well as its sensitivity and counting rate have been determined. The average spatial resolution over the whole FOV is 1.8 mm at FWHM and 4.2 mm at FWTM. The sensitivity at the center is 640 cps/mu Ci.

  7. Deformation Measurement Using Terrestrial Laser Scanner for Cultural Heritage

    Science.gov (United States)

    Selbesoglu, M. O.; Bakirman, T.; Gokbayrak, O.

    2016-10-01

    Historical structures are one of the most essential element of cultural heritage. They reflect history, lifestyle and tradition of a country and society. However, they are damaged through the years due to human activities and natural hazards. Therefore, digital documentation of structures and monuments is critical for preservation, sustainability and protection of cultural heritage. Terrestrial laser scanner is a widespread used tool for obtaining 3D representation of real world. In this study, we aimed to measure deformation of deformed minaret of a historical mosque using terrestrial laser scanner. In order to represent the geometry of the deformed minaret with high accuracy, 31 horizontal sections were created from the transition segment to the spire of the minaret with 30 cm intervals. The changing curvatures of the minaret were analysed in three parts; cylindrical part, balcony part and upper part. The offsets from the vertical axes for the parts of the minaret were found as 10.14 cm, 13.97 cm and 16.51 cm, respectively.

  8. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    OpenAIRE

    Zhang Zewei; Wang Tianyue; Guo Li; Wang Tingting; Xu Lu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two...

  9. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    Scanned electron beam treatment is used to improve the physical properties of certain polymers, such as shrinkable plastic tubing and insulated wire and cable. Tubing or wires are passed at high speed under the beam scanner, and the material is irradiated to absorbed doses of several Mrad...... as uniformly as possible, usually by means of a multipass arrangement. In the present study, using irradiation by a scanned 0.4 MeV electron beam, measurements were made of high-resolution distributions of absorbed dose in polyethylene tubing and copper wire coated with polyethylene, nylon, or polyvinyl...... chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  10. LHC magnet quench test with beam loss generated by wire scan

    CERN Document Server

    Sapinski, M; Dahlerup-Petersen, K; Dehning, B; Emery, j; Ferrari, A; Guerrero, A; Holzer, E B; Koujili, M; Lechner, A; Nebot, E; Scheubel, M; Steckert, J; Verweij, A; Wenninger, J

    2011-01-01

    Beam losses with millisecond duration have been observed in the LHC in 2010 and 2011. They are thought to be provoked by dust particles falling into the beam. These losses could compromise the LHC availability if they provoke quenches of superconducting magnets. In order to investigate the quench limits for this loss mechanism, a quench test using a wire scanner has been performed, with the wire movement through the beam mimicking a loss with similar spatial and temporal distribution as in the case of dust particles. This paper will show the conclusions reached for millisecond-duration dust-provoked quench limits. It will include details on the maximum energy deposited in the coil as estimated using FLUKA code, showing a reasonable agreement with quench limit estimated from the heat transfer code QP3. In addition, information on the damage limit for carbon wires in proton beamswill be presented, following electronmicroscope analysis which revealed strong wire sublimation.

  11. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  12. Optical coordinate scanners applied for the inspection of large scale housings produced in foundry technology

    Directory of Open Access Journals (Sweden)

    M. Grzelka

    2010-01-01

    Full Text Available The paper presents possibilities of the dimensional and geometry measurement of the large scale casting details with a coordinate measuring technique. In particular, the analysis has been devoted to the measurement strategy in case of the measurement of large scale detail (larger than 1000 mm made in foundry technology, with the 3D optical scanner. The attention was paid on the possibility created by the advanced software attached to the scanner for measurement data processing. Preparation to the geometrical accuracy analysis of the measured objects consisted of the identification of particular geometrical features based on the large number of probing points, as well as the creation of the coordinate systems derived from the best-fitting algorithms which calculate the inscribed or circumscribed geometrical elements. Analysis of accuracy in every probing point has been performed through the comparison of their coordinates with nominal values set by 3D model. Application of the 3D optical coordinate scanner with advanced measurement software for the manufacturing accuracy inspection is very useful in case of large scale details produced with foundry technologies and allows to carry out full accuracy analysis of the examined detail.

  13. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  14. One-wire thermocouple

    Science.gov (United States)

    Goodrich, W. D.; Staimach, C. J.

    1977-01-01

    Nickel alloy/constantan device accurately measures surface temperature at precise locations. Device is moderate in cost and simplifies fabrication of highly-instrumented seamless-surface heat-transfer models. Device also applies to metal surfaces if constantan wire has insulative coat.

  15. 2D X-ray scanner and its uses in laboratory reservoir characterization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.; Doggett, K.

    1997-08-01

    X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.

  16. Modeling and Calibration of a Novel One-Mirror Galvanometric Laser Scanner.

    Science.gov (United States)

    Yu, Chengyi; Chen, Xiaobo; Xi, Juntong

    2017-01-15

    A laser stripe sensor has limited application when a point cloud of geometric samples on the surface of the object needs to be collected, so a galvanometric laser scanner is designed by using a one-mirror galvanometer element as its mechanical device to drive the laser stripe to sweep along the object. A novel mathematical model is derived for the proposed galvanometer laser scanner without any position assumptions and then a model-driven calibration procedure is proposed. Compared with available model-driven approaches, the influence of machining and assembly errors is considered in the proposed model. Meanwhile, a plane-constraint-based approach is proposed to extract a large number of calibration points effectively and accurately to calibrate the galvanometric laser scanner. Repeatability and accuracy of the galvanometric laser scanner are evaluated on the automobile production line to verify the efficiency and accuracy of the proposed calibration method. Experimental results show that the proposed calibration approach yields similar measurement performance compared with a look-up table calibration method.

  17. Modeling and Calibration of a Novel One-Mirror Galvanometric Laser Scanner

    Directory of Open Access Journals (Sweden)

    Chengyi Yu

    2017-01-01

    Full Text Available A laser stripe sensor has limited application when a point cloud of geometric samples on the surface of the object needs to be collected, so a galvanometric laser scanner is designed by using a one-mirror galvanometer element as its mechanical device to drive the laser stripe to sweep along the object. A novel mathematical model is derived for the proposed galvanometer laser scanner without any position assumptions and then a model-driven calibration procedure is proposed. Compared with available model-driven approaches, the influence of machining and assembly errors is considered in the proposed model. Meanwhile, a plane-constraint-based approach is proposed to extract a large number of calibration points effectively and accurately to calibrate the galvanometric laser scanner. Repeatability and accuracy of the galvanometric laser scanner are evaluated on the automobile production line to verify the efficiency and accuracy of the proposed calibration method. Experimental results show that the proposed calibration approach yields similar measurement performance compared with a look-up table calibration method.

  18. Analysis of uncertainty and repeatability of a low-cost 3D laser scanner.

    Science.gov (United States)

    Polo, María-Eugenia; Felicísimo, Angel M

    2012-01-01

    Portable 3D laser scanners are a valuable tool for compiling elaborate digital collections of archaeological objects and analysing the shapes and dimensions of pieces. Although low-cost desktop 3D laser scanners have powerful capacities, it is important to know their limitations. This paper performs an analysis of the uncertainty and repeatability of the NextEngine™ portable low-cost 3D laser scanner by scanning an object 20 times in two different resolution modes-Macro and Wide. Some dimensions of the object were measured using a digital calliper, and these results were used as the "true" or control data. In comparing the true and the scanned data, we verified that the mean uncertainty in the Macro Mode is approximately half that of the Wide Mode, at ± 0.81 mm and ± 1.66 mm, respectively. These experimental results are significantly higher than the accuracy specifications provided by the manufacturer. An analysis of repeatability shows that the successive replicates do not match in the same position. The results are better in Macro Mode than in Wide Mode; it is observed that the repeatability factor is slightly larger than the corresponding mode accuracy, with ± 0.84 vs. ± 0.81 mm in Macro Mode and ± 1.82 vs. ± 1.66 mm in Wide Mode. We suggest several improvements, such as adding an external reference scale or providing a calibrated object to allow for a self-calibration operation of the scanner.

  19. Description and evaluation of the high quality photogrammetric scanner UltraScan 5000

    Science.gov (United States)

    Gruber, Michael; Leberl, Franz

    Scanning of analogue images has become a key hardware technology specific to modern digital photogrammetry. Since specialised photogrammetric scanners have been introduced in the late 1980s, a gradual development and improvement of their performance regarding hardware, software and functionality, and productivity has been observed. Originally, geometric accuracy of scanners was the overriding specification for scanners. This is increasingly being augmented by a concern for good colour and radiometric performance. This article describes the UltraScan 5000, a modern photogrammetric scanner manufactured by Vexcel Imaging Austria, and its features, assesses its radiometric and geometric performance with various well-founded tests, and discusses its versatility and use in production. The UltraScan 5000 was introduced in November 1998 and since then, a surprisingly large number of systems has been installed worldwide. Their successful operation illustrates on a daily basis the validity of the technical solution and tests at user sites have confirmed a good to excellent performance regarding geometric accuracy and resolution, radiometric performance (noise, dynamic range) and colour rendition.

  20. Modeling and Calibration of a Novel One-Mirror Galvanometric Laser Scanner

    Science.gov (United States)

    Yu, Chengyi; Chen, Xiaobo; Xi, Juntong

    2017-01-01

    A laser stripe sensor has limited application when a point cloud of geometric samples on the surface of the object needs to be collected, so a galvanometric laser scanner is designed by using a one-mirror galvanometer element as its mechanical device to drive the laser stripe to sweep along the object. A novel mathematical model is derived for the proposed galvanometer laser scanner without any position assumptions and then a model-driven calibration procedure is proposed. Compared with available model-driven approaches, the influence of machining and assembly errors is considered in the proposed model. Meanwhile, a plane-constraint-based approach is proposed to extract a large number of calibration points effectively and accurately to calibrate the galvanometric laser scanner. Repeatability and accuracy of the galvanometric laser scanner are evaluated on the automobile production line to verify the efficiency and accuracy of the proposed calibration method. Experimental results show that the proposed calibration approach yields similar measurement performance compared with a look-up table calibration method. PMID:28098844

  1. Design, construction, characterization, and application of a hyperspectral microarray scanner.

    Science.gov (United States)

    Sinclair, Michael B; Timlin, Jerilyn A; Haaland, David M; Werner-Washburne, Margaret

    2004-04-01

    We describe the design, construction, and operation of a hyperspectral microarray scanner for functional genomic research. The hyperspectral instrument operates with spatial resolutions ranging from 3 to 30 microm and records the emission spectrum between 490 and 900 nm with a spectral resolution of 3 nm for each pixel of the microarray. This spectral information, when coupled with multivariate data analysis techniques, allows for identification and elimination of unwanted artifacts and greatly improves the accuracy of microarray experiments. Microarray results presented in this study clearly demonstrate the separation of fluorescent label emission from the spectrally overlapping emission due to the underlying glass substrate. We also demonstrate separation of the emission due to green fluorescent protein expressed by yeast cells from the spectrally overlapping autofluorescence of the yeast cells and the growth media.

  2. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    Science.gov (United States)

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  3. Dedicated PET scanners for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, Richard; Karp, Joel S. [University of Pennsylvania, Department of Radiology, 110 Donner, 3400 Spruce Street, Philadelphia, PA 19104 (United States)

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla. (author)

  4. Dedicated PET scanners for breast imaging.

    Science.gov (United States)

    Freifelder, R; Karp, J S

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  5. Dedicated PET scanners for breast imaging

    Science.gov (United States)

    Freifelder, Richard; Karp, Joel S.

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  6. Learning and Teaching with a Computer Scanner

    Science.gov (United States)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  7. Inter laboratory comparison of industrial CT scanners

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; Cantatore, Angela; De Chiffre, Leonardo

    2012-01-01

    In this report results from an intercomparison of industrial CT scanners are presented. Three audit items, similar to common industrial parts, were selected for circulation: a single polymer part with complex geometry (Item 1), a simple geometry part made of two polymers (Item 2) and a miniature...

  8. Rail profile control using laser triangulation scanners

    Science.gov (United States)

    Boronahin, Ð. ńlexandr M.; Larionov, Daniil Yu.; Podgornaya, Liudmila N.; Shalymov, Roman V.; Filatov, Yuri V.; Bokhman, Evgueny D.

    2016-11-01

    Rail track geometric parameters measurement requires knowledge of left and right rail head location in each section. First of all displacement in transverse plane of rail head point located at a distance of 14 mm below the running surface, must be controlled [1]. It is carried out by detecting of each rail profile using triangulation laser scanners. Optical image recognition is carried out successfully in the laboratory, approaches used for this purpose are widely known. However, laser scanners operation has several features on railways leading to necessity of traditional approaches adaptation for solving these particular problems. The most significant problem is images noisiness due to the solar flashes and the effect of "Moon path" on the smooth rail surface. Using of optical filters gives inadequate result, because scanner laser diodes radiation frequency varies with temperature changes that forbid the use of narrow-band filters. Consideration of these features requires additional constructive and algorithmic solutions, including involvement of information from other sensors of the system. The specific usage of optical scanners for rail profiles control is the subject of the paper.

  9. A PET scanner developed by CERN

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This image shows a Position Emission Tomography (PET) scanner at the Hopital Cantonal Universitaire de Genève. Development of the multiwire proportional chamber at CERN in the mid-1970s was soon seen as a potential device for medical imaging. It is much more sensitive than previous devices and greatly reduced the dose of radiation received by the patient.

  10. Accuracy in dental medicine, a new way to measure trueness and precision.

    Science.gov (United States)

    Ender, Andreas; Mehl, Albert

    2014-04-29

    Reference scanners are used in dental medicine to verify a lot of procedures. The main interest is to verify impression methods as they serve as a base for dental restorations. The current limitation of many reference scanners is the lack of accuracy scanning large objects like full dental arches, or the limited possibility to assess detailed tooth surfaces. A new reference scanner, based on focus variation scanning technique, was evaluated with regards to highest local and general accuracy. A specific scanning protocol was tested to scan original tooth surface from dental impressions. Also, different model materials were verified. The results showed a high scanning accuracy of the reference scanner with a mean deviation of 5.3 ± 1.1 µm for trueness and 1.6 ± 0.6 µm for precision in case of full arch scans. Current dental impression methods showed much higher deviations (trueness: 20.4 ± 2.2 µm, precision: 12.5 ± 2.5 µm) than the internal scanning accuracy of the reference scanner. Smaller objects like single tooth surface can be scanned with an even higher accuracy, enabling the system to assess erosive and abrasive tooth surface loss. The reference scanner can be used to measure differences for a lot of dental research fields. The different magnification levels combined with a high local and general accuracy can be used to assess changes of single teeth or restorations up to full arch changes.

  11. Occurrence and characteristics of mutual interference between LIDAR scanners

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  12. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    OpenAIRE

    Nakano, K.; H. Chikatsu

    2015-01-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be...

  13. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    of cochlear implantations among Danish users in order to shed more light on their social and political implications. We situate cochlear implantation in a framework of new life science advances, politics, and user experiences. Analytically, we draw upon the notion of social imaginary and explore the social...... dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  14. From Wires to Cosmology

    CERN Document Server

    Amin, Mustafa A

    2015-01-01

    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.

  15. Calibration and equivalency analysis of image plate scanners

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G. Jackson, E-mail: williams270@llnl.gov; Maddox, Brian R.; Chen, Hui [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kojima, Sadaoki [Institute of Laser Engineering, Osaka University, Yamada-oka, 2-6, Suita, Osaka 565-0871 (Japan); Millecchia, Matthew [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2014-11-15

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system.

  16. Magnetoconductance of quantum wires

    Science.gov (United States)

    Ferreira, Gerson J.; Sammarco, Filipe; Egues, Carlos

    2010-03-01

    At low temperatures the conductance of a quantum wires exhibit characteristic plate-aus due to the quantization of the transverse modes [1]. In the presence of high in-plane magnetic fields these spin-split transverse modes cross. Recently, these crossings were observed experimentally [2] via measurements of the differential conductance as a function of the gate voltage and the in-plane magnetic-field. These show structures described as either anti-crossings or magnetic phase transitions. Motivated by our previous works on magnetotransport in 2DEGs via the Spin Density Functional Theory (SDFT) [3], here we propose a similar model to investigate the magnetoconductance of quantum wires. We use (i) the SDFT via the Kohn-Sham self-consistent scheme within the local spin density approximation to obtain the electronic structure and (ii) the Landauer-Buettiker formalism to calculate the conductance of a quantum wire. Our results show qualitative agreement with the data of Ref. [2]. [1] B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988). [2] A. C. Graham et al., Phys. Rev. Lett. 100, 226804 (2008). [3] H. J. P. Freire, and J. C. Egues, Phys. Rev. Lett. 99, 026801 (2007); G. J. Ferreira, and J. Carlos Egues, J. Supercond. Nov. Mag., in press; G. J. Ferreira, H. J. P. Freire, J. Carlos Egues, submitted.

  17. Dual-Antenna Terrestrial Laser Scanner Georeferencing Using Auxiliary Photogrammetric Observations

    Directory of Open Access Journals (Sweden)

    Benjamin Wilkinson

    2015-09-01

    Full Text Available Terrestrial laser scanning typically requires the use of artificial targets for registration and georeferencing the data. This equipment can be burdensome to transport and set up, representing expense in both time and labor. Environmental factors such as terrain can sometimes make target placement dangerous or impossible, or lead to weak network geometry and therefore degraded product accuracy. The use of additional sensors can help reduce the required number of artificial targets and, in some cases, eliminate the need for them altogether. The research presented here extends methods for direct georeferencing of terrestrial laser scanner data using a dual GNSS antenna apparatus with additional photogrammetric observations from a scanner-mounted camera. Novel combinations of observations and processing methods were tested on data collected at two disparate sites in order to find the best method in terms of processing efficiency and product quality. In addition, a general model for the scanner and auxiliary data is given which can be used for least-squares adjustment and uncertainty estimation in similar systems with varied and diverse configurations. We found that the dual-antenna system resulted in cm-level accuracy practical for many applications and superior to conventional one-antenna systems, and that auxiliary photogrammetric observation significantly increased accuracy of the dual-antenna solution.

  18. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  19. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  20. A UGV-based laser scanner system for measuring tree geometric characteristics

    Science.gov (United States)

    Wang, Yonghui; Lan, Yubin; Zheng, Yongjun; Lee, Kevin; Cui, Suxia; Lian, Jian-ao

    2013-09-01

    This paper introduces a laser scanner based measurement system for measuring crop/tree geometric characteristics. The measurement system, which is mounted on a Unmanned Ground Vehicle (UGV), contains a SICK LMS511 PRO laser scanner, a GPS, and a computer. The LMS511 PRO scans objects within distance up to 80 meters with a scanning frequency of 25 up to 100Hz and with an angular resolution of 0.1667° up to 1°. With an Ethernet connection, this scanner can output the measured values in real time. The UGV is a WIFI based remotely controlled agricultural robotics system. During field tests, the laser scanner was mounted on the UGV vertically to scan crops or trees. The UGV moved along the row direction with certain average travel speed. The experimental results show that the UGV's travel speed significantly affects the measurement accuracy. A slower speed produces more accurate measuring results. With the developed measurement system, crop/tree canopy height, width, and volume can be accurately measured in a real-time manner. With a higher spatial resolution, the original data set may even provide useful information in predicting crop/tree growth and productivity. In summary, the UGV based measurement system developed in this research can measure the crop/tree geometric characteristics with good accuracy and will work as a step stone for our future UGV based intelligent agriculture system, which will include variable rate spray and crop/tree growth and productivity prediction through analyzing the measured results of the laser scanner system.

  1. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    Science.gov (United States)

    Yoshida, Eiji; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  2. 21 CFR 892.1330 - Nuclear whole body scanner.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section...

  3. The use of mobile 3D scanners in maxillofacial surgery.

    Science.gov (United States)

    Peters, Florian; Möhlhenrich, Stephan Christian; Ayoub, Nassim; Goloborodko, Evgeny; Ghassemi, Alireza; Lethaus, Bernd; Hölzle, Frank; Modabber, Ali

    There are many possibilities for the use of three-dimensional (3D) scanners in maxillofacial surgery. This study aimed to investigate whether the bundling and syncing of two 3D scanners has advantages over single-scanner acquisition in terms of scan quality and the time required to scan an object. Therefore, the speed and precision of 3D data acquisition with one scanner versus two synced scanners was measured in 30 subjects. This was done by analyzing the results obtained by scanning test objects attached to the forehead and cheeks of the subjects. Statistical methods included the Student t test for paired samples. Single-scanner recording resulted in significantly lower mean error of measurement than synced recording with two scanners for length (P scanner method resulted in a significantly lowermean error of measurement than the two-scanner method for frontal/lower plane angles (P scanners resulted in a significant reduction of scanning time (P 3D scanner, the bundling of two 3D scanners resulted in faster scanning times but lower scan quality.

  4. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    Science.gov (United States)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  5. Ghost signals in Allison emittance scanners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Martin P.; /SNS Project, Oak Ridge /Tennessee U.; Leitner, M.; /LBL, Berkeley; Moehs, D.P.; /Fermilab; Keller, R.; /LBL, Berkeley; Welton, R.F.; /SNS Project, Oak

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  6. Laser scanner 3D terrestri e mobile

    Directory of Open Access Journals (Sweden)

    Mario Ciamba

    2013-08-01

    Full Text Available Recentemente si è svolto a Roma un evento dimostrativo per informare, professionisti e ricercatori del settore inerente il rilievo strumentale, sulle recenti innovazioni che riguardano i laser scanner 3d. Il mercato della strumentazione dedicata al rilevamento architettonico e dell'ambiente, offre molte possibilità di scelta. Oggi i principali marchi producono strumenti sempre più efficienti ed ideati per ambiti di applicazione specifici, permettendo ai professionisti, la giusta scelta in termini di prestazioni ed economia.A demonstration event was recently held in Rome with the aim to inform professionals and researchers on recent innovations on instrumental survey related to the 3d laser scanner. The market of instrumentation for architectural survey offers many possibilitiesof choice. Today the major brands produce instruments that are more efficient and designed for specific areas of application, allowing the right choice in terms of performance and economy.

  7. Compact beamforming in medical ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev

    2003-01-01

    This Ph.D. project was carried out at the Center for Fast Ultrasound Imaging, Technical University of Denmark, under the supervision of Prof. Jørgen Arendt Jensen, Assoc. Prof. Jens Sparsø and Prof. Erik Bruun. The goal was to investigate methods for efficient beamforming, which make it possible...... compact implementation of the beamformer compared to the case where conventional A/D conversion is used. The compact and economic beamforming is a key aspect in the progress of medical ultrasound imaging. Currently, 64 or 128 channels are widely used in scanners, top-of-the-range scanners have 256...... with an introduction into medical ultrasound, its basic principles, system evolution and its place among medical imaging techniques. Then, ultrasound acoustics is introduced, as a necessary base for understanding the concepts of acoustic focusing and beamforming, which follow. The necessary focusing information...

  8. Get Mobile – The Smartphone Brain Scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Petersen, Michael Kai

    This demonstration will provide live-interaction with a smartphone brain scanner consisting of a low-cost wireless 14-channel EEG headset (Emotiv Epoc) and a mobile device. With our system it is possible to perform real-time functional brain imaging on a smartphone device, including stimulus deli......) that are based on Linux operating systems. Thus our system runs on multiple platforms, including Maemo/MeeGo based smartphones, Android-based smartphones and tablet devices....

  9. On the Model Checking of the SpaceWire Link Interface

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-02-01

    Full Text Available In this paper we display a practical approach adopted for the formal verification of SpaceWire using model checking to solve state explosion. SpaceWire is a high-speed, full-duplex serial bus standard which is applied in aerospace, so its functions have a very high accuracy requirements. In order to prove the design of the SpaceWire was faithfully implements the SpaceWire protocol’s specification , we present our experience on the model checking of SpaceWire link interface using the Cadence SMV tool. We applied environment state machine to overcome state explosion and successfully  verified  a number of relevant properties about transmitter and controller of the SpaceWire in reasonable CPU time.  

  10. THERMAL CONDUCTIVITY OF METALLIC WIRES

    Institute of Scientific and Technical Information of China (English)

    LU XIANG; GU JI-HUA; CHU JUN-HAO

    2001-01-01

    The effect of radial thickness on the thermal conductivity of a free standing wire is investigated. The thermal conductivity is evaluated using the Boltzmann equation. A simple expression for the reduction in conductivity due to the increase of boundary scattering is presented. A comparison is made between the experimental results of indium wires and the theoretical calculations. It is shown that this decrease of conductivity in wires is smaller than that in film where heat flux is perpendicular to the surface.

  11. Modelling of drawing and rolling of high carbon flat wires

    Science.gov (United States)

    Bobadilla, C.; Persem, N.; Foissey, S.

    2007-04-01

    In order to meet customer requirements, it is necessary to develop new flat wires with a high tensile strength and a high width/thickness ratio. These products are manufactured from wire rod. The first step is to draw the wire until we have the required mechanical properties and required surface area of the section. After this, the wire is rolled from a round to a rectangular section. During the flat rolling process it can be reduced by more than 50%. Then the wire is exposed to a high level of stress during this process. Modelling allows us to predetermine this stress level, taking into account the final dimensions and the mechanical properties, thus optimising both rolling and drawing process. Forge2005 was used in order to simulate these processes. The aim of this study is to determine the value of residual stresses after drawing and so to optimise rolling. Indeed, the highest stress values are reached at this step of the process by changing the section of the wire from a round to a rectangular one. In order to evaluate the stress value accuracy for high strain levels, a behaviour law has been identified. This is a result of tensile tests carried out at each step of the drawing process. Finally, a multi-axial damage criterion was implemented using Forge2005. The optimisation of the rolling is directly linked to the minimisation of this criterion.

  12. A near-infrared confocal scanner

    Science.gov (United States)

    Lee, Seungwoo; Yoo, Hongki

    2014-06-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface.

  13. Subminiature Hot-Wire Probes

    Science.gov (United States)

    Westphal, R. V.; Lemos, F. R.; Ligrani, P. M.

    1989-01-01

    Class of improved subminiature hot-wire flow-measuring probes developed. Smaller sizes yield improved resolution in measurements of practical aerodynamic flows. Probe made in one-wire, two-perpendicular-wire, and three-perpendicular-wire version for measurement of one, two, or all three components of flow. Oriented and positioned on micromanipulator stage and viewed under microscope during fabrication. Tested by taking measurements in constant-pressure turbulent boundary layer. New probes give improved measurements of turbulence quantities near surfaces and anisotropies of flows strongly influence relative errors caused by phenomena related to spatial resolution.

  14. Plasma Formation Around Single Wires

    Science.gov (United States)

    Duselis, Peter U.; Kusse, Bruce R.

    2002-12-01

    At Cornell's Laboratory of Plasma Studies, single wires of various metals were exploded using a ˜250 ns pulser with a rise time of ˜20 A/ns. It was found that the wires first experience a resistive heating phase that lasts 50-80 ns before a rapid collapse of voltage. From that point on, the voltage across the wire was negligible while the current through the wire continued to increase. We attribute this voltage collapse to the formation of plasma about the wire. Further confirmation of this explanation will be presented along with new experimental data describing preliminary spectroscopy results, the expansion rate of the plasma, and current flow along the wire as a function of radius. The resistance of the wire-electrode connection will be shown to significantly affect the energy deposition. Various diagnostics were used to obtain these experiments. Ultraviolet sensitive vacuum photodiodes and a framing camera with an 8 ns shutter were used to detect and measure the width of the visible light emitted by the plasma. A special wire holder was constructed that allowed the transfer of current from the wire to the surrounding plasma to be observed.

  15. Texture development in Galfenol wire

    Science.gov (United States)

    Boesenberg, A. J.; Restorff, J. B.; Wun-Fogle, M.; Sailsbury, H.; Summers, E.

    2013-05-01

    Galfenol (Fe-Ga alloy) wire fabrication provides a low cost alternative to directional solidification methods. This work evaluates the compositional dependence of the wire drawing suitability of Fe-Ga and characterizes the microstructural and magnetic properties of these wires. Wire has been produced with Ga contents between 10 at. % and 17 at. % to allow determination of the ductile to brittle transition (DTBT) in wire manufacture. Published results on chill cast bend specimens indicated that a DTBT occurs at roughly 15 at. % Ga. This DTBT was observed under tensile loading with a corresponding change in fracture behavior from transverse fracture to intergranular fracture. For improved magnetostrictive performance, higher Ga contents are desired, closer to the 17 at. % Ga evaluated in this work. Electron backscattered diffraction B-H loop and resonance measurements as a function of magnetic field (to determine modulus and coupling factor) are presented for as-drawn, furnace, and direct current (DC) annealed wire. Galfenol wire produced via traditional drawing methods is found to have a strong (α) texture parallel to the drawing direction. As-drawn wire was observed to have a lower magnetic permeability and larger hysteresis than DC annealed wire. This is attributed to the presence of a large volume of crystalline defects; such as vacancies and dislocations.

  16. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  17. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  18. A crossed hot-wire technique for complex turbulent flows

    Science.gov (United States)

    Cutler, A. D.; Bradshaw, P.

    1991-01-01

    This paper describes a crossed hot-wire technique for the measurement of all components of mean velocity, Reynolds stresses, and triple products in a complex turbulent flow. The accuracy of various assumptions usually implicit in the use of crossed hot-wire anemometers is examined. It is shown that significant errors can result in flow with gradients in mean velocity or Reynolds stress, but that a first-order correction for these errors can be made using available data. It is also shown how corrections can be made for high turbulence levels using available data.

  19. Soft magnetic wires

    Science.gov (United States)

    Vázquez, M.

    2001-06-01

    An overview of the present state of the art on the preparation techniques, outstanding magnetic properties and applications of soft magnetic micro and nanowires is presented. Rapid solidification techniques (in-rotating-water quenching and drawing methods) to fabricate amorphous microwires with diameter in the range from 100 down to 1 μm are first described. Electrodeposition is also employed to prepare composite microtubes (magnetic coatings) and to fill porous membranes (diameter of the order of 0.1 μm). Magnetic behaviours of interest are related to the different hysteresis loops of samples: square-shaped loops typical of bistable behaviour, and nearly non-hysteretic loop with well-defined transverse anisotropy field. The role played by magnetic dipolar interactions in the magnetic behaviour of arrays of micro and nanowires is described. A particular analysis is done on the giant magnetoimpedance (GMI) effect in the radio and microwave frequency ranges exhibited by ultrasoft microwires. Finally, a few examples of applications are introduced for magnetostrictive and non-magnetostrictive wires, they are: “magnetoelastic pens”, micromotors; DC current-sensors based on GMI, and sharpened amorphous wire tips in spin polarised scanning tunneling microscopy.

  20. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement.

    Science.gov (United States)

    Zhang, Hanlin; Ren, Yongjie; Liu, Changjie; Zhu, Jigui

    2014-07-10

    High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025  mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

  1. Wire and Packing Tape Sandwiches

    Science.gov (United States)

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  2. Wire metamaterials: physics and applications.

    Science.gov (United States)

    Simovski, Constantin R; Belov, Pavel A; Atrashchenko, Alexander V; Kivshar, Yuri S

    2012-08-16

    The physics and applications of a broad class of artificial electromagnetic materials composed of lattices of aligned metal rods embedded in a dielectric matrix are reviewed. Such structures are here termed wire metamaterials. They appear in various settings and can operate from microwaves to THz and optical frequencies. An important group of these metamaterials is a wire medium possessing extreme optical anisotropy. The study of wire metamaterials has a long history, however, most of their important and useful properties have been revealed and understood only recently, especially in the THz and optical frequency ranges where the wire media correspond to the lattices of microwires and nanowires, respectively. Another group of wire metamaterials are arrays and lattices of nanorods of noble metals whose unusual properties are driven by plasmonic resonances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. FIRAS wire grid characterization techniques

    Science.gov (United States)

    Barney, Richard D.; Magner, Thomas J.

    1989-01-01

    Characterization techniques used to verify the quality and spectral performance of the large freestanding wire grid polarizing beamsplitters and input/output polarizers used in the Far Infrared Absolute Spectrophotometer (FIRAS) are presented. The clear aperture of these grids is lined with 20.8 micron diameter gold coated tungsten wire, spaced 33 microns apart. The grid characteristics measured throughout fabrication and space flight qualification are the center to center wire spacing and wire plane flatness. Ideally, the wire grids should produce coherent wavefronts with equal reflectance and transmittance properties. When the spacing is inconsistent, these wavefront intensities are unequal, thus decreasing the efficiency of the grids and reducing the output signal of the FIRAS. The magnitude of the output interferogram is also reduced by incoherence in the interfering wave fronts caused by uneven flatness.

  4. Rectification of single and multiple frames of satellite scanner imagery using points and edges as control

    Science.gov (United States)

    Paderes, F. C., Jr.; Mikhail, E. M.; Foerstner, W.

    1984-01-01

    Rectification of single and overlapping multiple scanner frames produced by such satellite-borne scanners as the LANDSAT MSS was carried out using a newly developed comprehensive parametric model. Tests with both simulated and real image data demonstrate conclusively that this model in general is superior to the widely used polynomial model, and that the simultaneous rectification of overlapping frames using least squares techniques yields a high accuracy than sngle frame rectification due to the inclusion of tie points between the image frames. Used to control, edges or lines, whic are much more likely to be found in images, can replace conventional control points and can easily be implemented into the least squares approach. An efficient algorithm for findng corresponding points in image paris was developed which can be used for determining tie points between image frames and thus increase the ecnomy of the whole rectification procedure.

  5. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    CERN Document Server

    Jofre, M; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W; 10.1364/OE.20.012247

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $\\sim 20$ ms. Given the unification of components to fully cont...

  6. Suspect Height Estimation Using the Faro Focus(3D) Laser Scanner.

    Science.gov (United States)

    Johnson, Monique; Liscio, Eugene

    2015-11-01

    At present, very little research has been devoted to investigating the ability of laser scanning technology to accurately measure height from surveillance video. The goal of this study was to test the accuracy of one particular laser scanner to estimate suspect height from video footage. The known heights of 10 individuals were measured using an anthropometer. The individuals were then recorded on video walking along a predetermined path in a simulated crime scene environment both with and without headwear. The difference between the known heights and the estimated heights obtained from the laser scanner software were compared using a one-way t-test. The height estimates obtained from the software were not significantly different from the known heights whether individuals were wearing headwear (p = 0.186) or not (p = 0.707). Thus, laser scanning is one technique that could potentially be used by investigators to determine suspect height from video footage.

  7. The use and validation of a laser scanner for computer aided design and manufacturing of wheelchair seating.

    Science.gov (United States)

    Tasker, L H; Shapcott, N G; Holland, P M

    2011-01-01

    Professionals in wheelchair seating services over several decades have captured many thousands of patient shapes in various forms to manufacture customized seating systems for people with complex disabilities. With the exception of a few commercial companies, the predominant methodology employs a plaster casting technique to record the required shape. This can be labour-intensive and shape information is often retained in the cast and may not be recoverable over time due to storage issues. This paper describes the development of processes utilizing a laser scanner to advance the fabrication of customized seating systems. The study employed two 3D laser scanners and hence validated the use of the lower cost scanner (accuracy ± 0.1 mm) for both research purposes and clinical work. The paper concludes that these technologies have the potential to develop the knowledge of individuals' shapes with complex disabilities within specialist seating and other clinical fields.

  8. Positron Scanner for Locating Brain Tumors

    Science.gov (United States)

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  9. A volume scanner for diffuse imaging

    Science.gov (United States)

    Vafa, Elham; Roberts, Nicolas; Sharafutdinova, Galiya; Holdsworth, John

    2016-11-01

    Non-invasive optical screening mammography has a significant barrier in the extreme scatter of human tissue at optical wavelengths. A volume scanner suited for high numerical aperture capture of scattered light from diffuse media has been designed, modelled using Trace Pro software and experimentally constructed. Modelling results indicate the presence of an embedded volume with different scatter properties from the bulk yields a measurable difference in the overall scatter pattern and intensity recorded. Work towards a full tomographic reconstruction from scattered light recorded on the two dimensional array detector is currently underway.

  10. A Cartographic Electron Beam Scanner Design Study.

    Science.gov (United States)

    1981-04-01

    0132 UNCLASSIFIED 6005 ETL-0257 NLEhmnnnnnununu lllhllIIhhlh EIIIIIIIIuuh hhhhhhhw-: o~"c ETL OVDFR U-C0EESE25SR7TINULIiE U..ARMYCOPSOFENINER ENINE ...17 2.3.4.4 Data Retrieval Process . . . . 2-21 2.3.5 Software .. ........... ... 2-25 2.4 Details of Scanner Experiments. 2-26 2.4.1 General...point processor and suitable interfaces were installed in the experimental Cartographic EBR System to provide complete compatibility with the software

  11. The Lick Observatory image-dissector scanner.

    Science.gov (United States)

    Robinson, L. B.; Wampler, E. J.

    1972-01-01

    A scanner that uses an image dissector to scan the output screen of an image tube has proven to be a sensitive and linear detector for faint astronomical spectra. The image-tube phosphor screen acts as a short-term storage element and allows the system to approach the performance of an ideal multichannel photon counter. Pulses resulting from individual photons, emitted from the output phosphor and detected by the image dissector, trigger an amplifier-discriminator and are counted in a 24-bit, 4096-word circulating memory. Aspects of system performance are discussed, giving attention to linearity, dynamic range, sensitivity, stability, and scattered light properties.

  12. Nano-storage wires.

    Science.gov (United States)

    Lee, Dong Jun; Kim, Eunji; Kim, Daesan; Park, Juhun; Hong, Seunghun

    2013-08-27

    We report the development of "nano-storage wires" (NSWs), which can store chemical species and release them at a desired moment via external electrical stimuli. Here, using the electrodeposition process through an anodized aluminum oxide template, we fabricated multisegmented nanowires composed of a polypyrrole segment containing adenosine triphosphate (ATP) molecules, a ferromagnetic nickel segment, and a conductive gold segment. Upon the application of a negative bias voltage, the NSWs released ATP molecules for the control of motor protein activities. Furthermore, NSWs can be printed onto various substrates including flexible or three-dimensional structured substrates by direct writing or magnetic manipulation strategies to build versatile chemical storage devices. Since our strategy provides a means to store and release chemical species in a controlled manner, it should open up various applications such as drug delivery systems and biochips for the controlled release of chemicals.

  13. Computed tomography dose measurements with radiochromic films and a flatbed scanner.

    Science.gov (United States)

    Rampado, O; Garelli, E; Ropolo, R

    2010-01-01

    Gafchromic XR-QA films were developed for patient dosimetry in diagnostic radiology. A possible application of these films is the measurement of doses in computed tomography. In this study a method to evaluate the CTDI using Gafchromic XR-QA film and a flatbed scanner was developed and tested. Film samples were cut to dimensions of 6 x 170 mm2 in order to have an integration area similar to that of a pencil ionization chamber, with the possibility of changing the integration length. Prior to exposing these films to a computed tomography beam, the angular dependence of the film dose response was investigated by exposing film strips to a static x-ray beam at different angles in the range 0 degrees-180 degrees. A difference of 49% was found between the response with the axis beam parallel to the film surface (90 degrees) and with the axis beam perpendicular (0 degrees and 180 degrees). Integrating over a 360 degrees exposure like the one in computed tomography, a difference of less than 2% was estimated, which is comparable with the measurement error obtainable with XR-QA film. A calibration with a CT beam in the scout mode was performed and film strips were then exposed to single axial scans and to helical scans both in air and in phantoms. Two different types of flatbed scanners were used to read the film samples, a Microtek ScanMaker 9800XL scanner and an Epson Expression 10000 XL scanner, and the accuracy of the results were compared. For beam collimations above 10 mm differences between CTDI measured by film and CTDI measured by ionization chamber below 9% were found for the Epson scanner, with an average estimated error at 1 sigma level of 5%. For the Microtek scanner and for the same film samples, differences below 11% with an average error at 1 sigma level of 8% were founded. The 1 sigma uncertainty of the measured CTDI was provided by the method for each measurement, and it was shown that about the 95% of the differences between the CTDI measurements with

  14. Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment.

    Science.gov (United States)

    Lue, Niyom; Kang, Jeon Woong; Yu, Chung-Chieh; Barman, Ishan; Dingari, Narahara Chari; Feld, Michael S; Dasari, Ramachandra R; Fitzmaurice, Maryann

    2012-01-01

    There continues to be a significant clinical need for rapid and reliable intraoperative margin assessment during cancer surgery. Here we describe a portable, quantitative, optical fiber probe-based, spectroscopic tissue scanner designed for intraoperative diagnostic imaging of surgical margins, which we tested in a proof of concept study in human tissue for breast cancer diagnosis. The tissue scanner combines both diffuse reflectance spectroscopy (DRS) and intrinsic fluorescence spectroscopy (IFS), and has hyperspectral imaging capability, acquiring full DRS and IFS spectra for each scanned image pixel. Modeling of the DRS and IFS spectra yields quantitative parameters that reflect the metabolic, biochemical and morphological state of tissue, which are translated into disease diagnosis. The tissue scanner has high spatial resolution (0.25 mm) over a wide field of view (10 cm × 10 cm), and both high spectral resolution (2 nm) and high spectral contrast, readily distinguishing tissues with widely varying optical properties (bone, skeletal muscle, fat and connective tissue). Tissue-simulating phantom experiments confirm that the tissue scanner can quantitatively measure spectral parameters, such as hemoglobin concentration, in a physiologically relevant range with a high degree of accuracy (tissues showed that the tissue scanner can detect small foci of breast cancer in a background of normal breast tissue. This tissue scanner is simpler in design, images a larger field of view at higher resolution and provides a more physically meaningful tissue diagnosis than other spectroscopic imaging systems currently reported in literatures. We believe this spectroscopic tissue scanner can provide real-time, comprehensive diagnostic imaging of surgical margins in excised tissues, overcoming the sampling limitation in current histopathology margin assessment. As such it is a significant step in the development of a platform technology for intraoperative management of cancer, a

  15. Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment.

    Directory of Open Access Journals (Sweden)

    Niyom Lue

    Full Text Available There continues to be a significant clinical need for rapid and reliable intraoperative margin assessment during cancer surgery. Here we describe a portable, quantitative, optical fiber probe-based, spectroscopic tissue scanner designed for intraoperative diagnostic imaging of surgical margins, which we tested in a proof of concept study in human tissue for breast cancer diagnosis. The tissue scanner combines both diffuse reflectance spectroscopy (DRS and intrinsic fluorescence spectroscopy (IFS, and has hyperspectral imaging capability, acquiring full DRS and IFS spectra for each scanned image pixel. Modeling of the DRS and IFS spectra yields quantitative parameters that reflect the metabolic, biochemical and morphological state of tissue, which are translated into disease diagnosis. The tissue scanner has high spatial resolution (0.25 mm over a wide field of view (10 cm × 10 cm, and both high spectral resolution (2 nm and high spectral contrast, readily distinguishing tissues with widely varying optical properties (bone, skeletal muscle, fat and connective tissue. Tissue-simulating phantom experiments confirm that the tissue scanner can quantitatively measure spectral parameters, such as hemoglobin concentration, in a physiologically relevant range with a high degree of accuracy (<5% error. Finally, studies using human breast tissues showed that the tissue scanner can detect small foci of breast cancer in a background of normal breast tissue. This tissue scanner is simpler in design, images a larger field of view at higher resolution and provides a more physically meaningful tissue diagnosis than other spectroscopic imaging systems currently reported in literatures. We believe this spectroscopic tissue scanner can provide real-time, comprehensive diagnostic imaging of surgical margins in excised tissues, overcoming the sampling limitation in current histopathology margin assessment. As such it is a significant step in the development of a

  16. Circumference estimation using 3D-whole body scanners and shadow scanner

    NARCIS (Netherlands)

    Daanen, H.A.M.

    1998-01-01

    Clothing designers and manufacturers use traditional body dimensions as their basis. When 3D-whole body scanners are introduced to determine the body dimensions, a conversion has to be made, since scan determined circumference measures are slightly larger than the traditional values. This pilot stud

  17. Plasma chemistry in wire chambers

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  18. Antenna Near-Field Probe Station Scanner

    Science.gov (United States)

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  19. Interferometric Laser Scanner for Direction Determination.

    Science.gov (United States)

    Kaloshin, Gennady; Lukin, Igor

    2016-01-21

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  20. Interferometric Laser Scanner for Direction Determination

    Directory of Open Access Journals (Sweden)

    Gennady Kaloshin

    2016-01-01

    Full Text Available In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  1. Recent micro-CT scanner developments at UGCT

    OpenAIRE

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Boone, Matthieu; Van Hoorebeke, Luc; Cnudde, Veerle

    2013-01-01

    UGCT is a user facility for multidisciplinary micro-CT research. The scanners at UGCT are custom designed and built by the Radiation Physics research group (UGent). This paper describes the two latest scanners that were developed in collaboration with XRE: HECTOR, a high energy micro-CT scanner, and EMCT, a gantry based micro-CT scanner with variable magnification. HECTOR is a 240 kV 280 W system with a nominal resolution of 4 micrometer. A 40x40 cm² flat panel detector which can be tiled res...

  2. Was the Scanner Calibration Slide used for its intended purpose?

    Science.gov (United States)

    2011-01-01

    In the article, Scanner calibration revisited, BMC Bioinformatics 2010, 11:361, Dr. Pozhitkov used the Scanner Calibration Slide, a key product of Full Moon BioSystems to generate data in his study of microarray scanner PMT response and proposed a mathematic model for PMT response [1]. In the end, the author concluded that "Full Moon BioSystems calibration slides are inadequate for performing calibration," and recommended "against using these slides." We found these conclusions are seriously flawed and misleading, and his recommendation against using the Scanner Calibration Slide was not properly supported. PMID:21510874

  3. Was the Scanner Calibration Slide used for its intended purpose?

    Directory of Open Access Journals (Sweden)

    Zong Yaping

    2011-04-01

    Full Text Available Abstract In the article, Scanner calibration revisited, BMC Bioinformatics 2010, 11:361, Dr. Pozhitkov used the Scanner Calibration Slide, a key product of Full Moon BioSystems to generate data in his study of microarray scanner PMT response and proposed a mathematic model for PMT response 1. In the end, the author concluded that "Full Moon BioSystems calibration slides are inadequate for performing calibration," and recommended "against using these slides." We found these conclusions are seriously flawed and misleading, and his recommendation against using the Scanner Calibration Slide was not properly supported.

  4. Influence of Flaws of Wire Rod Surface, Inclusions and Voids on Wire Breaks in Superfine Wire Drawing

    Science.gov (United States)

    Yoshida, Kazunari; Norasethasopon, Somchai; Shinohara, Tetsuo; Ido, Ryuta

    By means of the finite element analysis (FEA), this study analyzed wire breaks that occurred in the drawing fine wires containing flaws on the wire surface, inclusion and void. The deformation behavior of an inclusion was examined, in which the inclusion's location is assumed to be on the center axis of the wire, and the cause of wire breaks and their prevention method were clarified. It was found that an inclusion diameter/wire diameter ratio of 0.4 or higher increases the likelihood of wire breaks occurring. When the inclusion is not assumed to be in the center axis of the wire, it was also found that necking and wire breaks appear more frequently. FEA showed that a flaw grows with each processing step, when a small circumferential flaw is placed on the wire rod surface, and eventually becomes a surface defect, which is called a check mark in practice.

  5. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner.

    Science.gov (United States)

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  6. "Cut wires grating – single longitudinal wire" planar metastructure to achieve microwave magnetic resonance in a single wire

    OpenAIRE

    G. Kraftmakher; V. Butylkin

    2012-01-01

    Here we present metastructures containing cut-wire grating and a single longitudinal cut-wire orthogonal to grating’s wires. Experimental investigations at microwaves show these structures can provide strong magnetic resonant response of a single nonmagnetic cut-wire in dependence on configuration and sizes in the case when metastructures are oriented along the direction of wave propagation and cut-wires of grating are parallel to the electric field of a plane electromagnetic wave. It is sugg...

  7. Identification of scanner models by comparison of scanned hologram images.

    Science.gov (United States)

    Sugawara, Shigeru

    2014-08-01

    A method to identify scanner models that had been used to forge low-level counterfeit currencies was proposed in this study. The method identified a scanner model by characterizing differences between hologram images that exist in low-level counterfeit currencies. Twenty scanners of 18 different models were used to make samples of hologram images used in this study. The method was divided into two steps: identification of capturing conditions and identification of the scanner model. The first proposed protocol used correlations of spatial distribution of brightness to identify capturing conditions. A second proposed protocol used correlations of color distributions to identify a scanner model. The effectiveness of the protocols was demonstrated with numerical methods and sample images. The preliminary study revealed that it is necessary to consider the orientation of the holograms when the scanner models were identified, but 180° rotations can be ignored. Moreover, it is necessary to consider position in the main scanning direction of the bed for charged-coupled-device scanners. The demonstration showed that the first protocol could correctly identify the capturing conditions of almost all hologram images. However, one image could not be identified correctly; the protocol could distinguish images captured by charged-coupled-device scanners and those captured by contact image sensor scanners if the hologram was placed on the right or left edge of the scanner bed, but could not distinguish them if the hologram was placed on the inside. The demonstration also showed that the second protocol could correctly identify scanner models of all hologram images.

  8. Superconducting wires and fractional flux

    Science.gov (United States)

    Sá de Melo, C. A. R.

    1996-05-01

    The quantization of flux quanta in superconductors is revisited and analyzed in a new geometry. The system analyzed is a superconducting wire. The geometry is such that the superconducting wire winds N times around an insulating cylinder and that the wire has its end connected back to its beginning, thus producing an N-loop short circuited solenoid. The winding number N acts as a topological index that controls flux quantization. In this case, fractional flux quanta can be measured through the center of the insulating cylinder, provided that the cylinder radius is small enough. The Little-Parks experiment for an identical geometry is discussed. The period of oscillation of the transition temperature of the wire is found to vary as 1/N in units of flux Φ relative to the flux quantum Φ0. When a SQUID is made in such a geometry the maximal current through the SQUID varies with period Φ0/N.

  9. Wire ropes tension, endurance, reliability

    CERN Document Server

    Feyrer, Klaus

    2015-01-01

    The main goal of this book is to present the methods used to calculate the most important parameters for ropes, and to explain how they are applied on the basis of numerous sample calculations. The book, based on the most important chapters of the German book DRAHTSEILE, has been updated to reflect the latest developments, with the new edition especially focusing on computational methods for wire ropes. Many new calculations and examples have also been added to facilitate the dimensioning and calculation of mechanical characteristics of wire ropes. This book offers a valuable resource for all those working with wire ropes, including construction engineers, operators and supervisors of machines and installations involving wire ropes.

  10. Wire Jewelry/Black History.

    Science.gov (United States)

    Daniel, Robert A.; Robinson, Charles C.

    1984-01-01

    Described is a project which made the study of Black history more real to fifth graders by having them make wire jewelry, smaller versions of the ornate filigreed ironwork produced by slave blacksmiths. (RM)

  11. Dieless wire drawing with lasers

    Science.gov (United States)

    Liedl, G.; Schuöcker, D.

    2007-06-01

    Thin wires are produced by drawing through nozzle-like tools, so called dies, that suffer from strong wear due to friction. In order to avoid the latter disadvantage the dies can be replaced by a laser beam heating the wire to such extend that the yield strength becomes smaller than the tensile strength and thus the wire is elongated and consequently constricted. To avoid rupture, the wire is cooled down again after the desired reduction of the diameter is reached. A further important advantage of this new process is that only one drawing step with a laser can substitute a large number of mechanical drawing actions, thus making the process much more efficient. Theoretical considerations and experimental investigations prove the feasibility of the latter new laser process and are subject to a description in the actual paper.

  12. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The insulation shall not be punctured for test purposes. Splice in underground wire shall have insulation...

  13. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The insulation shall not be punctured for test purposes. A splice in underground wire shall have...

  14. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  15. Method of manufacturing superconductor wire

    Science.gov (United States)

    Motowidlo, Leszek

    2014-09-16

    A method for forming Nb.sub.3Sn superconducting wire is provided. The method employs a powder-in-tube process using a high-tin intermetallic compound, such as MnSn.sub.2, for producing the Nb.sub.3Sn. The use of a high-tin intermetallic compound enables the process to perform hot extrusion without melting the high-tin intermetallic compound. Alternatively, the method may entail drawing the wire without hot extrusion.

  16. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard;

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  17. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  18. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  19. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  20. Gigapixel microscopy using a flatbed scanner

    CERN Document Server

    Zheng, Guoan; Yang, Changhuei

    2012-01-01

    Microscopy imaging systems with a very wide field-of-view (FOV) are highly sought in biomedical applications. In this paper, we report a wide FOV microscopy imaging system that uses a low-cost scanner and a closed-circuit-television (CCTV) lens. We show that such an imaging system is capable to capture a 10 mm * 7.5 mm FOV image with 0.77 micron resolution, resulting in 0.54 gigapixels (109 pixels) across the entire image (26400 pixels * 20400 pixels). The resolution and field curve of the proposed system were characterized by imaging a USAF resolution target and a hole-array target. A 1.6 gigapixel microscopy image (0.54 gigapixel with 3 colors) of a pathology slide was acquired by using such a system for application demonstration.

  1. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    This paper describes a navigation method based on road detection using both a laser scanner and a vision sensor. The method is to classify the surface in front of the robot into traversable segments (road) and obstacles using the laser scanner, this classifies the area just in front of the robot ...

  2. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    Science.gov (United States)

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  3. Thermionic scanner pinpoints work function of emitter surfaces

    Science.gov (United States)

    Rasor, N. S.

    1966-01-01

    In the electron tube testing, a thermionic scanner makes accurate spatial resolution measurements of the metallic surface work functions of emitters. The scanner determines the emitter function and its local departures from the mean value on a point-by-point basis for display on an oscilloscope.

  4. Flux profile scanners for scattered high-energy electrons

    Science.gov (United States)

    Hicks, R. S.; Decowski, P.; Arroyo, C.; Breuer, M.; Celli, J.; Chudakov, E.; Kumar, K. S.; Olson, M.; Peterson, G. A.; Pope, K.; Ricci, J.; Savage, J.; Souder, P. A.

    2005-11-01

    The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.

  5. A ’Millipede’ scanner model - Energy consumption and performance

    NARCIS (Netherlands)

    Engelen, Johan B.C.; Khatib, Mohammed G.

    2008-01-01

    This short report (1) describes an energy model for the seek and read/write operations in a mass-balanced Y-scanner for parallel-probe storage by IBM [1] and (2) updates the settings of the MEMS model in DiskSim with recent published figures from this XY-scanner. To speedup system simulations, a str

  6. Connecting to Thermocouples with Fewer Lead Wires

    Science.gov (United States)

    Goldsby, Jon C.

    2003-01-01

    A simple technique has been devised to reduce the number of lead wires needed to connect an array of thermocouples to the instruments (e.g., voltmeters) used to read their output voltages. Because thermocouple wires are usually made of expensive metal alloys, reducing the number of lead wires can effect a considerable reduction in the cost of such an array. Reducing the number of wires also reduces the number of terminals and the amount of space needed to accommodate the wires.

  7. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    Science.gov (United States)

    Surti, S.; Werner, M. E.; Karp, J. S.

    2013-06-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm-1 in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm-1 is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (≥36 cm) and using thin crystals (≤10 mm of LSO and ≤20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion

  8. Improved method of analyzing hot-wire measurements in supersonic turbulence

    Science.gov (United States)

    Logan, Pamela

    1989-01-01

    The present analysis method for hot-wire data in supersonic turbulence takes sound field effects into account and yields greater accuracy in its treatment of flow variable fluctuations than existing methods despite requiring only a moderately accurate estimate of static pressure fluctuations. The method demonstrates the way in which neglecting pressure fluctuations will affect hot-wire data analysis, as well as indicating the probable direction the errors will take.

  9. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    Science.gov (United States)

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  10. Three-dimensional recording of the human face with a 3D laser scanner.

    Science.gov (United States)

    Kovacs, L; Zimmermann, A; Brockmann, G; Gühring, M; Baurecht, H; Papadopulos, N A; Schwenzer-Zimmerer, K; Sader, R; Biemer, E; Zeilhofer, H F

    2006-01-01

    Three-dimensional recording of the surface of the human body or of certain anatomical areas has gained an ever increasing importance in recent years. When recording living surfaces, such as the human face, not only has a varying degree of surface complexity to be accounted for, but also a variety of other factors, such as motion artefacts. It is of importance to establish standards for the recording procedure, which will optimise results and allow for better comparison and validation. In the study presented here, the faces of five male test persons were scanned in different experimental settings using non-contact 3D digitisers, type Minolta Vivid 910). Among others, the influence of the number of scanners used, the angle of recording, the head position of the test person, the impact of the examiner and of examination time on accuracy and precision of the virtual face models generated from the scanner data with specialised software were investigated. Computed data derived from the virtual models were compared to corresponding reference measurements carried out manually between defined landmarks on the test persons' faces. We describe experimental conditions that were of benefit in optimising the quality of scanner recording and the reliability of three-dimensional surface imaging. However, almost 50% of distances between landmarks derived from the virtual models deviated more than 2mm from the reference of manual measurements on the volunteers' faces.

  11. Design of optimal fast scanning trajectory for the mechanical scanner of measurement instruments.

    Science.gov (United States)

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian; Ge, Yaozheng

    2014-01-01

    This paper focuses on the design of the optimal scanning mode for the family of scanning probe microscopes. Based on different values of the maximum acceleration (deceleration) rate and maximum speed of X- and Y- axes of the mechanical scanner encountered in practice due to different mechanical design and loads, the design procedure of the optimal fast scanning mode is presented, which is found to be sensitive to the specific parameters of the scanning motion. By utilizing the simultaneous motion of the two axes, the fast raster scanning mode proposed can improve the scanning efficiency by 29% when comparing with the conventional raster (CR) scanning mode, if the scanning speeds of both axes are identical. In addition, the optimal fast mode provided by us has no effects on the image accuracy such as image degradation, image distortion when the efficiency is evaluated. No further difficulties are introduced to the control of the mechanical scanner and the data acquisition process. This optimal scanning mode is useful when the response time of the probe is very fast (such as ultrasonic probe in scanning acoustic microscope (SAM)), and the main limitations are due to the mechanical scanner. By applying different loads for both axes, the experiments with different scanning areas and scanning modes are conducted in a self-developed SAM. Experimental results coincide with the theoretical analysis and confirm the validation of our proposed optimal fast scanning mode and its superiority over the CR scanning mode.

  12. On the spectral quality of scanner illumination with LEDs

    Science.gov (United States)

    Cui, Chengwu

    2013-01-01

    Document scanner illumination has evolved along with general illumination technologies. LEDs have become more and more popular as the illumination sources for document scanning. LED technologies provide a wide range of choices both in terms of structural design and spectral compositions. In this report, we examine some popular LED technologies used for document scanner. We evaluate the color rendering performance of scanner models with different illumination technologies by examining their rendering of the Macbeth ColorChecker™ in sRGB. We found that more phosphors in phosphor conversion types of white LEDs may not be necessarily advantageous in terms of scanner color rendering performance. Also CIS type of scanner may be sensitive to the peak wavelength shift and can be particularly problematic when the peaks are out of certain range.

  13. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    Science.gov (United States)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  14. Next-generation immersion scanner optimizing on-product performance for 7nm node

    Science.gov (United States)

    Yoda, Yasushi; Hayakawa, Akira; Ishiyama, Satoshi; Ohmura, Yasuhiro; Fujimoto, Issei; Hirayama, Toru; Shiba, Yuji; Masaki, Kazuo; Shibazaki, Yuichi

    2016-03-01

    The semiconductor technology roadmap suggests that multiple patterning techniques will be used at the 7nm node. The final lithography accuracy is determined by what is known as the "on-product" performance, which includes projection lens heating, illumination condition variations, product wafer related errors, and long term stability. It is evident that on product performance improvement is imperative now, and will become even more crucial in coming years. Nikon has developed the next-generation lithography system focusing on optimizing the main factors impacting on product performance. In this paper, we will introduce the details of the next-generation Nikon scanner and provide supporting performance data.

  15. Non-contact 3D fingerprint scanner using structured light illumination

    Science.gov (United States)

    Troy, Mike; Hassebrook, Laurence; Yalla, Veeraganesh; Daley, Raymond

    2011-03-01

    As crime prevention and national security remain a top priority, requirements for the use of fingerprints for identification continue to grow. While the size of fingerprint databases continues to expand, new technologies that can improve accuracy and ultimately matching performance will become more critical to maintain the effectiveness of the systems. FlashScan3D has developed non-contact, fingerprint scanners based on the principles of Structured Light Illumination (SLI) that capture 3Dimensional data of fingerprints quickly, accurately and independently of an operator. FlashScan3D will present findings from various research projects performed for the US Army and the Department of Homeland Security.

  16. A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids.

    Science.gov (United States)

    Perkins, R A; Roder, H M; Nieto de Castro, C A

    1991-01-01

    A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 µm diameter platinum wire and are simultaneously used as electrical heat sources and as resistance thermometers. A microcomputer controls bridge nulling, applies the power pulse, monitors the bridge response, and stores the results. Performance of the instrument was verified with measurements on liquid toluene as well as argon and nitrogen gas. In particular, new data for the thermal conductivity of liquid toluene near the saturation line, between 298 and 550 K, are presented. These new data can be used to illustrate the importance of radiative heat transfer in transient hot-wire measurements. Thermal conductivity data for liquid toluene, which are corrected for radiation, are reported. The precision of the thermal conductivity data is ± 0.3% and the accuracy is about ±1%. The accuracy of the thermal diffusivity data is about ± 5%. From the measured thermal conductivity and thermal diffusivity, we can calculate the specific heat, Cp , of the fluid, provided that the density is measured, or available through an equation of state.

  17. Automatic inventory of components by laser 3D scanner; Inventario de automatico de componentes mediante laser escaner 3D

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, R.; Munoz Prieto, C.; Sarti Fernandez, F.

    2014-07-01

    One of the existing needs in nuclear decommissioning projects is to provide an inventory of components to be dismantled, which is available from its spatial location and elements that exist in your environment. The Laser scanner technology is a system of data acquisition that allows 3D models composed of millions of points, it's models with pinpoint accuracy and are available in a very short space of time. (Author)

  18. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    Science.gov (United States)

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  19. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  20. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  1. APLIKASI INFO HALAL MENGGUNAKAN BARCODE SCANNER UNTUK SMARTPHONE ANDROID

    Directory of Open Access Journals (Sweden)

    Beki Subeki

    2016-05-01

    Full Text Available Abstract – In the production and trade of food products in the era of globalization, people are consuming, especially Muslims need to be given the knowledge, information and access to adequate in order to obtain the correct information about the halal status of products bought. The use of barcode scanners halal product information using the mobile platform is effective and useful for the public to find out information on a product. Barcode scanners can be read by optical scanners called barcode readers or scanned from an image by special software. In Indonesia, most mobile phones have the scanning software for 2D codes, and similar devices available via smartphone.   Keywords : Barcode Scanner, Mobile Platform, Halal Products, Smartphone     Abstrak - Dalam kegiatan produksi dan perdagangan produk pangan di era globalisasi ini, masyarakat yang mengkonsumsi, khususnya umat islam perlu diberikan pengetahuan tentang kehalalan produk, informasi dan akses yang memadai agar memperoleh informasi yang benar tentang status kehalalan produk yang dibelinya. Penggunaan barcode scanner informasi produk halal dengan menggunakan mobile platform dinilai cukup efektif dan berguna bagi masyarakat luas untuk mengetahui informasi sebuah produk. Barcode scanner dapat dibaca oleh pemindai optik yang disebut pembaca kode batang atau dipindai dari sebuah gambar oleh perangkat lunak khusus. Di Indonesia, kebanyakan telepon genggam memiliki perangkat lunak pemindai untuk kode 2D, dan perangkat sejenis tersedia melalui smartphone.   Kata Kunci: Barcode Scanner, Mobile Platform, Produk Halal, Smartphone

  2. Confocal Scanner for Vertical Particle Tracks in the Nuclear Photoemulsion

    CERN Document Server

    Soroko, L M

    2005-01-01

    A confocal scanner for selective observation of the vertical particle tracks in the nuclear photoemulsion is described. The particle track being searched for is imaging at an angle of 45$^\\circ$ with respect to the optical axis of the system. The confocal scanner is provided with a new optical element, an "image hogonalizator", by means of which the extended image of the inclined vertical particle track is rotated over an angle of 90$^\\circ$. The stereoscopic version of the confocal scanner is presented as well. The described systems will be used in the experiments for investigation of the neutrino oscillations in the accelerators experiments.

  3. A general solution for the registration of optical multispectral scanners

    Science.gov (United States)

    Rader, M. L.

    1974-01-01

    The paper documents a general theory for registration (mapping) of data sets gathered by optical scanners such as the ERTS satellite MSS and the Skylab S-192 MSS. This solution is generally applicable to scanners which have rotating optics. Navigation data and ground control points are used in a statistically weighted adjustment based on a mathematical model of the dynamics of the spacecraft and the scanner system. This adjustment is very similar to the well known photogrammetric adjustments used in aerial mapping. Actual tests have been completed on NASA aircraft 24 channel MSS data, and the results are very encouraging.

  4. [Innovation and Future Technologies for PET Scanners].

    Science.gov (United States)

    Yamaya, Taiga

    2015-01-01

    Positron emission tomography (PET) plays important roles in cancer diagnosis, neuroimaging and molecular imaging research; but potential points remain for which big improvements could be made, including spatial resolution, sensitivity and manufacturing costs. Higher spatial resolution is essential to enable earlier diagnosis, and improved sensitivity results in reduced radiation exposure and shortened measurement time. Therefore, research on next generation PET technologies remains a hot topic worldwide. In this paper, innovation and future technologies for the next generation PET scanners, such as time-of-flight measurement and simultaneous PET/MRI measurement, are described. Among them, depth-of-interaction (DOI) measurement in the radiation sensor will be a key technology to get any significant improvement in sensitivity while maintaining high spatial resolution. DOI measurement also has a potential to expand PET application fields because it allows for more flexible detector arrangement. As an example, the world's first, open-type PET geometry "OpenPET", which is expected to lead to PET imaging during treatment, is under development. The DOI detector itself continues to evolve with the help of recently developed semiconductor photodetectors, often referred to as silicon photomultipliers.

  5. Whole-body 35-GHz security scanner

    Science.gov (United States)

    Appleby, Roger; Anderton, Rupert N.; Price, Sean; Sinclair, Gordon N.; Coward, Peter R.

    2004-08-01

    A 35GHz imager designed for Security Scanning has been previously demonstrated. That imager was based on a folded conical scan technology and was constructed from low cost materials such as expanded polystyrene and printed circuit board. In conjunction with an illumination chamber it was used to collect indoor imagery of people with weapons and contraband hidden under their clothing. That imager had a spot size of 20mm and covered a field of view of 20 x 10 degrees that partially covered the body of an adult from knees to shoulders. A new variant of this imager has been designed and constructed. It has a field of view of 36 x 18 degrees and is capable of covering the whole body of an adult. This was achieved by increasing the number of direct detection receivers from the 32 used in the previous design to 58, and by implementing an improved optical design. The optics consist of a front grid, a polarisation device which converts linear to circular polarisation and a rotating scanner. This new design uses high-density expanded polystyrene as a correcting element on the back of the front grid. This gives an added degree of freedom that allows the optical design to be diffraction limited over a very wide field of view. Obscuration by the receivers and associated components is minimised by integrating the post detection electronics at the receiver array.

  6. From Beamline to Scanner with 225Ac

    Science.gov (United States)

    Robertson, Andrew K. H.; Ramogida, Caterina F.; Kunz, Peter; Rodriguez-Rodriguez, Cristina; Schaffer, Paul; Sossi, Vesna

    2016-09-01

    Due to the high linear energy transfer and short range of alpha-radiation, targeted radiation therapy using alpha-emitting pharmaceuticals that successfully target small disease clusters will kill target cells with limited harm to healthy tissue, potentially treating the most aggressive forms of cancer. As the parent of a decay chain with four alpha- and two beta-decays, 225Ac is a promising candidate for such a treatment. However, this requires retention of the entire decay chain at the target site, preventing the creation of freely circulating alpha-emitters that reduce therapeutic effect and increase toxicity to non-target tissues. Two major challenges to 225Ac pharmaceutical development exist: insufficient global supply, and the difficulty of preventing toxicity by retaining the entire decay chain at the target site. While TRIUMF works towards large-scale (C i amounts) production of 225Ac, we already use our Isotope Separation On-Line facility to provide small (overview of this research program and the journey of 225Ac from the beamline to the scanner. This research is funded by the Natural Sciences and Engineering Research Council of Canada.

  7. ASSESSING PATHOLOGIES ON VILLAMAYOR STONE (SALAMANCA, SPAIN BY TERRESTRIAL LASER SCANNER INTENSITY DATA

    Directory of Open Access Journals (Sweden)

    J. García-Talegón

    2015-02-01

    Full Text Available This paper deals with the assessing of pathologies in façades using a variety of intensity data provided by different terrestrial laser scanner. In particular, a complex building built in the Villamayor Stone that is to be candidate as a Global Heritage Stone Resource has been chosen as study case. The Villamayor Stone were quarrying for the construction and ornamentation of monuments in Salamanca, declared World Heritage City by UNESCO in 1988. The objective of this paper is to assess the pathologies of Villamayor Stone and compare the results obtained through the laser techniques with the classical techniques of mapped pathologies (i.e. visual inspection. For that intensity data coming from laser scanners will be used as non-destructive techniques applied to the façades and several retired plaques (after of building restoration of Villamayor Stone with pathologies (fissures, scales, loss of matter, humidity/biological colonization carried to the laboratory. Subsequently it will perform different comparisons between the accuracy reached with the different sensors and a high precision model setup on laboratory which performs as “ground truth”. In particular, the following objectives will be pursued: i accuracy assessment of the results obtained in in situ and laboratory; ii an automation or semi-automation of the detection of pathologies in Villamayor Stone; iii discriminate the different types of Villamayor Stone used in the façades in function of the radiometric response; iv establish a methodology for detection and assessing of pathologies based on laser scanner intensity data applied to monuments and modern buildings built in Villamayor Stone.

  8. The design and testing of a wire velocimeter.

    Science.gov (United States)

    Witters, J; Heremans, G; Bohets, W; Stijnen, V; Van Coppenolle, H

    1985-01-01

    The basic principles underlying the design of a velocimeter based on an unwinding wire, for use in athletics research, are discussed. It is shown by theoretical analysis that, in order to avoid runaway effects, the tension on the wire should be either high or low but not of intermediate strength. The low tension regime is shown to be theoretically the most favourable as it combines high accuracy of speed measurements in decelerated motion with insensitivity to resonance oscillations of the wire. Practical considerations concerning the ruggedness of the apparatus, however, favour the high tension regime. A modern apparatus incorporating microprocessors and working with thin nylon wire stretched by a force of the order of 1 N, i.e. in the high tension regime, has been constructed and tested. The test results show that the velocity of decelerated motions (up to decelerations of the order of 10 m s-2) can be faithfully recorded in the velocity range 0-15 m s-1. The relative error for the measurement of constant speed up to 15 m s-1 is about one in a thousand, which is very small and practically unattainable by other methods. An application to the study of the long jump is demonstrated and validated by the use of film analysis.

  9. Wire system aging assessment and condition monitoring (WASCO)

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, P.F. [Institutt for energiteknikk (Norway); Nordlund, A. [Chalmers Univ. of Technology (Sweden)

    2006-04-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  10. Boat's hull modeling with low-cost triangulation scanners

    Science.gov (United States)

    Guidi, Gabriele; Micoli, Laura L.; Russo, Michele

    2005-01-01

    In a 3D acquisition project range maps collected around the object to be modeled, need to be integrated. With portable range cameras these range maps are taken from unknown positions and their coordinate systems are local to the sensor. The problem of unifying all the measurements in a single reference system is solved by taking contiguous range maps with a suitable overlap level; taking one map as reference and doing a rototranslation of the adjacent ones by using an "Iterative Closest Point" (ICP) method. Depending on the 3D features over the acquired surface and on the amount of overlapping, the ICP algorithm convergence can be more or less satisfactory. Anyway it always has a random component depending on measurement uncertainty. Therefore, although each individual scan has a very good accuracy, the error's propagation may produce deviations in the aligned set respect to real surface points. In this paper a systematic study of the different alignment modality and the consequent total metric distortions on the final model, is shown. In order to experiment these techniques a case-study of industrial interest was chosen: the 3D modeling of a boat's hull mold. The experiments involved a triangulation based laser scanner integrated with a digital photogrammetry system. In order to check different alignment procedures, a Laser Radar capable to scan all the object surface with a single highly accurate scan, was used to create a "gold-standard" data set. All the experiments were compared with this reference and from the comparison several interesting methodological conclusions have been obtained.

  11. LONGITUDINAL LASER WIRE AT SNS

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, Alexander V [ORNL; Liu, Yun [ORNL; Zhukov, Alexander P [ORNL

    2014-01-01

    This paper describes a longitudinal H- beam profile scanner that utilizes laser light to detach convoy electrons and an MCP to collect and measure these electrons. The scanner is located in MEBT with H- energy of 2.5MeV and an RF frequency 402.5MHz. The picosecond pulsed laser runs at 80.5MHz in sync with the accelerator RF. The laser beam is delivered to the beam line through a 30m optical fiber. The pulse width after the fiber transmission measures about 10ps. Scanning the laser phase effectively allows measurements to move along ion bunch longitudinal position. We are able to reliably measure production beam bunch length with this method. The biggest problem we have encountered is background signal from electrons being stripped by vacuum. Several techniques of signal detection are discussed.

  12. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    Science.gov (United States)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  13. Performance comparison of two commercial BGO-based PET/CT scanners using NEMA NU 2-2001.

    Science.gov (United States)

    Bolard, Grégory; Prior, John O; Modolo, Luca; Delaloye, Angelika Bischof; Kosinski, Marek; Wastiel, Claude; Malterre, Jérôme; Bulling, Shelley; Bochud, François; Verdun, Francis R

    2007-07-01

    Combined positron emission tomography and computed tomography (PET/CT) scanners play a major role in medicine for in vivo imaging in an increasing number of diseases in oncology, cardiology, neurology, and psychiatry. With the advent of short-lived radioisotopes other than 18F and newer scanners, there is a need to optimize radioisotope activity and acquisition protocols, as well as to compare scanner performances on an objective basis. The Discovery-LS (D-LS) was among the first clinical PET/CT scanners to be developed and has been extensively characterized with older National Electrical Manufacturer Association (NEMA) NU 2-1994 standards. At the time of publication of the latest version of the standards (NU 2-2001) that have been adapted for whole-body imaging under clinical conditions, more recent models from the same manufacturer, i.e., Discovery-ST (D-ST) and Discovery-STE (D-STE), were commercially available. We report on the full characterization both in the two- and three-dimensional acquisition mode of the D-LS according to latest NEMA NU 2-2001 standards (spatial resolution, sensitivity, count rate performance, accuracy of count losses, and random coincidence correction and image quality), as well as a detailed comparison with the newer D-ST widely used and whose characteristics are already published.

  14. Effect of light source instability on uniformity of 3D reconstructions from a cone beam optical CT scanner.

    Science.gov (United States)

    Begg, J; Taylor, M L; Holloway, L; Kron, T; Franich, R D

    2014-12-01

    Temporally varying light intensity during acquisition of projection images in an optical CT scanner can potentially be misinterpreted as physical properties of the sample. This work investigated the impact of LED light source intensity instability on measured attenuation coefficients. Different scenarios were investigated by conducting one or both of the reference and data scans in a 'cold' scanner, where the light source intensity had not yet stabilised. Uniform samples were scanned to assess the impact on measured uniformity. The orange (590 nm) light source decreased in intensity by 29 % over the first 2 h, while the red (633 nm) decreased by 9 %. The rates of change of intensity at 2 h were 0.1 and 0.03 % respectively over a 5 min period-corresponding to the scan duration. The normalisation function of the reconstruction software does not fully account for the intensity differences and discrepancies remain. Attenuation coefficient inaccuracies of up to 8 % were observed for data reconstructed from projection images acquired with a cold scanner. Increased noise was observed for most cases where one or both of the scans was acquired without sufficient warm-up. The decrease in accuracy and increase in noise were most apparent for data reconstructed from reference and data scans acquired with a cold scanner on different days.

  15. Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner

    Science.gov (United States)

    Jaeggi, Beat; Neuenschwander, Beat; Zimmermann, Markus; Zecherle, Markus; Boeckler, Ernst W.

    2016-03-01

    High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.

  16. 30 CFR 57.12047 - Guy wires.

    Science.gov (United States)

    2010-07-01

    ... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet the... “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines”...

  17. Anode wire aging tests with selected gases

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, J.; Wise, J.; Hess, D.; Williams, M. (Lawrence Berkeley Lab., CA (United States))

    1990-04-01

    As a continuation of earlier wire aging investigations, additional candidates for wire chamber gas and wire have been tested. These include the gases: argon/ethane, HRS gas, dimethyl ether, carbon dioxide/ethane, and carbon tetrafluoride/isobutane. Wires used were: gold- plated tungsten, Stablohm, Nicotin, and Stainless Steel. Measurements were made of the effects upon wire aging of impurities from plumbing materials or contamination from various types of oil. Attempts were made to induce wire aging by adding measured amounts of oxygen and halogen (methyl chloride) with negative results. In this paper, the possible role of electronegativity in the wire aging process is discussed, and measurements of electronegativity are made with several single carbon Freons, using both an electron capture detector and a wire chamber operating with dimethyl ether.

  18. Evaluation of high temperature stranded hookup wire

    Science.gov (United States)

    Donnelly, J. H.; Moore, H. J., Jr.

    1967-01-01

    Tests are performed on wire and insulation materials to determine selection for electronic space assemblies. Wire characteristics of tensile strength, flexibility, conductivity, and general workability are tested. Knowledge of the advantages and limitations of these materials should prevent overspecification.

  19. TCP/IP Over SpaceWire

    Science.gov (United States)

    Mills, S.; Parkes, S.

    The SpaceWire standard defines a network designed for handling payload data and control information onboard a spacecraft. Among the goals of SpaceWire are re-usability and reliability. The use of network protocols on top of SpaceWire is expected to enhance the already rich re-usability and reliability characteristics of SpaceWire. The Space Systems Research Group at the University of Dundee have developed software to allow data to be sent over SpaceWire using standard network protocols such as TCP/IP, as part of a program of work looking at network protocols for SpaceWire. This paper describes network protocols and their relationship to SpaceWire, introduces software written to allow network protocols to be layered on to SpaceWire, describes the research behind the development of this software, and gives results of some tests and observations made using the software.

  20. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Science.gov (United States)

    2010-04-01

    ...) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in the body by means of a detector (or detectors) whose position moves in two directions with respect...

  1. Whole-body 3D scanner and scan data report

    Science.gov (United States)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  2. Landsat 1-5 Multispectral Scanner V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: The Landsat Multispectral Scanner (MSS) was a sensor onboard Landsats 1 through 5 and acquired images of the Earth nearly continuously from July 1972 to...

  3. APLIKASI INFO HALAL MENGGUNAKAN BARCODE SCANNER UNTUK SMARTPHONE ANDROID

    National Research Council Canada - National Science Library

    Beki Subeki; M Rahmat Jauhari

    2016-01-01

    ... to obtain the correct information about the halal status of products bought. The use of barcode scanners halal product information using the mobile platform is effective and useful for the public to find out information on a product...

  4. Building a 3D Computed Tomography Scanner From Surplus Parts.

    Science.gov (United States)

    Haidekker, Mark A

    2014-01-01

    Computed tomography (CT) scanners are expensive imaging devices, often out of reach for small research groups. Designing and building a CT scanner from modular components is possible, and this article demonstrates that realization of a CT scanner from components is surprisingly easy. However, the high costs of a modular X-ray source and detector limit the overall cost savings. In this article, the possibility of building a CT scanner with available surplus X-ray parts is discussed, and a practical device is described that incurred costs of less than $16,000. The image quality of this device is comparable with commercial devices. The disadvantage is that design constraints imposed by the available components lead to slow scan speeds and a resolution of 0.5 mm. Despite these limitations, a device such as this is attractive for imaging studies in the biological and biomedical sciences, as well as for advancing CT technology itself.

  5. Novel Wiring Technologies for Aerospace Applications

    Science.gov (United States)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  6. Further Studies Of Hot-Wire Anemometry

    Science.gov (United States)

    Mckenzie, Robert; Logan, Pamela; Bershader, Daniel

    1990-01-01

    Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Represents extension of work described in "Hot-Wire Anemometry Versus Laser-Induced Fluorescence" (ARC-11802). Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF).

  7. Different mechanical properties in Seldinger guide wires

    Directory of Open Access Journals (Sweden)

    Wolfram Schummer

    2015-01-01

    Full Text Available Background and Aims: Most central venous catheters are placed using Seldinger guide wires. EN ISO 11070 is the guideline for testing guide wire flexing performance and tensile strength, and we can safely assume that guide wires in use meet these requirements. Unfortunately, EN ISO 11070 guidelines do not reflect the clinical requirements and we continue to see mechanical failures and their associated complications. Material and Methods: This in vitro study was performed in an accredited laboratory. With regard to flexing, we: (1 Established the minimum flexing performance needed to meet clinical requirements, (2 developed flexing performance tests which mimic clinical requirement, and (3 evaluated the mechanical properties of various guide wires relative to these requirements. With regard to tensile strength, we used the testing method prescribed in ISO 11070, but did not end the test at 5 Newton (N. We continued until the guide wire was damaged, or we reached maximum tractive force. We then did a wire-to-wire comparison. We examined two basic wire constructions, monofil and core and coil. Results: Tensile strength: All wires tested, except one, met EN ISO 11070 requirements for 5 N tensile strength. The mean of the wire types tested ranged from 15.06 N to 257.76 N. Flexing performance: None of the wires kinked. The monofil had no evidence of bending. Two core/coil wires displayed minor bending (angle 1.5°. All other wires displayed bending angles between 22.5° and 43.0°. Conclusion: We recommend that: (1 Clinicians use guide wires with high-end mechanical properties, (2 EN ISO 11070 incorporate our flexing test into their testing method, raise the flexing requirement to kink-proof, (3 and raise the tensile strength requirement to a minimum of 30 N, and (3 all manufacturers and suppliers be required to display mechanical properties of all guide wire, and guide wire kits sold.

  8. Fret Replica Inspection Laser Scanner (FRILS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretz, S.; Hanley, K., E-mail: steve.kretz@opg.com, E-mail: kelly.hanley@opg.com [Ontario Power Generation, Inspection Maintenance and Commercial Services, Pickering, Ontario (Canada)

    2008-07-01

    In the stress analysis of flaws and artifacts found in pressure tubes, it is crucial to have detailed knowledge of the flaw geometry. Fuel channel inspections by ultrasonic or eddy current inspection methods alone cannot provide the complete required geometry information. Replicas, which are a negative impression of surface pressure tube indications, are scanned with a laser system which will provide the additional detail required. FRILS was initially developed in 1993 to establish in-house capability of profiling indications on the inside diameter surface of pressure tubes. The need of this profiling was initially a response to the discovery of fuel bundle bearing pad fretting (FBBPF) caused by flow induced fuel bundle vibration. The benefits of the system were soon realized as a tool for profiling debris type indications. Although the primary use of FRILS is to profile FBBBF and Debris Fretting, since its inception the FRILS inspection system has become an instrumental tool in flaw assessment for: Fuel Bundle Bearing Pad Frets (FBBPF); Debris Frets; Scratches; Crevice Corrosion; Oxide Jacking; Areas of surface roughness; and, Weld Profiling. Replicas are collected via acquisition from tooling on both the Channel and Gauging Apparatus for Reactors (CIGAR) and the Advanced Non-Destructive Examination (ANDE) systems. The ANDE system is a high speed data acquisition system which includes both an ultrasonic inspection tool and a replication tool. Although both of these tools were designed to be delivered with the UDM, the platform for these tools was built with flexibility allowing for adoption to other delivery systems. These tools were based on the experience of the CIGAR inspection system. The CIGAR system has also undergone many system upgrades resulting in reduced inspection times. The FRILS system - Fret Replication Inspection Laser Scanner system was developed and has been upgraded to meet the demands of the improved inspection and replication systems. FRILS

  9. Computer vision and laser scanner road environment perception

    OpenAIRE

    García, Fernando; Ponz Vila, Aurelio; Martín Gómez, David; Escalera, Arturo de la; Armingol, José M.

    2014-01-01

    Data fusion procedure is presented to enhance classical Advanced Driver Assistance Systems (ADAS). The novel vehicle safety approach, combines two classical sensors: computer vision and laser scanner. Laser scanner algorithm performs detection of vehicles and pedestrians based on pattern matching algorithms. Computer vision approach is based on Haar-Like features for vehicles and Histogram of Oriented Gradients (HOG) features for pedestrians. The high level fusion procedure uses Kalman Filter...

  10. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    2010-01-01

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly in

  11. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  12. Generalized additional boundary conditions for wire media

    Energy Technology Data Exchange (ETDEWEB)

    Maslovski, Stanislav I; Morgado, Tiago A; Silveirinha, Mario G [Departamento de Engenharia Electrotecnica, Instituto de Telecomunicacoes, Universidade de Coimbra, Polo II, 3030-290 Coimbra (Portugal); Kaipa, Chandra S R; Yakovlev, Alexander B, E-mail: stas@co.it.p [Department of Electrical Engineering, University of Mississippi, University, MS 38677-1848 (United States)

    2010-11-15

    We generalize additional boundary conditions (ABCs) for wire media by including arbitrary wire junctions with impedance loading. Special attention is given to the conditions at the interface of two uniaxial wire media with metallic patches at the junction. The derived ABCs are validated against full-wave numerical simulations.

  13. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... COMMISSION Wire Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling... retarded, by reason of subsidized and less-than-fair-value imports from China of wire decking, provided for..., producers, or exporters in China of wire decking, and that such ] products are being sold in the...

  14. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  15. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  16. Algorithm to optimize transient hot-wire thermal property measurement.

    Science.gov (United States)

    Bran-Anleu, Gabriela; Lavine, Adrienne S; Wirz, Richard E; Kavehpour, H Pirouz

    2014-04-01

    The transient hot-wire method has been widely used to measure the thermal conductivity of fluids. The ideal working equation is based on the solution of the transient heat conduction equation for an infinite linear heat source assuming no natural convection or thermal end effects. In practice, the assumptions inherent in the model are only valid for a portion of the measurement time. In this study, an algorithm was developed to automatically select the proper data range from a transient hot-wire experiment. Numerical simulations of the experiment were used in order to validate the algorithm. The experimental results show that the developed algorithm can be used to improve the accuracy of thermal conductivity measurements.

  17. Algorithm to optimize transient hot-wire thermal property measurement

    Science.gov (United States)

    Bran-Anleu, Gabriela; Lavine, Adrienne S.; Wirz, Richard E.; Kavehpour, H. Pirouz

    2014-04-01

    The transient hot-wire method has been widely used to measure the thermal conductivity of fluids. The ideal working equation is based on the solution of the transient heat conduction equation for an infinite linear heat source assuming no natural convection or thermal end effects. In practice, the assumptions inherent in the model are only valid for a portion of the measurement time. In this study, an algorithm was developed to automatically select the proper data range from a transient hot-wire experiment. Numerical simulations of the experiment were used in order to validate the algorithm. The experimental results show that the developed algorithm can be used to improve the accuracy of thermal conductivity measurements.

  18. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    Science.gov (United States)

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  19. MACHINABILTY OF SLEIPNER COLD WORK STEEL WITH WIRE ELECTRO DISCHARGE MACHINING

    Directory of Open Access Journals (Sweden)

    Iskender OZKUL

    2013-01-01

    Full Text Available Machining techniques in the industry generally, modern processing techniques, that come between wire discharging machine, especially mold, defense, aircraft and aerospace industry, is often used. Processing, which is difficult with conventional manufacturing methods, the complex surface forms, the different material types, hard and is capable of handling high dimensional accuracy and surface roughness [1]. This manufacturing technique were carried on Uddeholm Sleipner cold-work tool steel, variable parameters with On time duration, feed rate, and the current value, as fixed parameters off time duration, voltage, pressure of fluid circulation, velocity of wire, wire tension and wire diameter. Surface roughness of the surface was shown changes as a result of the experimental parameters, diameter and circularity deviation values were studied.

  20. Guide to quickly build high-quality three-dimensional models with a structured light range scanner.

    Science.gov (United States)

    Shi, Bao-Quan; Liang, Jin

    2016-12-20

    In literature, there are many reports about how to build high-precision, high-speed, and/or flexibly structured light range scanners. Whereas, there are few papers reported about how to implement the scanning to reach the full potential of the scanners when digitizing various objects. In this paper, some scanning strategies adopted by the structured light range scanner XJTUOM are introduced. In order to build high-quality three-dimensional (3D) models for various applications, such as 3D inspection, if necessary, the object surface is prepared in advance by an application of coating spray. Then, a precise 3D coordinate control network (CNN) is established to control the overall measurement accuracy. When the sensor is adjusted to face the object, a visual measuring volume, which can guide the scanning, is automatically aligned to the established CNN. Meanwhile, to maintain the local region scanning accuracy, simple rules are developed to check the low-quality regions in each scanning. Finally, the advantages and limitations of these scanning strategies are discussed in detail. We hope our work will be helpful in order for others to make their own scanning plans with similar optical devices at hand.

  1. A finite element model for independent wire rope core with double helical geometry subjected to axial loads

    Indian Academy of Sciences (India)

    Cengiz Erdonmez; C Erdem Imrak

    2011-12-01

    Due to the complex geometry of wires within a wire rope, it is difficult to model and analyse independent wire rope core accurately (IWRC). In this paper, a more realistic three-dimensional modelling approach and finite element analysis of wire ropes are explained. Single helical geometry is enough to model simple straight strand while IWRC has a more complex geometry by inclusion of double helical wires in outer strands. Taking the advantage of the double helical wires, three-dimensional IWRCs modelling is applied for both right regular lay and lang lay IWRCs. Wire-by-wire based results are gathered by using the proposed modelling and analysis method under various loading conditions. Illustrative examples are given for those show the accuracy and the robustness of the present FE analysis scheme with considering frictional properties and contact interactions between wires. FE analysis results are compared with the analytical and available test results and show reasonable agreement with a simpler and more practical approach.

  2. Directional growth of polypyrrole and polythiophene wires

    Science.gov (United States)

    Thapa, Prem S.; Yu, Deok Jin; Wicksted, James P.; Hadwiger, Jeffrey A.; Barisci, Joseph N.; Baughman, Ray H.; Flanders, Bret N.

    2009-01-01

    This work establishes an innovative electrochemical approach to the template-free growth of conducting polypyrrole and polythiophene wires along predictable interelectrode paths up to 30 μm in length. These wires have knobby structures with diameters as small as 98 nm. The conductivity of the polypyrrole wires is 0.5±0.3 S cm-1; that of the polythiophene wires is 7.6±0.8 S cm-1. Controlling the growth path enables fabrication of electrode-wire-target assemblies where the target is a biological cell in the interelectrode gap. Such assemblies are of potential use in cell stimulation studies.

  3. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  4. Design study of an in situ PET scanner for use in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Surti, S; Daube-Witherspoon, M E; Karp, J S [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zou, W; McDonough, J, E-mail: surti@mail.med.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2011-05-07

    Proton beam therapy can deliver a high radiation dose to a tumor without significant damage to surrounding healthy tissue or organs. One way of verifying the delivered dose distribution is to image the short-lived positron emitters produced by the proton beam as it travels through the patient. A potential solution to the limitations of PET imaging in proton beam therapy is the development of a high sensitivity, in situ PET scanner that starts PET imaging almost immediately after patient irradiation while the patient is still lying on the treatment bed. A partial ring PET design is needed for this application in order to avoid interference between the PET detectors and the proton beam, as well as restrictions on patient positioning on the couch. A partial ring also allows us to optimize the detector separation (and hence the sensitivity) for different patient sizes. Our goal in this investigation is to evaluate an in situ PET scanner design for use in proton therapy that provides tomographic imaging in a partial ring scanner design using time-of-flight (TOF) information and an iterative reconstruction algorithm. GEANT4 simulation of an incident proton beam was used to produce a positron emitter distribution, which was parameterized and then used as the source distribution inside a water-filled cylinder for EGS4 simulations of a PET system. Design optimization studies were performed as a function of crystal type and size, system timing resolution, scanner angular coverage and number of positron emitter decays. Data analysis was performed to measure the accuracy of the reconstructed positron emitter distribution as well as the range of the positron emitter distribution. We simulated scanners with varying crystal sizes (2-4 mm) and type (LYSO and LaBr{sub 3}) and our results indicate that 4 mm wide LYSO or LaBr{sub 3} crystals (resulting in 4-5 mm spatial resolution) are adequate; for a full-ring, non-TOF scanner we predict a low bias (<0.6 mm) and a good precision (<1

  5. Design study of an in situ PET scanner for use in proton beam therapy

    Science.gov (United States)

    Surti, S.; Zou, W.; Daube-Witherspoon, M. E.; McDonough, J.; Karp, J. S.

    2011-05-01

    Proton beam therapy can deliver a high radiation dose to a tumor without significant damage to surrounding healthy tissue or organs. One way of verifying the delivered dose distribution is to image the short-lived positron emitters produced by the proton beam as it travels through the patient. A potential solution to the limitations of PET imaging in proton beam therapy is the development of a high sensitivity, in situ PET scanner that starts PET imaging almost immediately after patient irradiation while the patient is still lying on the treatment bed. A partial ring PET design is needed for this application in order to avoid interference between the PET detectors and the proton beam, as well as restrictions on patient positioning on the couch. A partial ring also allows us to optimize the detector separation (and hence the sensitivity) for different patient sizes. Our goal in this investigation is to evaluate an in situ PET scanner design for use in proton therapy that provides tomographic imaging in a partial ring scanner design using time-of-flight (TOF) information and an iterative reconstruction algorithm. GEANT4 simulation of an incident proton beam was used to produce a positron emitter distribution, which was parameterized and then used as the source distribution inside a water-filled cylinder for EGS4 simulations of a PET system. Design optimization studies were performed as a function of crystal type and size, system timing resolution, scanner angular coverage and number of positron emitter decays. Data analysis was performed to measure the accuracy of the reconstructed positron emitter distribution as well as the range of the positron emitter distribution. We simulated scanners with varying crystal sizes (2-4 mm) and type (LYSO and LaBr3) and our results indicate that 4 mm wide LYSO or LaBr3 crystals (resulting in 4-5 mm spatial resolution) are adequate; for a full-ring, non-TOF scanner we predict a low bias (<0.6 mm) and a good precision (<1 mm) in the

  6. Composite wire plasma formation and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Spielman, R.B.

    2000-01-01

    The detailed understanding of the formation and evolution of plasma from rapidly heated metallic wires is a long-standing challenge in the field of plasma physics and in exploding wire engineering. This physical process is made even more complicated if the wire material is composed of a number of individual layers. The authors have successfully developed both optical and x-ray backlighting diagnostics. In particular, the x-ray backlighting technique has demonstrated the capability for quantitative determination of the plasma density over a wide range of densities. This diagnostic capability shows that the process of plasma formation is composed of two separate phases: first, current is passed through a cold wire and the wire is heated ohmically, and, second, the heated wire evolves gases that break down and forms a low-density plasma surrounding the wire.

  7. Improved spatial resolution in PET scanners using sampling techniques

    Science.gov (United States)

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  8. The INSIDE project: on-line monitoring and simulation validation with the in-beam PET scanner

    Science.gov (United States)

    Ferrero, V.; INSIDE Collaboration

    2017-05-01

    The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan accuracy. Monitoring using Position Emission Tomography (PET) systems is the only in-vivo non invasive technique employed clinically and has been carried out in particle therapy since 1997. However, the PET monitoring of β + emitter isotopes is typically done after the treatment, resulting in a large fraction of lost data because of the isotopes rapid physical decay. The INSIDE collaboration has recently installed an in-beam PET scanner at the Italian National Center of Oncologic Hadrontherapy in Pavia, Italy. Here, there is an ongoing project in order to start testing the method on patients. This work focuses on the online performances of the scanner with clinical beams.

  9. Overlay accuracy with respect to device scaling

    Science.gov (United States)

    Leray, Philippe; Laidler, David; Cheng, Shaunee

    2012-03-01

    Overlay metrology performance is usually reported as repeatability, matching between tools or optics aberrations distorting the measurement (Tool induced shift or TIS). Over the last few years, improvement of these metrics by the tool suppliers has been impressive. But, what about accuracy? Using different target types, we have already reported small differences in the mean value as well as fingerprint [1]. These differences make the correctables questionable. Which target is correct and therefore which translation, scaling etc. values should be fed back to the scanner? In this paper we investigate the sources of these differences, using several approaches. First, we measure the response of different targets to offsets programmed in a test vehicle. Second, we check the response of the same overlay targets to overlay errors programmed into the scanner. We compare overlay target designs; what is the contribution of the size of the features that make up the target? We use different overlay measurement techniques; is DBO (Diffraction Based Overlay) more accurate than IBO (Image Based Overlay)? We measure overlay on several stacks; what is the stack contribution to inaccuracy? In conclusion, we offer an explanation for the observed differences and propose a solution to reduce them.

  10. Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation

    Science.gov (United States)

    Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.

    2012-07-01

    This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.

  11. Preparation of uncladded YBCO wires

    Science.gov (United States)

    Grader, G.; Cadoche, L.; Shter, G.

    1993-04-01

    Wires of YBCO, 1-5 mm in diameter, have been obtained by extrusion of an oxalate derived powder mixed with polyvinyl butyral (PVB) and two phthalate plasticizers. The densification and transport properties of the wires were investigated at various organic loading conditions. For YBCO powder prepared by oxalate coprecipitation and calcined at 930°C, the maximal strength, relative density and Jc were 20MPa, 92% and 400A/cm 2, respectively. Results show that after a 4-hour sintering at 955°C the tensile strength, density, and Jc are all maximized at a binder content of 3-4 wt.%. The loading of up to 10 wt.% dibutyl phthalate (DBP) plasticizer (in the binder) has little effect on the properties. Beyond this loading a drastic drop in Jc is observed. The densification was very poor for sinterings below 950°C, which was reflected by a lower critical current.

  12. Accuracy testing of a new intraoral 3D camera.

    Science.gov (United States)

    Mehl, A; Ender, A; Mörmann, W; Attin, T

    2009-01-01

    Surveying intraoral structures by optical means has reached the stage where it is being discussed as a serious clinical alternative to conventional impression taking. Ease of handling and, more importantly, accuracy are important criteria for the clinical suitability of these systems. This article presents a new intraoral camera for the Cerec procedure. It reports on a study investigating the accuracy of this camera and its potential clinical indications. Single-tooth and quadrant images were taken with the camera and the results compared to those obtained with a reference scanner and with the previous 3D camera model. Differences were analyzed by superimposing the data records. Accuracy was higher with the new camera than with the previous model, reaching up to 19 microm in single-tooth images. Quadrant images can also be taken with sufficient accuracy (ca 35 microm) and are simple to perform in clinical practice, thanks to built-in shake detection in automatic capture mode.

  13. A fourth-generation iridium-192 source-based CT scanner for brachytherapy

    Science.gov (United States)

    Berndt, Anita Glenda

    This thesis describes and characterizes the sub-systems (source, detectors, data acquisition system and collimator) of a prototype fourth generation computed tomography scanner consisting of a ring of 96 8-channel photodiode scintillator (CdW04) detectors. The 192Ir brachytherapy source and transport mechanism of a commercial high-dose-rate treatment unit provides the photons for measuring projections of the scanned object. It is envisioned that the tomographic images generated with this scanner will be used to plan high-dose-rate brachytherapy treatments. Prototype detectors responded linearly to an incident gamma-ray fluence over a wide dynamic range (2.6 decades). The noise analysis of the prototype detectors indicated that the detector noise is dominated by quantum noise for incident gamma-ray intensities expected when imaging patients up to about 45 cm in diameter. A pair of lead rings collimates both the source and the detectors to provide a maximum scan field of view 50 cm in diameter. The full-widths at half-maximum of the radiation sensitivity and image (slice) sensitivity profiles in the longitudinal direction are 2.7 cm and 0.4 cm respectively. High contrast resolution, image noise and radiation dose were investigated using a combination of measurements and computer simulations. Computer simulations were performed to assess the effect of varying detector number, source size and number of source positions. The high contrast resolution was examined by modeling wire phantoms, and images of uniform Plexiglas disks were used to quantify the scanner noise. The fullwidth at half-maximum of the point spread function was found to be 0.21 cm using source and detector dimensions of 0.36 cm and 0.275 cm respectively (768 detectors, 864 source positions). This configuration resulted in a standard deviation of 23 Hounsfield units at the center of a 25 cm diameter Plexiglas phantom for a 7.5 Ci 192Ir source. The multiple-scan average dose for a 100 second scan (1.0 cm

  14. Thermoprocessing and wire drawing behaviour of ultra high strength steel wires

    Directory of Open Access Journals (Sweden)

    S.S. Bargujer

    2016-09-01

    Full Text Available The thermo-processing of piano wire rods is carried out in the lead bath. This experimentation is carried out under industrial conditions. The investigation is done to examine the effect of austenitic time, lead bath time and wire diameter on mechanical properties of lead patented wire. The Taguchi technique is adopted for optimization of thermo-processing of hypereutectoid steel wires. The lead patented wire of diameter 7.00 mm is cold drawn in a sequence of conical converging dies. The best pass schedule of lead patented piano wire is obtained by optimizing the ultimate tensile strength and torsion strength of cold drawn wire. The characterization of wire drawing behaviour of lead patented wires is carried out using optical microscopy, scanned electron microscopy and X-ray diffraction analysis techniques.

  15. SpaceWire Satellite Usage

    Science.gov (United States)

    2013-03-01

    Figure 1. SpaceWire Topologies 309 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...RS422 Hosted Payload data interface Joint  Architeccture  Standards Sandia,  LANL control interface; backplane sRIO, PCIe Common standards for joint

  16. A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging.

    Science.gov (United States)

    Lapointe, Eric; Pichette, Julien; Bérubé-Lauzière, Yves

    2012-06-01

    We present a non-contact diffuse optical tomography (DOT) scanner with multi-view detection (over 360°) for localizing fluorescent markers in scattering and absorbing media, in particular small animals. It relies on time-domain detection after short pulse laser excitation. Ultrafast time-correlated single photon counting and photomultiplier tubes are used for time-domain measurements. For light collection, seven free-space optics non-contact dual wavelength detection channels comprising 14 detectors overall are placed around the subject, allowing the measurement of time point-spread functions at both excitation and fluorescence wavelengths. The scanner is endowed with a stereo camera pair for measuring the outer shape of the subject in 3D. Surface and DOT measurements are acquired simultaneously with the same laser beam. The hardware and software architecture of the scanner are discussed. Phantoms are used to validate the instrument. Results on the localization of fluorescent point-like inclusions immersed in a scattering and absorbing object are presented. The localization algorithm relies on distance ranging based on the measurement of early photons arrival times at different positions around the subject. This requires exquisite timing accuracy from the scanner. Further exploiting this capability, we show results on the effect of a scattering hetereogenity on the arrival time of early photons. These results demonstrate that our scanner provides all that is necessary for reconstructing images of small animals using full tomographic reconstruction algorithms, which will be the next step. Through its free-space optics design and the short pulse laser used, our scanner shows unprecedented timing resolution compared to other multi-view time-domain scanners.

  17. Preliminary hyperspectral volcano observations using Airborne Radiative Spectral Scanner (ARTS)

    Science.gov (United States)

    Jitsufuchi, T.

    2008-12-01

    Airborne-imaging spectral systems can often efficiently identify volcanic phenomena that are difficult to detect by satellite imagery. Since 1990, the National Research Institute for Earth Science and Disaster Prevention (NIED) has been developing our original airborne-imaging spectral systems for volcano observations. In 2006, we developed a new airborne hyperspectral sensor, the Airborne Radiative Transfer Spectral Scanner (ARTS), for hyperspectral volcano observations. ARTS is a push-broom imaging spectrometer covering wavelengths from 380 to 1100nm (VNIR; 288 bands), 950 to 2450nm (SWIR; 101 bands), and 8000 to 11500nm (LWIR; 32 bands) and has precise position and attitude measurement systems (GPS/IMU) to achieve direct geo-correction of the acquired image. The ARTS specifications were planned to provide hyperspectral images to support developing algorithms for remotely sensing the geothermal distribution, ash- fall areas, and content of volcanic gas columns. ARTS will also be useful for operational volcanic observations to assess volcanic activity and to mitigate volcanic disasters.Before beginning the operational use of ARTS, it is important to validate its in-flight performance. Therefore, we have been conducting validation on the B200 platform. In this study, we present the results of two experiment observations, the overflight of ARTS instrument at the NIED building site on April 5, 2007, and the volcano observations flight over active volcano (Sakurajima volcano) just after its eruption on April 8, 2008. At the NIED building site, we validated the radiometric fidelity of all bands and the accuracy of geo-corrections. At the Sakurajima volcano, we tried to demonstrate the functions of ARTS, especially those for volcano observation. At the NIED building site, the validation results indicate that the geo-correction accuracy is typically less than a two-pixel difference (RMS), and that there was good agreement between the predicted radiance at the sensor and

  18. The calibration of (multi-)hot-wire probes. 2. Velocity-calibration

    NARCIS (Netherlands)

    Dijk, van A.; Nieuwstadt, F.T.M.

    2004-01-01

    We review a set of velocity calibration methods for one popular configuration of a four-hot-wire probe with the aim of finding a method of estimating with 10% accuracy (based on full scale) the mean flow vector, the rms of the turbulent velocity component and the associated linearized anisotropy inv

  19. Digital dental surface registration with laser scanner for orthodontics set-up planning

    Science.gov (United States)

    Alcaniz-Raya, Mariano L.; Albalat, Salvador E.; Grau Colomer, Vincente; Monserrat, Carlos A.

    1997-05-01

    We present an optical measuring system based on laser structured light suitable for its diary use in orthodontics clinics that fit four main requirements: (1) to avoid use of stone models, (2) to automatically discriminate geometric points belonging to teeth and gum, (3) to automatically calculate diagnostic parameters used by orthodontists, (4) to make use of low cost and easy to use technology for future commercial use. Proposed technique is based in the use of hydrocolloids mould used by orthodontists for stone model obtention. These mould of the inside of patient's mouth are composed of very fluent materials like alginate or hydrocolloids that reveal fine details of dental anatomy. Alginate mould are both very easy to obtain and very low costly. Once captured, alginate moulds are digitized by mean of a newly developed and patented 3D dental scanner. Developed scanner is based in the optical triangulation method based in the projection of a laser line on the alginate mould surface. Line deformation gives uncalibrated shape information. Relative linear movements of the mould with respect to the sensor head gives more sections thus obtaining a full 3D uncalibrated dentition model. Developed device makes use of redundant CCD in the sensor head and servocontrolled linear axis for mould movement. Last step is calibration to get a real and precise X, Y, Z image. All the process is done automatically. The scanner has been specially adapted for 3D dental anatomy capturing in order to fulfill specific requirements such as: scanning time, accuracy, security and correct acquisition of 'hidden points' in alginate mould. Measurement realized on phantoms with known geometry quite similar to dental anatomy present errors less than 0,1 mm. Scanning of global dental anatomy is 2 minutes, and generation of 3D graphics of dental cast takes approximately 30 seconds in a Pentium-based PC.

  20. Concept of porous wire anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Afgan, N.H.; Pereira, J.C. [Inst. Superior Tecnico, Lisbon (Portugal); Leontiev, A.I.; Puzach, S.V. [Moscow Technical Univ. (Russian Federation)

    1997-05-01

    The paper presents a new scheme of the anemometer sensing element for the gas mean and fluctuation velocity measurement. The sensing element is a porous tube with gas suction through porous tube wall. The outside surface of the porous tube is at the gas temperature. The analysis, based on the heat balance at steady and unsteady state is performed in order to define the sensitivity and time constant of the porous sensing element. Two cases are considered, namely, the constant current and constant temperature anemometer. Comparison is made with the solid wire anemometer and shown that the proposed porous sensing element can have sensitivity four times higher than the standard hot wire anemometer with the same geometrical dimensions. With the respective selection of the physical properties of the sensing element, it could be possible to obtain higher frequency range of the measurement. Particular attention is devoted to the low gas velocity measurement. It is recognized that the minimum gas velocity to be measured with the solid hot wire anemometer is determined by the local heat transfer coefficient. For the low gas velocity, it was proved that the minimum is around .20 cm/sec. The proposed concept of the sensing element can be used for the very low velocity measurement due to the higher sensitivity obtained by the porous sensing element.

  1. Characterization of a Large, Low-Cost 3D Scanner

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2015-01-01

    Full Text Available Imagery-based 3D scanning can be performed by scanners with multiple form factors, ranging from small and inexpensive scanners requiring manual movement around a stationary object to large freestanding (nearly instantaneous units. Small mobile units are problematic for use in scanning living creatures, which may be unwilling or unable to (or for the very young and animals, unaware of the need to hold a fixed position for an extended period of time. Alternately, very high cost scanners that can capture a complete scan within a few seconds are available, but they are cost prohibitive for some applications. This paper seeks to assess the performance of a large, low-cost 3D scanner, presented in prior work, which is able to concurrently capture imagery from all around an object. It provides the capabilities of the large, freestanding units at a price point akin to the smaller, mobile ones. This allows access to 3D scanning technology (particularly for applications requiring instantaneous imaging at a lower cost. Problematically, prior analysis of the scanner’s performance was extremely limited. This paper characterizes the efficacy of the scanner for scanning both inanimate objects and humans. Given the importance of lighting to visible light scanning systems, the scanner’s performance under multiple lighting configurations is evaluated, characterizing its sensitivity to lighting design.

  2. Effects of sitting versus standing and scanner type on cashiers.

    Science.gov (United States)

    Lehman, K R; Psihogios, J P; Meulenbroek, R G

    2001-06-10

    In the retail supermarket industry where cashiers perform repetitive, light manual material-handling tasks when scanning and handling products, reports of musculoskeletal disorders and discomfort are high. Ergonomics tradeoffs exist between sitting and standing postures, which are further confounded by the checkstand design and point-of-sale technology, such as the scanner. A laboratory experiment study was conducted to understand the effects of working position (sitting versus standing) and scanner type (bi-optic versus single window) on muscle activity, upper limb and spinal posture, and subjective preference of cashiers. Ten cashiers from a Dutch retailer participated in the study. Cashiers exhibited lower muscle activity in the neck and shoulders when standing and using a bi-optic scanner. Shoulder abduction was also less for standing conditions. In addition, all cashiers preferred using the bi-optic scanner with mixed preferences for sitting (n = 6) and standing (n = 4). Static loading of the muscles was relatively high compared with benchmarks, suggesting that during the task of scanning, cashiers may not have adequate recovery time to prevent fatigue. It is recommended that retailers integrate bi-optic scanners into standing checkstands to minimize postural stress, fatigue and discomfort in cashiers.

  3. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    Directory of Open Access Journals (Sweden)

    Stephen L. Buchmann

    2011-12-01

    Full Text Available During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York’s Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale.

  4. Moths on the Flatbed Scanner: The Art of Joseph Scheer.

    Science.gov (United States)

    Buchmann, Stephen L

    2011-12-14

    During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale.

  5. Improved Scanners for Microscopic Hyperspectral Imaging

    Science.gov (United States)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  6. Fast and accurate line scanner based on white light interferometry

    Science.gov (United States)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  7. Using Contactless Scanners for Quality Inspection

    Directory of Open Access Journals (Sweden)

    Mendřický Radomír

    2017-01-01

    Full Text Available The article presents the research of use of modern 3D measurement contactless methods for quality inspection in automotive industry production. The experience with measuring functional assemblies and parts of complex shapes as well as advantages of optical measurement methods are shown on practical research example, whose aim was to find effective procedures and methods of obtaining 3-dimensional high-definition models of measured components. The obtained models were then subjected to inspection of their dimensional and shape accuracy, which was performed by means of comparison with the nominal CAD model, as well as to analyses of the assembly functionality by searching or collision situations of the movable parts of this mechanism.

  8. Design and performance of HEAD PENN-PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, R.; Karp, J.S. (Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Radiology); Geagan, M.; Muehllehner, G. (UGM Medical Systems Inc., Philadelphia, PA (United States))

    1994-08-01

    A new PET scanner for brain imaging (and animals) has been designed with very high sensitivity and spatial resolution. The design is an evolution of the PENN-PET scanner, which uses large position-sensitive NaI(Tl) detectors, with Anger-type positioning logic, and which allows 3-D volume imaging, without septa. The new design is built with a single annular crystal coupled to 180 photomultiplier tubes, and uses local triggering electronics to subdivide the detector into small zones and to determine coincident events within the detector. The axial acceptance angle of [+-] 27 deg, with a field-of-view of 25.6 cm, is larger than any currently operating PET scanner. Performance measurements are presented.

  9. Calibration procedure for a laser triangulation scanner with uncertainty evaluation

    Science.gov (United States)

    Genta, Gianfranco; Minetola, Paolo; Barbato, Giulio

    2016-11-01

    Most of low cost 3D scanning devices that are nowadays available on the market are sold without a user calibration procedure to correct measurement errors related to changes in environmental conditions. In addition, there is no specific international standard defining a procedure to check the performance of a 3D scanner along time. This paper aims at detailing a thorough methodology to calibrate a 3D scanner and assess its measurement uncertainty. The proposed procedure is based on the use of a reference ball plate and applied to a triangulation laser scanner. Experimental results show that the metrological performance of the instrument can be greatly improved by the application of the calibration procedure that corrects systematic errors and reduces the device's measurement uncertainty.

  10. Spectral reflectance estimation using a six-color scanner

    Science.gov (United States)

    Tominaga, Shoji; Kohno, Satoshi; Kakinuma, Hirokazu; Nohara, Fuminori; Horiuchi, Takahiko

    2009-01-01

    A method is proposed for estimating the spectral reflectance function of an object surface by using a six-color scanner. The scanner is regarded as a six-band spectral imaging system, since it captures six color channels in total from two separate scans using two difference lamps. First, we describe the basic characteristics of the imaging systems for a HP color scanner and a multiband camera used for comparison. Second, we describe a computational method for recovering surface-spectral reflectances from the noisy sensor outputs. A LMMSE estimator is presented as an optimal estimator. We discuss the reflectance estimation for non-flat surfaces with shading effect. A solution method is presented for the reliable reflectance estimation. Finally, the performance of the proposed method is examined in detail on experiments using the Macbeth Color Checker and non-flat objects.

  11. Dental impressions using 3D digital scanners: virtual becomes reality.

    Science.gov (United States)

    Birnbaum, Nathan S; Aaronson, Heidi B

    2008-10-01

    The technologies that have made the use of three-dimensional (3D) digital scanners an integral part of many industries for decades have been improved and refined for application to dentistry. Since the introduction of the first dental impressioning digital scanner in the 1980s, development engineers at a number of companies have enhanced the technologies and created in-office scanners that are increasingly user-friendly and able to produce precisely fitting dental restorations. These systems are capable of capturing 3D virtual images of tooth preparations, from which restorations may be fabricated directly (ie, CAD/CAM systems) or fabricated indirectly (ie, dedicated impression scanning systems for the creation of accurate master models). The use of these products is increasing rapidly around the world and presents a paradigm shift in the way in which dental impressions are made. Several of the leading 3D dental digital scanning systems are presented and discussed in this article.

  12. Restoration of Hyperspectral Push-Broom Scanner Data

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Conradsen, Knut

    1997-01-01

    Several effects combine to distort the multispectral data that are obtained from push-broom scanners. We develop an algorithm for restoration of such data, illustrated on images from the ROSIS scanner. In push-broom scanners variation between elements in the detector array results in a strong...... striping along flight lines. A non-systematic striping is also present along flight lines. Furthermore, line drop-outs occur, and finally, various types of electronic noise of salt-and-pepper type are also present. We describe techniques for the correction for all these types of effects. Line drop...... back into the original spectral space results in noise corrected variables. The noise components will now have been removed from the entire original data set by working on a smaller set of noise contaminated transformed variables only. The application of the above techniques results in a dramatic...

  13. LASER SCANNER RELIEFS OF SELECTED ARCHEOLOGICAL STRUCTURES IN THE SUBMERGED BAIAE (NAPLES

    Directory of Open Access Journals (Sweden)

    B. Davidde Petriaggi

    2015-04-01

    The experimentation conducted in Baiae by ISCR has shown the effectiveness of the Laser Scanner; this method also allowed to considerably reduce times and costs of underwater surveying. Moreover, the 3D relief obtained, has the characteristic of being geometrically (accuracy is sub-millimetric and chromatically faithful to the reconstructed structure, as well as being exportable in various forms and usable in several contexts. From 2011 to 2013 the evolution of the instrument Naumacos Laser Scanner 3 was developed and tested in the restoration work of the Villa con ingresso a protiro, where three structures were documented in 3D (a paved with black and white mosaic decorated with hexagons and peltae, a very fragmentary black and white mosaic and a stone artefact. This paper shows the results of this documentation campaign and it underlines the prominent role in documentation and in museum display of Underwater Cultural Heritage played by the three-dimensional laser scanning survey. This technique also contributes to the increase of the value of scientific dissemination.

  14. First small-animal in-vivo phase-contrast micro-CT scanner

    Science.gov (United States)

    Pauwels, B.; Bruyndonckx, P.; Liu, X.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Bech, M.; Pfeiffer, F.; Sasov, A.

    2012-10-01

    We have developed a compact grating-based in-vivo phase-contrast micro-CT system with a rotating gantry. The 50 W microfocus x-ray source operates with 20 to 50 kV peak energy. The length of the rotating interferometer is around 47 cm. Pixel size in the object is 30 micron; the field of view is approx. 35 mm in diameter, suited to image a mouse. The interferometer consists of three gratings: an absorption grating close to the x-ray source, a phase grating to introduce a π/2 phase shift and an absorption analyzer grating positioned at the first fractional Talbot distance. Numerous drives and actuators are used to provide angular and linear grating alignment, phase stepping and object/gantry precision positioning. Phantom studies were conducted to investigate performance, accuracy and stability of the scanner. In particular, the influences of gantry rotation and of temperature fluctuations on the interferometric image acquisition were characterized. Also dose measurements were performed. The first imaging results obtained with the system show the complementary nature of phase-contrast micro-CT images with respect to absorption-based micro-CT. Future improvements, necessary to optimize the scanner for in-vivo small-animal CT scanning on a regular and easy-to-use basis, are also discussed.

  15. Digital Hammurabi: design and development of a 3D scanner for cuneiform tablets

    Science.gov (United States)

    Hahn, Daniel V.; Duncan, Donald D.; Baldwin, Kevin C.; Cohen, Jonathon D.; Purnomo, Budirijanto

    2006-02-01

    Cuneiform is an ancient form of writing in which wooden reeds were used to impress shapes upon moist clay tablets. Upon drying, the tablets preserved the written script with remarkable accuracy and durability. There are currently hundreds of thousands of cuneiform tablets spread throughout the world in both museums and private collections. The global scale of these artifacts presents several problems for scholars who wish to study them. It may be difficult or impossible to obtain access to a given collection. In addition, photographic records of the tablets many times prove to be inadequate for proper examination. Photographs lack the ability to alter the lighting conditions and view direction. As a solution to these problems, we describe a 3D scanner capable of acquiring the shape, color, and reflectance of a tablet as a complete 3D object. This data set could then be stored in an online library and manipulated by suitable rendering software that would allow a user to specify any view direction and lighting condition. The scanner utilizes a camera and telecentric lens to acquire images of the tablet under varying controlled illumination conditions. Image data are processed using photometric stereo and structured light techniques to determine the tablet shape; color information is reconstructed from primary color monochrome image data. The scanned surface is sampled at 26.8 μm lateral spacing and the height information is calculated on a much smaller scale. Scans of adjacent tablet sides are registered together to form a 3D surface model.

  16. A Novel Low-Cost Adaptive Scanner Concept for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Ivo Stančić

    2014-12-01

    Full Text Available A fundamental problem in mobile robot applications is the need for accurate knowledge of the position of a vehicle for localizing itself and for avoiding obstacles in its path. In the search for a solution to this problem, researchers and engineers have developed different sensors, systems and techniques. Modern mobile robots relay information obtained from a variety of sensors and sophisticated data fusion algorithms. In this paper, a novel concept for a low-cost adaptive scanner based on a projected light pattern is proposed. The main advantage of the proposed system is its adaptivity, which enables the rapid scanning of the robot’s surroundings in search of obstacles and a more detailed scan of a single object to retrieve its surface configuration and perform some limited analyses. This paper addresses the concept behind such a scanner, where a proof-of-concept is achieved using an office DLP projector. During the measurements, the accuracy of the proposed system was tested on obstacles and objects with known configurations. The obtained results are presented and analyzed, and conclusions about the system’s performance and possible improvements are discussed.

  17. Investigation of the objects depending on distance scanned with Laser Scanner

    Science.gov (United States)

    Denli, H. H.; Celik, F.; Kaya, S.; Duran, Z.

    2014-12-01

    Terrestrial laser scanning technology provides its users with many advantages. Fast data collection and high accuracy data acquisition of terrestrial laser scanners extends their use. This method is often preferred in technical architecture studies, drawings of facade relieve, production of 3D models of urban and industrial structures. Tools having different precisions for various purposes and measurement principal are used. The system has three measurement principles, time-of-flight measurement, phase measurement and triangulation-based measurements. These methods and tools have been tested in laboratory conditions, provided with accuracy analyses. Different objects of different sizes are used and the effect of changing the scanning distance, angle, and resolution of the object geometry is examined. The instrument 'Scan Station C10', working with impulse method and having the feature of scanning with 4 different resolutions, respectively low, medium, high and highest scanning options has been employed. A position accuracy of 6 mm, distance accuracy of 4 mm, horizontal and vertical rotation angle of 12" has been used. On determining these accuracies, various measurements have been performed in the range of 1m - 50 m. For performing an accuracy analysis, a calibration plate has been used. Four different geometric shapes, equilateral triangle, square, circle and a plus sign have been placed on the plate. The measurement basis or line is 300 m long. The calibration plate ranging between 0 - 100 m is linearly placed at 10 m intervals, whereas the range of 100 - 300 m is linearly placed at 50 m intervals. Without moving the plate from the testing point, the scanning distance has been kept equal and has been scanned at three different angles. This process was repeated for every designated point. This study has been extrapolated to analyze the effect of different scanning distance, angle and resolution and the change in the structure of the object.

  18. "Cut wires grating – single longitudinal wire" planar metastructure to achieve microwave magnetic resonance in a single wire

    Directory of Open Access Journals (Sweden)

    G. Kraftmakher

    2012-09-01

    Full Text Available Here we present metastructures containing cut-wire grating and a single longitudinal cut-wire orthogonal to grating’s wires. Experimental investigations at microwaves show these structures can provide strong magnetic resonant response of a single nonmagnetic cut-wire in dependence on configuration and sizes in the case when metastructures are oriented along the direction of wave propagation and cut-wires of grating are parallel to the electric field of a plane electromagnetic wave. It is suggested a concept of magnetic response based on antiparallel resonant currents excited by magnetic field of surface polaritons in many spatial LC-circuits created from cut-wire pairs of a grating and section of longitudinal cut-wire. Three separately observed resonant effects connected with grating, LC-circuits and with longitudinal cut-wire have been identified applying measurements in waveguides, cutoff waveguides and free space. To tune and mark resonance split cut-wires are loaded with varactor diodes.

  19. Simultaneous measurements of three velocity components by a flying hot-wire method using an x-array hot-wire probe. 2nd Report. Calibration technique and its application to a flow field downstream of a vortex generator; X gata nessen probe wo mochiita flying hot wire ho ni yoru sokudo no sanhoko seibun no doji keisoku. 2. Nessen sensor no kosei hoho to uzu hasseiki karyu no keisokurei

    Energy Technology Data Exchange (ETDEWEB)

    Shiino, T. [Nissan Motor Co. Ltd., Tokyo (Japan); Yamamoto, K.; Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1995-12-25

    This paper proposes a calibration technique for a flying hot-wire method that uses with an X-array hot-wire probe. The flying hot-wire system moves the hot-wire probe in the span wise Z-direction of the flow field. The calibration of yaw and pitch angle sensitivities of the probe is of utmost importance to this system. After careful calibration, the system is applied to a three-dimensional flow to obtain three components of the mean velocity and six components of the Reynolds stress. The mean velocities and the Reynolds shear stresses downstream of a pair of vortex generators embedded in a two-dimensional boundary layer show the same profiles as those obtained with an ordinary X-array hot-wire probe. In one traverse, the flying hot-wire system can measure 60 points of six components of the Reynolds stress with good accuracy. 6 refs., 15 figs.

  20. MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open high-field MRI scanner with respiratory gating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Huang, Jie; Xu, Yujun; He, Xiangmeng; Lue, Yubo; Liu, Qiang; Li, Chengli [Department of Interventional MRI, Shandong Medical Imaging Research Institute affiliated to Shandong University, Shandong Key Laboratory of Advanced Medical Imaging Technologies and Applications, Jinan, Shandong (China); Li, Lei [Qingdao Central Hospital, Department of Interventional Radiology, Qingdao, Shandong (China); Blanco Sequeiros, Roberto [Turku University Hospital, The South Western Finland Imaging Centre, Turku (Finland)

    2017-04-15

    To prospectively evaluate the feasibility, safety and accuracy of MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open MR scanner with respiratory gating. Sixty-five patients with 65 solitary pulmonary lesions underwent MR-guided percutaneous coaxial cutting needle biopsy using a 1.0-T open MR scanner with respiratory gating. Lesions were divided into two groups according to maximum lesion diameters: ≤2.0 cm (n = 31) and >2.0 cm (n = 34). The final diagnosis was established in surgery and subsequent histology. Diagnostic accuracy, sensitivity and specificity were compared between the groups using Fisher's exact test. Accuracy, sensitivity and specificity of MRI-guided percutaneous pulmonary biopsy in diagnosing malignancy were 96.9 %, 96.4 % and 100 %, respectively. Accuracy, sensitivity and specificity were 96.8 %, 96.3 % and 100 % for lesions 2.0 cm or smaller and 97.1 %, 96.4 % and 100 %, respectively, for lesions larger than 2.0 cm. There was no significant difference between the two groups (P > 0.05). Biopsy-induced complications encountered were pneumothorax in 12.3 % (8/65) and haemoptysis in 4.6 % (3/65). There were no serious complications. MRI-guided percutaneous biopsy using a 1.0-T open MR scanner with respiratory gating is an accurate and safe diagnostic technique in evaluation of pulmonary lesions. (orig.)

  1. MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open high-field MRI scanner with respiratory gating.

    Science.gov (United States)

    Liu, Ming; Huang, Jie; Xu, Yujun; He, Xiangmeng; Li, Lei; Lü, Yubo; Liu, Qiang; Sequeiros, Roberto Blanco; Li, Chengli

    2017-04-01

    To prospectively evaluate the feasibility, safety and accuracy of MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open MR scanner with respiratory gating. Sixty-five patients with 65 solitary pulmonary lesions underwent MR-guided percutaneous coaxial cutting needle biopsy using a 1.0-T open MR scanner with respiratory gating. Lesions were divided into two groups according to maximum lesion diameters: ≤2.0 cm (n = 31) and >2.0 cm (n = 34). The final diagnosis was established in surgery and subsequent histology. Diagnostic accuracy, sensitivity and specificity were compared between the groups using Fisher's exact test. Accuracy, sensitivity and specificity of MRI-guided percutaneous pulmonary biopsy in diagnosing malignancy were 96.9 %, 96.4 % and 100 %, respectively. Accuracy, sensitivity and specificity were 96.8 %, 96.3 % and 100 % for lesions 2.0 cm or smaller and 97.1 %, 96.4 % and 100 %, respectively, for lesions larger than 2.0 cm. There was no significant difference between the two groups (P > 0.05). Biopsy-induced complications encountered were pneumothorax in 12.3 % (8/65) and haemoptysis in 4.6 % (3/65). There were no serious complications. MRI-guided percutaneous biopsy using a 1.0-T open MR scanner with respiratory gating is an accurate and safe diagnostic technique in evaluation of pulmonary lesions. • MRI-guided percutaneous lung biopsy using a 1.0-T open MR scanner is feasibility. • 96.9 % differentiation accuracy of malignant and benign lung lesions is possible. • No serious complications occurred in MRI-guided lung biopsy.

  2. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  3. Satellite orientation and position for geometric correction of scanner imagery.

    Science.gov (United States)

    Salamonowicz, P.H.

    1986-01-01

    The USGS Mini Image Processing System currently relies on a polynomial method for geometric correction of Landsat multispectral scanner (MSS) data. A large number of ground control points are required because polynomials do not model the sources of error. In order to reduce the number of necessary points, a set of mathematical equations modeling the Landsat satellite motions and MSS scanner has been derived and programmed. A best fit to the equations is obtained by using a least-squares technique that permits computation of the satellite orientation and position parameters based on only a few control points.-from Author

  4. Free-space wavelength-multiplexed optical scanner.

    Science.gov (United States)

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  5. Impact of lighting and attire on 3D scanner performance

    Science.gov (United States)

    Ajjimaporn, Pann; Feist, Dakota; Straub, Jeremy; Kerlin, Scott

    2015-05-01

    This paper considers the impact of lighting and attire on the performance of a previously created low-cost 3D scanning system. It considers the effect of adjusting the lighting configuration and of the subject's clothing on the quality of the scans and the number and types of objects that can be scanned. The experimentation performed tested different types (colors and textures) of clothing to assess which produced the best scans and multiple lighting configurations. This paper presents the results from this experimentation and, from this, make generalizations about optimizing visible light scanner performance before concluding with a discussion of scanner efficacy.

  6. Scanner baseliner monitoring and control in high volume manufacturing

    Science.gov (United States)

    Samudrala, Pavan; Chung, Woong Jae; Aung, Nyan; Subramany, Lokesh; Gao, Haiyong; Gomez, Juan-Manuel

    2016-03-01

    We analyze performance of different customized models on baseliner overlay data and demonstrate the reduction in overlay residuals by ~10%. Smart Sampling sets were assessed and compared with the full wafer measurements. We found that performance of the grid can still be maintained by going to one-third of total sampling points, while reducing metrology time by 60%. We also demonstrate the feasibility of achieving time to time matching using scanner fleet manager and thus identify the tool drifts even when the tool monitoring controls are within spec limits. We also explore the scanner feedback constant variation with illumination sources.

  7. Localization of a mobile laser scanner via dimensional reduction

    Science.gov (United States)

    Lehtola, Ville V.; Virtanen, Juho-Pekka; Vaaja, Matti T.; Hyyppä, Hannu; Nüchter, Andreas

    2016-11-01

    We extend the concept of intrinsic localization from a theoretical one-dimensional (1D) solution onto a 2D manifold that is embedded in a 3D space, and then recover the full six degrees of freedom for a mobile laser scanner with a simultaneous localization and mapping algorithm (SLAM). By intrinsic localization, we mean that no reference coordinate system, such as global navigation satellite system (GNSS), nor inertial measurement unit (IMU) are used. Experiments are conducted with a 2D laser scanner mounted on a rolling prototype platform, VILMA. The concept offers potential in being extendable to other wheeled platforms.

  8. A ’Millipede’ scanner model - Energy consumption and performance

    OpenAIRE

    Engelen, Johan B.C.; Khatib, Mohammed G.

    2008-01-01

    This short report (1) describes an energy model for the seek and read/write operations in a mass-balanced Y-scanner for parallel-probe storage by IBM [1] and (2) updates the settings of the MEMS model in DiskSim with recent published figures from this XY-scanner. To speedup system simulations, a straight forward second-order model is used without control loop. Read/write operation is modeled by quasi-static calculations. To approximate seek behavior, ’bang-bang’ control is assumed; the result...

  9. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  10. Tensile deformation of NiTi wires.

    Science.gov (United States)

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed.

  11. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  12. Rethinking Empathic Accuracy

    OpenAIRE

    Meadors, Joshua

    2014-01-01

    The present study is a methodological examination of the implicit empathic accuracy measure introduced by Zaki, Ochsner, and Bolger (2008). Empathic accuracy (EA) is defined as the ability to understand another person's thoughts and feelings (Ickes, 1993). Because this definition is similar to definitions of cognitive empathy (e.g., Shamay-Tsoory, 2011) and because affective empathy does not appear to be related to empathic accuracy (Zaki et al., 2008), the Basic Empathy Scale--which measures...

  13. High-speed high-resolution fine wire diameter measurement system

    Science.gov (United States)

    Guimaraes, Marcelo F.; Doiron, Theodore D.

    1993-10-01

    A fine wire diameter measurement system, for on-line monitoring, has been proposed by using a Machine Vision System and a visible diode laser. The system uses the Fraunhofer diffraction principle. The diffraction pattern, generated by a small wire exposed to a collimated laser beam, is acquired by a CCD industrial camera that is connected to a processing board inside a PC computer. Two different methods of measuring the diameters, static and dynamic, have been proposed in order to get high precision and high measurement rate. Wires with diameter from 10 to 350 micrometers have been measured by this system with 0.06% resolution. The accuracy is less than +/- 0.5% over a range of 90 - 350 micrometers diameter. For thinner wires, the measurement system should be calibrated to eliminate the systematic errors. The estimate random errors are +/- 0.25%. The instrument can measure the wire diameter at a 1000 Hz rate and allows it to move laterally in a 1 mm square window, maintaining the above accuracy. The system is compact and there are no moving parts.

  14. Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner.

    Science.gov (United States)

    Shah, Aj; Wollak, C; Shah, J B

    2013-12-01

    the accuracy in measuring chronic wounds might improve overall care of patients with non-healing wounds. This study consistently shows that the 3-D scanner is a more accurate, quicker, and safer method for measuring wounds.

  15. Wire frame to MOVIE. BYU transfer program

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, D.; Byers, L.D.; Benner, M.S.

    1982-12-01

    At SNLA, the primary computer-aided drafting tool is the Applicon Graphics System (AGS). The data base for mechanical parts on the AGS is a wire frame model. This report summarizes a method of adding surface information to the wire frame and passing this information up stream to MOVIE.BYU which is on a VAX computer and is used to produce shaded graphics pictures of the AGS wire frame model on a RAMTEK 9400 display terminal.

  16. Subchannel Analysis of Wire Wrapped SCWR Assembly

    OpenAIRE

    Jianqiang Shan; Henan Wang; Wei Liu; Linxing Song; Xuanxiang Chen; Yang Jiang

    2014-01-01

    Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1) the assemb...

  17. Development of Intercalated Wire and Cable.

    Science.gov (United States)

    1984-02-01

    size because of longitudinal splitting. Attempts have been made to 2 substitute wire drawing for the swaging (7) but these have been unsuccessful. It...appears that the radial pressure of the swaging may be an essential ingredient to the process and that the longitudinal tension of wire drawing causes...conductivity. It is possible that the high pressures encountered in swaging as opposed to wire drawing , for instance, are a significant factor. High

  18. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    Science.gov (United States)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  19. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  20. SYDESCO: a laser-video scanner for 3D scoliosis evaluations.

    Science.gov (United States)

    Treuillet, S; Lucas, Y; Crepin, G; Peuchot, B; Pichaud, J C

    2002-01-01

    SYDESCO is a new 3D vision system developed for trunk surface topography. This structured light surface scanner uses the principle of triangulation-based range sensing to infer 3D shape. The complete trunk acquisition is fast (2 seconds). The accuracy of the metric data is ensured by a subpixel image detection and a calibration process, which rectifies image deformations. A preliminary study presents results on 50 children in a gymnastics school. These children, aged between eight to sixteen years, are particularly exposed to spinal deformities. An asymmetry index is calculated from the 3D data to detect the pathologic cases. These results have been compared to an independent medical diagnosis. The system results have been confirmed for 72,1% of the patients.

  1. Enhanced Algorithms for Estimating Tree Trunk Diameter Using 2D Laser Scanner

    Directory of Open Access Journals (Sweden)

    Ola Ringdahl

    2013-10-01

    Full Text Available Accurate vehicle localization in forest environments is still an unresolved problem. Global navigation satellite systems (GNSS have well known limitations in dense forest, and have to be combined with for instance laser based SLAM algorithms to provide satisfying accuracy. Such algorithms typically require accurate detection of trees, and estimation of tree center locations in laser data. Both these operations depend on accurate estimations of tree trunk diameter. Diameter estimations are important also for several other forestry automation and remote sensing applications. This paper evaluates several existing algorithms for diameter estimation using 2D laser scanner data. Enhanced algorithms, compensating for beam width and using multiple scans, were also developed and evaluated. The best existing algorithms overestimated tree trunk diameter by ca. 40%. Our enhanced algorithms, compensating for laser beam width, reduced this error to less than 12%.

  2. Data processing and image reconstruction methods for the HEAD PENN-PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Karp, J.S.; Becher, A.J.; Matej, S. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Radiology; Kinahan, P.E. [Univ. of Pittsburgh, PA (United States). Dept. of Radiology

    1998-06-01

    Methods of reconstruction and quantitation are developed for a 3D system and are evaluated on the septa-less HEAD PENN-PET scanner, which has a very large axial acceptance angle ({theta}{sub max} = {+-}28{degree} in the center) and large axial field-of-view of 256 mm. To overcome the difficulties of data storage and reconstruction time with 3D reconstruction, the authors have reduced the size of the 4-D projection matrix required for 3D-RP reconstruction, and compared the results to the Fourier rebinning (FORE) algorithm. Both approaches achieve a favorable tradeoff in data storage requirements, reconstruction time, and accuracy that are suitable for clinical use. The authors have also studied the application of the FORE algorithm to transmission scans acquired with a singles point source ({sup 137}Cs) so that data quantitation can be performed.

  3. Odometry and laser scanner fusion based on a discrete extended Kalman Filter for robotic platooning guidance.

    Science.gov (United States)

    Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier

    2011-01-01

    This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications.

  4. Impiego della tecnologia laser scanner su mezzo mobile terrestre per il city modelling

    Directory of Open Access Journals (Sweden)

    Giorgio Vassena

    2009-03-01

    Full Text Available Use of laser scanner on mobile equipment for city modellingThe use of GPS/INS systems on mobile instrumental equipment for 3D city modelling is more and more widespread as advanced technology of survey. These systems offer good versatility, even if with some problems linked to urban canyon and to the drift of inertial systems.In urban contest it seems also profitable the employmentof classical topographic equipment for surveying of position of mobile mean in the 3D and colour data acquisition phase. This technology, easy to use, guarantees a good efficacy on urban scale and accuracies of alignment comparable to those of consolidated technology. The employment of equipment commonly available from operators makes the method proposed economically favourable, results being equal.

  5. Odometry and Laser Scanner Fusion Based on a Discrete Extended Kalman Filter for Robotic Platooning Guidance

    Directory of Open Access Journals (Sweden)

    Fernando Valdés

    2011-08-01

    Full Text Available This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a an odometric system and (b a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications.

  6. Multi-Target Detection from Full-Waveform Airborne Laser Scanner Using Phd Filter

    Science.gov (United States)

    Fuse, T.; Hiramatsu, D.; Nakanishi, W.

    2016-06-01

    We propose a new technique to detect multiple targets from full-waveform airborne laser scanner. We introduce probability hypothesis density (PHD) filter, a type of Bayesian filtering, by which we can estimate the number of targets and their positions simultaneously. PHD filter overcomes some limitations of conventional Gaussian decomposition method; PHD filter doesn't require a priori knowledge on the number of targets, assumption of parametric form of the intensity distribution. In addition, it can take a similarity between successive irradiations into account by modelling relative positions of the same targets spatially. Firstly we explain PHD filter and particle filter implementation to it. Secondly we formulate the multi-target detection problem on PHD filter by modelling components and parameters within it. At last we conducted the experiment on real data of forest and vegetation, and confirmed its ability and accuracy.

  7. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  8. Uniform wire segmentation algorithm of distributed interconnects

    Institute of Scientific and Technical Information of China (English)

    Yin Guoli; Lin Zhenghui

    2007-01-01

    A uniform wire segmentation algorithm for performance optimization of distributed RLC interconnects was proposed in this paper. The optimal wire length for identical segments and buffer size for buffer insertion are obtained through computation and derivation, based on a 2-pole approximation model of distributed RLC interconnect. For typical inductance value and long wires under 180nm technology, experiments show that the uniform wire segmentation technique proposed in the paper can reduce delay by about 27% ~ 56% , while requires 34%~69% less total buffer usage and thus 29% to 58% less power consumption. It is suitable for long RLC interconnect performance optimization.

  9. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  10. Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules

    Directory of Open Access Journals (Sweden)

    J. J. Diao

    2011-03-01

    Full Text Available Nanoparticle wire and integrated nanoparticle wire array have been prepared through a green technique: discontinuous vertical evaporation-driven colloidal deposition. The conducting gold nanoparticle wire made by this technique shows ability for the sensitive electronic detection of chemical and biological molecules due to its high surface to volume ratio. Furthermore, we also demonstrate a potential usage of integrated gold nanoparticle wire array for the localized detection.

  11. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  12. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  13. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG.

    Science.gov (United States)

    Kobald, S Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-06-21

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention.

  14. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG

    Science.gov (United States)

    Kobald, S. Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-01-01

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention. PMID:27324456

  15. Wired

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    迄今为止,已有45000个项目借助在线捐赠成功完成众筹,金额总计达5亿美元以上。其中绝大部分(据估计为80%)来自Kickstarter网站,这家网站如今几乎成了“众筹”这一术语的代名词。

  16. Total lithography system based on a new application software platform enabling smart scanner management

    Science.gov (United States)

    Kono, Hirotaka; Masaki, Kazuo; Matsuyama, Tomoyuki; Wakamoto, Shinji; Park, Seemoon; Sugihara, Taro; Shibazaki, Yuichi

    2015-03-01

    Along with device shrinkage, higher accuracy will continuously be required from photo-lithography tools in order to enhance on-product yield. In order to achieve higher yield, the advanced photo-lithography tools must be equipped with sophisticated tuning knobs on the tool and with software that is flexible enough to be applied per layer. This means photo-lithography tools must be capable of handling many types of sub-recipes and parameters simultaneously. To enable managing such a large amount of data easily and to setup lithography tools smoothly, we have developed a total lithography system called Litho Turnkey Solution based on a new software application platform, which we call Plug and Play Manager (PPM). PPM has its own graphical user interface, which enables total management of various data. Here various data means recipes, sub-recipes, tuning-parameters, measurement results, and so on. Through PPM, parameter making by intelligent applications such as CDU/Overlay tuning tools can easily be implemented. In addition, PPM is also linked to metrology tools and the customer's host computer, which enables data flow automation. Based on measurement data received from the metrology tools, PPM calculates correction parameters and sends them to the scanners automatically. This scheme can make calibration feedback loops possible. It should be noted that the abovementioned functions are running on the same platform through a user-friendly interface. This leads to smart scanner management and usability improvement. In this paper, we will demonstrate the latest development status of Nikon's total lithography solution based on PPM; describe details of each application; and provide supporting data for the accuracy and usability of the system. Keywords: exposure

  17. Design of Robot Wire Feed System for Hot Wire TIG Welding%热丝TIG焊机器人送丝系统设计

    Institute of Scientific and Technical Information of China (English)

    杨芙; 曲治瑾; 柏久阳; 张文明

    2012-01-01

    The wire feed system is the important part of TIG (Tungsten Inert Gas) welding robot. However, the traditional wire feed system is almost electrical control, besides, positioning accuracy is low and cannot realize the digital control. In order to meet the application of the TIG welding robot, a hot wire TIG welding robot of wire feed system based on PIC(Peripheral Interface Controller) was designed. The regulation of wire feed speed at 2 m/min-4 m/min was achieved and free communication system was realized by host computer.%送丝系统是TIG焊机器人系统的重要组成部分.传统送丝系统多采用电气控制,定位精度低且难以实现数字化控制.为了配合TIG焊机器人的应用,本文设计了一款基于PIC单片机的热丝TIG焊机器人送丝系统.实现了送丝速度在0.4~4 m/min范围可调,同时实现了送丝控制系统与机器人的自由通讯并能接受机器人的管理.

  18. Trends in Wire Electrical Discharge Machining (WEDM: A Review

    Directory of Open Access Journals (Sweden)

    Ms. Sharanya S. Nair

    2014-12-01

    Full Text Available The exponential growth of manufacturing industries and production and the increased need of accuracy and precision throws the spotlight on the nontraditional machining processes. The machining of metals and nonmetals having special properties like high strength, high hardness and toughness is done by non- conventional machining methods. Wire electrical discharge machining is one of the earliest non-traditional machining processes. This machining process competes with conventional machining such as milling, broaching, grinding etc. However, its ability to cut extremely intricate and delicate shapes with utmost accuracy makes this process most suitable among all other processes. The otherwise hard to be machined materials like carbides, tungsten, zirconium etc. can be easily machined using this process. This paper reviews notable work done in the field of WEDM by various researchers.

  19. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  20. Finite element analysis on the wire breaking rule of 1×7IWS steel wire rope

    Directory of Open Access Journals (Sweden)

    Wenzheng Du

    2017-01-01

    Full Text Available Taking the wire rope of 1×7+IWS structure as the research object, the influences of the number of broken wires on the stress distribution under the same axial load were simulated and analysed, and it also explored the rule of wire breaking of steel wire ropes. Based on the SolidWorks software, the three-dimensional model of the wire rope was established. Importing the model into the ABAQUS, the finite element model of the steel wire rope was established. Firstly 5000 N axial tension was placed on the rope, the stress distribution was simulated and analysed, and the steel wire with the largest stress distribution was found out. Then one steel wire was truncated with the load unchanged, and the finite element simulation was carried out again, and repeated the steps several times. The results show that, with the increase of the number of broken wires, the Von-Mises stress of the wire rope increases sharply, and the stress distribution is concentrated on the rest of the unbroken wires, which brings great challenges to the safety of the wire rope.

  1. A building extraction approach for Airborne Laser Scanner data utilizing the Object Based Image Analysis paradigm

    Science.gov (United States)

    Tomljenovic, Ivan; Tiede, Dirk; Blaschke, Thomas

    2016-10-01

    In the past two decades Object-Based Image Analysis (OBIA) established itself as an efficient approach for the classification and extraction of information from remote sensing imagery and, increasingly, from non-image based sources such as Airborne Laser Scanner (ALS) point clouds. ALS data is represented in the form of a point cloud with recorded multiple returns and intensities. In our work, we combined OBIA with ALS point cloud data in order to identify and extract buildings as 2D polygons representing roof outlines in a top down mapping approach. We performed rasterization of the ALS data into a height raster for the purpose of the generation of a Digital Surface Model (DSM) and a derived Digital Elevation Model (DEM). Further objects were generated in conjunction with point statistics from the linked point cloud. With the use of class modelling methods, we generated the final target class of objects representing buildings. The approach was developed for a test area in Biberach an der Riß (Germany). In order to point out the possibilities of the adaptation-free transferability to another data set, the algorithm has been applied "as is" to the ISPRS Benchmarking data set of Toronto (Canada). The obtained results show high accuracies for the initial study area (thematic accuracies of around 98%, geometric accuracy of above 80%). The very high performance within the ISPRS Benchmark without any modification of the algorithm and without any adaptation of parameters is particularly noteworthy.

  2. Modelling and operation of sub-miniature constant temperature hot-wire anemometry

    Science.gov (United States)

    Samie, M.; Watmuff, J. H.; Van Buren, T.; Hutchins, N.; Marusic, I.; Hultmark, M.; Smits, A. J.

    2016-12-01

    High-Reynolds number flows are very common in technological applications and in nature, and hot-wire anemometry is the preferred method for measuring the time-series of fluctuating velocity in such flows. However, measurement of very high-Reynolds number flows requires hot-wires with higher temporal and spatial resolution than is available with conventional probes. Much effort has therefore been devoted to decreasing the size of the hot-wire probes and this has led to associated challenges with operation. It is this latter operation problem which is the focus of this paper. To this end, an existing theoretical model of constant-temperature hot-wire anemometers (Perry 1982 Hot-Wire Anemometry (New York: Oxford University Press), Watmuff 1995 Exp. Therm. Fluid Sci. 11 117-34) is applied, and its accuracy is tested for the first time by comparison to measurements using an in-house constant temperature anemometer (CTA) for both conventional 5~μ m-diameter wires and sub-miniature hot-wires. With the aid of this model, we propose modifications to the CTA design and demonstrate successful operation of the CTA with the Princeton nano-scale thermal anemometry probe (NSTAP) (Bailey et al 2010 J. Fluid Mech. 663 160-79). It is also shown that the transfer function obtained from the model can be utilized to estimate the true frequency response and cut-off frequency of a hot-wire-CTA system to the velocity fluctuations, which is essential in accurate measurements of energy spectrum and higher order statistics of turbulent flows.

  3. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus del......, tablet computers, and netbooks) that are based on Linux operating systems....

  4. Feature-space transformation improves supervised segmentation across scanners

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Achterberg, Hakim C.; de Bruijne, Marleen

    2015-01-01

    Image-segmentation techniques based on supervised classification generally perform well on the condition that training and test samples have the same feature distribution. However, if training and test images are acquired with different scanners or scanning parameters, their feature distributions...

  5. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  6. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  7. Scanners, optical character readers, Cyrillic alphabet and Russian translations

    Science.gov (United States)

    Johnson, Gordon G.

    1995-01-01

    The writing of code for capture, in a uniform format, of bit maps of words and characters from scanner PICT files is presented. The coding of Dynamic Pattern Matched for the identification of the characters, words and sentences in preparation for translation is discussed.

  8. Benchmarking Advanced Control Algorithms for a Laser Scanner System

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Ordys, A.W.; Smillie, I.

    1996-01-01

    The paper describes tests performed on the laser scanner system toassess feasibility of modern control techniques in achieving a requiredperformance in the trajectory following problem. The two methods tested areQTR H-infinity and Predictive Control. The results are ilustated ona simulation example....

  9. T.O.F. Laser Scanner for the Surveying of Statues: a Test on a Real Case

    Science.gov (United States)

    Artese, G.; De Napoli, L.; Artese, S.

    2013-07-01

    The contribution regards the surveying of two statues of famous contemporary sculptors that have been placed in the central zone of Cosenza, which has been transformed in an open air museum. To realize a 3-D representation of the museum, different methodologies have been used, based on classical surveying (total stations and GNSS), image data and range data. The increasing performances of the new models of Time Of Flight (T.O.F.) laser scanners allow to build accurate models also for medium-size objects; on the other hand, the recent techniques of 3D modeling enable the processing of large amount of data and the effective removal of noises. Thus, if an extreme accuracy is not required, one can think to use the T.O.F. laser scanner, also for the surveying of statues. For the acquisition of the surfaces of the statues, two different types of laser scanning have been used: the Leica Scan StationC10, based on Time Of Flight, and the Minolta VIVID 300 triangulation scanner. In the paper, the comparison between the results obtained by using the different techniques is described.

  10. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-01-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between...... the full nonequilibrium Green's function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide...... a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule....

  11. Using the cathode surface of straw tube for measuring the track coordinates along the wire

    CERN Document Server

    Baranov, V A; Kravchuk, N P; Korenchenko, A S; Kuchinskiy, N A; Khomutov, N V; Movchan, S A; Smirnov, V S; Zyazyulya, F E

    2011-01-01

    Currently, the coordinate detectors based on straw tubes are widely used in high energy physics. This is caused by a high accuracy of the radial coordinate measurement using the drift time and a small amount of matter in the way of the measured particles. So far, the remaining problem is the measurement of the coordinate along the wire. This paper proposes a method for measuring the hit coordinates along the wire in a straw tube detector using the signals from the cathodes of the detector.

  12. Tuning a Tetrahertz Wire Laser

    Science.gov (United States)

    Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing

    2009-01-01

    Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/ or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique 'wire laser' device for which the transverse dimension w is much much less than lambda. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of approximately equal to 137 GHz (3.6%) from a single laser device at approximately equal to 3.8 THz.

  13. Bird on a (live) wire

    Energy Technology Data Exchange (ETDEWEB)

    Farr, M.

    2003-09-30

    Bird mortality as a result of contact with power lines is discussed. U. S. statistics are cited, according to which 174 million birds annually die as a result of contact with power lines, specifically when birds touch two phases of current at the same time. Raptors are particularly vulnerable to power-line electrocution due to their habit of perching on the highest vantage point available as they survey the ground for prey. Hydro lines located in agricultural areas, with bodies of water on one side and fields on the other, also obstruct flight of waterfowl as dusk and dawn when visibility is low. Various solutions designed to minimize the danger to birds are discussed. Among these are: changing the configuration of wires and cross arms to make them more visible to birds in flight and less tempting as perches, and adding simple wire markers such as flags, balloons, and coloured luminescent clips that flap and twirl in the wind. There is no evidence of any coordinated effort to deal with this problem in Ontario. However, a report is being prepared for submission to Environment Canada outlining risks to birds associated with the growing number of wind turbine power generators (negligible compared with power lines and communications towers), and offering suggestions on remedial measures. The Fatal Light Awareness Program (FLAP) also plans to lobby the Canadian Wildlife Service to discuss the possibility of coordinating efforts to monitor, educate about and ultimately reduce this form of bird mortality.

  14. Kalibrasi Single-Normal Hot-Wire Probe Sigmond Cohn Alloy 851 untuk Aliran Jet Terpulsasi

    OpenAIRE

    Hariyo Priambudi Setyo Pratomo; Klaus Bremhorst

    2006-01-01

    Calibration of a Sigmond Cohn alloy 851 single normal hot-wire probe was performed with a stationary calibration method with a range of nozzle exit velocity from 2 up to 80 m/s. The calibration aims to determine the best calibration response equation associated with the accuracy of curve fit. The curve fit accuracy test shows that the extended power-law equation provides a better curve fit than the simple power-law equation. A look-up table method used can improve the accuracy of curve fit of...

  15. A micron resolution optical scanner for characterization of silicon detectors

    Science.gov (United States)

    Shukla, R. A.; Dugad, S. R.; Garde, C. S.; Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.

    2014-02-01

    The emergence of high position resolution (˜10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  16. In vivo cellular imaging with microscopes enabled by MEMS scanners

    Science.gov (United States)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  17. A micron resolution optical scanner for characterization of silicon detectors.

    Science.gov (United States)

    Shukla, R A; Dugad, S R; Garde, C S; Gopal, A V; Gupta, S K; Prabhu, S S

    2014-02-01

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  18. NMR of geophysical drill cores with a mobile Halbach scanner

    Energy Technology Data Exchange (ETDEWEB)

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  19. Thermoprocessing and wire drawing behaviour of ultra high strength steel wires

    OpenAIRE

    Bargujer, S.S.; Singh, Parvinder; Raizada, Vikas

    2016-01-01

    The thermo-processing of piano wire rods is carried out in the lead bath. This experimentation is carried out under industrial conditions. The investigation is done to examine the effect of austenitic time, lead bath time and wire diameter on mechanical properties of lead patented wire. The Taguchi technique is adopted for optimization of thermo-processing of hypereutectoid steel wires. The lead patented wire of diameter 7.00 mm is cold drawn in a sequence of conical converging dies. The best...

  20. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    Science.gov (United States)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  1. Topological transition in coated wire medium

    CERN Document Server

    Gorlach, Maxim A; Slobozhanyuk, Alexey P; Bogdanov, Andrey A; Belov, Pavel A

    2016-01-01

    We develop a theory of nonlocal homogenization for metamaterial consisting of parallel metallic wires with dielectric coating. It is demonstrated that manipulation of dielectric contrast between wire dielectric shell and host material results in switching of metamaterial dispersion regime from elliptic to the hyperbolic one, i.e. the topological transition takes place. We confirm our theoretical predictions by full-wave numerical simulations.

  2. Kirschner Wire Breakage during Removal Requiring Retrieval

    Directory of Open Access Journals (Sweden)

    Kai Yuen Wong

    2016-01-01

    Full Text Available Kirschner wires (K-wires are widely used for fixation of fractures and dislocations in the hand as they are readily available, reliable, and cost-effective. Complication rates of up to 18% have been reported. However, K-wire breakage during removal is rare. We present one such case illustrating a simple technique for retrieval. A 35-year-old male presented with a distal phalanx fracture of his right middle finger. This open fracture was treated with K-wire fixation. Postoperatively, he developed a pin site infection with associated finger swelling. The K-wire broke during removal with the proximal piece completely retained in his middle phalanx. To minimise risk of osteomyelitis, the K-wire was removed with a novel surgical technique. He had full return of hand function. Intraoperative K-wire breakage has a reported rate of 0.1%. In our case, there was no obvious cause of breakage and the patient denied postoperative trauma. On the other hand, pin site infections are much more common with reported rates of up to 7% in the hand or wrist. K-wire fixation is a simple method for bony stabilisation but can be a demanding procedure with complications often overlooked. It is important to be aware of the potential sequelae.

  3. Flywheel system using wire-wound rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  4. Microfabricated wire arrays for Z-pinch.

    Energy Technology Data Exchange (ETDEWEB)

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  5. WIRED magazine announces rave awards nominees

    CERN Multimedia

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  6. Transcolonic Migration of Retained Epicardial Pacing Wires

    Directory of Open Access Journals (Sweden)

    Sara Gonzales

    2015-01-01

    Full Text Available Temporary epicardial pacing wires are associated with rare complications. Most of these occur in the chest. Even rarer are complications that occur within the abdomen. We report a case of migrating epicardial pacing wires entering the abdomen and penetrating the transverse colon found incidentally on colonoscopy in an asymptomatic patient.

  7. Effect of mixing scanner types and reconstruction kernels on the characterization of lung parenchymal pathologies: emphysema, interstitial pulmonary fibrosis and normal non-smokers

    Science.gov (United States)

    Xu, Ye; van Beek, Edwin J.; McLennan, Geoffrey; Guo, Junfeng; Sonka, Milan; Hoffman, Eric

    2006-03-01

    In this study we utilize our texture characterization software (3-D AMFM) to characterize interstitial lung diseases (including emphysema) based on MDCT generated volumetric data using 3-dimensional texture features. We have sought to test whether the scanner and reconstruction filter (kernel) type affect the classification of lung diseases using the 3-D AMFM. We collected MDCT images in three subject groups: emphysema (n=9), interstitial pulmonary fibrosis (IPF) (n=10), and normal non-smokers (n=9). In each group, images were scanned either on a Siemens Sensation 16 or 64-slice scanner, (B50f or B30 recon. kernel) or a Philips 4-slice scanner (B recon. kernel). A total of 1516 volumes of interest (VOIs; 21x21 pixels in plane) were marked by two chest imaging experts using the Iowa Pulmonary Analysis Software Suite (PASS). We calculated 24 volumetric features. Bayesian methods were used for classification. Images from different scanners/kernels were combined in all possible combinations to test how robust the tissue classification was relative to the differences in image characteristics. We used 10-fold cross validation for testing the result. Sensitivity, specificity and accuracy were calculated. One-way Analysis of Variances (ANOVA) was used to compare the classification result between the various combinations of scanner and reconstruction kernel types. This study yielded a sensitivity of 94%, 91%, 97%, and 93% for emphysema, ground-glass, honeycombing, and normal non-smoker patterns respectively using a mixture of all three subject groups. The specificity for these characterizations was 97%, 99%, 99%, and 98%, respectively. The F test result of ANOVA shows there is no significant difference (p <0.05) between different combinations of data with respect to scanner and convolution kernel type. Since different MDCT and reconstruction kernel types did not show significant differences in regards to the classification result, this study suggests that the 3-D AMFM can

  8. Raising the Barcode Scanner: Technology and Productivity in the Retail Sector

    OpenAIRE

    Emek Basker

    2011-01-01

    Barcodes and barcode scanners transformed the grocery industry in the 1970s. I use store-level data from the 1972, 1977, and 1982 Census of Retail Trade, matched to data on store scanner installations, to estimate scanners' effect on labor productivity. I find that early scanners increased a store's labor productivity, on average, by approximately 4.5 percent in the first few years. The effect was larger in stores carrying more packaged products, consistent with the presence of network extern...

  9. Impact of Orthodontic Brackets on the Intraoral Scan Data Accuracy

    Directory of Open Access Journals (Sweden)

    Ji-Man Park

    2016-01-01

    Full Text Available This study aims to compare the impact of buccal and lingual brackets on the accuracy of dental arch data acquired by 4 different digital intraoral scanners. Two pairs of dental casts, one with buccal brackets and the other with lingual brackets, were used. Digital measurements of the 3D images were compared to the actual measurements of the dental models, which were considered standard values. The horizontal measurements included intercanine widths and intermolar widths. The Mann–Whitney U test was performed for comparisons. iTero® and Trios® both showed high accuracy with relatively small maximum deviation of measurements. iTero showed a significantly higher accuracy in most of the arch width measurements on the buccal bracket model than on the lingual model (P<0.05. Zfx IntraScan® and E4D Dentist® produced maximum deviations of more than 2 mm from both the buccal and the lingual bracket models. After comparing the degree of distortion of the arch on the digital scans with actual measurements of the same models, iTero and Trios proved to be excellent in terms of trueness and precision. Nevertheless, digital intraoral scanners should be used more cautiously in arches with lingual brackets than in those with buccal brackets.

  10. Wire and Cable Cold Bending Test

    Science.gov (United States)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  11. Development and Manufacture of Bi-2223 Wires

    Science.gov (United States)

    Kobayashi, Shin-Ichi

    This chapter reviews Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3Ox (Bi-2223) wire made by the powder-in-tube technique (PIT). The currently leading high-temperature superconductors (HTS) wire technology for practical use is Bi-2223 wire, made by the controlled over-pressure (CT-OP) sintering process. The CT-OP process uses pressures up to 30MPa during heat treatment. The technique densifies the Bi-2223 filaments and enhances the uniformity of the electrical and mechanical performance in the Bi-2223 wire. Today, Bi-2223 wires are used in most HTS applications, such as power cables, many kinds of magnets, and motors for ship propulsion and electric vehicles.

  12. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  13. Accuracy of Sphygmomanometers

    OpenAIRE

    Basak, Okay

    2014-01-01

    One of the factors affecting the accuracy of readings of blood pressure is the equipment used. Defects or inaccuracy of aneroid sphygmomanometers may be source of error in blood pressure measurement. We inspected 100 sphygmomanometers for physical defects and assessed their accuracy against a standard mercury manometer at four different pressure points. 46 of the 100 sphygmomanometers were determined to be intolerant (deviation from the mercury manometer by greater than±3 mm Hg at two or more...

  14. Phonon spectra in quantum wires

    Directory of Open Access Journals (Sweden)

    Ilić Dušan

    2007-01-01

    Full Text Available Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most important feature is that, beside the allowed energy zones (which are continuous as in the bulk structure, zones of forbidden states appear. Different values of the boundary parameters lead to the appearance of lower and upper energy gaps, or dispersion branches spreading out of the bulk energy zone. The spectra of phonons in corresponding unbound structures were correlated to those in bound structures.

  15. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    Directory of Open Access Journals (Sweden)

    Zhang Zewei

    2014-01-01

    Full Text Available In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  16. Precision Mass Property Measurements Using a Five-Wire Torsion Pendulum

    Science.gov (United States)

    Swank, Aaron J.

    2012-01-01

    A method for measuring the moment of inertia of an object using a five-wire torsion pendulum design is described here. Typical moment of inertia measurement devices are capable of 1 part in 10(exp 3) accuracy and current state of the art techniques have capabilities of about one part in 10(exp 4). The five-wire apparatus design shows the prospect of improving on current state of the art. Current measurements using a laboratory prototype indicate a moment of inertia measurement precision better than a part in 10(exp 4). In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center. Typical mass center measurement devices exhibit a measurement precision up to approximately 1 micrometer. Although the five-wire pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.

  17. An interactive method based on the live wire for segmentation of the breast in mammography images.

    Science.gov (United States)

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  18. dc-ac hot-wire procedure for determining thermophysical properties under pressure

    Science.gov (United States)

    Nilsson, O.; Sandberg, O.; Bäckström, G.

    1986-09-01

    The paper describes a new hot-wire method for simultaneous determination of thermal conductivity and heat capacity per unit volume of electrically insulating liquids and solids under pressure. The method uses dc heating of the hot wire, whereas the temperature increase is recorded by an ac bridge circuit. The temperature data obtained are analyzed using the exact solution instead of the commonly used long time approximation. The procedure was tested on a number of alcohols and water and the accuracy was found to be 1.5%. New data on glycerol up to 1.5 GPa are presented. The appearance of an automagnetoresistance effect when Ni is employed as hot-wire probe is discussed.

  19. IMPROVEMENT OF 3D MONTE CARLO LOCALIZATION USING A DEPTH CAMERA AND TERRESTRIAL LASER SCANNER

    Directory of Open Access Journals (Sweden)

    S. Kanai

    2015-05-01

    Full Text Available Effective and accurate localization method in three-dimensional indoor environments is a key requirement for indoor navigation and lifelong robotic assistance. So far, Monte Carlo Localization (MCL has given one of the promising solutions for the indoor localization methods. Previous work of MCL has been mostly limited to 2D motion estimation in a planar map, and a few 3D MCL approaches have been recently proposed. However, their localization accuracy and efficiency still remain at an unsatisfactory level (a few hundreds millimetre error at up to a few FPS or is not fully verified with the precise ground truth. Therefore, the purpose of this study is to improve an accuracy and efficiency of 6DOF motion estimation in 3D MCL for indoor localization. Firstly, a terrestrial laser scanner is used for creating a precise 3D mesh model as an environment map, and a professional-level depth camera is installed as an outer sensor. GPU scene simulation is also introduced to upgrade the speed of prediction phase in MCL. Moreover, for further improvement, GPGPU programming is implemented to realize further speed up of the likelihood estimation phase, and anisotropic particle propagation is introduced into MCL based on the observations from an inertia sensor. Improvements in the localization accuracy and efficiency are verified by the comparison with a previous MCL method. As a result, it was confirmed that GPGPU-based algorithm was effective in increasing the computational efficiency to 10-50 FPS when the number of particles remain below a few hundreds. On the other hand, inertia sensor-based algorithm reduced the localization error to a median of 47mm even with less number of particles. The results showed that our proposed 3D MCL method outperforms the previous one in accuracy and efficiency.

  20. PubMed vs. HighWire Press: a head-to-head comparison of two medical literature search engines.

    Science.gov (United States)

    Vanhecke, Thomas E; Barnes, Michael A; Zimmerman, Janet; Shoichet, Sandor

    2007-09-01

    PubMed and HighWire Press are both useful medical literature search engines available for free to anyone on the internet. We measured retrieval accuracy, number of results generated, retrieval speed, features and search tools on HighWire Press and PubMed using the quick search features of each. We found that using HighWire Press resulted in a higher likelihood of retrieving the desired article and higher number of search results than the same search on PubMed. PubMed was faster than HighWire Press in delivering search results regardless of search settings. There are considerable differences in search features between these two search engines.

  1. Beam dumping ghost signals in electric sweep scanners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; /SNS Project, Oak Ridge /Tennessee U.; Leitner, M.; /LBL, Berkeley; Moehs, D.P.; /Fermilab; Keller, R.; /LBL, Berkeley; Welton, R.F.; /SNS Project, Oak Ridge

    2004-12-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates.

  2. Object 3D surface reconstruction approach using portable laser scanner

    Science.gov (United States)

    Xu, Ning; Zhang, Wei; Zhu, Liye; Li, Changqing; Wang, Shifeng

    2017-06-01

    The environment perception plays the key role for a robot system. The 3D surface of the objects can provide essential information for the robot to recognize objects. This paper present an approach to reconstruct objects' 3D surfaces using a portable laser scanner we designed which consists of a single-layer laser scanner, an encoder, a motor, power supply and mechanical components. The captured point cloud data is processed to remove the discrete points, denoise filtering, stitching and registration. Then the triangular mesh generation of point cloud is accomplished by using Gaussian bilateral filtering, ICP real-time registration and greedy triangle projection algorithm. The experiment result shows the feasibility of the device designed and the algorithm proposed.

  3. Quality of Plate Copies Digitized with a Commercially Available Scanner

    Science.gov (United States)

    Strelnitski, V.; Davis, A.

    2004-12-01

    Digitization of all the (ca. 8,000) 8"x10" plates of the Maria Mitchell Observatory's plate collection with the commercially available scanner AgfaScan T5000 took about 1.5 years. Scanning these plates with the same nominal resolution (10-20 microns) using one of the best astronomical digital microdensitometers would be about 8 times longer, and, correspondingly, 8 times more expensive. Such a fast job may raise doubts in the quality of the scans. We show, by comparison with the control scans obtained with the STScI's GAMMA laser microdensitometer, that the additional random errors for stellar photometry introduced by AgfaScan T5000 are, typically, less than 0.05 mag, and that this scanner does not produce any detectable additional astrometric errors. This project was supported by the NSF/REU grant AST-0354056 and the Nantucket Maria Mitchell Association.

  4. Alignment and resolution studies of a MARS scanner

    CERN Document Server

    Butler, A P; Bell, S T; Chelkov, G; Demichev, M; Gongadze, A; Kotov, S; Kozhevnikov, D; Kruchonak, U; Potrap, I; Smolyanskiy, P; Zhemchugov, A

    2015-01-01

    The MARS scanner is designed for the x-ray spectroscopic study of samples with the aid of computer tomography methods. Computer tomography allows the reconstruction of slices of an investigated sample using a set of shadow projections obtained for different angles. Projections in the MARS scanner are produced using a cone x-ray beam geometry. Correct reconstruction in this scheme requires precise knowledge of several geometrical parameters of a tomograph, such as displacement of a rotation axis, x-ray source position with respect to a camera, and camera inclinations. Use of inaccurate parameters leads to a poor sample reconstruction. Non-ideal positioning of camera, x-ray source and cylindrical rotating frame (gantry) itself on which these parts are located, leads to the need for tomograph alignment. In this note we describe the alignment procedure that was used to get different geometrical corrections for the reconstruction. Also, several different estimations of the final spatial resolution for reconstructe...

  5. Lensless image scanner using multilayered aperture array for noncontact imaging

    Science.gov (United States)

    Kawano, Hiroyuki

    2016-10-01

    We propose a new imaging system of a simple structure that uses a set of layered aperture arrays above a linear image sensor instead of an imaging lens. The image scanner transfers the image information by detecting the scattering rays from the object directly without any collecting power, as if it were an optical stamp. Since the aperture arrays shield the stray rays propagating obliquely, the image information can be read with high resolution even if the object floats within a few millimeters. The aperture arrays with staggered alignment in two lines widen the space with the adjacent pixel without decimating information. We manufactured a prototype model of 300-dpi resolution, whose height is as little as 5 mm. The experimental result shows that ghost images can be restricted sufficiently, and our scanner can clearly read an object within a space of <3.5 mm, meaning that it has a large depth of field of 3.5 mm.

  6. Robust Object Segmentation Using a Multi-Layer Laser Scanner

    Directory of Open Access Journals (Sweden)

    Beomseong Kim

    2014-10-01

    Full Text Available The major problem in an advanced driver assistance system (ADAS is the proper use of sensor measurements and recognition of the surrounding environment. To this end, there are several types of sensors to consider, one of which is the laser scanner. In this paper, we propose a method to segment the measurement of the surrounding environment as obtained by a multi-layer laser scanner. In the segmentation, a full set of measurements is decomposed into several segments, each representing a single object. Sometimes a ghost is detected due to the ground or fog, and the ghost has to be eliminated to ensure the stability of the system. The proposed method is implemented on a real vehicle, and its performance is tested in a real-world environment. The experiments show that the proposed method demonstrates good performance in many real-life situations.

  7. Robust object segmentation using a multi-layer laser scanner.

    Science.gov (United States)

    Kim, Beomseong; Choi, Baehoon; Yoo, Minkyun; Kim, Hyunju; Kim, Euntai

    2014-10-29

    The major problem in an advanced driver assistance system (ADAS) is the proper use of sensor measurements and recognition of the surrounding environment. To this end, there are several types of sensors to consider, one of which is the laser scanner. In this paper, we propose a method to segment the measurement of the surrounding environment as obtained by a multi-layer laser scanner. In the segmentation, a full set of measurements is decomposed into several segments, each representing a single object. Sometimes a ghost is detected due to the ground or fog, and the ghost has to be eliminated to ensure the stability of the system. The proposed method is implemented on a real vehicle, and its performance is tested in a real-world environment. The experiments show that the proposed method demonstrates good performance in many real-life situations.

  8. Photoacoustic imaging using an 8-beam Fabry-Perot scanner

    Science.gov (United States)

    Huynh, Nam; Ogunlade, Olumide; Zhang, Edward; Cox, Ben; Beard, Paul

    2016-03-01

    The planar Fabry Perot (FP) photoacoustic scanner has been shown to provide exquisite high resolution 3D images of soft tissue structures in vivo to depths up to approximately 10mm. However a significant limitation of current embodiments of the concept is low image acquisition speed. To increase acquisition speed, a novel multi-beam scanner architecture has been developed. This enables a line of equally spaced 8 interrogation beams to be scanned simultaneously across the FP sensor and the photoacoustic signals detected in parallel. In addition, an excitation laser operating at 200Hz was used. The combination of parallelising the detection and the high pulse repetition frequency (PRF) of the excitation laser has enabled dramatic reductions in image acquisition time to be achieved. A 3D image can now be acquired in 10 seconds and 2D images at video rates are now possible.

  9. Acoustic noise reduction in a 4 T MRI scanner.

    Science.gov (United States)

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  10. Experimental study of free abrasive wire sawing by using multi-strands wire

    Institute of Scientific and Technical Information of China (English)

    Yao Chunyan; Wang Jinsheng; Peng Wei; Jin Xin; Chen Shijie

    2013-01-01

    Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi-strands characteristics,we use it to replace the steel wire to do slicing experiment. In this paper,multi-strands wire is made by seven metal wires and has many grooves on its surface. Compared with steel wire,it can carry more grains into cutting zone which is conducive to improving the slicing efficiency. We do some comparative slic-ing experiments by applying multi-strands wire (ϕ0.25 mm) and steel wire (ϕ0.25 mm) to cut optical glass (K9). The results show that slicing efficiency and the surface roughness of the workpiece sliced by using multi-strands wire are better than that by using steel wire,but the kerf width of the former is wider than that of the latter in the same experimental conditions.

  11. Wire recycling for quantum circuit optimization

    Science.gov (United States)

    Paler, Alexandru; Wille, Robert; Devitt, Simon J.

    2016-10-01

    Quantum information processing is expressed using quantum bits (qubits) and quantum gates which are arranged in terms of quantum circuits. Here, each qubit is associated with a quantum circuit wire which is used to conduct the desired operations. Most of the existing quantum circuits allocate a single quantum circuit wire for each qubit and hence introduce significant overhead. In fact, qubits are usually not needed during the entire computation, only between their initialization and measurement. Before and after that, corresponding wires may be used by other qubits. In this work, we propose a solution which exploits this fact in order to optimize the design of quantum circuits with respect to the required wires. To this end, we introduce a representation of the lifetimes of all qubits which is used to analyze the respective need for wires. Based on this analysis, a method is proposed which "recycles" the available wires and, as a result, reduces the size of the resulting circuit. Numerical tests based on established reversible and fault-tolerant quantum circuits confirm that the proposed solution reduces the number of wires by more than 90% compared to unoptimized quantum circuits.

  12. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Science.gov (United States)

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Trindade, A.; Varela, J.

    2009-10-01

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Português de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 × 2 × 20 mm3 LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean CDOI-1 is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  13. Scanner tags, comic book piracy and participatory culture

    OpenAIRE

    Delwiche, Aaron

    2014-01-01

    To learn more about the motivations of individuals who scan and distribute comic books, this study reports findings from a content analysis of 389 scanner tags extracted from comic books posted on the torrent network Pirate Bay. Coded according to four categories linked to the literature on comic fandom and participatory culture, tags were analyzed in terms of recognition, aesthetic style, textual signifiers, and visual signifiers. Though comic book pirates seek recognition from their peers, ...

  14. Dynamic 3D computed tomography scanner for vascular imaging

    Science.gov (United States)

    Lee, Mark K.; Holdsworth, David W.; Fenster, Aaron

    2000-04-01

    A 3D dynamic computed-tomography (CT) scanner was developed for imaging objects undergoing periodic motion. The scanner system has high spatial and sufficient temporal resolution to produce quantitative tomographic/volume images of objects such as excised arterial samples perfused under physiological pressure conditions and enables the measurements of the local dynamic elastic modulus (Edyn) of the arteries in the axial and longitudinal directions. The system was comprised of a high resolution modified x-ray image intensifier (XRII) based computed tomographic system and a computer-controlled cardiac flow simulator. A standard NTSC CCD camera with a macro lens was coupled to the electro-optically zoomed XRII to acquire dynamic volumetric images. Through prospective cardiac gating and computer synchronized control, a time-resolved sequence of 20 mm thick high resolution volume images of porcine aortic specimens during one simulated cardiac cycle were obtained. Performance evaluation of the scanners illustrated that tomographic images can be obtained with resolution as high as 3.2 mm-1 with only a 9% decrease in the resolution for objects moving at velocities of 1 cm/s in 2D mode and static spatial resolution of 3.55 mm-1 with only a 14% decrease in the resolution in 3D mode for objects moving at a velocity of 10 cm/s. Application of the system for imaging of intact excised arterial specimens under simulated physiological flow/pressure conditions enabled measurements of the Edyn of the arteries with a precision of +/- kPa for the 3D scanner. Evaluation of the Edyn in the axial and longitudinal direction produced values of 428 +/- 35 kPa and 728 +/- 71 kPa, demonstrating the isotropic and homogeneous viscoelastic nature of the vascular specimens. These values obtained from the Dynamic CT systems were not statistically different (p less than 0.05) from the values obtained by standard uniaxial tensile testing and volumetric measurements.

  15. Whole brain CT perfusion on a 320-slice CT scanner

    Directory of Open Access Journals (Sweden)

    Jai Jai Shiva Shankar

    2011-01-01

    Full Text Available Computed tomography perfusion (CTP has been criticized for limited brain coverage. This may result in inadequate coverage of the lesion, inadequate arterial input function, or omission of the lesion within the target perfusion volume. The availability of 320-slice CT scanners offers whole brain coverage. This minimizes the chances of misregistration of lesions regardless of location, and makes the selection of the arterial input function easy. We present different clinical scenarios in which whole brain CTP is especially useful.

  16. Software platform for simulation of a prototype proton CT scanner.

    Science.gov (United States)

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  17. Building a 3D scanner system based on monocular vision.

    Science.gov (United States)

    Zhang, Zhiyi; Yuan, Lin

    2012-04-10

    This paper proposes a three-dimensional scanner system, which is built by using an ingenious geometric construction method based on monocular vision. The system is simple, low cost, and easy to use, and the measurement results are very precise. To build it, one web camera, one handheld linear laser, and one background calibration board are required. The experimental results show that the system is robust and effective, and the scanning precision can be satisfied for normal users.

  18. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Energy Technology Data Exchange (ETDEWEB)

    Bugalho, R; Carrico, B; Ferreira, C S; Frade, M; Ferreira, M; Moura, R; Ortigao, C; Pinheiro, J F; Rodrigues, P; Rolo, I; Silva, J C; Trindade, A; Varela, J [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Av. Elias Garcia 14-1, 1000-149 Lisboa (Portugal)], E-mail: frade@lip.pt

    2009-10-15

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Portugues de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 x 2 x 20 mm{sup 3} LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean C{sub DOI}{sup -1} is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  19. The Issue of Documentation of Hardly Accessible Historical Monuments by Using of Photogrammetry and Laser Scanner Techniques

    Directory of Open Access Journals (Sweden)

    Karol Bartoš

    2011-12-01

    Full Text Available This article deals with issues of measuring hardly accessible historical monuments on the example of the Slanec castle, Slovakia. In the first phase the convergence case of close-range photogrammetry was applied using digital camera Pentax K10D. Subsequently was created its 3D model in the PhotoModeler Scanner software. Special attention was paid to shape of ground, surroundings and characteristic of object of interest about choice of the right method and technique of making digital images. Processing of images was made with the highest possible accuracy with respect to the used method and apparatus. As a result of processing, the exact spatial model was made, which was exported to different formats. Also digital photo-plan with real photo textures and vector drawings was made. In the next phase the whole object of castle was measured with the laser scanner Leica ScanStation C10 and the final point cloud was processed in the best available software. The results obtained by both methods were compared in comparable digital formats with respect to the positional accuracy of final models. In the final phase is planned to obtain images appropriate for convergence case of photogrammetry using digital camera placed on a carrier on the MikroKopter HexaKopter controlled from the ground. Then the final comparison and further analysis of all acquired models can be made.

  20. Comparison of vidar dosimetry advantage pro and epson perfection V700 scanner in densitometry of radiochomic EBT2 film in measurement of high dose gradient

    Science.gov (United States)

    Bura, W.; Tangboonduangjit, P.; Damrongkijudom, N.

    2016-03-01

    Nowadays the radiochromic film is widely used to obtain dose distribution in two dimensions with high spatial resolution, less energy dependence and near tissue equivalent. It can be a commissioning tool to verify high dose gradient of dose distribution for IMRT and VMAT techniques. However, the film scanner could affect the accuracy of dose distribution if lack of precaution. In this study, the comparison between Epson perfection V700 and Vidar Dosimetry Pro Advantage (RED) is evaluated in terms of the capability to verify the 2D dose distribution for conventional and VMAT techniques. The Gafchromic® EBT2 films were read from two types of scanners (Epson perfection V700 and Vidar Dosimetry Pro Advantage) for volumetric modulated radiation therapy (VMAT) dosimetry. The software for analyzing the results of Epson perfection V700 and Vidar Dosimetry Pro Advantage are SNC Patient software and Omnipro’ IMRT software, respectively. Comparisons between measured and calculated dose distributions are reported as %passing rate and the gamma index for tolerance parameters of 3% and 3mm. The study found that the %passing rate obtained from Vidar scanner and Epson V700 scanner compared with Eclipse treatment planning system is more than 98% with the criteria of (3%/3mm).

  1. Separate-type scanner and wideband high-voltage amplifier for atomic-resolution and high-speed atomic force microscopy.

    Science.gov (United States)

    Miyata, Kazuki; Usho, Satoshi; Yamada, Satoshi; Furuya, Shoji; Yoshida, Kiyonori; Asakawa, Hitoshi; Fukuma, Takeshi

    2013-04-01

    We have developed a liquid-environment atomic force microscope with a wideband and low-noise scanning system for atomic-scale imaging of dynamic processes at solid/liquid interfaces. The developed scanning system consists of a separate-type scanner and a wideband high-voltage amplifier (HVA). By separating an XY-sample scanner from a Z-tip scanner, we have enabled to use a relatively large sample without compromising the high resonance frequency. We compared various cantilever- and sample-holding mechanisms by experiments and finite element analyses for optimizing the balance between the usability and frequency response characteristics. We specifically designed the HVA to drive the developed scanners, which enabled to achieve the positioning accuracy of 5.7 and 0.53 pm in the XY and Z axes, respectively. Such an excellent noise performance allowed us to perform atomic-resolution imaging of mica and calcite in liquid. Furthermore, we demonstrate in situ and atomic-resolution imaging of the calcite crystal growth process in water.

  2. Visual stimulus presentation using fiber optics in the MRI scanner.

    Science.gov (United States)

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  3. Using Laser Scanners to Augment the Systematic Error Pointing Model

    Science.gov (United States)

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  4. A biaxial PZT optical scanner for pico-projector applications

    Science.gov (United States)

    Ikegami, K.; Koyama, T.; Saito, T.; Yasuda, Y.; Toshiyoshi, H.

    2015-02-01

    We report a newly developed two-dimensional MEMS optical scanner based on the ADRIP (Arc Discharge Reactive Ion-Plating) deposited piezoelectric PZT film of typical 4 μm. A circular mirror of 1.2 mm in diameter is suspended within a pair of resonant mechanism that oscillates at 25 kHz for ±12° mechanical angle with a typical voltage of 10 V. A gimbal plate including the mirror is supported with another pair of meandering suspensions to tilt the plate in the orthogonal direction at 60 Hz for the off-resonant vertical motion of ±8° mechanical. Overall power consumption of the piezoelectric actuation was 100 mW or less. As a mechanical reinforce, a rib-structure was designed on the backside of the mirror by using a structural optimization tool TOSCA to suppress the dynamic curvature to 100 nm or less. A piezoelectric sensor was also integrated in the identical PZT film after optimizing the electrode shape to pick up the mechanical angle of the scanner and to give a trigger signal to the control system. A plug-in type pico-projector optics and electronics has been assembled in a 7.5 cm × 12 cm × 5 cm volume with RGB lasers to demonstrate a HD (high definition) class image projection of 720 horizontal lines. The fundamental resonance of the entire scanner mechanism was made to be 1 kHz or higher, thereby exhibiting a compatibility with vehicle applications.

  5. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  6. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  7. An endoscopic 3D scanner based on structured light.

    Science.gov (United States)

    Schmalz, Christoph; Forster, Frank; Schick, Anton; Angelopoulou, Elli

    2012-07-01

    We present a new endoscopic 3D scanning system based on Single Shot Structured Light. The proposed design makes it possible to build an extremely small scanner. The sensor head contains a catadioptric camera and a pattern projection unit. The paper describes the working principle and calibration procedure of the sensor. The prototype sensor head has a diameter of only 3.6mm and a length of 14mm. It is mounted on a flexible shaft. The scanner is designed for tubular cavities and has a cylindrical working volume of about 30mm length and 30mm diameter. It acquires 3D video at 30 frames per second and typically generates approximately 5000 3D points per frame. By design, the resolution varies over the working volume, but is generally better than 200μm. A prototype scanner has been built and is evaluated in experiments with phantoms and biological samples. The recorded average error on a known test object was 92μm.

  8. Space Station Freedom secondary power wiring requirements

    Science.gov (United States)

    Sawyer, C. R.

    1994-09-01

    Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.

  9. Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration

    Directory of Open Access Journals (Sweden)

    Qingwu Hu

    2016-03-01

    Full Text Available A multiple terrestrial laser scanner (TLS integration approach is proposed for the fine surveying and 3D modeling of ancient wooden architecture in an ancient building complex of Wudang Mountains, which is located in very steep surroundings making it difficult to access. Three-level TLS with a scalable measurement distance and accuracy is presented for data collection to compensate for data missed because of mutual sheltering and scanning view limitations. A multi-scale data fusion approach is proposed for data registration and filtering of the different scales and separated 3D data. A point projection algorithm together with point cloud slice tools is designed for fine surveying to generate all types of architecture maps, such as plan drawings, facade drawings, section drawings, and doors and windows drawings. The section drawings together with slicing point cloud are presented for the deformation analysis of the building structure. Along with fine drawings and laser scanning data, the 3D models of the ancient architecture components are built for digital management and visualization. Results show that the proposed approach can achieve fine surveying and 3D documentation of the ancient architecture within 3 mm accuracy. In addition, the defects of scanning view and mutual sheltering can overcome to obtain the complete and exact structure in detail.

  10. Stability and calibration of overlay and focus control for a double patterning immersion scanner

    Science.gov (United States)

    Yasuda, Masahiko; Wakamoto, Shinji; Imagawa, Hiroto; Takubo, Shinya; Shiba, Yuuji; Kikuchi, Takahisa; Shirata, Yosuke; Ishii, Yuuki

    2011-04-01

    To achieve the 2 nm overlay accuracy required for double patterning, we have introduced the NSR-S620D immersion scanner that employs an encoder metrology system. The key challenges for an encoder metrology system include its stability as well as the methods of calibration. The S620D has a hybrid metrology system consisting of encoders and interferometers, in XY and Z. The advantage of a hybrid metrology system is that we can continuously monitor the position of the stage using both encoders and interferometers for optimal positioning control, without any additional metrology requirements or throughput loss. To support this technology, the S620D has various encoder calibration functions that make and maintain the ideal grid, and control focus. In this paper we will introduce some of the encoder calibration functions based on the interferometer. We also provide the latest performance of the tool, with an emphasis on overlay and focus control, validating that the NSR-S620D delivers the necessary levels of accuracy and stability for the production phase of double patterning.

  11. Performance evaluation of laser line scanner for in-process inspection of 3D geometries

    Science.gov (United States)

    Zhou, Sen; Xu, Jian; Tao, Lei; Yan, Yu

    2016-09-01

    Non-contact measurement techniques using laser scanning have the power to deliver tremendous benefits to most notably manufacturing, and have the advantage of high speed and high detail output. However, a major obstacle to their widespread adoption in more complex on-line producing environments is their geometric constraints and low accuracy compared to the contact-based counterparts. The work presented in this paper introduces a performance evaluation test of laser line scanning for in-process inspection of 3D geometries. Some straightforward test methods that use a designed artifact are proposed. First, one work aims to experimentally investigate the location accuracy of knee point or corner point of edge features using a commercial laser stripe scanner, which is common in mechanical parts. Another work experimentally investigates the formation of outliers that may be usually promoted by reflective surfaces around surrounding area of corner point, and these outliers are characterized with large measurement errors, which significantly deteriorate the quality of the scanned point cloud data. Scanning path planning and outlier filter design are respectively discussed.

  12. Evaluation of transmission methodology and attenuation correction for the microPET Focus 220 animal scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Wencke [School of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe NSW 1825 (Australia); Meikle, Steven R [School of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe NSW 1825 (Australia); Siegel, Stefan [Siemens Preclinical Solutions, 810 Innovation Drive, Knoxville, TN 37932 (United States); Newport, Danny [Siemens Preclinical Solutions, 810 Innovation Drive, Knoxville, TN 37932 (United States); Banati, Richard B [School of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe NSW 1825 (Australia); Rosenfeld, Anatoly B [Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2522 (Australia)

    2006-08-21

    An accurate, low noise estimate of photon attenuation in the subject is required for quantitative microPET studies of molecular tracer distributions in vivo. In this work, several transmission-based measurement techniques were compared, including coincidence mode with and without rod windowing, singles mode with two different energy sources ({sup 68}Ge and {sup 57}Co), and postinjection transmission scanning. In addition, the effectiveness of transmission segmentation and the propagation of transmission bias and noise into the emission images were examined. The {sup 57}Co singles measurements provided the most accurate attenuation coefficients and superior signal-to-noise ratio, while {sup 68}Ge singles measurements were degraded due to scattering from the object. Scatter correction of {sup 68}Ge transmission data improved the accuracy for a 10 cm phantom but over-corrected for a mouse phantom. {sup 57}Co scanning also resulted in low bias and noise in postinjection transmission scans for emission activities up to 20 MBq. Segmentation worked most reliably for transmission data acquired with {sup 57}Co but the minor improvement in accuracy of attenuation coefficients and signal-to-noise may not justify its use, particularly for small subjects. We conclude that {sup 57}Co singles transmission scanning is the most suitable method for measured attenuation correction on the microPET Focus 220 animal scanner.

  13. Efficient system modeling for a small animal PET scanner with tapered DOI detectors.

    Science.gov (United States)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-21

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  14. Performance of an improved first generation optical CT scanner for 3D dosimetry.

    Science.gov (United States)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-21

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  15. Evaluating Measurement Accuracy

    CERN Document Server

    Rabinovich, Semyon G

    2010-01-01

    The goal of Evaluating Measurement Accuracy: A Practical Approach is to present methods for estimating the accuracy of measurements performed in industry, trade, and scientific research. Although multiple measurements are the focus of current theory, single measurements are the ones most commonly used. This book answers fundamental questions not addressed by present theory, such as how to discover the complete uncertainty of a measurement result. In developing a general theory of processing experimental data, this book, for the first time, presents the postulates of the theory of measurements. It introduces several new terms and definitions about the relationship between the accuracy of measuring instruments and measurements utilizing these instruments. It also offers well-grounded and practical methods for combining the components of measurement inaccuracy. From developing the theory of indirect measurements to proposing new methods of reduction in place of the traditional ones, this work encompasses the ful...

  16. Key technique of a detection sensor for coal mine wire ropes

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-yao; XU Zhao; HUA Gang; TIAN Jie; ZHOU Bing-bing; LU Yan-hong; CHEN Feng-jun

    2009-01-01

    Wire ropes, employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue. The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments. Magnetic flux leakage detection method (MFL), as an effective method, is these days widely used in detection of bro-ken strands of wire ropes. In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage (MFL), the effect of the distance between a sensor and the surface of a wire rope (i.e., lift-off) on detection by magnetic flux leakage was in-vestigated. An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the struc-ture of the detector is proposed from the point of view of the design of a magnetic circuit, to restrain the impact of fluctuations of sensor lift-off. The effect of this kind of method is validated by simulation and computation. The results show that the detection sensitivity is markedly increased by this method. Furthermore, the signal-to-noise ratio (SNR) can be increased by over 28%. This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accu-racy of MFL detection.

  17. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    Science.gov (United States)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed

  18. Accuracy study of new computer-assisted orthopedic surgery software

    Energy Technology Data Exchange (ETDEWEB)

    Sidon, Eli [Department of Orthopaedic Surgery, Beilinson-Rabin Medical Center, Petach Tikva (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Steinberg, Ely L., E-mail: steinberge@tasmc.health.gov.il [Department of Orthopaedic Surgery, Tel-Aviv Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2012-12-15

    Purpose: The new computerized system is based on image analysis and designed to aid in orthopedic surgeries by virtual trajectory of the guide wire, intra-operative planning and various measurements. Validation of the accuracy and safety of any computer-aided surgery system is essential before implementing it clinically. We examined the accuracy of guide-wire length and angle measurements and fusion of multiple adjacent images (panoramic view image, PVI{sup ®}) of the new software. Methods: This is a 2-part study. Part I: twenty guide wires were drilled to various depths in a synthetic femur model and the results obtained by the software measurements were compared with manual measurements by a caliper and a depth gauge. Part II: a sawbone femur shaft was osteotomized and various inclinations of >10° to the varus or valgus angles were tested. The manually obtained measurements of angles and lengths were compared to the new computerized system software PVI. Results: There was a significant positive linear correlation between all groups of the computerized length and the control measurements (r > 0.983, p < 0.01). There was no significant difference among different distances, angles or positions from the image intensifier. There was a significant positive linear correlation between the angle and length measurement on the PVI and the control measurement (r > 0.993, p < 0.01). Conclusions: The new computerized software has high reliability in performing measurements of length using an aiming, positioning and referring device intra-operatively.

  19. 7 CFR 1755.506 - Aerial wire services

    Science.gov (United States)

    2010-01-01

    ...), Specifications and Drawings for Service Installations at Customer Access Locations. The wire used for aerial... service wire spans. (d) Aerial service wires shall be run in accordance with the construction drawings... aerial service wires at poles shall be as illustrated in construction drawings 503-2 and 504 contained in...

  20. Diamagnetism in wire medium metamaterials: theory and experiment

    CERN Document Server

    Yagupov, Ilya; Kosulnikov, Sergei; Hasan, Mehedi; Iorsh, Ivan; Belov, Pavel

    2015-01-01

    Strong diamagnetic response of wire medium with finite wire radius is reported. Contrary to the previous works where it was assumed that the wire medium exhibits only the electric response, we show that the non-zero magnetic susceptibility has to be taken into account for proper effective medium description of the wire medium. Analytical and numerical results are supported by the experimental measurements.