WorldWideScience

Sample records for accumulators electric batteries

  1. Electric charger for an accumulator or battery

    NARCIS (Netherlands)

    Robers, E.W.J.; Molenaar, B.A.M.; Smit, W.; Bech, L.P.; Bouman, C.

    2009-01-01

    The invention relates to an electric charger for an accumulator or a battery or the like, which is adapted for rapid charging during an on-period and comprises for this purpose control means for starting and ending the on-period. The charger is provided with a circuit for converting a supply voltage

  2. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F; Castillo, S; Laberty- Robert, C; Pellizon-Birelli, M [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France); and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  3. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    2012-12-01

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  4. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  5. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  6. Design and Control of a Multi-Functional Energy Recovery Power Accumulator Battery Pack Testing System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-03-01

    Full Text Available In this paper, aiming at the energy loss and harmonic problems in the conventional power accumulator battery pack testing system (PABPTS, an improved multi-functional energy recovery PABPTS (ERPABPTS for electric vehicles (EVs was proposed. The improved system has the functions of harmonic detection, suppression, reactive compensation and energy recovery. The ERPABPTS, which contains a bi-directional buck-boost direct current (DC-DC converter and a bi-directional alternating current (AC-DC converter with an inductor-capacitor-inductor (LCL type filter interfacing to the AC-grid, is proposed. System configuration and operation principle of the combined system are discussed first, then, the reactive compensation and harmonic suppression controller under balanced grid-voltage condition are presented. Design of a fourth order band-pass Butterworth filter for current harmonic detection is put forward, and the reactive compensator design procedure considering the non-linear load is also illustrated. The proposed scheme is implemented in a 175-kW prototype in the laboratory. Simulation and experimental results show that the combined configuration can effectively realize energy recovery for high accuracy current test requirement, meanwhile, can effectively achieve reactive compensation and current harmonic suppression.

  7. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  8. Battery Electric Vehicles: characteristics and research projects

    NARCIS (Netherlands)

    Besselink, I.J.M.

    2010-01-01

    This presentation discusses briefly the history of the electric car and its main characteristics. Two projects introduced: the battery electric VW Lupo EL and URE05e electric Formula Student racecar. Presentation slides.

  9. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  10. Batteries for electric road vehicles.

    Science.gov (United States)

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  11. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F; Hartinger, L; Kiehne, H A; Niklas, H; Schiele, R; Steil, H U

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  12. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  13. Battery Health Management System for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays out a novel battery health management technique for application onboard an electric UAV. This technique is also applicable to other...

  14. Predicting Battery Life for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a novel battery health management technology for the new generation of electric unmanned aerial vehicles powered by long-life, high-density,...

  15. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  16. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  17. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  18. Battery Technologies for Mass Deployment of Electric Vehicles

    Science.gov (United States)

    2018-03-23

    Electric vehicle (EV) batteries have significantly improved since their inception. However, lifetime of these batteries is still strongly dependent on the usage profiles. This report describes aspects of EV battery utilization, and their impact on ba...

  19. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  20. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B; Johansson, Arne; Selaanger, P [Catella Generics, Kista (Sweden)

    1996-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  1. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  2. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  3. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  4. Effective Usage of Lithium Ion Batteries for Electric Vehicles

    OpenAIRE

    濱田, 耕治; ハマダ, コウジ; Koji, HAMADA

    2008-01-01

    Pure Electric Vehicles(PEV's) are promising when seen in relation to global environment. However, there is the need to solve a number of problems before PEV's become viable alternatives of transportation. For example, reduction of battery charge time, improvement of battery performance, and reduction in vehicle cost. A way to improve battery performance is to use lithium ion batteries. One problem with lithium ion batteries is with charging (recharging). It is difficult to provide a constant ...

  5. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  6. Optimized batteries for cars with dual electrical architecture

    Science.gov (United States)

    Douady, J. P.; Pascon, C.; Dugast, A.; Fossati, G.

    During recent years, the increase in car electrical equipment has led to many problems with traditional starter batteries (such as cranking failure due to flat batteries, battery cycling etc.). The main causes of these problems are the double function of the automotive battery (starter and service functions) and the difficulties in designing batteries well adapted to these two functions. In order to solve these problems a new concept — the dual-concept — has been developed with two separate batteries: one battery is dedicated to the starter function and the other is dedicated to the service function. Only one alternator charges the two batteries with a separation device between the two electrical circuits. The starter battery is located in the engine compartment while the service battery is located at the rear of the car. From the analysis of new requirements, battery designs have been optimized regarding the two types of functions: (i) a small battery with high specific power for the starting function; for this function a flooded battery with lead-calcium alloy grids and thin plates is proposed; (ii) for the service function, modified sealed gas-recombinant batteries with cycling and deep-discharge ability have been developed. The various advantages of the dual-concept are studied in terms of starting reliability, battery weight, and voltage supply. The operating conditions of the system and several dual electrical architectures have also been studied in the laboratory and the car. The feasibility of the concept is proved.

  7. Alkaline batteries for hybrid and electric vehicles

    Science.gov (United States)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  8. Alkaline batteries for hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Haschka, F.; Warthmann, W.; Benczur-Uermoessy, G. [DAUG Deutsche Automobilgesellschaft, Esslingen (Germany)

    1998-03-30

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g. nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries. (orig.)

  9. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  10. Electric vehicle battery reuse: Preparing for a second life

    Energy Technology Data Exchange (ETDEWEB)

    Casals, Lluc Canals; García, Beatriz Amante; Cremades, Lázaro V.

    2017-07-01

    Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants. Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective. This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy. Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita. 15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots. Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.

  11. Electric vehicle battery reuse: Preparing for a second life

    International Nuclear Information System (INIS)

    Casals, Lluc Canals; García, Beatriz Amante; Cremades, Lázaro V.

    2017-01-01

    Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants. Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective. This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy. Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita. 15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots. Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.

  12. Electric vehicle battery reuse: Preparing for a second life

    Directory of Open Access Journals (Sweden)

    Lluc Canals Casals

    2017-05-01

    Full Text Available Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants. Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective. This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy. Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita. 15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots. Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.

  13. Comparison of Different Battery Types for Electric Vehicles

    Science.gov (United States)

    Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B.

    2017-10-01

    Battery powered Electric Vehicles are starting to play a significant role in today’s automotive industry. There are many types of batteries found in the construction of today’s Electric Vehicles, being hard to decide which one fulfils best all the most important characteristics, from different viewpoints, such as energy storage efficiency, constructive characteristics, cost price, safety and utilization life. This study presents the autonomy of an Electric Vehicle that utilizes four different types of batteries: Lithium Ion (Li-Ion), Molten Salt (Na-NiCl2), Nickel Metal Hydride (Ni-MH) and Lithium Sulphur (Li-S), all of them having the same electric energy storage capacity. The novelty of this scientific work is the implementation of four different types of batteries for Electric Vehicles on the same model to evaluate the vehicle’s autonomy and the efficiency of these battery types on a driving cycle, in real time, digitized by computer simulation.

  14. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    Science.gov (United States)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  15. Foothill Transit Battery Electric Bus Demonstration Results

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Prohaska, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-27

    Foothill Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate its fleet of Proterra battery electric buses (BEBs) in revenue service. The focus of this evaluation is to compare performance of the BEBs to that of conventional technology and to track progress over time toward meeting performance targets. This project has also provided an opportunity for DOE to conduct a detailed evaluation of the BEBs and charging infrastructure. This report provides data on the buses from April 2014 through July 2015. Data are provided on a selection of compressed natural gas buses as a baseline comparison.

  16. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  17. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  18. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  19. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  20. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  1. Repurposing Used Electric Car Batteries: A Review of Options

    Science.gov (United States)

    DeRousseau, Mikaela; Gully, Benjamin; Taylor, Christopher; Apelian, Diran; Wang, Yan

    2017-09-01

    In the United States, millions of electric and hybrid vehicles have cumulatively been sold. Although the batteries in these vehicles are expected to last at least 8 years, end-of-life options must still be considered. There are several possible options for battery packs from electric vehicles when they reach end-of-life, including remanufacturing, repurposing for a different application, and recycling. Remanufacturing is the most desirable end-of-life scenario but is the most stringent in terms of battery quality. Recycling is less desirable because there are larger material and energy losses that occur in the process. Repurposing batteries for a different use lies between these two scenarios in terms of desirability. This review paper focuses on non-automotive reuse and explores several options for using electric car battery packs in grid energy storage applications.

  2. Battery diagnosis and battery monitoring in hybrid electric vehicles; Batteriediagnostik und Batteriemonitoring in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, T.; Kowal, J.; Waag, W.; Gerschler, J.B.; Sauer, D.U. [RWTH Aachen (DE). Inst. fuer Stromrichtertechnik und Elektrische Antriebe (ISEA)

    2007-07-01

    Even in conventional passenger cars the load on the batteries is at its limit due to the increasing number of electrical loads. It is therefore of special importance to know the status and the power capability of the battery at any time. To fulfil these requirements it is necessary that the battery diagnostics has a precise current measurement available in addition to the voltage and temperature measurements. Battery diagnosis is most successful of different algorithms are combined and errors from the measurements and the algorithms are taken actively into account. The general structure of battery diagnosis algorithms can be used for lead-acid, lithium-ion and NiMH batteries. However, the complexity is highest for lead-acid batteries. (orig.)

  3. Nickel-cadmium battery system for electric vehicles

    Science.gov (United States)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  4. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  5. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    Science.gov (United States)

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  7. Battery prices and capacity sensitivity: Electric drive vehicles

    DEFF Research Database (Denmark)

    Juul, Nina

    2012-01-01

    , the prices at which the electric drive vehicles become of interest to the power system are found. Smart charge, including the opportunity to discharge (vehicle-to-grid) is used in all scenarios. Analyses show that the marginal benefits decrease the larger the battery. For very high battery prices, large......The increase in fluctuating power production requires an increase in flexibility in the system as well. Flexibility can be found in generation technologies with fast response times or in storage options. In the transport sector, the proportion of electric drive vehicles is expected to increase over...... the next decade or two. These vehicles can provide some of the flexibility needed in the power system, in terms of both flexible demand and electricity storage. However, what are the batteries worth to the power system? And does the value depend on battery capacity? This article presents an analysis...

  8. Cost-effective energy management for hybrid electric heavy-duty truck including battery aging

    NARCIS (Netherlands)

    Pham, H.T.; Bosch, van den P.P.J.; Kessels, J.T.B.A.; Huisman, R.G.M.

    2013-01-01

    Battery temperature has large impact on battery power capability and battery life time. In Hybrid Electric Heavy-duty trucks (HEVs), the high-voltage battery is normally equipped with an active Battery Thermal Management System (BTMS) guaranteeing a desired battery life time. Since the BTMS can

  9. Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT)

    Science.gov (United States)

    Consortium and Partners | Transportation Research | NREL Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Consortium and Partners Computer-Aided Engineering for Electric -Drive Vehicle Batteries (CAEBAT) Consortium and Partners The Computer-Aided Engineering for Electric

  10. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  11. Investigation into the traction system of battery-driven vehicle (electric motorcar) with super capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kuzomin, Oleksandr; Gurtovyi, Mykhailo; Kirylyuk, Artur; Pismenckiy, Viktor; Slipchenko, Mykola [Kharkiv National Univ. of Radio Electronics, Kharkiv (Ukraine)

    2012-11-01

    The results of investigations into the main characteristics of the traction system of the electric motorcar (EM) with application of super capacitors (SC) to the EM starting and acceleration regimes are given. Dynamics of the consumed power at the EM starting and acceleration up to the specified speed, taking into account its mass, acceleration time and aerodynamic characteristics, is investigated. The authors have developed the microcontroller device ensuring the decrease in the peak load on the accumulator battery (AB) at the moment of the EM starting and acceleration, as well as the automatic redistribution of the electric motor electrical supply between the SC and AB. (orig.)

  12. Batteries and accumulators: everything you always wanted to know. Batteries, accumulators and the environment - questions and answers; Batterien und Akkus - Das wollten Sie wissen.. Fragen und Antworten zu Batterien, Akkus und Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Leuthold, S.; Minkos, A. (comps.)

    2006-07-15

    Batteries and accumulators are part of our everyday life. This brochure answers problems related to their use and disposal, chargers and charging. Starter batteries for motor vehicles are left out of account, as are special batteries e.g. for electric fences or lights on building sites. The brochure also explains the legal fundamentals for disposal of batteries and provides information on environmental problems relating to production and disposal. Frequently asked questions are answered on the final pages. [German] Batterien und Akkus begleiten unseren Alltag. Solange sie die noetige mobile Versorgung ermoeglichen, sind sie gern gesehen. Versagen sie ihren Dienst, beginnen die Probleme: Wohin mit der leeren Batterie, dem nicht mehr funktionsfaehigen Akku (Keinesfalls in den Hausmuell.)? Welches ist das richtige Ladegeraet und das richtige Ladeverfahren fuer den Akku? Zu diesen und anderen Fragen rund um Geraetebatterien und -akkus gibt diese Broschuere Auskunft. Nicht betrachtet werden hier allerdings Starterbatterien (z.B. fuer Autos und Motorraeder) und bestimmte Spezialbatterien (z.B. fuer Weidezaeune oder Baustellenlampen), die einen Sonderfall darstellen. Die Broschuere erlaeutert auch die gesetzlichen Grundlagen fuer die Entsorgung unbrauchbarer Batterien und Akkus und gibt Informationen zur Umweltbelastung durch Herstellung und Entsorgung. Am Ende der Broschuere werden haeufig gestellte Fragen und deren Antworten zusammengestellt.

  13. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  14. Impact of Battery Ageing on an Electric Vehicle Powertrain Optimisation

    OpenAIRE

    Auger, Daniel J.; Groff, Maxime F.; Mohan, Ganesh; Longo, Stefano; Assadian, Francis

    2014-01-01

    An electric vehicle’s battery is its most expensive component, and it cannot be charged and discharged indefinitely. This affects a consumer vehicle’s end-user value. Ageing is tolerated as an unwanted operational side-effect; manufacturers have little control over it. Recent publications have considered trade-offs between efficiency and ageing in plug-in hybrids (PHEVs) but there is no equivalent literature for pure EVs. For PHEVs, battery ageing has been modelled by translating current dema...

  15. The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal

    Directory of Open Access Journals (Sweden)

    Minfang Huang

    2016-06-01

    Full Text Available Electric vehicles play a key role for developing an eco-sustainable transport system. One critical component of an electric vehicle is its battery, which can be quickly charged or exchanged before it runs out. The problem of electric vehicle dispatching falls into the category of the shortest path problem with resource renewal. In this paper, we study the shortest path problems in (1 electric transit bus scheduling and (2 electric truck routing with time windows. In these applications, a fully-charged battery allows running a limited operational distance, and the battery before depletion needs to be quickly charged or exchanged with a fully-charged one at a battery management facility. The limited distance and battery renewal result in a shortest path problem with resource renewal. We develop a label-correcting algorithm with state space relaxation to find optimal solutions. In the computational experiments, real-world road geometry data are used to generate realistic travel distances, and other types of data are obtained from the real world or randomly generated. The computational results show that the label-correcting algorithm performs very well.

  16. Optimal energy management strategy for battery powered electric vehicles

    International Nuclear Information System (INIS)

    Xi, Jiaqi; Li, Mian; Xu, Min

    2014-01-01

    Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios

  17. Design and Implementation of Battery Management System for Electric Bicycle

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Today the electric vehicle (EV has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optimized in order to replace the current energy which is fossil fuel. A clean and green energy [2]. Because of this, it is very important to make sure that the battery that being used is reliable as the fossil fuel. Thus, the design of the battery management system plays an important role on battery life preservation and performance improvement of EV [3]. The BMS also performs many tasks including the measurement of system voltage, current and temperature, the cells’ state of charge (SOC, state of health (SOH, remaining useful life (RUL determination, controlling and monitoring the charge / discharge characteristics and cell balancing [3]. For this project, 18650 Lithium-Ion battery is used to develop battery management for 144V 50Ah. As lithium-ion batteries have high value of specific energy, high energy density, high open circuit voltage, and low self-discharge, they are a proper candidate for EVs among other cell chemistries [4].

  18. Cardiac pacemaker. [electric-battery powered

    Energy Technology Data Exchange (ETDEWEB)

    Kolenik, S A

    1976-01-02

    The construction of a cardiac pacemaker is described which is characterized by particularly small dimensions, small weight and long life duration. The weight is under 100g, the specific weight under 1.7. Mass inertia forces which occur through acceleration and retardation processes, thus remain below the threshold values, above which one would have to reckon with considerable damaging of the surrounding body tissue. The maintaining of small size and slight weight is achieved by using an oscillator on COSMOS basis, where by considerably lower energy consumption, among others the lifetimes of the batteries used - a lithium anode with thionyl chloride electrolyte - is extended to over 5 years. The reliability can be increased by the use of 2 or more batteries. The designed dimension are 20x60x60 mm/sup 3/.

  19. Online prediction of battery electric vehicle energy consumption

    NARCIS (Netherlands)

    Wang, Jiquan; Besselink, Igo; Nijmeijer, Henk

    2016-01-01

    The energy consumption of battery electric vehicles (BEVs) depends on a number of factors, such as vehicle characteristics, driving behavior, route information, traffic states and weather conditions. The variance of these factors and the correlation among each other make the energy consumption

  20. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  1. A review on battery thermal management in electric vehicle application

    Science.gov (United States)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  2. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear....... Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs...

  3. Batteries and fuel cells for emerging electric vehicle markets

    Science.gov (United States)

    Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei

    2018-04-01

    Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.

  4. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  5. Sodium-sulphur batteries for electric road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, M.F. (Chloride Silent Power Ltd., Runcorn (UK))

    1989-04-01

    The sodium sulphur couple is, in principle, very well behaved and has operational characteristics which make it ideal for electric vehicle use. Design of the battery system for road use requires that a number of practical considerations are addressed. In particular, the battery operates at 350 deg C and requires a thermal enclosure with thermal management. The cell interconnection network must address the consequences of end-of-life failure and the voltages across the individual cells should be limited, both in charge and discharge. (author).

  6. Application of resettable elements for electrical protection of solar batteries

    Directory of Open Access Journals (Sweden)

    Tonkoshkur A. S.

    2018-06-01

    Full Text Available The manifestation and formation of various defects in the process of exploitation in real photovoltaic cells and their compounds as well as their work in the regime of changing non-uniform illumination lead to the so-called series and parallel inconsistencies (differences of electrical characteristics between separate cells and their groups. This results in local overheating and intensifying of degradation processes. In some cases temporary disconnection (isolation of the corresponding elements of the solar batteries is more appropriate in order to increase their service life. In this work additional devices for insulation of overheating cells (and/or components of solar batteries such as «PolySwith» resettable fuses are proposed to be used as a perspective solution of such problems. These structures are polymer composites with nanosized carbon fillers. Electrical resistance of such a fuse increases abruptly by several orders of magnitude when certain threshold temperature is reached, and when the temperature decreases the fuse returns to its initial high-conductivity state. This study investigates the possibilities of using the specified type of fuses for electrical insulation of «overheated» photovoltaic cells. Particular attention is paid to the research of the effect of fuses on the working of the solar batteries in the operating temperature range and their functional applicability in emergency situations associated with overheating. The studies were carried out using a model structure of several series of parallel connected photovoltaic cells and specified fuses. Attention is paid to the influence of such factors as the ambient temperature and the drift of the fuses resistance in the conducting state in the process their multiple switching. It has been established that such protection elements do not influence the work of solar batteries in operating temperature range and are functionally applicable for the electrical isolation of local

  7. Design options for automotive batteries in advanced car electrical systems

    Science.gov (United States)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  8. Europe in the global race for electrical batteries

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2017-07-01

    This study weighs up the different strategic approaches that Europe may adopt in the industrial race for electrical batteries, taking into account the demand potential for e-mobility and stationary storage, the global competitive landscape and the policy support for local players in Asia and the U.S. The future looks bright for battery storage technologies. They could be the answer to the grid constraints that come with the rise of intermittent renewable electricity, while opening the door to the electrification of the transport sector and a reduction of its carbon footprint. Significant improvements in terms of performance and manufacturing costs have been achieved in recent years, thanks to the development of portable electronic devices and the push for lithium-ion solutions. The prospect of widening the client base to the automobile and energy industries is now triggering a massive wave of investment in battery manufacturing capacities. Economies of scale and increasing pressure on margins should make battery technologies even more affordable, and facilitate their adoption beyond public support schemes. A true industrial race is launched, but it takes place primarily in Asia, and to a lesser extent in North America. In these regions, public authorities are already proactive in promoting local industrial players on a global market that is buoyant but still highly risky. Unless the European Union reacts swiftly, it could see its internal demand being primarily covered by non-European manufacturers. While the EU has strong academic and industrial assets in the battery field, it risks being left behind the new mass markets if it proves unable to support the European battery industry with concerted efforts. The challenge is twofold: seizing a major opportunity in terms of growth and job creation, while preventing the emergence of major technology dependence

  9. Performance of batteries for electric vehicles on short and longer term

    NARCIS (Netherlands)

    Gerssen - Gondelach, Sarah|info:eu-repo/dai/nl/355262436; Faaij, André P C|info:eu-repo/dai/nl/10685903X

    2012-01-01

    In this work, the prospects of available and new battery technologies for battery electric vehicles (BEVs) are examined. Five selected battery technologies are assessed on battery performance and cost in the short, medium and long term. Driving cycle simulations are carried out to assess the

  10. Performance of Batteries for electric vehicles on shorter and longer term

    NARCIS (Netherlands)

    Gerssen-Gondelach, S.J.; Faaij, A.P.C.

    2012-01-01

    In this work, the prospects of available and new battery technologies for battery electric vehicles (BEVs) are examined. Five selected battery technologies are assessed on battery performance and cost in the short, medium and long term. Driving cycle simulations are carried out to assess the

  11. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  12. Using Fuel Cells to Increase the Range of Battery Electric Vehicles | News

    Science.gov (United States)

    | NREL Using Fuel Cells to Increase the Range of Battery Electric Vehicles Using Fuel Cells to significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell -Duty Battery Electric Vehicles through the Use of Hydrogen Fuel Cells"-presented at the Society of

  13. Modeling of electric vehicle battery for vehicle-to-grid applications

    DEFF Research Database (Denmark)

    Pang, Ying; Brady, Cormac; Pellegrino, Giustino

    2013-01-01

    Electric vehicle battery models are essential when performing analysis of EV systems. The battery package of electric vehicles is complicated and unpredictable because of its chemical based functioning. In this paper, a battery model is presented with a number of internal and external factors taken...

  14. Optimization of the lead-acid battery for powering electric road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Friedheim, G [Accumulatorenfabriken Wilhem Hagen A.G., Soest (Germany, F.R.)

    1977-01-01

    A report is given on tests for the optimization of the lead accumulator for electric vehicles. The aim is to increase the specific energy (with adequate strength per cycle) and service life. For investigating this function systematic tests were made with different plate thicknesses and suitable plate surface. Further improvements were made by such factors, as the specific energy, which give low maintenance for the lead battery. Improved properties can be achieved by the construction and material of the casing and supports, and of the plate insulation.

  15. Battery electric vehicles - implications for the driver interface.

    Science.gov (United States)

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed.

  16. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  17. Electric converters of electromagnetic strike machine with battery power

    Science.gov (United States)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  18. A brief review on key technologies in the battery management system of electric vehicles

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  19. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  20. Impact of Battery Ageing on an Electric Vehicle Powertrain Optimisation

    Directory of Open Access Journals (Sweden)

    Daniel J. Auger

    2014-12-01

    Full Text Available An electric vehicle’s battery is its most expensive component, and it cannot be charged and discharged indefinitely. This affects a consumer vehicle’s end-user value. Ageing is tolerated as an unwanted operational side-effect; manufacturers have little control over it. Recent publications have considered trade-offs between efficiency and ageing in plug-in hybrids (PHEVs but there is no equivalent literature for pure EVs. For PHEVs, battery ageing has been modelled by translating current demands into chemical degradation. Given such models it is possible to produce similar trade-offs for EVs. We consider the effects of varying battery size and introducing a parallel supercapacitor pack. (Supercapacitors can smooth current demands, but their weight and electronics reduce economy. We extend existing EV optimisation techniques to include battery ageing, illustrated with vehicle case studies. We comment on the applicability to similar EV problems and identify where additional research is needed to improve on our assumptions.

  1. Congestion patterns of electric vehicles with limited battery capacity

    Science.gov (United States)

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875

  2. Design of an onboard battery charger for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Heckford, Simon

    2001-07-01

    This report describes the design of an on-board battery charger for an electric car. There are already various battery charger units on the market. However, these are not specifically designed for this application, and consequently do not provide an ideal solution. Because these products are not specific to one application, and instead opt to cover a variety of briefs, they are not ideal. They also tend to be heavier and more expensive than if the charger was built specifically for one purpose. The main design considerations were that the charger should be compact and lightweight. It was also specified that the design should be able to operate using either the single-phase or three-phase AC supply. Before the design process for the battery charger could commence, it was necessary for the author to get an appreciation of power electronics, since he had no previous experience in the subject. The author focused his attention on areas of the subject most valuable to the project, including becoming familiar with the principle behind battery chargers. Once the required knowledge was obtained, the author could begin designing the charger. The majority of the design was actually undertaken using two software packages called MATLAB and Simulink, whilst also using the knowledge acquired. Regular discussions were had with the project team in order to ensure that the correct methodology was being used and a suitable design was duly developed. Possible further work was identified which could not be carried out within the time constraints of this project.

  3. Integral inverter/battery charger for use in electric vehicles

    Science.gov (United States)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  4. Congestion patterns of electric vehicles with limited battery capacity.

    Science.gov (United States)

    Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.

  5. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.

    Science.gov (United States)

    Cox, Brian; Mutel, Christopher L; Bauer, Christian; Mendoza Beltran, Angelica; van Vuuren, Detlef P

    2018-04-17

    The future environmental impacts of battery electric vehicles (EVs) are very important given their expected dominance in future transport systems. Previous studies have shown these impacts to be highly uncertain, though a detailed treatment of this uncertainty is still lacking. We help to fill this gap by using Monte Carlo and global sensitivity analysis to quantify parametric uncertainty and also consider two additional factors that have not yet been addressed in the field. First, we include changes to driving patterns due to the introduction of autonomous and connected vehicles. Second, we deeply integrate scenario results from the IMAGE integrated assessment model into our life cycle database to include the impacts of changes to the electricity sector on the environmental burdens of producing and recharging future EVs. Future EVs are expected to have 45-78% lower climate change impacts than current EVs. Electricity used for charging is the largest source of variability in results, though vehicle size, lifetime, driving patterns, and battery size also strongly contribute to variability. We also show that it is imperative to consider changes to the electricity sector when calculating upstream impacts of EVs, as without this, results could be overestimated by up to 75%.

  6. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass...

  7. A Novel Electric Bicycle Battery Monitoring System Based on Android Client

    Directory of Open Access Journals (Sweden)

    Chuanxue Song

    2017-01-01

    Full Text Available The battery monitoring system (BMS plays a crucial role in maintaining the safe operation of the lithium battery electric bicycle and prolonging the life of the battery pack. This paper designed a set of new battery monitoring systems based on the Android system and ARM single-chip microcomputer to enable direct management of the lithium battery pack and convenient monitoring of the state of the battery pack. The BMS realizes the goal of monitoring the voltage, current, and ambient temperature of lithium batteries, estimating the state of charge (SOC and state of health (SOH, protecting the battery from abuse during charging or discharging, and ensuring the consistency of the batteries by integrating the passive equalization circuit. The BMS was proven effective and feasible through several tests, including charging/discharging, estimation accuracy, and communication tests. The results indicated that the BMS could be used in the design and application of the electric bicycle.

  8. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  9. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    International Nuclear Information System (INIS)

    Walker, Lee Kenneth

    2017-01-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  10. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lee Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  11. Motor Integrated Permanent Magnet Gear in a Battery Electrical Vehicle

    DEFF Research Database (Denmark)

    Frandsen, Tommy; Mathe, Laszlo; Berg, Nick Ilsø

    2015-01-01

    This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV......) and the background for the specifications are elaborated. Simulated as well as measured results of rotational losses of the first and second version are compared. The efficiency of the new design is investigated and compared to three direct drive motors in a few operating points and the MIPMG v.2 seems superior when...

  12. Storage battery for electric vehicles. Energiespeicher fuer ein Elektrokraftfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-22

    Lead batteries in electric vehicles tend to produce electrolytic gas which will entrain acid from the cells during its discharge. The loss of acid will reduce the recombinator efficiency and tends to cause corrosion. To prevent this, an acid separation stage is arranged in the gas discharge duct. The acid separation stage consists of a gas washer and a dry filter. Acid separation is enhanced by small plastic elements arranged in the gas discharge chamber of the gas washer and the gas supply chamber of the dry filter. The gas outlet chamber above the washing liquid has a large volume in order to prevent washing liquid from slopping out.

  13. An unusual electrical burn caused by alkaline batteries

    Directory of Open Access Journals (Sweden)

    Tyng-Luen Roan

    2015-02-01

    Full Text Available Electrical burns caused by low-voltage batteries are rarely reported. We recently encountered a male patient who suffered from a superficial second-degree burn over his left elbow and back. The total body surface area of the burn was estimated to be 6%. After interviewing the patient, the cause was suspected to be related to the explosion of a music player on the left-side of his waist, carried on his belt while he was painting a bathroom wall. Elevated creatine kinase levels and hematuria indicated rhabdomyolysis and suggested an electrical burn. Initial treatment was done in the burn intensive care unit with fluid challenge and wound care. The creatine kinase level decreased gradually and the hematuria was gone after 4 days in the intensive care unit. He was then transferred to the general ward for further wound management and discharged from our burn center after a total of 11 days without surgical intervention.

  14. Generation and management of waste electric vehicle batteries in China.

    Science.gov (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  15. Intelligent energy systems - Regulating the electricity grid using car batteries

    International Nuclear Information System (INIS)

    Horbaty, R.

    2009-01-01

    This article takes a look at how the electricity supply industry will, in the future, be able to substantially rely on decentrally organised sources of renewable energy. As such forms of power generation are, in part, difficult to plan, the increasing importance of regulating energy is being stressed. The use of the batteries of plug-in hybrid vehicles to provide such regulating power is discussed. So-called smart grids within the framework of a deregulated energy market are discussed and examples of possible configurations are noted. The intelligent control of apparatus and generation and storage facilities is discussed. Individual mobility with lower emissions is examined. New business areas now opening up for the electricity economy and vehicle manufacturers are discussed.

  16. Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles

    International Nuclear Information System (INIS)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2016-01-01

    This study shows results of extensive experimental measurements performed on high power lithium titanate based batteries. Characterization tests are performed over a wide temperature range (−20 °C – +40 °C) by employing electrochemical impedance spectroscopy and modified hybrid pulse power characterization tests. Furthermore, the behavior of battery impedance parameters over the battery lifetime with regard to temperature, State-of-Charge and their influence on available battery power in an example of electric vehicles is discussed. Based on extracted parameters, a reduced order equivalent circuit model considering the nonlinearity of the charge transfer resistance is parametrized. The obtained results indicate that ohmic resistance increases with decreasing State-of-Charge while the shape of the curve remains almost constant over the battery lifetime. The total impedance determined at 1 mHz shows almost no dependence on State-of-Charge and remains constant over the whole State-of-Charge range. The necessity of considering the impact of the current dependence of the direct current resistance at least at low temperatures (i.e., below 0 °C) is confirmed. Moreover, by investigating the Butler-Volmer equation the behavior of exchange current density and symmetry factor is analyzed for various temperatures and State-of-Charges over the battery lifetime. - Highlights: • Impedance characteristic over the battery lifetime is investigated. • Batteries at different aging states using lithium titanate anodes are investigated. • The influence of temperature on impedance characteristic is investigated. • Butler-Volmer behavior is comprehensively investigated under various conditions.

  17. Method of electric powertrain matching for battery-powered electric cars

    Science.gov (United States)

    Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping

    2013-05-01

    The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.

  18. Optimization analysis of thermal management system for electric vehicle battery pack

    Science.gov (United States)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  19. Countermeasure for Surplus Electricity of PV using Replacement Battery of EVs

    Science.gov (United States)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    In the power sector, the national government has set the goal that the introduction of PV reaches 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. In this study, we propose the use of station's battery as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 792.6 billion yen. Hence, if a utility leases the batteries from stations fewer than 792.6 billion yen, the utility will have the cost advantage in Battery case.

  20. Design of an efficient, low weight battery electric vehicle based on a VW Lupo 3L

    NARCIS (Netherlands)

    Besselink, I.J.M.; Oorschot, van P.F.; Nijmeijer, H.

    2010-01-01

    A battery electric vehicle is being developed at the Eindhoven University of Technology, which will beused in future research projects regarding electric mobility. Energy storage in batteries is still at least 25 times heavier and has 10 times the volume in comparison to fossil fuel. This leads to

  1. Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) |

    Science.gov (United States)

    Transportation Research | NREL Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Graphic of a 24-cell (bottom). Images: Courtesy of EC Power NREL's work on the U.S. Department of Energy Computer-Aided

  2. Simulation of a distance estimator for battery electric vehicle

    Directory of Open Access Journals (Sweden)

    Chew Kuew Wai

    2015-09-01

    Full Text Available Battery Electric Vehicle (BEV is a promising candidate in reducing air pollution and fossil fuel dependencies. It is a growing market for the automobile manufacturers. Although there are many advantages of driving a BEV, it is still not widely accepted in the market due to the limited driving range. Other than just improving the technologies that drive the vehicle, an additional range estimation system can calm the ‘range anxiety’ caused by the limited range of BEVs. Merely predicting the range based on the state of charge of the battery, the average driving speed, and the average power consumption is inadequate. This paper proposes a new range estimator, the dynamic range estimator, which also takes into account the driving behavior, in addition to the slopes of the trip for its energy estimation. The driving behavior is obtained based on the response to speed error and the time delay between throttle pedal and brake pedal switching. In this way, the driving behavior is a fixed response for any driving speeds on the same route thus, allowing the energy consumption to be compared for different speeds.

  3. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    In the recent years, the electric vehicles (EVs) have drawn great attention world wide as a feasible solution for clean transportation. The electric vehicle technology is not new as it was introduced in the mid 19th century. The low battery capacity, driving range and superior gasoline cars had...... resulted in the demise of electric cars in the 1930s. However, with the advancement of new high density battery technologies and power electronic converters, it is now viable to produce electric cars of higher efficiency and driving range. The performance and durability of the battery technology...... is improving on a rapid scale and the battery cost is also reducing which could enable the electric cars to be competitive in the market. The electric vehicles could also benefit the electricity sector in supporting more renewable energy which is also one of the most important driving forces in its promotion...

  4. Foothill Transit Battery Electric Bus Demonstration Results: Second Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-28

    This report summarizes results of a battery electric bus (BEB) evaluation at Foothill Transit, located in the San Gabriel and Pomona Valley region of Los Angeles County, California. Foothill Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory to evaluate its fleet of Proterra BEBs in revenue service. The focus of this evaluation is to compare performance of the BEBs to that of conventional technology and to track progress over time toward meeting performance targets. This project has also provided an opportunity for DOE to conduct a detailed evaluation of the BEBs and charging infrastructure. This is the second report summarizing the results of the BEB demonstration at Foothill Transit and it provides data on the buses from August 2015 through December 2016. Data are provided on a selection of compressed natural gas buses as a baseline comparison.

  5. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries

    International Nuclear Information System (INIS)

    Suri, Girish; Onori, Simona

    2016-01-01

    In this paper, a semi-empirical Lithium-iron phosphate-graphite battery aging model is identified over data mimicking actual cycling conditions that a hybrid electric vehicle battery encounters under real driving scenarios. The aging model is then used to construct the severity factor map, used to characterize relative aging of the battery under different operating conditions. This is used as a battery degradation criterion within a multi-objective optimization problem where battery aging minimization is to be achieved along with fuel consumption minimization. The method proposed is general and can be applied to other battery chemistry as well as different vehicular applications. Finally, simulations conducted using a hybrid electric vehicle simulator show how the two modeling tools developed in this paper, i.e., the severity factor map and the aging model, can be effectively used in a multi-objective optimization problem to predict and control battery degradation. - Highlights: • Battery aging model for hybrid electric vehicles using real driving conditions data. • Development of a modeling tool to assess battery degradation for real time optimization. • "3"1P NMR analysis of an enzyme-treated extract showed expected hydrolysis of P forms. • Development of an energy management strategy to minimize battery degradation. • Simulation results from hybrid electric vehicle simulator.

  6. Thermal Management of Battery Systems in Electric Vehicle and Smart Grid Application

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan

    vehicles is foreseen. The future battery manufacturers strive to meet the ever growing requirement of consumer’s demand using the battery as a primary power source of these cars. So naturally, the growing popularity of battery electric and hybrid vehicles have catapulted the car industry in the recent......Last few years’ governments are tightening the carbon emission regulations. Moreover, the availability of different financial assistances is available to cut the market share of the fossil fuel vehicles. Conversely, to fill up the gap of the required demand, higher penetration of electrical...... years. The products include for instance: hybrids, plug-in hybrids, battery and fuel-cell-battery electric vehicles (EV) and so forth. Undeniably, the battery is one of the most significant parts in all of those. Furthermore, stationary storage is another aspect of an emerging field. It represents next...

  7. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  8. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.M.

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH S information on Na/S batteries is provided in the appendices.

  9. Thru-life impacts of driver aggression, climate, cabin thermal management, and battery thermal management on battery electric vehicle utility

    Science.gov (United States)

    Neubauer, Jeremy; Wood, Eric

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility that is affected by driver aggression and effects of climate-both directly on battery temperature and indirectly through the loads of cabin and battery thermal management systems. Utility is further affected as the battery wears through life in response to travel patterns, climate, and other factors. In this paper we apply the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to driver aggression and climate effects over the life of the vehicle. We find the primary challenge to cold-climate BEV operation to be inefficient cabin heating systems, and to hot-climate BEV operation to be high peak on-road battery temperatures and excessive battery degradation. Active cooling systems appear necessary to manage peak battery temperatures of aggressive, hot-climate drivers, which can then be employed to maximize thru-life vehicle utility.

  10. Interpretation of Simultaneous Mechanical-Electrical-Thermal Failure in a Lithium-Ion Battery Module: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Stock, Mark J.; Brunhart-Lupo, Nicholas; Gruchalla, Kenny

    2016-12-01

    Lithium-ion batteries are currently the state-of- the-art power sources for electric vehicles, and their safety behavior when subjected to abuse, such as a mechanical impact, is of critical concern. A coupled mechanical-electrical-thermal model for simulating the behavior of a lithium-ion battery under a mechanical crush has been developed. We present a series of production-quality visualizations to illustrate the complex mechanical and electrical interactions in this model.

  11. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  12. Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Goran Lindbergh

    2011-04-01

    Full Text Available Lifetime testing of batteries for hybrid-electrical vehicles (HEV is usually performed in the lab, either at the cell, module or battery pack level. Complementary field tests of battery packs in vehicles are also often performed. There are, however, difficulties related to field testing of battery-packs. Some examples are cost issues and the complexity of continuously collecting battery performance data, such as capacity fade and impedance increase. In this paper, a novel field test equipment designed primarily for lithium-ion battery cell testing is presented. This equipment is intended to be used on conventional vehicles, not hybrid vehicles, as a cheaper and faster field testing method for batteries, compared to full scale HEV testing. The equipment emulates an HEV environment for the tested battery cell by using real time vehicle sensor information and the existing starter battery as load and source. In addition to the emulated battery cycling, periodical capacity and pulse testing capability are implemented as well. This paper begins with presenting some background information about hybrid electrical vehicles and describing the limitations with today’s HEV battery testing. Furthermore, the functionality of the test equipment is described in detail and, finally, results from verification of the equipment are presented and discussed.

  13. Batteries in network-independent electric power supply plants. Demands on batteries, storage concepts, lead batteries, load condition, operation management; Batterien in netzfernen Stromversorgungsanlagen. Anforderungen an Batterien, Speicherkonzepte, Bleibatterien, Ladezustand, Betriebsfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, R.; Sauer, D.U. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg (Germany)

    2005-07-01

    In principal there are the storage possibilities, which mainly distinguish themselves by the type of energy for storage:1) electric storage; a) supra-conducting ring storage, b) condensers; 2) mechanical storage; a) water high storage, b) flywheels, c) (cavern-) pressurized air storage; 3) electro-chemical storage; a) gas storage systems (with electrolysis or fuel cell unit), b) accumulators with external storage (e.g. FeCR-Redox system), c) accumulators with internal storage (e.g.) Pb/PbO{sub 2}, NiCd). A few electro-chemical storage systems only are economically and technically feasible today. This contribution focuses on these systems, in particular on lead-acid accumulators. An overview of terms, which are often used related to battery storage, can be found at the end. A detailed bibliography is supposed to give the reader specific answers to various questions. (orig.)

  14. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

    International Nuclear Information System (INIS)

    Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe

    2012-01-01

    The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility. - Highlights: ► Modeling of PHEVs based on real-world driving behavior and electricity prices. ► Consideration of battery degradation for the calculation of mobility costs. ► Smart charging decreases battery degradation and electricity costs simultaneously. ► Reduction of battery degradation costs is around two times higher than reduction of electricity costs.

  15. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  16. An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yinghua Han

    2014-01-01

    Full Text Available Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost.

  17. Material selection and assembly method of battery pack for compact electric vehicle

    Science.gov (United States)

    Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.

    2018-01-01

    Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.

  18. Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan

    Directory of Open Access Journals (Sweden)

    Kevin R. Mallon

    2017-07-01

    Full Text Available Heavy-duty electric powertrains provide a potential solution to the high emissions and low fuel economy of trucks, buses, and other heavy-duty vehicles. However, the cost, weight, and lifespan of electric vehicle batteries limit the implementation of such vehicles. This paper proposes supplementing the battery with on-board photovoltaic modules. In this paper, a bus model is created to analyze the impact of on-board photovoltaics on electric bus range and battery lifespan. Photovoltaic systems that cover the bus roof and bus sides are considered. The bus model is simulated on a suburban bus drive cycle on a bus route in Davis, CA, USA for a representative sample of yearly weather conditions. Roof-mounted panels increased vehicle driving range by 4.7% on average annually, while roof and side modules together increased driving range by 8.9%. However, variations in weather conditions meant that this additional range was not reliably available. For constant vehicle range, rooftop photovoltaic modules extended battery cycle life by up to 10% while modules on both the roof and sides extended battery cycle life by up to 19%. Although side-mounted photovoltaics increased cycle life and range, they were less weight- and cost-effective compared to the roof-mounted panels.

  19. Development of battery management systems (BMS) for electric vehicles (EVs) in Malaysia

    OpenAIRE

    Salehen P.M.W.; Su’ait M.S.; Razali H.; Sopian K.

    2017-01-01

    Battery Management Systems (BMS) is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV) systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the...

  20. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    OpenAIRE

    Daniel Akinyele; Juri Belikov; Yoash Levron

    2017-01-01

    Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an ove...

  1. Optimal recharge and driving strategies for a battery-powered electric vehicle

    Directory of Open Access Journals (Sweden)

    Lee W. R.

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  2. Further development of pyrometallurgical IME recycling process for Li-ion batteries from electric vehicles

    International Nuclear Information System (INIS)

    Vest, Matthias

    2016-01-01

    Li-ion batteries are increasingly used in hybrid electric vehicles (HEV), electric vehicles (EV) and stationary storage applications. Those applications are significantly different in terms of storage capacity, life cycles and charging times from consumer type batteries such as mobile phones and handheld tools. Naturally, those HEV and EV Li-ion batteries also differ significantly in chemical composition and size. Coherently, a recycling concept has been developed for HEV, EV and stationary storage Li-ion batteries. This concept is based on the existing IME-ACCUREC recycling process for consumer type batteries. This work describes the whole process development including slag design, test series in a lab-scale electric arc furnace and a 1 t scale trial in a top blown rotary converter.

  3. Energy and environmental impacts of electric vehicle battery production and recycling

    International Nuclear Information System (INIS)

    Gaines, L.; Singh, M.

    1995-01-01

    Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle

  4. Studies on Equalization Strategy of Battery Management System for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nan Jinrui

    2013-02-01

    Full Text Available Battery management system is one of the key technologies strengthening practical utilization and industrialization of electric vehicles. As an integral part of the battery management system, equalization system played an important role in development of electric vehicles. Based on the analysis of the key technologies of electric vehicle and the development trend of battery management system, a systematic method for bi-directional equalization of lithium ion battery pack is presented in this paper. The basic principle utilizes a Flyback Converter with a multiwinding transformer. Equalization with voltage is employed to balance the cell voltage of battery pack. In order to ensure the accuracy requirements of the cell voltage, a voltage measurement scheme based on analog multiplexers using photoelectric relay was adopted in this unit to detect the voltage of battery one by one. Experimental results show that the proposed battery equalization scheme can not only enhance the uniformity of power battery pack, but also improve the life of the battery as a whole.

  5. Reliable CPS design for mitigating semiconductor and battery aging in electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Proebstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2015-01-01

    Reliability and performance of cyber-physical systems (CPS) in electric vehicles (EVs) are influenced by three design aspects: (i) controller design, (ii) battery usage, i.e., Battery rate capacity and aging effects, (iii) processor aging of the in-vehicle embedded platform. In this paper, we

  6. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  7. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...

  8. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  9. Predictive Model Based Battery Constraints for Electric Motor Control within EV Powertrains

    NARCIS (Netherlands)

    Roşca, B.; Wilkins, S.; Jacob, J.; Hoedemaekers, E.R.G.; Hoek, S.P. van den

    2014-01-01

    This paper presents a method of predicting the maximum power capability of a Li-Ion battery, to be used for electric motor control within automotive powertrains. As maximum power is highly dependent on battery state, the method consists of a pack level state observer coupled with a predictive

  10. The economics of using plug-in hybrid electric vehicle battery packs for grid storage

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Whitacre, J.F.; Apt, Jay

    2010-01-01

    We examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary services such as frequency regulation are not considered here because only a small number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily profit values, while the economic losses associated with battery degradation were calculated based on data collected from A123 Systems LiFePO 4 /Graphite cells tested under combined driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with perfect market information and no battery degradation cost ranged from ∝US$140 to $250 in the three cities. If the measured battery degradation is applied, however, the maximum annual profit (if battery pack replacement costs fall to $5000 for a 16 kWh battery) decreases to ∝10-120. It appears unlikely that these profits alone will provide sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction and use of peaking generators that may accrue to the owner, finding that these are similar in magnitude to the energy arbitrage profit. (author)

  11. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  12. Lithium-ion batteries for hybrid and electric vehicles; Lithium-Ionen-Batterie-Entwicklung fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Michael; Birke, Peter; Schiemann, Michael; Moerstaedt, Uwe [Continental AG, Berlin (Germany). Geschaeftsbereich HEV

    2009-03-15

    Continental is the first company worldwide to produce lithium-ion batteries for a serial production vehicle (Mercedes S 400 Hybrid). The supplier describes cell and system strategies, as well as safety relevant production details and integration strategies, which determine the application in hybrid and electric vehicles. (orig.)

  13. King County Metro Battery Electric Bus Demonstration: Preliminary Project Results

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-22

    The U.S. Federal Transit Administration (FTA) funds a variety of research projects that support the commercialization of zero-emission bus technology. To evaluate projects funded through these programs, FTA has enlisted the help of the National Renewable Energy Laboratory (NREL) to conduct third-party evaluations of the technologies deployed under the FTA programs. NREL works with the selected agencies to evaluate the performance of the zero-emission buses compared to baseline conventional buses in similar service. The evaluation effort will advance the knowledge base of zero-emission technologies in transit bus applications and provide 'lessons learned' to aid other fleets in incrementally introducing next generation zero-emission buses into their operations. This report provides preliminary performance evaluation results from a demonstration of three zero-emission battery electric buses at King County Metro in King County, Washington. NREL developed this preliminary results report to quickly disseminate evaluation results to stakeholders. Detailed evaluation results will be published in future reports.

  14. Range Extension Opportunities While Heating a Battery Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Meyer, John [Hanon Systems; Agathocleous, Nicos [Hanon Systems; Vespa, Antonio [Hyundai-Kia America Technical Center Inc.

    2018-04-03

    The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination (1). The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 degrees C to -18 degrees C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.

  15. Efficient electricity storage with a battolyser, an integrated Ni-Fe battery and electrolyser

    NARCIS (Netherlands)

    Mulder, F.M.; Weninger, B.; Middelkoop, J.; Ooms, F.G.B.; Schreuders, H.

    2017-01-01

    Grid scale electricity storage on daily and seasonal time scales is required to accommodate increasing amounts of renewable electricity from wind and solar power. We have developed for the first time an integrated battery-electrolyser ('battolyser') that efficiently stores electricity as a

  16. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles

    Science.gov (United States)

    Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.

    2014-03-01

    Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.

  17. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  18. Integration of sampling based battery state of health estimation method in electric vehicles

    International Nuclear Information System (INIS)

    Ozkurt, Celil; Camci, Fatih; Atamuradov, Vepa; Odorry, Christopher

    2016-01-01

    Highlights: • Presentation of a prototype system with full charge discharge cycling capability. • Presentation of SoH estimation results for systems degraded in the lab. • Discussion of integration alternatives of the presented method in EVs. • Simulation model based on presented SoH estimation for a real EV battery system. • Optimization of number of battery cells to be selected for SoH test. - Abstract: Battery cost is one of the crucial parameters affecting high deployment of Electric Vehicles (EVs) negatively. Accurate State of Health (SoH) estimation plays an important role in reducing the total ownership cost, availability, and safety of the battery avoiding early disposal of the batteries and decreasing unexpected failures. A circuit design for SoH estimation in a battery system that bases on selected battery cells and its integration to EVs are presented in this paper. A prototype microcontroller has been developed and used for accelerated aging tests for a battery system. The data collected in the lab tests have been utilized to simulate a real EV battery system. Results of accelerated aging tests and simulation have been presented in the paper. The paper also discusses identification of the best number of battery cells to be selected for SoH estimation test. In addition, different application options of the presented approach for EV batteries have been discussed in the paper.

  19. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion

    Science.gov (United States)

    1984-06-01

    Research on electric motor vehicles is reported in the areas of active material utilization and active material integrity; design and fabrication of components, advanced cells, and modules; cell testing; and battery thermal management and electrolyte circulation subsystems.

  20. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  1. Range-extending Zinc-air battery for electric vehicle

    Directory of Open Access Journals (Sweden)

    Steven B. Sherman

    2018-01-01

    Full Text Available A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS. The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.

  2. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The objective of this program is to develop a nickel-iron battery suitable for use in electric vehicles. Ultimately, it is expected that a number of these batteries will be demonstrated under the Electric and Hybrid Vehicle Act of 1976. The report presents the technical approach and a summary of the progress that was achieved under the contract. Work began 1 May 1978. The report covers the period through September 1978. (TFD)

  3. Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

    OpenAIRE

    Achim Kampker; Heiner H. Heimes; Mathias Ordung; Christoph Lienemann; Ansgar Hollah; Nemanja Sarovic

    2016-01-01

    Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the re...

  4. Life cycle assessment of five batteries for electric vehicles under different charging regimes

    Energy Technology Data Exchange (ETDEWEB)

    Rantik, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Transportation and Logistics

    1999-12-01

    Life Cycle Assessment (LCA) methodology is used in this study to assess the environmental impact of five candidate batteries for electric vehicles under different conditions of charging. The entire lifetime of a passenger electric vehicle is considered as the basis for all batteries. Five different battery systems are considered. The four of them are electrically recharged - Lead-Acid, Nickel-Cadmium, Nickel-Metal hydride and Sodium-Nickel chloride whereas one system comprises batteries that are recharged mechanically (Zinc-Air). One specific battery from these five systems is selected. The results are representative of these particular batteries and not of the battery systems to which they belong. The study includes three scenarios, the basic scenario and two fast charging scenarios. The difference between the scenarios is in the phase of the battery's use and involves the charging regimes. Consequently, the other stages of the battery's life are identical in all three scenarios. The basic scenario implies normal overnight charging is used during the entire lifetime of an electric vehicle. In the first fast charging scenario, fast charging is combined with normal charging. The second fast charging scenario involves the exclusive use of fast charging. In both fast charging scenarios the user's behaviour is considered. In this study, it is believed that it is the violation of fast charging rules, set by the battery manufacturer rather than the fast charging technique, that will be critical for the cycle life of the battery. Due to low energy efficiency of the batteries and losses in the charging procedure, the use of energy for operating the electric vehicle seems to be a major contributor to the total environmental impact of the system. Significant resource constraints may prevent mass production of certain batteries or lead to increased prices of others. Use of fast charging increases the number of batteries used during the lifetime of the electric

  5. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Highlights: • We modeled the electrical and thermal behavior of the Li-ion battery. • We validated the simulation results with experimental studies. • We compared the thermal performance of different size of cylindrical cells. • We investigated the integration issues of cylindrical cells into battery pack. - Abstract: Electrical and thermal characteristics of lithium-ion battery packs in electric vehicles in different operating conditions are important in order to design the battery pack thermal management system. In this work, electrical and thermal behaviors of different size of LiFePO 4 cylindrical cells are investigated under various operating conditions. The simulation results show good agreement with the experimental data under various operating modes. Due to the large thermal resistance of layered active material in a Li-ion cell, the temperature difference in the radial direction is significantly correlated with a diameter of cell and I t -rates. Compared with natural convection, strong forced convection will reduce the temperature uniformity in the cell and accelerate the thermal aging rate. Lastly, integration issues of the cells into a battery pack are discussed from mechanical, electrical, thermal, control and monitoring, manufacturing and maintenance aspects. These issues could impact the performance, cost, driving range and life cycle of the battery pack in electric vehicles

  6. New Electro-Thermal Battery Pack Model of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Muhammed Alhanouti

    2016-07-01

    Full Text Available Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

  7. Li-NMC Batteries Model Evaluation with Experimental Data for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Aleksandra Baczyńska

    2018-02-01

    Full Text Available The aim of the paper is to present the battery equivalent circuit for electric vehicle application. Moreover, the model described below is dedicated to lithium-ion types of batteries. The purpose of this paper is to introduce an efficient and transparent method to develop a battery equivalent circuit model. Battery modeling requires, depending on the chosen method, either significant calculations or a highly developed mathematical model for optimization. The model is evaluated in comparison to the real data measurements, to present the performance of the method. Battery measurements based on charge/discharge tests at a fixed C-rate are presented to show the relation of the output voltage profiles with the battery state of charge. The pulse discharge test is presented to obtain the electric parameters of the battery equivalent circuit model, using a Thévenin circuit. According to the Reverse Trike Ecologic Electric Vehicle (VEECO RT characteristics used as a case study in this work, new values for vehicle autonomy and battery pack volume based on lithium nickel manganese cobalt oxide cells are evaluated.

  8. Hybrid battery/supercapacitor energy storage system for the electric vehicles

    Science.gov (United States)

    Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy

    2018-01-01

    Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.

  9. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  10. The Second Life Ageing of the NMC/C Electric Vehicle Retired Li-Ion Batteries in the Stationary Applications

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Martinez-Laserna, Egoitz

    2016-01-01

    Despite the cost of li-ion batteries is gradually falling, the price for li-ion batteries is still too high in order to significantly impact the mass market adoption of e-mobility and household battery applications. It is expected that it might take another several years before lithium-ion...... batteries obtain grid parity and Electric Vehicles (EVs) will become competitive in cost with conventional vehicles (Figure 1). In consequence, a different approach for battery cost reduction can be investigated....

  11. Modelling Thermal Effects of Battery Cells inside Electric Vehicle Battery Packs

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    The poster presents a methodology to account for thermal effects on battery cells to improve the typical thermal performances in a pack through heating calculations generally performed under the operating condition assumption. The aim is to analyze the issues based on battery thermo-physical char...

  12. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for its platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.

  13. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Marongiu, Andrea; Sauer, Dirk Uwe

    2015-05-01

    This work provides an overview of available methods and algorithms for on-board capacity estimation of lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-Function are discussed and analyzed by many authors and researchers in the past. On-board estimation of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions far from those used in laboratory environments as well as the large variation in aging behavior of each cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.

  14. A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications

    International Nuclear Information System (INIS)

    Liu, Guangming; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Hua, Jianfeng

    2015-01-01

    Highlights: • An energy prediction (EP) method is introduced for battery E RDE determination. • EP determines E RDE through coupled prediction of future states, parameters, and output. • The PAEP combines parameter adaptation and prediction to update model parameters. • The PAEP provides improved E RDE accuracy compared with DC and other EP methods. - Abstract: In order to estimate the remaining driving range (RDR) in electric vehicles, the remaining discharge energy (E RDE ) of the applied battery system needs to be precisely predicted. Strongly affected by the load profiles, the available E RDE varies largely in real-world applications and requires specific determination. However, the commonly-used direct calculation (DC) method might result in certain energy prediction errors by relating the E RDE directly to the current state of charge (SOC). To enhance the E RDE accuracy, this paper presents a battery energy prediction (EP) method based on the predictive control theory, in which a coupled prediction of future battery state variation, battery model parameter change, and voltage response, is implemented on the E RDE prediction horizon, and the E RDE is subsequently accumulated and real-timely optimized. Three EP approaches with different model parameter updating routes are introduced, and the predictive-adaptive energy prediction (PAEP) method combining the real-time parameter identification and the future parameter prediction offers the best potential. Based on a large-format lithium-ion battery, the performance of different E RDE calculation methods is compared under various dynamic profiles. Results imply that the EP methods provide much better accuracy than the traditional DC method, and the PAEP could reduce the E RDE error by more than 90% and guarantee the relative energy prediction error under 2%, proving as a proper choice in online E RDE prediction. The correlation of SOC estimation and E RDE calculation is then discussed to illustrate the

  15. Environmental impact analysis of electric and hybrid vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-16

    This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

  16. Contribution of Li-ion batteries to the environmental impact of electric vehicles.

    Science.gov (United States)

    Notter, Dominic A; Gauch, Marcel; Widmer, Rolf; Wäger, Patrick; Stamp, Anna; Zah, Rainer; Althaus, Hans-Jörg

    2010-09-01

    Battery-powered electric cars (BEVs) play a key role in future mobility scenarios. However, little is known about the environmental impacts of the production, use and disposal of the lithium ion (Li-ion) battery. This makes it difficult to compare the environmental impacts of BEVs with those of internal combustion engine cars (ICEVs). Consequently, a detailed lifecycle inventory of a Li-ion battery and a rough LCA of BEV based mobility were compiled. The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used. The share of the total environmental impact of E-mobility caused by the battery (measured in Ecoindicator 99 points) is 15%. The impact caused by the extraction of lithium for the components of the Li-ion battery is less than 2.3% (Ecoindicator 99 points). The major contributor to the environmental burden caused by the battery is the supply of copper and aluminum for the production of the anode and the cathode, plus the required cables or the battery management system. This study provides a sound basis for more detailed environmental assessments of battery based E-mobility.

  17. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J M

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

  18. Battery effect in 'electric current arising from unpolarized polyvinyl ...

    Indian Academy of Sciences (India)

    Unknown

    metal systems are ... The system would thus approach a primary battery, with the generation of. 'spontaneous' current, albeit low. In such a situation, to invoke work functions of pure, film-free (as ... ctrodes embedded in low resistance electrolytes.

  19. Support vector machine based battery model for electric vehicles

    International Nuclear Information System (INIS)

    Wang Junping; Chen Quanshi; Cao Binggang

    2006-01-01

    The support vector machine (SVM) is a novel type of learning machine based on statistical learning theory that can map a nonlinear function successfully. As a battery is a nonlinear system, it is difficult to establish the relationship between the load voltage and the current under different temperatures and state of charge (SOC). The SVM is used to model the battery nonlinear dynamics in this paper. Tests are performed on an 80Ah Ni/MH battery pack with the Federal Urban Driving Schedule (FUDS) cycle to set up the SVM model. Compared with the Nernst and Shepherd combined model, the SVM model can simulate the battery dynamics better with small amounts of experimental data. The maximum relative error is 3.61%

  20. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  1. Battery- and aging-aware embedded control systems for electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Probstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2014-01-01

    In this paper, for the first time, we propose a battery- and aging-aware optimization framework for embedded control systems design in electric vehicles (EVs). Performance and reliability of an EV are influenced by feedback control loops implemented into in-vehicle electrical/electronic (E/E)

  2. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  3. The battle between battery and fuel cell powered electric vehicles : A BWM approach

    NARCIS (Netherlands)

    van de Kaa, G.; Scholten, D.J.; Rezaei, J.; Milchram, C.

    2017-01-01

    The transition to a more sustainable personal transportation sector requires the widespread adoption of electric vehicles. However, a dominant design has not yet emerged and a standards battle is being fought between battery and hydrogen fuel cell powered electric vehicles. The aim of this paper

  4. Experimental investigation on thermal management of electric vehicle battery with heat pipe

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Lin Zirong; Li Fuhuo

    2013-01-01

    Highlights: ► The thermal management system of electric vehicle battery with heat pipes was designed. ► Temperature rise is a key factor for the design of power battery thermal management system. ► Temperature distribution is inevitable to reference for better design of heat pipes used for heat dissipation. ► Heat pipes are effective for power batteries thermal management within electric vehicles. - Abstract: In order to increase the cycle time of power batteries and decrease the overall cost of electric vehicles, the thermal management system equipped with heat pipes was designed according to the heat generated character of power batteries. The experimental result showed that the maximum temperature could be controlled below 50 °C when the heat generation rate was lower than 50 W. Coupled with the desired temperature difference, the heat generation rate should not exceed 30 W. The maximum temperature and temperature difference are kept within desired rang under unsteady operating conditions and cycle testing conditions. Applying heat pipes based power batteries thermal management is an effective method for energy saving in electric vehicles.

  5. Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles

    Science.gov (United States)

    Cataldo, R. L.

    1978-01-01

    The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.

  6. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  7. A cost effective battery bank for I2t testing and evaluation of electrical switchgear

    International Nuclear Information System (INIS)

    Reass, W.A.

    1989-01-01

    This paper describes the electrical design and mechanical construction of a 50 kA ''step switched'' battery bank. Individual fuses protect each of the forty parallel isolated strings of three series (12 V) batteries. Step current waveforms of 12.5 kA, 25 kA, 37.5 kA, and 50 kA are produced by 8 sets of pneumatically driven 20 pole step switches and current limiting stainless steel ''trombone'' resistors. Inexpensive, yet conservatively designed, Group 65 Motorcraft car batteries are used to give an I 2 t capability of better than 5 x 10 9 . The battery bank has well over 1500 shots, with testing of commercial switchgear continuing. In addition to the battery bank engineering data, results of repetitive testing of vacuum interrupters at their I 2 t limit will be provided. 8 figs

  8. Electrical circuit models for performance modeling of Lithium-Sulfur batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Ioan; Teodorescu, Remus

    2015-01-01

    emerging technology for various applications, there is a need for Li-S battery performance model; however, developing such models represents a challenging task due to batteries' complex ongoing chemical reactions. Therefore, the literature review was performed to summarize electrical circuit models (ECMs......) used for modeling the performance behavior of Li-S batteries. The studied Li-S pouch cell was tested in the laboratory in order to parametrize four basic ECM topologies. These topologies were compared by analyzing their voltage estimation accuracy values, which were obtained for different battery...... current profiles. Based on these results, the 3 R-C ECM was chosen and the Li-S battery cell discharging performance model with current dependent parameters was derived and validated....

  9. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  10. An overview of the development of lead/acid traction batteries for electric vehicles in India

    Science.gov (United States)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  11. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NREL’s Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NREL’s Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  12. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  13. Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

    2013-06-01

    This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

  14. The effects of high frequency current ripple on electric vehicle battery performance

    International Nuclear Information System (INIS)

    Uddin, Kotub; Moore, Andrew D.; Barai, Anup; Marco, James

    2016-01-01

    Highlights: • Experimental study into the impact of current ripple on li-ion battery degradation. • 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. • Results highlight a greater spread of degradation for cells exposed to AC excitation. • Implications for BMS control, thermal management and system integration. - Abstract: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both the energy flows within the vehicle and the delivery of torque by the electrical machine. Such systems are known to generate undesired electrical noise on the high voltage bus. High frequency current oscillations, or ripple, if unhindered will enter the vehicle’s battery system. Real-world measurements of the current on the high voltage bus of a series hybrid electric vehicle (HEV) show that significant current perturbations ranging from 10 Hz to in excess of 10 kHz are present. Little is reported within the academic literature about the potential impact on battery system performance and the rate of degradation associated with exposing the battery to coupled direct current (DC) and alternating currents (AC). This paper documents an experimental investigation that studies the long-term impact of current ripple on battery performance degradation. Initial results highlight that both capacity fade and impedance rise progressively increase as the frequency of the superimposed AC current increases. A further conclusion is that the spread of degradation for cells cycled with a coupled AC–DC signal is considerably more than for cells exercised with a traditional DC waveform. The underlying causality for this degradation is not yet understood. However, this has important implications for the battery management system (BMS). Increased variations in cell capacity and impedance will cause differential current flows and heat generation within the battery pack that if not properly managed will further reduce battery life

  15. An economic analysis of used electric vehicle batteries integrated into commercial building microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Sebastian; Dallinger, David [Fraunhofer Institute for Systems and Innovation Research, Karlsruhe (Germany). Competence Center Energy Policy and Energy Systems; Gomez, Tomas; Momber, Ilan [Madrid Univ. (Spain); Marnay, Chris; Stadler, Michael; Lai, Judy [Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), Berkeley, CA (United States)

    2011-07-01

    Current policies in the U.S. and other countries are trying to stimulate electric transportation deployment. Consequently, plug-in electric vehicle (PEV) adoption will presumably spread among vehicle users. With the increased diffusion of PEVs, lithium-ion batteries will also enter the market on a broad scale. However, their costs are still high and ways are needed to optimally deploy vehicle batteries in order to account for the higher initial outlay. This study analyzed the possibility of extending the lifecycle of PEV batteries to a secondary, stationary application. Battery usage can be optimized by installing used battery packs in buildings' microgrids. Employed as decentralized storage, batteries can be used for a microgrid's power supply and provide ancillary services (A/S). This scenario has been modeled with the Distributed Energy Resources Customer Adoption Model (DER-CAM), which identifies optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results show that used PEV batteries can create significant monetary value if subsequently used for stationary applications. (orig.)

  16. A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles

    International Nuclear Information System (INIS)

    Wang, Limei; Cheng, Yong; Zhao, Xiuliang

    2015-01-01

    Highlights: • Find the influence of in-parallel battery cell variations on battery pack capacity. • Redefine the battery module capacity with considering ANY battery cell safety. • Discuss the safety end-of-charge voltage for an aged in-parallel battery module. • Build an algorithm for battery pack capacity estimation with the charge curve. • Bench tests are used to verify the validity of the proposed algorithm. - Abstract: In electric vehicles (EVs), several battery cells are connected in parallel to establish a battery module. The safety of the battery module is influenced by inconsistent battery cell performance which causes uneven currents flowing through internal in-parallel battery cells. A battery cell model is developed based on the Matlab–Simscape platform and validated by tests. The battery cell model is used to construct simulation models for analyzing the effect of battery cell inconsistency on the performance of an in-parallel battery module. Simulation results indicate that the state-of-charge (SOC) of a battery module cannot characterize the SOC of ALL the internal battery cells in the battery module. When the battery management system (BMS) controls the end-of-charge (EOC) time according to the SOC of a battery module, some internal battery cells are over-charged. To guarantee the safety of ALL battery cells through the whole battery life, a safety EOC voltage of the battery module should be set according to the number of battery cells in the battery module and the applied charge current. Simulations reveal that the SOC of the “normal battery module” is related to its charge voltage when aged battery module is charged to the EOC voltage. Then, a function describing their relationship is established. Both the capacity and the charge voltage shift are estimated by comparing the measured voltage-to-capacity curve with the standard one provided by the manufactory. A battery pack capacity estimation method is proposed according to the SOC

  17. Average Behavior of Battery - Electric Vehicles for Distributed Energy System Studies

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2010-01-01

    The increase of focus on electric vehicles (EVs) as distributed energy resources calls for new concepts of aggregated models of batteries. Despite the developed battery models for EVs applications, when looking at energy storage scenarios using EVs, both geographical-temporal aspects and battery...... conditions. The obtained results show that EV fleets are non-linear time-variant systems which however can be described with good approximation taking into account a number of variables such as number of cycles, temperature, depth-of-discharge and current rates....

  18. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Science.gov (United States)

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae

    2017-06-01

    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  19. Selection of the battery pack parameters for an electric vehicle based on performance requirements

    Science.gov (United States)

    Koniak, M.; Czerepicki, A.

    2017-06-01

    Each type of vehicle has specific power requirements. Some require a rapid charging, other make long distances between charges, but a common feature is the longest battery life time. Additionally, the battery is influenced by factors such as temperature, depth of discharge and the operation current. The article contain the parameters of chemical cells that should be taken into account during the design of the battery for a specific application. This is particularly important because the batteries are not properly matched and can wear prematurely and cause an additional costs. The method of selecting the correct cell type should take previously discussed features and operating characteristics of the vehicle into account. The authors present methods of obtaining such characteristics along with their assessment and examples. Also there has been described an example of the battery parameters selection based on design assumptions of the vehicle and the expected performance characteristics. Selecting proper battery operating parameters is important due to its impact on the economic result of investments in electric vehicles. For example, for some Li-Ion technologies, the earlier worn out of batteries in a fleet of cruise boats or buses having estimated lifetime of 10 years is not acceptable, because this will cause substantial financial losses for the owner of the rolling stock. The presented method of choosing the right cell technology in the selected application, can be the basis for making the decision on future battery technical parameters.

  20. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  1. Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jichao Hong

    2017-07-01

    Full Text Available A thermal runaway prognosis scheme for battery systems in electric vehicles is proposed based on the big data platform and entropy method. It realizes the diagnosis and prognosis of thermal runaway simultaneously, which is caused by the temperature fault through monitoring battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring data is derived from the National Service and Management Center for Electric Vehicles (NSMC-EV in Beijing. Furthermore, a thermal security management strategy for thermal runaway is presented under the Z-score approach. The abnormity coefficient is introduced to present real-time precautions of temperature abnormity. The results illustrated that the proposed method can accurately forecast both the time and location of the temperature fault within battery packs. The presented method is flexible in all disorder systems and possesses widespread application potential in not only electric vehicles, but also other areas with complex abnormal fluctuating environments.

  2. Multifunctional structural lithium ion batteries for electrical energy storage applications

    Science.gov (United States)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  3. A hybrid PV-battery/diesel electricity supply on Peucang island: an economic evaluation

    Directory of Open Access Journals (Sweden)

    Matthias Günther

    2016-12-01

    Full Text Available Renewable energy technologies are currently under a dynamic cost development. This case holds especially for solar technology that has reached price levels that were unimaginable until a short time ago. It also holds for battery technologies the application of which is related to the increasing usage of photovoltaic energy converters and the growing interest in electric vehicles. With the decreasing prices more and more possible application cases of renewable energy technologies become economically viable. A case study was done for a location on a small island located on the west tip of Java. The levelized electricity cost of a hybrid electricity supply system composed of a solar generator and battery in combination with the existing diesel generators was compared to the electricity generation cost of the existing system. Two different battery options were taken into account, lead-acid batteries and lithium-ion batteries. The results of this study can give a rough orientation also for other locations with similar characteristics.

  4. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D; Hammel, C J; Mark, J

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

  5. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    International Nuclear Information System (INIS)

    Corbus, D.; Hammel, C.J.; Mark, J.

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ''FH ampersand S'' issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste

  6. A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market

    International Nuclear Information System (INIS)

    Li Zhe; Ouyang Minggao

    2011-01-01

    Recently battery leasing has been introduced into the market by automobile manufacturers and power suppliers due to its potential to reduce the purchase cost of electric vehicles (EVs). However, the profit prospect of battery leasing is still uncertain. This paper takes the views of both the operators and consumers and calculates the 'win-win' marginal rent, which not only ensures the profitability of operators, but also allows consumers a lower expenditure than using Internal combustion engine vehicles (ICVs) and EVs with embedded batteries. Battery cost, vehicle weight, gasoline and electricity price, and the discount rate have impacts on the rent. Battery cost plays a dominant role and a battery cost >5 Yen /W h fails to enable the survival of battery leasing to all types of EVs. Battery leasing would be more competitive when focusing on heavier EVs. At least one of the three thresholds is required for the existence of rent pricing range for a 1000 kg EV: gasoline retail price >6 Yen /L, electricity price <0.6 Yen /kW h, or the discount rate <7%. Typically, the feasible battery rent range is 0.34-0.38 Yen /W h/year for a 1000 kg EV under the present battery cost 2 Yen /W h and China current gasoline and electricity prices. - Highlights: → Rent pricing for EV battery leasing must obey win-win rule for BLO and consumers. → Rent is affected by battery cost, vehicle weight, energy price and discount rate. → Battery cost plays dominant role for the BLO survival as described in '5-3-2' Law. → Heavier EVs are more suitable for battery leasing when battery cost is high. → The profitability of BLO is sensitive to the price of gasoline and electricity.

  7. Separator for alkaline electric batteries and method of making

    Science.gov (United States)

    Pfluger, H. L. (Inventor); Hoyt, H. E.

    1970-01-01

    Battery separator membranes of high electrolytic conductivity comprising a cellulose ether and a compatible metallic salt of water soluble aliphatic acids and their hydroxy derivatives are described. It was found that methyl cellulose can be modified by another class of materials, nonpolymeric in nature, to form battery separator membranes of low electrolytic resistance but which have the flexibility of membranes made of unmodified methyl cellulose, and which in many cases enhance flexibility over membranes made with unmodified methyl cellulose. Separator membranes for electrochemical cells comprising a cellulose ether and a modified selected from the group consisting of metallic salts of water soluble alphatic acids and their hydroxy derivatives and to electrochemical cells utilizing said membranes are described.

  8. Both hydrogen and electricity chargeable battery; Suiso to denki de juden kanona denchi kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Kuriyama group of the Osaka Industrial Research Institute developed a new air-metallic hydride battery that is chargeable by both electricity and hydrogen gas. The battery uses a hydrogen storage alloy as the negative pole and uses active carbon coated with platinum as the positive pole. Potassium hydroxide aqueous solution is used as the electrolyte, and a space is arranged in the negative pole for contacting and absorbing the hydrogen with a good efficiency. The key point is the development of the hydride for energy storage that can well absorbs the hydrogen gas even it is dampened by the electrolyte. And the pole is prepared by pulverized the particles of rare earth hydrogen storage alloy having the particle size smaller than 150 micron meter, forming a Ni layer for a catalyst to absorb hydrogen, adding fluorinated resin dispersant for the sake of repellency and forming a sheet. In a test running, a half of hydrogen storage capacity is realized by charging for 30 minutes. And, 0.6 V electricity of 10 mA per unit pole area of 1cm{sup 2} is continuously obtained for 17 hours during discharging. While a third electrode is formed by nickel hydroxide, the battery is chargeable and dischargeable as the same as nickel hydrogen battery. Low cost and small size can be expected by a combination of respectively prepared fuel battery with nickel hydrogen battery. (translated by NEDO)

  9. Accelerated Aging of Lithium-Ion Batteries based on Electric Vehicle Mission Profile

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    Electric vehicles (EVs) represent one of the solutions for reducing the carbon emissions worldwide. Even though EVs have recently gained more and more popularity, their adoption at a large scale is mainly prevented by several factors, such as range anxiety and battery degradation. The range of an...... to a European city. Furthermore, the study is performed for a Lithium-ion battery chemistry, which is nowadays very popular for EVs, the nickel manganese cobalt oxide-chemistry.......Electric vehicles (EVs) represent one of the solutions for reducing the carbon emissions worldwide. Even though EVs have recently gained more and more popularity, their adoption at a large scale is mainly prevented by several factors, such as range anxiety and battery degradation. The range...... of an EV is mainly limited by the energy density and specific energy of the battery, while the battery degradation is determined by the driving manner (i.e., the mission profile) to which the EV is subjected to. In this paper we analyze the EV-battery degradation, in terms of both capacity fade...

  10. Development of nickel-hydrogen battery for electric vehicle; Denki jidoshayo nickel-suiso denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of battery, a main part of electric vehicle, have been promoted. Various batteries, such as lead battery, nickel-cadmium battery, nickel-hydrogen battery, lithium ion battery and so on, have been investigated for electric vehicles. Among these, nickel-hydrogen battery is superior to the others from the points of energy density, lifetime, low-temperature properties, and safety. It is one of the most prospective batteries for electric vehicle. Research and development of the nickel-hydrogen battery with higher energy density and longer lifetime have been promoted for the practical application by Tohoku Electric Power Co., Inc. This article shows main performance of the developed nickel-hydrogen battery for electric vehicle. The nominal voltage is 12 V, the rated capacity is 125 Ah, the outside dimension is L302{times}W170{times}H245 mm, the weight is 25.5 kg, the energy density is 60 Wh/kg, the output density is 180 W/kg, and the available environment temperature is between -20 and 60 {degree}C. 1 fig., 1 tab.

  11. Rapid restoration of electric vehicle battery performance while driving at cold temperatures

    Science.gov (United States)

    Zhang, Guangsheng; Ge, Shanhai; Yang, Xiao-Guang; Leng, Yongjun; Marple, Dan; Wang, Chao-Yang

    2017-12-01

    Electric vehicles (EVs) driven in cold weather experience two major drawbacks of Li-ion batteries: drastic power loss (up to 10-fold at -30 °C) and restriction of regenerative braking at temperatures below 5-10 °C. Both factors greatly reduce cruise range, exacerbating drivers' range anxiety in winter. While preheating the battery before driving is a practice widely adopted to maintain battery power and EV drivability, it is time-consuming (on the order of 40 min) and prohibits instantaneous mobility. Here we reveal a control strategy that can rapidly restore EV battery power and permit full regeneration while driving at temperatures as low as -40 °C. The strategy involves heating the battery internally during regenerative braking and rest periods of driving. We show that this technique fully restores room-temperature battery power and regeneration in 13, 33, 46, 56 and 112 s into uninterrupted driving in 0, -10, -20, -30 and -40 °C environments, respectively. Correspondingly, the strategy significantly increases cruise range of a vehicle operated at cold temperatures, e.g. 49% at -40 °C in simulated US06 driving cycle tests. The present work suggests that smart batteries with embedded sensing/actuation can leapfrog in performance.

  12. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  13. An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles

    Science.gov (United States)

    Amiribavandpour, Parisa; Shen, Weixiang; Mu, Daobin; Kapoor, Ajay

    2015-06-01

    A theoretical electrochemical thermal model combined with a thermal resistive network is proposed to investigate thermal behaviours of a battery pack. The combined model is used to study heat generation and heat dissipation as well as their influences on the temperatures of the battery pack with and without a fan under constant current discharge and variable current discharge based on electric vehicle (EV) driving cycles. The comparison results indicate that the proposed model improves the accuracy in the temperature predication of the battery pack by 2.6 times. Furthermore, a large battery pack with four of the investigated battery packs in series is simulated in the presence of different ambient temperatures. The simulation results show that the temperature of the large battery pack at the end of EV driving cycles can reach to 50 °C or 60 °C in high ambient temperatures. Therefore, thermal management system in EVs is required to maintain the battery pack within the safe temperature range.

  14. New logistical issues in using electric vehicle fleets with battery exchange infrastructure

    DEFF Research Database (Denmark)

    Mirchandani, Pitu; Adler, Jonathan; Madsen, Oli B.G.

    2014-01-01

    There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels that are more sustainable. The electric vehicle (EV) is a good candidate for this transformation, especially which "refuels" by exchanging its spent...... batteries with charged ones. This paper discusses some new logistical issues that must be addressed by such EV fleets, principally the issues related to the limited driving range of each EV's set of charged batteries and the possible detouring for battery exchanges. In particular, the paper addresses (1......) the routing and scheduling of the fleet, (2) the locations of battery-exchange stations, and (3) the sizing of each facility. An overview of the literature on the topic is provided and some initial results are presented. (C) 2013 The Authors. Published by Elsevier Ltd....

  15. Impact Safety Control Strategy for the Battery System of an Example Electric Bus

    Directory of Open Access Journals (Sweden)

    Zhen-po Wang

    2015-01-01

    Full Text Available This paper proposes a side impact safety control strategy for the battery system, aiming at defusing the hazards of unacceptable behaviors of the battery system such as high-voltage hazards. Based on some collision identification metrics, a side impact discrimination algorithm and a side impact severity algorithm are developed for electric buses. Based on the study on the time to break for power battery, the side impact discrimination algorithm response time is about 20 ms posing a great challenge to the side impact discrimination algorithm. At the same time, the reliability of the impact safety control strategy developed in this paper is evaluated for other plausible side impact signals generated by finite element analysis. The results verify that the impact safety control strategy exhibits robust performance and is able to trigger a breaking signal for power battery system promptly and accurately.

  16. Fabrication and evaluation of 100 Ah cylindrical lithium ion battery for electric vehicle applications

    Science.gov (United States)

    Hyung, Yoo-Eup; Moon, Seong-In; Yum, Duk-Hyeng; Yun, Seong-Kyu

    A total of 100 Ah class lithium ion cells with C/LiCoO 2 cell system for electric vehicles (EVs) was developed. EV-size lithium ion battery was developed by Sony, KERI/STC, SAFT, VARTA, Sanyo and Matsushita. GS battery and Hitachi have developed also stationary type large scale (70-80 Ah) lithium ion batteries. Lithium ion battery module for EVs was demonstrated by Sony/Nissan and KERI/STC in 1996. At present, the performance of developed EV-cells was up to 115 Wh/kg and 286 W/kg of specific power at 80% DOD. We assume our EV cells to have 248 and 242 km driving distance per one charge with DST-120 mode and ECE-15 mode, respectively. Finally, we performed safety/abuse tests of developed lithium ion cell.

  17. Electric circuit modeling of lithium-sulfur batteries during discharging state

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Lithium-ion batteries are characterized by having very good performance in terms of efficiency, lifetime, and selfdischarge, which allowed them to become the major player in the electric vehicle applications. However, they were not able to totally overcome the EV range anxiety. Thus, research...... is carried out nowadays to develop batteries with even higher gravimetric energy density, which should allow a substantial range increase. One of the technologies, which should be able to meet the range requirements is the Lithium-Sulfur (Li-S) battery. Thanks to the extensive research and development...... static and pulse discharge profiles, showing a good accuracy in predicting the voltage of the tested Li-S battery cell....

  18. An SCR inverter with an integral battery charger for electric vehicles

    Science.gov (United States)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  19. A real-time insulation detection method for battery packs used in electric vehicles

    Science.gov (United States)

    Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2018-05-01

    Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.

  20. Per unit representation of electrical magnitudes in batteries: A tool for comparison and design

    International Nuclear Information System (INIS)

    Gauchia, Lucia; Sanz, Javier

    2009-01-01

    When a comparison between the performance of batteries with different characteristics, or sizing of a particular battery system in a power system (electrical grid, etc.) is carried out, the usual expression of electrical variables in terms of absolute magnitudes (Volts, etc.) has some important disadvantages derived from the wide range of values these variables can assume, as they are dependant on the 'size' of the system, defined by its rated capacity, voltage or current. This makes impossible any direct comparison between different alternatives. Furthermore, it collides with the usual way power engineers use to represent and analyze the electrical power system. This paper proposes the application of a per unit system to batteries to overcome these problems. In this per unit system, all magnitudes are represented as non-dimensional values, with reference to a set of base magnitudes. Therefore, absolute values are converted into relative ones, which allow a direct comparison between different batteries. To apply a per unit system, a set of base magnitudes is studied and defined taking into account the special characteristics of a battery. The conclusion is that with a per unit system the information extracted is more accessible, direct and representative than using absolute magnitudes

  1. A flexible Li-ion battery with design towards electrodes electrical insulation

    Science.gov (United States)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  2. Electric vehicle batteries. Development status for the promising candidates; Elbilsbatterier. Utvecklingsstatus foer de fraemsta kandidaterna

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Johansson, Arne [Catella Generics AB, Jaerfaella (Sweden)

    2000-04-01

    One driver for the EV and HEV programme of KFB is to study the effects of a large scale introduction of electric vehicles in the future. Catella Generics was contracted to investigate and report on the development status for EV batteries and the success potential for the different candidates, their development obstacles and alternative usage and on the links between different players. The batteries studied in greater detail have been evaluated according to special criteria like performance, cost, ruggedness, resource efficiency, safety and environmental impact and how that will influence their likely success. Models for the evaluation of EV batteries have been developed by the car manufacturers and authorities. We have based our investigation on the criteria established by USABC and the modifications made by PNGV for the energy storage in hybrid electric vehicles. Some basic conclusions reported as a result of this investigation are listed below: Lead-acid may have a role as energy storage in HEVs. Ni/Cd batteries are attractive from a technical standpoint, but questioned based on the environmental concern for cadmium. Ni/MH batteries are attracting a great attention in the medium term. Na/NiCl{sub 2} batteries have been successful in the German demonstration programme. Lithium batteries have a great potential in the long term. Metal/air batteries have been operated without problems, however there need for a special infrastructure is a major draw-back. Fuel cells and ultra capacitors are new alternative power sources for propulsion of EVs, however these are not included in this report.

  3. Can innovative business models overcome resistance to electric vehicles? Better Place and battery electric cars in Denmark

    International Nuclear Information System (INIS)

    Budde Christensen, Thomas; Wells, Peter; Cipcigan, Liana

    2012-01-01

    This paper explores the geographical and policy context for an emergent business model from Better Place to deliver battery electric car mobility in Denmark. It argues that the combination of radically different technologies and a highly complex multi-agency operating environment theoretically provide the conditions and requirements for such an emergent business model. While focused on battery electric cars, renewable energy generation and smart grids, the paper has wider applicability to an understanding of the interplay between place, innovation and sustainability which suggests that diverse solutions are likely to be the characteristic solution rather than ubiquity and standardization. The paper argues, however, that the innovative business model, the deployment of electric vehicles, and the use of renewable energy systems, in this case largely based on wind power, while mutually supportive and contributing to wider policy aims with respect to the reduction of carbon emissions, may still fail in the face of entrenched practices. At the theoretical level it is concluded that theorization of business models needs a broader perspective beyond the typical ‘value creation, value capture’ rubric to better understand the wider role such models have in meeting societal goals, and to understand the structural impediments to organizational and technical innovation. - Highlights: ► We explore the context for an innovative emergent business model to deliver battery electric car mobility in Denmark. ► We explore the interplay between battery electric cars, renewable energy generation and smart grids. ► We discuss the integration of electric cars in energy systems based on renewable energy sources. ► We discuss the likely success of the Better Place business model.

  4. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  5. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    Science.gov (United States)

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  6. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  7. Computational models of an inductive power transfer system for electric vehicle battery charge

    International Nuclear Information System (INIS)

    Anele, A O; Hamam, Y; Djouani, K; Chassagne, L; Alayli, Y; Linares, J

    2015-01-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV. (paper)

  8. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    Science.gov (United States)

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  10. Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-01-01

    The operating temperatures of lithium ion battery packs in electrical vehicles and hybrid electrical vehicles need to be maintained in an optimum range for better performance and longer battery life. This paper proposes a new battery pack cooling system that utilizes the low saturation temperature of the fuel in ammonia based future hybrid electric vehicles. In the proposed cooling system, the batteries are partially submerged in to the liquid ammonia, and the liquid ammonia cools the battery by absorbing the heat and evaporating and the ammonia vapor cools the part of the battery not covered by liquid ammonia. The relationships between the performance of the battery cooling system and the maximum temperature (and the temperature distribution) in the battery are investigated for practical applications. The effect of the length of the battery that is submerged in to the liquid ammonia on the thermal performance of battery is studied and evaluated. The present results show that the proposed ammonia based cooling system offers a unique opportunity to maintain the operating temperature of the battery in an optimum range for consecutive charging and discharging phases at a high rate of 7.5C.

  11. Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity

    Science.gov (United States)

    Rouhani, S.Z.

    1996-12-03

    In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

  12. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D; Hammel, C J

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  13. A comparative, simulation supported study on the diffusion of battery electric vehicles in Norway and Sweden

    OpenAIRE

    Testa, Ginevra

    2017-01-01

    We are living at a point in history where global cost dynamics and specific political choices may lead to an integral transformation of the mobility system as we know it. After a century where the internal combustion engine vehicle dominated the scene, the battery electric vehicle (BEV) is making its way into the market- and in giant steps. The world’s transition to electricity and thereby a lower carbon future, depends heavily on electrifying road transportation. Norway and Sweden’s differen...

  14. Advances in the development of ovonic nickel metal hydride batteries for industrial and electric vehicles

    International Nuclear Information System (INIS)

    Venkatesan, S.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R.

    1991-01-01

    This paper reports that increasing concerns over urban pollution and continued uncertainties about oil supplies have forced the government and industry to refocus their attention on electric vehicles. Despite enormous expenditures in research and development for the ideal battery system, no commercially viable candidate has emerged. The battery systems being considered today due to renewed environmental concerns are still the same systems that were so extensively tested over the last 15 years. For immediate application, an electric vehicle designer has very little choice other than the lead-acid battery despite the fact that energy density is so low as to make vehicle range inadequate, as well as the need for replacement every 20,000 miles. The high energy density projections of Na-S and other so-called high energy batteries have proven to be significantly less in practical modules and there are still concern over cycle life which can be attained under aggressive conditions, reliability under freeze/thaw cycling and consequences resulting from high temperature operation. The conventional nickel-based systems (Ni- Zn, Ni-Fe, Ni-Cd) provide near term higher energy density as compared to lead-acid, but still do not address other important issues such as long life, the need for maintenance-free operation, the use of nontoxic materials and low cost. Against this background, the development of Ovonic Nickel-Metal Hydride (Ni-MH) batteries for electric vehicles has been rapid and successful. Ovonic No-Mh battery technology is uniquely qualified for electric vehicles due to its high energy density, high discharge rate capability, non-toxic alloys, long cycle life. low cost, tolerance to abuse and ability to be sealed for totally maintenance free operation

  15. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  16. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  17. Performance of a Battery Electric Vehicle in the Cold Climate and Hilly Terrain of Vermont

    Science.gov (United States)

    2008-12-23

    The goal of this research project was to determine the performance of a battery electric vehicle (BEV) in the cold climate and hilly terrain of Vermont. For this study, a 2005 Toyota Echo was converted from an internal combustion engine (ICE) vehicle...

  18. Method for measuring the charge of electric storage batteries. Verfahren zur Messung des Ladezustandes elektrischer Akkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.

    1982-03-11

    With liquid-electrolyte storage batteries, charge can be deduced from density measurement which is feasible in a simple technical way by measuring hydrostatic pressure in the electrolyte fluid. Pressure difference is detected piezo-electrically and indicated externally by a voltmeter. Gas-filled or fluid-filled bellows serve as pressure sensors.

  19. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  20. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    Science.gov (United States)

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  1. A fault-tolerant control architecture for different battery topologies in electric vehicles

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Esen, Hasan; Schiøler, Henrik

    2012-01-01

    In this paper a variety of battery conguration topologies for electrical vehicles (EV)are investigated w.r.t. reliability and expected lifetime along with the possibility of applying active fault detection to provide early warnings for the driver. Dierent congurations are investigated ranging from...

  2. Comparison of Parametrization Techniques for an Electrical Circuit Model of Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Teodorescu, Remus

    2015-01-01

    on the comparison of different parametrization methods of electrical circuit models (ECMs) for Li-S batteries. These methods are used to parametrize an ECM based on laboratory measurements performed on a Li-S pouch cell. Simulation results of ECMs are presented and compared against measurement values...

  3. An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    2017-05-01

    Full Text Available Battery remaining useful life (RUL estimation is critical to battery management and performance optimization of electric vehicles (EVs. In this paper, we present an effective way to estimate RUL online by using the support vector machine (SVM algorithm. By studying the characteristics of the battery degradation process, the rising of the terminal voltage and changing characteristics of the voltage derivative (DV during the charging process are introduced as the training variables of the SVM algorithm to determine the battery RUL. The SVM is then applied to build the battery degradation model and predict the battery real cycle numbers. Experimental results prove that the built battery degradation model shows higher accuracy and less computation time compared with those of the neural network (NN method, thereby making it a potential candidate for realizing online RUL estimation in a battery management system (BMS.

  4. Conceptual design of a sodium sulfur cell for US electric van batteries

    Science.gov (United States)

    Binden, Peter J.

    1993-05-01

    A conceptual design of an advanced sodium/sulfur cell for US electric-van applications has been completed. The important design factors included specific physical and electrical requirements, service life, manufacturability, thermal management, and safety. The capacity of this cell is approximately the same as that for the PB cell being developed by Silent Power Limited (10 Ah). The new cell offers a 50% improvement in energy capacity and nearly a 100% improvement in peak power over the existing PB cells. A battery constructed with such cells would significantly exceed the USABC's mid-term performance specifications. In addition, a similar cell and battery design effort was completed for an advanced passenger car application. A battery using the van cell would have nearly 3 times the energy compared to lead-acid batteries, yet weigh 40% less; a present-day battery using a cell specifically designed for this car would provide 50% more energy in a package 60% smaller and 50% lighter.

  5. Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-01-01

    Full Text Available The battery is a key component and the major fault source in electric vehicles (EVs. Ensuring power battery safety is of great significance to make the diagnosis more effective and predict the occurrence of faults, for the power battery is one of the core technologies of EVs. This paper proposes a voltage fault diagnosis detection mechanism using entropy theory which is demonstrated in an EV with a multiple-cell battery system during an actual operation situation. The preliminary analysis, after collecting and preprocessing the typical data periods from Operation Service and Management Center for Electric Vehicle (OSMC-EV in Beijing, shows that overvoltage fault for Li-ion batteries cell can be observed from the voltage curves. To further locate abnormal cells and predict faults, an entropy weight method is established to calculate the objective weight, which reduces the subjectivity and improves the reliability. The result clearly identifies the abnormity of cell voltage. The proposed diagnostic model can be used for EV real-time diagnosis without laboratory testing methods. It is more effective than traditional methods based on contrastive analysis.

  6. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE)

    International Nuclear Information System (INIS)

    Savi, Daniel; Kasser, Ueli; Ott, Thomas

    2013-01-01

    Highlights: • We’ve analysed data on the dismantling of electronic and electrical appliances. • Ten years of mass balance data of more than recycling companies have been considered. • Percentages of dismantled batteries, capacitors and PWB have been studied. • Threshold values and benchmarks for batteries and capacitors have been identified. • No benchmark for the dismantling of printed wiring boards should be set. - Abstract: The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given

  7. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling

    International Nuclear Information System (INIS)

    Heymans, Catherine; Walker, Sean B.; Young, Steven B.; Fowler, Michael

    2014-01-01

    The reuse of Li-ion EV batteries for energy storage systems (ESS) in stationary settings is a promising technology to support improved management of demand and supply of electricity. In this paper, MatLAB simulation of a residential energy profile and regulated cost structure is used to analyze the feasibility of and cost savings from repurposing an EV battery unit for peak-shifting. in situ residential energy storage can contribute to the implementation of a smart grid by supporting the reduction of demand during typical peak use periods. Use of an ESS increases household energy use but potentially improves economic effectiveness and reduces greenhouse gas emissions. The research supports the use of financial incentives for Li-ion battery reuse in ESS, including lower energy rates and reduced auxiliary fees. - Highlights: • EV Li-ion batteries can be reused in stationary energy storage systems (ESS). • A single ESS can shift 2 to 3 h of electricity used in a house. • While energy use increases, potential economic and environmental effectiveness improve. • ESS supports smart grid objectives. • Incentives like reduced fees are needed to encourage implementation of Li-ion battery ESS

  8. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE)

    Energy Technology Data Exchange (ETDEWEB)

    Savi, Daniel, E-mail: d.savi@umweltchemie.ch [Dipl. Environmental Sci. ETH, büro für umweltchemie, Zurich (Switzerland); Kasser, Ueli [Lic. Phil. Nat. (Chemist), büro für umweltchemie, Zurich (Switzerland); Ott, Thomas [Dipl. Phys. ETH, Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil (Switzerland)

    2013-12-15

    Highlights: • We’ve analysed data on the dismantling of electronic and electrical appliances. • Ten years of mass balance data of more than recycling companies have been considered. • Percentages of dismantled batteries, capacitors and PWB have been studied. • Threshold values and benchmarks for batteries and capacitors have been identified. • No benchmark for the dismantling of printed wiring boards should be set. - Abstract: The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.

  9. A new controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  10. Suitability of the Nanophosphate LiFePO4/C Battery Chemistry for the Fully Electric Vehicle

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    , and intrinsic safety of the nanophosphate LiFePO4/C lithium ion chemistry make it possible to consider this chemistry for electric vehicle applications. This paper investigates the lifetime of the nanophosphate LiFePO4/C battery chemistry when it is used for full electrical vehicles. The investigation...... is used to study the capacity and power capability degradation behaviour of the tested nanophosphate LiFePO4/C battery for two electric vehicle operational scenarios....

  11. The development of aluminum-air batteries for application in electric vehicles

    Science.gov (United States)

    Rudd, E. J.; Lott, S.

    1990-12-01

    The recently concluded program, jointly funded by ELTECH Research Corporation and the Department of Energy, focused upon the development of an aluminum-air battery system for electric vehicle applications. The operation of the aluminum-air battery involves the dissolution of aluminum to produce a current and aluminate. Initially the objectives were to evaluate and optimize the battery design that was developed prior to this program (designated as the B300 cell) and to design and evaluate the components of the auxiliary system. During the program, three additional tasks were undertaken, addressing needs identified by ELTECH and by Sandia National Laboratories. First, the capability to produce aluminum alloys as relatively large ingots (100 to 150 lbs), with the required electrochemical performance, was considered essential to the development of the battery. The second additional task was the adoption of an advanced cell (designated as the AT400 cell), designed by ELTECH in a different program. Finally, it was recognized that a system model would allow evaluation of the interactions of the several unit operations involved in the battery. Therefore, the development of a mathematical model, based upon material and energy balances for the battery, was undertaken. At a systems level, sufficient information was obtained in the completion of this program to support the design, fabrication and operation of a batch or solids-free battery system. For the first time, the components of the auxiliary system, i.e., a heat exchanger, carbon dioxide scrubber and hydrogen disposal technology, have been defined for a vehicle battery. Progress on each component or system is summarized in the following sections.

  12. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff

    DEFF Research Database (Denmark)

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar

    2017-01-01

    Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill......, and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-connected solar photovoltaic (PV)-battery storage system-with respect to maximum demand shaving. An effective......, technical, and economic aspects of the solar PV-battery system and the Malaysian electricity tariff for commercial and industrial customers....

  13. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China

    International Nuclear Information System (INIS)

    Qiao, Qinyu; Zhao, Fuquan; Liu, Zongwei; Jiang, Shuhua; Hao, Han

    2017-01-01

    Highlights: •Cradle-to-gate greenhouse gas emissions of internal combustion engine and battery electric vehicles are compared. •Greenhouse gas emissions of battery electric vehicles are 50% higher than internal combustion engine vehicles. •Traction battery production causes about 20% greenhouse gas emissions increase. •10% variations of curb weight, electricity and Li-ion battery production affect the results by 7%, 4% and 2%. •Manufacturing technique improvement, vehicle recycling and energy structure optimization are major mitigation opportunities. -- Abstract: Electric drive vehicles are equipped with totally different propulsion systems compared with conventional vehicles, for which the energy consumption and cradle-to-gate greenhouse gas emissions associated with vehicle production could substantially change. In this study, the life cycle energy consumption and greenhouse gas emissions of vehicle production are compared between battery electric and internal combustion engine vehicles in China’s context. The results reveal that the energy consumption and greenhouse gas emissions of a battery electric vehicle production range from 92.4 to 94.3 GJ and 15.0 to 15.2 t CO 2 eq, which are about 50% higher than those of an internal combustion engine vehicle, 63.5 GJ and 10.0 t CO 2 eq. This substantial change can be mainly attributed to the production of traction batteries, the essential components for battery electric vehicles. Moreover, the larger weight and different weight distribution of materials used in battery electric vehicles also contribute to the larger environmental impact. This situation can be improved through the development of new traction battery production techniques, vehicle recycling and a low-carbon energy structure.

  14. Qualitative thermal characterization and cooling of lithium batteries for electric vehicles

    Science.gov (United States)

    Mariani, A.; D'Annibale, F.; Boccardi, G.; Celata, G. P.; Menale, C.; Bubbico, R.; Vellucci, F.

    2014-04-01

    The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

  15. Qualitative thermal characterization and cooling of lithium batteries for electric vehicles

    International Nuclear Information System (INIS)

    Mariani, A; D'Annibale, F; Boccardi, G; Celata, G P; La Sapienza (Italy))" data-affiliation=" (University of Roma La Sapienza (Italy))" >Menale, C; La Sapienza (Italy))" data-affiliation=" (University of Roma La Sapienza (Italy))" >Bubbico, R; Vellucci, F

    2014-01-01

    The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

  16. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    DEFF Research Database (Denmark)

    Forero Camacho, Oscar Mauricio; Mihet-Popa, Lucian

    2016-01-01

    Electric Vehicles (EV) technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents......, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages...

  17. The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle

    Science.gov (United States)

    Juda, Z.; Noga, M.

    2016-09-01

    The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.

  18. Effect of energy-regenerative braking on electric vehicle battery thermal management and control method based on simulation investigation

    International Nuclear Information System (INIS)

    Huang, Jingying; Qin, Datong; Peng, Zhiyuan

    2015-01-01

    Highlights: • A two-degree-of-freedom lumped thermal model is developed for battery. • The battery thermal model is integrated with vehicle driving model. • Real-time battery thermal responses is obtained. • Active control of current by regenerative braking ratio adjustment is proposed. • More energy is recovered with smaller battery temperature rise. - Abstract: Battery thermal management is important for the safety and reliability of electric vehicle. Based on the parameters obtained from battery hybrid pulse power characterization test, a two-degree-of-freedom lumped thermal model is established. The battery model is then integrated with vehicle driving model to simulate real-time battery thermal responses. An active control method is proposed to reduce heat generation due to regenerative braking. The proposed control method not only subjects to the braking safety regulation, but also adjusts the regenerative braking ratio through a fuzzy controller. By comparing with other regenerative braking scenarios, the effectiveness of the proposed strategy has been validated. According to the results, the proposed control strategy suppresses battery temperature rise by modifying the charge current due to regenerative braking. The overlarge components of current are filtered out whereas the small ones are magnified. Therefore, with smaller battery temperature rise, more energy is recovered. Compared to the traditional passive heat dissipating, the proposed active methodology is feasible and provides a novel solution for electric vehicle battery thermal management.

  19. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand R [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Witt, Maggie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sheppard, Colin [Humboldt State Univ., Arcata, CA (United States); Harris, Andrew [Humboldt State Univ., Arcata, CA (United States)

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  20. The role of nanotechnology in the development of battery materials for electric vehicles.

    Science.gov (United States)

    Lu, Jun; Chen, Zonghai; Ma, Zifeng; Pan, Feng; Curtiss, Larry A; Amine, Khalil

    2016-12-06

    A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.

  1. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    Science.gov (United States)

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  2. On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin K.; Junginger, Martin; Perujo, Adolfo; Bonnel, Pierre; Grootveld, Geert van

    2012-01-01

    Hybrid-electric vehicles (HEVs) and battery-electric vehicles (BEVs) are currently more expensive than conventional passenger cars but may become cheaper due to technological learning. Here, we obtain insight into the prospects of future price decline by establishing ex-post learning rates for HEVs and ex-ante price forecasts for HEVs and BEVs. Since 1997, HEVs have shown a robust decline in their price and price differential at learning rates of 7±2% and 23±5%, respectively. By 2010, HEVs were only 31±22 € 2010 kW −1 more expensive than conventional cars. Mass-produced BEVs are currently introduced into the market at prices of 479±171 € 2010 kW −1 , which is 285±213 € 2010 kW −1 and 316±209 € 2010 kW −1 more expensive than HEVs and conventional cars. Our forecast suggests that price breakeven with these vehicles may only be achieved by 2026 and 2032, when 50 and 80 million BEVs, respectively, would have been produced worldwide. We estimate that BEVs may require until then global learning investments of 100–150 billion € which is less than the global subsidies for fossil fuel consumption paid in 2009. These findings suggest that HEVs, including plug-in HEVs, could become the dominant vehicle technology in the next two decades, while BEVs may require long-term policy support. - Highlights: ► Learning rates for hybrid-electric and battery-electric vehicles. ► Prices and price differentials of hybrid-electric vehicles show a robust decline. ► Battery-electric vehicles may require policy support for decades.

  3. Accumulation Systems of Electric Energy Solved by Multicriteria Analysis Methods IPA and Topsis

    Directory of Open Access Journals (Sweden)

    Zdenek Hradilek

    2008-01-01

    Full Text Available This work deals with utilization of multicriteria analysis methods IPA and TOPSIS to assess three storage systems (Fuel Cells, Lead Acid Batteries and Pumped Storage Hydro Plants. Procedures of IPA and TOPSIS methods are described here as like as calculation of mentioned problem. Storage systems are assessed in terms of four criteria (Start up Time, Efficiency of Accumulation, Lifetime and Specific Costs/ kW of Power Output. Weights of criteria are also focused here. They are suggested by experts and statistically calculated.

  4. Detection and Elimination of a Potential Fire in Engine and Battery Compartments of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Macam S. Dattathreya

    2012-01-01

    Full Text Available This paper presents a novel fuzzy deterministic noncontroller type (FDNCT system and an FDNCT inference algorithm (FIA. The FDNCT uses fuzzy inputs and produces a deterministic non-fuzzy output. The FDNCT is an extension and alternative for the existing fuzzy singleton inference algorithm. The research described in this paper applies FDNCT to build an architecture for an intelligent system to detect and to eliminate potential fires in the engine and battery compartments of a hybrid electric vehicle. The fuzzy inputs consist of sensor data from the engine and battery compartments, namely, temperature, moisture, and voltage and current of the battery. The system synthesizes the data and detects potential fires, takes actions for eliminating the hazard, and notifies the passengers about the potential fire using an audible alarm. This paper also presents the computer simulation results of the comparison between the FIA and singleton inference algorithms for detecting potential fires and determining the actions for eliminating them.

  5. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    International Nuclear Information System (INIS)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-01-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  6. Hierarchical control of a photovoltaic/battery based DC microgrid including electric vehicle wireless charging station

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Fan, Haodong; Guerrero, Josep M.

    2017-01-01

    In this paper, the hierarchical control strategy of a photovoltaic/battery based dc microgrid is presented for electric vehicle (EV) wireless charging. Considering irradiance variations, battery charging/discharging requirements, wireless power transmission characteristics, and onboard battery...... coils, receiving coils and compensation capacitors, the wireless power transmission system is designed to be resonant when it is operating at the rated power, with the aim to achieve the optimum transmission system efficiency. Simulation and experimental results of the hierarchical control...... charging power change and other factors, the possible operation states are obtained. A hierarchical control strategy is established, which includes central and local controllers. The central controller is responsible for the selection and transfer of operation states and the management of the local...

  7. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F; Sauter, J -C; Masanz, G; Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  8. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion

    Science.gov (United States)

    1980-06-01

    The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.

  9. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  10. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles

    Science.gov (United States)

    Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe

    2014-07-01

    Lithium-ion battery packs in hybrid and pure electric vehicles are always equipped with a battery management system (BMS). The BMS consists of hardware and software for battery management including, among others, algorithms determining battery states. The continuous determination of battery states during operation is called battery monitoring. In this paper, the methods for monitoring of the battery state of charge, capacity, impedance parameters, available power, state of health, and remaining useful life are reviewed with the focus on elaboration of their strengths and weaknesses for the use in on-line BMS applications. To this end, more than 350 sources including scientific and technical literature are studied and the respective approaches are classified in various groups.

  11. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling

    Directory of Open Access Journals (Sweden)

    Sina Shojaei

    2017-12-01

    Full Text Available Ambient conditions can have a significant impact on the average and maximum temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery lifetime has been reported with geographical location. In addition, high battery temperature and the associated cooling requirements can cause poor passenger thermal comfort, while extreme battery temperatures can negatively impact the power output of the battery, limiting the available electric traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is parked and not plugged in (key-off, but the associated extra energy requirements make applying key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the duty cycle of the vehicle. The problem is then solved using the dynamic programming method. Controlling key-off cooling through this method leads to significant improvements in the battery lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve the battery lifetime, partial charging of the battery is considered. An algorithm is developed that determines the optimum combination of key-off cooling and the level of battery charge. Simulation results confirm the benefits of the proposed method.

  12. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  13. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  14. On the comparison and the complementarity of batteries and fuel cells for electric driving

    International Nuclear Information System (INIS)

    Le Duigou, Alain; Smatti, Aimen

    2014-01-01

    This paper considers different current and emerging power train technologies (ICE, BEV, HEV, FCEV and FC-RE) and provides a comparison within a techno-economic framework, especially for the architectures of range-extender power trains. The economic benefits in terms of Total Cost of Ownership (TCO) are based on forecasts for the major TCO influencing parameters up to 2030: electric driving distances, energy (fuel, electricity, hydrogen) prices, batteries and fuel cell costs. The model takes into account functional parameters such as the battery range as well as daily trip segmentation statistics. The TCOs of all the vehicles become similar in 2030, given a 200 km battery range for BEVs. BEVs are profitable for yearly mileages of 30,000 km and over, and for higher battery ranges. The competitiveness of FCEVs is examined through the H 2 target price at the pump. There is a very significant effect of the fuel cell cost on the TCO. A FCEV with a fuel cell cost of 40 V/kW will be competitive with a similar ICE car for a 1.75 Euros/l fuel cost and ca. 7 Euros/kg hydrogen cost. This depends too to a great extent on possible ICE cars' CO 2 taxes. As regard the FC-RE electric car, the hydrogen target price at the pump is noticeably higher (ca 10 Euros/Kg). FC-RE cars TCOs are strongly affected by the FC power, the discount rate chosen and the yearly mileage. Moreover, it therefore seems reasonable to confine FC-RE battery ranges in the region of 60 km. (authors)

  15. Lithium polymer batteries and proton exchange membrane fuel cells as energy sources in hydrogen electric vehicles

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.

  16. Driving rural energy access: a second-life application for electric-vehicle batteries

    Science.gov (United States)

    Ambrose, Hanjiro; Gershenson, Dimitry; Gershenson, Alexander; Kammen, Daniel

    2014-09-01

    Building rural energy infrastructure in developing countries remains a significant financial, policy and technological challenge. The growth of the electric vehicle (EV) industry will rapidly expand the resource of partially degraded, ‘retired’, but still usable batteries in 2016 and beyond. These batteries can become the storage hubs for community-scale grids in the developing world. We model the resource and performance potential and the technological and economic aspects of the utilization of retired EV batteries in rural and decentralized mini- and micro-grids. We develop and explore four economic scenarios across three battery chemistries to examine the impacts on transport and recycling logistics. We find that EVs sold through 2020 will produce 120-549 GWh in retired storage potential by 2028. Outlining two use scenarios for decentralized systems, we discuss the possible impacts on global electrification rates. We find that used EV batteries can provide a cost-effective and lower environmental impact alternative to existing lead-acid storage systems in these applications.

  17. Thermal Characteristics of an Oscillating Heat Pipe Cooling System for Electric Vehicle Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ri-Guang Chi

    2018-03-01

    Full Text Available The heat generation of lithium ion batteries in electric vehicles (EVs leads to a degradation of energy capacity and lifetime. To solve this problem, a new cooling concept using an oscillating heat pipe (OHP is proposed. In the present study, an OHP has been adopted for Li-ion battery cooling. Due to the limited space in EVs, the cooling channel is installed on the bottom of the battery module. In the bottom cooling method with an OHP, generated heat can be dissipated easily and conveniently. However, most studies on heat pipes have used bottom heating and top or side cooling methods, so we investigate the various effects of parameters with a top heating/bottom cooling mode with the OHP, i.e., the inclination angle of the system, amount of working fluid charged, the heating amount, and the cold plate temperature with ethanol as a working fluid. The experimental results show that the thermal resistance (0.6 °C/W and uneven pulsating features influence the heat transfer performance. A heater used as a simulated battery was sustained under 60 °C under 10 W and 14 W heating conditions. This indicates that the proposed cooling system with the bottom cooling is feasible for use as an EV’s battery cooling system.

  18. On the optimal sizing of batteries for electric vehicles and the influence of fast charge

    Science.gov (United States)

    Verbrugge, Mark W.; Wampler, Charles W.

    2018-04-01

    We provide a brief summary of advanced battery technologies and a framework (i.e., a simple model) for assessing electric-vehicle (EV) architectures and associated costs to the customer. The end result is a qualitative model that can be used to calculate the optimal EV range (which maps back to the battery size and performance), including the influence of fast charge. We are seeing two technological pathways emerging: fast-charge-capable batteries versus batteries with much higher energy densities (and specific energies) but without the capability to fast charge. How do we compare and contrast the two alternatives? This work seeks to shed light on the question. We consider costs associated with the cells, added mass due to the use of larger batteries, and charging, three factors common in such analyses. In addition, we consider a new cost input, namely, the cost of adaption, corresponding to the days a customer would need an alternative form of transportation, as the EV would not have sufficient range on those days.

  19. Energy savings and increased electric vehicle range through improved battery thermal management

    International Nuclear Information System (INIS)

    Smith, Joshua; Hinterberger, Michael; Schneider, Christoph; Koehler, Juergen

    2016-01-01

    Lithium-ion cells are temperature sensitive: operation outside the optimal operating range causes premature aging and correspondingly reduces vehicle range and battery system lifetime. In order to meet consumer demands for electric and hybrid-electric vehicle performance, especially in adverse climates, a battery thermal management system (BTMS) is often required. This work presents a novel experimental method for analyzing BTMS using three sample cooling plate concepts. For each concept, the input parameters (ambient temperature, coolant temperature and coolant flow rate) are varied and the resulting effect on the average temperature and temperature distribution across and between cells is compared. Additionally, the pressure loss along the coolant path is utilized as an indicator of energy efficiency. Using the presented methodology, various cooling plate layouts optimized for production alternative techniques are compared to the state of the art. It is shown that these production-optimized cooling plates provide sufficient thermal performance with the additional benefit of mechanical integration within the battery and/or vehicle system. It is also shown that the coolant flow influences battery cell thermal behavior more than the solid material and that pressure drop is more sensitive to geometrical changes in the cooling plate than temperature changes at the module.

  20. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  1. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  2. MODEL FOR ELECTRIC LOAD OF COMMUNITY HOUSING PROJECTS TO INVESTIGATE “GENERATOR – ACCUMULATOR – CONSUMER” SYSTEM WHILE USING MONTE-CARLO METHOD

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2017-01-01

    Full Text Available Nowadays we observe rather rapid growth of energy accumulators market. There are prerequisites to their extensive application in Belarus. In spite of technology development problems pertaining to optimization of electric power and their operation under conditions of specific systems “generator – accumulator – consumer” (GAC have not obtained proper consideration. At the same time tuning and optimization of the GAC system may provide competitive advantages to various accumulating systems because application of accumulator batteries in non-optimal charge – discharge conditions reduces its operating resource. Optimization of the GAC system may include utilization of hybrid accumulator systems together with heterogeneous chemical and mechanical accumulators, tuning of system controller parameters etc. Research papers present a great number of empirical and analytical methods for calculation of electric loads. These methods use the following parameters as initial data: time-averaged values of actual electric power consumption, averaged apartment electric loads, empirical and statistical form coefficients, coefficients of maximum electric load for a group of uniform consumers. However such models do not meet the requirements of detailed simulation of relatively small system operation when the simulation must correspond to non-stationary, non-averaged, stochastic load nature. The paper provides a simple approach to the detailed simulation of electric loads in regard to small projects such as multi-unit apartment building or small agricultural farm. The model is formulated both in physical and algorithmic terms that make it possible to be easily realized in any programming environment. The paper presents convergence of integral electric power consumption, which is set by the model, to statistically averaged parameters. Autocorrelation function has been calculated in the paper that shows two scales for autocorrelation of simulated load diagrams

  3. Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, J.B. (comp.)

    1980-06-01

    The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

  4. The Zebra Battery: a South African contender for electric vehicle application

    Directory of Open Access Journals (Sweden)

    J. Coertzer

    1996-07-01

    Full Text Available The Zebra battery is one of the most promising power sources for electric vehicles which might be on sale before the year 2000. It is a South African development which started at the CSIR and is at present jointly managed by the Anglo American Corpora­tion of S.A. and the German company A.E.G. The chemical reaction converts common salt and nickel to nickel chloride and sodium during the charging phase.

  5. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids

    International Nuclear Information System (INIS)

    Purvins, Arturs; Papaioannou, Ioulia T.; Debarberis, Luigi

    2013-01-01

    Highlights: ► Battery system application in demand smoothening in distribution grids is analysed. ► Five European countries are studied with and without high photovoltaic deployment. ► A sensitivity analysis for different battery system parameters is performed. ► A simple battery system management is sufficient for low demand smoothening. ► More elaborate management is required for high demand smoothening. - Abstract: This article analyses in technical terms the application of battery-based storage systems for household-demand smoothening in electricity-distribution grids. The analysis includes case studies of Denmark, Portugal, Greece, France and Italy. A high penetration of photovoltaic systems in distribution grids is considered as an additional scenario. A sensitivity analysis is performed in order to examine the smoothening effect of daily demand profiles for different configurations of the battery system. In general, battery-storage systems with low rated power and low battery capacity can smooth the demand sufficiently with the aid of a simple management process. For example, with 1 kW of peak demand, a 30–45% decrease in the variability of the daily demand profile can be achieved with a battery system of 0.1 kW rated power and up to 0.6 kW h battery capacity. However, further smoothening requires higher battery-system capacity and power. In this case, more elaborate management is also needed to use the battery system efficiently.

  6. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  7. Optimal recharging strategy for battery-switch stations for electric vehicles in France

    International Nuclear Information System (INIS)

    Armstrong, M.; El Hajj Moussa, C.; Adnot, J.; Galli, A.; Riviere, P.

    2013-01-01

    Most papers that study the recharging of electric vehicles focus on charging the batteries at home and at the work-place. The alternative is for owners to exchange the battery at a specially equipped battery switch station (BSS). This paper studies strategies for the BSS to buy and sell the electricity through the day-ahead market. We determine what the optimal strategies would have been for a large fleet of EVs in 2010 and 2011, for the V2G and the G2V cases. These give the amount that the BSS should offer to buy or sell each hour of the day. Given the size of the fleet, the quantities of electricity bought and sold will displace the market equilibrium. Using the aggregate offers to buy and the bids to sell on the day-ahead market, we compute what the new prices and volumes transacted would be. While buying electricity for the G2V case incurs a cost, it would have been possible to generate revenue in the V2G case, if the arrivals of the EVs had been evenly spaced during the day. Finally, we compare the total cost of implementing the strategies with the cost of buying the same quantity of electricity from EDF. - Highlights: • Optimal strategies for buying/selling electricity through day-ahead auction market. • Given fleet size power bought and sold would change market price and volume. • New prices computed using aggregate offers to buy/sell power in 2010 and 2011. • Timing of arrival of EVs critical in V2G case. If evenly spaced BSS makes money. • Strategies are very robust even when French and German markets were coupled Nov. 2010

  8. Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany

    International Nuclear Information System (INIS)

    Ernst, Christian-Simon; Hackbarth, Andre; Madlener, Reinhard; Lunz, Benedikt; Uwe Sauer, Dirk; Eckstein, Lutz

    2011-01-01

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortization time of a PHEV also depends on the recharging strategy (once a day, once a night, after each trip), the battery size, and the battery costs. We find that PHEVs with a 4 kWh battery and at current lithium-ion battery prices reach the break-even point after about 6 years (5 years when using the lower night-time electricity tariffs). With higher battery capacities the amortization time becomes significantly longer. Even for the small battery size and assuming the EU-15 electricity mix, a PHEV is found to emit only around 60% of the CO 2 emissions of a comparable conventional car. Thus, with the PHEV concept a cost-effective introduction of electric mobility and reduction of greenhouse gas emissions per vehicle can be reached. - Highlights: → Total cost of ownership of a PHEV and a conventional car are compared for the average German car user.→ PHEVs with a 4 kWh battery reach the break-even after 5-6 years at current Li-Ion battery prices.→ Even with a small battery, PHEVs emit about 40% less CO 2 emissions than the average conventional car.

  9. Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles

    International Nuclear Information System (INIS)

    Capasso, Clemente; Veneri, Ottorino

    2014-01-01

    Highlights: • Performance analysis for lithium storage technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries. • Actual capacity of lithium technologies analyzed almost close to their nominal capacity also for high discharging current. • The charging efficiency for Li[NiCoMn]O 2 positively affects the regenerative breaking and fast recharging operations. • The analyzed battery packs follow dynamic power requirements on performed road driving cycles. • Experimental results demonstrate driving range is much higher when battery packs are based on lithium technology. - Abstract: This paper deals with an experimental evaluation regarding the real performance of lithium based energy storage systems for automotive applications. In particular real working operations of different lithium based storage system technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries, are compared in this work from the point of view of their application in supplying full electric and hybrid vehicles, taking as a reference the well-known behavior of lead acid batteries. For this purpose, the experimental tests carried out in laboratory are firstly performed on single storage modules in stationary conditions. In this case the related results are obtained by means of a bidirectional cycle tester based on the IGBT technology, and consent to evaluate, compare and contrast charge/discharge characteristics and efficiency at constant values of current/voltage/power for each storage technology analyzed. Then, lithium battery packs are tested in supplying a 1.8 kW electric power train using a laboratory test bench, based on a 48 V DC bus and specifically configured to simulate working operations of electric vehicles on the road. For this other experimentation the test bench is equipped with an electric brake and acquisition/control system, able to represent in laboratory the real vehicle conditions and road characteristics on predefined driving cycles at different slopes. The obtained

  10. Lifetime Estimation of the Nanophosphate LiFePO4/C Battery Chemistry Used in Fully Electric Vehicles

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stroe, Ana-Irina

    2015-01-01

    , and intrinsic safety of the nanophosphate LiFePO4/C Li-ion chemistry make it possible to consider this chemistry for electric vehicle (EV) applications. This paper investigates the lifetime of the nanophosphate LiFePO4/C battery chemistry when it is used for full electrical vehicles. The investigation...... is used to study the capacity and power capability degradation behavior of the tested nanophosphate LiFePO4/C battery for two EV operational scenarios....

  11. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    Science.gov (United States)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  12. Electric charge accumulation in polar and non-polar polymers under electron beam irradiation

    International Nuclear Information System (INIS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    2010-01-01

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m 3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m 3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m 3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula. (author)

  13. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jenn-Jiang Hwang

    2015-01-01

    Full Text Available The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery’s state of charge (SOC. This approach improves the quick loss problem of the system’s SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  14. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  15. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles

    Science.gov (United States)

    Yao, Lei; Wang, Zhenpo; Ma, Jun

    2015-10-01

    This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.

  16. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.

    2010-01-01

    Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)

  17. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles

    International Nuclear Information System (INIS)

    Sun, Fengchun; Hu, Xiaosong; Zou, Yuan; Li, Siguang

    2011-01-01

    An accurate battery State of Charge estimation is of great significance for battery electric vehicles and hybrid electric vehicles. This paper presents an adaptive unscented Kalman filtering method to estimate State of Charge of a lithium-ion battery for battery electric vehicles. The adaptive adjustment of the noise covariances in the State of Charge estimation process is implemented by an idea of covariance matching in the unscented Kalman filter context. Experimental results indicate that the adaptive unscented Kalman filter-based algorithm has a good performance in estimating the battery State of Charge. A comparison with the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms shows that the proposed State of Charge estimation method has a better accuracy. -- Highlights: → Adaptive unscented Kalman filtering is proposed to estimate State of Charge of a lithium-ion battery for electric vehicles. → The proposed method has a good performance in estimating the battery State of Charge. → A comparison with three other Kalman filtering algorithms shows that the proposed method has a better accuracy.

  18. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures

    International Nuclear Information System (INIS)

    Jaguemont, J.; Boulon, L.; Dubé, Y.

    2016-01-01

    Highlights: • We present a comprehensive review on lithium ion batteries used in hybrid and electric vehicles under cold temperatures. • The weak performances of lithium-ion batteries in cold weather are explained. • The influence of low temperatures on the aging mechanisms of lithium ion batteries is discussed. • The different uses of thermal strategies in an automotive application are proposed. - Abstract: Because of their numerous advantages, lithium-ion (Li-ion) batteries have recently become a focus of research interest for vehicle applications. Li-ion batteries are suitable for electric vehicles (EVs) and hybrid electric vehicles (HEVs) because of advantages such as their high specific energy, high energy density, and low self-discharge rate in comparison with other secondary batteries. Nevertheless, the commercial availability of Li-ion batteries for vehicle applications has been hindered by issues of safety, cost, charging time, and recycling. One principal limitation of this technology resides in its poor low-temperature performance. Indeed, the effects of low temperature reduce the battery’s available energy and increase its internal impedance. In addition, performance-hampering cell degradation also occurs at low temperatures and throughout the entire life of a Li-ion battery. All of these issues pose major difficulties for cold-climate countries. This paper reviews the effects of cold temperatures on the capacity/power fade of Li-ion battery technology. Extensive attention is paid to the aging mechanisms of Li-ion batteries at cold temperatures. This paper also reviews several battery models found in the literature. Finally, thermal strategies are detailed, along with a discussion of the ideal approach to cold-temperature operation.

  19. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  20. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  1. A novel active equalization method for lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai; Xie, Jing; Zhang, Xu

    2015-01-01

    Highlights: • Build an active equalization method for lithium-ion batteries. • A bidirectional transformer topology is introduced for active equalization. • The PF method is used for cell SOC estimation to eliminate drift noise of current. • The SOC based equalization algorithm is analyzed with different SOC bounds. - Abstract: Cell inconsistency is inevitable due to manufacturing constraint. Therefore, cell equalization is essentially required. In this paper, we propose a novel active equalization method based on the remaining capacity of cells which is feasible for lithium-ion battery packs in electric vehicles (EVs). The cell models are established based on a combined electrochemical model of lithium-ion batteries. The remaining capacity and state-of-charge (SOC) of cells are observed at the beginning of equalization. The particle filter (PF) method is employed to estimate the cell SOCs during equalization in order to eliminate the drift noise of the current sensor. The first high-SOC cell discharge (FHCD) and first low-SOC cell charge (FLCC) equalization algorithms are proposed and compared with 1% and 3% SOC bounds, respectively. The validation experiment results have shown that the proposed algorithm is suitable for equalization of lithium-ion batteries in EVs

  2. A Novel Data-Driven Fast Capacity Estimation of Spent Electric Vehicle Lithium-ion Batteries

    Directory of Open Access Journals (Sweden)

    Caiping Zhang

    2014-12-01

    Full Text Available Fast capacity estimation is a key enabling technique for second-life of lithium-ion batteries due to the hard work involved in determining the capacity of a large number of used electric vehicle (EV batteries. This paper tries to make three contributions to the existing literature through a robust and advanced algorithm: (1 a three layer back propagation artificial neural network (BP ANN model is developed to estimate the battery capacity. The model employs internal resistance expressing the battery’s kinetics as the model input, which can realize fast capacity estimation; (2 an estimation error model is established to investigate the relationship between the robustness coefficient and regression coefficient. It is revealed that commonly used ANN capacity estimation algorithm is flawed in providing robustness of parameter measurement uncertainties; (3 the law of large numbers is used as the basis for a proposed robust estimation approach, which optimally balances the relationship between estimation accuracy and disturbance rejection. An optimal range of the threshold for robustness coefficient is also discussed and proposed. Experimental results demonstrate the efficacy and the robustness of the BP ANN model together with the proposed identification approach, which can provide an important basis for large scale applications of second-life of batteries.

  3. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    International Nuclear Information System (INIS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    2007-01-01

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials. (author)

  4. Lithium-Ion Battery Management System: A Lifecycle Evaluation Model for the Use in the Development of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sisodia Ayush

    2018-01-01

    Full Text Available The use of Lithium-ion batteries in the automobile sector has expanded drastically in the recent years. The foreseen increment of lithium to power electric and hybrid electric vehicles has provoked specialists to analyze the long term credibility of lithium as a transportation asset. To give a better picture of future accessibility, this paper exhibits a life cycle model for the key procedures and materials associated with the electric vehicle lithium-ion battery life cycle, on a worldwide scale. This model tracks the flow of lithium and energy sources from extraction, to generation, to on road utilization, and the role of reusing and scrapping. This life cycle evaluation model is the initial phase in building up an examination model for the lithium ion battery production that would enable the policymakers to survey the future importance of lithium battery recycling, and when in time setting up a reusing foundation be made necessary.

  5. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  6. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    Science.gov (United States)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  7. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  8. US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).

  9. Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Torres-Moreno

    2018-02-01

    Full Text Available This paper analyzes the impact of photovoltaic (PV systems on storage and electric vehicles in micro-grids. As these kinds of systems are becoming increasingly popular in the residential sector, the development of a new generation of equipment, such as more efficient batteries or solar panels, makes further study necessary. These systems are especially interesting in commercial or office buildings, since they have a more repetitive daily pattern of electricity consumption, which usually occurs within the maximum solar radiation hours. Based on this need, a novel control strategy aimed at efficiently managing this kind of micro-grid is proposed. The core of this strategy is a rule-based controller managing the power flows between the grid and the batteries of both the PV system and the electric vehicle. Through experimental data and simulations, this strategy was tested under different scenarios. The selected testbed consisted of the laboratory of a research center, which could be easily scalable to the entire building. Results showed the benefits of using an electric vehicle as an active agent in energy balance, leading to a reduction of the energetic costs of a micro-grid.

  10. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  11. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  12. State of Charge Estimation Based on Microscopic Driving Parameters for Electric Vehicle's Battery

    Directory of Open Access Journals (Sweden)

    Enjian Yao

    2013-01-01

    Full Text Available Recently, battery-powered electric vehicle (EV has received wide attention due to less pollution during use, low noise, and high energy efficiency and is highly expected to improve urban air quality and then mitigate energy and environmental pressure. However, the widespread use of EV is still hindered by limited battery capacity and relatively short cruising range. This paper aims to propose a state of charge (SOC estimation method for EV’s battery necessary for route planning and dynamic route guidance, which can help EV drivers to search for the optimal energy-efficient routes and to reduce the risk of running out of electricity before arriving at the destination or charging station. Firstly, by analyzing the variation characteristics of power consumption rate with initial SOC and microscopic driving parameters (instantaneous speed and acceleration, a set of energy consumption rate models are established according to different operation modes. Then, the SOC estimation model is proposed based on the presented EV power consumption model. Finally, by comparing the estimated SOC with the measured SOC, the proposed SOC estimation method is proved to be highly accurate and effective, which can be well used in EV route planning and navigation systems.

  13. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles

    Science.gov (United States)

    Chacko, Salvio; Chung, Yongmann M.

    2012-09-01

    Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.

  14. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  15. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  16. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  17. Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2014-10-01

    Full Text Available The charging method of lithium-ion batteries used in electric vehicles (EVs significantly affects its commercial application. This paper aims to make three contributions to the existing literature. (1 In order to achieve an efficient charging strategy for lithium-ion batteries with shorter charging time and lower charring loss, the trade-off problem between charging loss and charging time has been analyzed in details through the dynamic programing (DP optimization algorithm; (2 To reduce the computation time consumed during the optimization process, we have proposed a database based optimization approach. After off-line calculation, the simulation results can be applied to on-line charge; (3 The novel database-based DP method is proposed and the simulation results illustrate that this method can effectively find the suboptimal charging strategies under a certain balance between the charging loss and charging time.

  18. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  19. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles

    Science.gov (United States)

    Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang

    2018-05-01

    With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.

  20. Energy Management System Optimization for Battery-Ultracapacitor Powered Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Selim Koroglu

    2017-03-01

    Full Text Available Energy usage and environment pollution in the transportation are major problems of today’s world. Although electric vehicles are promising solutions to these problems, their energy management methods are complicated and need to be improved for the extensive usage. In this work, the heuristic optimization methods; Differential Evolution Algorithm, Genetic Algorithm and Particle Swarm Optimization, are used to provide an optimal energy management system for a battery/ultracapacitor powered electric vehicle without prior knowledge of the drive cycle. The proposed scheme has been simulated in Matlab and applied on the ECE driving cycle. The differences between optimization methods are compared with reproducible and measurable error criteria. Results and the comparisons show the effectiveness and the practicality of the applied methods for the energy management problem of the multi-source electric vehicles.

  1. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.

    Science.gov (United States)

    Kim, Hyung Chul; Wallington, Timothy J; Arsenault, Renata; Bae, Chulheung; Ahn, Suckwon; Lee, Jaeran

    2016-07-19

    We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility.

  2. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  3. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  4. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  5. The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach

    Directory of Open Access Journals (Sweden)

    Geerten van de Kaa

    2017-10-01

    Full Text Available The transition to a more sustainable personal transportation sector requires the widespread adoption of electric vehicles. However, a dominant design has not yet emerged and a standards battle is being fought between battery and hydrogen fuel cell powered electric vehicles. The aim of this paper is to analyze which factors are most likely to influence the outcome of this battle, thereby reducing the uncertainty in the industry regarding investment decisions in either of these technologies. We examine the relevant factors for standard dominance and apply a multi-criteria decision-making method, best worst method, to determine the relative importance of these factors. The results indicate that the key factors include technological superiority, compatibility, and brand reputation and credibility. Our findings show that battery powered electric vehicles have a greater chance of winning the standards battle. This study contributes to theory by providing further empirical evidence that the outcome of standards battles can be explained and predicted by applying factors for standard success. We conclude that technology dominance in the automotive industry is mostly driven by technological characteristics and characteristics of the format supporter.

  6. The Possibility of Functioning at Maximum Power for Solar Photovoltaic - Electric Battery Systems

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2013-01-01

    Full Text Available The paper presents the functioning of a solar photovoltaic module(PVM that debits direct to on electric battery (EB. By a good adaptingof PVM to EB, so that the no load voltage of the two components (PVMand EB are well suited, during a day the energy value can be reachednear to the maximum possible value, when the PVM functions in themaximum power point (MPP. The proposed solution is much moreeconomic than the classical: PVM + DC – DC + EB because the directcurrent - direct current power converter, is not necessary (DC - DC.

  7. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  8. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    Science.gov (United States)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  9. Battery charging and discharging research based on the interactive technology of smart grid and electric vehicle

    Science.gov (United States)

    Zhang, Mingyang

    2018-06-01

    To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.

  10. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    Science.gov (United States)

    Schwartz, H. J.

    1976-01-01

    A Monte Carlo simulation process was used to develop the U.S. daily range requirements for an electric vehicle from probability distributions of trip lengths and frequencies and average annual mileage data. The analysis shows that a car in the U.S. with a practical daily range of 82 miles (132 km) can meet the needs of the owner on 95% of the days of the year, or at all times other than his long vacation trips. Increasing the range of the vehicle beyond this point will not make it more useful to the owner because it will still not provide intercity transportation. A daily range of 82 miles can be provided by an intermediate battery technology level characterized by an energy density of 30 to 50 watt-hours per pound (66 to 110 W-hr/kg). Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. The implication of these results for the research goals of far-term battery systems suggests a shift in emphasis toward lower cost and greater life and away from high energy density.

  11. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    Science.gov (United States)

    Schwartz, H.-J.

    1976-01-01

    The modeling process of a complex system, based on the calculation and optimization of the system parameters, is complicated in that some parameters can be expressed only as probability distributions. In the present paper, a Monte Carlo technique was used to determine the daily range requirements of an electric road vehicle in the United States from probability distributions of trip lengths, frequencies, and average annual mileage data. The analysis shows that a daily range of 82 miles meets to 95% of the car-owner requirements at all times with the exception of long vacation trips. Further, it is shown that the requirement of a daily range of 82 miles can be met by a (intermediate-level) battery technology characterized by an energy density of 30 to 50 Watt-hours per pound. Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. These results imply that long-term research goals for battery systems should be focused on lower cost and longer service life, rather than on higher energy densities

  12. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  13. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a ;base; load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  14. Design optimization of electric vehicle battery cooling plates for thermal performance

    Science.gov (United States)

    Jarrett, Anthony; Kim, Il Yong

    The performance of high-energy battery cells utilized in electric vehicles (EVs) is greatly improved by adequate temperature control. An efficient thermal management system is also desirable to avoid diverting excessive power from the primary vehicle functions. In a battery cell stack, cooling can be provided by including cooling plates: thin metal fabrications which include one or more internal channels through which a coolant is pumped. Heat is conducted from the battery cells into the cooling plate, and transported away by the coolant. The operating characteristics of the cooling plate are determined in part by the geometry of the channel; its route, width, length, etc. In this study, a serpentine-channel cooling plate is modeled parametrically and its characteristics assessed using computational fluid dynamics (CFD). Objective functions of pressure drop, average temperature, and temperature uniformity are defined and numerical optimization is carried out by allowing the channel width and position to vary. The optimization results indicate that a single design can satisfy both pressure and average temperature objectives, but at the expense of temperature uniformity.

  15. Batteries

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2016-01-01

    Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.

  16. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  17. Electrical insulation properties of RF-sputtered LiPON layers towards electrochemical stability of lithium batteries

    OpenAIRE

    Vieira, E. M. F.; Ribeiro, J. F.; Silva, Maria Manuela; Barradas, N. P.; Alves, E.; Alves, A.; Correia, M. R.; Gonçalves, L. M.

    2016-01-01

    Electrochemical stability, moderate ionic conductivity and low electronic conductivity make the lithium phosphorous oxynitride (LiPON) electrolyte suitable for micro and nanoscale lithium batteries. The electrical and electrochemical properties of thin-film electrolytes can seriously compromise full battery performance. Here, radio-frequency (RF)-sputtered LiPON thin films were fabricated in nitrogen plasma under different working pressure conditions. With a slight decrease in ...

  18. A new approach to calculating endurance in electric flight and comparing fuel cells and batteries

    International Nuclear Information System (INIS)

    Donateo, Teresa; Ficarella, Antonio; Spedicato, Luigi; Arista, Alessandro; Ferraro, Marco

    2017-01-01

    Highlights: • Gross endurance of an UAV calculated with literature correlations. • Net endurance calculated with an innovative mission-based approach. • Three state-of-the-art battery technologies compared to a PEM fuel cell. • Analysis with different values of energy stored on board. • Effect of powertrain mass and volume of aircraft empty mass and wing area. - Abstract: Electric flight is of increasing interest in order to reduce emissions of pollution and greenhouse gases in the aviation field in particular when the takeoff mass is low, as in the case of lightweight cargo transport or remotely controlled drones. The present investigation addresses two key issues in electric flight, namely the correct calculation of the endurance and the comparison between batteries and fuel cells, with a mission-based approach. As a test case, a light Unmanned Aerial Vehicle (UAV) powered exclusively by a Polymer Electrolyte Membrane fuel cell with a gaseous hydrogen tank was compared with the same aircraft powered by different kinds of Lithium batteries sized to match the energy stored in the hydrogen tank. The mass and the volume of each powertrain were calculated with literature data about existing technologies for propellers, motors, batteries and fuel cells. The empty mass and the wing area of the UAV were amended with the mass of the proposed powertrain to explore the range of application of the proposed technologies. To evaluate the efficiency of the whole powertrain a simulation software was used instead of considering only level flight. This software allowed an in-depth analysis on the efficiency of all sub-systems along the flight. The secondary demand of power for auxiliaries was taken into account along with the propulsive power. The main parameter for the comparison was the endurance but the takeoff performance, the volume of the powertrain and the environmental impact were also taken into account. The battery-based powertrain was found to be the most

  19. Development of a Fe-Ni battery for electric vehicle use. Denki jidoshayo tetsu nickel denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Okuda, K. (The Tohoku Electric Power Co. Inc., Sendai (Japan))

    1993-08-11

    Development has been made on an iron-nickel battery as a low polluting electric vehicle battery that is superior in low-temperature performance to lead-acid batteries. This paper summarizes the battery. The battery uses NiOOH for positive electrodes, Fe for negative electrodes, and alkaline aqueous solution for electrolyte. The battery was manufactured in the following manners to make it suit the electric vehicle application: The iron electrode was manufactured by mixing reduced iron powder having grain sizes from 5[mu] to 6[mu] with electrolyzed iron powder with grain sizes from 20[mu] to 30[mu] in a bonding agent, and sintered at temperatures from 750[degree]C to 800[degree]C in H2 atmosphere; iron electrodes that have superior life and material utilization factor were found to have reduced iron powder ratios from 20% to 30%; the nickel electrode consists of a substrate obtained by coating metallic Ni powder on a sheet and sintering it and filling it with NiOH; the electrolyte is composed of KOH containing LiOH and KS; the separator uses a ribbed PVC porous sheet; the container is made of PP; performance evaluation tests were conducted on discharge performance, energy density, output density, temperature characteristics, charge efficiency, and cycle life; and the results of vehicle driving tests surpassed those from lead-acid batteries. 6 refs., 18 figs., 6 tabs.

  20. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  1. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    Science.gov (United States)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  2. Leveling of battery load and extension of battery life by serial connection of electric double layer capacitors with batteries for electric vehicles. Experimental results on the small model; Denki jidoshayo denchi to denki nijuso capacitor no chokuretsu setsuzoku ni yoru denchi futan no heijunka oyobi denchijumyo no enshinka. (kogata model ni yoru jikken seika). Kogata model ni yoru jikken seika

    Energy Technology Data Exchange (ETDEWEB)

    Takehara, J.; Okubo, N.; Miyaoka, K. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1996-10-25

    The load leveling method of batteries for electric vehicles was studied for extension of a battery life and mileage every charging. Under large load fluctuation conditions such as deceleration and acceleration, use of electric power sources other than battery for peek load at acceleration can improve a battery life, output power capacity and mileage every charging. Combination of effective recovery of regenerative power at deceleration with its discharge at acceleration is one of the effective methods. The electric double layer capacitors are serially connected with the batteries, regenerative power is charged only into the capacitors, and both voltages of the battery and capacitor are applied to a power circuit. Battery load is reduced by load on the capacitor. Until the capacitor is re-charged by regenerative power after full discharge, power is supplied only by battery through a diode. Capacitor power is used as effectively as possible until approaching considerably low voltage. As peak load of the battery is reduced by 30%, the mileage increases by 5.7%, and the battery cycle life becomes 1.5 times longer. 7 refs., 5 figs., 3 tabs.

  3. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Jiang, Jiuchun; Sun, Bingxiang; Zhang, Weige; Pecht, Michael

    2016-01-01

    The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles and the estimate of power by battery management systems provides operating information for drivers. In this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency of power capability and an operating map of power capability is presented. Both parametric and non-parametric models are established in conditions of temperature, state of charge, and cell resistance to estimate the power capability. Six cells were tested and used for model development, training, and validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures and were used for model parameter identification and model training. The other three were used for model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and 0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge conditions, while the non-parametric model has better estimation result in high temperature and state of charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power capability estimation. - Highlights: • The temperature dependency of power capability of lithium-ion battery is investigated. • The parametric and non-parametric power capability estimation models are proposed. • An exponential function is put forward to compensate the effects of temperature. • A comparative study on the accuracy of two models using statistical metrics is presented.

  4. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  5. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Chau, K.T.; Wu, K.C.; Chan, C.C.; Shen, W.X.

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents

  6. The bicentennial of the Voltaic battery (1800-2000): the artificial electric organ.

    Science.gov (United States)

    Piccolino, M

    2000-04-01

    Alessandro Volta invented the electric battery at the end of 1799 and communicated his invention to the Royal Society of London in 1800. The studies that led him to develop this revolutionary device began in 1792, after Volta read the work of Luigi Galvani on the existence of an intrinsic electricity in living organisms. During these studies, Volta obtained a series of results of great physiological relevance, which led him to anticipate some important ideas that marked the inception of modern neuroscience. These results have been obscured by a cultural tradition that has seen Volta exclusively as a physicist, lacking interest for biological problems and opposed in an irreversible way to the physiologist, Luigi Galvani.

  7. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  8. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles

    International Nuclear Information System (INIS)

    Zhao, Jiateng; Rao, Zhonghao; Huo, Yutao; Liu, Xinjian; Li, Yimin

    2015-01-01

    Thermal management especially cooling plays an important role in power battery modules for electric vehicles. In order to comprehensively understand the heat transfer characteristics of air cooling system, the air cooling numerical simulation battery models for cylindrical lithium-ion power battery pack were established in this paper, and a detailed parametric investigation was undertaken to study effects of different ventilation types and velocities, gap spacing between neighbor batteries, temperatures of environment and entrance air, amount of single row cells and battery diameter on the thermal management performance of battery pack. The results showed that the local temperature difference increased firstly and then decreased with the increase of wind speed. Reversing the air flow direction between adjacent rows is not necessarily appropriate and the gap spacing should not be too small and too large. It is prone to thermal runaway when the ambient temperature is too high, and the most suitable value of S/D (the ratio of spacing distance between neighbor cells and cell diameter) is gradually reduced along with the increase of cell diameter. - Highlights: • Air cooling models were established for cylindrical lithium-ion power battery pack. • Local temperature difference increased firstly and then decreased with wind speed. • The gap spacing size of battery pack should not be too small and too large. • It is prone to thermal runaway when the ambient temperature is too high. • The ratio of S/D is gradually reduced with the increase of cell diameter

  9. Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2010-09-01

    Full Text Available In order to safely and efficiently use the power as well as to extend the lifetime of the traction battery pack, accurate estimation of State of Charge (SoC is very important and necessary. This paper presents an adaptive observer-based technique for estimating SoC of a lithium-ion battery pack used in an electric vehicle (EV. The RC equivalent circuit model in ADVISOR is applied to simulate the lithium-ion battery pack. The parameters of the battery model as a function of SoC, are identified and optimized using the numerically nonlinear least squares algorithm, based on an experimental data set. By means of the optimized model, an adaptive Luenberger observer is built to estimate online the SoC of the lithium-ion battery pack. The observer gain is adaptively adjusted using a stochastic gradient approach so as to reduce the error between the estimated battery output voltage and the filtered battery terminal voltage measurement. Validation results show that the proposed technique can accurately estimate SoC of the lithium-ion battery pack without a heavy computational load.

  10. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  11. Local Electric Field Facilitates High-Performance Li-Ion Batteries.

    Science.gov (United States)

    Liu, Youwen; Zhou, Tengfei; Zheng, Yang; He, Zhihai; Xiao, Chong; Pang, Wei Kong; Tong, Wei; Zou, Youming; Pan, Bicai; Guo, Zaiping; Xie, Yi

    2017-08-22

    By scrutinizing the energy storage process in Li-ion batteries, tuning Li-ion migration behavior by atomic level tailoring will unlock great potential for pursuing higher electrochemical performance. Vacancy, which can effectively modulate the electrical ordering on the nanoscale, even in tiny concentrations, will provide tempting opportunities for manipulating Li-ion migratory behavior. Herein, taking CuGeO 3 as a model, oxygen vacancies obtained by reducing the thickness dimension down to the atomic scale are introduced in this work. As the Li-ion storage progresses, the imbalanced charge distribution emerging around the oxygen vacancies could induce a local built-in electric field, which will accelerate the ions' migration rate by Coulomb forces and thus have benefits for high-rate performance. Furthermore, the thus-obtained CuGeO 3 ultrathin nanosheets (CGOUNs)/graphene van der Waals heterojunctions are used as anodes in Li-ion batteries, which deliver a reversible specific capacity of 1295 mAh g -1 at 100 mA g -1 , with improved rate capability and cycling performance compared to their bulk counterpart. Our findings build a clear connection between the atomic/defect/electronic structure and intrinsic properties for designing high-efficiency electrode materials.

  12. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    Energy Technology Data Exchange (ETDEWEB)

    Castello, Charles C [ORNL

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  13. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  14. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  15. Modelling and design optimization of low speed fuel cell - battery hybrid electric vehicles. Paper no. IGEC-1-125

    International Nuclear Information System (INIS)

    Guenther, M.; Dong, Z.

    2005-01-01

    A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)

  16. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This is the first annual report describing progress in the 33-month cooperative program between Argonne National Laboratory and Gould Inc.'s Nickel-Zinc/Electric Vehicle Project. The purpose of the program is to demonstrate the technical and economic feasibility of the nickel-zinc battery for electric vehicle propulsion. The successful completion of the program will qualify the nickel-zinc battery for use in the Department of Energy's demonstration program under the auspices of Public Law 94-413.

  17. A Sepic Type Switched Mode Power Supply System For Battery Charging In An Electric Tricycle Auto-Rickshaw

    Directory of Open Access Journals (Sweden)

    Kureve

    2017-08-01

    Full Text Available This paper analyzes the plug-in electric tricycle Auto rickshaw battery charging system using a non-isolated DC-DC SEPIC converter which operates as a switched mode power supply SMPS. The control of dc voltage output is by varying the gating pulses duty cycle of the switch in the dc-dc converter using PID controller based PWM technique. The 60 V 30 A DC-DC SEPIC converter is designed to provide non-inverting voltage buck from the rectified AC mains for charging deep cycle battery bank in an electric auto rickshaw. The charger system is implemented using MATLABSimulink.

  18. The feasibility of long range battery electric cars in New Zealand

    International Nuclear Information System (INIS)

    Duke, Mike; Andrews, Deborah; Anderson, Timothy

    2009-01-01

    New Zealand transport accounts for over 40% of the carbon emissions with private cars accounting for 25%. In the Ministry of Economic Development's recently released 'New Zealand Energy Strategy to 2050', it proposed the wide scale deployment of electric vehicles as a means of reducing carbon emissions from transport. However, New Zealand's lack of public transport infrastructure and its subsequent reliance on private car use for longer journeys could mean that many existing battery electric vehicles (BEVs) will not have the performance to replace conventionally fuelled cars. As such, this paper discusses the potential for BEVs in New Zealand, with particular reference to the development of the University of Waikato's long-range UltraCommuter BEV. It is shown that to achieve a long range at higher speeds, BEVs should be designed specifically rather than retrofitting existing vehicles to electric. Furthermore, the electrical energy supply for a mixed fleet of 2 million BEVs is discussed and conservatively calculated, along with the number of wind turbines to achieve this. The results show that approximately 1350 MW of wind turbines would be needed to supply the mixed fleet of 2 million BEVs, or 54% of the energy produced from NZ's planned and installed wind farms.

  19. Multi-Objective Optimization Considering Battery Degradation for a Multi-Mode Power-Split Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xuerui Ma

    2017-07-01

    Full Text Available A multi-mode power-split (MMPS hybrid electric vehicle (HEV has two planetary gearsets and clutches/grounds which results in several operation modes with enhanced electric drive capability and better fuel economy. Basically, the battery storage system is involved in different operation modes to satisfy the power demand and minimize the fuel consumption, whereas the complicated operation modes with frequent charging/discharging will absolutely influence the battery life because of degradation. In this paper, firstly, we introduce the solid electrolyte interface (SEI film growth model based on the previous study of the battery degradation principles and was verified according to the test data. We consider both the fuel economy and battery degradation as a multi-objective problem for MMPS HEV by normalization with a weighting factor. An instantaneous optimization is implemented based on the equivalent fuel consumption concept. Then the control strategy is implemented on a simulation framework integrating the MMPS powertrain model and the SEI film growth map model over some typical driving cycles, such as New European Driving Cycle (NEDC and Urban Dynamometer Driving Schedule (UDDS. Finally, the result demonstrates that these two objectives are conflicting and the trade-off reduces the battery degradation with fuel sacrifice. Additionally, the analysis reveals how the mode selection will reflect the battery degradation.

  20. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    Science.gov (United States)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  1. Development of a lead acid battery suitable for electric vehicle propulsion. Final report. [96 V, 20 kWh, 50 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Schlotter, W J

    1977-08-26

    This report contains two detailed designs, and the design rationale, for an improved state-of-the-art electric vehicle battery incorporating expanded metal grids. The nominal 96-volt and 20-kWh battery incorporating this improved design is expected to cost about 25% less when manufactured in a mature plant. This report also contains detailed estimates for the capital cost and operating cost of a pilot plant to produce electric vehicle battery plates incorporating expanded metal grids. It is expected that the first electric vehicle batteries incorporating expanded metal grids can be available fifteen months after approval of this program. An additional program to improve lead acid batteries for electric vehicles further is also described. The advanced batteries resulting from this program are expected to incorporate either expanded metal grids and/or composite lead/plastic grids. In addition, these batteries are expected to contain low-density active materials. It is anticipated that those additional developments will result in an advanced battery capable of delivering 45 to 50 watt-hours/kg. As a result of the design and cost study, a ''First Buy'' improved state-of-the art vehicle battery proposed is included as part of this report. Eltra proposes to manufacture and deliver the required 2500 vehicle batteries within the time limits set forth by the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. 20 figures, 13 tables.

  2. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  3. Real-Time Implementation of an Extended Kalman Filter and a PI Observer for State Estimation of Rechargeable Li-Ion Batteries in Hybrid Electric Vehicle Applications—A Case Study

    Directory of Open Access Journals (Sweden)

    Roxana-Elena Tudoroiu

    2018-04-01

    Full Text Available The Li-Ion battery state-of-charge estimation is an essential task in a continuous dynamic automotive industry for large-scale and successful marketing of hybrid electric vehicles. Also, the state-of-charge of any rechargeable battery, regardless of its chemistry, is an essential condition parameter for battery management systems of hybrid electric vehicles. In this study, we share from our accumulated experience in the control system applications field some preliminary results, especially in modeling, control and state estimation techniques. We investigate the design and effectiveness of two state-of-charge estimators, namely an extended Kalman filter and a proportional integral observer, implemented in a real-time MATLAB environment for a particular Li-Ion battery. Definitely, the aim of this work is to find the most suitable estimator in terms of estimation accuracy and robustness to changes in initial conditions (i.e., the initial guess value of battery state-of-charge and changes in process and measurement noise levels. By a rigorous performance analysis of MATLAB simulation results, the potential estimator choice is revealed. The performance comparison can be done visually on similar graphs if the information gathered provides a good insight, otherwise, it can be done statistically based on the calculus of statistic errors, in terms of root mean square error, mean absolute error and mean square error.

  4. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    Science.gov (United States)

    Hendrickson, Thomas P.; Kavvada, Olga; Shah, Nihar; Sathre, Roger; Scown, Corinne D.

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23-45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6-56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location.

  5. Heat transfer and thermal management of electric vehicle batteries with phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Ramandi, M.Y.; Dincer, I.; Naterer, G.F. [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, Oshawa, ON (Canada)

    2011-07-15

    This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems. (orig.)

  6. Heat transfer and thermal management of electric vehicle batteries with phase change materials

    Science.gov (United States)

    Ramandi, M. Y.; Dincer, I.; Naterer, G. F.

    2011-07-01

    This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.

  7. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    International Nuclear Information System (INIS)

    Hendrickson, Thomas P; Kavvada, Olga; Shah, Nihar; Sathre, Roger; D Scown, Corinne

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23–45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6–56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location. (letter)

  8. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    Science.gov (United States)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  9. Battery management systems (BMS) optimization for electric vehicles (EVs) in Malaysia

    Science.gov (United States)

    Salehen, P. M. W.; Su'ait, M. S.; Razali, H.; Sopian, K.

    2017-04-01

    Following the UN Climate Change Conference 2009 in Copenhagen, Denmark, Malaysia seriously committed on "Go Green" campaign with the aim to reduce 40% GHG emission by the year 2020. Therefore, the National Green Technology Policy has been legalised in 2009 with transportation as one of its focused sectors, which include hybrid (HEVs), electric vehicles (EVs) and fuel cell vehicles with the purpose of to keep up with the worst scenario. While the number of registered cars has been increasing by 1 million yearly, the amount has doubled in the last two decades. Consequently, CO2 emission in Malaysia reaches up to 97.1% and will continue to increase mainly due to the activities in the transportation sector. Nevertheless, Malaysia is now moving towards on green car which battery-based EVs. This type of transportation mainly needs power performance optimization, which is controlled by the Batteries Management System (BMS). BMS is an essential module which leads to reliable power management, optimal power performance and safe vehicle that lead back for power optimization in EVs. Thus, this paper proposes power performance optimization for various setups of lithium-ion cathode with graphene anode using MATLAB/SIMULINK software for better management performance and extended EVs driving range.

  10. Electricity consumption by battery-powered consumer electronics: A household-level survey

    International Nuclear Information System (INIS)

    McAllister, J. Andrew; Farrell, Alexander E.

    2007-01-01

    The rapid proliferation of battery-powered consumer electronics and their reliance on inefficient linear transformers has been suggested to be an important part of the rapid growth in 'miscellaneous' electricity consumption in recent years, but detailed data are scarce. We conducted a survey of 34 randomly selected households (HHs) in Northern California about the number, type, and usage of consumer electronics. We also measured the energy consumption of 85 typical consumer electronic devices through various parts of the charge cycle. These primary data were supplemented by national sales information for consumer electronics. Results indicate that typical HHs own 8.4 rechargeable devices, which have a total average demand of 12-17 W per HH. Statewide, this amounts to 160-220 MW of demand, with the peak occurring in the late evening, and about 1600 GWh per year. Only about 15% of this energy is used for battery charging, the rest is lost as waste heat during no-load and charge maintenance periods. Technical options to increase the efficiency of these devices, and the research and policy steps needed to realize these savings are discussed

  11. Electrical performance of GaN diode as betavoltaic isotope battery energy converter

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Liu Yebing; Hu Rui; Li Hao; Zhong Zhengkun; Luo Shunzhong

    2013-01-01

    Two kinds of GaN PiN diodes were prepared to be the energy converters of betavoltaic batteries, and irradiated by 63 Ni and 3 H radioactive sources. The I sc was 5.4 nA and V oc was 771 mV for 63 Ni source; the I sc was 10.8 nA and V oc was 839 mV for 3 H source. These results show that their V oc are far better than silicon diodes', but their I sc are poor. And there are some differences between the theory values and experiment results. There would be greatly improving space in electrical performance of beta voltaic isotope batteries with GaN diodes as the energy converters, if the dislocation could be reduced in GaN material producing process, the Ohmic contact could be prepared very well and the diodes configuration could be designed more optimizedly in the future. (authors)

  12. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-01-01

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi 0.8 Co 0.2 O 2 cathode and DEC-EC-LiPF 6 electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF 6 salt in the electrolyte at elevated temperature

  13. Failure modes of valve-regulated lead-acid batteries for electric bicycle applications in deep discharge

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yonglang; Tang, Shengqun [College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Meng, Gang; Yang, Shijun [Hubei Camel Storage Battery Co. Ltd., Gucheng 441705 (China)

    2009-06-01

    The 36 or 48 V valve-regulated lead-acid (VRLA) battery packs have been widely applied to the power sources of electric bicycles or light electric scooters in China. The failure modes of the 12 V/10 Ah VRLA batteries have been studied by the cycle life test at C{sub 2} discharge rate and 100% depth of discharge (DOD). It indicates that the main cause of the battery failure in this cycle duty is the softening and shedding of positive active mass (PAM) rather than individual water loss, recombination efficiency or sulfation, etc. When the electrolyte saturation falls to a certain extent, the high oxygen recombination current leads to the depolarization of the negative plate and the shift of the positive plate to a higher potential. The violent oxygen evolution accelerates the softening of PAM and the end of cycle life. (author)

  14. Looking for the super battery; Suche nach dem Super-Akku

    Energy Technology Data Exchange (ETDEWEB)

    Janzing, Bernward

    2010-09-15

    Germany used to be a leading country in electric battery technology. Today, it is far behind Asia. This may change as the new research center at Ulm starts working. The focus of the institution will be on lithium ion accumulator batteries for electric-powered vehicles. (orig.)

  15. Implementing batteries in electrical grids. Possible operating modes for efficient business cases

    Energy Technology Data Exchange (ETDEWEB)

    Kittlaus, Barnabas; Schreider, Achim; Pour, Adel Hassan [Lahmeyer International GmbH, Bad Vilbel (Germany)

    2010-07-01

    promotion. As a result, today some countries have significant shares of RES power generation. Due to the intermittency of most RES, for example, wind power and photovoltaic (PV) power generation, there is a large demand for all types of balancing power in order to allow for a reliable operation of the electricity systems. However, the available thermal power plants with their respective power output ramping characteristics are not sufficient any more and the construction of new ones is expensive, takes a long time and is not supported by large portions of the population. Hence, new options are needed; electricity storage and stationary batteries in particular, is one possible solution. European Directive 2006/32/EC set incentives for the deployment of variable retail electricity tariffs depending on time of use (ToU) or by current grid load. For example, by linking the electricity tariff to the amount of current grid load - directly or indirectly - it is intended that consumers shift their load into off-peak periods. Once smart metering infrastructure is widely installed the electricity price can also reflect the amount of RES capacity currently fed into the grid and give a financial incentive to shift load into high-RES-injection periods. By these means, the price of electricity would become the central controlling instrument of the power system (smart grid). (orig.)

  16. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects

    International Nuclear Information System (INIS)

    Pollet, Bruno G.; Staffell, Iain; Shang, Jin Lei

    2012-01-01

    Decarbonising transport is proving to be one of today's major challenges for the global automotive industry due to many factors such as the increase in greenhouse gas and particulate emissions affecting not only the climate but also humans, the increase in pollution, rapid oil depletion, issues with energy security and dependency from foreign sources and population growth. For more than a century, our society has been dependent upon oil, and major breakthroughs in low- and ultra-low carbon technologies and vehicles are urgently required. This review paper highlights the current status of hybrid, battery and fuel cell electric vehicles from an electrochemical and market point of view. The review paper also discusses the advantages and disadvantages of using each technology in the automotive industry and the impact of these technologies on consumers.

  17. Lithium-ion Battery Degradation Assessment and Remaining Useful Life Estimation in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nabil Laayouj

    2016-06-01

    Full Text Available Abstract—Prognostic activity deals with prediction of the remaining useful life (RUL of physical systems based on their actual health state and their usage conditions. RUL estimation gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. In addition, it can be used to improve the characterization of the material proprieties that govern damage propagation for the structure being monitored. RUL can be estimated by using three main approaches, namely model-based, data-driven and hybrid approaches. The prognostics methods used later in this paper are hybrid and data-driven approaches, which employ the Particle Filter in the first one and the autoregressive integrated moving average in the second. The performance of the suggested approaches is evaluated in a comparative study on data collected from lithium-ion battery of hybrid electric vehicle.

  18. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  19. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  20. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  1. Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery

    International Nuclear Information System (INIS)

    Masoud, Emad M.; Khairy, M.; Mousa, M.A.

    2013-01-01

    Graphical abstract: -- Highlights: •AgI dopant created more opened borate network structure. •Dielectric constant and loss values increased with AgI concentration. •AgI dopant enhanced both ion migration and orientation. •0.6 AgI–0.27 Ag 2 O–0.13 B 2 O 3 showed the highest DC-conductivity at room temperature. •It showed also good life time as a solid electrolyte in solid battery at room temperature. -- Abstract: The electrical properties of the ternary ionic conducting glass system xAgI–(1 – x)[0.67Ag 2 O–0.33B 2 O 3 ], where x = 0.4 , 0.5, 0.6, 0.7 and 0.8, were studied for emphasizing the influence of silver iodide concentration on the transport properties in the based borate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FT-IR spectra and differential thermal analysis (DTA). XRD confirmed a glassy nature for all investigated compositions. Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε ″ ) and impedance spectra (Z′–Z′′) were studied for all samples at a frequency range of 0–10 6 Hz and over a temperature range of 303–413 K. Changes of conductivity and dielectric properties with composition, temperature and frequency were analyzed and discussed. A silver iodine battery using glassy electrolyte sample with the highest ionic conductivity (x = 0.6) was studied

  2. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  3. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J., E-mail: gregory.offer@imperial.ac.u [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Howey, D.A. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom); Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2011-04-15

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: {yields} Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. {yields} The optimum size for a PHEV battery is between 5 and 15 kWh. {yields} Current behaviour decreases percentage electric only miles for larger vehicles. {yields} Low carbon electricity favours larger battery sizes as long as carbon is priced. {yields} Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  4. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    International Nuclear Information System (INIS)

    Fernandez, Luis M.; Garcia, Pablo; Garcia, Carlos Andres; Jurado, Francisco

    2011-01-01

    Research highlights: → Hybrid electric power system for a real surface tramway. → Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. → New control strategy for the energy management of the tramway. → Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  5. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  6. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  7. Effects of the electric field on ion crossover in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Yang, Xiao-Guang; Ye, Qiang; Cheng, Ping; Zhao, Tim S.

    2015-01-01

    Highlights: • Effects of the electric field on ion crossover and capacity decay in VRFB are studied. • The model enables the Donnan-potential jumps to be captured at electrode/membrane interfaces. • Electric field arises and affects ion crossover even at the open-circuit condition. • Enhancing electric-field-driven crossover can mitigate the capacity decay rate. - Abstract: A thorough understanding of the mechanisms of ion crossover through the membranes in vanadium redox flow batteries (VRFBs) is critically important in making improvements to the battery’s efficiency and cycling performance. In this work, we develop a 2-D VRFB model to investigate the mechanisms of ion crossover and the associated impacts it has on the battery’s performance. Unlike previously described models in the literature that simulated a single cell by dividing it into the positive electrode, membrane, and negative electrode regions, the present model incorporates all possible ion crossover mechanisms in the entire cell without a need to specify any interfacial boundary conditions at the membrane/electrode interfaces, and hence accurately captures the Donnan-potential jumps and steep gradient of species concentrations at the membrane/electrode interfaces. With our model, a particular emphasis is given to investigation of the effect of the electric field on vanadium ion crossover. One of the significant findings is that an electric field exists in the membrane even under the open-circuit condition, primarily due to the presence of the H + concentration gradient across the membrane. This finding suggests that vanadium ions can permeate through the membrane from H + -diluted to H + -concentrated sides via migration and convection. More importantly, it is found that the rate of vanadium ion crossover and capacity decay during charge and discharge vary with the magnitude of the electric field, which is influenced by the membrane properties and operating conditions. The simulations

  8. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  9. Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yong Tian

    2014-12-01

    Full Text Available State of charge (SOC estimation is essential to battery management systems in electric vehicles (EVs to ensure the safe operations of batteries and providing drivers with the remaining range of the EVs. A number of estimation algorithms have been developed to get an accurate SOC value because the SOC cannot be directly measured with sensors and is closely related to various factors, such as ambient temperature, current rate and battery aging. In this paper, two model-based adaptive algorithms, including the adaptive unscented Kalman filter (AUKF and adaptive slide mode observer (ASMO are applied and compared in terms of convergence behavior, tracking accuracy, computational cost and estimation robustness against parameter uncertainties of the battery model in SOC estimation. Two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the two algorithms. Comparison results show that the AUKF has merits in convergence ability and tracking accuracy with an accurate battery model, while the ASMO has lower computational cost and better estimation robustness against parameter uncertainties of the battery model.

  10. Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yin Hua

    2015-04-01

    Full Text Available Estimation of state of charge (SOC is of great importance for lithium-ion (Li-ion batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian process noise, the advantage of NPF is that the process noise in NPF is treated as an unknown model error and determined as a part of the solution without any prior assumption, and it can take any statistical distribution form, which improves the estimation accuracy. In consideration of the model accuracy and computational complexity, a first-order equivalent circuit model is applied to characterize the battery behavior. The experimental test is conducted on the LiCoO2 and LiFePO4 battery cells to validate the proposed method. The results show that the NPF method is able to accurately estimate the battery SOC and has good robust performance to the different initial states for both cells. Furthermore, the comparison study between NPF and well-established extended Kalman filter for battery SOC estimation indicates that the proposed NPF method has better estimation accuracy and converges faster.

  11. Electrical circuit for checking the state of charge of a vehicle battery. Elektrische Schaltung zur Kontrolle des Ladezustandes einer Batterie in Kraftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Gamulescu, A

    1981-05-27

    The invention concerns an electrical circuit for checking the state of charge of a vehicle battery. The circuit consists of a transistor, whose collector is connected via a series resistance and a Zener diode to the positive pole of the battery. The breakdown voltage of the Zener diode is about 12 volts. The emitter of the transistor is connected via an LED to earth. A second LED is connected in parallel with the collector-emitter circuit of the transistor, which works via a voltage divider. This voltage divider reduces the voltage at the LED with the transistor which is conducting to about 0.7 volts. A second Zener diode connected via a series resistance to the positive pole is also provided. Its breakdown voltage is 15 volts.

  12. Electric battery with gas-operated electrolyte flow. Elektrischer Akkumulator mit gasbetaetigter Elektrolytbewegung

    Energy Technology Data Exchange (ETDEWEB)

    Guetlich, K.F.; Kappus, W.; Zweigardt, H.; Eckardt, R.

    1986-08-28

    The invention relates to an electric accumulator with gas-operated electrolyte flow between electrode plates connected to form a plate block according to the principle of the mammoth pump. At least two supply pipes arranged parallel to each other and with connected gas supply are mounted to a base plate of non-conducting material. The base plate can be pushed in between plate block and housing wall. The base plate consists of two plastic foils of equal height and width the supply pipes and gas leads being formed by protrusions in the plastic foil.

  13. Electric battery with gas-operated electrolyte flow. Elektrischer Akkumulator mit gasbetaetigter Elektrolytbewegung

    Energy Technology Data Exchange (ETDEWEB)

    Guetlich, K.F.; Kappus, W.; Zweigardt, H.; Eckardt, R.

    1980-10-09

    The invention relates to an electric accumulator with gas-operated electrolyte flow between electrode plates connected to form a plate block according to the principle of the mammoth pump. At least two supply pipes arranged parallel to each other and with connected gas supply are mounted to a base plate of non-conducting material. The base plate can be pushed in between plate block and housing wall. The base plate consists of two plastic foils of equal height and width the supply pipes and gas leads being formed by protrusions in the plastic foil.

  14. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  15. Evaluation of electrical aggregometry: comparison with optical aggregometry, secretion of ATP, and accumulation of radiolabeled platelets

    International Nuclear Information System (INIS)

    Ingerman-Wojenski, C.; Smith, J.B.; Silver, M.J.

    1983-01-01

    Platelet aggregation has been most commonly studied in vitro by measuring increases in light transmission as platelets aggregate in PRP (platelet-rich plasma). Recently, an electrical impedance method for measuring platelet aggregation has been introduced. This method can be used with either PRP or whole blood and measures an increase in impedance across electrodes placed in the blood samples as platelets accumulate on them. Results obtained by the two methods were compared using ADP and collagen as aggregating agents, and also have measured the secretion of platelet ATP simultaneously. Although the aggregometry results were similar, recordings obtained by the electrical method did not distinguish two waves of platelet aggregation or correlate with secretion as well as recordings obtained by the optical method. When PGI 2 (prostacyclin) or PGE 1 (prostaglandin E 1 ) was added to the PRP, both the rate and extent of the increase in light transmittance were inhibited, but the main effect on the increase in impedance was a decrease in its rate and not in its extent. Increases in impedance and secretion of ATP were also measured in whole blood after the platelets had been labeled with a 125 I-containing antibody specific for platelet surface glycoproteins. It appeared that the increases in impedance lagged several minutes behind the formation of platelet aggregates and the secretion of platelet ATP

  16. Evaluation of electrical aggregometry: comparison with optical aggregometry, secretion of ATP, and accumulation of radiolabeled platelets

    International Nuclear Information System (INIS)

    Ingerman-Wojenski, C.; Smith, J.B.; Silver, M.J.

    1983-01-01

    Platelet aggregation has been most commonly studied in vitro by measuring increases in light transmission as platelets aggregate in PRP. Recently, an electrical impedance method for measuring platelet aggregation has been introduced. This method can be used with either PRP or whole blood and measures an increase in impedance across electrodes placed in the blood samples as platelets accumulate on them. We have compared the results obtained by the two methods, using ADP and collagen as aggregating agents, and also have measured the secretion of platelet ATP simultaneously. Although the aggregometry results were similar, recordings obtained by the electrical method did not distinguish two waves of platelet aggregation or correlate with secretion as well as recordings obtained by the optical method. When PGI2 or PGE1 was added to the PRP, both the rate and extent of the increase in light transmittance were inhibited, but the main effect on the increase in impedance was a decrease in its rate and not in its extent. Increases in impedance and secretion of ATP were also measured in whole blood after the platelets had been labeled with a 125 I-containing antibody specific for platelet surface glycoproteins. It appeared that the increases in impedance lagged several minutes behind the formation of platelet aggregates and the secretion of platelet ATP. It is suggested that there are advantages and disadvantages to both methods of measurement of platelet aggregation and that the parameters being measured must be clearly understood to properly interpret the results

  17. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    International Nuclear Information System (INIS)

    Abdoulaye, D; Koalaga, Z; Zougmore, F

    2012-01-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  18. Causes for torque degradation during deceleration and the effect on the driving range of battery electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lieb, Johannes [BMW PEUGEOT CITROEN ELECTRIFICATION, Muenchen (Germany); Wilde, Andreas [BMW Group, Muenchen (Germany); Baeker, Bernard [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics

    2012-11-01

    The ability to regain considerable amounts of the kinetic energy during deceleration phases is a key aspect to increase the efficiency of battery electric vehicles (BEV). Especially in urban and highly congested areas brake energy recovery (BER) can drastically improve the vehicle's driving range. However, due to the high power peaks that go along even with moderate braking maneuvers, severe requirements are being put on the electric drivetrain. Any limitation of power in one of the components of the powertrain inevitably leads to degradation of the regenerative brake torque, thus limiting the car's energy regeneration capability. Without an integrated brake system that can compensate the torque variations during deceleration, BER may need to be decreased even further to prevent a loss of driving comfort due to dynamic changes in the vehicle's behavior. This paper deals with the causes of these torque restraints within the electric drivetrain and how they affect the energy consumption and therefore the electric driving range. A simulation environment was set up and verified based on an existing BEV to conduct parameter studies and depict the sensitivities towards environmental influences. The calculated efficiencies are based on standard drive cycles and incorporate continuous fading between regenerative braking and the use of friction brakes. Special attention was laid on the battery system since energy storage still poses a particular challenge in the development of electric vehicles. Also through the high mutual dependence of the various parameters of the battery enviromental influences become most evident. (orig.)

  19. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations

    Science.gov (United States)

    Crawford, Alasdair J.; Huang, Qian; Kintner-Meyer, Michael C. W.; Zhang, Ji-Guang; Reed, David M.; Sprenkle, Vincent L.; Viswanathan, Vilayanur V.; Choi, Daiwon

    2018-03-01

    Li-ion batteries are expected to play a vital role in stabilizing the electrical grid as solar and wind generation capacity becomes increasingly integrated into the electric infrastructure. This article describes how two different commercial Li-ion batteries based on LiNi0.8Co0.15Al0.05O2 (NCA) and LiFePO4 (LFP) chemistries were tested under grid duty cycles recently developed for two specific grid services: (1) frequency regulation (FR) and (2) peak shaving (PS) with and without being subjected to electric vehicle (EV) drive cycles. The lifecycle comparison derived from the capacity, round-trip efficiency (RTE), resistance, charge/discharge energy, and total used energy of the two battery chemistries are discussed. The LFP chemistry shows better stability for the energy-intensive PS service, while the NCA chemistry is more conducive to the FR service under the operating regimes investigated. The results can be used as a guideline for selection, deployment, operation, and cost analyses of Li-ion batteries used for different applications.

  20. Cardiac pacemaker battery discharge after external electrical cardioversion for broad QRS Complex Tachycardia.

    Science.gov (United States)

    Annamaria, Martino; Andrea, Scapigliati; Michela, Casella; Tommaso, Sanna; Gemma, Pelargonio; Antonio, Dello Russo; Roberto, Zamparelli; Stefano, De Paulis; Fulvio, Bellocci; Rocco, Schiavello

    2008-08-01

    External electrical cardioversion or defibrillation may be necessary in patients with implanted cardiac pacemaker (PM) or implantable cardioverter defibrillator (ICD). Sudden discharge of high electrical energy employed in direct current (DC) transthoracic countershock may damage the PM/ICD system resulting in a series of possible device malfunctions. For this reason, when defibrillation or cardioversion must be attempted in a patient with a PM or ICD, some precautions should be taken, particularly in PM dependent patients, in order to prevent damage to the device. We report the case of a 76-year-old woman with a dual chamber PM implanted in the right subclavicular region, who received two consecutive transthoracic DC shocks to treat haemodynamically unstable broad QRS complex tachycardia after cardiac surgery performed with a standard sternotomic approach. Because of the sternal wound and thoracic drainage tubes together with the severe clinical compromise, the anterior paddle was positioned near the pulse generator. At the following PM test, a complete battery discharge was detected.

  1. About the Territorial Potential of the Construction of Battery-Charging Stations for Autonomous Electric Motor Vehicles in the Regions

    Directory of Open Access Journals (Sweden)

    Shilova Lyubov

    2016-01-01

    Full Text Available The article describes the main current trends in the development of electric motor vehicles with "zero emission" as well as the battery-charging stations concerned. The study is based on a preliminary comparative analysis of the RF regions with respect to five indices (average per capita income, number of private cars in the region, air pollution level, provision of the region with power supply and the potential use of local renewable energy resources, and it gives some recommendations on the prospects of possible construction of battery-charging stations in the regions.

  2. State-of-Charge Estimation and Active Cell Pack Balancing Design of Lithium Battery Power System for Smart Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Z. C. Gao

    2017-01-01

    Full Text Available This paper presents an integrated state-of-charge (SOC estimation model and active cell balancing of a 12-cell lithium iron phosphate (LiFePO4 battery power system. The strong tracking cubature extended Kalman filter (STCEKF gave an accurate SOC prediction compared to other Kalman-based filter algorithms. The proposed groupwise balancing of the multiple SOC exhibited a higher balancing speed and lower balancing loss than other cell balancing designs. The experimental results demonstrated the robustness and performance of the battery when subjected to current load profile of an electric vehicle under varying ambient temperature.

  3. Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles

    International Nuclear Information System (INIS)

    Marongiu, Andrea; Roscher, Marco; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • A study of a V2G strategy considering the state of health of EVs as fundamental parameter is proposed. • A Simulation environment with 100 electric vehicle models for two different lithium-ion battery chemistries is implemented. • Real aging and electrical characteristic data are used to parameterize the battery models. • Simulation of 1 year for 4 different scenarios for two different ambient temperatures are carried out and compared. - Abstract: The main goal of this paper is to study the effect of a vehicle-to-grid (V2G) strategy on the lifetime of two different lithium-ion batteries. The work investigates how the aging effect on the electric vehicles’ (EV) battery packs due to the additional V2G use can be reduced: it is assumed that the grid is able to identify the cars within the fleet for which the ulterior aging effects caused by V2G usage are restrained in respect of the others. The chosen EVs have to contain enough energy to satisfy the grid requests in terms of power regulation. In order to analyze the possible effects on the EVs due to the mentioned strategy, a V2G simulation environment has been implemented. The system consists of 100 EVs and a grid management strategy subsystem. Each EV is represented by a battery electrical model based on electrical impedance spectroscopy (EIS) data and an aging prediction model parameterized through accelerated aging tests. In order to reproduce real scenario conditions, both the electrical battery model and the aging prediction model have been parameterized for two different cells, a LiFePO 4 -cathode based and an NMC-cathode based lithium-ion cell. In particular, the accelerated aging tests have been carried out for more than one year, both for calendar and cycling operation, involving around 45 cells for each of the two technologies. The grid subsystem is represented by an algorithm which is able to consider information in terms of aging and type of battery installed in the EV. This

  4. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.

    2013-05-28

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase. © 2013 American Physical Society.

  5. Simulation-Based Approach for Studying the Balancing of Local Smart Grids with Electric Vehicle Batteries

    Directory of Open Access Journals (Sweden)

    Juhani Latvakoski

    2015-07-01

    Full Text Available Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2 emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid– and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV

  6. Improving the aluminum-air battery system for use in electrical vehicles

    Science.gov (United States)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  7. Development of a new electric battery electric power storage system. Results of the 12-year R and D; Shingata denchi denryoku chozo system kaihatsu. 12 nenkan no kenkyu kaihatsu no seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper described the results of the R and D which have been continued for 12 years on a new electric battery electric power storage system (load leveling function). The electric batteries for study were Na-S, Zn-Cl, Zn-Br, and redox type. Charge/discharge operation of 211 times was conducted of a pilot plant with a Na-S battery 1,000kW and 8-hour capacity. The overall efficiency of system was 71.5-76.0%, and the energy efficiency of battery was 86%. As a whole, the performance was able to be confirmed which can fulfil a developmental target. The system overall efficiency of 65.9% and battery efficiency of 76.1% were obtained. The experiment on battery life was carried out at plant together with the pilot operation. The mean life of Na-S battery was estimated at 800 cycles, and that of Zn-Br battery at 500-800 cycles. The effectiveness of the new electric battery electric power storage system was technically verified. For the future commercialization, studies on the following are needed: enhancement of reliability, easiness in maintenance/inspection, size reduction, cost reduction, etc. (NEDO)

  8. The revolution of batteries: electricity can be stored. Battery reaches all sectors. The Li-ion king

    International Nuclear Information System (INIS)

    Moragues, Manuel; Cognasse, Olivier

    2016-01-01

    Based on the lithium-ion technology, the revolution of energy storage is on the way. A first article describes how these new batteries are now introduced into the grid (for example in the USA, in the UK, in Germany, Italy, French islands, China, South Korea, Japan and Australia) and boost energy transition. With this revolution, new regulations and new business models are to be more precisely defined. Clients are asking for energy storage solutions. If new applications seem to boost it, the market remains however complex, unsteady and full of unknowns. In an interview, the Saft chairman comments the sector evolution, fields of application, the success of Tesla batteries, and the bad surprise of a sales drop for energy storage solutions for his company in 2015. The last article discusses how the Li-ion technology extends its domination, indicates the technological differences between fields of application (each application has its cathode), perspectives of improvement for the different involved chemical processes, and evokes safety issues. The article also indicates five technologies which pretend to compete with Li-ion technology (metal lithium polymer, sodium-ion, flow batteries with two electrolytes, lithium-sulphur, and lithium air)

  9. Weight and volume estimates for aluminum-air batteries designed for electric vehicle applications

    Science.gov (United States)

    Cooper, J. F.

    1980-01-01

    The weights and volumes of reactants, electrolyte, and hardware components are estimated for an aluminum-air battery designed for a 40-kW (peak), 70-kWh aluminum-air battery. Generalized equations are derived which express battery power and energy content as functions of total anode area, aluminum-anode weight, and discharge current density. Equations are also presented which express total battery weight and volume as linear combinations of the variables, anode area and anode weight. The sizing and placement of battery components within the engine compartment of typical five-passenger vehicles is briefly discussed.

  10. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing.

    Science.gov (United States)

    Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun

    2018-01-30

    This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.

  11. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  12. Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jaewook Lee

    2015-06-01

    Full Text Available This paper presents an efficient method for estimating capacity-fade uncertainty in lithium-ion batteries (LIBs in order to integrate them into the battery-management system (BMS of electric vehicles, which requires simple and inexpensive computation for successful application. The study uses the pseudo-two-dimensional (P2D electrochemical model, which simulates the battery state by solving a system of coupled nonlinear partial differential equations (PDEs. The model parameters that are responsible for electrode degradation are identified and estimated, based on battery data obtained from the charge cycles. The Bayesian approach, with parameters estimated by probability distributions, is employed to account for uncertainties arising in the model and battery data. The Markov Chain Monte Carlo (MCMC technique is used to draw samples from the distributions. The complex computations that solve a PDE system for each sample are avoided by employing a polynomial-based metamodel. As a result, the computational cost is reduced from 5.5 h to a few seconds, enabling the integration of the method into the vehicle BMS. Using this approach, the conservative bound of capacity fade can be determined for the vehicle in service, which represents the safety margin reflecting the uncertainty.

  13. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    Science.gov (United States)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  14. Fiscal 1999 report. Development of an electric power storage system using new type batteries, and development of a discrete type electric power storage technology (Survey on trend in developing batteries for electric power storage); 1999 nendo shingata denchi denryoku chozo system kaihatsu bunsangata denryoku chozo gijutsu kaihatsu hokokusho. Denryoku chozoyo denchi no kaihatsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Demand is increasing in recent years in Japan on batteries for electric power storage to respond to load variation in electric power supply. If electric power storage batteries are applied for practical use, nighttime excess power can be stored appropriately, which can be discharged during day time when the demand is increased, so that the demand variation can be handled adequately. Secondary batteries, if used, are characterized by having much greater energy density and output density because of storing the electric energy as chemical energy than in pumped-storage power generation which stores the energy as the positional energy of water. Therefore, this paper describes the surveys performed on the trend of developing the power storage batteries inside and outside the country. Section 1 shows the current status of annual load rates in other countries, and the current conception on power storage in these countries. Section 2 states the current status of practical application of power storage batteries having been developed in Germany and the U.S.A. and performed of demonstration tests. Section 3 reports the current status of developing new type power storage batteries. Section 4 describes the current status of developing the power storage batteries for power users. (NEDO)

  15. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A.; Barney, D.L.; Steunenberg, R.K.

    1978-11-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at industrial subcontractors' laboratories on high-temperature batteries during the period October 1977--September 1978 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary-energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium--aluminum alloy, and molten LiCl--KCl electrolyte. During this fiscal year, cell and battery development work continued at ANL, Eagle--Picher Industries, Inc., the Energy Systems Group of Rockwell International, and Gould Inc. Related work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations. A major event was the initiation of a subcontract with Eagle--Picher Industries to develop, design, and fabricate a 40-kWh battery (Mark IA) for testing in an electric van. Conceptual design studies on a 100-MWh stationary-energy-storage module were conducted as a joint effort between ANL and Rockwell International. A significant technical advance was the development of multiplate cells, which are capable of higher performance than bicells. 89 figures, 57 tables.

  16. Assessment of lithium-ion capacitor for using in battery electric vehicle and hybrid electric vehicle applications

    International Nuclear Information System (INIS)

    Omar, N.; Daowd, M.; Hegazy, O.; Al Sakka, M.; Coosemans, Th.; Van den Bossche, P.; Van Mierlo, J.

    2012-01-01

    This paper represents a novel lithium-ion capacitor model. The proposed model has significantly high accuracy (less 4%). The model is an extension of Zubieta model for EDLCs. The proposed model consists of three capacitors, representing the influence of temperature, current rate (ΔC 1 ) and SoC (ΔC 2 ) on the capacitance of LiCaps, respectively. Unlike to the electrical double-layer capacitors, the model contains two resistances, illustrating the charge and discharge processes. Then, a self-discharge resistance is added to demonstrate the long term effect on the LiCaps capabilities. This model is able to predict the lithium-ion behavior during constant charging and discharging as well as during short pulses duration. The parameters of the model have been derived based on the extended characterization tests that have been carried out. The investigated performance parameters are energy and power abilities, charge and discharge capabilities at different current rates. Furthermore, these parameters have been examined at different working temperatures (60 °C, 40 °C, 25 °C, 0 °C and −18 °C). The experimental results reveal that the type of lithium-ion capacitor used in this work has an energy density about 14 Wh/kg, which is two and half times higher than the used EDLC. These results also indicate similar properties as the electrical double-layer capacitors in the terms of internal resistance and state of charge determination. In contrast to EDLCs, the results show that lithium-ion capacitors suffer considerably at the low temperatures due to lower energy at high current rate. The same characteristics can be observed during discharge phase, due to the occurrence of the Peukert effect. Moreover, series of tests have been carried out at different state of charge values. Here we have found that the capacitance has a polynomial relationship against a linear equation for EDLC and it seems in function of applied current rates. From the point of view of the power

  17. The economic competitiveness and emissions of battery electric vehicles in China

    International Nuclear Information System (INIS)

    Zhao, Xin; Doering, Otto C.; Tyner, Wallace E.

    2015-01-01

    Highlights: • We evaluate the life-cycle cost and emissions of BEVs in China. • BEVs are not economically competitive compared with ICEVs in the Chinese market. • The value of emission reductions is small compared with the subsidy on BEVs. • The CO 2 emission reduction from BEVs is relatively constant over the time. • BEVs likely will not be economically competitive in China before 2031. - Abstract: Electric vehicles (EVs) have high energy efficiency and low pollutant and greenhouse gas (GHG) emissions compared with conventional internal combustion engine vehicles (ICEVs). This study examines the economic competitiveness of battery electric vehicles (BEVs) in the Chinese market. BEVs are compared with ICEVs using benefit-cost analyses from the perspectives of consumers, society and GHG emissions. A life-cycle cost model is developed to evaluate the lifetime cost of a vehicle. The results show that, with central government subsidies, the BEV life-cycle private cost (LCPC) is about 1.4 times higher than comparable ICEVs. Central government subsidies on BEVs will not be cost effective and efficient unless the annual external cost reduction from using BEV reaches $2500 for a compact vehicle or $3600 for a multi-purpose vehicle. That total cost level would imply a carbon cost of more than $2100 per ton. The current life-cycle external cost reductions from using BEV are around $2000–$2300, which are smaller than government subsidies or LCPC differences between BEV and ICEV. Further projections show that BEVs likely will not be economically competitive in the Chinese market before 2031

  18. Stackelberg Game Model of Wind Farm and Electric Vehicle Battery Switch Station

    Science.gov (United States)

    Jiang, Zhe; Li, Zhimin; Li, Wenbo; Wang, Mingqiang; Wang, Mengxia

    2017-05-01

    In this paper, a cooperation method between wind farm and Electric vehicle battery switch station (EVBSS) was proposed. In the pursuit of maximizing their own benefits, the cooperation between wind farm and EVBSS was formulated as a Stackelberg game model by treating them as decision makers in different status. As the leader, wind farm will determine the charging/discharging price to induce the charging and discharging behavior of EVBSS reasonably. Through peak load shifting, wind farm could increase its profits by selling more wind power to the power grid during time interval with a higher purchase price. As the follower, EVBSS will charge or discharge according to the price determined by wind farm. Through optimizing the charging /discharging strategy, EVBSS will try to charge with a lower price and discharge with a higher price in order to increase its profits. Since the possible charging /discharging strategy of EVBSS is known, the wind farm will take the strategy into consideration while deciding the charging /discharging price, and will adjust the price accordingly to increase its profits. The case study proved that the proposed cooperation method and model were feasible and effective.

  19. Regenerative braking failures in battery electric vehicles and their impact on the driver.

    Science.gov (United States)

    Cocron, Peter; Neumann, Isabel; Kreußlein, Maria; Wanner, Daniel; Bierbach, Maxim; Krems, Josef F

    2018-09-01

    A unique feature of battery electric vehicles (BEV) is their regenerative braking system (RBS) to recapture kinetic energy in deceleration maneuvers. If such a system is triggered via gas pedal, most deceleration maneuvers can be executed by just using this pedal. This impacts the driving task as different deceleration strategies can be applied. Previous research has indicated that a RBS failure leading to a sudden reduced deceleration represents an adverse event for BEV drivers. In the present study, we investigated such a failure's impact on the driver's evaluation and behavior. We conducted an experiment on a closed-off test track using a modified BEV that could temporarily switch off the RBS. One half of the 44 participants in the study received information about an upcoming RBS failure whereas the other half did not. While 91% of the drivers receiving prior information noticed the RBS failure, only 48% recognized it in the "uniformed" group. In general, the failure and the perception of its occurrence influenced the driver's evaluation and behavior more than receiving prior information. Nevertheless, under the tested conditions, drivers kept control and were able to compensate for the RBS failure. As the participants drove quite simple maneuvers in our experiment, further studies are needed to validate our findings using more complex driving settings. Given that RBS failures could have severe consequences, appropriate information and warning strategies for drivers are necessary. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Does this range suit me? Range satisfaction of battery electric vehicle users.

    Science.gov (United States)

    Franke, Thomas; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2017-11-01

    User satisfaction is a vital design criterion for sustainable systems. The present research aimed to understand factors relating to individually perceived range satisfaction of battery electric vehicle (BEV) users. Data from a large-scale BEV field trial (N = 72) were analyzed. Apart from an initial drop in range satisfaction, increasing practical experience was related to increased range satisfaction. Classical indicators of users' mobility profiles (daily travel distances) were only weakly related to lower range satisfaction (not significant), after controlling for practical experience and preferred coverage of mobility needs. The regularity/predictability of users' mobility patterns, the percentage of journeys not coverable because of range issues, and users' individual comfortable range accounted for variance in range satisfaction. Finally, range satisfaction was related to key indicators of general BEV acceptance (e.g., purchase intentions). These results underline the complex dynamics involved in individual range satisfaction, as well as its central role for BEV acceptance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  2. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  3. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    Science.gov (United States)

    Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a

  4. A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Long

    2011-08-23

    In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised. Furthermore, a practical circuit-based model for Li-ion cells has been developed that is capable of modelling the cell voltage behaviour under various operating conditions. The Li-ion cell model can be implemented in simulation programs and be directly connected to a model of the rest of the electronic system in electric vehicles. Most existing battery models are impractical for electric vehicle system designers and require extensive background knowledge of electrochemistry to be implemented. Furthermore, many models do not take the effect of regenerative braking into account and are obtained from testing fully charged cells. However, in real-life applications electric vehicles are not always fully charged and utilise regenerative braking to save energy. To obtain a practical circuit model based on real operating conditions and to model the state of health of electric vehicle cells, numerous 18650 size LiFePO4 cells have been tested under possible operating conditions. Capacity fading was chosen as the state of health parameter, and the capacity fading of different cells was compared with the charge processed instead of cycles. Tests have shown that the capacity fading rate is dependent on temperature, charging C-rate, state of charge and depth of discharge. The obtained circuit model is capable of simulating the voltage behaviour under various temperatures and C-rates with a maximum error of 14mV. However, modelling the effect of different temperatures and C-rates increases the complexity of the model. The model is easily adjustable and the choice is given to the electric vehicle system designer to decide which operating conditions to take into account. By combining the test results for the capacity fading and the proposed circuit model, recommendations to optimise the battery lifetime are proposed.

  5. Converted vehicle for battery electric drive. Aspects on the design of the software-driven vehicle control unit

    Energy Technology Data Exchange (ETDEWEB)

    Giessler, Martin; Paul, Jens; Gauterin, Frank [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Fahrzeugsystemtechnik (FAST); Fritz, Alexander; Sander, Oliver; Mueller-Glaser, Klaus D. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technik der Informationsverarbeitung (ITIV)

    2012-11-01

    At the Karlsruher Institute of Technology (KIT) a vehicle was converted for full battery electric drive within a cooperation of several faculties under the direction of the chair of vehicle technology. Within this paper the developed software to control the main functions of the vehicle will be presented and potentials to increase the energy efficiency will be discussed. The software based vehicle control unit is the central control unit to realize drivers command with respect to the system parameters, which are important for safety, dynamics, range and comfort of the vehicle. The structure of the software architecture, the interaction with the main electric vehicle specific control units and components and the main implemented functions will be described within this paper. The converted vehicle consists mainly of one electric motor with water cooled power electronics that drives the front axle, 21 battery modules controlled and managed by the battery management system, one on board charging device and an universal control unit. Not only strategies for power recovery while braking, but also strategies for driving and operation can help increase the energy efficiency. Select measures to recover and safe energy are also shown. (orig.)

  6. Thermal management of electric vehicle`s batteries using phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Rafalovich, A.; Longardner, W.; Keller, G.; Schmidter, T.C. [SHAPE, Inc., Indianapolis (United States); Fleming, F. [Hawker Energy Products Ltd, Newport (United Kingdom)

    1994-12-31

    SHAPE, Inc. (USA) and Hawker Energy Products Ltd. (UK) have successfully developed a passive thermal management system for sealed lead acid batteries featuring Phase Change Materials (PCM`s). The system utilizes a reversible, high energy density PCM with a transition temperature that is comparable to the optimum operating temperature of lead acid batteries. SHAPE`s thermal storage, containing non-toxic, non-hazardous, non-flammable PCM, absorbs excess heat generated by a battery and thus provides a substantial improvement in thermal stability, operating performance, and battery life. This thermal management system also assists in maintaining higher battery temperatures in cold weather environments. A mathematical model has been developed to accurately predict the thermal behavior of a battery, with and without PCM, during cycling. The results of this model have been verified through experimental battery cycling as well as through actual battery testing. The success of the model permits analysis of a thermally managed battery through an extreme range of ambient temperatures (-40 deg C to 40 deg C). (orig.)

  7. Comparative requirements for electric energy for production of hydrogen fuel and/or recharging of battery electric automobile fleets in New Zealand and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul [Stanford University, Stanford, CA 94305 (United States); Leaver, Jonathan D. [Department of Civil Engineering, Unitec NZ, Auckland 1142 (New Zealand)

    2010-10-15

    Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis. (author)

  8. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  9. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  10. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  11. Control system considerations for an aluminum-air battery powered electric vehicle

    Science.gov (United States)

    Cox, L. E.; Hassman, G. V.; Post, S. F.

    1980-05-01

    Basic motor controller requirements and tradeoffs between 30 cell and 60 cell aluminum air battery systems were established. A sample controller design was evolved and basic characteristics were evaluated. Advantages of a 60 cell battery system over a 30 cell were found in the areas of control system costs, weights, and efficiency.

  12. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The work carried out under the Yardney Contract with ANL for R, D and D on nickel zinc batteries over the past year was directed in three major areas: (1) elucidating the failure modes of the nickel-zinc battery system; (2) improving performance of the system; and (3) effecting a cost reduction program. Progress on the three areas is reported. (TFD)

  13. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    DEFF Research Database (Denmark)

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez

    2014-01-01

    for battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approach is the unequal phase inductances which depend on the rotor position. Another problem appears when...... an integrated charger control algorithm to charge the battery through a permanent magnet synchronous machine (PMSM) windings....

  14. Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2013-06-01

    Full Text Available Purpose: Polarization voltage of the lithium-ion battery is an important parameter that has direct influence on battery performance. The paper aims to analyze the impedance characteristics of the lithium-ion battery based on EIS data. Design/methodology/approach: The effects of currents, initial SOC of the battery on charge polarization voltage are investigated, which is approximately linear function of charge current. The change of charge polarization voltage is also analyzed with the gradient analytical method in the SOC domain. The charge polarization model with two RC networks is presented, and parts of model parameters like Ohmic resistance and charge transfer impedance are estimated by both EIS method and battery constant current testing method. Findings: This paper reveals that the Ohmic resistance accounts for much contribution to battery total polarization compared to charge transfer impedance. Practical implications: Experimental results demonstrate the efficacy of the model with the proposed identification method, which provides the foundation for battery charging optimization. Originality/value: The paper analyzed the impedance characteristics of the lithium-ion battery based on EIS data, presented a charge polarization model with two RC networks, and estimated parameters like Ohmic resistance and charge transfer impedance.

  15. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles

    International Nuclear Information System (INIS)

    Chen, Zeyu; Xiong, Rui; Tian, Jinpeng; Shang, Xiong; Lu, Jiahuan

    2016-01-01

    Highlights: • The characteristics of ESC fault of lithium-ion battery are investigated experimentally. • The proposed method to simulate the electrical behavior of ESC fault is viable. • Ten parameters in the presented fault model were optimized using a DPSO algorithm. • A two-layer model-based fault diagnosis approach for battery ESC is proposed. • The effective and robustness of the proposed algorithm has been evaluated. - Abstract: This study investigates the external short circuit (ESC) fault characteristics of lithium-ion battery experimentally. An experiment platform is established and the ESC tests are implemented on ten 18650-type lithium cells considering different state-of-charges (SOCs). Based on the experiment results, several efforts have been made. (1) The ESC process can be divided into two periods and the electrical and thermal behaviors within these two periods are analyzed. (2) A modified first-order RC model is employed to simulate the electrical behavior of the lithium cell in the ESC fault process. The model parameters are re-identified by a dynamic-neighborhood particle swarm optimization algorithm. (3) A two-layer model-based ESC fault diagnosis algorithm is proposed. The first layer conducts preliminary fault detection and the second layer gives a precise model-based diagnosis. Four new cells are short-circuited to evaluate the proposed algorithm. It shows that the ESC fault can be diagnosed within 5 s, the error between the model and measured data is less than 0.36 V. The effectiveness of the fault diagnosis algorithm is not sensitive to the precision of battery SOC. The proposed algorithm can still make the correct diagnosis even if there is 10% error in SOC estimation.

  16. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  18. Active load current sharing in fuel cell and battery fed DC motor drive for electric vehicle application

    International Nuclear Information System (INIS)

    Pany, Premananda; Singh, R.K.; Tripathi, R.K.

    2016-01-01

    Highlights: • Load current sharing in FC and battery fed dc drive. • Active current sharing control using LabVIEW. • Detail hardware implementation. • Controller performance is verified through MATLAB simulation and experimental results. - Abstract: In order to reduce the stress on fuel cell based hybrid source fed electric drive system the controller design is made through active current sharing (ACS) technique. The effectiveness of the proposed ACS technique is tested on a dc drive system fed from fuel cell and battery energy sources which enables both load current sharing and source power management. High efficiency and reliability of the hybrid system can be achieved by proper energy conversion and management of power to meet the load demand in terms of required voltage and current. To overcome the slow dynamics feature of FC, a battery bank of adequate power capacity has to be incorporated as FC voltage drops heavily during fast load demand. The controller allows fuel cell to operate in normal load region and draw the excess power from battery. In order to demonstrate the performance of the drive using ACS control strategy different modes of operation of the hybrid source with the static and dynamic behavior of the control system is verified through simulation and experimental results. This control scheme is implemented digitally in LabVIEW with PCI 6251 DAQ I/O interface card. The efficacy of the controller performance is demonstrated in system changing condition supplemented by experimental validation.

  19. Active-charging based powertrain control in series hybrid electric vehicles for efficiency improvement and battery lifetime extension

    Science.gov (United States)

    Zhang, Xi; Mi, Chris Chunting; Yin, Chengliang

    2014-01-01

    This paper presents a powertrain control strategy for a series hybrid electric vehicle (SHEV) based on the integrated design of an active charging scenario and fixed-boundary-layer sliding mode controllers (FBLSMCs). An optimized charging curve for the battery is predetermined rather than subject to engine output and vehicle power demand, which is a total inverse of normal SHEV powertrain control process. This is aimed to remove surge and high-frequency charge current, keep the battery staying in a high state-of-charge (SOC) region and avoid persistently-high charge power, which are positive factors to battery lifetime extension. Then two robust chattering-free FBLSMCs are designed to locate the engine operation in the optimal efficiency area. One is in charge of engine speed control, and the other is for engine/generator torque control. Consequently, not only fuel economy is improved but also battery life expectancy could be extended. Finally, simulation and experimental results confirm the validity and application feasibility of the proposed strategy.

  20. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Sauer, Dirk Uwe

    2016-10-01

    This study provides an overview of available techniques for on-board State-of-Available-Power (SoAP) prediction of lithium-ion batteries (LIBs) in electric vehicles. Different approaches dealing with the on-board estimation of battery State-of-Charge (SoC) or State-of-Health (SoH) have been extensively discussed in various researches in the past. However, the topic of SoAP prediction has not been explored comprehensively yet. The prediction of the maximum power that can be applied to the battery by discharging or charging it during acceleration, regenerative braking and gradient climbing is definitely one of the most challenging tasks of battery management systems. In large lithium-ion battery packs because of many factors, such as temperature distribution, cell-to-cell deviations regarding the actual battery impedance or capacity either in initial or aged state, the use of efficient and reliable methods for battery state estimation is required. The available battery power is limited by the safe operating area (SOA), where SOA is defined by battery temperature, current, voltage and SoC. Accurate SoAP prediction allows the energy management system to regulate the power flow of the vehicle more precisely and optimize battery performance and improve its lifetime accordingly. To this end, scientific and technical literature sources are studied and available approaches are reviewed.

  1. Containment system and thermal conduction in lithium electric batteries energy modules 2 kWh with polymeric electrolytes; Sviluppo del sistema di contenimento e del condizionamento termico di moduli da 2 kWh di batterie al litio ad elettrolita polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Ciancia, A.; Alessandrini, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia Divisione Tecnologie Energetiche Avanzate

    1997-06-01

    In this work are presented some technical specifications regarding lithium electric batteries with polymeric electrolytes, in particular the design of electrodes container efficient and reliable and thermal management system oriented to safety, performances and battery life.

  2. Hazard detection in noise-related incidents - the role of driving experience with battery electric vehicles.

    Science.gov (United States)

    Cocron, Peter; Bachl, Veronika; Früh, Laura; Koch, Iris; Krems, Josef F

    2014-12-01

    The low noise emission of battery electric vehicles (BEVs) has led to discussions about how to address potential safety issues for other road users. Legislative actions have already been undertaken to implement artificial sounds. In previous research, BEV drivers reported that due to low noise emission they paid particular attention to pedestrians and bicyclists. For the current research, we developed a hazard detection task to test whether drivers with BEV experience respond faster to incidents, which arise due to the low noise emission, than inexperienced drivers. The first study (N=65) revealed that BEV experience only played a minor role in drivers' response to hazards resulting from low BEV noise. The tendency to respond, reaction times and hazard evaluations were similar among experienced and inexperienced BEV drivers; only small trends in the assumed direction were observed. Still, both groups clearly differentiated between critical and non-critical scenarios and responded accordingly. In the second study (N=58), we investigated additionally if sensitization to low noise emission of BEVs had an effect on hazard perception in incidents where the noise difference is crucial. Again, participants in all groups differentiated between critical and non-critical scenarios. Even though trends in response rates and latencies occurred, experience and sensitization to low noise seemed to only play a minor role in detecting hazards due to low BEV noise. An additional global evaluation of BEV noise further suggests that even after a short test drive, the lack of noise is perceived more as a comfort feature than a safety threat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nanoelectronics «bottom – up»: thermodynamics of electric conductor, information-driven battery and quantum entropy

    Directory of Open Access Journals (Sweden)

    Юрий Алексеевич Кругляк

    2015-11-01

    Full Text Available Within the «bottom – up» approach of nanoelectronics the equilibrium thermodynamics of a conductor with a current is presented and the accumulation of information in a non-equilibrium state with an analysis of information-driven battery model is discussed in connection with the Landauer principle on the minimum of energy needed to erase one bit of information. The concept of quantum entropy is introduced and the importance of integration of spintronics and magnetronics in connection with the upcoming development of the spin architecture for the computing devices are discussed

  4. Parameters Identification and Sensitive Characteristics Analysis for Lithium-Ion Batteries of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2017-12-01

    Full Text Available This paper mainly investigates the sensitive characteristics of lithium-ion batteries so as to provide scientific basises for simplifying the design of the state estimator that adapt to various environments. Three lithium-ion batteries are chosen as the experimental samples. The samples were tested at various temperatures (−20 ∘ C, −10 ∘ C, 0 ∘ C , 10 ∘ C , 25 ∘ C and various current rates (0.5C, 1C, 1.5C using a battery test bench. A physical equivalent circuit model is developed to capture the dynamic characteristics of the batteries. The experimental results show that all battery parameters are time-varying and have different sensitivity to temperature, current rate and state of charge (SOC. The sensitivity of battery to temperature, current rate and SOC increases the difficulty in battery modeling because of the change of parameters. The further simulation experiments show that the model output has a higher sensitivity to the change of ohmic resistance than that of other parameters. Based on the experimental and simulation results obtained here, it is expected that the adaptive parameter state estimator design could be simplified in the near future.

  5. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  6. Nickel-hydrogen battery; Nikkeru/suiso batteri

    Energy Technology Data Exchange (ETDEWEB)

    Kuwajima, S. [National Space Development Agency, Tokyo (Japan)

    1996-07-01

    In artificial satellites, electric power is supplied from batteries loaded on them, when sun light can not be rayed on the event of equinoxes. Thus, research and development was started as early as 1970s for light and long-life batteries. Nickel-hydrogen batteries have been used on practical satellites since middle of 1980s. Whereas the cathode reaction of this battery is the same as that of a conventional nickel-cadmium battery, the anode reaction is different in that it involves decomposition and formation of water, generating hydrogen and consuming it. Hydrogen is stored in a state of pressurized gas within the battery vessel. The shape of this vessel is of a bomb, whose size for the one with capacity of 35 Ah is 8cm in diameter and 18cm in length. On a satellite, this one is assembled into a set of 16 ones. National Space Development Agency of Japan has been conducting the evaluation test for nickel-hydrogen batteries in a long term range. It was made clear that the life-determinant factor is related to the inner electrode, not to the vessel. Performance data on long-term endurance of materials to be used have been accumulated also in the agency. 2 figs.

  7. Battery charging characteristics in small scaled photovoltaic system using resonant DC-DC converter with electric isolation

    International Nuclear Information System (INIS)

    Isoda, H.; Kimura, G.; Shioya, M.

    1990-01-01

    The solar energy has been drawing attention of the whole world as a clean and infinite energy, since the globe resource, the globe ecology and so on came into question. The wide applications of the solar energy are being expected in a range from electric power plants to household systems. But the output power induced in the photovoltaic modules is influenced by an intensity of the solar radiation, a temperature of the solar cells and so on, so the various useful forms of the solar energy are being proposed for a purpose of stable power supply. a system described in this paper is a small scaled photovoltaic system with storage batteries. This paper describes the theoretical analyses of the photovoltaic system using a resonant DC-DC converter in order to clarify a desirable circuit condition, besides the experimental results of the battery charging characteristics are presented

  8. Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers (Preprint)

    National Research Council Canada - National Science Library

    Fellner, Joseph P; Miller, Ryan M; Shanmugasundaram, Venkatrama

    2006-01-01

    ...). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at > 1.0 kW/kg...

  9. Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm

    Directory of Open Access Journals (Sweden)

    Xiangwei Guo

    2016-02-01

    Full Text Available An estimation of the power battery state of charge (SOC is related to the energy management, the battery cycle life and the use cost of electric vehicles. When a lithium-ion power battery is used in an electric vehicle, the SOC displays a very strong time-dependent nonlinearity under the influence of random factors, such as the working conditions and the environment. Hence, research on estimating the SOC of a power battery for an electric vehicle is of great theoretical significance and application value. In this paper, according to the dynamic response of the power battery terminal voltage during a discharging process, the second-order RC circuit is first used as the equivalent model of the power battery. Subsequently, on the basis of this model, the least squares method (LS with a forgetting factor and the adaptive unscented Kalman filter (AUKF algorithm are used jointly in the estimation of the power battery SOC. Simulation experiments show that the joint estimation algorithm proposed in this paper has higher precision and convergence of the initial value error than a single AUKF algorithm.

  10. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This report describes work performed from October 1, 1978 to September 30, 1979. The approach for development of both the Improved State-of-the-Art (ISOA) and Advanced lead-acid batteries is three pronged. This approach concentrates on simultaneous optimization of battery design, materials, and manufacturing processing. The 1979 fiscal year saw the achievement of significant progress in the program. Some of the major accomplishments of the year are outlined. 33 figures, 13 tables. (RWR)

  11. Comparison study of the technical characteristics and financial analysis of electric battery storage systems for residential grid

    Science.gov (United States)

    Palivos, Marios; Vokas, Georgios A.; Anastasiadis, Anestis; Papageorgas, Panagiotis; Salame, Chafic

    2018-05-01

    One of the major energy issues of our days is reliable and effective energy generation and supply of electricity grids. In recent years there has been experienced a rapid development and implementation of Renewable Energy Sources (RES) worldwide. On one hand, many Gigawatts of grid-connected renewables are being installed and on the other many Megawatts of hybrid renewable systems for residential use are being installed making use of electric battery systems, in order to cover all daily energy and power needs during. New types of batteries are being developed and many companies have made great progress providing a variety of electricity storage products. The purpose of this research is firstly to highlight the necessity and also the importance of the use of energy storage systems and secondly, through detailed technical and financial simulation analysis using HOMER Pro-optimization software, to compare the technical characteristics and performance of energy storage systems by various leading companies when installed in a residential renewable energy system with a specific load and at the same time to provide the most efficient system economically. Results concerning the operation and the choice of a storage system are derived.

  12. Electric batteries. Fundamental principles and theory, present state of the art of technology and trends of development. 3. rev. and enlarged ed. Batterien. Grundlagen und Theorie, aktueller technischer Stand und Entwicklungstendenzen

    Energy Technology Data Exchange (ETDEWEB)

    Kiehne, H.A.; Berndt, D.; Boettger, K.; Fischer, W.; Franke, H.; Friedheim, G.; Koethe, H.K.; Krakowski, H.; Middendorf, E.; Preuss, P.

    1988-01-01

    This volume gives a comprehensive survey of the present state of the electrochemical power storage with special consideration of their technical characteristics of application. The volume is structured as follows: 1) Electrochemical energy storage, general fundamentals; 2) Batteries for electric-powered industrial trucks; 2a) Energy supply concepts for driverless industrial trucks; 3) Batteries for electric-powered road vehicles; 4) Battery-fed electric drive from the user's point of view (=charging, maintenance); 5) Secured power supply with electric batteries; 6) Batteries for stationary power supplies; 7) Operation and use of batteries for a large-scale consumer (emergency power supplies for communication equipment of the Deutsche Bundespost); 8) Starter batteries of vehicles; 9) High-energy batteries (e.g. Zn/Cl/sub 2/-, Na/S-, Li/FeS-cells, fuel cells); 10) Solar-electric power supply with batteries; 11) Charging methods and charging technique; 12) Technology of battery chargers and current transformer, monitoring methods; 13) Standards and regulations for batteries and battery systems. (MM) With 192 figs.

  13. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  14. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    In this study, a novel Li-ion battery pack design including hybrid active–passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 °C remains the temperature distribution of the battery units in the desired temperature range (below 60 °C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. - Highlights: • Novel Li-ion battery pack including active and passive thermal management systems. • The battery pack has high thermal performance for ambient temperatures until 55 °C. • Uniform temperature and voltage distributions. • The maximum observed temperature in each battery unit is less than other works. • The maximum temperature dispersion in each battery is less than other works

  15. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  16. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    International Nuclear Information System (INIS)

    Gilmore, Elisabeth A.; Apt, Jay; Lave, Lester B.; Walawalkar, Rahul; Adams, Peter J.

    2010-01-01

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2 ) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x ). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5 ) result in a benefit of 4.5 cents kWh -1 and 17 cents kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3 ) concentrations increase due to decreases in nitrogen oxide (NO x ) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At $20 per tonne of CO 2 , the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated

  17. Environmental impacts of electricity self-consumption from organic photovoltaic battery systems at industrial facilities in Denmark

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Hauschild, Michael Zwicky

    2017-01-01

    investigate the life cycle environmental impacts of electricity self-consumption from an OPV system coupled with a sodium/nickel chloride battery at an iron/metal industry in Denmark. Results show that an OPV system without storage could decrease the carbon footprint of the industry; installation......Organic photovoltaics (OPV) show promise of greatly improving the environmental and economic performance of PV compared to conventional silicon. Life cycle assessment studies have assessed the environmental impacts of OPV, but not under a self-consumption scheme for industrial facilities. We...

  18. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  19. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  20. An Adaptive Gain Nonlinear Observer for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yong Tian

    2014-09-01

    Full Text Available The state of charge (SOC is important for the safety and reliability of battery operation since it indicates the remaining capacity of a battery. However, it is difficult to get an accurate value of SOC, because the SOC cannot be directly measured by a sensor. In this paper, an adaptive gain nonlinear observer (AGNO for SOC estimation of lithium-ion batteries (LIBs in electric vehicles (EVs is proposed. The second-order resistor–capacitor (2RC equivalent circuit model is used to simulate the dynamic behaviors of a LIB, based on which the state equations are derived to design the AGNO for SOC estimation. The model parameters are identified using the exponential-function fitting method. The sixth-order polynomial function is used to describe the highly nonlinear relationship between the open circuit voltage (OCV and the SOC. The convergence of the proposed AGNO is proved using the Lyapunov stability theory. Two typical driving cycles, including the New European Driving Cycle (NEDC and Federal Urban Driving Schedule (FUDS are adopted to evaluate the performance of the AGNO by comparing with the unscented Kalman filter (UKF algorithm. The experimental results show that the AGNO has better performance than the UKF algorithm in terms of reducing the computation cost, improving the estimation accuracy and enhancing the convergence ability.

  1. Experimental Investigation on Thermal Management of Electric Vehicle Battery Module with Paraffin/Expanded Graphite Composite Phase Change Material

    Directory of Open Access Journals (Sweden)

    Jiangyun Zhang

    2017-01-01

    Full Text Available The temperature has to be controlled adequately to maintain the electric vehicles (EVs within a safety range. Using paraffin as the heat dissipation source to control the temperature rise is developed. And the expanded graphite (EG is applied to improve the thermal conductivity. In this study, the paraffin and EG composite phase change material (PCM was prepared and characterized. And then, the composite PCM have been applied in the 42110 LiFePO4 battery module (48 V/10 Ah for experimental research. Different discharge rate and pulse experiments were carried out at various working conditions, including room temperature (25°C, high temperature (35°C, and low temperature (−20°C. Furthermore, in order to obtain the practical loading test data, a battery pack with the similar specifications by 2S∗2P with PCM-based modules were installed in the EVs for various practical road experiments including the flat ground, 5°, 10°, and 20° slope. Testing results indicated that the PCM cooling system can control the peak temperature under 42°C and balance the maximum temperature difference within 5°C. Even in extreme high-discharge pulse current process, peak temperature can be controlled within 50°C. The aforementioned results exhibit that PCM cooling in battery thermal management has promising advantages over traditional air cooling.

  2. Verification test for an electric vehicle using capacitor-battery series connection for battery load levelling; Denchi no fuka heijunka no tame no kyapashita to denchi no chokuretsu setsuzoku hoshiki wo saiyoshita denki jidosha no jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaoka, K.; Takehara, J.; Kato, S. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1998-03-25

    For the prolongation of the distance that an electric vehicle (EV) can cover on a single charge and of the service life of the EV battery unit, a system is developed, in which the battery unit and the capacitor unit are connected in series for the levelling-off of battery peak loads, and the system is tested aboard a running real vehicle. Installed on the real vehicle is a battery unit that is a series connection of 20 12V-38Ah seal-type lead-acid batteries, each battery consisting of two cells connected in parallel. Driving the vehicle is a DC brushless motor capable of a maximum operation of 9000rpm. Also installed is a capacitor unit that is a parallel connection of 40 2.3V-1800F capacitors, each capacitor consisting of two capacitors connected in parallel. Findings are described below. In a 0-400m acceleration test, 22.5 seconds is recorded with the capacitor unit in operation, meaning an improvement of 0.7 seconds. The maximum speed remains unchanged at 110km/h, which agrees with the pre-calculated value. Although the battery peak load reduction rate in a 15-mode drive pattern marks 23%, the distances covered on a single charge in this drive pattern turn out to be almost the same whether the capacitor unit is in operation or not. 3 refs., 15 figs., 3 tabs.

  3. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging...

  4. Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System

    Directory of Open Access Journals (Sweden)

    Shyang-Chyuan Fang

    2017-06-01

    Full Text Available The greenhouse gases and air pollution generated by extensive energy use have exacerbated climate change. Electric-bus (e-bus transportation systems help reduce pollution and carbon emissions. This study analyzed the minimization of construction costs for an all battery-swapping public e-bus transportation system. A simulation was conducted according to existing timetables and routes. Daytime charging was incorporated during the hours of operation; the two parameters of the daytime charging scheme were the residual battery capacity and battery-charging energy during various intervals of daytime peak electricity hours. The parameters were optimized using three algorithms: particle swarm optimization (PSO, a genetic algorithm (GA, and a PSO–GA. This study observed the effects of optimization on cost changes (e.g., number of e-buses, on-board battery capacity, number of extra batteries, charging facilities, and energy consumption and compared the plug-in and battery-swapping e-bus systems. The results revealed that daytime charging can reduce the construction costs of both systems. In contrast to the other two algorithms, the PSO–GA yielded the most favorable optimization results for the charging scheme. Finally, according to the cases investigated and the parameters of this study, the construction cost of the plug-in e-bus system was shown to be lower than that of the battery-swapping e-bus system.

  5. Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat

    Directory of Open Access Journals (Sweden)

    Bumin Meng

    2018-03-01

    Full Text Available This paper discusses a design of a Battery Management System (BMS solution for extending the life of Nickel-Metal Hydride (NI-MH battery. Combined with application of electric boat, a State of Charge (SoC optimal operation range control method based on high precision energy metering and online SoC correction is proposed. Firstly, a power metering scheme is introduced to reduce the original energy measurement error. Secondly, by establishing a model based parameter identification method and combining with Extended Kalman Filter (EKF method, the estimation accuracy of SoC is guaranteed. Finally, SoC optimal operation range control method is presented to make battery running in the optimal range. After two years of operation, the battery managed by proposed method has much better status, compared to batteries that use AH integral method and fixed SoC operating range. Considering the SoC estimation of NI-MH battery is more difficult becausing special electrical characteristics, proposed method also would have a very good reference value for other types of battery management.

  6. Fast sol-gel synthesis of LiFePO{sub 4}/C for high power lithium-ion batteries for hybrid electric vehicle application

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)

    2009-12-01

    LiFePO{sub 4}/C of high purity grade was successfully synthesized by microwave accelerated sol-gel synthesis and showed excellent electrochemical performance in terms of specific capacity and stability. This cathode material was characterized in battery configuration with a graphite counter electrode by USABC-DOE tests for power-assist hybrid electric vehicle. It yielded a non-conventional Ragone plot that represents complexity of battery functioning in power-assist HEV and shows that the pulse power capability and available energy of such a battery surpasses the DOE goal for such an application. (author)

  7. Optimal operation strategy of battery energy storage system to real-time electricity price in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve......Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...

  8. Electrical Vehicle Batteries Testing in a Distribution Network Using Sustainable Energy

    DEFF Research Database (Denmark)

    Forero Camacho, Oscar Mauricio; Nørgård, Per Bromand; Rao, Ningling

    2014-01-01

    EV technologies are still relatively new and under strong development. Many different designs and choices of technologies have been pursued by the automotive OEMs, battery industry and EV research centers. Although some standardized solutions are being promoted and becoming a new trend, there is ......EV technologies are still relatively new and under strong development. Many different designs and choices of technologies have been pursued by the automotive OEMs, battery industry and EV research centers. Although some standardized solutions are being promoted and becoming a new trend...

  9. Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    Pei, Lei; Zhu, Chunbo; Wang, Tiansi; Lu, Rengui; Chan, C.C.

    2014-01-01

    The goal of this study is to realize real-time predictions of the peak power/state of power (SOP) for lithium-ion batteries in electric vehicles (EVs). To allow the proposed method to be applicable to different temperature and aging conditions, a training-free battery parameter/state estimator is presented based on an equivalent circuit model using a dual extended Kalman filter (DEKF). In this estimator, the model parameters are no longer taken as functions of factors such as SOC (state of charge), temperature, and aging; instead, all parameters will be directly estimated under the present conditions, and the impact of the temperature and aging on the battery model will be included in the parameter identification results. Then, the peak power/SOP will be calculated using the estimated results under the given limits. As an improvement to the calculation method, a combined limit of current and voltage is proposed to obtain results that are more reasonable. Additionally, novel verification experiments are designed to provide the true values of the cells' peak power under various operating conditions. The proposed methods are implemented in experiments with LiFePO 4 /graphite cells. The validating results demonstrate that the proposed methods have good accuracy and high adaptability. - Highlights: • A real-time peak power/SOP prediction method for lithium-ion batteries is proposed. • A training-free method based on DEKF is presented for parameter identification. • The proposed method can be applied to different temperature and aging conditions. • The calculation of peak power under the current and voltage limits is improved. • Validation experiments are designed to verify the accuracy of prediction results

  10. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter

    Science.gov (United States)

    Khateeb, Siddique A.; Farid, Mohammed M.; Selman, J. Robert; Al-Hallaj, Said

    A lithium-ion battery employing a novel phase change material (PCM) thermal management system was designed for an electric scooter. Passive thermal management systems using PCM can control the temperature excursions and maintain temperature uniformity in Li-ion batteries without the use of active cooling components such as a fan, a blower or a pump found in air/liquid-cooling systems. Hence, the advantages of a compact, lightweight, and energy efficient system can be achieved with this novel form of thermal management system. Simulation results are shown for a Li-ion battery sub-module consisting of nine 18650 Li-ion cells surrounded by PCM with a melting point between 41 and 44 °C. The use of aluminum foam within the PCM and fins attached to the battery module were studied to overcome the low thermal conductivity of the PCM and the low natural convection heat transfer coefficient. The comparative results of the PCM performance in the presence of Al-foam and Al-fins are shown. The battery module is also simulated for summer and winter conditions. The effect of air-cooling on the Li-ion battery was also studied. These simulation results demonstrate the successful use of the PCM as a potential candidate for thermal management solution in electric scooter applications and therefore for other electric vehicle applications.

  11. Electric Car

    Science.gov (United States)

    1977-01-01

    NASA's Lewis Research Center undertook research toward a practical, economical battery with higher energy density. Borrowing from space satellite battery technology, Lewis came up with a nickel-zinc battery that promises longer life and twice the range of the lead-acid counterpart. Lewis researchers fabricated a prototype battery and installed it in an Otis P-500 electric utility van, using only the battery space already available and allowing battery weight equal to that of the va's conventional lead-acid battery

  12. Coordinated Control Scheme of Battery Energy Storage System (BESS) and Distributed Generations (DGs) for Electric Distribution Grid Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei

    2012-01-01

    into the islanding operation mode, while the centralized joint load frequency control (CJLFC) utilizing DGs handles the secondary frequency regulation. The BESS with the associated controllers has been modelled in Real-time digital simulator (RTDS) in order to identify the improvement of the frequency and voltage......This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...... response. The modified IEEE 9-bus system, which is comprised of several DG units, wind power plant and the BESS, has been employed to illustrate the performance of the proposed coordinated flexible control scheme using RTDS in order to verify its practical efficacy....

  13. A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jianping Gao

    2015-08-01

    Full Text Available Accurate state of charge (SoC estimation of batteries plays an important role in promoting the commercialization of electric vehicles. The main work to be done in accurately determining battery SoC can be summarized in three parts. (1 In view of the model-based SoC estimation flow diagram, the n-order resistance-capacitance (RC battery model is proposed and expected to accurately simulate the battery’s major time-variable, nonlinear characteristics. Then, the mathematical equations for model parameter identification and SoC estimation of this model are constructed. (2 The Akaike information criterion is used to determine an optimal tradeoff between battery model complexity and prediction precision for the n-order RC battery model. Results from a comparative analysis show that the first-order RC battery model is thought to be the best based on the Akaike information criterion (AIC values. (3 The real-time joint estimator for the model parameter and SoC is constructed, and the application based on two battery types indicates that the proposed SoC estimator is a closed-loop identification system where the model parameter identification and SoC estimation are corrected mutually, adaptively and simultaneously according to the observer values. The maximum SoC estimation error is less than 1% for both battery types, even against the inaccurate initial SoC.

  14. An electric-powered vehicle with contactless battery loading from the grid; Un vehicule electrique alimente sans contact

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    In this short article the prototype of a 3.5 t pick-up vehicle with an electric drive by Numexia is described. Its unique feature is the contactless battery loading from the grid, by means of an electromagnetic coil located in the ground under the vehicle at the loading station. This technology has been developed at the Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland in the framework of an abandoned project named Swissmetro. (The aim of this project was to connect the main Swiss cities of Geneva, Lausanne, Berne, Lucerne, Zurich and St-Gallen by an underground fast train that would have needed about 12 minutes from one city to the next, i.e. for a distance of 60 to 100 km. Several innovative technologies were developed in the preliminary phase of the project.) The pick-up vehicle, a modified Renault Maxity, reaches 100 km/h. The electric motor power is 100 kW. LiFePO{sub 4} batteries are used to store energy. Reloading takes 30 minutes under optimum conditions. An energy management unit and a 33 kW auxiliary diesel-engine-powered generator are integrated. The pick-up is able to carry a useful load up to 1557 kg and to cover a distance of 100 km with one battery load, without using the auxiliary generator. This new propulsion system is thought to become a frequently used device in vehicles for urban transportation. Numexia intends to cooperate with big car manufacturers to build in its new drive into their vehicles.

  15. High-performance batteries for stationary energy storage and electric-vehicle propulsion. Progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    Research, development, and management activities of the program on lithium--aluminum/metal sulfide batteries during April--June 1977 are described. These batteries are being developed for electric-vehicle propulsion and stationary energy storage. The present cells, which operate at 400--450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle--Picher Industries and from Gould Inc. were tested. These tests provided information on the effects of design modifications and alternative materials for cells. Improved electrode and cell designs are being developed and tested, and the more promising designs are incorporated into the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up designs of stationary energy storage cells, additives to extend electrode lifetime, alternative electrode separators, and pellet-grid electrodes. Materials development efforts included the development of a lightweight electrical feedthrough; studies of various current-collector designs; investigation of powder separators; wettability and corrosion tests of materials for cell components; and postoperative examinations of cells. Cell chemistry studies were concerned with discharge mechanisms of FeS electrodes and with other transition-metal sulfides as positive electrode materials. Voltammetric studies were conducted to investigate the reversibility of the FeS/sub 2/ electrode. The use of calcium and magnesium alloys for the negative electrode in advanced battery systems were investigated. 8 figures, 12 tables.

  16. Towards a Friendly Energy Management Strategy for Hybrid Electric Vehicles with Respect to Pollution, Battery and Drivability

    Directory of Open Access Journals (Sweden)

    Guillaume Colin

    2014-09-01

    Full Text Available The paper proposes a generic methodology to incorporate constraints (pollutant emission, battery health, drivability into on-line energy management strategies (EMSs for hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs. The integration of each constraint into the EMS, made with the Pontryagin maximum principle, shows a tradeoff between the fuel consumption and the constraint introduced. As state dynamics come into play (catalyst temperature, battery cell temperature, etc., the optimization problem becomes more complex. Simulation results are presented to highlight the contribution of this generic strategy, including constraints compared to the standard approach. These results show that it is possible to find an energy management strategy that takes into account an increasing number of constraints (drivability, pollution, aging, environment, etc.. However, taking these constraints into account increases fuel consumption (the existence of a trade-off curve. This trade-off can be sometimes difficult to find, and the tools developed in this paper should help to find an acceptable solution quickly

  17. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  18. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    Science.gov (United States)

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  19. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  20. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 4, In-vehicle safety

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J.

    1992-11-01

    This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

  1. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application

    International Nuclear Information System (INIS)

    Putra, Nandy; Ariantara, Bambang; Pamungkas, Rangga Aji

    2016-01-01

    Highlights: • Flat plate loop heat pipe (FPLHP) is studied in the thermal management system for electric vehicle. • Distilled water, alcohol, and acetone on thermal performances of FPLHP were tested. • The FPLHP can start up at fairly low heat load. • Temperature overshoot phenomena were observed during the start-up period. - Abstract: The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this growth is accompanied by the risk of thermal runaway, which can cause serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight and compact size, and they do not require external power supply. This study examined experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol, and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gave the best performance that produces a thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm"2.

  2. Use of plastic materials in electrical accumulators. [Comparison of properties of resins

    Energy Technology Data Exchange (ETDEWEB)

    Allievi, G

    1962-05-31

    The uses of plastics in the manufacture of lead, nickel--cadmium, and silver--zinc batteries are reviewed. Nine basic plastics are compared regarding their abilities to withstand strong acids and strong bases. PVC, polyester, and polethylene appear as most suitable. Resins are compared in mechanical and thermal respects, which are tabulated for those favored industrially. ABS made from acrilonitrile--butadiene--styrene is particularly suitable. Fibers in conjunction with resins used for making plate-tubes are best represented by high-density PE (polyester), specific weight 0.94 to 0.96, nonhygroscopic, minimum contraction on cooling. Proprietary applications of the above-mentioned plastics have established themselves as successful alternatives to glass, ebonite, cellulose, and steel in Pb, Ni--Cd and Ag--Zn cells. Specific examples of successful developments in the USA, Germany, England, and Italy are cited.

  3. Electrical and thermal modeling of a large-format lithium titanate oxide battery system.

    Science.gov (United States)

    2015-04-01

    The future of mass transportation is clearly moving towards the increased efficiency of hybrid and electric vehicles. Electrical : energy storage is a key component in most of these advanced vehicles, with the system complexity and vehicle cost shift...

  4. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)

    2009-05-01

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)

  5. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  6. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  7. STUDY OF STATIC ELECTRICITY CHARGE ACCUMULATION ON SURFACE OF FLUOROPOLYMER-4 PRODUCTS USING VIBRATING CAPACITOR METHOD

    Directory of Open Access Journals (Sweden)

    H. А. Vershina

    2012-01-01

    Full Text Available The paper presents investigations of processes pertaining to surface charge accumulation and running of fluoropolymer-4 products using vibrating capacitor method. Modification of a measurement technique allowing to register distribution of dielectric surface potential without disturbance of the surface charged state has been described in the paper. The paper contains graphics of spatial distribution of surface potential of fluoropolymer-4 products after various treatments. The paper reveals that thermal treatment (tempering reduces static characteristics of fluoropolymer-4.

  8. Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System

    DEFF Research Database (Denmark)

    Schaltz, Erik; Li, Zhihao; Onar, Omer

    2009-01-01

    Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi...

  9. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  10. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries

    Science.gov (United States)

    Rowlette, J. J.

    1981-01-01

    Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  11. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  12. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  13. Li ion batteries for electric-powered vehicles. Demands and status; Li-Ionen Batterien fuer elektrifizierte Fahrzeuge. Anforderungen und Status

    Energy Technology Data Exchange (ETDEWEB)

    Lamp, Peter [BMW AG, Muenchen (Germany). ' ' Speichertechnologie und -konzepte' '

    2011-07-01

    The idea of a rechargeable battery powered pure electrical vehicle exists for more than a century. In the course of the different oil crisis and the increasing efforts for emission and CO{sub 2} reduction there have been several attempts in the last 30 years to revive the idea of battery powered electric vehicles. Although new battery technologies like NaS or NaNiCl were used there was no real success as these technologies provided an improvement compared to lead-acid but still did not meet the automotive requirement. Compared to the other presently available battery technologies, Li-Ion batteries have outstanding performance regarding energy and power density. After being successfully introduced in the consumer market since more than a decade and in the meantime also penetrating the power-tool market, this technology now carries the hope of all political and industrial players, envisaging the future of increasing electrification of vehicles. In this paper the present status of the Li-Ion technology will be compared with the automotive requirements. Most of the relevant design features from electric performance as well as different cell technologies and geometries to cycle and calendar life will be addressed. Moreover necessary future development needs will be addressed. (orig.)

  14. Optimal Switching Table-Based Sliding Mode Control of an Energy Recovery Li-Ion Power Accumulator Battery Pack Testing System

    Directory of Open Access Journals (Sweden)

    Kil To Chong

    2013-10-01

    Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.

  15. Electrical Double Layer-Induced Ion Surface Accumulation for Ultrasensitive Refractive Index Sensing with Nanostructured Porous Silicon Interferometers.

    Science.gov (United States)

    Mariani, Stefano; Strambini, Lucanos Marsilio; Barillaro, Giuseppe

    2018-03-23

    Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na + and K + ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO 2 )-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m 2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10 -4 -10 -5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10 -7 -10 -8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10 -4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10 -4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10 -7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.

  16. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  17. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  18. Which Factors Can Protect Against Range Stress in Everyday Usage of Battery Electric Vehicles? Toward Enhancing Sustainability of Electric Mobility Systems.

    Science.gov (United States)

    Franke, Thomas; Rauh, Nadine; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2016-02-01

    The objective of the present research was to advance understanding of factors that can protect against range anxiety, specifically range stress in everyday usage of battery electric vehicles (BEVs). Range anxiety is a major barrier to the broad adoption of sustainable electric mobility systems. To develop strategies aimed at overcoming range anxiety, a clear understanding of this phenomenon and influencing factors is needed. We examined range anxiety in the form of everyday range stress (ERS) in a field study setting. Seventy-two customers leased a BEV for 3 months. The field study was specifically designed to enable examination of factors that can contribute to lower ERS. In particular, study design and sample recruitment were targeted at generating vehicle usage profiles that would lead to relatively frequent experience of situations requiring active management of range resources and thereby potentially leading to experienced range stress. Less frequent encounter with critical range situations, higher practical experience, subjective range competence, tolerance of low range, and experienced trustworthiness of the range estimation system were related to lower ERS. Moreover, range stress was found to be related to range satisfaction and BEV acceptance. The results underline the importance of the human factors perspective to overcome range anxiety and enhance sustainability of electric mobility systems. Trustworthiness should be employed as a key benchmark variable in the design of range estimation systems, and assistance systems should target increasing drivers' adaptive capacity (i.e., resilience) to cope with critical range situations. © 2015, Human Factors and Ergonomics Society.

  19. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity

    Science.gov (United States)

    Rahimi, Mohammad; Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce E.

    2018-01-01

    Thermally regenerative ammonia batteries (TRABs) have shown great promise as a method to convert low-grade waste heat into electrical power, with power densities an order of magnitude higher than other approaches. However, previous TRABs based on copper electrodes suffered from unbalanced anode dissolution and cathode deposition rates during discharging cycles, limiting practical applications. To produce a TRAB with stable and reversible electrode reactions over many cycles, inert carbon electrodes were used with silver salts. In continuous flow tests, power production was stable over 100 discharging cycles, demonstrating excellent reversibility. Power densities were 23 W m-2-electrode area in batch tests, which was 64% higher than that produced in parallel tests using copper electrodes, and 30 W m-2 (net energy density of 490 Wh m-3-anolyte) in continuous flow tests. While this battery requires the use a precious metal, an initial economic analysis of the system showed that the cost of the materials relative to energy production was 220 per MWh, which is competitive with energy production from other non-fossil fuel sources. A substantial reduction in costs could be obtained by developing less expensive anion exchange membranes.

  20. Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2015-12-01

    Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.

  1. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  2. Direct electrical stimulation using a battery-operated device for induction and modulation of colonic contractions in pigs.

    Science.gov (United States)

    Bertschi, Mattia; Schlageter, Vincent; Vesin, Jean-Marc; Aellen, Steve; Peloponissios, Nicolas; D'Ambrogio, Aris; Wiesel, Paul Herman; Givel, Jean-Claude; Kucera, Pavel; Virag, Nathalie

    2010-07-01

    Direct electrical stimulation of the colon offers a promising approach for the induction of propulsive colonic contractions by using an implantable device. The objective of this study was to assess the feasibility to induce colonic contractions using a commercially available battery-operated stimulator (maximum pulse width of 1 ms and maximum amplitude of 10 V). Three pairs of pacing electrodes were inserted into the cecal seromuscular layer of anesthetized pigs. During a first set of in vivo experiments conducted on six animals, a pacing protocol leading to cecum contractions was determined: stimulation bursts with 1 ms pulse width, 10 V amplitude (7-15 mA), 120 Hz frequency, and 30-s burst duration, repeated every 2-5 min. In a second testing phase, an evaluation of the pacing protocol was performed in four animals (120 stimulation bursts in total). By using the battery-operated stimulator, contractions of the cecum and movement of contents could be induced in 92% of all stimulations. A cecal shortening of about 30% and an average intraluminal pressure increase of 10.0 +/- 6.0 mmHg were observed.

  3. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application

    Science.gov (United States)

    Hosseinzadeh, Elham; Genieser, Ronny; Worwood, Daniel; Barai, Anup; Marco, James; Jennings, Paul

    2018-04-01

    A 1D electrochemical-thermal model is developed to characterise the behaviour of a 53 Ah large format pouch cell with LiNixMnyCo1-x-yO2 (NMC) chemistry over a wide range of operating conditions, including: continuous charge (0.5C-2C), continuous discharge (0.5C-5C) and operation of the battery within an electric vehicle (EV) over an urban drive-cycle (WLTP Class 3) and for a high performance EV being driven under track racing conditions. The 1D model of one electrode pair is combined with a 3D thermal model of a cell to capture the temperature distribution at the cell scale. Performance of the model is validated for an ambient temperature range of 5 °C-45 °C. Results highlight that battery performance is highly dependent on ambient temperature. By decreasing the ambient temperature from 45 °C to 5 °C, the available energy drops by 17.1% and 7.8% under 0.5C and 5C discharge respectively. Moreover, the corresponding power loss is found to be: 5.23% under the race cycle as compared with 7.57% under the WLTP drive cycle. Formulation of the model is supported by a comprehensive set of experiments, for quantifying key parameters and for model validation. The full parameter-set for the model is provided ensuring the model is a valuable resource to underpin further research.

  4. Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter

    International Nuclear Information System (INIS)

    Vasebi, A.; Bathaee, S.M.T.; Partovibakhsh, M.

    2008-01-01

    This paper describes and introduces a new nonlinear predictor and a novel battery model for estimating the state of charge (SoC) of lead-acid batteries for hybrid electric vehicles (HEV). Many problems occur for a traditional SoC indicator, such as offset, drift and long term state divergence, therefore this paper proposes a technique based on the extended Kalman filter (EKF) in order to overcome these problems. The underlying dynamic behavior of each cell is modeled using two capacitors (bulk and surface) and three resistors (terminal, surface and end). The SoC is determined from the voltage present on the bulk capacitor. In this new model, the value of the surface capacitor is constant, whereas the value of the bulk capacitor is not. Although the structure of the model, with two constant capacitors, has been previously reported for lithium-ion cells, this model can also be valid and reliable for lead-acid cells when used in conjunction with an EKF to estimate SoC (with a little variation). Measurements using real-time road data are used to compare the performance of conventional internal resistance (R int ) based methods for estimating SoC with those predicted from the proposed state estimation schemes. The results show that the proposed method is superior to the more traditional techniques, with accuracy in estimating the SoC within 3%

  5. Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems

    International Nuclear Information System (INIS)

    Beck, T.; Kondziella, H.; Huard, G.; Bruckner, T.

    2016-01-01

    Highlights: • MILP optimization model for operation and investment of PV-battery systems. • Use of high resolution (10 s) electrical household load and PV generation profiles. • Analysis of influence of temporal resolution on self-consumption and optimal sizing. • Electrical load profile characteristics influence required temporal resolution. - Abstract: The interest in self-consumption of electricity generated by rooftop photovoltaic systems has grown in recent years, fueled by decreasing levelized costs of electricity and feed-in tariffs as well as increasing end customer electricity prices in the residential sector. This also fostered research on grid-connected PV-battery storage systems, which are a promising technology to increase self-consumption. In this paper a mixed-integer linear optimization model of a PV-battery system that minimizes the total discounted operating and investment costs is developed. The model is employed to study the effect of the temporal resolution of electrical load and PV generation profiles on the rate of self-consumption and the optimal sizing of PV and PV-battery systems. In contrast to previous studies high resolution (10 s) measured input data for both PV generation and electrical load profiles is used for the analysis. The data was obtained by smart meter measurements in 25 different households in Germany. It is shown that the temporal resolution of load profiles is more critical for the accuracy of the determination of self-consumption rates than the resolution of the PV generation. For PV-systems without additional storage accurate results can be obtained by using 15 min solar irradiation data. The required accuracy for the electrical load profiles depends strongly on the load profile characteristics. While good results can be obtained with 60 s for all electrical load profiles, 15 min data can still be sufficient for load profiles that do not exhibit most of their electricity consumption at power levels above 2 k

  6. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations

    International Nuclear Information System (INIS)

    Cunha, Álvaro; Brito, F.P.; Martins, Jorge; Rodrigues, Nuno; Monteiro, Vitor; Afonso, João L.; Ferreira, Paula

    2016-01-01

    A network of conveniently located fast charging stations is one of the possibilities to facilitate the adoption of Electric Vehicles (EVs). This paper assesses the use of fast charging stations for EVs in conjunction with VRFBs (Vanadium Redox Flow Batteries). These batteries are charged during low electricity demand periods and then supply electricity for the fast charging of EVs during day, thus implementing a power peak shaving process. Flow batteries have unique characteristics which make them especially attractive when compared with conventional batteries, such as their ability to decouple rated power from rated capacity, as well as their greater design flexibility and nearly unlimited life. Moreover, their liquid nature allows their installation inside deactivated underground gas tanks located at gas stations, enabling a smooth transition of gas stations' business model towards the emerging electric mobility paradigm. A project of a VRFB system to fast charge EVs taking advantage of existing gas stations infrastructures is presented. An energy and cost analysis of this concept is performed, which shows that, for the conditions tested, the project is technologically and economically viable, although being highly sensitive to the investment costs and to the electricity market conditions. - Highlights: • Assessment of Vanadium Redox Flow Battery use for EV fast charge in gas stations. • This novel system proposal allows power peak shaving and use of deactivated gas tanks. • Philosophy allows seamless business transition towards the Electric Mobility paradigm. • Project is technologically and economically viable, although with long payback times. • Future Cost cuts due to technology maturation will consolidate project attractiveness.

  7. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  8. Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

    International Nuclear Information System (INIS)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin

    2010-01-01

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO 2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO 2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO 2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO 2 emissions corrected according to this procedure underestimate the true net CO 2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO 2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO 2 emissions should, therefore, be adapted.

  9. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J.; Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ (United Kingdom); Howey, D. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom)

    2010-01-15

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV. (author)

  10. Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Jun Bi

    2018-04-01

    Full Text Available Battery electric vehicles (BEVs reduce energy consumption and air pollution as compared with conventional vehicles. However, the limited driving range and potential long charging time of BEVs create new problems. Accurate charging time prediction of BEVs helps drivers determine travel plans and alleviate their range anxiety during trips. This study proposed a combined model for charging time prediction based on regression and time-series methods according to the actual data from BEVs operating in Beijing, China. After data analysis, a regression model was established by considering the charged amount for charging time prediction. Furthermore, a time-series method was adopted to calibrate the regression model, which significantly improved the fitting accuracy of the model. The parameters of the model were determined by using the actual data. Verification results confirmed the accuracy of the model and showed that the model errors were small. The proposed model can accurately depict the charging time characteristics of BEVs in Beijing.

  11. Forecasting the State of Health of Electric Vehicle Batteries to Evaluate the Viability of Car Sharing Practices

    Directory of Open Access Journals (Sweden)

    Ivana Semanjski

    2016-12-01

    Full Text Available Car-sharing practices are introducing electric vehicles (EVs into their fleet. However, the literature suggests that at this point shared EV systems are failing to reach satisfactory commercial viability. A potential reason for this is the effect of higher vehicle usage, which is characteristic of car sharing, and the implications on the battery’s state of health (SoH. In this paper, we forecast the SoH of two identical EVs being used in different car-sharing practices. For this purpose, we use real life transaction data from charging stations and different EV sensors. The results indicate that insight into users’ driving and charging behavior can provide a valuable point of reference for car-sharing system designers. In particular, the forecasting results show that the moment when an EV battery reaches its theoretical end of life can differ in as much as a quarter of the time when vehicles are shared under different conditions.

  12. Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency

    OpenAIRE

    Francoise Nemry; Guillaume Leduc; Almudena Muñoz

    2009-01-01

    This technical note is a first contribution from IPTS to a JRC more integrated assessment of future penetration pathways of new vehicles technologies in the EU27 market and of their impacts on energy security, GHG emissions and on the economy. The present report focuses on battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). It provides a general overview of the current state of the research and development about the concerned technologies and builds some first estim...

  13. Dead battery? Wind power, the spot market, and hydro power interaction in the Nordic electricity market

    OpenAIRE

    Mauritzen, Johannes

    2011-01-01

    It is well established within both the economics and power system engineering literature that hydro power can act as a complement to large amounts of intermittent energy. In particular hydro power can act as a "battery" where large amounts of wind power are installed. In this paper I use simple distributed lag models with data from Denmark and Norway. I find that increased wind power in Denmark causes increased marginal exports to Norway and that this effect is larger during periods of net ex...

  14. Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-01-01

    Full Text Available Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.

  15. H∞ robust control of load frequency in diesel-battery hybrid electric propulsion ship

    Directory of Open Access Journals (Sweden)

    LI Hongyue

    2017-05-01

    Full Text Available Considering the load frequency fluctuation in the shipboard integrated power system caused by such stochastic uncertainty as wind, wave and current, the battery is adopted here to compensate for the difference between diesel generator output power and ship demand power, and the secondary frequency control is used for the diesel generator to guarantee the power balance in the shipboard integrated power system and suppress the frequency fluctuation. The load frequency control problem is modeled as a state space equation, the robust controller is designed by selecting the appropriate sensitivity function and complementary sensitivity function based on the H∞ mixed sensitivity principle, and the controller is solved by the linear matrix inequality(LMIapproach. The amplitude frequency characteristics denote the reasonability of the designed controller and the design requirement is satisfied by the impact of the impulse signal. The simulation results show that, compared with the classical PI controller, the controller designed by the H∞ robust method can significantly suppress frequency fluctuation under stochastic uncertainty, and improve the power variation of the diesel generator, battery and state of charge(SOC. The robust stability and robust performance of the power system are also advanced.

  16. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, C J

    1992-09-01

    This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

  17. Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach

    Directory of Open Access Journals (Sweden)

    Fengchun Sun

    2012-05-01

    Full Text Available Battery peak power capability estimations play an important theoretical role for the proper use of the battery in electric vehicles. To address the failures in relaxation effects and real-time ability performance, neglecting the battery’s design limits and other issues of the traditional peak power capability calculation methods, a new approach based on the dynamic electrochemical-polarization (EP battery model, taking into consideration constraints of current, voltage, state of charge (SoC and power is proposed. A hardware-in-the-loop (HIL system is built for validating the online model-based peak power capability estimation approach of batteries used in hybrid electric vehicles (HEVs and a HIL test based on the Federal Urban Driving Schedules (FUDS is used to verify and evaluate its real-time computation performance, reliability and robustness. The results show the proposed approach gives a more accurate estimate compared with the hybrid pulse power characterization (HPPC method, avoiding over-charging or over-discharging and providing a powerful guarantee for the optimization of HEVs power systems. Furthermore, the HIL test provides valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms.

  18. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  19. A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis

    International Nuclear Information System (INIS)

    Li, Mengyu; Zhang, Xiongwen; Li, Guojun

    2016-01-01

    Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are increasingly prevalent in the transportation sector due to growing concerns about climate change, urban air pollution and oil dependence. This theoretical study reports the results of well-to-wheel (WTW) analyses for BEVs and FCEVs in different energy resource and technology pathways in China in terms of fossil energy use, total energy use and greenhouse gas (GHG) emissions. The energy types include coal, natural gas, renewable energy and nuclear energy resources. Special attention is given to the effects of vehicle heating loads on the WTW performances of BEVs and FCEVs. Energy use and GHG emissions reductions from BEVs and FCEVs in different pathways are examined and compared to those of gasoline-based internal engine vehicles (ICEVs). When considering the cabin heating load in vehicles, FCEVs using natural gas as the energy source outperformed all the BEVs in terms of total energy use and GHG emissions. FCEVs adopting new energy-based pathways can achieve the same WTW efficiencies as BEVs, and these efficiencies may be even higher if the hydrogen used by FCEVs is produced by the pathways of solar-solid oxide electrolysis cell (SOEC) systems, solar-thermochemical systems or nuclear-SOEC systems. - Highlights: • A well-to-wheel analysis is performed for electric vehicle technologies in China. • The effects of cabin heating on well-to-wheel performances are investigated. • The performances of different electric vehicle pathways are presented in detail. • FCEVs with natural gas pathways outperformed BEVs.

  20. A Capacity Fading Model of Lithium-Ion Battery Cycle Life Based on the Kinetics of Side Reactions for Electric Vehicle Applications

    International Nuclear Information System (INIS)

    Gu, Weijun; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng

    2014-01-01

    Highlights: • Describe the aging mechanism of lithium-ion battery with electrochemical kinetics. • Establish the fading rate equation based on Eyring Equation. • The established equation is applicable to any reaction order. • Integrate the internal kinetics with external degradation characteristics. - Abstract: Battery life prediction is one of the critical issues that restrict the development of electric vehicles. Among the typical ba