WorldWideScience

Sample records for accumulative roll-bonding arb

  1. Nanograined Ti–Nb microalloy steel achieved by Accumulative Roll Bonding (ARB) process

    International Nuclear Information System (INIS)

    Tohidi, A.A.; Ketabchi, M.; Hasannia, A.

    2013-01-01

    Over the last decade, nanocrystalline and ultra-fine grained (UFG) materials with grain size less than 1 μm have aroused considerable interest due to their superior mechanical properties compared to conventionally grained materials. In this work Ti–Nb microalloy steel was processed by the severe plastic deformation (SPD) technique called Accumulative Roll Bonding (ARB) in order to produce an ultra-fine grained microstructure and improve the mechanical properties. After initial preparation to achieve good sheet bonding, 8 cycles of ARB at 550 °C were successfully performed. Observation of optical microstructure, scanning electron microscopy (SEM) micrographs, and X-Ray Diffraction (XRD) peak broadening analysis were used for the characterization of grain structure of the ARB processed sample. The mechanical attributes after rolling and cooling were examined. It was calculated that metal's yield and tensile strength increased by 334% and 215% respectively, while the ductility dropped from as-received value of 34% to 2.9%. Microhardness of the material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of the ARB process. At the 8th pass, the hardness values increased by 230%. The rolling process was stopped at 8th cycle when cracking of the edge became pronounced

  2. Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, M.; Reihanian, M. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Borhani, E., E-mail: e.borhani@semnan.ac.ir [Department of Nano Technology, Nano Materials Group, Semnan University, Semnan (Iran, Islamic Republic of)

    2016-09-15

    Commercial pure Al sheets were severe plastically deformed at room temperature by accumulative roll bonding (ARB) and cross accumulative roll bonding (CARB). Change in strain path was imposed during CARB by rotating the sheets with 90° around the normal direction axis between each cycle. Microstructural evolution of processed sheets was studied by electron back scattered diffraction (EBSD) analysis and revealed that nano/ultrafine grains (NG/UFG) with the average grain size of 380 nm and 155 nm were formed by both processing routes after eight cycles, respectively. The fraction of high angle grain boundaries and mean misorientation angle of the boundaries in the CARB were 49% and 40.20°, respectively, in comparison to that of ARB sample (41% and 37.37°). Deformation texture evolution demonstrated that the change in strain path leads to the formation of strong orientation along the β-fiber. The major texture components for ARB specimens were Brass {011}<211> and S {123}<634> while those for CARB were Brass {011}<211> and Goss {011}<100>. The CARB processed specimen exhibited the tensile strength, microhardness and elongation of about 230 MPa, 92 HV and 13% compared with ARB sample (180 MPa, 80 HV and 10.5%) after eight cycles. Scanning electron microscopy (SEM) observations of tensile fracture surface of specimens revealed ductile type fracture.

  3. Microstructure Evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB Process

    Directory of Open Access Journals (Sweden)

    Jinfeng Nie

    2017-01-01

    Full Text Available In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM and a transmission electron microscope (TEM. The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies.

  4. Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding

    International Nuclear Information System (INIS)

    Su, Lihong; Lu, Cheng; Li, Huijun; Deng, Guanyu; Tieu, Kiet

    2014-01-01

    Accumulative roll bonding (ARB) is an effective method to produce ultrafine-grained (UFG) sheet materials with high strength. In this work, fully annealed AA1050 sheet with an initial thickness of 1.5 mm was processed by ARB up to five cycles. The microstructure was examined by optical microscopy (OM) and transmission electron microscopy (TEM). The results revealed that ARB is a promising process for fabricating ultrafine grained structures in aluminium sheets and the average grain size after 5-cycle ARB reached approximately 300 nm. Meanwhile, a remarkable enhancement in the strength was achieved and the value was about three times the strength of starting material. The microstructure at the bond interface introduced during ARB was investigated and its influence was discussed in detail. In addition, the microstructure and mechanical properties after ARB were compared with that after deformation by equal channel angular pressing (ECAP) up to the same strain. It has been found that ARB is more efficient in grain refinement and strengthening, which can be attributed to the different deformation modes of the two techniques

  5. A new strategy to simultaneous increase in the strength and ductility of AA2024 alloy via accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, M.; Reihanian, M. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Borhani, E., E-mail: e.borhani@semnan.ac.ir [Department of Nano Technology, Nano Materials Group, Semnan University, Semnan (Iran, Islamic Republic of)

    2016-02-22

    Nano/ultrafine grained (NG/UFG) AA2024 alloy produced by accumulative roll bonding (ARB) showed high strength (420 MPa) and very limited elongation (about 1.3%). A new strategy via ARB was developed to improve elongation (about 10%) of AA2024 alloy with a relatively high strength (365 MPa). The present strategy produced a bimodal structure consisting of coarse and ultrafine elongated grains in comparison to the UFG alloy. Electron backscattered diffraction (EBSD) revealed that after 4 ARB cycles, the fraction of high angle grain boundaries and mean misorientation angle of the boundaries in the bimodal grain structure were 61% and 27.34°, respectively, in comparison to that of annealed (54% and 24.96°) and UFG (79% and 34.27°) alloy. The crystallographic texture results indicated that, unlike the annealed AA2024 alloy, the intensity of Brass {011}<211> and S {123}<634> components remarkably increased in the UFG and bimodal alloy. Scanning electron microscopy (SEM) observations demonstrated that failure mode in bimodal alloy was ductile fracture with a combination of deep and shallow dimples.

  6. EBSD characterization of an IF steel processed by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Cruz-Gandarilla, F; Salcedo-Garrido, A M; Avalos, M; Bolmaro, R; Baudin, T; Cabañas-Moreno, J G; Dorantes-Rosales, H J

    2015-01-01

    The objective of this work is to study the texture and microstructure evolution of an IF steel deformed by Accumulative Roll Bonding (ARB) using Electron Backscatter Diffraction. Texture changes occur with increasing number of ARB cycles. For the early cycles, the main components are the α and γ fiber components characteristic of steels. With increasing the number of ARB cycles a tendency towards a random texture is obtained. In the initial state, the mean grain size is 30 μm and after 5 cycles it decreases to 1.2 μm. For the first ARB cycles, the fraction of high angle grain boundary is low but it increases with the number of cycles to about 80% for 5 cycles. The Kernel Average Misorientation (KAM) has no appreciable changes with the number of ARB cycles for all the texture components. (paper)

  7. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083

    Energy Technology Data Exchange (ETDEWEB)

    Reza Toroghinejad, Mohammad; Ashrafizadeh, Fakhreddin [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Young Researchers Club, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of)

    2013-01-20

    In the present study, the effect of accumulative roll bonding (ARB) process at room temperature on the microstructure and mechanical properties of AA5083 strip was investigated. Microstructural observations were done by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Also, mechanical properties were performed by tensile, hardness, and microhardness tests. It was observed that accumulative roll bonding is a promising process for production of nanostructured (80 nm) AA5083 strips. Nano shear bands were formed in the microstructure after the fourth cycles. When the number of cycles increased, the tensile strength and hardness of the accumulatively roll bonded strips increased. However, by increasing the number of cycles, the elongation value decreased except for the last (sixth) cycle. It was found that when the number of cycles increased, the distribution of microhardness values became more uniform. After the tensile test, debonding can be observed especially in the interface formed in the last cycle. Observations revealed that the failure mode in the accumulatively roll bonded AA5083 strip was a shear ductile rupture with elongated shallow shear dimples.

  8. The influence of multiscale heterogeneity on recrystallization in nickel processed by accumulative roll bonding

    DEFF Research Database (Denmark)

    Mishin, Oleg; Zhang, Yubin; Godfrey, A.

    2017-01-01

    Microscopic and sample-scale heterogeneities have been characterized in nickel processed by accumulative roll bonding (ARB) to a von Mises strain of 4.8, and their influence on recrystallization have been analyzed. The microscopic deformation heterogeneities in this material are mostly associated...

  9. Microstructure and mechanical properties of nickel processed by accumulative roll bonding

    DEFF Research Database (Denmark)

    Zhang, Yubin; Mishin, Oleg; Kamikawa, N.

    2013-01-01

    rolling to an identical nominal strain, the microstructure after ARB is more refined and contains a greater fraction of high angle boundaries. This enhanced refinement is attributed to the geometric accumulation of shear-strain influenced volumes as a result of the ARB process and large-draught rolling...

  10. Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates

    International Nuclear Information System (INIS)

    Chekhonin, Paul; Beausir, Benoît; Scharnweber, Juliane; Oertel, Carl-Georg; Hausöl, Tina; Höppel, Heinz Werner; Brokmeier, Heinz-Günter; Skrotzki, Werner

    2012-01-01

    Aluminium laminates consisting of high-purity aluminium and commercially pure aluminium have been produced by accumulative roll bonding (ARB) at ambient temperature for up to 10 cycles. To study the microstructure and texture development of the high-purity aluminium layers with regard to the shrinking layer thickness during ARB, microstructure and texture investigations were carried out by electron backscatter diffraction and neutron and X-ray diffraction, respectively. While the commercially pure aluminium layers develop an ultrafine-grained microstructure, partial discontinuous recrystallization occurs in the high-purity layers. The texture of the high-purity layers mainly consists of Cube and “Tilted Cube” (tilted with respect to the transverse direction) components. The experimental results are discussed with respect to confined recrystallization in the ARB aluminium laminates.

  11. Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding

    International Nuclear Information System (INIS)

    Milner, Justin L.; Abu-Farha, Fadi; Bunget, Cristina; Kurfess, Thomas; Hammond, Vincent H.

    2013-01-01

    Accumulative roll bonding (ARB), a severe plastic deformation technique, was used in this study to process commercially pure titanium (CP-Ti) at 450 °C. Sheet samples were processed by seven consecutive ARB cycles, with an overall equivalent strain of 5.6. Mechanical characterization and microstructural examination were carried out on the processed material to track their changes and relationships with regard to one another. Electron microscopy, TEM in particular, revealed significant grain refinement in the material, with submicron microstructure achieved even after one cycle of warm processing. Further processing was shown to progressively fragment the highly elongated grains, ultimately producing a predominantly-equiaxed ultrafine grain structure with an average grain size of ∼100 nm. Tensile strength and microhardness of the material increased with the number of ARB cycles; the strength–grain size relationship followed the Hall–Petch equation. The overall grain refinement and strengthening levels observed here are close to those reported in the literature for ARB processing of CP-Ti at ambient temperatures. This demonstrates the ability of warm ARB can be as effective as cold ARB, while offering several advantages for industrial utilization.

  12. Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu

    Directory of Open Access Journals (Sweden)

    Mathias Göken

    2011-11-01

    Full Text Available The formation of alloys by particle reinforcement during accumulative roll bonding (ARB, and subsequent annealing, is introduced on the basis of the binary alloy system Al-Cu, where strength and electrical conductivity are examined in different microstructural states. An ultimate tensile strength (UTS of 430 MPa for Al with 1.4 vol.% Cu was reached after three ARB cycles, which almost equals UTS of the commercially available Al-Cu alloy AA2017A with a similar copper content. Regarding electrical conductivity, the UFG structure had no significant influence. Alloying of aluminum with copper leads to a linear decrease in conductivity of 0.78 µΩ∙cm/at.% following the Nordheim rule. On the copper-rich side, alloying with aluminum leads to a slight strengthening, but drastically reduces conductivity. A linear decrease of electrical conductivity of 1.19 µΩ∙cm/at.% was obtained.

  13. Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy

    International Nuclear Information System (INIS)

    Hosseini, M.; Danesh Manesh, H.

    2010-01-01

    In this research, ultrafine grained strips of commercial pure strain hardenable aluminum (AA1050) were produced by accumulative roll-bonding (ARB) technique. These strips were joined by friction stir welding (FSW) in immersed (underwater) and conventional (in-air) conditions to investigate the effect of the immersion method on the microstructure and mechanical properties of the joint, aiming to reduce the deterioration of the mechanical properties of the joint. Transmission electron microscopy and X-ray diffraction analyses were used to evaluate the microstructure, showing smaller grains and subgrains in the stir zone of the immersed FSW condition with respect to the conventional FSW method. The hardness and tensile properties of the immersed friction stir welded sample and ARBed base metal show more similarity compared to the conventional friction stir welded sample. Moreover, the aforementioned method can result in the enhancement of the superplasticity tendency of the material.

  14. Role of powder preparation route on microstructure and mechanical properties of Al-TiB2 composites fabricated by accumulative roll bonding (ARB)

    International Nuclear Information System (INIS)

    Askarpour, M.; Sadeghian, Z.; Reihanian, M.

    2016-01-01

    Accumulative roll bonding (ARB) was conducted up to seven cycles to fabricate Al-TiB 2 particulate metal matrix composites. The reinforcing particles were prepared and used in three different processing conditions: as-received TiB 2 , mixed TiB 2 -Al and in-situ synthesized TiB 2 -Al. The mixed TiB 2 -Al powder was produced by milling of TiB 2 with Al powder and in-situ synthesized TiB 2 -Al powder was prepared by mechanical alloying (MA) through inducing TiB 2 particles in the Al with various composition of 10, 20 and 30 wt% Al. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to evaluate the microstructure of the produced composites. The composite obtained from the in-situ TiB 2 -Al powder showed the most uniform distribution of particles and exhibited the highest tensile strength of about 177 MPa in comparison with the composites reinforced with the as-received TiB 2 (156 MPa) and mixed TiB 2 -Al powder (160 MPa). After seven ARB cycles, an ultra-fine grained structure with the average size of about 300 nm was obtained in the composite reinforced with in-situ TiB 2 -Al powder. The appearance of dimples in tensile fracture surfaces revealed a ductile-type fracture in the produced composites.

  15. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Imantalab, O., E-mail: o.imantalab@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Mazaheri, Y. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Keshavarz, M.K. [Department of Engineering Physics, Polytechnique Montreal, Montreal (Canada)

    2016-01-05

    In this study, the microstructural evolution, mechanical properties, and strain hardening behavior of commercial pure copper processed by the accumulative roll bonding (ARB) were investigated. Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) images indicated that with increasing the number of ARB cycles, the grain size of samples decreased. An Ultrafine grained (UFG) structure with an average grain size of about 200 nm was achieved after four cycles of ARB. The yield and ultimate tensile strength of pure copper with the UFG microstructure was reached about 360 MPa and 396 MPa (about 400% and 100% higher than that of the annealed state), respectively. All ARB-processed copper samples showed lower strain hardening exponent in comparison with the annealed state. Moreover, the strain hardening rate increased with increasing ARB cycles up to 3 cycles and then decreased.

  16. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process

    International Nuclear Information System (INIS)

    Fattah-alhosseini, A.; Imantalab, O.; Mazaheri, Y.; Keshavarz, M.K.

    2016-01-01

    In this study, the microstructural evolution, mechanical properties, and strain hardening behavior of commercial pure copper processed by the accumulative roll bonding (ARB) were investigated. Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) images indicated that with increasing the number of ARB cycles, the grain size of samples decreased. An Ultrafine grained (UFG) structure with an average grain size of about 200 nm was achieved after four cycles of ARB. The yield and ultimate tensile strength of pure copper with the UFG microstructure was reached about 360 MPa and 396 MPa (about 400% and 100% higher than that of the annealed state), respectively. All ARB-processed copper samples showed lower strain hardening exponent in comparison with the annealed state. Moreover, the strain hardening rate increased with increasing ARB cycles up to 3 cycles and then decreased.

  17. Role of powder preparation route on microstructure and mechanical properties of Al-TiB{sub 2} composites fabricated by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Askarpour, M.; Sadeghian, Z., E-mail: z.sadeghian@scu.ac.ir; Reihanian, M.

    2016-11-20

    Accumulative roll bonding (ARB) was conducted up to seven cycles to fabricate Al-TiB{sub 2} particulate metal matrix composites. The reinforcing particles were prepared and used in three different processing conditions: as-received TiB{sub 2}, mixed TiB{sub 2}-Al and in-situ synthesized TiB{sub 2}-Al. The mixed TiB{sub 2}-Al powder was produced by milling of TiB{sub 2} with Al powder and in-situ synthesized TiB{sub 2}-Al powder was prepared by mechanical alloying (MA) through inducing TiB{sub 2} particles in the Al with various composition of 10, 20 and 30 wt% Al. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to evaluate the microstructure of the produced composites. The composite obtained from the in-situ TiB{sub 2}-Al powder showed the most uniform distribution of particles and exhibited the highest tensile strength of about 177 MPa in comparison with the composites reinforced with the as-received TiB{sub 2} (156 MPa) and mixed TiB{sub 2}-Al powder (160 MPa). After seven ARB cycles, an ultra-fine grained structure with the average size of about 300 nm was obtained in the composite reinforced with in-situ TiB{sub 2}-Al powder. The appearance of dimples in tensile fracture surfaces revealed a ductile-type fracture in the produced composites.

  18. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  19. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  20. Microstructure and Strengthening Mechanisms of Carbon Nanotube Reinforced Magnesium Matrix Composites Fabricated by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Yoo, Seong Jin; Kim, Woo Jin

    2014-01-01

    A combination of accumulative roll bonding (ARB) and high-energy ball milling was used to fabricate carbon nano tube (CNT)-reinforced Mg composites in sheet form. CNT-Al composite powders synthesized using the high-energy ball-milling process, were coated on the surface of Mg sheets using either spraying or dipping methods. The coated sheets were stacked and then subjected to ARB. Formation of CNT-intermetallic compounds through inter-diffusion between Al and Mg, fragmentation of the CNTintermetallic compounds, and their dispersion into the matrix by plastic flow; as well as dissolution of the intermetallic compound particles into the matrix while leaving CNTs in the matrix, occurred in sequence during the ARB process. This eventually resulted in the uniform distribution of nano-sized CNT particles in the Mg matrix. As the thickness of the Mg sheet and of the coating layer of Al-CNT powder on the surface of the Mg sheet were similar, the dispersion of CNTs into the Mg matrix occurred more uniformly and the strengthening effect of adding CNTs was greater. The strengthening gained by adding CNTs was attributed to Orowan strengthening and dislocation-density increase due to a thermal mismatch between the matrix and the CNTs.

  1. Property optimization of nanostructured ARB-processed Al by post-process deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu; Kamikawa, Naoya; Hansen, Niels

    2008-01-01

    The effect of post-process deformation on the mechanical properties of nanostructured aluminum (99.2% purity) has been investigated by cold rolling of samples which have been processed by accumulative roll bonding (ARB) to a strain of epsilon(vM) = 4.8. Samples have been cold rolled to 10, 15...... material. In contrary, cold rolling to large strain (50%) results in significant strengthening. This leads to the suggestion of a transition strain within the range of 25-35% reduction by rolling. The microstructural evolution during post-process deformation has been followed by transmission electron...

  2. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    Science.gov (United States)

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear texture and weak cube orientation. The subdivision of the grains to the rolling direction began to occur after 3 cycles of the ARB, resulting in formation of ultrafine grains with small aspect ratio. After 5 cycles, the ultrafine grained structure with the average grain diameter of 560 nm develops in almost whole regions of the sample.

  3. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    Science.gov (United States)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  4. Analysis of through-thickness heterogeneities of microstructure and texture in nickel after accumulative roll bonding

    DEFF Research Database (Denmark)

    Zhang, Yubin; Mishin, Oleg; Godfrey, A.

    2014-01-01

    with the summed fraction of the rolling texture components. The observed microstructural and textural variations are discussed and compared with literature data, taking into account the influence of large-draught rolling and lubrication on the distribution of strain imposed during the ARB process....

  5. Microstructure and mechanical properties of ARB processed Mg-3%Gd alloy

    DEFF Research Database (Denmark)

    Wu, J.Q.; Huang, S.; Wang, Y.H.

    2015-01-01

    by accumulative roll-bonding (ARB) at 400℃ to 4 cycles followed by annealing at various temperatures. The microstructures after annealing were characterized by the electron backscatter diffraction technique and the mechanical properties were measured by a tensile test. It was found that the alloy has a good...... combination of strength and ductility after 2 cycle ARB processing followed by annealing at 290℃ for 1h. The strength is 2.3 times higher than that of the fully annealed coarse grained alloy, and the elongation is comparable with that of fully annealed coarse grained counterpart. The good mechanical...... properties were related to the fine-sized heterogeneous microstructures and weakened texture....

  6. Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageing

    International Nuclear Information System (INIS)

    Yu, Hailiang; Su, Lihong; Lu, Cheng; Tieu, Kiet; Li, Huijun; Li, Jintao; Godbole, Ajit; Kong, Charlie

    2016-01-01

    Grain size and precipitations affect the strength and ductility of ultrafine-grained materials. In this study, aluminum alloy 6061 sheets were fabricated using the accumulative roll bonding (ARB) technique. The ARB-processed sheets were subsequently subjected to cryorolling and asymmetric cryorolling. The sheets were further aged at 100 °C for 48 h. Mechanical tests show that a combination of asymmetric cryorolling and ageing results in significant improvement in both the ductility and the strength of the ARB-processed sheets. The microstructures of the sheets at different stages of the process were also analyzed using optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction in order to correlate the mechanical properties with the microstructure.

  7. Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageing

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailiang, E-mail: hailiang@uow.edu.au [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2500 (Australia); Su, Lihong; Lu, Cheng; Tieu, Kiet [School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2500 (Australia); Li, Huijun, E-mail: huijun@uow.edu.au [School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2500 (Australia); Li, Jintao; Godbole, Ajit [School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2500 (Australia); Kong, Charlie [Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-09-30

    Grain size and precipitations affect the strength and ductility of ultrafine-grained materials. In this study, aluminum alloy 6061 sheets were fabricated using the accumulative roll bonding (ARB) technique. The ARB-processed sheets were subsequently subjected to cryorolling and asymmetric cryorolling. The sheets were further aged at 100 °C for 48 h. Mechanical tests show that a combination of asymmetric cryorolling and ageing results in significant improvement in both the ductility and the strength of the ARB-processed sheets. The microstructures of the sheets at different stages of the process were also analyzed using optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction in order to correlate the mechanical properties with the microstructure.

  8. Texture analysis of a friction stir welded ultrafine grained Al–Al2O3 composite produced by accumulative roll-bonding

    International Nuclear Information System (INIS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Szpunar, Jerzy

    2014-01-01

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al 2 O 3 ) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm

  9. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing

    International Nuclear Information System (INIS)

    Mozaffari, A.; Hosseini, M.; Manesh, H. Danesh

    2011-01-01

    Highlights: → Al/Ni metallic composites produced by accumulative roll bonding were heat treated at different temperatures and periods, to investigate the effect of reaction annealing on the structure and mechanical properties. → Based on the annealing conditions, various intermetallic phases were formed. The structure and composition of the composites were detected by SEM and XRD techniques. → The strength of the initial metallic composite can be improved due to the formation of the hard intermetallic phases, by the heat treatment process. - Abstract: In this research, Al/Ni multilayers composites were produced by accumulative roll bonding and then annealed at different temperatures and durations. The structure and mechanical properties of the fabricated metal intermetallic composites (MICs) were investigated. Scanning electron microscopy and X-ray diffraction analyses were used to evaluate the structure and composition of the composite. The Al 3 Ni intermetallic phase is formed in the Al/Ni interface of the samples annealed at 300 and 400 deg. C. When the temperature increased to 500 deg. C, the Al 3 Ni 2 phase was formed in the composite structure and grew, while the Al 3 Ni and Al phases were simultaneously dissociated. At these conditions, the strength of MIC reached the highest content and was enhanced by increasing time. At 600 deg. C, the AlNi phase was formed and the mechanical properties of MIC were intensively degraded due to the formation of structural porosities.

  10. Texture analysis of a friction stir welded ultrafine grained Al–Al{sub 2}O{sub 3} composite produced by accumulative roll-bonding

    Energy Technology Data Exchange (ETDEWEB)

    Shamanian, Morteza, E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mohammadnezhad, Mahyar [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9 (Canada)

    2014-12-05

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al{sub 2}O{sub 3}) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm.

  11. Microstructure, mechanical properties and texture of an AA6061/AA5754 composite fabricated by cross accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, K., E-mail: kevin.verstraete@u-psud.fr [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Helbert, A.L. [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Brisset, F. [Université Paris-Sud, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Benoit, A.; Paillard, P. [Institut des Matériaux Jean Rouxel (IMN), UMR 6502, Polytech’Nantes, Nantes Cedex (France); Baudin, T. [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France)

    2015-07-29

    AA6061 alloy is a widely used material in the automotive and aerospace industries, but is prone to hot cracking, which limits its weldability. To prevent this phenomenon, the AA6061/AA5754 composite was formed using a severe plastic deformation technique, Cross Accumulative Roll Bonding (CARB), at an elevated temperature (350 °C) to ensure good bonding between layers. This technique was efficient to maintain a small grain size, even under the process temperature conditions, and consequently, preserve good mechanical properties. The composite had better mechanical properties than the initial aluminium alloys. Microstructure and texture remained stable after two cycles and yield stress tended towards an equal value in the rolling and the transverse directions. After two cycles, the main component was the {001}〈110〉 rotated Cube, which was maintained for up to 10 cycles. Diffusion was more effective as the strain increased. Finally, a tungsten inert gas (TIG) welding process was performed on the composite and confirmed resistance to hot cracking.

  12. Microstructural evolution and mechanical properties on an ARB processed IF steel studied by X-ray diffraction and EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Gandarilla, Francisco, E-mail: fcruz@ipn.mx [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Edificio 9, U.P.A.L.M., Zacatenco, Del. G. A. Madero, México, D.F. C.P. 07738, México (Mexico); Salcedo-Garrido, Ana María, E-mail: salcedo_marya@yahoo.com.mx [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Edificio 9, U.P.A.L.M., Zacatenco, Del. G. A. Madero, México, D.F. C.P. 07738, México (Mexico); Bolmaro, Raúl E., E-mail: bolmaro@ifir-conicet.gov.ar [Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario (Argentina); Baudin, Thierry, E-mail: thierry.baudin@u-psud.fr [CNRS, UMR 8182, ICMMO, Lab. de Synthèse, Propriétés et Modélisation des Matériaux, Université de Paris-Sud, Orsay F-91405 (France); De Vincentis, Natalia S., E-mail: devincentis@ifir-conicet.gov.ar [Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario (Argentina); and others

    2016-08-15

    Accumulative Roll Bonding (ARB) is one of the so-called severe plastic deformation (SPD) processes, allowing the production of metals and alloys with ultrafine (micro-nano) structures. Materials with ultrafine grains present attractive properties like the simultaneous increase in strength and ductility. Our interest in these materials is focused on their microstructural evolution during ARB processing, eventually responsible for the enhancement of those mechanical properties. In the current work we follow the evolution of the microstructure in an interstitial-free (IF) steel deformed by ARB after consecutive processing cycles, by means of Electron BackScatter Diffraction (EBSD) and X-ray diffraction (XRD). Particularly, we present results related to texture, grain (GS) and domain sizes, grain boundary character, density of Geometrically Necessary Dislocations (GND), Grain Orientation Spread (GOS), lattice parameters, microstrain, dislocation density and their spatial arrangement. After 5 ARB cycles the system shows a microstructure constituted mainly by submicrometric grains with high angle boundaries and low presence of dislocations inside the grains. - Highlights: •The evolution of microstructure is followed simultaneously by using GAM, GOS and GND (EBSD) and XRD. •LAGBs and subgrains disappear after few cycles SSDs and HAGBs persist at the end. •Dynamic recrystallization counterbalances dislocation arrays and diminishes hardening rate. •Grain size stabilization is revealed as a mechanism for increasing ductility after few ARB cycles.

  13. Annealing Behavior of Nanostructured Aluminum Produced by Cold Rolling to Ultrahigh Strains

    DEFF Research Database (Denmark)

    Cao, W.Q.; Godfrey, A.; Hansen, Niels

    2009-01-01

    The isochronal annealing behavior of nanostructured commercial purity aluminum (AA1100 and AA1200) produced by either cold rolling (CR) or accumulative roll bonding (ARB) up to ultrahigh strains of about 99.5 pct reduction in thickness has been studied in the temperature range from 200 degrees C...... to 420 degrees C. Microstructural and texture measurements were made using data from electron backscatter diffraction (EBSD) investigations, and the change in mechanical strength was followed using hardness measurements. A large effect of the rolling strain is observed on recovery at temperatures below...... for analyzing the uniformity of the structural coarsening, based on analysis of the crystallite size distribution with respect to the mode, is described. The analysis demonstrates that annealing leads to locally nonuniform changes in the microstructure, and to a description of the annealing process...

  14. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki; Nakao, Yoshikuni; Nishimoto, Kazutoshi.

    1996-01-01

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  15. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  16. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  17. Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Hansen, Niels

    2008-01-01

    temperature before annealing at high temperature. By this two-step process, the structure is homogenized and the stored energy is reduced significantly during the first annealing step. As an example, high-purity aluminum has been deformed to a total reduction of 98.4% (equivalent strain of 4.......8) by accumulative roll-bonding at room temperature. Isochronal annealing for 0.5 h of the deformed samples shows the occurrence of recrystallization at 200 °C and above. However, when introducing an annealing step for 6 h at 175 °C, no significant recrystallization is observed and relatively homogeneous structures...... are obtained when the samples afterwards are annealed at higher temperatures up to 300 °C. To underpin these observations, the structural evolution has been characterized by transmission electron microscopy, showing that significant annihilation of high-angle boundaries, low-angle dislocation boundaries...

  18. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    Science.gov (United States)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  19. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Microstructure of MMC with larger particles becomes completely uniform, sooner. {yields} When the number of cycles increased, tensile strength for both samples improved. {yields} Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. {yields} First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 {mu}m were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 {mu}m particle size was more salient compared to the MMCs with 2 {mu}m particle size. Also, the composite strip with 40 {mu}m particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 {mu}m particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 {mu}m particle size was more than the composite strip with 2 {mu}m up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 {mu}m particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 {mu}m particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  20. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    International Nuclear Information System (INIS)

    Jamaati, Roohollah; Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad

    2011-01-01

    Research highlights: → Microstructure of MMC with larger particles becomes completely uniform, sooner. → When the number of cycles increased, tensile strength for both samples improved. → Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. → First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 μm were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 μm particle size was more salient compared to the MMCs with 2 μm particle size. Also, the composite strip with 40 μm particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 μm particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 μm particle size was more than the composite strip with 2 μm up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 μm particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 μm particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  1. Investigation of nano-SiC{sub p} effect on microstructure and mechanical properties of Al/TiH{sub 2} foam precursor produced via ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.M., E-mail: sm.hosseini@ma.iut.ac.ir; Habibolahzadeh, A.

    2015-07-15

    In this study, a new type of hybrid composite which can be potentially used as a foam precursor was achieved by 0.75 TiH{sub 2} and 0.75 nano-SiC{sub p} addition (wt%) between 5 pure Al strips, followed by 6 accumulative roll bonding (ARB) cycles at room temperature. The effect of nano-SiC particles addition on the resulting microstructures as well as the corresponding mechanical properties of the products was investigated. Al/0.75 wt% TiH{sub 2} sheets were also fabricated by the ARB process to compare with the hybrid nanocomposite specimens. Scanning electron microscopy (SEM) and related EDS color images revealed that applying 6 ARB cycles led to fairly homogeneous distribution of the TiH{sub 2} and nano-SiC{sub p} and elimination of porosity between the particles and matrix. It was also found that the tensile strength of the Al/TiH{sub 2}/nano-SiC hybrid composite was about 1.27 times higher than that of the Al/TiH{sub 2} precursor. SEM observation of fractured surfaces showed that the failure mechanism of the composite and nanocomposite was shear ductile rupture.

  2. Experimental analysis of two-layered dissimilar metals by roll bonding

    Science.gov (United States)

    Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng

    2018-02-01

    Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.

  3. Texture development in Al/Al{sub 2}O{sub 3} MMCs produced by anodizing and ARB processes

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Toroghinejad, Mohammad Reza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Hoseini, Majid [Department of Mining, Metals and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2011-04-25

    Research highlights: {yields} The Rotated Cube was the major texture component for most specimens. {yields} The intensity of texture components was weak except the Rotated Cube component. {yields} The texture intensity of composite with low alumina particles was not weak. {yields} Alumina particles and also size and quantity of them are very effective on texture. - Abstract: Anodizing and accumulative roll bonding (ARB) processes were used as a new technique for manufacturing aluminum/alumina composites including various Al{sub 2}O{sub 3} quantities. Textural evolution during ARB process of composites was evaluated using X-ray diffraction (XRD). The effective parameters in texture evolution were the number of cycles (3, 5, 7 and 8 cycles) and alumina quantity (0.48, 1.13, 2.40 and 3.55 vol.%). The texture evolution demonstrated that the Rotated Cube was a major texture component for all specimens except for the produced composite containing 0.48 vol.% alumina after eight cycles. For subsequent composites, the dominant components were Copper and Dillamore. Also, for almost all specimens (except for the composite with 0.48 vol.% alumina), the intensity of the texture components (except for Rotated Cube) was very weak. All these results are related to the presence of the second phase particles and also size and quantity of them.

  4. Dependency of annealing behaviour on grain size in Al–TiC ...

    Indian Academy of Sciences (India)

    This work investigates the effect of grain size on annealing behaviour in both coarse-grained and ultrafinegrained Al–TiC composite processed by accumulative roll bonding (ARB). Microstructural analysis indicates that annealingbehaviour of the specimens are essentially determined by the level of strain accumulation or ...

  5. Experiment and simulation analysis of roll-bonded Q235 steel plate

    International Nuclear Information System (INIS)

    Zhao, G.; Huang, Q.; Zhou, C.; Zhang, Z.; Ma, L.; Wang, X.

    2016-01-01

    Heavy-gauge Q235 steel plate was roll bonded, and the process was simulated using MARC software. Ultrasonic testing results revealed the presence of cracks and lamination defects in an 80-mm clad steel sheet, especially at the head and tail of the steel plate. There were non-uniform ferrite + pearlite microstructures and unbound areas at a bond interface. Through scanning electron microscopy analysis, long cracks and additional inclusions in the cracks were observed at the interface. A fracture analysis revealed non-uniform inclusions that pervaded the interface. Moreover, MARC simulations demonstrated that there was little equivalent strain at the centre of the slab during the first rolling pass. The equivalent centre increased to 0.5 by the fourth rolling pass. Prior to the final pass, the equivalent strain was not consistent across the thickness direction, preventing bonding interfaces from forming consistent deformation and decreasing the residual stress. The initial rolling reduction rate should not be very small (e.g. 5%) as it is averse to the coordination of rolling deformation. Such rolling processes are averse to the rolling bond. (Author)

  6. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  7. Simulation of Bimetallic Bush Hot Rolling Bonding Process

    Directory of Open Access Journals (Sweden)

    Yaqin Tian

    2015-01-01

    Full Text Available Three-dimensional model of bimetallic bush was established including the drive roller and the core roller. The model adopted the appropriate interface assumptions. Based on the bonding properties of bimetallic bush the hot rolling process was analyzed. The optimum reduction ratio of 28% is obtained by using the finite element simulation software MARC on the assumption of the bonding conditions. The stress-strain distribution of three dimensions was research assumptions to interface deformation of rolling. At the same time, based on the numerical simulation, the minimum reduction ratio 20% is obtained by using a double metal composite bush rolling new technology from the experiment research. The simulation error is not more than 8%.

  8. Progress in cold roll bonding of metals

    International Nuclear Information System (INIS)

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  9. A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites

    International Nuclear Information System (INIS)

    Carpenter, J.S.; Liu, X.; Darbal, A.; Nuhfer, N.T.; McCabe, R.J.; Vogel, S.C.; LeDonne, J.E.; Rollett, A.D.; Barmak, K.; Beyerlein, I.J.; Mara, N.A.

    2012-01-01

    Precession electron diffraction (PED) is used to acquire orientation information in Cu–Nb nanolamellar composites fabricated by accumulative roll bonding (ARB). The resulting maps quantify the grain size, shape, orientation distributions and interface planes in the vicinity of nanometer-thick deformation twins. The PED-based texture results compare favorably with bulk textures provided by neutron diffraction measurements, indicating uniformity in the ARB Cu–Nb texture. Additionally, {1 1 2} Cu ||{1 1 2} Nb interfaces are present, suggesting that ARB techniques can lead to stable interfaces with a special crystallography.

  10. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    Science.gov (United States)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  11. TOPICAL REVIEW Progress in cold roll bonding of metals

    Directory of Open Access Journals (Sweden)

    Long Li, Kotobu Nagai and Fuxing Yin

    2008-01-01

    Full Text Available Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB, as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described.

  12. Application of continual annealing and roll bonding (CAR) process for manufacturing Al–Zn multilayered composites

    International Nuclear Information System (INIS)

    Dehsorkhi, Reza Nasiri; Qods, Fathallah; Tajally, Mohammad

    2012-01-01

    Highlights: ► CAR process was performed on Al–Zn composite. ► Good bonding between layers was achieved by increasing the number of CAR cycles. ► With increasing number of cycles, a good distribution of Zn fragmentations was achieved. ► The composites which were produced by CAR process, possess a higher tensile strength and elongation than ARB process. ► By EDX analysis it is proved that Al and Zn atoms would diffuse with each other. - Abstract: In this study, an aluminium–zinc composite was produced for the first time by using a continual annealing and roll-bonding (CAR) process. A composite with homogeneous distribution of fragmented zinc layers in aluminium matrix was produced after ten CAR cycles. The results demonstrate that tensile strength of the final composites increases up to 410 MPa, which is about 4 times higher than those of initial aluminium and zinc sheets. However, elongation of the composite reduced down to 4% after ten CAR cycles. The fracture surfaces of the tensile samples were observed by scanning electron microscope (SEM) to evaluate the failure mode. Observations reveal that the failure mode in CAR-processed composites is a typical ductile fracture which shows deep dimples in samples with few CAR cycles, while the failure mode was shear ductile fracture with shallow and elongated dimples in samples with ten CAR cycles.

  13. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  14. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  15. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  16. The Influence of the Asymmetric Arb Process on the Properties of Al-Mg-Al Multi-Layer Sheets / Wpływ Asymetrii W Procesie Arb Na Właściwości Wielowarstwowych Blach Al-Mg-Al

    Directory of Open Access Journals (Sweden)

    Wierzba A.

    2015-12-01

    Full Text Available The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.

  17. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear.

    Science.gov (United States)

    Chen, S; Springer, T A

    1999-01-11

    Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin-ligand tether bonds exponentially (, ) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one.

  18. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  19. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-07-01

    Full Text Available This article describes an investigation into interface bonding research of 316L/Q345R stainless clad plate. A three-dimensional thermal–elastic–plastic model has been established using finite element analysis to model the multi-pass hot rolling process. Results of the model have been compared with those obtained from a rolling experiment of stainless clad plate. The comparisons of temperature and profile of the rolled stainless clad plate have indicated a satisfactory accuracy of finite element analysis simulation. Effects on interface bonding by different parameters including pre-heating temperature, multi-pass thickness reduction rules, rolling speed, covering rate, and different assemble patterns were analyzed systematically. The results show that higher temperature and larger thickness reduction are beneficial to achieve the bonding in vacuum hot rolling process. The critical reduction in the bond at the temperature of 1200 °C is 28%, and the critical thickness reduction reduces by about 2% when the temperature increases by 50 °C during the range from 1000 °C to 1250 °C. And the relationship between the minimum pass number and thickness reduction has been suggested. The results also indicate that large covering rate in the assemble pattern of outer soft and inner hard is beneficial to achieve the bond of stainless clad plate.

  20. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    DEFF Research Database (Denmark)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-01-01

    particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different...

  1. A study of roll-bonding MS90 alloy to steel utilizing chromized interlayer

    International Nuclear Information System (INIS)

    Tolaminejad, B.; Arabi, H.

    2008-01-01

    This article describes a study of the application of a roll bonding technique to MS90(CuZn10) alloy strips and steel sheets using a chromized interlayer. It was found that the overall bond between these two metals resulted from two different types of bonds: a block bond, linking the MS90 alloy strips and chromium topcoat layer, and a blank bond, linking the MS90 alloy strips and bare steel surface in the area where the chromium coating has been fragmented. This study investigated the effects of plating time on the thickness of the coating layers and of the area fraction of the blank bond on the bond strength. The overall bond strength depends mainly on the strength and the area fraction of the blank bond. A linear relationship model exists between the overall bond strength and the area fraction of the blank bond. The bond strength of the blank bond was eight times greater than that of the block bond. The area fraction of the blank bond increased with increasing the coating thickness up to 55 μm, but thereafter decreased due to the rotation of the chromium blocks

  2. Analysis of Strengthening Mechanisms in an Artificially Aged Ultrafine Grain 6061 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Rezaei

    2017-12-01

    Full Text Available The current study adopted a quantitative approach to investigating the mechanical properties, and their relationship to the microstructural features, of precipitation-strengthened 6061 aluminum alloy processed through accumulative roll bonding (ARB and aging heat treatment.  To serve this purpose, the contributions of different strengthening mechanisms including grain refinement, precipitation, dislocation and solid-solution strengthening to the yield strength of five-cycle ARB samples processed under pre-aged (ARBed and aged (ARBed+Aged conditions were examined and compared. Microstructural characterizations were performed on the samples through the transmission electron microscope (TEM and X-ray diffraction (XRD. Also, the mechanical properties of the samples were investigated through the tensile test. The obtained results showed that an equiaxed ultrafine grain structure with nano-sized precipitates was created in the both ARBed and ARBed+Aged samples. The grain refinement was the predominant strengthening mechanism which was estimated to contribute 151 and 226 MPa to the ARBed and ARBed+Aged samples, respectively, while the dislocation and Orowan strengthening mechanisms were ranked second with regard to their contributions to the ARBed and ARBed+Aged samples, respectively. The overall yield strength, calculated through the root mean square summation method, was found to be in good agreement with the experimentally determined yield strength. It was also found that the presence of non-shearable precipitates, which interfered with the movement of the dislocations, would be effective for the simultaneous improvement of the strength and ductility of the ARBed+Agedsample .

  3. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    Science.gov (United States)

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Akramifard, H.R., E-mail: akrami.1367@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-08

    The AA1050 aluminum alloy and AISI 304L stainless steel sheets were stacked together to fabricate Al/304L/Al clad sheet composites by the cold roll bonding process, which was performed at temperatures of ∼100 and 23 °C to produce austenitic and austenitic–martensitic microstructures in the AISI 304L counterpart, respectively. The peel test results showed that the threshold reduction required to make a suitable bond at room temperature is below 10%, which is significantly lower than the required reduction for cold roll bonding of Al sheets. The tearing of the Al sheet during the peel test signified that the bond strength of the roll bonded sheets by only 38% reduction has reached the strength of Al, which is a key advantage of the developed sheets. The extrusion of Al through the surface cracks and settling inside the 304L surface valleys due to strong affinity between Al and Fe was found to be the bonding mechanism. Subsequently, the interface and tensile behaviors of three-layered clad sheets after soaking at 200–600 °C for 1 h were investigated to characterize the effect of annealing treatment on the formation and thickening of intermetallic compound layer and the resultant mechanical properties. Field emission scanning electron microscopy, X-ray diffraction, and optical microscopy techniques revealed that an intermediate layer composed mainly of Al{sub 13}Fe{sub 4}, FeC and Al{sub 8}SiC{sub 7} forms during annealing at 500–600 °C. A significant drop in tensile stress–strain curves after the maximum point (UTS) was correlated to the interface debonding. It was found that the formation of intermediate layer by post heat treatment deteriorates the bond quality and encourages the debonding process. Moreover, the existence of strain-induced martensite in clad sheets was found to play a key role in the enhancement of tensile strength.

  5. The feasibility of bonding aluminum alloy 6061 via hot isostatic pressing (HIP)/rolling

    International Nuclear Information System (INIS)

    Fenolietto, R.A.

    1991-01-01

    The advantage of developing a HIP bonding process for dispersion fuel plates is that applying a thin cladding in a more uniform manner could allow the upper limit for LEU U 3 Si-Al dispersion fuel plate densities to be overcome. Since much less mechanical deformation would be required, the existing process limitations on the density could be removed, theoretically allowing more fuel to be added. These increases are, of course, subject to irradiation behavior of the higher loadings which is not addressed in this paper. Initial results indicate that aluminum Alloy 6061 can be successfully bonded by seal welding via electron beam (EB), HIPping, and finishing with a limited amount of rolling. (orig.)

  6. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding

    Science.gov (United States)

    Assari, A. H.; Eghbali, B.

    2016-09-01

    Ti-Al multi-laminated composites have great potential in high strength and low weight structures. In the present study, tri-layer Ti-Al composite was synthesized by hot press bonding under 40 MPa at 570 °C for 1 h and subsequent hot roll bonding at about 450 °C. This process was conducted in two accumulative passes to 30% and to 67% thickness reduction in initial and final passes, respectively. Then, the final annealing treatments were done at 550, 600, 650, 700 and 750 °C for 2, 4 and 6 h. Investigations on microstructural evolution and thickening of interfacial layers were performed by scanning electron microscopes, energy dispersive spectrometer, X-ray diffraction and micro-hardness tests. The results showed that the thickening of diffusion layers corresponds to amount of deformation. In addition to thickening of the diffusion layers, the thickness of aluminum layers decreased and after annealing treatment at 750 °C for 6 h the aluminum layers were consumed entirely, which occurred because of the enhanced interdiffusion of Ti and Al elements. Scanning electron microscope equipped with energy dispersive spectrometer showed that the sequence of interfacial layers as Ti3Al-TiAl-TiAl2-TiAl3 which are believed to be the result of thermodynamic and kinetic of phase formation. Micro-hardness results presented the variation profile in accordance with the sequence of intermetallic phases and their different structures.

  7. The effect of orthodontic bonding materials on dental plaque accumulation and composition in vitro.

    Science.gov (United States)

    Badawi, H; Evans, R D; Wilson, M; Ready, D; Noar, J H; Pratten, J

    2003-08-01

    The aim of this study was to investigate the accumulation and composition of microcosm dental plaque on different orthodontic bonding materials using an in vitro model. Microcosm plaques were grown on discs of a range of bonding materials in a constant depth film fermentor. The biofilms were derived from human saliva and supplied with artificial saliva as a source of nutrients. The number of viable bacteria in the biofilms was determined and the streptococci present were identified to species level. The results showed that there was no significant difference in bacterial accumulation between different bonding materials, however, biofilms grown on materials which were fluoride releasing, did not contain Streptococcus mutans. This in vitro study has shown that the use of fluoride-releasing bonding materials may support the growth of supragingival plaque, which does not contain S. mutans.

  8. Rolling up a Graphene Sheet

    NARCIS (Netherlands)

    Calvaresi, Matteo; Quintana, Mildred; Rudolf, Petra; Zerbetto, Francesco; Prato, Maurizio

    2013-01-01

    Carbon Nanotubes, CNTs, have been described as rolled-up graphene layers. Matching this concept to experiments has been a great experimental challenge for it requires a method to exfoliate graphite, generate ordered and stable dangling carbon bonds, and roll up the layer without affecting the

  9. Cross accumulative roll bonding—A novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties

    International Nuclear Information System (INIS)

    Ardakani, Mohammad Reza Kamali; Amirkhanlou, Sajjad; Khorsand, Shohreh

    2014-01-01

    Lightweight metal-matrix nanocomposites (MMNCs—metal matrix with nanosized ceramic particles) can be of significance for automobile, aerospace, and numerous other applications. There are some problems in obtaining suitable mechanical properties of MMNCs, including weak bonding between reinforcement and matrix, non-uniformity of reinforcement nanoparticles and high porosity content. In this study, aluminum/alumina nanocomposite was fabricated by stircasting method. Subsequently, cross accumulative roll bonding (CARB) process was used as an effective method for refinement of microstructure and improvement of mechanical properties. The microstructural evolution and the mechanical properties of the nanocomposites during various CARB cycles were examined by the Archimedes method, X-ray defractometer, scanning electron microscopy and tensile testing. The results showed that the microstructure of the nanocomposite after eight cycles of CARB had an excellent distribution of alumina nanoparticles in aluminum matrix without any remarkable porosity. The X-ray diffraction results showed that the crystallite size of the nanocomposite was 71 nm by employing eight cycles of CARB technique. Mechanical experiment also indicated that the ultimate tensile strength and the elongation of the nanocomposite increased as the number of CARB cycles increased. After eight CARB cycles, ultimate tensile strength and the elongation values reached 344 MPa and 6.4%, which were 3.13 and 3.05 times greater than those of as-cast nanocomposites, respectively

  10. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    International Nuclear Information System (INIS)

    Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James; Clarke, Kester Diederik; Scott, Jeffrey E.; Montalvo, Joel Dwayne; Papin, Pallas; Ansell, George S.

    2017-01-01

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Al cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.

  11. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alexander, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mccabe, Rodney James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clarke, Kester Diederik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scott, Jeffrey E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montalvo, Joel Dwayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ansell, George S. [Colorado School of Mines, Golden, CO (United States)

    2017-01-20

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Al cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.

  12. A feasibility study on different NDT techniques used for testing bond quality in cold roll bonded Al-Sn alloy/steel bimetal strips

    Directory of Open Access Journals (Sweden)

    Tallafuss Philipp Johannes

    2017-01-01

    Full Text Available This paper presents non-destructive testing (NDT results for the detection of bond defects in aluminium-tin (Al-Sn alloy/steel bimetal strips. Among all types of bimetal strip that are used in the automotive industry for plain journal engine bearings, Al-Sn alloys cold roll bonded (CRB onto steel backing is the most common type. The difficulty to evaluate the metallurgical bond between the two dissimilar metals is a major industrial concern, which comprises the risk that bearings fail in the field. Considering the harsh performance requirements, 100% online non-destructive testing would be desirable to significantly reduce the business risk. Nowadays bimetal strip manufacturers still rely on destructive testing through different peel-off tests. This work offers the results from four independent NDT studies, using active thermography, shearography, ultrasound and guided wave electromagnetic acoustic transducers (EMATs and samples with different artificially implanted defects, to explore the feasibility to qualitatively indicate the occurrence of bond defects. A destructive peel off test was used to correlate the NDT results with known bond quality. The studies were done under laboratory conditions, and in case of ultrasound also online under production conditions. During the ultrasound online test, the requirements that a NDT technique has to fulfil for online inspection of Al-Sn alloy/steel bimetal strip were established. For active thermography, shearography and guided wave EMAT techniques, it was theoretically analysed, if the laboratory test results could be transferred to testing under production conditions. As a result, guided waves using EMATs, among the four tested methods, are best suited for online inspection of Al-Sn alloy/steel bimetal strip. This research was carried out in collaboration with MAHLE Engine Systems UK Ltd., an Al-Sn alloy/steel bimetal strip manufacturer for the automotive industry.

  13. Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope-based orientation and phase mapping

    International Nuclear Information System (INIS)

    Liu, X.; Nuhfer, N.T.; Rollett, A.D.; Sinha, S.; Lee, S.-B.; Carpenter, J.S.; LeDonne, J.E.; Darbal, A.; Barmak, K.

    2014-01-01

    A transmission-electron-microscope-based orientation mapping technique that makes use of beam precession to achieve near-kinematical conditions was used to map the phase and crystal orientations in nanolamellar Cu/Nb composites with average layer thicknesses of 86, 30 and 18 nm. Maps of high quality and reliability were obtained by comparing the recorded diffraction patterns with pre-calculated templates. Particular care was taken in optimizing the dewarping parameters and in calibrating the frames of reference. Layers with thicknesses as low as 4 nm were successfully mapped. Heterophase interface plane and character distributions (HIPD and HICD, respectively) of Cu and Nb phases from the samples were determined from the orientation maps. In addition, local orientation relation stereograms of the Cu/Nb interfaces were calculated, and these revealed the detailed layer-to-layer texture information. The results are in agreement with previously reported neutron-diffraction-based and precession-electron-diffraction-based measurements on an accumulated roll bonding (ARB)-fabricated Cu/Nb sample with an average layer thickness of 30 nm as well as scanning-electron-microscope-based electron backscattered diffraction HIPD/HICD plots of ARB-fabricated Cu/Nb samples with layer thicknesses between 200 and 600 nm

  14. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.

  15. Graphical representation of ribosomal RNA probe accessibility data using ARB software package

    Directory of Open Access Journals (Sweden)

    Amann Rudolf

    2005-03-01

    Full Text Available Abstract Background Taxon specific hybridization probes in combination with a variety of commonly used hybridization formats nowadays are standard tools in microbial identification. A frequently applied technology, fluorescence in situ hybridization (FISH, besides single cell identification, allows the localization and functional studies of the microbial community composition. Careful in silico design and evaluation of potential oligonucleotide probe targets is therefore crucial for performing successful hybridization experiments. Results The PROBE Design tools of the ARB software package take into consideration several criteria such as number, position and quality of diagnostic sequence differences while designing oligonucleotide probes. Additionally, new visualization tools were developed to enable the user to easily examine further sequence associated criteria such as higher order structure, conservation, G+C content, transition-transversion profiles and in situ target accessibility patterns. The different types of sequence associated information (SAI can be visualized by user defined background colors within the ARB primary and secondary structure editors as well as in the PROBE Match tool. Conclusion Using this tool, in silico probe design and evaluation can be performed with respect to in situ probe accessibility data. The evaluation of proposed probe targets with respect to higher-order rRNA structure is of importance for successful design and performance of in situ hybridization experiments. The entire ARB software package along with the probe accessibility data is available from the ARB home page http://www.arb-home.de.

  16. Role of interfaces on the trapping of He in 2D and 3D Cu–Nb nanocomposites

    International Nuclear Information System (INIS)

    Lach, Timothy G.; Ekiz, Elvan H.; Averback, Robert S.; Mara, Nathan A.; Bellon, Pascal

    2015-01-01

    The role of interface structure on the trapping of He in Cu–Nb nanocomposites was investigated by comparing He bubble formation in nano-multilayers grown by PVD, nanolaminates fabricated by accumulative roll bonding (ARB), and 3D nanocomposites obtained by high pressure torsion (HPT). All samples were implanted with 1 MeV He ions at room temperature and characterized by cross section transmission electron microscopy (TEM). The critical He concentration leading to bubble formation was determined by correlating the He bubble depth distribution detected by TEM with the implanted He depth profile obtained by SRIM. The critical He dose per unit interfacial area for bubble formation was largest for the PVD multilayers, lower by a factor of ∼1.4 in the HPT nanocomposites annealed at 500 °C, and lower by a factor of ∼4.6 in the ARB nanolaminates relative to the PVD multilayers. The results indicate that the (111)FCC||(110)BCC Kurdjumov-Sachs (KS) interfaces predominant in PVD and annealed HPT samples provide more effective traps than the (112)KS interfaces predominant in ARB nanolaminates; however, the good trapping efficiency and high interface area of 3D HPT structures make them most attractive for applications. - Highlights: • Cu–Nb nanocomposites with varying interface structure were implanted with He. • PVD multilayers trap the most He per interfacial area before bubbles form. • ARB nanolaminates held ∼4.6 times less He relative to the PVD multilayers. • 3D nanocomposites with high interface area can trap more He than 2D nanocomposites. • Interface structure and interfacial area density play key role in trapping He.

  17. Comparative Effects of an Angiotensin II Receptor Blocker (ARB)/Diuretic vs. ARB/Calcium-Channel Blocker Combination on Uncontrolled Nocturnal Hypertension Evaluated by Information and Communication Technology-Based Nocturnal Home Blood Pressure Monitoring - The NOCTURNE Study.

    Science.gov (United States)

    Kario, Kazuomi; Tomitani, Naoko; Kanegae, Hiroshi; Ishii, Hajime; Uchiyama, Kazuaki; Yamagiwa, Kayo; Shiraiwa, Toshihiko; Katsuya, Tomohiro; Yoshida, Tetsuro; Kanda, Kiyomi; Hasegawa, Shinji; Hoshide, Satoshi

    2017-06-23

    Nocturnal blood pressure (BP) is an independent risk factor of cardiovascular events. The NOCTURNE study, a multicenter, randomized controlled trial (RCT) using our recently developed information and communication technology (ICT) nocturnal home BP monitoring (HBPM) device, was performed to compare the nocturnal HBP-lowering effects of differential ARB-based combination therapies in 411 Japanese patients with nocturnal hypertension (HT).Methods and Results:Patients with nocturnal BP ≥120/70 mmHg at baseline even under ARB therapy (100 mg irbesartan daily) were enrolled. The ARB/CCB combination therapy (irbesartan 100 mg+amlodipine 5 mg) achieved a significantly greater reduction in nocturnal home systolic BP (primary endpoint) than the ARB/diuretic combination (daily irbesartan 100 mg+trichlormethiazide 1 mg) (-14.4 vs. -10.5 mmHg, P<0.0001), independently of urinary sodium excretion and/or nocturnal BP dipping status. However, the change in nocturnal home systolic BP was comparable among the post-hoc subgroups with higher salt sensitivity (diabetes, chronic kidney disease, and elderly patients). This is the first RCT demonstrating the feasibility of clinical assessment of nocturnal BP by ICT-nocturnal HBPM. The ARB/CCB combination was shown to be superior to ARB/diuretic in patients with uncontrolled nocturnal HT independently of sodium intake, despite the similar impact of the 2 combinations in patients with higher salt sensitivity.

  18. Hot-rolled Process of Multilayered Composite Metal Plate

    Directory of Open Access Journals (Sweden)

    YU Wei

    2017-02-01

    Full Text Available For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

  19. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.

    2017-11-06

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  20. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.; Hong, Pei-Ying

    2017-01-01

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  1. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    Science.gov (United States)

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.

  2. ACEI/ARB underused in patients with type 2 diabetes in Chinese population (CCMR-3B study.

    Directory of Open Access Journals (Sweden)

    Qionghong Xie

    Full Text Available In patients with diabetic kidney disease, it is well documented that RAS blockade is associated with an improved outcome. This observational, multicenter study examined the "real-world" use of ACEI/ARB in patients with type 2 diabetes (T2DM in China.Data from the China Cardiometabolic Registries on blood pressure, blood lipid and blood glucose in Chinese T2DM patients (CCMR-3B were used for the present study. Consecutive outpatients with T2DM for more than 6 months were recruited to this non-interventional, observational, cross-sectional study. Albuminuria was defined as urine albumin creatinine ratio (ACR ≥ 30 mg/g.A total of 25,454 outpatients with T2DM from 6 regions in China were enrolled, 47.0% were male, and 59.8% had hypertension. ACR was measured in 6,383 of these patients and 3,231 of them ≥ 30 mg/L. Among patients with hypertension, 73.0% were on antihypertensives, and 39.7% used ACEI/ARB. Of the 2,157 patients with hypertension and albuminuria, only 48.3% used ACEI/ARB. Among the non-hypertensive patients with albuminuria, ACEI/ARB usage was < 1%. Multivariate analysis revealed that comorbidities, region, hospital tier, physician specialty and patient's educational level were associated with ACEI/ARB use.In T2DM with hypertension and albuminuria in China, more than half of them were not treated with ACEI/ARB. This real world evidence suggests that the current treatment for patients with diabetes coexisting with hypertension and albuminuria in China is sub-optimal.

  3. Simulation and Analysis of Passive Rolling Compensation of High Sea Salvage System

    Directory of Open Access Journals (Sweden)

    Lin Liqun

    2017-01-01

    Full Text Available Method and device of a flexible interception and salvage system was introduced in this paper. In order to study the effect of wave motion on salvage operation, we proposed a passive wave compensation scheme that utilizes a combination of variable-pitch cylinders and accumulators, and established the mathematical vibration model of the rolling motion of the salvage compensation system. With the relationships between the stiffness coefficient and the accumulator parametric of passive compensated gas-liquid system, we determined the effective compensation stiffness range through Mathematica simulation analysis. The relationship between the roll displacement of the salvage arm and the initial volume Vo of the accumulator has been analysed. The results show that the accumulatorVo in a certain range has a great influence on the passive compensation. However, when the volume is greater than 20m3, the compensation effect is weakened, and tend to a certain value, irrespective of the passive system accumulator volume capacity, it does not achieve full compensation. The results have important guidance on the design and optimization of rolling passive compensation of the practical high sea salvage system.

  4. A simplified model for dynamics of cell rolling and cell-surface adhesion

    International Nuclear Information System (INIS)

    Cimrák, Ivan

    2015-01-01

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells

  5. The Association of Russian Banks (ARB and Banking Community: the Practice and Prospects of Cooperation

    Directory of Open Access Journals (Sweden)

    Vitaly F. Ershov

    2014-10-01

    Full Text Available The article discusses the peculiarity of the formation and basic directions of activities of the Association of Russian Banks (ARB as the leading corporate establishment of domestic financial business. ARB consistently provides innovative projects aimed at improving the native system of credit agencies, the development of their interaction with the state, developing the ties with the international financial institutions.

  6. A Incompatibilidade De Livre-Arbítrio E Determinismo

    Directory of Open Access Journals (Sweden)

    Peter van Inwagen

    2014-04-01

    Full Text Available Neste artigo irei definir a tese a qual chamarei de “determinismo”, e discutir sua incompatibilidade com a tese de que somos capazes de agir de forma diversa da qual agimos (i.e., a sua incompatibilidade com o “livre-arbítrio...

  7. A Incompatibilidade De Livre-Arbítrio E Determinismo

    Directory of Open Access Journals (Sweden)

    Peter van Inwagen

    2014-03-01

    Full Text Available Neste artigo irei definir a tese a qual chamarei de “determinismo”, e discutir sua incompatibilidade com a tese de que somos capazes de agir de forma diversa da qual agimos (i.e., a sua incompatibilidade com o “livre-arbítrio...

  8. Patterned immobilization of antibodies within roll-to-roll hot embossed polymeric microfluidic channels.

    Directory of Open Access Journals (Sweden)

    Belachew Feyssa

    Full Text Available This paper describes a method for the patterned immobilization of capture antibodies into a microfluidic platform fabricated by roll-to-roll (R2R hot embossing on poly (methyl methacrylate (PMMA. Covalent attachment of antibodies was achieved by two sequential inkjet printing steps. First, a polyethyleneimine (PEI layer was deposited onto oxygen plasma activated PMMA foil and further cross-linked with glutaraldehyde (GA to provide an amine-reactive aldehyde surface (PEI-GA. This step was followed by a second deposition of antibody by overprinting on the PEI-GA patterned PMMA foil. The PEI polymer ink was first formulated to ensure stable drop formation in inkjet printing and the printed films were characterized using atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS. Anti-CRP antibody was patterned on PMMA foil by the developed method and bonded permanently with R2R hot embossed PMMA microchannels by solvent bonding lamination. The functionality of the immobilized antibody inside the microfluidic channel was evaluated by fluorescence-based sandwich immunoassay for detection of C-reactive protein (CRP. The antibody-antigen assay exhibited a good level of linearity over the range of 10 ng/ml to 500 ng/ml (R(2 = 0.991 with a calculated detection limit of 5.2 ng/ml. The developed patterning method is straightforward, rapid and provides a versatile approach for creating multiple protein patterns in a single microfluidic channel for multiplexed immunoassays.

  9. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    Science.gov (United States)

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  10. Study of diffusion bonding in 6061 aluminum and development of future high-density fuels fabrication

    International Nuclear Information System (INIS)

    Prokofiev, I.G.; Wiencek, T.C.; McGann, D.J.

    1997-01-01

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing uses fuel miniplates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must be established between the aluminum cover plates that surround the fuel meat. Four different variations of the standard method for roll-bonding 6061 aluminum were studied: mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and modifications to welding. Aluminum test pieces were subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that a reduction in thickness of at least 70% is required to produce a diffusion bond with the standard roll-bonding method, versus a 60% reduction when using a method in which the assembly was 100% welded and contained empty 9 mm holes near the frame corners. (author)

  11. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    Science.gov (United States)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.

  12. Influence of heat-pretreatments on the microstructural and mechanical properties of galfan-coated metal bonds

    Science.gov (United States)

    Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen

    2018-05-01

    In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.

  13. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  14. Modelos de decisiones en el manejo de la cobertura arbórea en fincas ganaderas de Nariño

    Directory of Open Access Journals (Sweden)

    Diego Andrés Muñoz

    2014-12-01

    Full Text Available Las decisiones de los agricultores en sus fincas, influyen directa o indirectamente sobre la cobertura arbórea que afectan su estructura, densidad y composición. El presente estudio se desarrolló en los municipios de Guachucal y Cumbal, departamento de Nariño, Colombia con el propósito de identificar los criterios y decisiones claves que toman los agricultores, en el manejo de la cobertura arbórea en fincas ganaderas productoras de leche. Las decisiones, fueron modeladas y simuladas en el programa Netica 2.6. Con las respuestas obtenidas se diseñaron modelos generales de decisión, donde se obtuvo cuatro eventos principales y de mayor influencia en el manejo de la cobertura arbórea, 1 evento poda, 2 evento control de maleza, 3 evento siembra de árboles y 4 evento aprovechamiento de árboles. Las frecuencias, permitieron estimar la probabilidad de cada decisión e influencia de las variables con respecto a los eventos para su modelación y simulación. Además, para profundizar sobre el proceso de toma de decisiones se plantearon escenarios relacionados con las condiciones agroecológicas de la finca, el manejo de la unidad productiva y el entorno en el que opera la finca. Así mismo se analizaron las principales limitantes para el manejo y establecimiento de la cobertura arbórea. El evento de mayor importancia para el manejo de la cobertura arbórea es la poda, debido a su valor en la obtención de leña como combustible, este factor influye en la zona para que las cobertura arbóreas se incrementen como cercas vivas.

  15. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  16. Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.

    Science.gov (United States)

    Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K

    2016-04-20

    Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded

  17. Dock ’n Roll: Folding of a Silk-Inspired Polypeptide into an Amyloid-like Beta Solenoid

    Science.gov (United States)

    Zhao, Binwu; Cohen Stuart, Martien A.; Hall, Carol K.

    2016-01-01

    Polypeptides containing the motif ((GA)mGX)n occur in silk (we refer to them as ‘silk-like’) and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II’ β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for

  18. Estudo fitoquímico de espécies arbóreas do cerrado

    Directory of Open Access Journals (Sweden)

    Carla Soares Godinho

    2016-02-01

    Full Text Available O objetivo deste trabalho foi detectar os constituintes químicos dos extratos de folhas e cascas de sete espécies arbóreas do Cerrado, isto é, materiais vegetais compostos de folhas e cascas de plantas adultas de Brosimum gaudichauddi, Eugenia dysenterica, Astronium fraxinifolium, Myracrodruon urundeuva, Solanum lycocarpum, Solanum paniculatum e Anacardium humile. Os procedimentos para extração e identificação dos constituintes químicos foram adotados em função da classe química. Assim, observaram-se resultados positivos para flavonóides, taninos, antraquinonas, alcalóides, catequinas, saponinas, polissacarídeos, e ácidos orgânicos. A. humile foi a única planta a apresentar todas as substâncias analisadas. As espécies arbóreas estudadas apresentaram alto potencial medicinal e farmacológico.

  19. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    Science.gov (United States)

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.

  20. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  1. Inventário arbóreo-urbano do município de Salto de Pirapora, SP

    Directory of Open Access Journals (Sweden)

    Daniele Porto Benatti

    2012-10-01

    Full Text Available Este estudo teve por objetivo realizar o inventário arbóreo-urbano em 24 bairros do Município de Salto de Pirapora, SP, por meio da avaliação quali-quantitativa. Para tanto, foram obtidas informações relacionadas à: espécie arbórea, situação da copa e do tronco, orientação do tronco, fitossanidade, interceptação das raízes no passeio, necessidade de tratos silviculturais, altura total e altura da primeira bifurcação, assim como características do espaço viário. Foram registrados 868 indivíduos, dos quais 679 foram catalogados em 71 espécies arbóreas. A espécie de maior frequência foi Caesalpinia pluviosa, representando 13,6% do total, seguida de Ficus benjamin (10,4%, Lagerstroemia indica (5,0% e Terminalia catappa (4,8%. Quanto à condição do tronco, 68,8% dos indivíduos arbóreos não apresentaram problemas; 85,7% das árvores observadas possuíam orientação simpodial adequada; poucas árvores apresentavam danos relacionados à fitossanidade que poderiam interferir em sua integridade e, ou, longevidade; 69,6% não interferiam, de forma direta, na calçada; 32,8% das árvores necessitavam de podas por estarem acima da fiação elétrica; 0,5% necessitava de substituição; e 5,7% precisavam ser removidas. Com relação à altura total das árvores, 63,0% apresentavam crescimento menor que 5 m; e 65,3% com altura da primeira bifurcação do tronco inferior a 1,80 m. O Bairro Primavera destacou-se pelo maior número de árvores em sua urbanização. Em contrapartida, o Jardim Amélia apresentou apenas um indivíduo. Dessa forma, observou-se que cada bairro possuía sua particularidade, e ações de manutenção e enriquecimento, tanto relacionadas ao número de espécies quanto à quantidade de indivíduos, deveriam ser consideradas no planejamento urbano-arbóreo daquele município.

  2. Investigation of Hot Rolling Influence on the Explosive-Welded Clad Plate

    Directory of Open Access Journals (Sweden)

    Guanghui ZHAO

    2016-11-01

    Full Text Available The microstructure, the shear strength and tensile strength of stainless steel explosive-welded clad plate at different rolling reduction were studied. The mechanical properties of the explosive-welded and explosive-rolled clad plates were experimentally measured. Simultaneously, the microstructures of the clad plate were investigated by the Ultra deep microscope and the tensile fracture surface were observed by the scan electron microscope (SEM. It was observed that the tensile strength has been increased considerably, whereas the elongation percentage has been reduced with the increase of hot rolling reduction. In the tensile shear test, the bond strength is higher than the strength of the ferritic stainless steel layer and meets the relevant known standard criterion. Microstructural evaluations showed that the grain of the stainless steel and steel refined with the increase of thickness reduction. Examination of the tensile fracture surfaces reveal that, after hot rolling, the fracture in the low alloy steel and ferritic stainless steel clad plates is of the ductile type.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12409

  3. NUMERICAL EVALUATION OF TEMPERATURE DISTRIBUTION IN THE ROLLING MILL ROLLS

    Directory of Open Access Journals (Sweden)

    José Claudino de Lira Júnior

    2013-06-01

    Full Text Available In hot rolling processes occur changes in the profile of the rolling mill rolls (expansion and contraction and constant wear due to mechanical stress and continuous thermal cycles of heating/cooling caused by contact rolled material- working roll and the cooling system by water jets in their surface, decreasing their lifetime. This paper presents a computational model to simulate the thermal performance of rolling mill rolls. The model was developed using the finite volume method for a transient two-dimensional system and allows calculating the temperature distribution of the rolling mill rolls under various conditions of service. Here it is investigated the influence of flow rate and temperature of the cooling water on the temperature distribution. The results show that the water temperature has greater influence than the water flow to control the surface temperature of the cylinders.

  4. The effect of roll with passive segment on the planetary rolling process

    Directory of Open Access Journals (Sweden)

    Qing-Ling Zeng

    2015-03-01

    Full Text Available In three-roll planetary rolling process, there is secondary torsion phenomenon that may lead to rolling instability. This article proposed a new idea to alleviate the secondary torsion phenomenon by dividing the secondary torsion segment out of the roll as an independent and passive one. To study the performance of the roll with passive segment, the three-dimensional finite element models of planetary rolling process using actual roll or new roll with passive segment involving elastic–plastic and thermal–mechanical coupling were established by the software ABAQUS/Explicit, and a series of analysis had been done successfully. The rolling temperature and rolling force of planetary mill were in good agreement with the measured results, which indicated that the finite element method would supply important reference merit for three-dimensional thermo-mechanical simulation of the three-roll planetary rolling process. Comparing the simulation results of the two models, the results indicated that the change in the roll structure had just a little influence on the metal deformation, temperature, and rolling force, but it lessened the secondary torsion deformation effectively and improved the outside roundness of the rolled tube slightly. The research provided a new idea for the roll design of three-roll planetary mill (PSW.

  5. The effect of roll gap geometry on microstructure in cold-rolled aluminum

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bay, B.; Winther, G.

    2004-01-01

    Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling-type tex......Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling...... layers. In these layers, extended planar dislocation boundaries are frequently found to be inclined closely to the rolling direction. The subsurface and central layers of this plate exhibit microstructures similar to those in the plate rolled with intermediate draughts. It is suggested...

  6. RELATIONSHIP BETWEEN ROLLING AND SLIP RESISTANCE IN ROLLING BEARINGS

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2016-06-01

    Full Text Available Purpose. About one of the causes of slip rolling is known from the second half of the 19th century, it was believed that the slip resistance appears at the place of contact due to different speeds on the arc of contact. Only in the mid-20th century it was proved that this resistance is negligible in rolling resistance. However (for some unknown reason it is ignored the fact that in practice in rolling bearings may rotate both the inner ring with a stationary outer one, and vice versa almost in equal relations. It is not taken into account the fact that the ball or roller in the rolling bearings runs the different distance along the roller path of the outer and inner bearing cages in one revolution. This fact is not taken into account in determining the calculated values for the friction coefficient of a rolling bearing reduced to the shaft. Therefore, the aim of this work is to determine the influence of path length on the track riding the outer and inner race of the bearing on the determination of the calculated value of the coefficient of friction of rolling bearings is given to the shaft. Methodology. The solution technique is based on the theory of plane motion of a rigid body, the theory of Hertzian contact deformation and the analytical dependencies for determination of coefficient of rolling friction. Findings. The obtained dependences on determination of rolling resistance of the balls or rollers along the bearing tracks of inner and outer bearing cages as well as path difference metering of the rolling on them allows to analytically obtain the rolling resistance and slipping for any size of bearings and different devices of bearing units. It is also possible at the design stage of rolling nodes to handle not only the design but also the content of the node. Originality. Using the analytical dependences for determination of the rolling resistance of bodies at point and line contacts, and also account for the difference in the path of the

  7. Strain distribution during tensile deformation of nanostructured aluminum samples

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Lu, L.; Winther, Grethe

    2012-01-01

    To optimize the mechanical properties, especially formability, post-process deformation by cold rolling in the range 5–50 % reduction was applied to aluminum sheets produced by accumulative roll bonding to an equivalent strain of 4.8. During tensile testing high resolution maps of the strain...

  8. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  9. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.

    Science.gov (United States)

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su; Jo, Jeongdai; Larsen-Olsen, Thue T; Søndergaard, Roar R; Hösel, Markus; Angmo, Dechan; Jørgensen, Mikkel; Krebs, Frederik C

    2012-09-28

    Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult to achieve using printed front grids, as surface topographies accumulate when processing subsequent layers, leading to shunts between the top and bottom printed metallic electrodes. Here we demonstrate how aqueous nanoparticle based silver inks can be employed as printed front electrodes using several different roll-to-roll techniques. We thus compare hexagonal silver grids prepared using either roll-to-roll inkjet or roll-to-roll flexographic printing. Both inkjet and flexo grids present a raised topography and were found to perform differently due to only the conductivity of the obtained silver grid. The raised topographies were compared with a roll-to-roll thermally imprinted grid that was filled with silver in a roll-to-roll process, thus presenting an embedded topography. The embedded grid and the flexo grid were found to perform equally well, with the flexographic technique currently presenting the fastest processing and the lowest silver use, whereas the embedded grid presents the maximally achievable optical transparency and conductivity. Polymer solar cells were prepared in the same step, using roll-to-roll slot-die coating of zinc oxide as the electron transport layer, poly-3-hexylthiophene:phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) as the active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode, along with a flat bed screen printed silver grid. The power conversion efficiency (PCE) obtained for large area devices (6 cm(2)) was 1.84%, 0.79% and 1.72%, respectively, for thermally imprinted, inkjet and flexographic silver grids, tested outside under the real sun. Central to all three approaches was that they

  10. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  11. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  12. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    Energy Technology Data Exchange (ETDEWEB)

    Odintsov, S.D. [ICREA, Passeig Luis Companys, 23, 08010 Barcelona (Spain); Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com [Laboratory for Theoretical Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Lenin Avenue 40, 634050 Tomsk (Russian Federation)

    2017-04-01

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces. In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.

  13. Bonding of radioactive contamination. IV. Effect of surface finish

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1983-01-01

    The mechanisms by which radioactive contamination would be bonded to a DWPF canister are being investigated. Previous investigations in this series have examined the effects of temperature, oxidation before contamination, and atmosphere composition control on the bonding of contamination. This memorandum describes the results of tests to determine the effect of special surface finishes on the bonding of contamination to waste glass canisters. Surface pretreatments which produce smoother canister surfaces actually cause radioactive contamination to be more tightly bonded to the metal surface than on an untreated surface. Based on the results of these tests it is recommended that the canister surface finish be specified as having a bright cold rolled mill finish equivalent to ASTM No. 2B. 7 references, 3 figures, 3 tables

  14. Computer-aided roll pass design in rolling of airfoil shapes

    Science.gov (United States)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  15. Uso local y potencial de las especies arbóreas en camarón de Tejeda, Veracruz

    Directory of Open Access Journals (Sweden)

    E. Couttolenc-Brenis

    2005-01-01

    Full Text Available Los sistemas agroforestales son una alternativa para mejorar los sistemas agrícolas y pecuarios. Se requiere identificar las especies arbóreas con potencial para ser incorporadas en los sistemas de producción agropecuarios. En Camarón de Tejeda, Veracruz, la crisis de la agricultura basada en el cultivo de la caña y la poca rentabilidad de la actividad ganadera, obliga a buscar opciones de producción diversificadas y de bajo impacto ambiental. En este trabajo se elaboró un catálogo de especies arbóreas nativas presentes en las áreas productivas y en la vegetación natural con el fin de identificar los usos que la gente de la región les asigna. Se realizaron recorridos en la zona con el fin de inventariar las especies, colectarlas para su identificación y obtener información sobre los usos locales. Se realizó una consulta bibliográfica para documentar los usos potenciales de las especies inventariadas. Se generó un listado de 38 especies, de las cuales a 21 de ellas se reporta al menos un uso local. Los resultados reflejan el alto potencial de especies arbóreas útiles en el área para ser incorporadas a los sistemas de producción agroforestal.

  16. Influência de depósito de lixo na fitossociologia das espécies arbóreas de cerrado

    OpenAIRE

    Santana, Otacílio Antunes

    2007-01-01

    Mudanças na estrutura física e química do solo e nas águas subterrâneas foram observadas em regiões adjacentes aos depósitos de lixo, com acúmulo de metais pesados e nutrientes. Geralmente, existe uma vegetação nativa associada a esses depósitos em suas áreas adjacentes. Os objetivos deste trabalho foram: i) realizar o levantamento da composição das espécies arbóreas nativas de Cerrado e quantificar seus parâmetros fitossociológicos; ii) realizar o levantamento das espécies arbóreas exóticas ...

  17. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    press screws of the mill. The oven thermocouple controlled a rolling temperature, and two pyrometers Optris CTlaser 3MH3 at the input and output parts of the mill made records.Comparison of the rolling forces of the multilayer composition U8+08H18N10, which were received during experiment, with the calculated values, shows that with accumulative nature of deformations the real forces of rolling 1.5 – 2 times exceed the calculated values. The analysis of experimental data showed illegality of using the averagely proportional value of the flow limit to calculate the rolling forces of compositions with the large number of the alternating thin layers of various steels. For calculations of the rolling forces of such super-multilayer materials, a deformation resistance of each composition ought to be determined using the experimental data.

  18. A New Solution for the Compression of a Two-Layer Strip and Its Application to Analysis of Bonding by Rolling

    Directory of Open Access Journals (Sweden)

    Sergei Alexandrov

    2014-01-01

    Full Text Available The paper presents a theoretical study on the compression of a two-layer strip of strain-hardening rigid-plastic materials between rigid platens. Semianalytical solutions are obtained for stress and velocity fields in each layer. Special attention is devoted to the conditions corresponding to the beginning of cold bond formation between the layers. Depending on input parameters various general deformation patterns are possible. In particular, there exists such a range of process parameters that the soft metal layer yields while the hard metal layer is rigid at the beginning of the process. As the deformation proceeds, yielding also starts in the hard metal layer and the entire strip becomes plastic. This is a typical deformation pattern adopted in describing the process of joining by rolling. However, at a certain range of input parameters plastic deformation of the entire strip begins at the initial instant. Moreover, it is possible that only the hard metal layer yields while the soft metal layer does not. This deformation pattern takes place when the thickness of the soft metal layer is much smaller than that of the hard metal layer.

  19. Il ruolo degli arbëreshë nella messa a punto del modello albanese di rapporti tra le comunità religiose e lo Stato

    Directory of Open Access Journals (Sweden)

    Giovanni Cimbalo

    2014-05-01

    Full Text Available Il contributo, sottoposto a valutazione, riproduce il testo della Comunicazione presentata alla Konferencë Shkencore Ndërkombëtare Albanologjike, Një rilindje para Rilindjes (Gjirokastër, 22 maj 2013 con il titolo albanese Roli i arbëreschë në zhvillimin e modelit shqiptar të marrëdhënieve ndërmjet bashkësive fetare dhe shtetit, ed è destinata alla pubblicazione negli Atti.SOMMARIO: 1. Caratteristiche dell’insediamento delle popolazioni arbëreshë in Italia - 2. Il contributo del pluralismo religioso nella fondazione dello Stato albanese - 3. L’uso degli arbëreshë per l’espansione della Chiesa cattolica a Oriente: un progetto abortito - 4. Considerazioni conclusive.

  20. ACE Inhibitor and ARB utilization and expenditures in the Medicaid fee-for-service program from 1991 to 2008.

    Science.gov (United States)

    Bian, Boyang; Kelton, Christina M L; Guo, Jeff J; Wigle, Patricia R

    2010-01-01

    Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) are widely prescribed for the treatment of hypertension and heart failure, as well as for kidney disease prevention in patients with diabetes mellitus and the management of patients after myocardial infarction. To (a) describe ACE inhibitor and ARB utilization and spending in the Medicaid fee-for-service program from 1991 through 2008, and (b) estimate the potential cost savings for the collective Medicaid programs from a higher ratio of generic ACE inhibitor utilization. A retrospective, descriptive analysis was performed using the National Summary Files from the Medicaid State Drug Utilization Data, which are composed of pharmacy claims that are subject to federally mandated rebates from pharmaceutical manufacturers. For the years 1991-2008, quarterly claim counts and expenditures were calculated by summing data for individual ACE inhibitors and ARBs. Quarterly per-claim expenditure as a proxy for drug price was computed for all brand and generic drugs. Market shares were calculated based on the number of pharmacy claims and Medicaid expenditures. In the Medicaid fee-for-service program, ACE inhibitors accounted for 100% of the claims in the combined market for ACE inhibitors and ARBs in 1991, 80.6% in 2000, and 64.7% in 2008. The Medicaid expenditure per ACE inhibitor claim dropped from $37.24 in 1991 to $24.03 in 2008 when generics accounted for 92.5% of ACE inhibitor claims; after adjusting for inflation for the period from 1991 to 2008, the real price drop was 59.2%. Brand ACE inhibitors accounted for only 7.5% of the claims in 2008 for all ACE inhibitors but 32.1% of spending; excluding the effects of manufacturer rebates, Medicaid spending would have been reduced by $28.7 million (9%) in 2008 if all ACE inhibitor claims were generic. The average price per ACE inhibitor claim in 2008 was $24.03 ($17.64 per generic claim vs. $103.45 per brand claim) versus $81.98 per ARB

  1. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  2. FY 1999 report on the results of the technology development of super metal (R and D of the undersea oil production support system). Development of technology of aluminum-base high corrosion resistant fine structure controlling metal materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Kaitei sekiyu seisan shien system kenkyu kaihatsu (aluminium kei kotaishokusei bisai kozo seigyo kinzoku zairyo gijutsu kaihtsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing aluminum materials excellent in industrial characteristics, a study was conducted to create large-sized aluminum materials having mesoscopic crystal structure, and the FY 1999 results were summarized. In this fiscal year, to create the fine crystal grain structure, the following were conducted: fundamental study of high strain accumulation process, study of a mechanism of fine crystal grain formation, development of the processing method, and development of evaluation technology. In the study of high strain accumulation process, effects were examined of conditions of molten metal rolling on castability. Fundamental studies were also made of innovative technologies such as ECAP method, pre-forged structure controlling rolling, accumulative roll bonding and thermomechanical treatment. In the study of the mechanism of fine crystal grain structure formation, the following were conducted: Al-Mn base alloys produced by molten metal rolling, 6061 alloys by warm rolling with different peripheral speed rolling, and 7000 group alloys by warm rolling. As to the processing method, study was made on low-temperature rolling technology and rapid heat treatment technology. As to the evaluation technology, study was made on evaluation of crystal grain diameter by EBSP. (NEDO)

  3. Strain accumulation in quasicrystalline solids

    International Nuclear Information System (INIS)

    Nori, F.; Ronchetti, M.; Elser, V.

    1988-01-01

    We study the relaxation of 2D quasicrystalline elastic networks when their constituent bonds are perturbed homogeneously. Whereas ideal, quasiperiodic networks are stable against such perturbations, we find significant accumulations of strain in a class of disordered networks generated by a growth process. The grown networks are characterized by root mean square phason fluctuations which grow linearly with system size. The strain accumulation we observe in these networks also grows linearly with system size. Finally, we find a dependence of strain accumulation on cooling rate

  4. Studies of the AA2519 Alloy Hot Rolling Process and Cladding with EN AW-1050A Alloy

    Directory of Open Access Journals (Sweden)

    Płonka B.

    2016-03-01

    Full Text Available The objective of the study was to determine the feasibility of plastic forming by hot rolling of the AA2519 aluminium alloy sheets and cladding these sheets with a layer of the EN AW-1050A alloy. Numerous hot-rolling tests were carried out on the slab ingots to define the parameters of the AA2519 alloy rolling process. It has been established that rolling of the AA2519 alloy should be carried out in the temperature range of 400-440°C. Depending on the required final thickness of the sheet metal, appropriate thickness of the EN AW-1050A alloy sheet, used as a cladding layer, was selected. As a next step, structure and mechanical properties of the resulting AA2519 alloy sheets clad with EN AW-1050A alloy was examined. The thickness of the coating layer was established at 0,3÷0,5mm. Studies covered alloy grain size and the core alloy-cladding material bond strength.

  5. Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-01-01

    factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated...... with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator...... to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on...

  6. Conexões florísticas e funcionamento de comunidades arbóreas associadas à inselberg no domínio atlântico

    OpenAIRE

    Paula, Eduardo de Paiva

    2014-01-01

    A presente dissertação encontra-se estruturada em dois artigos. No primeiro, objetivou-se, compreender as relações fitogeográficas de três comunidades arbóreas associadas a um inselberg,em Minas Gerais (Serra da Canoa), através da análise florística de 22 localidades/unidades florestais , em diferentes escalas geográficas do mesmo Estado, incluindo três comunidades arbóreas associadas a outro inselberg, em MG. Foram utilizadas duas técnicas de analise multivariada: Análise de correspondência ...

  7. Investigation of mechanical properties of bimetallic square tubes produced by shape rolling of Al/Cu circular pipes

    International Nuclear Information System (INIS)

    Tajyar, Ali; Masoumi, Abolfazi

    2016-01-01

    We investigated the effect of shape rolling process on the bond strength and mechanical properties of Al/Cu bimetal pipes. A bimetal circular pipe was fabricated by the explosive welding process. Then, the bimetal explosive-welded circular pipe was reshaped to a square tube by means of the shape rolling process. The mechanical properties of explosive welded pipes and shape-rolled tubes at the various stages of the rolling process were experimentally investigated by using the shear testing, micro hardness testing along the thicknesses and measurement of yield. The obtained results show that with the increase of roll gap reduction during the various stages, the hardness increases, while the shear strength decreases. However, their effects on hardness increase are not the same for both materials. Yield stress measurement results indicate that the average yield stress increases during explosive welding and also shape rolling process, but the rate of increase is more intensive in the explosive welding process. Moreover, the morphology of the interface before and after the Shape rolling was examined by Optical microscope (OM) and the presence of the intermetallic compounds at the interface was investigated by the electron microscope (SEM) and EDS analysis. Examination of the interfaces morphology revealed that, due to the brittle nature of the intermetallic compounds at the joining interface, the nucleation and propagation of micro cracks accelerated during the shape rolling process and the amount of micro cracks increases which makes the shear strength decrease

  8. Investigation of mechanical properties of bimetallic square tubes produced by shape rolling of Al/Cu circular pipes

    Energy Technology Data Exchange (ETDEWEB)

    Tajyar, Ali; Masoumi, Abolfazi [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-09-15

    We investigated the effect of shape rolling process on the bond strength and mechanical properties of Al/Cu bimetal pipes. A bimetal circular pipe was fabricated by the explosive welding process. Then, the bimetal explosive-welded circular pipe was reshaped to a square tube by means of the shape rolling process. The mechanical properties of explosive welded pipes and shape-rolled tubes at the various stages of the rolling process were experimentally investigated by using the shear testing, micro hardness testing along the thicknesses and measurement of yield. The obtained results show that with the increase of roll gap reduction during the various stages, the hardness increases, while the shear strength decreases. However, their effects on hardness increase are not the same for both materials. Yield stress measurement results indicate that the average yield stress increases during explosive welding and also shape rolling process, but the rate of increase is more intensive in the explosive welding process. Moreover, the morphology of the interface before and after the Shape rolling was examined by Optical microscope (OM) and the presence of the intermetallic compounds at the interface was investigated by the electron microscope (SEM) and EDS analysis. Examination of the interfaces morphology revealed that, due to the brittle nature of the intermetallic compounds at the joining interface, the nucleation and propagation of micro cracks accelerated during the shape rolling process and the amount of micro cracks increases which makes the shear strength decrease.

  9. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Feidenhans'l, Nikolaj Agentoft

    2017-01-01

    Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness....... In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having...... 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits...

  10. Fabrication of cold-rolled bands of the alloy-ehi 702 in rolls

    International Nuclear Information System (INIS)

    Zhuchin, V.N.; Gindin, A.Sh.; Shaburov, V.E.; Vladimirov, S.M.; Sokolov, V.A.; Shavkun, V.V.; Perepelitsa, I.V.; Markov, V.V.; Naymov, E.P.; Evstaf'ev, P.P.

    1977-01-01

    The questions are discussed, connected with the manufacture of cold-rolled strip of alloy EI702 in reels from strip blanks. It has been established that in the manufacture of hot-rolled stock from EI702 slabs it is necessary to use powerful rolling equipment because of high resistance to deformation. The reel method for manufacturing EI702 alloy improves the rolled stock and increases percentage of serviceable stock, as well as the output

  11. Stress and accidental defect detection on rolling mill rolls

    International Nuclear Information System (INIS)

    Auzas, J.-D.

    1999-01-01

    During the rolling mill process, rolls are submitted to high pressures that can lead to local decohesion or metallurgical changes. Both these cracks or softened areas must be detected as soon as they appear because of the risk of spalling, marks on the product, and mill wreck. These defects can be detected using the eddy current method, and particularly sensors specially developed for micro-defects detection. These sensors must be adapted to the environment of a roll grinding machine on which they must be installed. Users' schedule of conditions also require them to be attached to a wide range of eddy current generator and automatic computerized interpretation. Mill requirements for new high tech roll grades and quality lead to continuous development and improvement of the tools that will provide immediate 'go - no go' information. This paper is an update of these developments. (author)

  12. Exploring individual- to population-level impacts of disease on coral reef sponges: using spatial analysis to assess the fate, dynamics, and transmission of Aplysina Red Band Syndrome (ARBS.

    Directory of Open Access Journals (Sweden)

    Cole G Easson

    Full Text Available Marine diseases are of increasing concern for coral reef ecosystems, but often their causes, dynamics and impacts are unknown. The current study investigated the epidemiology of Aplysina Red Band Syndrome (ARBS, a disease affecting the Caribbean sponge Aplysina cauliformis, at both the individual and population levels. The fates of marked healthy and ARBS-infected sponges were examined over the course of a year. Population-level impacts and transmission mechanisms of ARBS were investigated by monitoring two populations of A. cauliformis over a three year period using digital photography and diver-collected data, and analyzing these data with GIS techniques of spatial analysis. In this study, three commonly used spatial statistics (Ripley's K, Getis-Ord General G, and Moran's Index were compared to each other and with direct measurements of individual interactions using join-counts, to determine the ideal method for investigating disease dynamics and transmission mechanisms in this system. During the study period, Hurricane Irene directly impacted these populations, providing an opportunity to assess potential storm effects on A. cauliformis and ARBS.Infection with ARBS caused increased loss of healthy sponge tissue over time and a higher likelihood of individual mortality. Hurricane Irene had a dramatic effect on A. cauliformis populations by greatly reducing sponge biomass on the reef, especially among diseased individuals. Spatial analysis showed that direct contact between A. cauliformis individuals was the likely transmission mechanism for ARBS within a population, evidenced by a significantly higher number of contact-joins between diseased sponges compared to random. Of the spatial statistics compared, the Moran's Index best represented true connections between diseased sponges in the survey area. This study showed that spatial analysis can be a powerful tool for investigating disease dynamics and transmission in a coral reef ecosystem.

  13. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  14. Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Pedersen, Henrik Chresten

    2016-01-01

    This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical....../height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation......., technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller...

  15. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    Science.gov (United States)

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  16. Rolling into spatial disorientation: Simulator demonstration of the post-roll (Gillingham) illusion

    NARCIS (Netherlands)

    Nooij, S.A.E.; Groen, E.L.

    2011-01-01

    Introduction: Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn)

  17. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    Science.gov (United States)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  18. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    Energy Technology Data Exchange (ETDEWEB)

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces were subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.

  19. Dimensional ranges and rolling efficiency in a tandem cold rolling mill

    Energy Technology Data Exchange (ETDEWEB)

    Larkiola, J.

    1997-12-31

    In this work, physical models and a neural network theory have been combined in order to predict the properties of a steel strip and to optimise the process parameters in cold rolling. The prediction of the deformation resistance of the material and the friction parameter is based on the physical model presented by Bland, Ford and Ellis and artificial neural network computing (ANN). The accuracy of these models has been tested and proved by using a large amount of the measured data. With the aid of these models it has been shown that (a) the small change to the relative reduction distribution can have a clear effect upon the rolling efficiency, (b) the dimensional ranges of the tandem cold roll mill can be determined and optimised and (c) the possibility to cold roll a new product of new width, strength or thickness can be determined and the parameters of the tandem cold rolling process can be optimised. (orig.) 43 refs.

  20. Improvement of insulin secretion in rat models of diabetes after ACEI/ARB therapy

    International Nuclear Information System (INIS)

    Tian Jingyan; Li Fengying; Liu Yun; Long Hongmei; Li Weiyi; Wang Xiao; Zhang Hongli; Li Guo; Luo Min

    2009-01-01

    Objective To study the effect of ACEI/ARB therapy on the secretion of insulin and glucagon as well as serum lipid peroxidation marker 8-iso PGF-2α levels in streptozoticin (STZ) induced diabetic rat models.Methods Twenty-four rat models of STZ induced diabetes were prepared (random blood sugar>16.7 mmol/L). Of which, 8 models were fed enalaprial 5mg/kg/d, 8 models were fed losartan 10μg/kg/d and 8 models left unterated. Fasting serum insulin,glucagon (with RIA) and 8-iso PGF-2α (with ELISA) levels were measured in these models and 8 control rats three weeks later. Intravenous glucose tolerance test (IVGTT) were performed in 12 rats (3 animals in each group) six weeks later. Results: Serum levels of insulin in the treated models were higher than those in the non-treated models but without significance (P>0.05). Serum levels of glucagon and 8-iso PGF-2α levels in the treated models were significantly lower than those in the non-treated models (P 6 x ) in the treated models. Conclusion: ACEI/ARB treatment could improve the secretion of insulin in rat models of diabetes, which might be beneficial for controlling the progression of the disease. This phenomenon is consistent with the result of clinical study. (authors)

  1. Sobrevivência e crescimento inicial de espécies arbóreas nativas do Cerrado em consórcio com mandioca

    Directory of Open Access Journals (Sweden)

    Fernando Martinotto

    2012-01-01

    Full Text Available O objetivo deste trabalho foi avaliar a sobrevivência e o crescimento inicial de seis espécies arbóreas do Cerrado em consórcio com mandioca (Manihot esculenta, com ou sem adubação fosfatada. Utilizou-se o delineamento experimental de blocos ao acaso, em arranjo fatorial 6x2x2, com quatro repetições. As variáveis consideradas foram as espécies: Anadenanthera colubrina var. cebil (angico-vermelho, Anacardium occidentale (caju, Dipteryx alata (cumbaru, Hymenaea stigonocarpa (jatobá, Hancornia speciosa (mangaba e Sclerolobium paniculatum var. rubiginosum (taxi-branco, em monocultivo ou em consórcio com mandioca, com ou sem adubação fosfatada. Uma distância fixa de 3x3 m foi usada para as espécies arbóreas e de 1,00x0,60 m para a mandioca. Até a idade de 20 meses, as espécies arbóreas foram avaliadas quatro vezes quanto à altura e ao diâmetro do coleto. A produção de biomassa da mandioca foi avaliada aos 20 meses. A taxa média de sobrevivência das espécies arbóreas foi crescente na seguinte ordem: cumbaru (79%, taxi-branco (86%, jatobá (95%, mangaba (98%, angico (99% e caju (100%. O taxi-branco apresentou maiores taxas de crescimento relativo em diâmetro e altura, enquanto jatobá e cumbaru apresentaram os menores valores. A adubação fosfatada favoreceu apenas ao taxi-branco. A produtividade de mandioca não foi afetada pelo consórcio. Caju, angico-vermelho e taxi-branco são as espécies mais indicadas para o consórcio com mandioca no Cerrado.

  2. Hormigas arbóreas del Parque Nacional Natural Gorgona (Pacífico de Colombia

    Directory of Open Access Journals (Sweden)

    Patricia Chacón de Ulloa

    2014-02-01

    Full Text Available Este trabajo se enfocó en el conocimiento de la mirmecofauna arbórea de Gorgona, ecosistema insular de la zona de vida de bosque lluvioso tropical (27ºC, 6 000mm de precipitación promedio anual. En noviembre de 2007 se muestrearon 16 árboles mediante la técnica de nebulización usando un insecticida piretroide biodegradable, aplicado en dirección al dosel, desde cuatro alturas diferentes, entre 1 y 15m por encima de la vegetación del sotobosque. Se encontraron 53 especies de Formicidae pertenecientes a 24 géneros y seis subfamilias, sobresaliendo por su riqueza las Formicinae (20 especies y Myrmicinae (17. Por su abundancia, se destacaron especies arbóreas de los géneros Azteca, Dolichoderus (D. bispinosus y D. lutosus, Camponotus (C. atriceps, C. claviscapus, C. championi, C. excisus y Crematogaster (C. brasiliensis, C. carinata, C. curvispinosa. Algunas especies que son muy comunes a nivel del suelo (Wasmannia auropunctata y Camponotus sericeiventris, fueron colectadas a más de 15m de altura. Se resalta la captura de Nesomyrmex pittieri, Crematogaster stolli, Cephalotes basalis, Anochetus bispinosus y Stigmatomma mystriops que usualmente no se detectan en muestreos comunes.

  3. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José, E-mail: luana_alves_barbosa@hotmail.com, E-mail: wrrc@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B., E-mail: estevess@demet.ufmg.br, E-mail: marchezini@demet.ufmg.br, E-mail: dsantos@demet.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  4. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    International Nuclear Information System (INIS)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José; Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B.

    2017-01-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  5. Roll-to-roll UV imprint lithography for flexible electronics

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.

    2011-01-01

    We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography

  6. Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México

    OpenAIRE

    Hernández-Salas, Javier; Aguirre-Calderón, Óscar A.; Alanís-Rodríguez, Eduardo; Jiménez-Pérez, Javier; Treviño-Garza, Eduardo J.; González-Tagle, Marco A.; Luján-Álvarez, Concepción; Olivas-García, Jesús M.; Domínguez-Pereda, Alfonso

    2013-01-01

    En la presente investigación se evaluó el efecto de las prácticas silvícolas en la diversidad y composición de especies arbóreas de un bosque templado del noroeste de México. Para ello, 46 parcelas fueron evaluadas cada 10 años: 1986, 1996 y 2006. Se estimaron los índices de diversidad alfa y beta de la comunidad arbórea, y la abundancia, dominancia, frecuencia e índice de valor de importancia de cada especie (IVI). Los resultados muestran que el aprovechamiento forestal modifica la diversida...

  7. Effect of rolling reduction on the development of rolling and recrystallization textures in Al-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Endou, S; Inagaki, H [Shonan Inst. of Tech., Fujisawashi (Japan)

    2002-07-01

    In order to investigate the effect of Mg content on the development of the rolling textures in Al pure Al, Al-3% Mg alloy and Al-5% Mg alloy were cold rolled by varying rolling reductions up to 97%. Their rolling textures were investigated by the orientation distribution function analysis. The extent of work hardening introduced by cold rolling was estimated by the hardness measurements. It was found that, at all rolling reductions, the main orientations of the rolling textures depended strongly on the Mg content. In pure Al, {l_brace}123{r_brace} left angle 634 right angle was always the main orientation, whereas {l_brace}112{r_brace} left angle 111 right angle was most strong in the Al-3%Mg alloy. In the Al-5% Mg alloy, the development of both {l_brace}123{r_brace} left angle 634 right angle and {l_brace}112{r_brace} left angle 111 right angle were strongly suppressed, whereas {l_brace}110{r_brace} left angle 112 right angle developed remarkably. In pure Al, most of the texture development occurred at the later half of work hardening, i.e. at rolling reductions above 70%. With increasing Mg content, rolling texture tended to develop already at lower rolling reductions. Dynamic recovery, which occurred at very high rolling reductions, suppressed the development of the rolling textures. All these results strongly suggested that the formation of dislocation cell structures and shear banding are origins of the formation of these rolling textures. On annealing these specimens at 450 C for 30 min, recrystallization textures developed only in specimens having strong rolling textures, i. e. in the specimens cold rolled more than 70%. {l_brace}100{r_brace} left angle 001 right angle developed only in pure Al and in the Al-3% Mg ally, in which {l_brace}123{r_brace} left angle 634 right angle and {l_brace}112{r_brace} left angle 111 right angle were strong in the rolling textures. Recrystallization textures of the Al-5% Mg alloy was wather random. Its main orientation, {l

  8. On the constant-roll inflation

    Science.gov (United States)

    Yi, Zhu; Gong, Yungui

    2018-03-01

    The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approximation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter ηH is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.

  9. Modeling of direct wafer bonding: Effect of wafer bow and etch patterns

    Science.gov (United States)

    Turner, K. T.; Spearing, S. M.

    2002-12-01

    Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.

  10. Technology development for roll-to-roll production of organic photovoltaics

    NARCIS (Netherlands)

    Galagan, Y.O.; Vries, I.G. de; Langen, A.P.; Andriessen, H.A.J.M.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.

    2011-01-01

    In order to reach the objective of low-cost, large area organic photovoltaic systems, we build up a knowledge base concerning the influence of process conditions on the performance of polymer solar cells. A large area solar cell module, with roll-to-roll coated PEDOT:PSS and photoactive layers

  11. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  12. Evaluación del estrato arbóreo en un área restaurada post-incendio en el parque ecológico Chipinque, México

    Directory of Open Access Journals (Sweden)

    E. Alanís-Rodríguez

    2008-01-01

    prácticas de restauración ejercidos en estas áreas modifican la diversidad y abundancia de las especies arbóreas y arbustivas presentes. Se registró un total de 11 especies arbóreas y arbustivas pertenecientes a siete familias, siendo la más importante la Fagaceae, con cuatro especies (Quercus rysophylla, Q. canbyi, Q. laeta y Q. laceyi, ya que este grupo se ve favorecido con los incendios forestales superficiales, debido a la capacidad de rebrote que es estimulado ante los efectos del aumento de la temperatura del suelo causada por el fuego.

  13. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Science.gov (United States)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  14. Evaluación de la degradabilidad in situ en bovinos suplementados con cuatro especies arbóreas

    Directory of Open Access Journals (Sweden)

    María Roa V.

    2012-04-01

    Full Text Available Objetivo. Evaluar degradabilidad in situ en rumen de cuatro especies forrajeras: Acacia Roja (Delonix regia, pízamo (Eritryna glauca, Cratilia (Cratylia argentea y casco de vaca (Bahuinia variegata, para determinar su calidad nutricional. Materiales y métodos. Cuatro hembras rumino-fistuladas en un diseño de sobrecambio simple, pastoreando en Brachiaria decumbens, suplementadas en la mañana con tres kg de hojas deshidratadas de las cuatro especies mencionadas, de un año de establecidas y podadas cada 3 meses. En las pruebas in situ se utilizaron bolsas de nylon, adicionando 5 g de MS de cada arbórea/bolsa, incluyendo braquiaria, en diferentes horas (6, 12, 24, 48 y 72. Se evaluó la degradabilidad de la materia seca (DMS, fibra detergente neutro (DFDN fibra detergente ácido (DFDA, nitrógeno total (DNT y nitrógeno adherido a FDN (DNFDN. En el líquido ruminal se midió nitrógeno amoniacal a las 0, 4, 8 y 12 y pH a las 0, 3, 6, 9 y 12 horas. Resultados. La DMS fue mayor (p>0.05 para casco de vaca (53.3% y acacia roja (56.1% con relación a pízamo y cratilia. La DMS de braquiaria fue mayor (p>0.05 en 18.6% suplementando con casco de vaca con relación a las otras arbóreas. La DFDN potencial fue menor (p>0.05 para pízamo (7.6% en comparación con cratilia. La DFDN de braquiaria fue similar en todas las forrajeras. Conclusiones. Algunos componentes de las arbóreas tienen efecto asociativo en la cinética de la tasa de degradación de MS y FDA del pasto, siendo superiores (p>0.05 cuando se suplementó con casco de vaca.

  15. Love Thy Neighbor: Bonding versus Bridging Trust

    OpenAIRE

    Poulsen, Odile; Svendsen, Gert Tinggaard

    2005-01-01

    We study how trust is generated in society. In a two-sector model, we analyze two communities. In the bonding community people do not trust people outside their regular networks. In the bridging community people choose to trust strangers when they meet them. The hypothesis is that when trust is only bonding, it cannot accumulate. Our theoretical contribution is to show that when trust is only bonding then the economy’s level of trust moves to an unstable equilibrium that may under certain con...

  16. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  17. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  18. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    Science.gov (United States)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  19. Evaluation of the uses of aspirin, statins and ACEIs/ARBs in a diabetes outpatient population in southern Thailand.

    Science.gov (United States)

    Pongwecharak, J; Maila-ead, C; Sakulthap, J; Sripanitkulchai, N

    2007-04-01

    To evaluate the uses of aspirin, statins and angiotensin converting enzymes inhibitors/angiotensin receptor blockers (ACEIs/ARBs) in a diabetes population in southern Thailand. A review of outpatient medical records at the diabetic clinics of the regional hospital (n=304) and a community hospital (n=313), and a review of pharmacy computerized diabetes prescribing data (n=398) of the teaching hospital. All were in the province of Songkhla, southern Thailand. A total of 1015 diabetes patients, mean age (SD) 60.1 (12.1) years, were identified, with type 2 diabetes being most prevalent (93%). Females constituted 69%. Hypertension was a co-morbidity in almost half. Mean time (SD) since diagnosis was 5.8 (4.7) years. Where lipid profiles were available, less than one-third achieved the target LDL-C of <2.6 mmol L(-1). Almost all patients (96%) were candidates for treatment with a statin according to the American Diabetes Association (ADA) recommendation, whereas only 6.6 and 38.5% were actually taking one in the regional and the teaching hospital, respectively. Over 90% should have been taking primary prophylactic aspirin, whereas only 5.7-29% were actually prescribed one. A few had existing cardiovascular/cerebrovascular disease, and all were taking aspirin. There was no documented proteinuria status; however, 30-50% were on a ACEI/ARB, most likely as part of an antihypertensive regimen. Aspirin as a primary prophylaxis of cardiovascular disease in diabetes is remarkably underused. Screening for albuminuria was apparently lacking. Statin therapy also presented a major deficiency. ACEI/ARB was probably prescribed for hypertension rather than in relation to proteinuria.

  20. Lengthening the lifetime of roll-to-roll produced polymer solar cells

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager

    the knowledge of the degradation mechanisms involved in roll-to-roll coated polymer solar cells. While only a part of the experiments have directly involved roll-to-roll coated devices, most of the work is applicable to coated devices. The first part of the dissertation is devoted to the study of in......The field of polymer solar cells is a field with an exponential growth in the number of published papers. It is a field defined by a set of challenges including; efficiency, stability and processability. Before all of these challenges have been addressed; polymer solar cells...... will not be a commercial success. This dissertation is devoted primarily to the study of the stability of polymer solar cells, and more specifically to designing and verifying experimental techniques, procedures, and automated solutions to stability tests and characterization. The goal of the project was to expand...

  1. Influences of rolling method on deformation force in cold roll-beating forming process

    Science.gov (United States)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  2. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  3. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  4. Microstructural characterization of IF steel after severe plastic deformation via ARB and subsequent heat treatment; Caracterizacao microestrutural de um aco IF apos deformacao plastica severa via ARB e posterior recozimento

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.C.; Abrantes, A.L.A.; Lins, J.F.C., E-mail: cristinafo2@hotmail.co [Universidade Federal Fluminense (PPGEM/UFF), Volta Redonda, RJ (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica

    2010-07-01

    This study aimed to evaluate the microstructural evolution of a titanium stabilized IF steel deformed to warm through the ARB process for 5 consecutive cycles and then annealing at 600 deg C for 1 h. The material was characterized with the aid of the techniques of scanning electron microscopy and electron backscatter diffraction (Electron Backscatter Diffraction - EBSD). An intense process of microstructural refinement was observed in the deformed material and the phenomenon of dynamic recovery was predominant. It can be concluded that the annealing of severely deformed material was not sufficient for a complete recrystallization of the microstructure. (author)

  5. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    Science.gov (United States)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  6. Effect of cariogenic challenge on the stability of dentin bonds

    Directory of Open Access Journals (Sweden)

    Fernanda Blos BORGES

    2014-01-01

    Full Text Available Objective: The oral environment is subject to biofilm accumulation and cariogenic challenge, and few studies exist on the effect of these factors on the bond strength of adhesive systems. The aim of this study was to test if the exposure of adhesive interfaces to cariogenic challenge under biofilm accumulation could promote higher degradation than the exposure to biofilm accumulation alone. Material And Methods: Five molars were ground until exposure of medium dentin and then restored (Single Bond 2 and Z250 3M ESPE. The tooth/resin sets were cut to obtain beam-shaped specimens, which were distributed according to the aging conditions (n=20: water for 24 h (control; biofilm under cariogenic challenge for 3, 5 or 10 days; biofilm without cariogenic challenge for 10 days; and water for 3 months. Microcosm biofilms were formed from human saliva and grown in a saliva analogue medium, supplemented or not with sucrose to promote cariogenic challenge. Specimens were tested for microtensile bond strength, and failure modes were classified using light microscopy. Bond strength data were analyzed using ANOVA and failure modes were analyzed using ANOVA on ranks (α=0.05. Results: No significant differences in bond strength were detected among the aging methods (P=0.248. The aging period was associated with an increase in the frequency of adhesive failures for the groups aged for 10 days or longer (P<0.001. Conclusion: Aging leads to a higher prevalence of interfacial adhesive failures, although this effect is not associated with cariogenic challenge or reduction in bond strengths.

  7. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  8. A Coupled Model for Work Roll Thermal Contour with Subsectional Cooling in Aluminum Strip Cold Rolling

    Directory of Open Access Journals (Sweden)

    Shao Jian

    2014-10-01

    Full Text Available Little attention had been given to the evaluation of subsectional cooling control ability under complicated working conditions. In this paper, heat generation was calculated by using finite difference method. Strip hardening, work roll elastic deformation and elastic recovery of strip were taken into account. The mean coefficient of convective heat transfer on work roll surface was simulated by FLUENT. Calculation model had used the alternative finite difference scheme, which improved the model stability and computing speed. The simulation result shows that subsectional cooling control ability is different between different rolling passes. Positive and negative control abilities are roughly the same in the same pass. The increase of rolled length, working pressure of header and friction coefficient has positive effect on subsectional cooling control ability, and the rolling speed is on the contrary. On the beginning of the pass, when work roll surface has not reached the stable temperature, control ability of subsectional cooling is mainly affected by rolled length. The effect of mean coefficient of convective heat transfer and coefficient of friction is linear. When rolling speed is over 500 m/min, control ability of subsectional cooling becomes stable.

  9. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Corazza, Michael

    2016-01-01

    We report the use of roll-to-roll printed silver nanowire networks as front electrodes for fully roll-to-roll processed flexible indium-tin-oxide (ITO) free OPV modules. We prepared devices with two types of back electrodes, a simple PEDOT:PSS back electrode and a PEDOT:PSS back electrode...

  10. Fabrication of Superhydrophobic Metallic Surface by Wire Electrical Discharge Machining for Seamless Roll-to-Roll Printing

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-04-01

    Full Text Available This paper presents a proposal of a direct one-step method to fabricate a multi-scale superhydrophobic metallic seamless roll mold. The mold was fabricated using the wire electrical discharge machining (WEDM technique for a roll-to-roll imprinting application to produce a large superhydrophobic surface. Taking advantage of the exfoliating characteristic of the metallic surface, nano-sized surface roughness was spontaneously formed while manufacturing the micro-sized structure: that is, a dual-scale hierarchical structure was easily produced in a simple one-step fabrication with a large area on the aluminum metal surface. This hierarchical structure showed superhydrophobicity without chemical coating. A roll-type seamless mold for the roll-to-roll process was fabricated through engraving the patterns on the cylindrical substrate, thereby enabling to make a continuous film with superhydrophobicity.

  11. Rolling Resistance Measurement and Model Development

    DEFF Research Database (Denmark)

    Andersen, Lasse Grinderslev; Larsen, Jesper; Fraser, Elsje Sophia

    2015-01-01

    There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on measuring techniques, s......, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance...

  12. Cardiovascular risk reduction by reversing endothelial dysfunction: ARBs, ACE inhibitors,  or both? Expectations from The ONTARGET  Trial Programme

    Directory of Open Access Journals (Sweden)

    Luis Miguel  Ruilope

    2007-03-01

    Full Text Available Luis Miguel  Ruilope1, Josep Redón2, Roland Schmieder31Servicio de Nefrologia, Unidad de Hipertension Hospital, 12 de Octubre, Madrid, Spain; 2Department of Internal Medicine, Hospital Clinico University of Valencia, Valencia, Spain; 3Department of Nephrology and Hypertension, Friedrich-Alexander-Universitat, Erlangen-Nurnberg, GermanyAbstract: Endothelial dysfunction is the initial pathophysiological step in a progression of vascular damage that leads to overt cardiovascular and chronic kidney disease. Angiotensin II, the primary agent of the renin–angiotensin system (RAS, has a central role in endothelial dysfunction. Therefore, RAS blockade with an angiotensin receptor blocker (ARB and/or angiotensin-converting enzyme (ACE inhibitor provides a rational approach to reverse endothelial dysfunction, reduce microalbuminuria, and, thus, improves cardiovascular and renal prognosis. ARBs and ACE inhibitors act at different points in the RAS pathway and recent evidence suggests that there are differences regarding their effects on endothelial dysfunction. In addition to blood pressure lowering, studies have shown that ARBs reduce target-organ damage, including improvements in endothelial dysfunction, arterial stiffness, the progression of renal dysfunction in patients with type 2 diabetes, proteinuria, and left ventricular hypertrophy. The ONgoing Telmisartan Alone in combination with Ramipril Global Endpoint Trial (ONTARGET Programme is expected to provide the ultimate evidence of whether improved endothelial func tion translates into reduced cardiovascular and renal events in high-risk patients, and to assess possible differential outcomes with telmisartan, the ACE inhibitor ramipril, or a combination of both (dual RAS blockade. Completion of ONTARGET is expected in 2008. Keywords: angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, endothelial dysfunction, ONTARGET, renin–angiotensin system, telmisartan

  13. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  14. Microstructural and mechanical responses to various rolling speeds determined in multi-pass break-down rolling of AZ31B alloy

    Science.gov (United States)

    Jia, Weitao; Tang, Yan; Ning, Fangkun; Le, Qichi; Cui, Jianzhong

    2018-04-01

    Different rolling operations of as-cast AZ31B alloy were performed under different rolling speed (18 ∼ 72 m min‑1) and rolling pass conditions at 400 °C. Microstructural studies, tensile testing and formability evaluation relevant to each rolling operation were investigated. For 1-pass rolling, coarse average grain size (CAGS) region gradually approached the center layer as the rolling speed increased. Moreover, twins, shear bands and coarse-grain structures were the dominant components in the microstructure of plates rolled at 18, 48 and 72 m min‑1, respectively, indicating the severe deformation inhomogeneity under the high reduction per pass condition. For 2-pass rolling and 4-pass rolling, dynamic recrystallization was observed to be well and CAGS region has substantially disappeared, indicating the significant improvement in deformation uniformity and further the grain homogenization under the conditions. Microstructure uniformity degree of 2-pass rolled plates did not vary much as the rolling speed varied. On this basis, shear band distribution dominated the deformation behavior during the uniaxial tension of the 2-pass rolled plates. However, microstructure uniformity accompanied by twin distribution played a leading role in stretching the 4-pass rolled plates.

  15. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-12-14

    ...-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of...-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...

  16. Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography.

    Science.gov (United States)

    Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara

    2016-05-24

    Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.

  17. Effects of selective Imidazolin-1 (I1 receptor agonists vs ACE-Is/ARBs on metabolic parameters in patients of hypertension: A Meta-analysis of RCTs

    Directory of Open Access Journals (Sweden)

    Sharan Hiremath

    2016-05-01

    Full Text Available Objectives:  Co-existence of metabolic syndrome in hypertensive patients is associated with the higher risk for development of various complications including type 2 diabetes mellitus and hence highlights the need for selecting an anti-hypertensive with favorable effect on metabolic parameters. Present study aims at analyzing the efficacies of selective imidazolin-1 (I1 receptor agonists vs ACE-Is/ARBs on blood pressure, indicators of insulin resistance and plasma lipids concentration.Methods: Electronic data search in PUBMED, Cochrane library and EMBASE was conducted. Eligible studies were analyzed by random and fixed effects model for the effect size measures. RevMan 5.2 software was used for statistical analysisResults: There was significant difference in the level of decrease in total cholesterol and triglyceride in imidazolins group. However, the decrease in systolic and diastolic blood pressure was significantly more in ACE-Is/ARBs. However among these significant findings found in fixed effect model, the only significant change present in random effect model was the decrease in triglycerides by imidazolins.Conclusion: Efficacy of I1-agonists on plasma lipids and decreasing blood pressure appears to be non-inferior to ACE-Is/ARBs at short term treatment.  

  18. Roll forming of eco-friendly stud

    Science.gov (United States)

    Keum, Y. T.; Lee, S. Y.; Lee, T. H.; Sim, J. K.

    2013-12-01

    In order to manufacture an eco-friendly stud, the sheared pattern is designed by the Taguchi method and expanded by the side rolls. The seven geometrical shape of sheared pattern are considered in the structural and thermal analyses to select the best functional one in terms of the durability and fire resistance of dry wall. For optimizing the size of the sheared pattern chosen, the L9 orthogonal array and smaller-the-better characteristics of the Taguchi method are used. As the roll gap causes forming defects when the upper-and-lower roll type is adopted for expanding the sheared pattern, the side roll type is introduced. The stress and strain distributions obtained by the FEM simulation of roll-forming processes are utilized for the design of expanding process. The expanding process by side rolls shortens the length of expanding process and minimizes the cost of dies. Furthermore, the stud manufactured by expanding the sheared pattern of the web is an eco-friend because of the scrapless roll-forming process. In addition, compared to the conventionally roll-formed stud, the material cost is lessened about 13.6% and the weight is lightened about 15.5%.

  19. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan; Ulsh, Michael; More, Karren; Wood, David

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  20. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  1. Constant-roll (quasi-)linear inflation

    Science.gov (United States)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  2. Rolling of molybdenum and niobium tubes on cold-rolling mill with high stiff stand

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, I N; Shejkh-Ali, A D; Filimonov, G V; Lunev, A G

    1984-03-01

    To develop the technique of tube production the process of rolling is studied and comparative evaluation of the structure formed is carried out. It is shown that billets of rods deformed by screw rolling have the improved plastic properties and are deformed on cold-rolling mill (CRM) with a high degree of reduction without defect formation. High stiff stand of the CRM permits to produce high-quality molybdenum tubes.

  3. Kulturens rolle

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2007-01-01

    Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af kulturmø......Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af...

  4. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  5. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  6. [Effect of early postoperative use of ACEI/ARB or diuretics on the incidence of acute kidney injury after cardiac surgery in elderly patients].

    Science.gov (United States)

    Hu, Peng-hua; Chen, Yuan-han; Liang, Xin-ling; Li, Rui-zhao; Li, Zhi-lian; Jiang, Fen; Shi, Wei

    2013-07-01

    To explore the influence of early postoperative use of angiotensin converting enzyme inhibitors/angiotensin receptor blockers (ACEI/ARB) or diuretics on acute kidney injury (AKI) after cardiac surgery in elderly patients. Data from elderly patients (age≥60 years old) who underwent cardiac surgery with extracorporeal circulation in Guangdong General Hospital between January 2007 and December 2010 were analyzed in this retrospective research. The primary endpoint was AKI as diagnosed according to the serum creatinine criteria of RIFLE (risk, injury, failure, loss, end stage renal disease). The baseline serum creatinine was defined as the latest serum creatinine level before cardiac surgery. Multivariate analysis by logistic regression was used to obtain the independent risk factors for AKI. Among 618 elderly patients, 76 (12.3%) patients received ACEI/ARB during early postoperative period, 491 (79.4%) patients were given diuretics during early postoperative period, and postoperative AKI occurred in 394 (63.8%) patients. The incidence of AKI was 46.1% in patients who received early postoperative ACEI/ARB, and 66.2% in patients who did not (Pdiuretics postoperatively were less likely to suffer from AKI compared with patients who did not (57.0% vs. 89.8%, Pdiuretics (OR=0.149, 95%CI 0.076-0.291, Pdiuretics is associated with a lower incidence of AKI after cardiac surgery with extracorporeal circulation in elderly patients.

  7. Ship Roll Damping Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2012-01-01

    limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...

  8. 75 FR 15326 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Science.gov (United States)

    2010-03-29

    ... ambient conditions, ice can accumulate on the walls of the fuel pipes within the aircraft fuel system... aircraft in combination with Rolls-Royce engines that feature similar fuel systems to the RB211-Trent 800... the aircraft fuel system, which can then be released downstream when fuel flow demand is increased...

  9. Improved Dutch Roll Approximation for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Liang-Liang Yin

    2014-06-01

    Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.

  10. Efficient Circulation of Railway Rolling Stock

    NARCIS (Netherlands)

    Alfieri, A.; Groot, R.; Kroon, L.G.; Schrijver, A.

    2006-01-01

    Railway rolling stock (locomotives, carriages, and train units) is one of the most significant cost sources for operatorsof passenger trains, both public and private. Rolling stock costsare due to material acquisition, power supply, and material maintenance. The efficient circulation of rolling

  11. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    Science.gov (United States)

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  12. Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process

    Science.gov (United States)

    Yang, Wen; Guo, Changbo; Zhang, Lifeng; Ling, Haitao; Li, Chao

    2017-10-01

    The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.

  13. Rolling contact fatigue in a vacuum test equipment and coating analysis

    CERN Document Server

    Danyluk, Michael

    2014-01-01

    This book deals with wear and performance testing of thin solid film lubrication and hard coatings in an ultra-high vacuum (UHV), a process which enables rapid accumulation of stress cycles compared with testing in oil at atmospheric pressure. The authors' lucid and authoritative narrative broadens readers' understanding of the benefits of UHV testing: a cleaner, shorter test is achieved in high vacuum, disturbance rejection by the deposition controller may be optimized for maximum fatigue life of the coating using rolling contact fatigue testing (RCF) in a high vacuum, and RCF testing in UHV

  14. Multi-level approach for parametric roll analysis

    Science.gov (United States)

    Kim, Taeyoung; Kim, Yonghwan

    2011-03-01

    The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

  15. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    , a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...

  16. Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors

    Directory of Open Access Journals (Sweden)

    Marja Vilkman

    2016-01-01

    Full Text Available We demonstrate the production of organic bottom gate transistors with self-aligned electrodes, using only continuous roll-to-roll (R2R techniques. The self-alignment allows accurate <5 µm layer-to-layer registration, which is usually a challenge in high-speed R2R environments as the standard registration methods are limited to the millimeter range—or, at best, to tens of µm if online cameras and automatic web control are utilized. The improved registration enables minimizing the overlap between the source/drain electrodes and the gate electrode, which is essential for minimizing the parasitic capacitance. The complete process is a combination of several techniques, including evaporation, reverse gravure, flexography, lift-off, UV exposure and development methods—all transferred to a continuous R2R pilot line. Altogether, approximately 80 meters of devices consisting of thousands of transistors were manufactured in a roll-to-roll fashion. Finally, a cost analysis is presented in order to ascertain the main costs and to predict whether the process would be feasible for the industrial production of organic transistors.

  17. Roll-to-Roll fabrication of large area functional organic materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Hösel, Markus; Krebs, Frederik C

    2013-01-01

    With the prospect of extremely fast manufacture of very low cost devices, organic electronics prepared by thin film processing techniques that are compatible with roll-to-roll (R2R) methods are presently receiving an increasing interest. Several technologies using organic thin films...... research fields such as organic photovoltaics, organic thin film transistors, light-emitting diodes, polymer electrolyte membrane fuel cells, and electrochromic devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 000: 000–000, 2012...

  18. Numerical analysis of hydrogen-assisted rolling-contact fatigue of wind turbine bearings

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2014-10-01

    Full Text Available Offshore wind parks at locations further from the shore often involve serious difficulties, e.g. the maintenance. The bearings of offshore wind turbines are prone to suffer hydrogen-assisted rolling-contact fatigue (HA-RCF. Three important aspects linked with bearing failures are being extensively researched: (i rolling contact fatigue (RCF, (ii influence of carbide particles on fatigue life, and (iii local microplastic strain accumulation via ratcheting. However, there is no reference related to bearing failure in harsh environment. This way, this paper helps to gain a better understanding of the influence of hydrogen on the service life of offshore wind turbine bearings through a numerical study. So, the widely used RCF ball-on-rod test was simulated by finite element method in order to obtain the stress-strain state inside the bearings during life in service and, from this, to elucidate the potential places where the hydrogen could be more harmful and, therefore, where the bearing material should be improved.

  19. Perovskite solar cells for roll-to-roll fabrication

    Directory of Open Access Journals (Sweden)

    Uddin Ashraf

    2017-01-01

    Full Text Available Perovskite solar cell (PSCs is considered as the game changer in emerging photovoltaics technology. The highest certified efficiency is 22% with high temperature processed (∼500 °C TiO2 based electron transport layer (ETL. High temperature process is a rudimentary hindrance towards roll-to-roll processing of PSCs on flexible substrates. Low temperature solution process (<150 °C ZnO based ETL is one of the most promising candidate for large scale roll-to-roll fabrication of cells as it has nearly identical electron affinity (4.2 eV of TiO2. The mixed organic perovskite (MA0.6FA0.4PbI3 devices with Al doped ZnO (AZO ETL demonstrate average cell efficiency over 16%, which is the highest ever reported efficiency for this device configuration. The energy level alignment and related interfacial charge transport dynamics at the interface of ZnO and perovskite films and the adjacent charge transport layers are investigated. Significantly improved device stability, hysteresis free device photocurrent have been observed in MA0.6FA0.4PbI3 cells. A systematic electrochemical impedance spectroscopy, frequency dependent capacitance spectra, surface morphology and topography characterization have been conducted to understand the role of interfacial electronic properties between perovskite and neighbouring layers in perovskite device. A standardized degradation study, interfacial electronic property and capacitive spectra analysis of aged device, have been measured to understand the enhanced device stability in mixed MA0.6FA0.4PbI3 cells. Slow perovskite material decomposition rate and augmented device lifetime with AZO based devices have been found to be correlated with the more hydrophobic and acidic nature of AZO surface compared to pristine ZnO film.

  20. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Hjuler, Hans Aage; Terkelsen, Carina

    2012-01-01

    We employed roll-to-roll coating in the preparation of 40 μm thick poly[2,2′(m-phenylene)-5,5′bibenzimidazole] (PBI) films for fuel cells using both knife-coating (KC) and slot-die (SD) coating. The films were coated directly from a 9% (w/w) solution of PBI in dimethylacetamide onto a sacrificial...

  1. Troll, a Language for specifying Dice-rolls

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2009-01-01

    Dice are used in many games, and often in fairly complex ways that make it difficult to unambiguously describe the dice-roll mechanism in plain language. Many role-playing games, such as Dungeons & Dragons, use a formalised notation for some instances of dice-rolls. This notation, once explained...... natural language to describe rolls. Even Dungeons & Dragons use formal notation only for some of the dice-roll methods used in the game. Hence, a more complete notation is in this paper proposed, and a tool for pseudo-random rolls and (nearly) exact probability calculations is described. The notation...... is called "Troll", combining the initial of the Danish word for dice ("terninger") with the English word "roll". It is a development of the language Roll described in an earlier paper. The present paper describes the most important features of Troll and its implementation....

  2. Autonomous Supervision and Control of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto

    therefore two objectives. The first is to develop methods for detection of the inception of parametric roll resonance. The second is to develop control strategies to stabilize the motion after parametric roll has started. Stabilisation of parametric roll resonance points to two possible courses of action...... strategies are then combined to stabilise parametric roll resonance within few roll cycles. Limitations on the maximum stabilisable roll angle are analysed and linked to the ii slew rate saturation and hydrodynamic stall characteristics of the fin stabilisers. The study on maximum stabilisable roll angle...... leads to the requirements for early detection. Two novel detectors are proposed, which work within a shorttime prediction horizon, and issue early warnings of parametric roll inception within few roll cycles from its onset. The main idea behind these detection schemes is that of exploiting the link...

  3. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  4. New perspectives on constant-roll inflation

    Science.gov (United States)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  5. Calculation and experimental technique of determination of rolling procedure for cold-rolling tube mills

    International Nuclear Information System (INIS)

    Igoshin, V.F.; Aleshin, V.A.; Khoroshikh, Yu.G.; Bogatov, A.A.; Mizhiritskij, O.I.

    1983-01-01

    Calculation and experimental technique of determination of tube cold rolling procedure has been developed. Rolling procedure based on the usage of regression equation epsilon=1.24 psi, where psi is the relative reduction of area, delta-permissible reduction during rolling, has been tested on 08Kh18N10T steel. The effect of tube geometry, tool calibration parameters, lubrication conditions etc. on metal deformability in taking into account experimentally. The use of the technique proposed has allowed to shorten the time of mastering of the production of tubes from different steels

  6. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  7. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Hösel, Markus

    2014-01-01

    the manufacture of completely functional devices in exceptionally high yields. Critical to the ink and process development is a carefully chosen technology transfer to industry method where first a roll coater is employed enabling contactless stack build up, followed by a small roll-to-roll coater fitted to an X...

  8. Effect of heat treatment on interfacial and mechanical properties of A6022/A7075/A6022 roll-bonded multi-layer Al alloy sheets

    Science.gov (United States)

    Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk

    2016-09-01

    Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.

  9. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  10. Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique

    Directory of Open Access Journals (Sweden)

    J. Belhadj

    2006-03-01

    Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology

  11. X-ray diffraction residual stress measurement in the rolled-joint zone of Zr - 2.5 % Nb pressure tube

    International Nuclear Information System (INIS)

    Dinu, A.; Nedelcu, L.

    1995-01-01

    The in-service experience of Zr - 2.5 % Nb pressure tubes in CANDU-type nuclear reactors has demonstrated very good performance over a long period of time. However, analyses done by AECL specialists on most failure cases, showed that a big percentage of defects are manufacturing defects, which appear mostly at the beginning of the rolled-joint zone. It has been observed that a correct rolling ensures an acceptable distribution of residual stress, but an incorrect one leads to an accumulation of big values of residual stress. This determines a preferential radial orientation of hydrides, which during operation in the reactor can produce DHC. To ensure a suitable performance of the Zr - 2.5 % Nb pressure tubes in the CANDU reactor, it is very important to have a correct rolling as mentioned in the procedure. This work presents a methodology for the measurement of the stressing state in the surfaces layers of the rolled-joint zone. The X-ray diffraction method can also be used for establishing the residual stress distribution across the tub wall, in order to ensure a good performance at Cernavoda nuclear plant. The results obtained for the investigated tube have led to the conclusion that the rolling process was correctly applied in this case, the values obtained for the residual stress being in good agreement with those accepted in literature. (Author) 2 Figs., 2 Tabs

  12. Constant-roll tachyon inflation and observational constraints

    Science.gov (United States)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  13. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  14. Cosmology with rolling tachyon

    Indian Academy of Sciences (India)

    Email: sami@iucaa.ernet.in. Abstract. We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However ...

  15. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  16. METHOD OF HOT ROLLING URANIUM METAL

    Science.gov (United States)

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  17. Microstructure formation via roll-to-roll UV embossing using a flexible mould made from a laminated polymer–copper film

    International Nuclear Information System (INIS)

    Zhong, Z W; Shan, X C

    2012-01-01

    Roll-to-roll large format UV embossing processes aim to revolutionize the manufacturing of functional films, with the ability to process a large area at one time, resulting in high throughput and cost reduction. In this paper, we present the experimental results obtained during the process development for roll-to-roll large format UV embossing. Flexible moulds were fabricated from a hybrid film substrate made of a liquid crystal polymer with clad copper foils laminated on both sides of it. The effective pattern area of the fabricated flexible mould was 400 mm × 300 mm with a minimal feature size of 50 µm. The results show that the roll-to-roll embossing processes are capable of producing micro-scale structures and functional devices over a large area at one time. Large-area roll-to-roll embossing was demonstrated by using the hybrid flexible mould, and micro-features and structures such as micro-channels and dot arrays were replicated on thermoplastic substrates. In addition to its ease and low cost in fabrication, the hybrid flexible moulds demonstrated to have acceptable fidelity and durability. The hybrid flexible mould is a novel solution for large-area embossing. (paper)

  18. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-06-07

    ...-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit for Preliminary Results of...-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot... duty order on certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Initiation...

  19. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  20. Just Roll with It? Rolling Volumes vs. Discrete Issues in Open Access Library and Information Science Journals

    Directory of Open Access Journals (Sweden)

    Jill Cirasella

    2013-08-01

    Full Text Available INTRODUCTION Articles in open access (OA journals can be published on a rolling basis, as they become ready, or in complete, discrete issues. This study examines the prevalence of and reasons for rolling volumes vs. discrete issues among scholarly OA library and information science (LIS journals based in the United States. METHODS A survey was distributed to journal editors, asking them about their publication model and their reasons for and satisfaction with that model. RESULTS Of the 21 responding journals, 12 publish in discrete issues, eight publish in rolling volumes, and one publishes in rolling volumes with an occasional special issue. Almost all editors, regardless of model, cited ease of workflow as a justification for their chosen publication model, suggesting that there is no single best workflow for all journals. However, while all rolling-volume editors reported being satisfied with their model, satisfaction was less universal among discrete-issue editors. DISCUSSION The unexpectedly high number of rolling-volume journals suggests that LIS journal editors are making forward-looking choices about publication models even though the topic has not been much addressed in the library literature. Further research is warranted; possibilities include expanding the study’s geographic scope, broadening the study to other disciplines, and investigating publication model trends across the entire scholarly OA universe. CONCLUSION Both because satisfaction is high among editors of rolling-volume journals and because readers and authors appreciate quick publication times, the rolling-volume model will likely become even more prevalent in coming years.

  1. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  2. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.; Hong, Pei-Ying

    2017-01-01

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB

  3. Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation

    International Nuclear Information System (INIS)

    Hassinen, Tomi; Ruotsalainen, Teemu; Laakso, Petri; Penttilä, Raimo; Sandberg, Henrik G.O.

    2014-01-01

    We present roll-to-roll printing compatible techniques for manufacturing organic thin film transistors using two separately processed foils that are laminated together. The introduction of heat-assisted lamination opens up possibilities for material and processing combinations. The lamination of two separately processed substrates together will allow usage of pre-patterned electrodes on both substrates and materials with non-compatible solvents. Also, the surface microstructure is formed differently when laminating dry films together compared to film formation from liquid phase. Demonstrator transistors, inverters and ring oscillators were produced using lamination techniques. Finally, a roll-to-roll compatible lamination concept is proposed where also the source and drain electrodes are patterned by laser ablation. The demonstrator transistors have shown very good lifetime in air, which is contributed partly to the good material combination and partly to the enhanced interface formation in heat-assisted lamination process. - Highlights: • A roll-to-roll compatible lamination technique for printed electronics is proposed. • Laser ablation allows highly defined metal top and bottom electrodes. • Method opens up processing possibilities for incompatible materials and solvents. • Shearing forces may enhance molecular orientation and packing. • An air stable polymer transistor is demonstrated with a lifetime of years

  4. Inflation with a constant rate of roll

    International Nuclear Information System (INIS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-01-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime

  5. High-throughput roll-to-roll X-ray characterization of polymer solar cell active layers

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.; Jørgensen, Mikkel; Menzel, Andreas

    2012-01-01

    Synchrotron-based X-rays were used to probe active materials for polymer solar cells on flexible polyester foil. The active material was coated onto a flexible 130 micron thick polyester foil using roll-to-roll differentially pumped slot-die coating and presented variation in composition, thickness...

  6. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  7. Towards roll-to-roll manufacturing of polymer photonic devices

    Science.gov (United States)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  8. Asymmetric correlation of sovereign bond yield dynamics in the Eurozone

    Directory of Open Access Journals (Sweden)

    Dajcman Silvo

    2013-01-01

    Full Text Available This paper examines the symmetry of correlation of sovereign bond yield dynamics between eight Eurozone countries (Austria, Belgium, France, Germany, Ireland, Italy, Portugal, and Spain in the period from January 3, 2000 to August 31, 2011. Asymmetry of correlation is investigated pair-wise by applying the test of Yongmiao Hong, Jun Tu, and Guofu Zhou (2007. Whereas the test of Hong, Tu, and Zhou (2007 is static, the present paper provides also a dynamic version of the test and identifies time periods when the correlation of Eurozone sovereign bond yield dynamics became asymmetric. We identified seven pairs of sovereign bond markets for which the null hypothesis of symmetry in correlation of sovereign bond yield dynamics can be rejected. Calculating rolling-window exceedance correlation, we found that the time-varying upper- (i.e. for positive yield changes and lower-tail correlations (i.e. for negative yield changes for pair-wise observed sovereign bond markets normally follow each other closely, yet during some time periods (for most pair-wise observed countries, these periods are around the September 11 attack on the New York City WTC and around the start of the Greek debt crisis the difference in correlation does increase. The results show that the upper- and lower-tail correlation was symmetric before the Eurozone debt crisis for most of the pair-wise observed sovereign bond markets but has become much less symmetric since then.

  9. Rolling block mazes are PSPACE-complete

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.

    2012-01-01

    In a rolling block maze, one or more blocks lie on a rectangular board with square cells. In most mazes, the blocks have size k × m × n where k, m, n are integers that determine the size of the block in terms of units of the size of the board cells. The task of a rolling block maze is to roll a

  10. Maintenance Appointments in Railway Rolling Stock Rescheduling

    NARCIS (Netherlands)

    J.C. Wagenaar (Joris); L.G. Kroon (Leo); M.E. Schmidt (Marie)

    2016-01-01

    textabstractThis paper addresses the Rolling Stock Rescheduling Problem (RSRP), while taking maintenance appointments into account. After a disruption, the rolling stock of the disrupted passenger trains has to be rescheduled in order to restore a feasible rolling stock circulation. Usually, a

  11. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang, E-mail: lppmchenqiang@hotmail.com

    2016-12-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm{sup 3}/m{sup 2} day for Al-coated original PE to 138 cm{sup 3}/m{sup 2} day for Al-coated allyamine (C{sub 3}H{sub 7}N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  12. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    International Nuclear Information System (INIS)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2016-01-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm 3 /m 2 day for Al-coated original PE to 138 cm 3 /m 2 day for Al-coated allyamine (C 3 H 7 N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  13. Microstructural characterization of IF steel after severe plastic deformation via ARB and subsequent heat treatment

    International Nuclear Information System (INIS)

    Oliveira, F.C.; Abrantes, A.L.A.; Lins, J.F.C.

    2010-01-01

    This study aimed to evaluate the microstructural evolution of a titanium stabilized IF steel deformed to warm through the ARB process for 5 consecutive cycles and then annealing at 600 deg C for 1 h. The material was characterized with the aid of the techniques of scanning electron microscopy and electron backscatter diffraction (Electron Backscatter Diffraction - EBSD). An intense process of microstructural refinement was observed in the deformed material and the phenomenon of dynamic recovery was predominant. It can be concluded that the annealing of severely deformed material was not sufficient for a complete recrystallization of the microstructure. (author)

  14. Design and analysis of roll cage

    Science.gov (United States)

    Angadi, Gurusangappa; Chetan, S.

    2018-04-01

    Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.

  15. Crescimento inicial de arbóreas nativas em solo salino-sódico do nordeste brasileiro tratado com corretivos

    Directory of Open Access Journals (Sweden)

    Francisco Vanies da Silva Sá

    2013-06-01

    Full Text Available O excesso de sais e de sódio no solo é um dos fatores que mais contribuem para a degradação química dos solos de perímetros irrigados, em regiões áridas e semiáridas. Por essa razão, objetivou-se, com este trabalho, avaliar o efeito de corretivos, na recuperação de um solo degradado por excesso de sais e sódio, e o crescimento inicial de cinco arbóreas nativas do bioma Caatinga, em solo salino-sódico. Dois experimentos foram conduzidos, em casa de vegetação, no CCTA/UFCG, utilizando-se amostras de um solo salino-sódico. O primeiro experimento constou de cinco tratamentos de correção do solo: sem corretivo, gesso agrícola na dose de 100% da necessidade de gesso (NG, gesso agrícola na dose de 50% NG mais matéria orgânica (MO, enxofre elementar (S na dose de 100% NG e S na dose de 50% NG + MO, com 15 repetições. No segundo experimento, os tratamentos foram constituídos por um esquema fatorial 5 x 5, sendo cinco espécies arbóreas: tamboril (Enterolobium contortisiliquum, sabiá (Mimosa caelsalpiniifolia, jurema-preta (Mimosa tenuiflora, craibeira (Tabebuia aurea e pereiro (Aspidosperma pyrifolium e cinco tratamentos referentes à correção do solo do primeiro experimento, com três repetições. A aplicação de gesso agrícola ou S com ou sem MO melhorou quimicamente o solo salino-sódico estudado, especialmente diminuindo a PST. Estes tratamentos proporcionaram incrementos no crescimento e acúmulo de massa de matéria seca das espécies arbóreas, principalmente jurema-preta, sabiá e tamboril, e diminuíram o estresse provocado pelo solo salino-sódico sobre as plantas, aumentando a taxa fotossintética.

  16. 14 CFR 23.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 23.493 Section 23.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....493 Braked roll conditions. Under braked roll conditions, with the shock absorbers and tires in their...

  17. An advanced dissymmetric rolling model for online regulation

    Science.gov (United States)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  18. LEDs are on a roll

    NARCIS (Netherlands)

    Blom, P.W.M.; Mol, A.M.B. van

    2011-01-01

    Light-emitting diodes are more efficient than conventional lighting, but high production costs limit their uptake. Organic versions that can be produced using a cheap newspaper-style 'roll-to-roll' printing process are likely to revolutionize our lighting and signage, say Paul Blom and Ton van Mol.

  19. 14 CFR 27.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 27.493 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  20. 14 CFR 29.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 29.493 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  1. Roll-to-Roll Slot–Die Coated Organic Photovoltaic (OPV) Modules with High Geometrical Fill Factors

    NARCIS (Netherlands)

    Galagan, Y.; Fledderus, H.; Gorter, H.; Mannetje, H.H. 't; Shanmugam, S.; Mandamparambil, R.; Bosman, J.; Rubingh, J.M.; Teunissen, J.P.; Salem, A.; Vries, I.G. de; Andriessen, R.; Groen, W.A.

    2015-01-01

    Flexible semi-transparent organic photovoltaic (OPV) modules were manufactured by roll-to-roll slot–die coating of three functional layers [ZnO, photoactive layer, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)] and either the screen printing or inkjet printing of the top

  2. Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mehdi [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada); He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Hilinski, Erik J. [Tempel Steel Co., Chicago, IL 60640-1020 (United States); Edrisy, Afsaneh [Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada)

    2017-05-01

    In order to promote the magnetically favourable <001>//ND texture (θ-fibre) and minimize the unfavourable <111>//ND fibre (γ-fibre) in non-oriented electrical steel, an unconventional cold rolling scheme was employed in this study, in which the cold rolling was carried out at an angle (i.e. 30°, 45°, 60°, and 90°) to the hot rolling direction (HRD). After annealing, two steel sheets (i.e. those after cold rolling at 60° and 45° to the HRD) were found to have considerably different textures from other sheets, i.e. showing the strongest and the weakest θ-fibre textures, respectively. These two sheets were then subjected to skin pass rolling to various reduction rates from 5–20% to investigate the effect of rolling reduction on the evolution of texture. It was found that during skin pass rolling, the cube texture ({001}<100>) was gradually weakened and the rotated cube orientation ({001}<110>) was strengthened. With the increase of the reduction rate, the {112}<110> orientation on the α-fibre became a major component. Upon final annealing, the cube texture was slightly restored, but the volume fraction was considerably lower than that before skin pass rolling. - Highlights: • Inclined cold rolling optimizes the textures of non-oriented electrical steels. • A 60° angle to the hot rolling direction results in the largest improvement of the favorable texture. • Skin pass rolling weakens the cube texture and promotes the {112}<110> texture. • Final annealing restores some of the cube texture and strengthens the rotated cube texture. • Low Taylor factor of the cube orientation leads to its easy deformation in skin pass rolling.

  3. Study of deformation texture in an AZ31 magnesium alloy rolled at wide range of rolling speed and reductions

    International Nuclear Information System (INIS)

    Sanjari, M; Su, J; Kabir, A S; Yue, S; Tamimi, S; Hara, K; Utsunomiya, H; Petrov, R; Kestens, L

    2015-01-01

    The plasticity of Mg is restricted at low temperatures because: (a) only a small number of deformation mechanisms can be activated, and (b) a preferred crystallographic orientation (texture) develops in wrought alloys, especially in flat-rolled sheets. This causes problems in thin sheet processing as well as component manufacturing from the sheet. In this study, different rolling speeds from 15 to 1000 m/min were employed to warm-roll AZ31B magnesium alloy to different reductions. The results show that AZ31B sheets rolled at 15 m/min and 100 °C has fractured for reductions of more than 30% per pass. However, by increasing the rolling speed to 1000 m/min the rollability was improved significantly and the material can be rolled to reductions of more than 70% per pass. The results show that with increasing strain rate at 100°C, the splitting of basal poles was observed, indicating the activation of more contraction twins and secondary twins. (paper)

  4. Rudder roll stabilization for ships

    NARCIS (Netherlands)

    van Amerongen, J.; van der Klugt, P.G.M.; van Nauta lemke, H.R.

    1990-01-01

    This paper describes the design of an autopilot for rudder roll stabilization for ships. This autopilot uses the rudder not only for course keeping but also for reduction of the roll. The system has a series of properties which make the controller design far from straightforward: the process has

  5. Look! It's Rock'n'roll!

    DEFF Research Database (Denmark)

    Lindelof, Anja

    2007-01-01

    , and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. (2007). Look! it's rock'n'roll! how television participated in shaping the visual genre conventions of popular music...... to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. "Look! It's Rock'n'roll! How television participated in shaping the visual genre....... Pay special attention to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- TY - JOUR T1 - Look! It's Rock'n'roll! How television participated in shaping...

  6. f(R) constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hayato [Universidad de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics, RAS, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation)

    2017-08-15

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f(R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f(R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. (orig.)

  7. Roll-to-roll paper sensors (ROPAS); Wireless communicating sensors on paper in the logistic chain

    NARCIS (Netherlands)

    Rentrop, C.; Rubingh, J.E.J.M.; Lelieveld, R.; Sandberg, H.

    2014-01-01

    The ROPAS project (Roll-to-roll paper sensors) combines high end electronics and wireless sensors with low cost paper substrates and processing techniques that can be applied on a large scale. Paper is the next step in the printed electronics roadmap of utilising cheaper substrate materials as a

  8. Thermal Characteristics of Plastic Film Tension in Roll-to-Roll Gravure Printed Electronics

    Directory of Open Access Journals (Sweden)

    Kui He

    2018-02-01

    Full Text Available In the printing section of a roll-to-roll gravure printed electronics machine, the plastic film tension is directly associated with the product quality. The temperature distribution of the plastic film in the printing section is non-uniform, because of the higher drying temperature and the lower room temperature. Furthermore, the drying temperature and the room temperature are not constants in industrial production. As the plastic film is sensitive to temperature, the temperature of the plastic film will affects the web tension in the printing section. In this paper, the thermal characteristics of the plastic film tension in roll-to-roll gravure printed electronics are studied in order to help to improve the product quality. First, the tension model including the factor of temperature is derived based on the law of mass conservation. Then, some simulations and experiments are carried out in order to in-depth research the effects of the drying temperature and room temperature based on the relations between system inputs and outputs. The results show that the drying temperature and room temperature have significant influences on the web tension. The research on the thermal characteristics of plastic film tension would benefit the tension control accuracy for further study.

  9. The theory and technique of yamuna body rolling.

    Science.gov (United States)

    Suzuki, Satoshi

    2013-09-01

    [Purpose] This paper provides information about the theory and technique of Yamuna Body Rolling. In order to treat physical problems, using the specialized Yamuna Body Rolling balls, people can target superficial skin, fasciae, muscle fibers, tendons, ligaments, bones, internal organs, and the nervous system by themselves. The extraordinary effect of Yamuna Body Rolling is its multidimensional elongation of muscle fibers. In addition to the regular longitudinal elongation by the conventional stretch method, Yamuna Body Rolling enables the transversal and diagonal expansion of muscle fibers in order to move the body more dynamically. Hamstring, abdominal, and sideline routines are presented as examples for techniques of Yamuna Body Rolling. Yamuna Body Rolling can be applied to functional evaluation and therapeutic uses; therefore, it could provide many benefits in the treatment of different conditions in the medical field.

  10. Using Light-Induced Thermocleavage in a Roll-to-Roll Process for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Norrman, Kion

    2010-01-01

    We report on the use of intense visible light with a narrow spectral distribution matched to the region where the conjugated polymer material absorbs to selectively heat the active material and induce thermocleavage. We show a full roll-to-roll process, leading to complete large-area polymer solar...... ion mass spectrometry, attenuated total reflectance infrared, and transmission/reflection UV−vis techniques....

  11. Maintenance in Railway Rolling Stock Rescheduling for Passenger Railways

    NARCIS (Netherlands)

    J.C. Wagenaar (Joris); L.G. Kroon (Leo)

    2015-01-01

    textabstractThis paper addresses the Rolling Stock Rescheduling Problem (RSRP), while taking maintenance appointments into account. After a disruption, the rolling stock of passenger trains has to be rescheduled in order to maintain a feasible rolling stock circulation. A limited number of rolling

  12. Análise das variações florísticas e estruturais da comunidade arbórea de um fragmento de floresta semidecídua às margens do rio Capivari, Lavras-MG

    Directory of Open Access Journals (Sweden)

    Souza Josival Santos

    2003-01-01

    Full Text Available Realizou-se um estudo das variações florísticas e estruturais da comunidade arbórea em um fragmento de Floresta Estacional Semidecídua situado às margens do rio Capivari, em Lavras, Minas Gerais, com o objetivo de analisar as correlações entre variáveis ambientais (edáficas, topográficas e morfométricas do fragmento e a distribuição das espécies arbóreas. Procurou-se, também, ampliar o conhecimento sobre a composição florística e a estrutura fitossociológica das comunidades arbóreas da região do alto rio Grande. As espécies arbóreas foram amostradas em coletas extensivas na área e intensivas dentro de 28 parcelas de 20 20 m, tendo sido considerados apenas os indivíduos com DAP > 5 cm. As parcelas foram distribuídas em cinco transeções, dispostas paralelamente à inclinação predominante do terreno. As variáveis ambientais foram obtidas por meio do levantamento topográfico do fragmento e de análises químicas e granulométricas de amostras dos solos. As correlações entre distribuição das abundâncias das espécies e as variáveis ambientais nas parcelas foram avaliadas por análise de correspondência canônica (CCA. A listagem florística registrou 166 espécies, sendo 140 encontradas dentro das parcelas. A comunidade arbórea apresentou um elevado índice de diversidade de Shannon (H' = 4,258 nats/indivíduo, correlacionado à baixa dominância ecológica (alta equabilidade de Pielou, J' = 0,862 e, possivelmente, à alta heterogeneidade ambiental local. A CCA demonstrou que a heterogeneidade ambiental do fragmento é caracterizada principalmente pela topografia acidentada e pelas variações de fertilidade, granulometria e regime hídrico dos solos, sendo este último o mais fortemente correlacionado com a distribuição das espécies. Muitas espécies arbóreas mostraram clara preferência por dois habitats: a baixa encosta, com solos mais úmidos e férteis, e a alta encosta, com solos menos úmidos e f

  13. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    Science.gov (United States)

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.

  14. Development of a novel quality assurance system based on rolled-up and rolled-out radiochromic films in volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Park, Ji-Yeon; Lee, Jeong-Woo; Choi, Kyoung-Sik; Lee, Jung Seok; Kim, You-Hyun; Hong, Semie; Suh, Tae-Suk

    2011-01-01

    Purpose: To develop a cylindrical phantom with rolled-up radiochromic films and dose analysis software in the rolled-out plane for quality assurance (QA) in volumetric modulated arc therapy (VMAT). Methods: The phantom consists of an acrylic cylindrical body wrapped with radiochromic film inserted into an outer cylindrical shell of 5 cm thickness. The rolled-up films with high spatial resolution enable detection of specific dose errors along the arc trajectory of continuously irradiated and modulated beams in VMAT. The developed dose analysis software facilitates dosimetric evaluation in the rolled-up and rolled-out planes of the film; the calculated doses on the corresponding points where the rolled-up film was placed were reconstructed into a rectangular dose matrix equivalent to that of the rolled-out plane of the film. The VMAT QA system was implemented in 3 clinical cases of prostate, nasopharynx, and pelvic metastasis. Each calculated dose on the rolled-out plane was compared with measurement values by modified gamma evaluation. Detected positions of dose disagreement on the rolled-out plane were also distinguished in cylindrical coordinates. The frequency of error occurrence and error distribution were summarized in a histogram and in an axial view of rolled-up plane to intuitively identify the corresponding positions of detected errors according to the gantry angle. Results: The dose matrix reconstructed from the developed VMAT QA system was used to verify the measured dose distribution along the arc trajectory. Dose discrepancies were detected on the rolled-out plane and visualized on the calculated dose matrix in cylindrical coordinates. The error histogram obtained by gamma evaluation enabled identification of the specific error frequency at each gantry angular position. The total dose error occurring on the cylindrical surface was in the range of 5%-8% for the 3 cases. Conclusions: The developed system provides a practical and reliable QA method to

  15. Development of a novel quality assurance system based on rolled-up and rolled-out radiochromic films in volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Yeon; Lee, Jeong-Woo; Choi, Kyoung-Sik; Lee, Jung Seok; Kim, You-Hyun; Hong, Semie; Suh, Tae-Suk [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Research Institute of Health Science, College of Health Science, Korea University, Seoul 136-703 (Korea, Republic of) and Department of Radiation Oncology, Konkuk University Medical Center, Seoul 143-729 (Korea, Republic of); Department of Radiation Oncology, Anyang SAM Hospital, Anyang 430-733 (Korea, Republic of) and Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Department of Radiation Oncology, Anyang SAM Hospital, Anyang 430-733 (Korea, Republic of); Department of Radiologic Science, College of Health Science, Korea University, Seoul 136-703 (Korea, Republic of); Department of Radiation Oncology, Konkuk University Medical Center, Seoul 143-729 (Korea, Republic of); Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of)

    2011-12-15

    Purpose: To develop a cylindrical phantom with rolled-up radiochromic films and dose analysis software in the rolled-out plane for quality assurance (QA) in volumetric modulated arc therapy (VMAT). Methods: The phantom consists of an acrylic cylindrical body wrapped with radiochromic film inserted into an outer cylindrical shell of 5 cm thickness. The rolled-up films with high spatial resolution enable detection of specific dose errors along the arc trajectory of continuously irradiated and modulated beams in VMAT. The developed dose analysis software facilitates dosimetric evaluation in the rolled-up and rolled-out planes of the film; the calculated doses on the corresponding points where the rolled-up film was placed were reconstructed into a rectangular dose matrix equivalent to that of the rolled-out plane of the film. The VMAT QA system was implemented in 3 clinical cases of prostate, nasopharynx, and pelvic metastasis. Each calculated dose on the rolled-out plane was compared with measurement values by modified gamma evaluation. Detected positions of dose disagreement on the rolled-out plane were also distinguished in cylindrical coordinates. The frequency of error occurrence and error distribution were summarized in a histogram and in an axial view of rolled-up plane to intuitively identify the corresponding positions of detected errors according to the gantry angle. Results: The dose matrix reconstructed from the developed VMAT QA system was used to verify the measured dose distribution along the arc trajectory. Dose discrepancies were detected on the rolled-out plane and visualized on the calculated dose matrix in cylindrical coordinates. The error histogram obtained by gamma evaluation enabled identification of the specific error frequency at each gantry angular position. The total dose error occurring on the cylindrical surface was in the range of 5%-8% for the 3 cases. Conclusions: The developed system provides a practical and reliable QA method to

  16. Periodontal considerations in the use of bonds or bands on molars in adolescents and adults.

    Science.gov (United States)

    Boyd, R L; Baumrind, S

    1992-01-01

    This longitudinal study compared the periodontal status of bonded and banded molars in 20 adult and 40 adolescent patients before, during and after treatment with fixed orthodontic appliances. Plaque accumulation (measured by the Plaque Index), gingival inflammation (measured by the Gingival Index and the bleeding tendency), and pocket depth were assessed by one examiner at sites along the mesio-buccal line angle of the maxillary right first molar and the mandibular left first molar. Assessments were made immediately prior to the placement of fixed appliances (pretreatment), at 1, 3, 6, 9, 12 and 18 months after appliances were placed; and 3 months after appliances were removed (posttreatment). Loss of attachment between the pretreatment and posttreatment visits also was determined. At pretreatment, no significant differences were found in gingival inflammation between maxillary and mandibular banded and bonded molars. During treatment, both maxillary and mandibular banded molars showed significantly (p less than 0.05) greater gingival inflammation and plaque accumulation than did bonded molars. Three months after appliance removal, the maxillary molars that had been banded continued to show significantly more gingival inflammation and loss of attachment than did the maxillary molars that had been bonded. When all banded and bonded teeth were grouped by patient age, mean values for plaque accumulation and gingival inflammation in the maxillary molar regions were significantly greater for adolescents than for adults.

  17. Analytical method for establishing indentation rolling resistance

    Science.gov (United States)

    Gładysiewicz, Lech; Konieczna, Martyna

    2018-01-01

    Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  18. Charge accumulation in the buried oxide of SOI structures with the bonded Si/SiO2 interface under γ-irradiation: effect of preliminary ion implantation

    International Nuclear Information System (INIS)

    Naumova, O V; Fomin, B I; Ilnitsky, M A; Popov, V P

    2012-01-01

    In this study, we examined the effect of preliminary boron or phosphorous implantation on charge accumulation in the buried oxide of SOI-MOSFETs irradiated with γ-rays in the total dose range (D) of 10 5 –5 × 10 7 rad. The buried oxide was obtained by high-temperature thermal oxidation of Si, and it was not subjected to any implantation during the fabrication process of SOI structures. It was found that implantation with boron or phosphorous ions, used in fabrication technologies of SOI-MOSFETs, increases the concentration of precursor traps in the buried oxide of SOI structures. Unlike in the case of boron implantation, phosphorous implantation leads to an increased density of states at the Si/buried SiO 2 interface during subsequent γ-irradiation. In the γ-irradiated SOI-MOSFETs, the accumulated charge density and the density of surface states in the Si/buried oxide layer systems both vary in proportion to k i ln D. The coefficients k i for as-fabricated and ion-implanted Si/buried SiO 2 systems were evaluated. From the data obtained, it was concluded that a low density of precursor hole traps was a factor limiting the positive charge accumulation in the buried oxide of as-fabricated (non-implanted) SOI structures with the bonded Si/buried SiO 2 interface. (paper)

  19. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas; Lavender, Curt; Joshi, Vineet V.

    2017-12-01

    The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.

  20. Analisis Yuridis Pembatalan Putusan Bapmi oleh Putusan Pengadilan (Studi Perkara Nomor 513/pdt.g-arb/2012/pn.jkt.pst)

    OpenAIRE

    Hasanah, Ulfia; Bachtiar, Maryati; Petresia, Yohanna

    2015-01-01

    Settlement of business disputes be an option for the parties to the dispute are usually used method of dispute resolution through alternative dispute resolution. Choice of dispute resolution in the capital market conducted litigation in general through the arbitration institution Indonesian Capital Market Arbitration Board (BAPMI). BAPMI arbitration decision issued BAPMI-004 / ARB-03 / VIII / 2011 on the application submitted by PT Bank Permata. BAPMI verdict obliging PT Nikko Securities to r...

  1. Development of an aerostatic bearing system for roll-to-roll printed electronics

    Science.gov (United States)

    Chen, Shasha; Chen, Weihai; Liu, Jingmeng; Chen, Wenjie; Jin, Yan

    2018-06-01

    Roll-to-roll printed electronics is proved to be an effective way to fabricate electrical devices on various substrates. High precision overlay alignment plays a key role to create multi-layer electrical devices. Multiple rollers are adopted to support and transport the substrate web. In order to eliminate the negative effect of the machining error and assembling error of the roller, a whole roll-to-roll system including two aerostatic bearing devices with arrayed restrictors is proposed in this paper. Different to the conventional roller, the aerostatic bearing device can create a layer of air film between the web and the device to realize non-contact support and transport. Based on simplified Navier–Stokes equations, the theoretical model of the air film is established. Moreover, the pressure distribution of the whole flow field and single restrictor in different positions are modeled by conducting numerical simulation with computational fluid dynamics (CFD) software FLUENT. The load capacity curves and stiffness curves are generated to provide guidance for optimizing the structure of the device. A prototype of the aerostatic bearing system is set up and the experiment tests are carried out. For the proposed aerostatic bearing roller with a diameter of 100 mm and length of 200 mm, the experimental results show the aerostatic bearing method can achieve the position accuracy in a range of 1 μm in the vertical direction of the web, which is much better than that using existing methods.

  2. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-01-01

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  3. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-12-15

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  4. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Jue, Jan-Fong, E-mail: dennis.keiser@inl.gov; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U–Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U–10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: • A typical Zr diffusion barrier with a thickness of 25 μm. • A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 μm. • Chemical banding, in some areas more than 100 μm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt.%. • Decomposed areas containing plate-shaped low-Mo phase. • A typical Zr/cladding interaction layer with a thickness of 1–2 μm. • A visible UZr{sub 2} bearing layer with a thickness of 1–2 μm. • Mo-rich precipitates (mainly Mo{sub 2}Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr{sub 2}-bearing layer and the U–Mo matrix. • No excessive interaction between cladding and the uncoated fuel edge. • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O

  5. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    NARCIS (Netherlands)

    Jongsma, Marije A.; van der Mei, Henny C.; Atema-Smit, Jelly; Busscher, Henk I.; Ren, Yijin

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased

  6. Low Band Gap Polymers for Roll-to-Roll Coated Organic Photovoltaics – Design, Synthesis and Characterization

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Jørgensen, Mikkel

    2011-01-01

    In this paper we present the design and synthesis of 25 new low band gap polymers. The polymers were characterized by UV-vis spectroscopy which showed optical band gaps of 2.0–0.9 eV. The polymers which were soluble enough were applied in organic photovoltaics, both small area devices with a spin...... coated active layer and in large area modules where all layers including the active layer were either roll-to-roll coated or printed. These experiments showed that the design of polymers compatible with roll-toroll coating is not straightforward and that there are various issues such as donor...

  7. Roll-to-roll fabrication of a low-reflectance transparent conducting oxide film with subwavelength structures

    Science.gov (United States)

    Chou, Ta-Hsin; Cheng, Kuei-Yuan; Hsieh, Chih-Wei; Takaya, Yasuhiro

    2012-04-01

    The transparent conducting oxide (TCO) film is a significant component in flat panel display, e-paper and touch panel. The tin-doped indium oxide (ITO) material is one of the most popular TCOs. However, ITO has high refractive index, so the phenomenon of high-reflectance limits the wide use of ITO. In this study, the structure and mass production process of new low-reflectance TCO film is verified. Laser interference lithography and the roll-to-roll UV embossing process are used to fabricate subwavelength structures on PET film; then ITO was deposited on structures by roll-to-roll sputtering. When the dimension of structures reaches 300 nm pitch, the optical reflectance and electrical performance of film are reduced to 8.1% at wavelength 550 nm and its transmittance rate is 84.3% at the same wavelength, and the sheet resistance of this film is 50.44 Ω/□. This result indicates that the new TCO proposed in this study is suitable for touch panel and other display applications.

  8. Analytical method for establishing indentation rolling resistance

    Directory of Open Access Journals (Sweden)

    Gładysiewicz Lech

    2018-01-01

    Full Text Available Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  9. Radiometric study of creep in ingot rolling

    International Nuclear Information System (INIS)

    Kubicek, P.; Zamyslovsky, Z.; Uherek, J.

    The radiometric study of creep during ingot rolling performed in the rolling mill of the Vitkovice Iron and Steel Works and the first results are described. Selected sites in 3 to 8 ton ingots were labelled with 2 to 3.7x10 5 Bq of 60 Co and after rolling into blocks, the transposition of the labelled sites of the ingots was investigated. The results indicate creep during rolling, local extension in certain sites under study and help to determine the inevitable bottom crop incurred in the forming. Finally, the requirements put on the radiometric apparatus for the next stages of technological research are presented. (author)

  10. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. The Commission further...

  11. Pipe Rolling from Continuous Cast Metal

    International Nuclear Information System (INIS)

    Zhordania, I.; Chkhartishvili, I.; Lordkipanidze, J.; Melashvili, Z.; Papava, K.; Khundadze, K.

    2007-01-01

    The approach to manufacturing of high quality pipes as a result of solid and hollow billet rolling from continuous cast metal is shown. Optimal parameters of piercing, temperature of piercing and piercing rolling mill rollers speed have been experimentally established. (author)

  12. Efficient Circulation of Railway Rolling Stock

    NARCIS (Netherlands)

    A. Alfieri (Arianna); R. Groot (Rutger); L.G. Kroon (Leo); A. Schrijver (Lex)

    2002-01-01

    textabstractRailway rolling stock (locomotives, carriages, and train units) is one of the most significant cost sources for operatorsof passenger trains, both public and private. Rolling stock costsare due to material acquisition, power supply, and material maintenance. The efficient circulation of

  13. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    Science.gov (United States)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  14. A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Gevorgyan, Suren; Gholamkhass, Bobak

    2009-01-01

    A round robin for the performance of roll-to-roll coated flexible large-area polymer solar-cell modules involving 18 different laboratories in Northern America, Europe and Middle East is presented. The study involved the performance measurement of the devices at one location (Risø DTU) followed b...

  15. Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes

    DEFF Research Database (Denmark)

    Hösel, Markus; Krebs, Frederik C

    2012-01-01

    In this report we employ static and roll-to-roll (R2R) photonic sintering processes on flexo printed silver nanoparticle-based electrode structures with a heat-sensitive 60 mm thin barrier foil as a substrate. We use large area electrode structures to visualize the increased optical footprint...... as the nanoparticles are already sintered. The advantage of single exposure is the ability to produce higher R2R processing speeds without overlapping, which is shown in the form of theoretical calculations....

  16. Magnon Inflation: Slow Roll with Steep Potentials

    CERN Document Server

    Adshead, Peter; Burgess, C P; Hayman, Peter; Patil, Subodh P

    2016-01-01

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy the usual slow-roll condition (d V)^2 << V^2/Mp^2. They evade the usual slow-roll conditions on $V$ because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides an example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for the background evolution for Chromo-natural inflation. We also show that our EFT can be understood as a multi-field generalization ...

  17. Microstructure and mechanical properties of Mg-Al-Mn-Ca alloy sheet produced by twin roll casting and sequential warm rolling

    International Nuclear Information System (INIS)

    Wang Yinong; Kang, Suk Bong; Cho, Jaehyung

    2011-01-01

    Research highlights: → This work, taking AM30 + 0.2Ca alloy as experimental material, will provide some new information as follows: one is microstructural difference between twin roll cast and ingot cast AM31-0.2Ca alloy. The other is the comparison of tensile properties after warm rolling and annealing. Suggesting the possibility of the development of wrought magnesium alloy sheets by strip casting. - Abstract: Microstructural evolution and mechanical properties of twin roll cast (TRC) Mg-3.3 wt.%Al-0.8 wt.%Mn-0.2 wt.%Ca (AM31 + 0.2Ca) alloy strip during warm rolling and subsequent annealing were investigated in this paper. The as-TRC alloy strip shows columnar dendrites in surface and equiaxed dendrites in center regions, as well as finely dispersed primary Al 8 Mn 5 particles on interdendritic boundaries which result in the beneficial effect on microstructural refinement of strip casting. The warm rolled sheets show intensively deformed band or shear band structures, as well as finely and homogeneously dispersed Al-Mn particles. No evident dynamic recrystallization (DRX) takes place during warm rolling process, which is more likely attributed to the finely dispersed particle and high solid solution of Al and Mn atoms in α-Mg matrix. After annealing at 350 deg. C for 1 h, the warm rolled TRC sheets show fine equiaxed grains around 7.8 μm in average size. It has been shown that the present TRC alloy sheet has superior tensile strength and comparative elongation compared to commercial ingot cast (IC) one, suggesting the possibility of the development of wrought magnesium alloy sheets by twin roll strip casting processing. The microstructural evolution during warm rolling and subsequent annealing as well as the resulting tensile properties were analyzed and discussed.

  18. Variáveis meteorológicas e cobertura vegetal de espécies arbóreas em praças urbanas em Cuiabá, Brasil

    Directory of Open Access Journals (Sweden)

    Angela Santana de Oliveira

    2013-12-01

    Full Text Available A influência da vegetação nas variáveis meteorológicas foi avaliada por meio do índice de área foliar (IAF e índice de sombreamento arbóreo (ISA em duas praças públicas em Cuiabá-MT, Brasil. Medidas de temperatura do ar (T e umidade relativa (UR foram obtidas sob a copa das árvores em diferentes sítios da cidade para o período seco e chuvoso no ano de 2009. A análise dos valores médios destas variáveis mostraram maiores valores de T e menores UR ocorrendo durante o período seco e sendo semelhantes nas duas praças. Com relação à UR, entretanto, não houve diferenças significativas entre a medida sob as árvores e a atmosfera. O índice de área foliar foi calculado e variou em função das espécies arbóreas das praças, e mostrou valores entre 5,64 e 2,79 m². m-2, sendo a média do IAF e do ISA na Praça Popular superiores ao da Praça 8 de Abril. Conclui-se que as espécies arbóreas melhoraram o ambiente térmico em virtude da atenuação da radiação proporcionada pelo sombreamento das diferentes espécies, principalmente no horário com menor ângulo solar.

  19. ROLLING PROCESS WITH OHSAS AND TEXTURE FORMATION– A REVIEW

    Directory of Open Access Journals (Sweden)

    P. CHANDRAMOHAN

    2009-03-01

    Full Text Available Rolling is a mechanical treatment, which plays an important part in the processing of ferrous and nonferrous alloys. Texturing is an important phenomenon that occurs after rolling process. Preferred orientation increases the strength of the material enormously. Hence the research is focused on the rolling studies and the texture formation, which occurs after rolling process. This review mainly focuses on rolling process carried out in different alloys. It also highlights the analysis made on various rolling parameters for improving the mechanical properties. Texture studies carried on various ferrous and non-ferrous alloys; particularly in nitrogen alloyed duplex stainless steel is discussed. Finally the need for implementation of occupational health and safety during a thermomechanical treatment is also discussed. The state of art in this field is encouraging and showing positive signs of commercializing rolled nitrogen alloyed duplex stainless steel after proper texture control.

  20. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  1. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    DEFF Research Database (Denmark)

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C

    2012-01-01

    demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy......The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We...... energies was observed....

  2. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  3. Interlaboratory indoor ageing of roll-to-roll and spin coated organic photovoltaic devices: Testing the ISOS tests

    DEFF Research Database (Denmark)

    Gevorgyan, Suren A.; Corazza, Michael; Madsen, Morten Vesterager

    2014-01-01

    to roll-to-roll production. Furthermore, the reproducibility of current–voltage (IV) measurement and preconditioning (light soaking treatments) are addressed. Additionally, the inter-comparison of the degradation rates of the samples aged under three different dark test conditions (ambient, dry/heat, damp...

  4. Vegetação arbustivo-arbórea em uma restinga de Jaguaruna, litoral sul do Estado de Santa Catarina, Brasil

    Directory of Open Access Journals (Sweden)

    Robson dos Santos

    2017-01-01

    Full Text Available Para ampliar o conhecimento sobre a planície costeira do Estado de Santa Catarina, foi realizado um estudo fitossociológico do componente arbustivo-arbóreo na restinga da Lagoa do Arroio Corrente, no município de Jaguaruna, sul do Estado. Para amostragem da vegetação, foi usado o método de parcelas, incluindo os indivíduos com diâmetro a altura do solo (DAS mínimo de 2,5 cm. Constatou-se, diferença de altura na fitofisionomia do trecho superior (5 m e do trecho inferior (10 m das dunas, optando-se por realizar a amostragem separadamente. A vegetação da restinga da Lagoa do Arroio Corrente apresentou, no trecho superior, estratificação de baixo porte (1 a 5 m, destacando-se indivíduos arbustivos, conferindo aparência densa à vegetação, devido ao desenvolvimento aglomerado dessas plantas e, no trecho inferior, com indivíduos arbóreos emergentes, conferindo dois estratos, um mais baixo com predomínio de vegetação arbustiva (2 a 5 m e um segundo com indivíduos arbóreos (até 10 m. A riqueza florística resultou em 17 famílias, 25 gêneros e 32 espécies. A área basal total foi de 4,3 m2.ha-1 (trecho superior e 23,2 m2.ha-1 (trecho inferior. Guapira opposita (Vell. Reitz apresentou maior valor de importância, destacando-se também nos demais parâmetros fitossociológicos analisados (frequência, densidade e dominância. As análises efetuadas contribuem com dados estruturais para as restingas de Santa Catarina, podendo auxiliar na caracterização da vegetação dos cordões arenosos do sul do Brasil.

  5. High throughput in situ scattering of roll-to-roll coated functional polymer films

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel

    2017-01-01

    The development of conjugated polymers for organic electronics and photovoltaics has relied heavily on advanced X-ray scattering techniques almost since the earliest studies in the field. Almost from the beginning, structural studies focused on how the polymers self-organize in thin films......, and the relation between chemical configuration of the polymer, structure and performance. This chapter presents the latest developments where structural analysis is applied as in situ characterization of structure formation during roll-to-roll coating of photoactive layers for solar cells....

  6. Movement patterns of limb coordination in infant rolling.

    Science.gov (United States)

    Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro

    2016-12-01

    Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.

  7. New Numerical Solution of von Karman Equation of Lengthwise Rolling

    Directory of Open Access Journals (Sweden)

    Rudolf Pernis

    2015-01-01

    Full Text Available The calculation of average material contact pressure to rolls base on mathematical theory of rolling process given by Karman equation was solved by many authors. The solutions reported by authors are used simplifications for solution of Karman equation. The simplifications are based on two cases for approximation of the circular arch: (a by polygonal curve and (b by parabola. The contribution of the present paper for solution of two-dimensional differential equation of rolling is based on description of the circular arch by equation of a circle. The new term relative stress as nondimensional variable was defined. The result from derived mathematical models can be calculated following variables: normal contact stress distribution, front and back tensions, angle of neutral point, coefficient of the arm of rolling force, rolling force, and rolling torque during rolling process. Laboratory cold rolled experiment of CuZn30 brass material was performed. Work hardening during brass processing was calculated. Comparison of theoretical values of normal contact stress with values of normal contact stress obtained from cold rolling experiment was performed. The calculations were not concluded with roll flattening.

  8. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    Science.gov (United States)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  9. Rolling at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim L.; Niordson, Christian F.; Hutchinson, John W.

    2016-01-01

    The rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well....... Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without...

  10. Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules

    DEFF Research Database (Denmark)

    Tanenbaum, David M.; Dam, Henrik Friis; Rösch, R.

    2012-01-01

    Fully roll-to-roll processed polymer solar cell modules were prepared, characterized, and laminated. Cell modules were cut from the roll and matched pairs were selected, one module with exposed cut edges, the other laminated again with the same materials and adhesive sealing fully around the cut...... edges. The edge sealing rim was 10 mm wide. Cell modules were characterized by periodic measurements of IV curves over extended periods in a variety of conditions, as well as by a variety of spatial imaging techniques. Data show significant stability benefits of the edge sealing process. The results...

  11. Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film

    International Nuclear Information System (INIS)

    Sohn, Ki-Ju; Lee, Woo Il; Park, Jae Hong; Jang, Hyun-Ik; Lee, Dong-Eon

    2013-01-01

    Thermal roll-to-roll imprint lithography (R2RIL) is a simple and low-cost process for the mass production of micro/nanopatterns. However, in that it relies on highly viscous thermoplastic resists, it is limited in its ability to imprint precise patterns at a high speed. Moreover, the concentrated imprint force applied in R2RIL can damage the resist material which is structurally vulnerable at high process temperatures. Therefore, it is important to understand the temperature- and time-dependent characteristics of the resist material as well as the imprinting mechanism when using thermal R2RIL. In this work, the effects of the process temperature and rolling speed on thermal R2RIL of polycarbonate (PC) films were investigated to improve the process efficiency. Micro-scale line patterns were successfully transferred onto PC films from nickel (Ni) mold stamps. Consequently, line patterns with widths in the range of 5–80 µm were achieved at a traveling speed of 28.6 mm s –1 and process temperature of 150 °C, which is just above the glass transition temperature (T g ). In addition, the patterning performance was investigated for different temperatures, rolling speeds and pattern sizes. The imprinted pattern profiles were measured by an alpha-step surface profiler to investigate the patterning performance. The results show that a much better imprint performance was achieved at 150 °C, compared to the result at temperatures below T g . The physical mechanisms of thermal R2RIL on a PC film were studied by a finite-element analysis and the patterning process was successfully demonstrated by a visco-plastic deformation model. (paper)

  12. The effect of rolling draughts on texture and microstructure in aluminium

    DEFF Research Database (Denmark)

    Mishin, Oleg; Juul Jensen, D.; Bay, B.

    1999-01-01

    The texture gradients and microstructural variations are investigated in commercially pure aluminium plates 40% cold-rolled either with small draughts or with intermediate draughts. In these two samples, different textures are observed near the quarter thickness layer. A pronounced shear texture...... is found in the sample rolled with small draughts, while a rolling texture is observed in the sample rolled with intermediate draughts. Also, significant differences were found in the rolled microstrucrures near the quarter thickness. After rolling with intermediate draughts, extended dislocation...... boundaries preferentially aligned at an angle of about 25-45o to the rolling direction are observed in the longitudinal section. After rolling with small draughts, extended dislocation boundaries are preferentially aligned closer to the rolling direction. These results are discribed and discussed....

  13. Roll-to-roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics

    International Nuclear Information System (INIS)

    Izu, M.; Ellison, T.

    2003-01-01

    In order to meet the price target necessary for widespread use of solar cell products, Energy Conversion Devices, Inc., ECD, has developed and commercialized a continuous roll-to-roll manufacturing technology for the production of a-Si alloy solar cells. Since the early 1980s, we have advanced this technology from a small-scale pilot machine to a large-scale production machine. In 2002, ECD commissioned a 30 MW per year machine for United Solar Systems Corp. in Auburn Hills, Michigan. The RF PECVD a-Si alloy solar cell processor, designed and built by ECD, deposits triple-junction solar cell materials consisting of nine layers of a-Si alloys in a continuous roll-to-roll operation simultaneously on six coils of 130 μm thick, 0.36 m wide, 2.6 km long stainless-steel substrate at 1 cm/s. In order to minimize production losses due to undetected deviations of production conditions and carry on a continuous program of device optimization, we have developed and are incorporating in situ cell performance diagnostic systems. (author)

  14. ROLL OUT THE TALENT : Final project report

    OpenAIRE

    Eerola, Tuomas; Tuominen, Pirjo; Hakkarainen, Riitta-Liisa; Laurikainen, Marja; Mero, Niina

    2014-01-01

    The ROLL OUT THE TALENT project was born out of the desire to recognise and support the strengths of vocational students and to develop new and innovative operating models. ROLL OUT THE TALENT promoted regional cooperation between institutes and companies. The project produced operating and study path models that take into consideration the individual strengths of vocational students and the principles of lifelong learning. This is the final report of the ROLL OUT THE TALENT project, and ...

  15. Effect of Reduction in Thickness and Rolling Conditions on Mechanical Properties and Microstructure of Rolled Mg-8Al-1Zn-1Ca Alloy

    Directory of Open Access Journals (Sweden)

    Yuta Fukuda

    2017-01-01

    Full Text Available A cast Mg-8Al-1Zn-1Ca magnesium alloy was multipass hot rolled at different sample and roll temperatures. The effect of the rolling conditions and reduction in thickness on the microstructure and mechanical properties was investigated. The optimal combination of the ultimate tensile strength, 351 MPa, yield strength, 304 MPa, and ductility, 12.2%, was obtained with the 3 mm thick Mg-8Al-1Zn-1Ca rolled sheet, which was produced with a roll temperature of 80°C and sample temperature of 430°C. This rolling process resulted in the formation of a bimodal structure in the α-Mg matrix, which consequently led to good ductility and high strength, exclusively by the hot rolling process. The 3 mm thick rolled sheet exhibited fine (mean grain size of 2.7 μm and coarse grain regions (mean grain size of 13.6 μm with area fractions of 29% and 71%, respectively. In summary, the balance between the strength and ductility was enhanced by the grain refinement of the α-Mg matrix and by controlling the frequency and orientation of the grains.

  16. Plastic anisotropy of straight and cross rolled molybdenum sheets

    International Nuclear Information System (INIS)

    Oertel, C.-G.; Huensche, I.; Skrotzki, W.; Knabl, W.; Lorich, A.; Resch, J.

    2008-01-01

    The microstructure, texture and mechanical properties of molybdenum sheets produced by different rolling processes were investigated by orientation imaging in the scanning electron microscope, X-ray diffraction and tensile tests, respectively. For comparable recrystallization degree of the sheets investigated, straight rolling with low reduction ratio produces α-fiber textures with a maximum at {100} . At higher rolling degrees the maximum shifts to {112} . Cross rolling increases the rotated cube component {100} . The strong differences in the texture measured are reflected in the plastic anisotropy characterized by differences in the yield stress and Lankford parameter which were measured along directions in the rolling plane at angles of 0 deg., 45 deg. and 90 deg. with the rolling direction. The Taylor-Bishop-Hill theory is used successfully to qualitatively explain the plastic anisotropy

  17. Tachyon constant-roll inflation

    Science.gov (United States)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  18. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  19. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...

  20. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling....... In a narrow area in the deformation zone, the velocity of the de-formed material is equal to the velocity of the rolls. This area or line is named “neutral line”. The posi-tion of the neutral line depends on friction, reduc-tion ratio, diameter of the rolls, and width of the sheet....

  1. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  2. Spring-back of flexible roll forming bending process

    International Nuclear Information System (INIS)

    Zhang, Y; Kim, D H; Jung, D W

    2015-01-01

    Simulations are now widely used in the field of roll forming because of their convenience. Simulations provide a low cost, secure and fast analysis tool. Flexible roll forming provides the desired shapes with a one time forming process. For roll forming, the velocity of the sheet and friction are important factors to attain an ideal shape. Because it is a complicated process, simulations provide a better understanding of the roll forming process. Simulations were peformed using ABAQUS software linked to elastic-plastic modules which we developed taking into account of interactions between these fields [1]. The application of this method makes it possible to highlight the strain-stress and mechanical behaviour laws and the spring-back. Thus, the flexible roll forming and bending process can be well described by the simulation software and guide the actual machine. (paper)

  3. Transient thermal stresses of work roll by coupled thermoelasticity

    Science.gov (United States)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  4. Quality control of roll-to-roll processed polymer solar modules by complementary imaging methods

    DEFF Research Database (Denmark)

    Rösch, R.; Krebs, Frederik C; Tanenbaum, D.M.

    2012-01-01

    We applied complementary imaging methods to investigate processing failures of roll-to-roll solution processed polymer solar modules based on polymer:fullerene bulk heterojunctions. For investigation of processing deficiencies in solar modules we employed dark lock-in thermography (DLIT......), electroluminescence (ELI) and photoluminescence/reflection imaging (PLI/RI) complemented by optical imaging (OI). The combination of all high resolution images allowed us to allocate the origin of processing errors to a specific deposition process, i.e. the insufficient coverage of an electrode interlayer...

  5. Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing

    International Nuclear Information System (INIS)

    Sridharan, Niyanth; Wolcott, Paul; Dapino, Marcelo; Babu, S.S.

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique. In this work characterization using electron back scatter diffraction was performed on aluminum–titanium dissimilar metal welds made using a 9 kW ultrasonic additive manufacturing system. The results showed that the aluminum texture at the interface after ultrasonic additive manufacturing is similar to aluminum texture observed during accumulative roll bonding of aluminum alloys. It is finally concluded that the underlying mechanism of bond formation in ultrasonic additive manufacturing primarily relies on severe shear deformation at the interface.

  6. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  7. Chaotic travelling rolls in Rayleigh–Bénard convection

    Indian Academy of Sciences (India)

    The lateral shift of the rolls may lead to a global flow reversal of the convective motion. The chaotic travelling rolls are observed in simulations with free-slip as well as no-slip boundary conditions on the velocity field. We show that the travelling rolls and the flow reversal are due to an interplay between the real and imaginary ...

  8. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Directory of Open Access Journals (Sweden)

    Delin Tang

    Full Text Available Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  9. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Science.gov (United States)

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  10. Voltage and Thermally Driven Roll-to-Roll Organic Printed Transistor Made in Ambient Air Conditions

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    of the organic semiconductor poly3hexylthiophene and the dielectric material polyvinylphenol before the gate was applied by screen printing. All the processing was realized in ambient air on a PET flexible substrate. We explore the footprint and the practically accessible geometry of such devices with a special......Resume: Organic thin film transistors offer great potential for use in flexible electronics. Much of this potential lies in the solution processability of the organic polymers enabling both roll coating and printing on flexible substrates and thus greatly reducing the material and fabrication costs....... We present flexible organic power transistors prepared by fast (20 m min−1) roll-to-roll flexographic printing of the drain and source electrode structures, with an interspace below 50 um, directly on polyester foil[1]. The devices have top gate architecture and were completed by slotdie coating...

  11. Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Annual subcontractor report, 1 April 1992--31 March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Izu, M. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1993-12-01

    This report describes work done under a 3-year program to advance ECD`s roll-to-roll, triple-junction photovoltaic manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand commercial capacity utilizing ECD technology. The specific 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1.00 per peak watt. Accomplishments during Phase 1 included: (1) ECD successfully incorporated a high-performance Ag/metal-oxide back-reflector system into its continuous roll-to-roll commercial production operation. (2) High-quality a-Si-Ge narrow-band-gap solar cells were incorporated into the manufacturing. (3) ECD demonstrated the continuous roll-to-roll production of high-efficiency, triple-junction, two-band-gap solar cells consistently and uniformly throughout a 762-m (2500-ft) run with high yield. (4) ECD achieved 11.1% initial sub-cell efficiency of triple-junction, two-band-gap a-Si alloy solar cells in the production line. (5) The world`s first 0.37-m{sup 2} (4-ft{sup 2}) PV modules were produced utilizing triple-junction spectrum-splitting solar cells manufactured in the production line. (6) As a result of process optimization to reduce the layer thickness and to improve the gas utilization, ECD achieved a 77% material cost reduction for germane and 58% reduction for disilane. Additionally, ECD developed a new low-cost module that saves approximately 30% in assembly material costs.

  12. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  13. Adaptive attenuation of aliased ground roll using the shearlet transform

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-01-01

    Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.

  14. Rolling process simulation of a pair-crossed hot strip mill

    International Nuclear Information System (INIS)

    Chen Shaojie; Xu Jianzhong; Liu Xianghua; Wang Guodong

    2000-01-01

    Process simulation can help optimize the operating parameters aiming to improve the quality of rolled products. In this paper, software in Visual Basic language is developed to simulate the hot rolling process of a pair-crossed mill. The strip temperature is calculated by considering air cooling, water cooling, heat generation and conduction.The production parameters including rolling speeds, resistance to deformation, rolling forces, drive torques and powers are evaluated by mathematical models and their parameter identification support tools. The deformation of roll stack is calculated by influential function method. The roll temperature and expansion are calculated by finite differential method, and the roll wear is described by empirical formula. Based on these calculations as well as the effect of heredity is taken into account, the strip crown and flatness then can be obtained. The results show that the simulation software has friendly user interface, high accuracy and practicability. It can be served as a basis for the mill design and optimization of process parameters to acquire high quality of hot rolled strip. (author)

  15. Decision Support for the Rolling Stock Dispatcher

    DEFF Research Database (Denmark)

    Groth, Julie Jespersen

    Real-time recovery is receiving a fast growing interest in an increasingly competitive railway operation market. This thesis considers the area of rolling stock dispatching which is one of the typical real-time railway dispatching problems. All work of the thesis is based on the network...... and planning processes of the railway operator DSB S-tog a/s. In the thesis the problems existing in the railway planning process from the strategic to real-time level are briefly sketched. Network planning, line planning, timetabling, crew and rolling stock planning is outlined and relevant references...... are given. Specifically the thesis references the operation research studies based on the railway operation of DSB S-tog a/s. Subsequently the process of dispatching is outlined with a specific emphasis on rolling stock. The rolling stock recovery problem is the problem of assigning train units to train...

  16. Numerical analysis of Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  17. Core-free rolled actuators for Braille displays using P(VDF-TrFE-CFE)

    Science.gov (United States)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Rahn, Christopher D.; Zhang, Q. M.

    2012-01-01

    Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF-TrFE-CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m-1). A novel Braille cell is designed and fabricated using six of these actuators.

  18. Refinement of the microstructure of steel by cross rolling

    International Nuclear Information System (INIS)

    Tsay, Kira; Arbuz, Alexandr; Gusseynov, Nazim; Nemkaeva, Renata; Ospanov, Nurlan; Krupen'kin, Ivan

    2016-01-01

    One of the most effective ways for refinement of metal microstructure is a severe plastic deformation. The cross rolling is the one of most perspective methods of severe plastic deformation, because it allows to get the long billets, unlike equal angular pressing and other popular methods. This fact provides some industrial expectation for this method. However, deformation and motion path of the metal is very heterogeneous across the section of the rolled piece. This paper presents the finite element modeling of hot cross rolling of steel in the software package DEFORM-3D features implemented and studied the stress-strain state. An experimental study of the effect of the cross rolling on a three-roll mill on the microstructure of structural alloy steel and stainless steel AISI321 in different zones of the bar. Analysis of microsections made after rolling with high total stretch and the final pass temperature 700°C, shows the formation of equiaxial ultrafinegrain structure on the periphery of an elongated rod and “rolling” texture in the central zone. The resulting microstructure corresponds to that obtained in models of stress-strain state. Keywords: cross rolling, ultra-fine grain structure, steel.

  19. Analysis of Residual Stress and Deformation of Rolling Strengthen Crankshaft Fillet

    Directory of Open Access Journals (Sweden)

    Han Shaojun

    2016-01-01

    Full Text Available Based on the analysis of crankshaft fillet rolling process, used ANSYS finite element analysis software to conduct the elastic-plastic mechanical simulation of crankshaft rolling process, and gained the variation law of the residual stress and plastic deformation in the radial path of the fillet under different rolling laps and rolling pressure. Established the relationship between the rolling pressure and the plastic deformation and residual stress of the fillet, and provided theoretical support for the evaluation and detection of the crankshaft rolling quality.

  20. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    Science.gov (United States)

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  1. A new transducer for local load measurements of friction and roll pressure in cold flat rolling

    DEFF Research Database (Denmark)

    Lagergren, J.; Wanheim, Tarras; Precz, W.

    2006-01-01

    The only way to establish the true rolling pressure and the true friction condition in cold rolling is to conduct measurements in the roll bite. A new transducer design is therefore proposed, in order to overcome problems in previous measurements in the past 70 years. The new idea is to increase ...... and able to avoid signal disturbance. The pressure and friction stress distribution results was as expected by the authors and showed good reproducibility, together with a proven agreement between recorded and simulated signals....... selected from a steady state with no disturbance from the material flow. The transducer was able to simultaneously measure both the normal pressure and the friction stress. An estimation of the coefficient of friction was accordingly performed. The new transducer works very well, it was seen to be robust...

  2. Roll-to-roll printed resistive WORM memory on a flexible substrate

    Science.gov (United States)

    Leppäniemi, Jaakko; Mattila, Tomi; Kololuoma, Terho; Suhonen, Mika; Alastalo, Ari

    2012-08-01

    The fabrication process and the operation characteristics of a fully roll-to-roll printed resistive write-once-read-many memory on a flexible substrate are presented. The low-voltage (memories from a high resistivity ‘0’ state to a low resistivity ‘1’ state is based on the rapid electrical sintering of bits containing silver nanoparticles. The bit ink is formulated by mixing two commercially available silver nanoparticle inks in order to tune the initial square resistance of the bits and to create a self-organized network of percolating paths. The electrical performance of the memories, including read and write characteristics, is described and the long-term stability of the less stable ‘0’ state is studied in different environmental conditions. The memories can find use in low-cost mass printing applications.

  3. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  4. Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors

    DEFF Research Database (Denmark)

    Spyropoulos, G. D.; Kubis, P.; Li, Na

    2014-01-01

    Organic solar cell technology bears the potential for high photovoltaic performance combined with truly low-cost, high-volume processing. Here we demonstrate organic tandem solar modules on flexible substrates fabricated by fully roll-to-roll compatible processing at temperatures...

  5. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  6. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  7. Cold rolling precision forming of shaft parts theory and technologies

    CERN Document Server

    Song, Jianli; Li, Yongtang

    2017-01-01

    This book presents in detail the theory, processes and equipment involved in cold rolling precision forming technologies, focusing on spline and thread shaft parts. The main topics discussed include the status quo of research on cold rolling precision forming technologies; the design and calculation of process parameters; the numerical simulation of cold rolling forming processes; and the equipment used in cold rolling forming. The mechanism of cold rolling forming is extremely complex, and research on the processes, theory and mechanical analysis of spline cold rolling forming has remained very limited to date. In practice, the forming processes and production methods used are mainly chosen on the basis of individual experience. As such, there is a marked lack of both systematic, theory-based guidelines, and of specialized books covering theoretical analysis, numerical simulation, experiments and equipment used in spline cold rolling forming processes – all key points that are included in this book and ill...

  8. The influence of the roll diameter in flat rolling of of superconducting in situ and ex situ MgB2 tape

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    , 150 and 210 mm in each step. The investigation has shown that the in situ powder is more readily compacted than the ex situ powder, with an average increase of relative density after mechanical processing of 37% for in situ powder and 19% for ex situ powder. Statistical analysis showed that the choice......Applying the powder in tube (PIT) method, single-filament MgB2/Fe wire and tape has been manufactured applying both the ex situ and the in situ approach. The influence of the roll diameter in three-step flat rolling on the powder density and critical temperature has been examined using rolls of 70...... roll in the first and second reductions followed by the 150 mm or 210 mm roll in the last reduction was the optimum strategy for both powder types. AC susceptibility testing showed that for the in situ tapes there was no correlation between the powder density and the critical temperature. For ex situ...

  9. Rolling induced size effects in elastic–viscoplastic sheet metals

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2015-01-01

    sheet rolling, where a non-homogeneous material deformation takes place between the rollers. Large strain gradients develop where the rollers first come in contact with the sheet, and a higher order plasticity model is employed to illustrate their influence at small scales. The study reveals...... presented revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combination with strain gradient hardening – including both dissipative and energetic contributions. To bring out first order effects on rolling at small scale, the modeling efforts are limited to flat...

  10. Entry Strategies to Indonesian Market Case: MoveaRoll

    OpenAIRE

    Islam, Zahedul

    2013-01-01

    MoveRoll Oy, an internationally growing and expanding Finnish company located in Porvoo, has invented a unique technology to produce a paper roll conveyor which the company believes will revolutionise the paper roll handling industry. Moreover, after establishing itself in the Finnish market, the company has started expanding its business to countries like Sweden, USA, and China. Likewise, the process of expanding to the Russian market is currently underway and the company has recently launch...

  11. 14 CFR 25.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 25.493 Section 25.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.493 Braked roll conditions. (a...

  12. Evolution of fuel plate parameters during deformation in rolling

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, M., E-mail: mdurazzo@ipen.br [Nuclear and Energy Research Institute – IPEN/CNEN-SP, São Paulo (Brazil); Vieira, E.; Urano de Carvalho, E.F. [Nuclear and Energy Research Institute – IPEN/CNEN-SP, São Paulo (Brazil); Riella, H.G. [Nuclear and Energy Research Institute – IPEN/CNEN-SP, São Paulo (Brazil); Chemical Engineering Department, Santa Catarina Federal University, Florianópolis (Brazil)

    2017-07-15

    The Nuclear and Energy Research Institute – IPEN/CNEN-SP routinely produces the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U{sub 3}Si{sub 2}-Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed based on information obtained from literature, which was used as a premise for defining the current manufacturing procedures, according to a methodology with an essentially empirical character. Despite the current rolling process being perfectly stable and highly reproducible, it is not well characterized and is therefore not fully known. The objective of this work is to characterize the rolling process for producing dispersion fuel plates. Results regarding the evolution of the main parameters of technological interest, after each rolling pass, are presented. Some defects that originated along the fuel plate deformation during the rolling process were characterized and discussed. The fabrication procedures for manufacturing the fuel plates are also presented. - Highlights: •Evolution of defects when manufacturing dispersion fuel plates. •Aspects of dispersion fuel plates fabrication. •What happen during the manufacturing of dispersion fuel plates? •Clarifying the deformation of fuel plates by rolling.

  13. Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki; Jeong, Soon-Wook; Cho, Woon-Jo

    2010-01-01

    We have investigated the characteristics of flexible indium zinc oxide (IZO) electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll (RTR) sputtering system for use in flexible optoelectronics. It was found that both electrical and optical properties of the flexible IZO electrode were critically dependent on the DC power and Ar/O 2 flow ratio during the roll-to-roll sputtering process. At optimized conditions (constant working pressure of 3 mTorr, Ar/O 2 flow ratio of Ar at only 30 sccm, DC power 800 W and rolling speed at 0.1 cm/s) the flexible IZO electrode exhibits a sheet resistance of 17.25 Ω/sq and an optical transmittance of 89.45% at 550 nm wavelength. Due to the low PET substrate temperature, which is effectively maintained by cooling drum system, all IZO electrodes showed an amorphous structure regardless of the DC power and Ar/O 2 flow ratio. Furthermore, the IZO electrodes grown at optimized condition exhibited superior flexibility than the conventional amorphous ITO electrodes due to its stable amorphous structure. This indicates that the RTR sputter grown IZO electrode is a promising flexible electrode that can substitute for the conventional ITO electrode, due to its low resistance, high transparency, superior flexibility and fast preparation by the RTR process.

  14. Achieving ultrafine grained and homogeneous AA1050/ZnO nanocomposite with well-developed high angle grain boundaries through accumulative press bonding

    Energy Technology Data Exchange (ETDEWEB)

    Amirkhanlou, Sajjad, E-mail: s.amirkhanlou@aut.ac.ir [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Ketabchi, Mostafa; Parvin, Nader; Askarian, Masoomeh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Carreño, Fernando [Department of Physical Metallurgy, CENIM-CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2015-03-11

    Aluminum matrix nanocomposites with 2 vol% ZnO nanoparticles were produced using accumulative press bonding (APB) as a very effective and novel severe plastic deformation process. Microstructural evaluation and mechanical properties of specimens were characterized by field-emission scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), electron backscatter diffraction (EBSD) and tensile test. Microstructure of AA1050/ZnO nanocomposite showed a uniform distribution of ZnO nanoparticles throughout the aluminum matrix. STEM and EBSD observations revealed that ultrafine-grained Al/ZnO nanocomposite with the average grain size of <500 nm and well-developed high angle grain boundaries (80% high angle boundaries and 37° average misorientation angle) was successfully obtained by performing 14 cycles of the APB process. When the number of APB cycles increased the tensile strength of Al/ZnO nanocomposite improved and reached 228 MPa after 14 cycles, which was 2.6 and 1.3 times greater than the obtained values for annealed (raw material, 88 MPa) and monolithic aluminum (180 MPa), respectively.

  15. Tracing the Fingerprint of Chemical Bonds within the Electron Densities of Hydrocarbons: A Comparative Analysis of the Optimized and the Promolecule Densities.

    Science.gov (United States)

    Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour

    2016-10-18

    The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influence exerted by the shape of the surfaces of working roll barrels upon the course of the MEFASS (Metal Forming Aided by Shear Stresses rolling process

    Directory of Open Access Journals (Sweden)

    Świątoniowski A.

    2017-03-01

    Full Text Available The essential aspect of the MEFASS rolling process is introducing the cyclic axial counter movement of the rolls transverse to the direction of rolling in the course of a band pass through a rolling gap. The effect of a change in the way of deformation obtained in this manner makes it possible to set in one roll pass a deformation several times larger than it is possible in a conventional process. In this paper, upon the basis of the computer model of the MES process, supported by experimental research, the analysis of the influence exerted by the shape of the surface of roll barrels upon the distribution of the intensity of stresses σi and deformations εi in the section of the band being rolled, and also upon the kinematic and force parameters of the process.

  17. Lubrication in cold rolling : Numerical simulation using multigrid techniques

    NARCIS (Netherlands)

    Lugt, Pieter Martin

    1992-01-01

    In the cold rolling process a lubricant is applied on the rolls and/or the strip mate­rial. Due to the velocities of the rolls and the strip, part of the lubricant is sheared into the contact causing, amongst others, a reduction of the friction. In this thesis a physical-mathematical model is

  18. 21 CFR 136.130 - Milk bread, rolls, and buns.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Milk bread, rolls, and buns. 136.130 Section 136.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....130 Milk bread, rolls, and buns. (a) Each of the foods milk bread, milk rolls, and milk buns conforms...

  19. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    Science.gov (United States)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  20. 3-dimensional numerical modelling of rolling of superconducting Ag/BSCCO tape

    DEFF Research Database (Denmark)

    Eriksen, Morten; Bech, Jakob Ilsted; Seifi, Behrouz

    2000-01-01

    and Ø126 mm) have been investigated. It is found that it is possible to perform numerical simulation with 3D models of flat rolling of multifilament wire. Two 3D models have been used; 3D pressing with rolls and 3D rolling. 3D pressing with rolls have the advance that the simulation time is lower than...... in the 3D rolling. The 3D models have the advantage compared to 2D pressing that they can predict the 3 dimensional flow in the flat rolling, which has been showed to be very imported for the super conduction properties......Numerical simulation of the deformation process during flat rolling of multifilament HTS tapes has been investigated using a commercial FEM program, ELFEN. The numerical models were built up in 2D and 3D using a Drucker-Prager/Cap model for the powder. Three different roll diameters (Ø24 mm, Ø85 mm...

  1. Roll-to-roll printed resistive WORM memory on a flexible substrate

    International Nuclear Information System (INIS)

    Leppäniemi, Jaakko; Mattila, Tomi; Suhonen, Mika; Alastalo, Ari; Kololuoma, Terho

    2012-01-01

    The fabrication process and the operation characteristics of a fully roll-to-roll printed resistive write-once-read-many memory on a flexible substrate are presented. The low-voltage (<10 V) write operation of the memories from a high resistivity ‘0’ state to a low resistivity ‘1’ state is based on the rapid electrical sintering of bits containing silver nanoparticles. The bit ink is formulated by mixing two commercially available silver nanoparticle inks in order to tune the initial square resistance of the bits and to create a self-organized network of percolating paths. The electrical performance of the memories, including read and write characteristics, is described and the long-term stability of the less stable ‘0’ state is studied in different environmental conditions. The memories can find use in low-cost mass printing applications. (paper)

  2. Study Friction Distribution during the Cold Rolling of Material by Matroll Software

    International Nuclear Information System (INIS)

    Abdollahi, H.; Dehghani, K.

    2007-01-01

    Rolling process is one of the most important ways of metal forming. Since the results of this process are almost finished product, therefore controlling the parameters affecting this process is very important in order to have cold rolling products with high quality. Among the parameters knowing the coefficient of friction within the roll gap is known as the most significant one. That is because other rolling parameters such as rolling force, pressure in the roll gap, forward slip, surface quality of sheet, and the life of work rolls are directly influenced by friction. On the other hand, in rolling calculation due to lake of a true amount for coefficient of friction a supposed value is considered for it. In this study, a new software (Matroll), is introduced which can determine the coefficient of friction (COF) and plot the friction hills for an industrial mill. Besides, based on rolling equations, it offers about 30 rolling parameters as outputs. Having the rolling characteristics as inputs, the software is able to calculate the coefficient of friction. Many rolling passes were performed on real industrial aluminum mill. The coefficient of friction was obtained for all passes. The results are in good agreement with the findings of the other researchers

  3. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    Science.gov (United States)

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  4. New progress of FEM simulation and AI application in rolling at RAL

    International Nuclear Information System (INIS)

    Liu Xianghua; Wang Guodong; Zhao Kun

    2000-01-01

    New progresses on FEM simulation and AI application in rolling have been achieved at RAL recently. The existence and uniqueness of the extreme point of total functional for rolling problem has been proved. Different rolling processes, such as H-beam rolling, ribbing strip rolling, slab sizing, have been solved by our in-house FEM software package. The simulation results have been put into production use to improve the precision of math models. The Artificial Neural Network has been used to predict rolling force, coiling temperature, microstructure and properties of the rolled products. An expert system for deviation diagnoses of strip thickness has been developed for industry use. Synergetic Artificial Intelligence has also been applied to rolling scheduling. We are making continuous efforts to develop AI applications for rolling line co-operating in China steel industry. (author)

  5. Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Final subcontract report, 1 April 1992--30 September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Izu, M. [Energy Conversion Devices, Inc., Troy, MI (US)

    1996-02-01

    ECD has made important progress in the development of materials, device designs, and manufacturing processes required for the continued advancement of practical photovoltaic technology{sub 1-23}. ECD has pioneered and continues further development of two key proprietary technologies, with significant potential for achieving the cost goals necessary for widespread growth of the photovoltaic market: (1) a low cost, roll-to- roll continuous substrate thin-film solar cell manufacturing process; (2) a high efficiency, monolithic, multiple-junction, spectrum- splitting thin-film amorphous silicon alloy device structure. Commercial production of multiple-junction a-Si alloy modules has been underway at ECD and its joint venture company for a number of years using ECD's proprietary roll-to-roll process and numerous advantages of this technology have been demonstrated. These include relatively low semiconductor material cost, relatively low process cost, a light-weight, rugged and flexible substrate that results in lowered installed costs of PV systems, and environmentally safe materials. Nevertheless, the manufacturing cost per watt of PV modules from our current plant remains high. In order to achieve high stable efficiency and low manufacturing cost, ECD has, at ECD's expense, engineered and constructed a 2 MW production line and a 200 kW pilot line, incorporating earlier ECD research advances in device efficiency through the use of multi-junction spectrum-splitting and high performance back-reflector cell design. Under this subcontract six tasks were directed towards achieving this goal. They are: Task I: Optimization of back-reflector system; Task II: Optimization of the Si-Ge narrow bandgap solar cells; Task III: Optimization of the stable efficiency of photovoltaic modules; Task IV: Demonstration of serpentine web continuous roll-to-roll deposition technology; Task V: Material cost reductions; and Task VI: Improving the module assembly process.

  6. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Urbina, Antonio

    2011-01-01

    A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film was ...... photovoltaic technologies. The results showed that an Energy Pay-Back Time (EPBT) of 2.02 years can be achieved for an organic solar module of 2% efficiency, which could be reduced to 1.35 years, if the efficiency was 3%.......A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film...... printed. Finally the polymer solar modules were encapsulated, using a polyester barrier material. All operations except the application of ITO were carried out under ambient conditions. The life cycle analysis delivered a material inventory of the full process for a module production...

  7. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  8. Rolled-up nanotechnology: 3D photonic materials by design

    International Nuclear Information System (INIS)

    Böttner, Stefan; Jorgensen, Matthew R.; Schmidt, Oliver G.

    2016-01-01

    Rolled-up nanotechnology involves the deposition of strained material layers for subsequent release and relaxation into functional structures with applications spanning several disciplines. Originally developed for use with semiconductor materials, over the last decade the processes involved in rolled-up nanotechnology have been applied across a wide palette of materials resulting in applications (among others) in micro robotics, energy storage, electronics, and photonics. Here we highlight the key advancements and future directions in rolled-up photonics, focusing on the diverse demonstrations of rolled-up three-dimensional microresonators which enable integrated sensing, micro-lasing, and out-of-plane routing of light.

  9. Mathematical modeling of a process the rolling delivery

    Science.gov (United States)

    Stepanov, Mikhail A.; Korolev, Andrey A.

    2018-03-01

    An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.

  10. Effect of Rolling Resistance in Dem Models With Spherical Bodies

    Directory of Open Access Journals (Sweden)

    Dubina Radek

    2016-12-01

    Full Text Available The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.

  11. Diagnostic capability of 100-mm roll film digitizer system

    International Nuclear Information System (INIS)

    Kono, M.; Yamasaki, K.; Ikeda, M.

    1988-01-01

    The authors recently developed a roll film digitizer system. The sampling pitch is 100 μm. a scientific image study (Barger phantom, Hawlet chart, and modulation transfer function), receiver operating characteristic (ROC) study, and clinical evaluation were performed. For the ROC study, a chest phantom with simulated nodule and hairline was used. Differences in accuracy between readings of cathode ray tube (CRT) images and roll film images were not statistically significant for hairline and coin lesions, P<.05). As a clinical evaluation, eight radiologists evaluated predetermined radiologic findings on a five-point rating scale compared with original roll film images. Scores for CRT images were equal to those for the original roll film images. In conclusion, CRT images (1,000 x 1,000) were found to be sufficient for diagnostic accuracy of chest images compared with roll film images (100 x 100 mm)

  12. Hot-rolling metals in vacuum. Information circular

    International Nuclear Information System (INIS)

    Beall, R.A.; Worthington, R.B.; Blickensderfer, R.

    1979-01-01

    The process of hot-rolling metals, alloys, and composites in vacuum is studied. First, a comprehensive review of the literature is presented, including the advantages and disadvantages of using vacuum. Next, details of hot-rolling titanium, chromium, and molybdenum-iron bimetal are given. Finally, the design of new equipment is described

  13. Roll compaction and granulation system for nuclear fuel material

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Holley, C.C.

    1981-01-01

    A roll compaction and roll granulation system has been designed and fabricated to replace conventional preslugging and crushing operations typically used in the fabrication of mixed oxide nuclear fuel pellets. This equipment will be of maintenance advantage with only the compaction and granulation rolls inside containment. The prototype is being tested and the results will be reported within a year

  14. Magnon inflation: slow roll with steep potentials

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Blas, Diego [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Patil, Subodh P. [Department of Theoretical Physics, University of Geneva,24 Quai Ansermet, Geneva, CH-1211 (Switzerland)

    2016-11-04

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy G{sup ab}∂{sub a}V∂{sub b}V≪V{sup 2}/M{sub p}{sup 2} (where G{sub ab} is the target-space metric). They evade the usual slow-roll conditions on V because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides one particular example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for its background evolution. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, F{sub ab}, whose antisymmetry gives new ways for slow roll to be achieved.

  15. Core-free rolled actuators for Braille displays using P(VDF–TrFE–CFE)

    International Nuclear Information System (INIS)

    Levard, Thomas; Diglio, Paul J; Rahn, Christopher D; Lu, Sheng-Guo; Zhang, Q M

    2012-01-01

    Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF–TrFE–CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m −1 ). A novel Braille cell is designed and fabricated using six of these actuators. (fast track communication)

  16. Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network

    DEFF Research Database (Denmark)

    Míguez González, M; López Peña, F.; Díaz Casás, V.

    2011-01-01

    Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been acknowle......Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been...... acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...

  17. Fluid management in roll-to-roll nanoimprint lithography

    Science.gov (United States)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  18. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    Science.gov (United States)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in

  19. Roll seat belt induced injury of the duodenum.

    Science.gov (United States)

    Bergqvist, D; Hedelin, H

    1976-05-01

    A case of duodenal rupture with a roll three-point seatbelt is described. It is apparently the seventh reported case of duodenal rupture in safety belt users. A female driver fell asleep, and her car went off the road, rolling forward in a ditch, slowing slightly, and then came to a sudden stop. The rupture was unusual: on the first part of duodenum, intraperitoneal, and longitudinal. The rupture mechanism is discussed, and the deficiencies of the roll seatbelt pointed out in accidents like the one described.

  20. Early Detection of Parametric Roll Resonance on Container Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2013-01-01

    Parametric roll resonance on ships is a nonlinear phenomenon where waves encountered at twice the natural roll frequency can bring the vessel dynamics into a bifurcation mode and lead to extreme values of roll. Recent years have seen several incidents with dramatic damage to container vessels...... the ship's speed and course, to escape from the bifurcation condition. This paper proposes nonparametric methods to detect the onset of roll resonance and demonstrates their performance. Theoretical conditions for parametric resonance are revisited and are used to develop efficient methods to detect its...... on experimental data from model tests and on data from a container ship crossing the Atlantic during a storm....

  1. Transmission Electron Microscopy of Amorphous Tandem Thin-Film Silicon Modules Produced by A Roll-to-Roll Process on Plastic Foil

    DEFF Research Database (Denmark)

    Couty, P.; Duchamp, Martial; Söderström, K.

    2011-01-01

    An improvement of the photo-current is expected when amorphous silicon solar cells are grown on a ZnO texture. A full understanding of the relationship between cell structure and electrical performance is essential for the rapid development of high efficiency VHF-tandem cells on textured substrates...... a control-lost of shape fidelity is used to smooth the texture and make it compatible with subsequent layer growth. Then, we present the electrical performances of the most promising reference solar cell single junction which was obtained on a roll-to-roll foil. Finally, a tandem amorphous/amorphous Si....... At first, we present the systematic study where amorphous cells are grown on ZnO based textures. For varying the texture, the same original master LPCVD ZnO was successively transferred to nickel molds and finally transferred to the plastic foil by roll-to-roll process. From TEM images, we show how...

  2. Hot forging of roll-cast high aluminum content magnesium alloys

    Science.gov (United States)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  3. Finite-element modeling of soft tissue rolling indentation.

    Science.gov (United States)

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  4. Ring rolling process simulation for geometry optimization

    Science.gov (United States)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.

  5. USE OF HIGH SPEED STEEL WORK ROLLS (HSS ON APERAM STECKEL MILL

    Directory of Open Access Journals (Sweden)

    Arísio de Abreu Barbosa

    2013-12-01

    Full Text Available This paper outlines the main actions taken to reinforce the decision to use HSS work rolls on the Aperam Steckel Mill. These are: work roll cooling improvements, systematically analyzing Eddy Current and Ultrasonic non destructive tests, mechanical adjustment of work roll crown and critically examining the rolling process. These actions applied together have contributed to the success of HSS rolls state of the art application, and provide the Steckel Mill with a much improved performance. Significant results have been achieved, such as: increasing of work roll change intervals, increasing of the available production time, a yield gain, a product quality improvement, less working hours needed for the roll grinding operation, etc

  6. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen

    2015-01-27

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  7. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen

    2016-05-03

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  8. Optical scattering from rough-rolled aluminum surfaces.

    Science.gov (United States)

    Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E

    2001-05-01

    Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.

  9. Influence of Surge on Extreme Roll Amplitudes

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Rognebakke, Olav; Pedersen, Preben Terndrup

    2008-01-01

    Interference of the wave-induced ship surge motion with roll dynamics has been studied. The surge motion has been included in a previously derived hydrodynamic roll prediction model in order to account for the ship speed variation due to the longitudinal incident wave pressure force. Depending...... balanced in order to determine the added thrust term that would represent actions to maintain speed The resulting forward speed variation affects the frequency of encounter and the parametric roll resonant condition is directly influenced by this speed variation. The analysis procedure is demonstrated...... for an example containership sailing mainly in head sea condition and higher sea states. Sensitivity of the results to the added thrust model and vertical motion calculation is discussed....

  10. Robust Rudder Roll Damping Control

    DEFF Research Database (Denmark)

    Yang, C.

    The results of a systematic research to solve a specific ship motion control problem, simultaneous roll damping and course keeping using the rudder are presented in this thesis. The fundamental knowledge a priori is that rudder roll damping is highly sensitive to the model uncertainty, therefore H-infinity...... theory is used to deal with the problem. The necessary mathematical tools and the H-Infinity theory as the basis of controller design are presented in Chapter 2 and 3. The mu synthesis and the D-K iteration are introduced in Chapter 3. The ship dynamics and modeling technology are discussed in Chapter 4...

  11. Assessment of friction between a rolling cylindrical element and a ...

    African Journals Online (AJOL)

    A cost-effective friction coefficient measuring technique was developed and tested. The technique involved the mounting of two sensing elements on the surface of rolls, in a manner that sought to measure simultaneously the normal and the tangential stresses during rolling. The instrumented roll termed “SGRoll” was ...

  12. Measurement by a cylinder test stand and tyre rolling resistance

    Directory of Open Access Journals (Sweden)

    A. Dávid

    2006-03-01

    Full Text Available Sometimes it is necessary to test how repair affects the properties of the car. These tests are carried out using a cylinder test stand. During the test the tyre is rolling between two cylinders of a small diameter. The question arises whether the rolling resistance of the tyre is the same as the rolling resistance when the wheel is rolling on the plane. If it is not the same what is the reliation between tyre resistances in these two cases? It is an important answer because the change of rolling resistance can affect consumption, the highest speed, engine power and other results of measurement. The paper gives the answer to these questions and describes the method of getting this information.

  13. Pre-treatment of Biomass By Rolling - A Combined Experimental and Numerical Analysis

    DEFF Research Database (Denmark)

    Hansen, Klaus Schütt; Ravn, Christian; Nielsen, Emil Krabbe

    2017-01-01

    Pre-treatment of bulk straw material by rolling is studied as a possible method to prepare for subsequent biogas production. A combined experimental and theoretical study is presented. A pilot rolling mill with a double screw feeder is designed and constructed for crushing of bulk straw. Experime...... process window for pre-treatment of wheat straw by roll pressing varying the feed, the roll gap, the roll speed and the moisture content of the bulk straw.......Pre-treatment of bulk straw material by rolling is studied as a possible method to prepare for subsequent biogas production. A combined experimental and theoretical study is presented. A pilot rolling mill with a double screw feeder is designed and constructed for crushing of bulk straw....... Experiments show that the roll speed and the roll reduction should be chosen within a specific range depending on the injection screw speed to avoid blocking or insufficient compaction. A mechanical testing procedure of the bulk straw material including closed die compaction testing as well as simple...

  14. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    Directory of Open Access Journals (Sweden)

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  15. Person og Rolle

    DEFF Research Database (Denmark)

    Szatkowski, Janek

    2011-01-01

    Distinktionen mellem person og rolle forslås som grundlag for et præcist og anlytisk anvendeligt begreb om performativitet. Begrebet tager sigte på at beskrive enkeltindividers og gruppers kommunikation med henblik på hvordan kommunikation etableres. Performativitet gør det muligt at iagttage den...

  16. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    Science.gov (United States)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  17. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Manceau, Matthieu

    2010-01-01

    connected cells were prepared with a total module active area of 96 cm2. The devices were tested for operational stability under simulated sunlight (AM1.5G) and natural sunlight, and the photochemical stability of the polymer was examined using a combination of UV−vis and IR spectroscopy.......We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...... around a 1:2 mixing ratio. Roll-to-roll coated polymer solar cell devices were prepared under ambient conditions employing solution processing in all steps including the metallic back electrode that was printed as a grid giving semitransparent solar cell devices. Solar cell modules comprising 16 serially...

  18. GoQBot: a caterpillar-inspired soft-bodied rolling robot

    International Nuclear Information System (INIS)

    Lin, Huai-Ti; Trimmer, Barry; Leisk, Gary G

    2011-01-01

    Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s -1 , making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.

  19. GoQBot: a caterpillar-inspired soft-bodied rolling robot

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huai-Ti; Trimmer, Barry [Department of Biology, Tufts University, 163 Packard Avenue, Medford, MA 02155 (United States); Leisk, Gary G, E-mail: huaiti.lin@gmail.com, E-mail: gary.leisk@tufts.edu, E-mail: barry.trimmer@tufts.edu [Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155 (United States)

    2011-06-15

    Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s{sup -1}, making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.

  20. Precision ring rolling technique and application in high-performance bearing manufacturing

    Directory of Open Access Journals (Sweden)

    Hua Lin

    2015-01-01

    Full Text Available High-performance bearing has significant application in many important industry fields, like automobile, precision machine tool, wind power, etc. Precision ring rolling is an advanced rotary forming technique to manufacture high-performance seamless bearing ring thus can improve the working life of bearing. In this paper, three kinds of precision ring rolling techniques adapt to different dimensional ranges of bearings are introduced, which are cold ring rolling for small-scale bearing, hot radial ring rolling for medium-scale bearing and hot radial-axial ring rolling for large-scale bearing. The forming principles, technological features and forming equipments for three kinds of precision ring rolling techniques are summarized, the technological development and industrial application in China are introduced, and the main technological development trend is described.

  1. Bearing selection in ball-rolling dung beetles: is it constant?

    Science.gov (United States)

    Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie

    2010-11-01

    Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.

  2. Implication of human handling on packaged sausage rolls during sale

    Directory of Open Access Journals (Sweden)

    Coolborn AKHARAIYI FRED

    2016-08-01

    Full Text Available In other to identify the implication of human handling of packaged sausage rolls after production, a microbiological safety evaluation was carried out on sausage rolls sold on street and in shops. Among the sausage rolls, gala purchased from street vendors has the highest bacterial load of 2.82 × 104 CFU/g and 4.3 × 106 spore/g of fungal load, followed by meaty with bacterial load of 1.71 × 104 CFU/g and fungal load of 1.6 × 105 spore/g and was least in rite sausage roll with 1.46 × 104 CFU/g and 1 × 105 spore/g bacterial and fungal loads respectively. Seventeen bacteria species were isolated from both street vended and shop sold sausage rolls, the isolates identified including: Bacillus cereus, Acinetobacter calcoaceticus, Alcaligenes faecalis, Citrobacter freundii, Klebsiella ozaenae, Staphylococcus epidermidis, Enterobacter aerogenes, Staphylococcus aureus, Aeromonas hydrophila, Plesiomonas shigelloides, Moraxella catarhalis, Bacillus substilis, Escherichia coli, Salmonella typhi, Aeromonas anaerogenes, Aerococcus viridans and Azomonas agilis. Five fungi species were isolated from street vended sausage rolls only. The fungal species are Penicillium notatum, Aspergillus parasiticus, Aspergillus flavus, Penicillium italicum and Gliocephalis spp. From this study, street vended samples have higher microbial contamination than shop sold sausage rolls due to improper handling during sales.

  3. 77 FR 6668 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-02-09

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc RB211-Trent 500 series turbofan engines. This AD requires a one-time inspection of... RB211- Trent 560A2-61 turbofan engines that have not complied with Rolls- Royce plc Service Bulletin No...

  4. Deformation mechanisms of pure Mg materials fabricated by using pre-rolled powders

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J., E-mail: shen-j@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University (Japan); Imai, H. [Joining and Welding Research Institute, Osaka University (Japan); Chen, B. [Graduate School of Engineering, Osaka University (Japan); Ye, X.; Umeda, J.; Kondoh, K. [Joining and Welding Research Institute, Osaka University (Japan)

    2016-03-21

    In the present work, a powder rolling process was utilized in the fabrication of fine grained pure Mg via powder metallurgy. Mg flakes were obtained after each rolling process, and broken into pieces for further rolling or sintering. Mg samples of experiencing 0, 5 and 10 rolling passes were obtained following spark plasma sintering (SPS) and hot extrusion. Microstructural results from electron backscatter diffraction (EBSD) revealed that, without experiencing powder rolling, the specimen contained a great number of residual tensile twins; in contrast, after powder rolling the specimen showed uniform and equiaxed grain structures. In addition, the average grain size was measured to be around 9.2, 2.9 and 2.1 µm for the samples subjected to 0, 5 and 10 rolling passes. The powder rolled specimens were found superior in mechanical properties. Post-loading microstructure examinations were also performed for the samples and a discussion regarding the relationship between their mechanical behavior and microstructures was provided.

  5. Deformation mechanisms of pure Mg materials fabricated by using pre-rolled powders

    International Nuclear Information System (INIS)

    Shen, J.; Imai, H.; Chen, B.; Ye, X.; Umeda, J.; Kondoh, K.

    2016-01-01

    In the present work, a powder rolling process was utilized in the fabrication of fine grained pure Mg via powder metallurgy. Mg flakes were obtained after each rolling process, and broken into pieces for further rolling or sintering. Mg samples of experiencing 0, 5 and 10 rolling passes were obtained following spark plasma sintering (SPS) and hot extrusion. Microstructural results from electron backscatter diffraction (EBSD) revealed that, without experiencing powder rolling, the specimen contained a great number of residual tensile twins; in contrast, after powder rolling the specimen showed uniform and equiaxed grain structures. In addition, the average grain size was measured to be around 9.2, 2.9 and 2.1 µm for the samples subjected to 0, 5 and 10 rolling passes. The powder rolled specimens were found superior in mechanical properties. Post-loading microstructure examinations were also performed for the samples and a discussion regarding the relationship between their mechanical behavior and microstructures was provided.

  6. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  7. Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Andersen, Thomas Rieks; Bentzen, Janet Jonna

    2015-01-01

    Silver nanowires (AgNWs) and zinc oxide (ZnO) are deposited on flexible substrates using fast roll-to-roll (R2R) processing. The AgNW film on polyethylene terephthalate (PET) shows >80% uniform optical transmission in the range of 550-900 nm. This electrode is compared to the previously reported...... spectrum reaching up to 40% increased transmission at 750 nm in comparison to Flextrode. The functionality of AgNW electrodes is demonstrated in single and tandem polymer solar cells and compared with parallel devices on traditional Flextrode. All layers, apart from the semitransparent electrodes which...... are large-scale R2R produced, are fabricated in ambient conditions on a laboratory roll-coater using printing and coating methods which are directly transferrable to large-scale R2R processing upon availability of materials. In a single cell structure, Flextrode is preferable with active layers based...

  8. MODELING OF THE TRACK AND ROLLING STOCK INTERACTION

    Directory of Open Access Journals (Sweden)

    N. V. Khalipova

    2013-09-01

    Full Text Available Purpose. Interaction of system’s elements of "carriage–track" modelling requires consideration of various criteria, it also requires analysis of many uncertainty and randomness factors’ influence on the basic parameters to ensure optimal or rational parameters of the system. The researching of interactions’ process requires new theoretical approaches to formulation of objectives, based on a generalization of existing modeling approaches. The purpose of this work is development of interaction models between track and rolling stock based on multiple structures of objects. Methodology. Dedicated and formed the main evaluation criteria of dynamic interaction between track and rolling stock optimization - quality assurance and safety of transportation process, improving of their efficiency and reducing of prime cost’s. Based on vector optimization methods, proposed model of rolling stock and track’s elements interaction. For the synthesis of the model used mathematical machine of multiple objects structures. Findings. Generalized approaches to modeling in the interaction of rolling stock and track for different structural elements of the system under different exploitation conditions. This theoretical approach demonstrated on the examples of modeling of passenger and freight cars with track under different exploitation conditions. Originality. Proposed theoretical approach to the problem of track and rolling stock interaction, based on a synthesis of existing models by using of multiple objects structures. Practical value. Using of proposed model allows to structure key data and rational parameters of rolling stock and track interaction’s modeling and to formulate optimal and rational parameters of the system, to determine the effective exploitation parameters and measurement system for rational use of infrastructure.

  9. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Fyenbo, Jan; Jørgensen, Mikkel

    2010-01-01

    The improvement of the performance of roll-to-roll processed polymer solar cell modules through miniaturization of the device outline is described. The devices were prepared using full roll-to-roll processing comprising flexographic printing, slot-die coating and rotary screen printing to create ......HT:[70]PCBM. The solar cell modules were used to demonstrate the complete manufacture of a small lamp entirely using techniques of flexible electronics. The solar cell module was used to charge a polymer lithium ion battery through a blocking diode. The entire process was fully automated...

  10. Texture and superelastic behavior of cold-rolled TiNbTaZr alloy

    International Nuclear Information System (INIS)

    Wang Liqiang; Lu Weijie; Qin Jining; Zhang Fan; Zhang Di

    2008-01-01

    This work investigates the deformation texture and strain-induced α'' martensite texture of TiNbTaZr alloy during cold rolling. The alloy is rolled by 20% and 90% reductions without changing rolling direction. Textures of cold-rolled specimens are investigated by X-ray diffraction measurements. Besides {2 2 1} β β twinning texture, {1 0 0} β β texture is developed in the specimen with 20% reduction. In the 90% cold-rolled specimen, {1 0 0} β β texture appears along rolling direction and strain-induced α'' martensite texture tends to [0 1 0] and [0 0 1] directions along rolling direction (RD) and transverse direction (TD), respectively. Superelastic strain (ε SE ) exhibits higher value along RD and TD. Pure elastic strain (ε E ) shows higher value along RD and 45 deg. from RD

  11. Research of dependence of ultimate strength of the bond border in solid state of dissimilar metals from their plasticity

    International Nuclear Information System (INIS)

    Borts, B.V.

    2010-01-01

    Theoretical model, describing the joining of dissimilar materials in solid state is presented. The model takes into account plastic deformation of materials at the joining temperature, and also shearing forces, appearing while rolling the material and playing determinant role in the process of materials solid phase joining. Experimental results of X-ray microanalysis, metallography, tension tests, micro-hardness and nano-hardness of samples bonding border are presented, which confirms the relevancy of the proposed model.

  12. Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration

    DEFF Research Database (Denmark)

    Angmo, Dechan; Larsen-Olsen, Thue Trofod; Jørgensen, Mikkel

    2013-01-01

    Small polymer solar cell modules that are manufactured without indium-tin-oxide using only roll-to-roll printing and coating techniques under ambient conditions enable facile integration into a simple demonstrator (for example a laser pointer). Semitransparent front electrode grid structures prep...

  13. Dynamic stochastic accumulation model with application to pension savings management

    Directory of Open Access Journals (Sweden)

    Melicherčik Igor

    2010-01-01

    Full Text Available We propose a dynamic stochastic accumulation model for determining optimal decision between stock and bond investments during accumulation of pension savings. Stock prices are assumed to be driven by the geometric Brownian motion. Interest rates are modeled by means of the Cox-Ingersoll-Ross model. The optimal decision as a solution to the corresponding dynamic stochastic program is a function of the duration of saving, the level of savings and the short rate. Qualitative and quantitative properties of the optimal solution are analyzed. The model is tested on the funded pillar of the Slovak pension system. The results are calculated for various risk preferences of a saver.

  14. Nucleation at hardness indentations in cold rolled Al

    DEFF Research Database (Denmark)

    Xu, C.L.; Zhang, Yubin; Wu, G.L.

    2015-01-01

    Nucleation of recrystallization near hardness indentations has been investigated in slightly cold rolled high purity aluminium. Samples were cold rolled to 12% and 20% reductions in thickness and indentations were done with two different loads (500 g and 2000 g). The samples were annealed at 300 °C...... for 1 h and nuclei were identified. It is found that the indentations are preferential nucleation sites. With EBSD maps around indentation tips, the orientation relationship between nuclei and matrix is analyzed. Finally, effects of rolling reduction and indentation load on local misorientations...... and stored energy distributions and thus on nucleation are discussed....

  15. Rolling revisado: utilización del rolling para valorar y tratar la coordinación y control neuromuscular del core y extremidades en atletas

    Directory of Open Access Journals (Sweden)

    Barbara J. Hoogenboom

    2017-05-01

    Full Text Available Rolling es un patrón de movimiento raramente utilizado por los fisioterapeutas para la evaluación e intervención de pacientes con función neurológica normal. El Rolling, como destreza motriz adulta, combina el uso de las extremidades superiores, core y extremidades inferiores con el movimiento coordinado en el paso de una postura a otra. El Rolling se lleva a cabo partiendo de la posición prona a posición supina y viceversa, aunque el método utilizado varía entre adultos. Desde la perspectiva de la habilidad de completar tareas o la simetría bilateral, el Rolling puede ser beneficioso para el uso de atletas que realizan deportes de rotación parcial tales como el golf, el lanzamiento, el tenis, y los deportes con torsión como la danza, la gimnasia, y el patinaje artístico. Además, cuando es usado como técnica de intervención, los patrones del Rolling tienen la capacidad de influir en disfunciones de la parte superior del cuerpo, core y parte inferior. Aplicando los principios de la facilitación neuromuscular propioceptiva (FNP, el terapeuta puede asistir a pacientes y clientes que son incapaces de completar un patrón de Rolling. Algunos ejemplos citados en el artículo incluyen separación/elongación, compresión, y contacto manual para facilitar el propio Rolling. Los autores defienden que el uso terapéutico de los patrones de desarrollo del Rolling con las técnicas derivadas de FNP es un distintivo en la rehabilitación de pacientes con disfunciones neurológicas que pueden ser también utilizados en la rehabilitación músculo-esquelética de forma creativa y efectiva. Se han obtenido los resultados preliminares de una exploración del mecanismo por el que el Rolling puede influir en la estabilidad y existen evidencias recientes disponibles. El propósito de este comentario clínico es describir las técnicas de análisis, evaluación y tratamiento de disfunción, usando casos ejemplos que incorporan el Rolling.

  16. Effects of alignment on the roll-over shapes of prosthetic feet.

    Science.gov (United States)

    Hansen, Andrew

    2008-12-01

    Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.

  17. Recycling strategy of the end-of-life rolling stock in China

    Science.gov (United States)

    Guo, L.; Wang, X. W.; Lin, Y.; Shen, X. F.; Liu, Y. Q.

    2018-03-01

    China's high-speed railway industry is growing fast, the side effect is that plenty of rolling stock come to the end of life each year. However, there are not relevant standards nor regulations for the recycling of rolling stock in China, which causes pollution and a waste of resources. In this paper, the basic meaning and characteristics of the circular economy is reviewed and applied to the rolling stock industry. The recycling steps are elaborated in detail according to the characteristics of rolling stock. The result proves that circular economy has both the theoretical and practical meaning in the rolling stock recycling industry in China.

  18. Metallurgical analysis of spalled work roll of hot strip mill

    International Nuclear Information System (INIS)

    Khan, M.M.; Khan, M.A.

    1993-01-01

    In this study failure analysis of four work roll of the Hot Strip Mill is carried out. The microstructure is correlated with the chemical composition of shell and roll-life. It was concluded that for the longer service of the roll, cementite, graphite and martensite should be balanced (as per working requirement of the mill). (author)

  19. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    Science.gov (United States)

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  20. Semi-solid twin-roll casting process of magnesium alloy sheets

    International Nuclear Information System (INIS)

    Watari, H.; Davey, K.; Rasgado, M.T. Alonso; Haga, T.; Koga, N.

    2004-01-01

    An experimental approach has been performed to ascertain the effectiveness of semi-solid strip casting using a horizontal twin roll caster. The demand for light-weight products with high strength has grown recently due to the rapid development of automobile and aircraft technology. One key to such development has been utilization of magnesium alloys, which can potentially reduce the total product weight. However, the problems of utilizing magnesium alloys are still mainly related to high manufacturing cost. One of the solutions to this problem is to develop magnesium casting-rolling technology in order to produce magnesium sheet products at competitive cost for commercial applications. In this experiment, magnesium alloy AZ31B was used to ascertain the effectiveness of semi-solid roll strip casting for producing magnesium alloy sheets. The temperature of the molten magnesium, and the roll speeds of the upper and lower rolls, (which could be changed independently), were varied to find an appropriate manufacturing condition. Rolling and heat treatment conditions were changed to examine which condition would be appropriate for producing wrought magnesium alloys with good formability. Microscopic observation of the crystals of the manufactured wrought magnesium alloys was performed. It has been found that a limiting drawing ratio of 2.7 was possible in a warm deep drawing test of the cast magnesium alloy sheets after being hot rolled

  1. Texture evolution of experimental silicon steel grades. Part I: Hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Robles, J.A., E-mail: jsandoval.uanl@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Salas Zamarripa, A.; Guerrero Mata, M.P. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Cabrera, J. [Universitat Politècnica de Catalunya, Departament de Ciència dels Materials I Enginyeria Metal-lúrgica, Av. Diagonal 647, Barcelona 08028 (Spain)

    2017-05-01

    The metallurgical understanding of the deformation processes during the fabrication of non-oriented electrical steels plays a key role in improving their final properties. Texture control and optimization is critical in these steels for the enhancement of their magnetic properties. The aim of the present work is to study the texture evolution of six non-oriented experimental silicon steel grades during hot rolling. These steels were low carbon steel with a silicon content from 0.5 to 3.0 wt%. The first rolling schedule was performed in the austenitic (γ-Fe) region for the steel with a 0.5 wt% of silicon content, while the 1.0 wt% silicon steel was rolled in the two-phase (α+γ) region. Steels with higher silicon content were rolled in the ferritic (α-Fe) region. The second rolling schedule was performed in the α-Fe region. Samples of each stage were analyzed by means of Electron Backscatter Diffraction (EBSD). Findings showed that the texture was random and heterogeneous in all samples after 60% of rolling reduction, which is due to the low deformation applied during rolling. After the second rolling program, localized deformation and substructured grains near to surface were observed in all samples. The Goss {110}<001>texture-component was found in the 0.5 and 1.0 wt.-%silicon steels. This is due to the thermomechanical conditions and the corresponding hot band microstructure obtained after the first program. Moreover, the α<110>//RD and the γ <111>//ND fiber components of the texture presented a considerable increment as the silicon content increases. Future research to be published soon will be related to the texture evolution during the cold-work rolling process. - Highlights: • We analyze six silicon steel experimental grades alloys trough the rolling process. • Material was subjected to a hot deformation process in the α-γ region. • No recrystalization was observed during-after the rolling schedules. • Rise of the magnetic texture components

  2. Synergy between plasma-assisted ALD and roll-to-roll atmospheric pressure PE-CVD processing of moisture barrier films on polymers

    NARCIS (Netherlands)

    Starostin, S.A.; Keuning, W.; Schalken, J.R.G.; Creatore, M.; Kessels, W.M.M.; Bouwstra, J.B.; Sanden, van de M.C.M.; Vries, de H.W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  3. Synergy Between Plasma-Assisted ALD and Roll-to-Roll Atmospheric Pressure PE-CVD Processing of Moisture Barrier Films on Polymers

    NARCIS (Netherlands)

    Starostin, S. A.; Keuning, W.; Schalken, J.; Creatore, M.; Kessels, W. M. M.; Bouwstra, J. B.; van de Sanden, M. C. M.; de Vries, H. W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  4. The record of iceberg roll generated waves from sediments and seismics

    Science.gov (United States)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant

  5. Prediction of Ship Resonant Rolling - Related Dangerous Zones with Regard to the Equivalent Metacentric Height Governing Natural Frequency of Roll

    Directory of Open Access Journals (Sweden)

    Przemyslaw Krata

    2017-12-01

    Full Text Available Potentially dangerous zones corresponding to dynamical stability phenomena, possibly encountered by ships sailing in rough sea, are estimated nowadays with the use of the method recommended by IMO in the guidance coded MSC.1/Circ.1228. In this IMO method the parameter governing the natural period of roll is the initial metacentric height. Some earlier studies revealed that the initial metacentric height which is commonly in use on-board ships for the purpose of performing the MSC.1/Circ.1228-recommended calculations, may significantly vary from the so called equivalent metacentric height obtained for large amplitudes of ship’s roll. In the light of such ascertainment, the paper deals with resultant resonance roll zones locations with regard to the equivalent metacentric height concept remaining appropriate for large amplitudes of roll. The noteworthy transfer of the resonance zones location is disclosed which reflects the distinct configurations of potentially dangerous ship’s course and speed configurations than could be predicted on the basis the initial metacentric height.

  6. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  7. Research and industrialization of near-net rolling technology used in shaft parts

    Science.gov (United States)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  8. Effects of rolling on single-phase water forced convective heat transfer characteristics

    International Nuclear Information System (INIS)

    Guo Yanming; Gao Puzhen; Huang Zhen

    2010-01-01

    A series of single-phase forced circulation tests in a vertical tube with rolling motion were performed in order to investigate effects of rolling motion on thermal-hydraulic characteristics. The amplitudes of the rolling motion in the tests were 10 degree, 15 degree and 20 degree. The rolling periods were 7.5 s, 10 s, 15 s and 20 s. The Reynolds number was from 6000 to 15000. Heat transfer in the test tube is bated by the rolling motion. As the test-bed rolling more acutely, the heat transfer coefficient of the test tube becomes smaller when the mass flow rate in the test tube is a constant. The heat transfer coefficient calculated by the formula which is for stable state doesn't fit very well with that from experiments. At last a formula for calculating heat transfer in rolling motion was introduced. (authors)

  9. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates

    International Nuclear Information System (INIS)

    Zaretski, Aliaksandr V; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J; Savagatrup, Suchol; Valle, Eduardo; O’Connor, Timothy F; Printz, Adam D; Lipomi, Darren J

    2015-01-01

    Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules. (paper)

  10. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates

    Science.gov (United States)

    Zaretski, Aliaksandr V.; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J.; Savagatrup, Suchol; Valle, Eduardo; O'Connor, Timothy F.; Printz, Adam D.; Lipomi, Darren J.

    2015-01-01

    Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.

  11. Restauração Florestal de uma Mina de Bauxita: Avaliação do Desenvolvimento das Espécies Arbóreas Plantadas

    Directory of Open Access Journals (Sweden)

    Kelly de Almeida Silva

    Full Text Available RESUMO O objetivo deste estudo foi avaliar as mudas de espécies arbóreas plantadas para fins de restauração florestal em uma área pós-mineração de bauxita. Foram alocadas 20 parcelas de 9 × 6 m nas quais foram mensurados diâmetro ao nível do solo, altura e diâmetro da copa das mudas plantadas. Também foram calculados a porcentagem de mortalidade e o valor de importância (VI das espécies. Foram registrados 540 indivíduos arbóreos vivos (22,9% de mortalidade e 45 espécies. As espécies com maiores VIs foram Solanum lycocarpum (14,7% e Schinus terebinthifolius (10,8%. S. terebinthifolius, S. lycocarpum e Joannesia princeps contribuíram com 30,4% de cobertura de copa. A altura média das mudas plantadas variou de 0,40 m a 3,90 m. As espécies utilizadas na restauração da área minerada proporcionaram benefícios ecológicos para a área, como cobertura do solo, atenuando processos erosivos e a invasão por gramíneas exóticas agressivas.

  12. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Zawacka, Natalia Klaudia; Dam, Henrik Friis

    2014-01-01

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording...

  13. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  14. Captura de carbono de especies arbóreas en sistemas multiestrato en el fundo UNAP, Zungarococha, San Juan Bautista, Loreto

    OpenAIRE

    Gratelly-Silva, Pedro Antonio; Universidad Nacional de la Amazonía Peruana; Muñoz Collantes, Elsa Adolfina; Universidad Nacional de la Amazonía Peruana

    2016-01-01

    El estudio se realizó entre los años 2011 y 2013, con el fin de determinar la fijación de carbono y los valores de dióxido de carbono en especies arbóreas. Para la recolección de datos se evaluaron especies a las que se instalaron fajas y sistemas multiestrato en cuatro tratamientos dispuestos en tres bloques al azar. La evaluación se realizó solo a las especies que alcanzaron alturas adecuadas para su medición del DAP. En el sistema multiestrato se evaluaron a 150 individuos, quienes captura...

  15. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Holden, Christian; Galeazzi, Roberto; Rodríguez, Claudio

    2007-01-01

    Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to 40, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head ...

  16. Experimental and theoretical study on natural circulation capacity under rolling motion condition

    International Nuclear Information System (INIS)

    Tan Sichao; Gao Puzhen

    2007-01-01

    Effect of rolling motion on natural circulation capacity was studied experimentally and theoretically. Experiments were conducted under the conditions of rolling and unrolling motions. The experimental results show that natural circulation capacity decreases under rolling motion condition. A mathematic model was developed to calculate the natural circulation capacity under rolling motion condition, considering the characteristics of natural circulation, the model was modified. The calculated results agree with experimental data well. Effect of rolling motion on natural circulation was analyzed through calculation and the following conclusions were obtained: (1) The increase of flow resistance coefficient is the main reason that the natural circulation capacity decreases under rolling motion condition; (2) Non-uniform distribution of fluid mass in the pipe has also influence on natural circulation capacity. (author)

  17. Levantamento etnobotânico de espécies arbóreas no assentamento Tabuleiro Grande, Apodi, Rio Grande do Norte

    Directory of Open Access Journals (Sweden)

    Mônica Costa Cordeiro

    2017-02-01

    Full Text Available Objetivou-se realizar um levantamento etnobotânico no Projeto de Assentamento Tabuleiro Grande, localizado em Apodi, Rio Grande do Norte, contribuindo para o resgate do conhecimento popular discutindo as implicações do uso da vegetação arbórea na conservação dos recursos florestais. A condução do estudo foi por meio da observação direta e entrevistas semiestruturadas (21 entrevistas. Para análise dos dados foram feitas abordagens qualitativas (acesso a informações subjetivas e quantitativas (Valor de Uso; índices de diversidade de Shannon e de equabilidade de Pielou. Foram mencionadas no levantamento 57 espécies arbóreas, entre nativas e exóticas, distribuídas em 26 famílias e enquadradas nas seguintes categorias de uso: Madeira (móveis e construção, Medicina/Higiene, Apicultura, Lenha, Veterinária Popular, Forragem, Alimentação Humana e Outros. Com os resultados obtidos, conclui-se que a comunidade estudada possui conhecimento sobre um grande número de espécies arbóreas. No entanto, no que diz respeito a “uso”, poucas espécies são, de fato, utilizadas. De forma geral, o conhecimento popular na comunidade está mantido com uma pequena parcela dos entrevistados e não é repassado, tendendo a tornar-se cada vez mais escasso.Ethnobotanical survey of tree species in the Tabuleiro Grande settlement, Apodi, Rio Grande do NorteAbstract: The aim this study was to realize ethnobotanical survey in Settlement Tabuleiro Grande Project, located in Apodi - RN, to contribute to the rescue of popular knowledge and discuss the implications of the use of trees in the conservation of forest resources. The conduct of the study was through direct observation and semi-structured interviews (21 interviews. Data analysis were made qualitative approaches (access to subjective information and quantitative (use value -VU, Shannon diversity and Pielou evenness indexes. Were mentioned in the survey 57 tree species native and exotic

  18. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    Directory of Open Access Journals (Sweden)

    Christian Holden

    2007-10-01

    Full Text Available Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to +-40 degrees, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas. A Matlab/Simulink parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007. The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic results which are in good agreement with the model tank experiments.

  19. Effect of rolling motion on the expansion and contraction loss coefficients

    International Nuclear Information System (INIS)

    Yan, B.H.; Gu, H.Y.

    2013-01-01

    Highlights: ► The expansion and contraction loss coefficients in rolling motion are analyzed. ► Effects of rolling motion on the expansion and contraction loss coefficients are different. ► The spanwise and transverse additional forces contribute slightly to the local loss. ► The oscillations of loss coefficients increase as the strengthening of rolling motion. - Abstract: The sudden expansion and sudden contraction loss coefficients in rolling motion are investigated with CFD code FLUENT. The calculation results are validated with experimental and theoretical results in steady state. The effects of rolling motion on the expansion and contraction loss coefficients are different. The effects of spanwise and transverse additional forces on the expansion and contraction loss coefficients are weak. The effect of velocity oscillation on the contraction loss coefficient is more significant than that on the expansion loss coefficient. The oscillation of local loss coefficient also becomes more and more irregular as the strengthening of rolling motion

  20. Estimation of Parametric Roll in a Stochastic Seaway

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Vidic-Perunovic, Jelena

    2008-01-01

    -degree of freedom (roll and heave) time domain model [10]. In the present paper the effect of the increased added resistance when the bow heaves and pitches down in a wave crest is introduced. Due to the resulting forward speed variation the roll resonance condition will be changed. The influence of ship speed...

  1. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    International Nuclear Information System (INIS)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Duk Young; Kim, Dongmin

    2013-01-01

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm

  2. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min [Advanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Duk Young [Nano-Opto-Mechatronics Lab., Dept. of Mechanical Eng., KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Kim, Dongmin [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of)

    2013-12-15

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.

  3. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  4. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  5. THE THEORETICAL FOUNDATIONS OF VIBRATION DAMPERS BY ROLLING FRICTION

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2015-06-01

    Full Text Available Purpose. There are some unresolved issues in vibration damping – the lack of engineering calculations for the vibration dampers by rolling friction; the absence of evidence of their application appropriateness. Considering this fact, the authors suggest to prove that the dampers based on rolling friction, are similar in rate of oscillation damping by hydraulic shock absorbers. At the same time, they are easier for the hydraulic design, and easily amenable to manual adjustment, both in automatic and manual mode. Methodology. Fixed techniques of practice in order to determine amplitudes of the oscillations of a shock absorber led to a predetermined result and will apply this theory in the calculation of other vibration dampers. Findings. Analysis of the formulas and graphs leads to the following conclusions and recommendations: 1 the nature of the oscillation damping at vibration dampers by rolling friction is close to their decay in the viscous resistance; 2 when conducting the necessary experiments the shock absorber rolling can be recommended as alternatives to hydraulic ones. The research results of this task will help implement the new trend in reduction of dynamic loads in vehicles. Originality. With the help of theoretical curves to determine the coefficients of rolling friction the dependences for determining the amplitudes of the oscillations in the vertical movement of cargo were obtained. At the same time, the previously proposed analytical dependence for determining the coefficient of rolling friction contains only conventional mechanical constants of the contacting bodies and there geometrical dimensions. Practical value. Due to the existing well-known disadvantages of hydraulic shock absorbers it would be logical to apply shock absorbers that are technologically convenient in manufacturing and easy to adjust the damping rate. The proposed theory can be used in the design of shock absorbers rolling as an alternative to the hydraulic

  6. Inkjet printing as a roll-to-roll compatible technology for the production of large area electronic devices on a pre-industrial scale

    NARCIS (Netherlands)

    Teunissen, P.; Rubingh, E.; Lammeren, T. van; Abbel, R.J.; Groen, P.

    2014-01-01

    Inkjet printing is a promising approach towards the solution processing of electronic devices on an industrial scale. Of particular interest is the production of high-end applications such as large area OLEDs on flexible substrates. Roll-to-roll (R2R) processing technologies involving inkjet

  7. Prediction of Critical Heat Flux under Rolling Motion

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jinseok; Lee, Yeongun; Park, Gooncherl [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    The aim to this paper may be summarized as follows: identify the flow regime compare with existing void-quality relationship and void fraction at OAF derived from the vapor superficial velocity obtained by the churn-to annular flow criterion, develop and evaluate the correlation for accurate prediction of CHF ratio under rolling motion. Experimentally measured CHF results from the previous study were not well-predicted by existing CHF correlations developed for wide range of pressure under rolling motion in vertical tube. Specifically, existing correlations do not account for the dynamic motion parameter, such as tangential and centrifugal force. This study reviewed some existing correlation and experimental studies related to reduction and enhancement of CHF and heat transfer and flow behavior under heaving and rolling motion, and developed a CHF ratio correlation for upward flow vertical tube under rolling motion. Based upon dimensionless groups, equations and interpolation factor, an empirical CHF correlation has been developed which is consistent with experimental data for uniformly heated tubes internally cooled by R-134 under rolling motion. Flow regime was determined through the prediction method for annular flow. Non-dimensional number and function were decided by CHF mechanism of each region. Interaction of LFD and DNB regions is taken into account by means of power interpolation which is reflected void fraction at OAF. The suggested correlation predicted the CHF Ratio with reasonable accuracy, showing an average error of -0.59 and 2.51% for RMS. Rolling motion can affect bubble motion and liquid film behavior complexly by combination of tangential and centrifugal forces and mass flow than heaving motion. Through a search of literature and a comparison of previous CHF ratio results, this work can contribute to the study of boiling heat transfer and CHF for the purpose of enhancement or reduction the CHF of dynamic motion system, such as marine reactor.

  8. Produção Arbórea e Animal em Sistema Silvipastoril com Acácia-negra (Acacia mearnsii Trees and Animal Production in a Silvipastoral System with Black Wattle (Acacia mearnsii

    Directory of Open Access Journals (Sweden)

    Zelia Maria de Souza Castilhos

    2010-02-01

    Full Text Available

    Com o objetivo de avaliar o desempenho dos componentes arbóreo e animal em um sistema silvipastoril (SSP com acácia-negra (Acacia mearnsii De Wild e gramíneas perenes de verão, foi conduzido um trabalho em convênio com a empresa Seta S.A., na unidade da Fepagro em Tupanciretã, RS, no período de outubro de 1995 a maio de 2003. O delineamento experimental foi um bifatorial (espécie forrageira e densidade arbórea inteiramente casualizado, com duas repetições. As espécies forrageiras (EF avaliadas foram capim annoni (Eragrostis plana, braquiária (Brachiaria brizantha e capim gatton (Panicum maximum cv. Gatton nos quatro primeiros anos, e capim gatton, capim aruana (P. maximum cv. Aruana e capim pangola (Digitaria diversinervis para os demais anos. As densidades arbóreas (DA testadas foram de 1.667, 1.000, 833 e 500 árvores.ha-1. Com 1.667 árvores.ha-1 houve maior rendimento de madeira em todas as avaliações, não diferindo de 1.000 árvores/ha-1 a partir do quinto ano. A produtividade animal foi mais elevada em DA de 833 e 500 árvores.ha-1, sendo respectivamente 229 e 223 kg.ha-1 de peso vivo. Aos sete anos de implantação da acácia negra, o volume de madeira foi de 166; 143; 86 e 51 m3.ha-1, respectivamente, nas densidades arbóreas de 1.667; 1.000; 833 e 500 árvores.ha-1. Para que haja um equilíbrio entre produção arbórea e animal, SSPs com densidades arbóreas entre 1.000 e 833 árvores.ha-1 apresentam-se como alternativas viáveis para os produtores rurais.

     

    doi: 10.4336/2009.pfb.60.39

    A silvopastoral study consisting of black wattle (Acacia mearnsii De Wild and tropical perennial grasses was developed at the Fepagro Research Unity in Tupanciretã, RS, in collaboration with Seta Group, from October 1995 until May 2003, with the objective of evaluating trees and animal (beef cattle performances. The experiment was a bifactorial completely randomized design (forage specie and arboreal density with two

  9. NON-CENTRAL ROLLING OF FLAT WORKS WITH TAPERED THICKNESS

    Directory of Open Access Journals (Sweden)

    I. A. Isaevich

    2010-01-01

    Full Text Available The way of forming of variable shape strips with rolling in non-drive waves with rounding by the movable arbor strip is analyzed. The way of rolling with derivation of speeds of deforming instruments is offered.

  10. Design of a Small Scale Roll to Roll Device

    OpenAIRE

    Pereira, Amon A; White, Edward; Kramer, Rebecca Krone

    2014-01-01

    In the soft robotics field, hyperelastic polymer films are used in conjunction with eutectic gallium indium to create flexible strain gages. However, rapid large scale manufacturing methods of such sensors have yet to be developed. Developing new manufacturing methods will allow for researchers to build and test new soft sensor concepts faster but also pave the way for future mass-production of these sensors for consumer or industrial consumption. One of those methods would be a Roll to...

  11. Calculation of the Stiffness in the Roll Tensioning of the Circular Saw Blade

    Directory of Open Access Journals (Sweden)

    Linh Vo Tung

    2016-01-01

    Full Text Available The circular blade has been widely used in some projects such as cutting stone, wood and other projects. Owing to its particularity and wide use, it has an important position in cutting industry. Roll tensioning is considered as an effective method which can be used to improve the stiffness and performance of the circular saw blade. The effect of rolling position and width in the roll tensioning is obvious. In this paper the calculation of the maximum stiffness at different rolling position and width in the rolling were carried out through the finite -element. The results show that three ideal points are found. And when rolling position is Ø950mm and rolling width is 20mm, the maximum stiffness of the circular saw blade whose minimum deformation is 0.028mm is found. The roll tensioning can increase the stiffness of the saw blade. It will provide a theoretical basis and guidance for the actual production.

  12. Finite element method analysis of surface roughness transfer in micro flexible rolling

    Directory of Open Access Journals (Sweden)

    Qu Feijun

    2016-01-01

    Full Text Available Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to decrease the surface roughness. Four types of initial workpiece surface roughness are studied in the simulation, and the influences of process parameters, such as friction coefficient, rolling speed and roll gap adjusting speed, on surface asperity flattening of workpieces with different initial surface roughness have been numerically investigated and analysed.

  13. Magnetoresistance of rolled-up Fe3Si nanomembranes.

    Science.gov (United States)

    Schumann, J; Lisunov, K G; Escoffier, W; Raquet, B; Broto, J M; Arushanov, E; Mönch, I; Makarov, D; Deneke, C; Schmidt, O G

    2012-06-29

    Magnetotransport of individual rolled-up Fe(3)Si nanomembranes is investigated in a broad temperature range from 4.2 K up to 300 K in pulsed magnetic fields up to 55 T. The observed magnetoresistance (MR) has the following pronounced features: (i) MR is negative in the investigated intervals of temperature and magnetic field; (ii) its magnitude increases linearly with the magnetic field in a low-field region and reveals a gradual trend to saturation when the magnetic field increases; (iii) the MR effect becomes more pronounced with increasing temperature. These dependences of MR on the magnetic field and temperature are in line with predictions of the spin-disorder model of the spin-flip s-d interaction assisted with creation or annihilation of magnons, which is expected above a certain critical temperature. Comparison of the MR features in rolled-up and planar samples reveals a substantial increase of the critical temperature in the rolled-up tube, which is attributed to a new geometry and internal strain arising in the rolled-up nanomembranes, influencing the electronic and magnetic properties of the material.

  14. Rolls-Royce digital Rod Control System

    International Nuclear Information System (INIS)

    Pouillot, M.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of Rod Control System, based on 40 years of experience. The fifth-generation Rod Control System (RCS) from Rolls-Royce offers a reliable, modular design with adaptability to your preferred platform, for modernization projects or new reactors. Flexible implementation provides the option for you to keep existing cabinets, which permits you to optimize installation approach. Main features for the power part: - Control Rod Drive Mechanism (CRDM) type: 3-coil. - Independent control of each sub-bank. - Each sub-bank is controlled by a cycler unit and 3 identical power racks, each including 4 identical power modules and a common power-supply module. - Coil-per-coil digital control: each power module embeds power-conversion, current-control, and current-monitoring functions for one coil. Control and monitoring are carried out by separate electronics in the module. Current is digitized and fully monitored by means of min-max templates. - A double-hold function is included: a power module assigned to a gripper will activate its coil if a fault risking to cause a reactor trip occurs. - Power modules are standardized, hot-pluggable and self-configured: a power module includes a set of parameters for each type of coil SG, MG, LC. The module recognizes the rack it is plugged in, and chooses automatically parameters to be used. Main benefits: - Reduced operational, maintenance, training, and inventory costs: standardization of power modules and integration of control and monitoring on the same PC-card lead to a drastic reduction of spare part types, and simplification of the system. - Easy maintenance: - Replacement of a power module solves nearly all failures due to current control or monitoring for a coil. It is done instantly thanks to hot-plug capability. - On the front plate of power-modules, LEDs provide useful information for diagnostic: current setpoint from cycler, output current bar

  15. Disruption Management of Rolling Stock in Passenger Railway Transportation

    NARCIS (Netherlands)

    L.K. Nielsen (Lars Kjaer); G. Maróti (Gábor)

    2009-01-01

    textabstractThis paper deals with real-time disruption management of rolling stock in passenger railway transportation. We present a generic framework for modeling disruptions in railway rolling stock schedules. The framework is presented as an online combinatorial decision problem where the

  16. SOFTWARE FOR COMPUTER-AIDED DESIGN OF CROSS-WEDGE ROLLING

    OpenAIRE

    A. A. Abramov; S. V. Medvedev

    2013-01-01

    The issues of computer technology creation of 3D-design and engineering analysis of metal forming processes using cross wedge rolling methods (CWR) are considered. The developed software for computer-aided design and simulation of cross-wedge rolling is described.

  17. Research upon the quality assurance of the rolling-mill rolls and the variation boundaries of the chemical composition

    Directory of Open Access Journals (Sweden)

    Kiss, I.

    2008-08-01

    Full Text Available The cast-iron rolls must present higher hardness at the rolling surface and lower in the core and the necks, adequate with mechanical resistance and in the high work temperature. If in the zone of the rolling surface, the hardness is guarantied by the irons structure, through the cementite quantities, the core of rolls must contain graphite, to assure this property. Starting from the lamination equipments aspects, from the form of rolls, of the technological interest zones and the structure, which assures the exploitation property, it was establish, through modeling, to the mathematical description of a direct influences, and in final, through successive determinations, to an optimum. One of the parameters, which are determined the structure of the irons destined for rolls casting, is the chemical composition, which guaranties the exploitation properties of the each roll in the stand of rolling mill. The realization of optimum chemical compositions of the cast-iron can constitute a technical efficient way to assure the exploitation properties, the material from which the rolling mills rolls are manufactured having an important role in this sense. Although the manufacture of rolls is in continuously perfecting, the requirements for superior quality rolls are not yet completely satisfied, in many cases, the absence of quality rolls preventing the realization of quality laminates or the realization of productivities of which rolling mills are capable. This paper presents an analysis of the main alloying elements from chemical composition, the influences upon the mechanical properties of the cast-iron rolls, and presents also some graphical addenda. Using the Matlab calculation and graphical programs we determinate some correlations between the hardness (on the working surface and on necks and the chemical composition. Using the double and triple correlations is really helpful in the foundry practice, as it allows us to determine variation

  18. 78 FR 16500 - Rolling Bay, LLC and Indus; Transfer of Data

    Science.gov (United States)

    2013-03-15

    ... contract to perform work for OPP, and access to this information will enable Rolling Bay, LLC and its subcontractor, Indus, to fulfill the obligations of the contract. DATES: Rolling Bay, LLC and its subcontractor... Under Contract No. GS-35F-0072Y, Rolling Bay, LLC and its subcontractor, Indus, will: Capture data that...

  19. Roll type conducting polymer legs for rigid-flexible thermoelectric generator

    Directory of Open Access Journals (Sweden)

    Teahoon Park

    2017-07-01

    Full Text Available A roll-type conducting polymer film was explored as a flexible organic p-type thermoelectric leg using poly(3,4-ethylenedioxythiophene (PEDOT doped with tosylate. The PEDOT films were prepared through solution casting polymerization and rolled up for a roll-type leg. Due to the high flexibility, the roll-type PEDOT leg enabled easy contact to both top and bottom electrodes. Simulation on the dynamic heat transfer and convective cooling for a vertically roosted rod- and roll-type PEDOT leg showed that the temperature difference (ΔT between the hot and cold sides of the leg was much higher in the roll than that of the rod. The PEDOT legs were integrated with n-type Bi2Te3 blocks, to give a 36-couple rigid-flexible thermoelectric generator (RF-TEG. The maximum output voltage from the 36-couple RF-TEG under a ΔT of 7.9 K was determined as 36.7 mV along with a high output power of 115 nW. A wearable RF-TEG was prepared upon the combination of the 36-couple RF-TEG with an arm warmer, to afford an output voltage of 10.6 mV, which was generated constantly and steadily from human wrist heat.

  20. Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors

    Science.gov (United States)

    Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut J.; Podila, Ramakrishna; Parler, Samuel G.; Kaplan, James P.; Rao, Apparao M.

    2014-12-01

    Although carbon nanomaterials are being increasingly used in energy storage, there has been a lack of inexpensive, continuous, and scalable synthesis methods. Here, we present a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (˜700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ˜17% lower cost.

  1. Interação entre Atta sexdens e espécie arbórea Copaifera langsdorfii Desf. em remanescente florestal de cerrado

    Directory of Open Access Journals (Sweden)

    Danival José de Souza

    2014-08-01

    Full Text Available A espécie arbórea Copaifera langsdorfii Desf. é muito explorada para extração do seu óleo e para utilização em recuperação de áreas degradadas e de matas ciliares. A comunidade vegetal pode ser beneficiada pela interação entre insetos e plantas sendo a mirmecocoria – dispersão de sementes por formigas – um desses exemplos de interação. O objetivo deste trabalho foi avaliar as interações entre a espécie arbórea C. langsdorffii Desf. e a espécie de formiga Atta sexdens em área de remanescente florestal de cerrado sensu stricto. As sementes forrageadas por formigas e não forrageadas encontradas no chão foram coletadas para análise de testes de germinação e IVG (índice de velocidade de germinação. A terra solta dos ninhos de Atta sexdens também foi coletada para avaliação e comparação com locais de dispersão natural. Os resultados dos testes indicaram germinação e IVG significativamente maiores em sementes forrageadas pelas formigas Atta sexdens e os locais mais favoráveis à germinação foram longe de áreas antropogênicas ao longo das trilhas de forrageamento.

  2. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    . This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  3. Optimization and Simulation of Machining Parameters in Radial-axial Ring Rolling Process

    Directory of Open Access Journals (Sweden)

    Shuiyuan Tang

    2011-05-01

    Full Text Available Ring rolling is a complicated process, in which rolling parameters influence directly the quality of ring. It is a process method with high productivity and few waste of material, widely used in transportation industry including automotive, shipbuilding, aerospace etc. During the rolling process of large-sized parts, crinkle and hollows often appear on surface, due to inconsistence of rolling motions with the deformation of ring part. Based on radial-axial ring rolling system configuration, motions and forces in rolling process are analyzed, and a dynamic model is formulated. Error of ring's end flatness and roundness are defined as the characteristic parameters of ring quality. The relationship between core roller feed speed, drive roller speed, the upper taper roller feed speed, and quality of ring part are analyzed. The stress and strain of the part are simulated in the Finite Element Method by DEFORM software. The simulation results provide a reference for the definition of ring rolling process parameters. It is able to make the deformation of the part be consistent with the process parameters, and improve product quality considerably.

  4. Rotor Rolling over a Water-Lubricated Bearing

    Science.gov (United States)

    Shatokhin, V. F.

    2018-02-01

    The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the

  5. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1988-02-01

    By means of the stochastic description of inflation, we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on the global scale, both analytically and numerically. A particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form, V(φ) ∼ V 0 - cφ 2n at φ ∼ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find, for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (author)

  6. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi

    1988-01-01

    By means of the stochastic description of inflation we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on a global scale, both analytically and numerically. Particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form V(φ) ≅ V 0 -cφ 2n at φ ≅ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find that for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (orig.)

  7. A computer system to aid in the planning of steel rolls cuts

    Directory of Open Access Journals (Sweden)

    Nelson Maculan

    2007-03-01

    Full Text Available The planning of cuts in steel rolls is a combinatory optimization problem. Some companies of the metallurgical industry use the steel cold lamination process so that it acquires the necessary physical properties. In this case, the cutting patterns should consist of compartments of items compatible with the lamination process, hindering the task of cuts planning. A compartment represents an intermediate roll to be laminated, so that it is possible to combine intermediate rolls with different lamination needs in the same roll of the stock. In this work the prototype of the RollCut System will be presented to aid with the cuts planning.

  8. Ring rolling of AW5083 large rings for the external cylinder of CMS

    CERN Multimedia

    S. Sgobba / EST

    2001-01-01

    Picture 1: The forged cylinder is engaged in the ring rolling plant. Picture 2: Vertical rolls allow for the reduction in the axial direction. Rolling is carried out at approx. 400 degrees C. Horizontal rolls (not shown) allow for the reduction in the radial direction. Picture 3: Handling of the ring, rolled at the internal diameter of approx. 7m, and transfer to the quenching both. All pictures have been taken during the visit of Mr. Sgobba at Dembiermont, Mobeuge (Bruxelles).

  9. Disk partition function and oscillatory rolling tachyons

    International Nuclear Information System (INIS)

    Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2008-01-01

    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same

  10. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2007-01-01

    The flow pattern transition of two-phase flow is caused by the inertial force resulted from rolling and incline of horizontal tubes under rolling state. an experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state, which rolling period is 15 second and rolling angle is 10 degrees, and a pattern flow picture is shown. It was found that there are two flow patterns in one rolling period under some gas flux and water flux. (authors)

  11. Adaptive Automatic Gauge Control of a Cold Strip Rolling Process

    Directory of Open Access Journals (Sweden)

    ROMAN, N.

    2010-02-01

    Full Text Available The paper tackles with thickness control structure of the cold rolled strips. This structure is based on the rolls position control of a reversible quarto rolling mill. The main feature of the system proposed in the paper consists in the compensation of the errors introduced by the deficient dynamics of the hydraulic servo-system used for the rolls positioning, by means of a dynamic compensator that approximates the inverse system of the servo-system. Because the servo-system is considered variant over time, an on-line identification of the servo-system and parameter adapting of the compensator are achieved. The results obtained by numerical simulation are presented together with the data taken from real process. These results illustrate the efficiency of the proposed solutions.

  12. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    Directory of Open Access Journals (Sweden)

    Alexander A Tarnutzer

    Full Text Available Perceived direction of gravity, as assessed by the subjective visual vertical (SVV, shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°, and immediately after returning to upright. Significant (p<0.05 drifts (median absolute drift-amplitude: 10°/5 min were found in 71% (± 45° and 78% (± 90° of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%, whereas significant increases (56% and decreases (44% were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec was noted in 47% of all runs (all subjects pooled. No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  13. Numerical aspects of U-Mo core covered by Zry-4 miniplates co-rolling

    International Nuclear Information System (INIS)

    Picchetti, B.; Moscarda, M.V.; Taboada, H.

    2013-01-01

    The aim of this work is to support through adequate modeling the development of the co-rolling process of miniplates and plates starting with compacts including a monolithic U-Mo core with Zry-4 frame and cladding, Through relevant parameter identification and specific variables calculation a co rolling process model was set. The goal is to design a co-rolling optimal strategy related to the expected results through the use of such model. To that end the rolling process is depicted and some elements of strain stress theory on metals are employed. Plastic strain depends on deviator components of the stress tensor but no on the hydrostatic one. Metal sheet co-rolling is a plastic strain by planar compression at constant volume. During the co-rolling process the width constancy is assumed, being the piece of metal free to flow along its length. In this work the relationship between constitutive materials shield stresses U-Mo core and Zry-4 cladding under T= 650°C co-rolling is determined. This allows to modeling the reduction that exist in each co-rolling step for each one of phases present, which enables the design of a loop control lace optimizing the co rolling process. (author)

  14. Finite element method analysis of surface roughness transfer in micro flexible rolling

    OpenAIRE

    Qu Feijun; Xie Haibo; Jiang Zhengyi

    2016-01-01

    Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to...

  15. An Integrated Rolling Stock Planning Model for the Copenhagen Suburban Passenger Railway

    DEFF Research Database (Denmark)

    Thorlacius, Per; Larsen, Jesper; Laumanns, Marco

    A central issue for operators of passenger railways is providing sufficient number of seats for passengers while at the same time minimising operating costs. This is the task of rolling stock planning. Due to the large number of practical, railway specific requirements that a rolling stock plan has...... to take into account, rolling stock plans are often constructed in a step-by-step manner, taking some requirements into consideration in each step. This may make it difficult in the final step to produce a plan that is feasible with regard to all of the requirements and at the same time economically...... attractive. This paper proposes an integrated rolling stock planning model that simultaneously takes into account all practical requirements for rolling stock planning at DSB S-tog, the suburban passenger train operator of the City of Copenhagen. The model is then used to improve existing rolling stock plans...

  16. An integrated rolling stock planning model for the Copenhagen suburban passenger railway

    DEFF Research Database (Denmark)

    Thorlacius, Per; Larsen, Jesper; Laumanns, Marco

    2015-01-01

    A central issue for operators of passenger railways is providing sufficient number of seats for passengers while at the same time minimising operating costs. This is the task of rolling stock planning. Due to the large number of practical, railway specific requirements that a rolling stock plan has...... to take into account, rolling stock plans are often constructed in a step-by-step manner, taking some requirements into consideration in each step. This may make it difficult in the final step to produce a plan that is feasible with regard to all of the requirements and at the same time economically...... attractive. This paper proposes an integrated rolling stock planning model that simultaneously takes into account all practical requirements for rolling stock planning at DSB S-tog, the suburban passenger train operator of the City of Copenhagen. The model is then used to improve existing rolling stock plans...

  17. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  18. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    International Nuclear Information System (INIS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P.K.; Paradowska, A.

    2014-01-01

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface

  19. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  20. Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors.

    Science.gov (United States)

    Ji, Hengxing; Mei, Yongfeng; Schmidt, Oliver G

    2010-06-14

    We demonstrate a redox Swiss roll micro-supercapacitor by rolling up a multilayered nanomembrane with an electrochemical active layer at either the outer or inner surface for different proton diffusion behaviors. The Swiss roll micro-supercapacitor could achieve high performance (e.g. capacity and life time) in a microscale power source and is helpful for studying charge transfer at the electrolyte/electrode interface.

  1. Optimal Portfolio Strategy under Rolling Economic Maximum Drawdown Constraints

    Directory of Open Access Journals (Sweden)

    Xiaojian Yu

    2014-01-01

    Full Text Available This paper deals with the problem of optimal portfolio strategy under the constraints of rolling economic maximum drawdown. A more practical strategy is developed by using rolling Sharpe ratio in computing the allocation proportion in contrast to existing models. Besides, another novel strategy named “REDP strategy” is further proposed, which replaces the rolling economic drawdown of the portfolio with the rolling economic drawdown of the risky asset. The simulation tests prove that REDP strategy can ensure the portfolio to satisfy the drawdown constraint and outperforms other strategies significantly. An empirical comparison research on the performances of different strategies is carried out by using the 23-year monthly data of SPTR, DJUBS, and 3-month T-bill. The investment cases of single risky asset and two risky assets are both studied in this paper. Empirical results indicate that the REDP strategy successfully controls the maximum drawdown within the given limit and performs best in both return and risk.

  2. Numerical analysis of viscous effect on ship rolling motions based on CFD

    Directory of Open Access Journals (Sweden)

    LUO Tian

    2017-03-01

    Full Text Available During the ship design procedure, the analysis of ship rolling motions is of great significance because the rolling motions have extraordinary effects on the sea-keeping, maneuverability and stability of a ship. It is difficult to simulate rolling motions due to the effect of viscosity, which causes many nonlinear components in computation. As such, the potential theory used for other ship motions cannot be used for rolling motions. This paper simulates the rolling motions of the DTMB 5512 ship model and the ship transverse section of the S60 ship model with a naoe-FOAM-SJTU solver using the Reynolds Averaged Navier Stokes(RANSmethod based on the OpenFOAM. The results of rolling motions are compared with the experimental data, which confirms the reliability of the meshes and results. For the ship transverse section of the S60 ship model, the damping coefficient is divided into three parts with the Euler and RANS methods:friction, vorticity and wave parts. For the DTMB 5512 ship model, the damping coefficient is also respectively analyzed, including the friction, vorticity, wave and bilge keel parts. The results in this paper show that the vorticity part accounts for the greatest proportion, while the friction part accounts for the least, and the bilge keels reduces the damping moment to a certain extent which shows the effect of rolling parameters on rolling motions and moments.

  3. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices

    International Nuclear Information System (INIS)

    Van de Wiel, H J; Galagan, Y; Van Lammeren, T J; De Riet, J F J; Gilot, J; Nagelkerke, M G M; Lelieveld, R H C A T; Shanmugam, S; Pagudala, A; Groen, W A; Hui, D

    2013-01-01

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom. (paper)

  4. Development of polymers for large scale roll-to-roll processing of polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert

    Development of polymers for large scale roll-to-roll processing of polymer solar cells Conjugated polymers potential to both absorb light and transport current as well as the perspective of low cost and large scale production has made these kinds of material attractive in solar cell research....... The research field of polymer solar cells (PSCs) is rapidly progressing along three lines: Improvement of efficiency and stability together with the introduction of large scale production methods. All three lines are explored in this work. The thesis describes low band gap polymers and why these are needed....... Polymer of this type display broader absorption resulting in better overlap with the solar spectrum and potentially higher current density. Synthesis, characterization and device performance of three series of polymers illustrating how the absorption spectrum of polymers can be manipulated synthetically...

  5. Rolling Cylinder Phase 1

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Taraborrelli, Valeria Taraborrelli

    Margheritini and Valeria Taraborrelli(valeria.taraborrelli@hotmail.it) with a total of 3 day visit from the developers. Laboratory tests in irregular waves will be performed by Lucia Margheritini. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes...

  6. Deformation in Micro Roll Forming of Bipolar Plate

    Science.gov (United States)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  7. Determination of residual stresses in roll compacted titanium strips

    CSIR Research Space (South Africa)

    Mothosi, KL

    2017-01-01

    Full Text Available residual stresses using x-ray diffraction (XRD) surface probing technique. Preliminary results were obtained for the surface residual stress at the center of the titanium strips for the 100 and 325 mesh strips rolled at 0.1 roll gap for 20 and 50 mm set...

  8. Roll-to-Roll Laser-Printed Graphene-Graphitic Carbon Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Kang, Sangmin; Lim, Kyungmi; Park, Hyeokjun; Park, Jong Bo; Park, Seong Chae; Cho, Sung-Pyo; Kang, Kisuk; Hong, Byung Hee

    2018-01-10

    Carbon electrodes including graphene and thin graphite films have been utilized for various energy and sensor applications, where the patterning of electrodes is essentially included. Laser scribing in a DVD writer and inkjet printing were used to pattern the graphene-like materials, but the size and speed of fabrication has been limited for practical applications. In this work, we devise a simple strategy to use conventional laser-printer toner materials as precursors for graphitic carbon electrodes. The toner was laser-printed on metal foils, followed by thermal annealing in hydrogen environment, finally resulting in the patterned thin graphitic carbon or graphene electrodes for supercapacitors. The electrochemical cells made of the graphene-graphitic carbon electrodes show remarkably higher energy and power performance compared to conventional supercapacitors. Furthermore, considering the simplicity and scalability of roll-to-roll (R2R) electrode patterning processes, the proposed method would enable cheaper and larger-scale synthesis and patterning of graphene-graphitic carbon electrodes for various energy applications in the future.

  9. IMPROVEMENT PROCESS FOR ROLLING MILL THROUGH THE DMAIC SIX SIGMA APPROACH

    Directory of Open Access Journals (Sweden)

    Kunal Ganguly

    2012-09-01

    Full Text Available This project aims to address the problems that are facing a large aluminum company in a Developing Hot Rolling Mill Capabilities for Wider Widths Hard Alloys Rolling and b Eliminate down time due to strip /coil slippage during hard alloys 5xxx rolling at Hot Mill. The challenge for the company was to cater the fast changing export demand for Flat Rolled products with its existing resources. By applying Six Sigma principles, the team identified the current situation that the rolling mills operations were in. Si x Sigma DMAIC methodologies were use d in the project to determine the project's CTQ characteristics, defining the possible causes, Identifying the variation sources, establishing variable relationships and Implementing Control Plans. The project can be useful for any company that needs to fi nd the most cost efficient way to improve and utilize its resources.

  10. Bottle roll leach test for Temrezli uranium ore

    International Nuclear Information System (INIS)

    Çetin, K.; Bayrak, M.; Turan, A. İsbir; Üçgül, E.

    2014-01-01

    The bottle roll leach test is one of the dynamic leaching procedure which can meet in-situ mining needs for determining suitable working conditions and helps to simulate one of the important parameter; injection well design. In this test, the most important parameters are pulp density, acidic or basic concentration of leach solution, time and temperature. In recent years, bottle roll test is used not only for uranium but also gold, silver, copper and nickel metals where in situ leach (ISL) mining is going to be applied. For this purpose for gold and silver metal cyanide bottle roll tests and for uranium metal; acidic and basic bottle roll tests could be applied. The new leach test procedure which is held in General Directorate of Mineral Research and Exploration (MTA) of Turkey is mostly suitable for determining metal extraction conditions and recovery values in uranium containing ore bodies. The tests were conducted with samples taken from Temrezli Uranium Ore located in approximately 200 km east of Turkey’s capital, Ankara. Mining rights of Temrezli Ore is controlled 100% by Anatolia Energy Ltd. The resource estimate includes an indicated mineral resource of 10.827 Mlbs U_3O_8 [~4160 t U] at an average grade of 1426 ppm [~1210 ppm U] and an additional inferred resource of 6.587 Mlbs of U_3O_8 [~2530 t U] at an average grade of 904 ppm [~767 ppm U]. In accordance with the demand from Anatolia Energy bottle roll leach tests have been initiated in MTA laboratories to investigate the recovery values of low-grade uranium ore under in-situ leach conditions. Bottle roll leaching tests are performed on pulverized samples with representative lixiviant solution at ambient pressure and provide an initial evaluation of ore leachability with a rough estimate of recovery value. At the end of the tests by using 2 g/L NaHCO_3 and 0.2 g/L H_2O_2 more than 90% of uranium can pass into leach solution in 12 days. (author)

  11. Effects of False Tilt Cues on the Training of Manual Roll Control Skills

    Science.gov (United States)

    Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.

    2015-01-01

    This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.

  12. Study of rolled uranium annealing process

    International Nuclear Information System (INIS)

    Cabane, G.

    1954-06-01

    The dilatometric study of rolled uranium clearly shows not only the expansions or contractions induced by stress relief or diffusion of vacancies, but also the slope variations of the cooling curves, which are the best evidence of a texture change. Under the microscope, hard-rolled sheets appear as a mixture of two distinct structures; it is also possible by intermediate annealing to prepare homogeneous sheets of either structure, i.e. twinned or untwinned. All these sheets which have similar textures, undergo at first a primary recrystallization beginning at 320 deg C, then a texture change without any apparent crystal growth, at about 430 deg C. (author) [fr

  13. Influência das inundações na distribuição de espécies arbóreas ao longo do Rio Massaguaçu (Caraguatatuba, São Paulo, Brasil), e potencial alelopático de Annona glabra L.

    OpenAIRE

    Reginaldo Sadao Matsumoto

    2009-01-01

    A vegetação estuário do rio Massaguaçu está sujeita a alagamentos periódicos. Esse regime de alagamento pode ser um fator importante na distribuição e composição da flora arbórea local. O presente trabalho objetivou a determinação da distribuição de espécies arbóreo-arbustivas do estuário do rio Massaguaçu, relacionado ao seu regime de inundações. A partir da foz sentido a montante, foram determinadas 5 bancos de vegetação inundável (A, B, C, D, e E). Em cada área, foram sorteadas 80 parcelas...

  14. A numerical approach to robust in-line control of roll forming processes

    NARCIS (Netherlands)

    Wiebenga, J.H.; Weiss, M.; Rolfe, B.; van den Boogaard, A.H.

    2012-01-01

    The quality of roll formed products is known to be highly sensitive and dependent on the process parameters and thus the unavoidable variations of these parameters during mass production. To maintain a constant high product quality, a new roll former with an adjustable final roll forming stand is

  15. Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.

    Science.gov (United States)

    Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin

    2015-05-01

    For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

  16. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

    2012-01-01

    Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

  17. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet

    International Nuclear Information System (INIS)

    Yan, B.H.; Zhang, G.; Gu, H.Y.

    2012-01-01

    Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.

  18. Roll of honour

    Energy Technology Data Exchange (ETDEWEB)

    Moxon, Suzanne

    1999-07-01

    This article gives details of the design and construction of dams selected by members of the dam construction industry for praise as feats of construction. The dams covered in the roll of honour include the dam at the Guri hydroelectric power station in Venezuela on the Caroni river, the Contra dam on the Verzrasca river in Switzerland, and the double curvature arc Ertan dam on the Yalong river in China. (UK)

  19. Lattice Boltzmann simulation of behaviour of particles moving in blood vessels under the rolling massage

    International Nuclear Information System (INIS)

    Hou-Hui, Yi; Cai-Feng, Wang; Xiao-Feng, Yang; Hua-Bing, Li

    2009-01-01

    The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques. (classical areas of phenomenology)

  20. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    Science.gov (United States)

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and head-roll tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation. Copyright © 2014 the American Physiological Society.

  1. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper

    Science.gov (United States)

    Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin

    2017-12-01

    LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.

  2. Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Jørgensen, Mikkel

    2013-01-01

    layer. The third and fourth layers were slot-die coated at the same time again using inline processing at a web speed of 10 mmin1 of firstly zinc oxide as the electron transport layer followed by P3HT:PCBM as the active layer. The first three layers (silver-grid/PEDOT:PSS/ZnO) comprise a generally......Fast inline roll-to-roll printing and coating on polyethylene terephthalate (PET) and barrier foil was demonstrated under ambient conditions at web speeds of 10 mmin1 for the manufacture of indium-tin-oxide-free (ITO-free) polymer solar cells comprising a 6-layer stack: silver-grid/PEDOT:PSS/ Zn...

  3. Rolling-Tooth Core Breakoff and Retention Mechanism

    Science.gov (United States)

    Badescu, Mircea; Bickler, Donald B.; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Hudson, Nicolas H.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale that is robust and versatile enough to be used for a variety of core samples. This design consists of a set of tubes (a drill tube and an inner tube) and a rolling element (rolling tooth). An additional tube can be used as a sample tube. The drill tube and the inner tube have longitudinal holes with the axes offset from the axis of each tube. The two eccentricities are equal. The inner tube fits inside the drill tube, and the sample tube fits inside the inner tube. While drilling, the two tubes are positioned relative to each other such that the sample tube is aligned with the drill tube axis and core. The drill tube includes teeth and flutes for cuttings removal. The inner tube includes, at the base, the rolling element implemented as a wheel on a shaft in an eccentric slot. An additional slot in the inner tube and a pin in the drill tube limit the relative motion of the two tubes. While drilling, the drill assembly rotates relative to the core and forces the rolling tooth to stay hidden in the slot along the inner tube wall. When the drilling depth has been reached, the drill bit assembly is rotated in the opposite direction, and the rolling tooth is engaged and penetrates into the core. Depending on the strength of the created core, the rolling tooth can score, lock the inner tube relative to the core, start the eccentric motion of the inner tube, and break the core. The tooth and the relative position of the two tubes can act as a core catcher or core-retention mechanism as well. The design was made to fit the core and hole parameters produced by an existing bit; the parts were fabricated and a series of demonstration tests were performed. This invention is potentially applicable to sample return and in situ missions to planets such as Mars and Venus, to moons such

  4. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  5. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  6. Conceptualizing Rolling Motion through an Extreme Case Reasoning Approach

    Science.gov (United States)

    Hasovic, Elvedin; Mešic, Vanes; Erceg, Nataša

    2017-01-01

    In this paper we are going to show how learning about some counterintuitive aspects of rolling motion can be facilitated by combining the use of analogies with extreme case reasoning. Specifically, the intuitively comprehensible examples of "rolling" polygonal prisms are used as an analogical anchor that is supposed to help the students…

  7. Method for rudder roll stabilization control by maintaining ship speed

    Directory of Open Access Journals (Sweden)

    LIU Zhiquan

    2017-01-01

    Full Text Available A ship navigating on the surface of the water may experience greater resistance, adversely affect-ing its speed and leading to energy loss. The added resistance of surface ships in both still water and waves are investigated, and the computation method of total speed loss is presented. An autopilot system is intro-duced to constrain the speed loss, and course keeping and rudder roll stabilization sliding mode control laws are proposed according to a compact control strategy. The two working conditions of "heading" and "heading plus anti-roll" are discussed, including roll stabilization, heading error, speed maintenance and rudder abrasion. The results show that the speed can be effectively maintained using this method, and from a commercial point of view, the fin-rudder roll stabilization control is not recommended for vessels equipped with both fins and rudders.

  8. Orientation effect on recovery and recrystallization of cold rolled niobium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)], E-mail: rajagopalan.5@osu.edu; Viswanathan, G.B.; Levit, V.I.; Fraser, H.L. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2009-05-15

    Single crystal sheets of niobium with initial orientations of (0 0 1) [11-bar0], (1 1 0) [11-bar 0] and (1 1 1) [11-bar0] were rolled at room temperature in the strain range of 25-50%. The deformed specimens were vacuum annealed at temperatures of 800 deg. C, 1000 deg. C, and 1200 deg. C for 3 h. TEM, SEM-OIM and optical microscopy revealed orientation stability in (0 0 1) and (1 1 0) rolled samples with no recrystallization observed after annealing. Samples rolled along (1 1 1) partially recrystallized after annealing at 1000 deg. C and 1200 deg. C. A relatively small increase was observed in hardness of (0 0 1) rolled crystals between 25% and 50% strain, implying low work hardening rates. (1 1 1) rolled samples showed higher hardening rates, and enhanced recovery in hardness values after annealing, due to partial recrystallization. Conditions have been identified for the deformation and annealing of niobium single crystals, enabling the preservation of single crystal structure and near-complete recovery of mechanical properties. A simple crystallographic model is proposed, giving an explanation for the observed orientation stability in (0 0 1) and (1 1 0) rolled samples, and the tendency towards instability and recrystallization in (1 1 1) rolled samples.

  9. Roll-to-Roll Fabricated Polymer Solar Cells: Towards Low Environmental Impact and Reporting Consensus

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod

    The sun is by far the largest source of renewable energy available; consequently solar cells, which are able to convert light into electricity, have the technical potential to cover the global energy needs. Polymer solar cells (PSCs) on flexible plastic substrate have a low embodied energy and can...... be processed by fast roll-to-roll (R2R) methods, using earth abundant materials, and thus deliver the prospects to fulfil this potential. A strong polarization in PSC research efforts have led to diverging and non-comparable results: While very high power conversion efficiencies (PCEs) above 10% have been......, through R2R processing of tandem PSCs. A final focus area of the thesis is the investigation into the extrinsic variability in standard J-V characterizations done on PSCs, and towards ways to minimize it. Organic solvents are predominant process solvents used for fabricating the active layer of a PSC...

  10. Valor nutricional de seis plantas arbóreo-arbustivas consumidas por cabras en la Mixteca Poblana, México

    Directory of Open Access Journals (Sweden)

    Jorge Hernández Hernández

    2015-09-01

    Full Text Available En las comunidades de Maninalcingo y Tehuaxtla ubicadas en la región Mixteca, Puebla, México, se evaluó la composición nutricional de seis plantas arbóreo-arbustivas consumidas por el ganado caprino (Palo de Brasil, Tehuistle, Barba de chivo, Huamúchil, Tlaxistle negro y Cubata, en época lluviosa. Se analizaron tres unidades de producción familiar, donde se colectaron hojas, flores y frutos (vainas. Para comparar el promedio de bocados/h y la parte de la planta consumida por los caprinos se aplicó la prueba de Tukey y, estadística descriptiva para determinar la dispersión entre los componentes bromatológicos de las partes de la planta de la población total de arbóreo-arbustivas evaluadas. Las muestras estuvieron constituidas por 200 g de peso verde (luego deshidratada. La materia orgánica (MO, ceniza (Ce y proteína bruta (PB se obtuvieron por medio de la técnica AOAC (1997. Para el caso de la fibra detergente neutra (DDN, fibra detergente ácida (FDA y lignina (Lig por medio del método Van Soest.  Los resultados demuestran que el Huamúchil (Pithecellobium dulce mezclado con hoja y vaina mostró mejor media de PB (18.3% ±1.08, la mejor PB fue para la fracción hoja (14.4%±0.42 de Tehuistle (Acacia bilimekii var. Robusta Miranda y 94.4%±1.02 en MO. El Huamúchil mezclado con hoja y vaina tuvo el promedio más alto de Ce (12.3±0.88, mientras que la mezcla de vaina y cáscara de Cubata alcanzaron 52.7%±1.8 y 49.8%±1.04 de FDN y FDA, respectivamente. En el caso de lignina, la hoja de Tehuistle alcanzó 18.4%±0.98.

  11. Determination of rolling resistance coefficient based on normal tyre stiffness

    Science.gov (United States)

    Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.

    2018-03-01

    The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.

  12. Develop Roll-to-Roll Manufacturing Process of ZrO2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C [ORNL; Compton, Brett G [ORNL; Li, Jianlin [ORNL; Jellison Jr, Gerald Earle [ORNL; Duty, Chad E [ORNL

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  13. Germinación de semillas y clave para la identificación de plántulas de seis especies arbóreas nativas de humedales del sureste de México

    Directory of Open Access Journals (Sweden)

    Luis Felipe Zamora-Cornelio

    2010-06-01

    Full Text Available Especies arbóreas de humedales son de importancia económica y para fines de restauración. Nosotros describimos el proceso de germinación y morfología de plántulas de seis especies arbóreas nativas típicas del sureste de México: Annona glabra, Ceiba pentandra, Pachira aquatica, Haematoxylum campechianum, Coccoloba barbadensis y Crataeva tapia. Un total de 300 semillas por especie fueron sembradas en una mezcla de arena, cascarilla de cacao y tierra negra (1: 1: 1, y mantenidas en invernadero a 30% de sombra artificial, de febrero a noviembre de 2007. Se realizó la caracterización morfológica, y elaboró una clave de plántulas con base en: 1 tipo de germinación 2 eje de la plántula y 3 elementos foliares. P. aquatica presenta germinación criptocotilar hipogea, las otras tienen germinación fanerocotilar epigea. Las tasas de germinación fueron altas (>86%, a excepción de C. barbadensis (69%.

  14. PECULIARITIES OF THE FEED TEMPERATURE CHANGING ALONG THE MILL 320 UNE OF RUP "BMZ" AT ROLLING OF REINFORCING PROFILES BY MEANS OF ROLLING-AND-SEPARATION

    Directory of Open Access Journals (Sweden)

    S. M. Zhuchkov

    2006-01-01

    Full Text Available The peculiarities of the temperature changing of the roll along the length of mill at using of new technological schema of production of reinforce rolled metal of small cuts in conditions of RUP are considered.

  15. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions

    International Nuclear Information System (INIS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Jin, Guangyuan; Tan, Sichao

    2013-01-01

    Highlights: ► Two-phase flow frictional resistance in narrow duct in rolling is studied. ► Frictional resistance behaviors in rolling are divided into three regions. ► Transient frictional pressure drop fluctuates synchronously with rolling motion. ► Conventional correlations are evaluated against experimental data in rolling motion. ► New correlation for transient frictional resistance in rolling motion is developed. - Abstract: Frictional resistance of air-water two-phase flow in a narrow rectangular duct subjected to rolling motion was investigated experimentally. Time-averaged and transient frictional pressure drop under rolling condition were compared with conventional correlation in laminar flow region (Re l l ⩽ 1400) and turbulent flow region (Re l > 1400) respectively. The result shows that, despite no influence on time-averaged frictional resistance, rolling motion does induce periodical fluctuation of the pressure drop in laminar and transition flow regions. Transient frictional pressure drop fluctuates synchronously with the rolling motion both in laminar and in transition flow region, while it is nearly invariable in turbulent flow region. The fluctuation amplitude of the Relative frictional pressure gradient decreases with the increasing of the superficial velocities. Lee and Lee (2002) correlation and Chisholm (1967) correlation could satisfactorily predict time-averaged frictional pressure drop under rolling conditions, whereas poorly predict the transient frictional pressure drop when it fluctuates periodically. A new correlation with better accuracy for predicting the transient frictional pressure drop in rolling motion is achieved by modifying the Chisholm (1967) correlation on the basis of analyzing the present experimental results with a great number of data points

  16. Mechanics-driven patterning of CVD graphene for roll-based manufacturing process

    Science.gov (United States)

    Kim, Sang-Min; Jang, Bongkyun; Jo, Kyungmin; Kim, Donghyuk; Lee, Jihye; Kim, Kyung-Shik; Lee, Seung-Mo; Lee, Hak-Joo; Han, Seung Min; Kim, Jae-Hyun

    2017-06-01

    Graphene is considered as a promising material for flexible and transparent electrodes due to its outstanding electrical, optical, and mechanical properties. Efforts to mass-produce graphene electrodes led to the development of roll-to-roll chemical vapor deposition (CVD) graphene growth and transfer, and the only remaining obstacle to the mass-production of CVD graphene electrodes is a cost-effective patterning technique that is compatible with the roll-to-roll manufacturing. Herein, we propose a mechanics-driven technique for patterning graphene synthesized on copper foil (commonly used in roll-to-roll manufacturing). The copper foil is exposed to high temperature for a prolonged period during the CVD growth of graphene, and thus can result in recrystallization and grain growth of the copper foil and thereby reducing to the yield strength. This softening behavior of the copper was carefully controlled to allow simple stamp patterning of the graphene. The strength of the underlying substrate was controlled for the accuracy of the residual patterns. The proposed stamp patterning technique is mask-less and photoresist-free, and can be performed at room temperature without high-energy sources such as lasers or plasma. To demonstrate the capability of this process to produce a continuous electrode, a transparent in-plane supercapacitor was fabricated using the proposed patterning technique.

  17. Dynamics Modeling and Analysis of Local Fault of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2015-01-01

    Full Text Available This paper presents a nonlinear vibration model of rolling element bearings with 5 degrees of freedom based on Hertz contact theory and relevant bearing knowledge of kinematics and dynamics. The slipping of ball, oil film stiffness, and the nonlinear time-varying stiffness of the bearing are taken into consideration in the model proposed here. The single-point local fault model of rolling element bearing is introduced into the nonlinear model with 5 degrees of freedom according to the loss of the contact deformation of ball when it rolls into and out of the local fault location. The functions of spall depth corresponding to defects of different shapes are discussed separately in this paper. Then the ode solver in Matlab is adopted to perform a numerical solution on the nonlinear vibration model to simulate the vibration response of the rolling elements bearings with local fault. The simulation signals analysis results show a similar behavior and pattern to that observed in the processed experimental signals of rolling element bearings in both time domain and frequency domain which validated the nonlinear vibration model proposed here to generate typical rolling element bearings local fault signals for possible and effective fault diagnostic algorithms research.

  18. The evolution of texture in aluminum alloy sheet during asymmetric rolling

    International Nuclear Information System (INIS)

    Kim, K-H.; Lee, D.N.

    2000-01-01

    Asymmetric rolling, in which the upper and lower roll radii are different, imposes shear deformation on sheets through the thickness, which in turn gives rise to shear deformation textures in the sheets through the thickness. A component of ND// in the shear deformation textures can improve the plastic strain ratios of aluminum sheets. In order to understand the evolution of ND// , the strain histories and distributions in the sheets during the asymmetric rolling are calculated by the finite element method. The strain history and distribution are used to calculate crystallographic orientations and stable orientations based on the Taylor-Bishop-Hill theory and the Renouward-Wintenberger theory. The shear deformation texture can vary with the ratio of shear to normal strain increments. As the ratio increases from zero to infinity, the texture moves from the plane strain compression texture (β fiber) to the ideal shear deformation texture consisting of {001} , {111} , and {111} . The ratio increases with rolling reduction per pass in asymmetric rolling. However, it is practically difficult to the rolling reduction per pass high enough to obtain the ideal shear deformation texture. Imposing the positive and negative shear deformations on the sheet by reversing the shearing direction can give rise to the ideal shear deformation texture. This has been discussed. (author)

  19. A new solution method for wheel/rail rolling contact.

    Science.gov (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  20. EBSD characterization of twinning in cold-rolled CP-Ti

    International Nuclear Information System (INIS)

    Li, X.; Duan, Y.L.; Xu, G.F.; Peng, X.Y.; Dai, C.; Zhang, L.G.; Li, Z.

    2013-01-01

    This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112 ¯ 2) ¯ 3 ¯ > compressive twins and (101 ¯ 2) ¯ 1 ¯ > tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system. The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties