WorldWideScience

Sample records for accumbens shell enhances

  1. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    Science.gov (United States)

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  2. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    Directory of Open Access Journals (Sweden)

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  3. Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose 'Liking' and Intake but Scopolamine in Caudal Shell Shifts 'Liking' Toward 'Disgust' and 'Fear'.

    Science.gov (United States)

    Castro, Daniel C; Terry, Rachel A; Berridge, Kent C

    2016-07-01

    The nucleus accumbens (NAc) contains a hedonic hotspot in the rostral half of medial shell, where opioid agonist microinjections are known to enhance positive hedonic orofacial reactions to the taste of sucrose ('liking' reactions). Within NAc shell, orexin/hypocretin also has been reported to stimulate food intake and is implicated in reward, whereas blockade of muscarinic acetylcholine receptors by scopolamine suppresses intake and may have anti-reward effects. Here, we show that NAc microinjection of orexin-A in medial shell amplifies the hedonic impact of sucrose taste, but only within the same anatomically rostral site, identical to the opioid hotspot. By comparison, at all sites throughout medial shell, orexin microinjections stimulated 'wanting' to eat, as reflected by increases in intake of palatable sweet chocolates. At NAc shell sites outside the hotspot, orexin selectively enhanced 'wanting' to eat without enhancing sweetness 'liking' reactions. In contrast, microinjections of the antagonist scopolamine at all sites in NAc shell suppressed sucrose 'liking' reactions as well as suppressing intake of palatable food. Conversely, scopolamine increased aversive 'disgust' reactions elicited by bitter quinine at all NAc shell sites. Finally, scopolamine microinjections localized to the caudal half of medial shell additionally generated a fear-related anti-predator reaction of defensive treading and burying directed toward the corners of the transparent chamber. Together, these results confirm a rostral hotspot in NAc medial shell as a unique site for orexin induction of hedonic 'liking' enhancement, similar to opioid enhancement. They also reveal distinct roles for orexin and acetylcholine signals in NAc shell for hedonic reactions and motivated behaviors.

  4. Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences.

    Science.gov (United States)

    Kerfoot, Erin C; Chattillion, Elizabeth A; Williams, Cedric L

    2008-01-01

    The shell division of the nucleus accumbens receives noradrenergic input from neurons in the nucleus of the solitary tract (NTS) that transmit information regarding fluctuations in peripheral hormonal and autonomic activity. Accumbens shell neurons also receive converging inputs from limbic areas such as the hippocampus and amygdala that process newly acquired information. However, few studies have explored whether peripheral information regarding changes in emotional arousal contributes to memory processing in the accumbens. The beneficial effects on memory produced by emotional arousal and the corresponding activation of NTS neurons may be mediated through influences on neuronal activity in the accumbens shell during memory encoding. To explore this putative relationship, Experiment 1 examined interactions between the NTS and the accumbens shell in modulating memory for responses acquired after footshock training in a water-motivated inhibitory avoidance task. Memory for the noxious shock was significantly improved by posttraining excitation of noradrenergic NTS neurons. The enhanced retention produced by activating NTS neurons was attenuated by suppressing neuronal activity in the accumbens shell with bupivacaine (0.25%/0.5 microl). Experiment 2 examined the direct involvement of accumbens shell noradrenergic activation in the modulation of memory for psychologically arousing events such as a reduction in perceived reward value. Noradrenergic activation of the accumbens shell with phenylephrine (1.0 microg/0.5 microl) produced an enhancement in memory for the frustrating experience relative to control injections as evidenced by runway performance on an extended seven-day retention test. These findings demonstrate a functional relationship between NTS neurons and the accumbens shell in modulating memory following physiological arousal and identifies a role of norepinephrine in modulating synaptic activity in the accumbens shell to facilitate this process.

  5. Optogenetic Stimulation of Accumbens Shell or Shell Projections to Lateral Hypothalamus Produce Differential Effects on the Motivation for Cocaine

    OpenAIRE

    Larson, Erin B.; Wissman, Anne M.; Loriaux, Amy L.; Kourrich, Saïd; Self, David W.

    2015-01-01

    Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addict...

  6. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Directory of Open Access Journals (Sweden)

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  7. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  8. Oxytocin excites nucleus accumbens shell neurons in vivo.

    Science.gov (United States)

    Moaddab, Mahsa; Hyland, Brian I; Brown, Colin H

    2015-09-01

    Oxytocin modulates reward-related behaviors. The nucleus accumbens shell (NAcSh) is a major relay in the brain reward pathway and expresses oxytocin receptors, but the effects of oxytocin on the activity of NAcSh neurons in vivo are unknown. Hence, we used in vivo extracellular recording to show that intracerebroventricular (ICV) oxytocin administration (0.2μg) robustly increased medial NAcSh neuron mean firing rate; this increase was almost exclusively evident in slow-firing neurons and was not associated with any change in firing pattern. To determine whether oxytocin excitation of medial NAcSh neurons is modulated by drugs that impact the brain reward pathway, we next tested the effects of ICV oxytocin following repeated morphine treatment. In morphine-treated rats, ICV oxytocin did not affect the mean firing rate of medial NAcSh neurons. Taken together, these results show that oxytocin excites medial NAcSh neurons but does not do so after repeated morphine. This could be an important factor in oxytocin modulation of reward-related behaviors, such as drug addiction.

  9. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats.

    Science.gov (United States)

    Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W

    2011-11-09

    Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.

  10. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  11. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...

  12. Genetic sex and the volumes of the caudate-putamen, nucleus accumbens core and shell: original data and a review.

    Science.gov (United States)

    Wong, Jordan E; Cao, Jinyan; Dorris, David M; Meitzen, John

    2016-11-01

    Sex differences are widespread across vertebrate nervous systems. Such differences are sometimes reflected in the neural substrate via neuroanatomical differences in brain region volume. One brain region that displays sex differences in its associated functions and pathologies is the striatum, including the caudate-putamen (dorsal striatum), nucleus accumbens core and shell (ventral striatum). The extent to which these differences can be attributed to alterations in volume is unclear. We thus tested whether the volumes of the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell differed by region, sex, and hemisphere in adult Sprague-Dawley rats. As a positive control for detecting sex differences in brain region volume, we measured the sexually dimorphic nucleus of the medial preoptic area (SDN-POA). As expected, SDN-POA volume was larger in males than in females. No sex differences were detected in the volumes of the caudate-putamen, nucleus accumbens core or shell. Nucleus accumbens core volume was larger in the right than left hemisphere across males and females. These findings complement previous reports of lateralized nucleus accumbens volume in humans, and suggest that this may possibly be driven via hemispheric differences in nucleus accumbens core volume. In contrast, striatal sex differences seem to be mediated by factors other than striatal region volume. This conclusion is presented within the context of a detailed review of studies addressing sex differences and similarities in striatal neuroanatomy.

  13. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine.

    Science.gov (United States)

    Larson, Erin B; Wissman, Anne M; Loriaux, Amy L; Kourrich, Saïd; Self, David W

    2015-02-25

    Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addictive behavior and mood. Presently, it is unknown whether there is a causal link between altered activity in the AcbSh-LH pathway and changes in the motivation for cocaine. In this study, we used an optogenetics approach to either globally stimulate AcbSh neurons or to selectively stimulate AcbSh terminal projections in the LH, in rats self-administering cocaine. We found that stimulation of the AcbSh-LH pathway enhanced the motivation to self-administer cocaine in progressive ratio testing, and led to long-lasting facilitation of cocaine-seeking behavior during extinction tests conducted after withdrawal from cocaine self-administration. In contrast, global AcbSh stimulation reduced extinction responding. We compared these opposing motivational effects with effects on mood using the forced swim test, where both global AcbSh neuron and selective AcbSh-LH terminal stimulation facilitated depression-like behavioral despair. Together, these findings suggest that the AcbSh neurons convey complex, pathway-specific modulation of addiction and depression-like behavior, and that these motivation and mood phenomenon are dissociable.

  14. Transfer of neuroplasticity from nucleus accumbens core to shell is required for cocaine reward.

    Directory of Open Access Journals (Sweden)

    Nicolas Marie

    Full Text Available It is well established that cocaine induces an increase of dendritic spines density in some brain regions. However, few studies have addressed the role of this neuroplastic changes in cocaine rewarding effects and have often led to contradictory results. So, we hypothesized that using a rigorous time- and subject-matched protocol would demonstrate the role of this spine increase in cocaine reward. We designed our experiments such as the same animals (rats were used for spine analysis and behavioral studies. Cocaine rewarding effects were assessed with the conditioned place preference paradigm. Spines densities were measured in the two subdivisions of the nucleus accumbens (NAcc, core and shell. We showed a correlation between the increase of spine density in NAcc core and shell and cocaine rewarding effects. Interestingly, when cocaine was administered in home cages, spine density was increase in NAcc core only. With anisomycin, a protein synthesis inhibitor, injected in the core we blocked spine increase in core and shell and also cocaine rewarding effects. Strikingly, whereas injection of this inhibitor in the shell immediately after conditioning had no effect on neuroplasticity or behavior, its injection 4 hours after conditioning was able to block neuroplasticity in shell only and cocaine-induced place preference. Thus, it clearly appears that the neuronal plasticity in the NAcc core is essential to induce plasticity in the shell, necessary for cocaine reward. Altogether, our data revealed a new mechanism in the NAcc functioning where a neuroplasticity transfer occurred from core to shell.

  15. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...... explored the potential role of NPY in addiction mechanisms using microdialysis to measure extracellular dopamine in vivo after infusion of NPY directly into the accumbal shell region of adult rats. NPY was found to dose-dependently increase extracellular dopamine levels, indicating that NPY could play...

  16. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  17. Nucleus Accumbens Core and Shell are Necessary for Reinforcer Devaluation Effects on Pavlovian Conditioned Responding.

    Science.gov (United States)

    Singh, Teghpal; McDannald, Michael A; Haney, Richard Z; Cerri, Domenic H; Schoenbaum, Geoffrey

    2010-01-01

    The nucleus accumbens (NA) has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10-s CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  18. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding

    Directory of Open Access Journals (Sweden)

    Teghpal eSingh

    2010-10-01

    Full Text Available The nucleus accumbens (NA has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10 sec CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  19. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing.

    Science.gov (United States)

    Bassareo, V; Cucca, F; Frau, R; Di Chiara, G

    2015-11-01

    In order to investigate the role of modus operandi in the changes of nucleus accumbens (NAc) dopamine (DA) transmission in sucrose reinforcement, extracellular DA was monitored by microdialysis in the NAc shell and core of rats trained on a fixed-ratio 1 schedule to respond for sucrose pellets by nose poking and lever pressing respectively. After training, rats were tested on three different sessions: sucrose reinforcement, extinction and passive sucrose presentation. In rats responding by nose poking dialysate DA increased in the shell but not in the core under reinforced as well as under extinction sessions. In contrast, in rats responding by lever pressing dialysate DA increased both in the accumbens shell and core under reinforced and extinction sessions. Response non-contingent sucrose presentation increased dialysate DA in the shell and core of rats trained to respond for sucrose by nose poking as well as in those trained by lever pressing. In rats trained to respond for sucrose by nose poking on a FR5 schedule dialysate DA also increased selectively in the NAc shell during reinforced responding and in both the shell and core under passive sucrose presentation. These findings, while provide an explanation for the discrepancies existing in the literature over the responsiveness of shell and core DA in rats responding for food, are consistent with the notion that NAc shell and core DA encode different aspects of reinforcement.

  20. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression.

    Science.gov (United States)

    Barr, Jeffrey L; Forster, Gina L; Unterwald, Ellen M

    2014-08-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.

  1. Selecting danger signals: dissociable roles of nucleus accumbens shell and core glutamate in predictive fear learning.

    Science.gov (United States)

    Li, Susan S Y; McNally, Gavan P

    2015-06-01

    Conditioned stimuli (CSs) vary in their reliability as predictors of danger. Animals must therefore select among CSs those that are appropriate to enter into an association with the aversive unconditioned stimulus (US). The actions of prediction error instruct this stimulus selection so that when prediction error is large, attention to the CS is maintained and learning occurs but when prediction is small attention to the CS is withdrawn and learning is prevented. Here we studied the role of glutamate acting at rat nucleus accumbens shell (AcbSh) and core (AcbC) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in this selection of danger signals. Using associative blocking and unblocking designs in rats, we show that antagonizing AcbSh AMPA receptors via infusions of 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline-2,3-dione (NBQX; 0.5 μg) prevents the unblocking of fear learning, whereas antagonizing AcbC AMPA receptors via infusions of NBQX (0.5 μg) prevents both the blocking and unblocking of fear learning. These results identify dissociable but complementary roles for AcbSh and AcbC glutamate acting at AMPA receptors in selecting danger signals: AcbSh AMPA receptors upregulate attention and learning to CSs that signal surprising USs, whereas AcbC AMPA receptors encode the predicted outcome of each trial.

  2. NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell.

    Science.gov (United States)

    Desai, Sagar J; Upadhya, Manoj A; Subhedar, Nishikant K; Kokare, Dadasaheb M

    2013-06-15

    Although the interaction between endogenous neuropeptide Y (NPY) and opioidergic systems in processing of reward has been speculated, experimental evidence is lacking. We investigated the role of NPY, and its Y1 receptors, in the nucleus accumbens shell (AcbSh) in morphine induced reward and reinforcement behavior. Rats were implanted with cannulae targeted at AcbSh for drug administration, and with stimulating electrode in the medial forebrain bundle (MFB). The rats were then conditioned in an operant conditioning chamber for electrical self-stimulation of the MFB. Increased rate of lever pressings was evaluated against the frequency of the stimulating current. Increase in rate of lever presses was considered as a measure of reward and reinforcement. About 30-70% increase in self-stimulation was observed following bilateral intra-AcbSh treatment with morphine, NPY or [Leu(31), Pro(34)]-NPY (NPY Y1/Y5 receptors agonist), however, BIBP3226 (selective NPY Y1 receptors antagonist) produced opposite effect. The reward effect of morphine was significantly potentiated by NPY or [Leu(31), Pro(34)]-NPY, but antagonized by BIBP3226. NPY-immunoreactivity in the AcbSh, arcuate nucleus (ARC) and lateral part of bed nucleus of stria terminalis (BNSTl) was significantly more in the operant conditioned rats than in naïve control. However, morphine administration to the conditioned rats resulted in significant decrease in the NPY-immunoreactivity in all these anatomical regions. Since the role of morphine in modulation of mesolimbic-dopaminergic pathway is well established, we suggest that NPY system in AcbSh, ARC and BNSTl, perhaps acting via Y1-receptor system, may be an important component of the mesolimbic-AcbSh reward circuitry triggered by endogenous opioids.

  3. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli

    NARCIS (Netherlands)

    Barrot, Michel; Olivier, Jocelien D A; Perrotti, Linda I; DiLeone, Ralph J; Berton, Olivier; Eisch, Amelia J; Impey, Soren; Storm, Daniel R; Neve, Rachael L; Yin, Jerry C; Zachariou, Venetia; Nestler, Eric J

    2002-01-01

    The transcription factor cAMP response element (CRE)-binding protein (CREB) has been shown to regulate neural plasticity. Drugs of abuse activate CREB in the nucleus accumbens, an important part of the brain's reward pathways, and local manipulations of CREB activity have been shown to affect cocain

  4. Nucleus Accumbens Shell and mPFC but not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking

    Directory of Open Access Journals (Sweden)

    Kelly Lei

    2016-08-01

    Full Text Available Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc and anterior insular cortex (aINS in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results strongly suggest that OX1Rs within the mNAsh, but not the aINS, play a

  5. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation

    Science.gov (United States)

    Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.

    2015-01-01

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have

  6. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  7. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    Science.gov (United States)

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  8. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    Science.gov (United States)

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  9. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation

    NARCIS (Netherlands)

    Kleijn, J.; Wiskerke, J.; Cremers, T. I. F. H.; Schoffelmeer, A. N. M.; Westerink, B. H. C.; Pattij, T.

    2012-01-01

    The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial pre

  10. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell.

    Directory of Open Access Journals (Sweden)

    Paul M Klenowski

    2016-03-01

    Full Text Available The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks and long-term (12 weeks binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.

  11. NMDA antagonist MK 801 in nucleus accumbens core but not shell disrupts the restraint stress-induced reinstatement of extinguished cocaine-conditioned place preference in rats.

    Science.gov (United States)

    De Giovanni, Laura N; Guzman, Andrea S; Virgolini, Miriam B; Cancela, Liliana M

    2016-12-15

    Relapse is a common feature of cocaine addiction. In rodents, it can be elicited by cues, stress or the drug. Restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP) is a useful model to study the mechanisms involved in stress-induced relapse of drug-seeking behavior. There is evidence that the glutamate NMDA receptors are critically involved in drug- and cue-induced reinstatement of seeking behavior and drug-CPP responses. The aim of this study was to investigate the contribution of NMDA receptors within core vs. shell nucleus accumbens (NAc) subregions to restraint stress-induced reinstatement of extinguished cocaine-CPP. After extinction of cocaine-conditioned preference, animals were administered MK 801 systemically or directly into intra-core or intra-shell, and restrained for 30min or left undisturbed in their home-cages. First, we demonstrated that restraint stress-induced reinstatement of extinguished cocaine-CPP depends on the duration of restraint as well as on the context in which it is applied. Second, this effect was blocked by systemic MK 801 administration either before or after restraint. Third, intra-core but not intra-shell administration abrogated the restraint stress-induced reinstatement. These findings show that NMDA receptors within NAc core, but not shell, play a critical role in restraint stress-induced reinstatement of cocaine-CPP.

  12. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose.

    Science.gov (United States)

    Cacciapaglia, Fabio; Saddoris, Michael P; Wightman, R Mark; Carelli, Regina M

    2012-04-01

    Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.

  13. The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal.

    Directory of Open Access Journals (Sweden)

    Mei-Hong Qiu

    Full Text Available BACKGROUND: We have previously shown that modafinil promotes wakefulness via dopamine receptor D(1 and D(2 receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we further explored the role of NAc in sleep-wake cycle and sleep homeostasis by ablating the NAc core and shell, respectively, and examined arousal response following modafinil administration. We found that discrete NAc core and shell lesions produced 26.5% and 17.4% increase in total wakefulness per day, respectively, with sleep fragmentation and a reduced sleep rebound after a 6-hr sleep deprivation compared to control. Finally, NAc core but not shell lesions eliminated arousal effects of modafinil. CONCLUSIONS/SIGNIFICANCE: These results indicate that the NAc regulates sleep-wake behavior and mediates arousal effects of the midbrain dopamine system and stimulant modafinil.

  14. Nitric oxide donors enhance the frequency-dependence of dopamine release in nucleus accumbens

    OpenAIRE

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-01-01

    Abstract Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviours including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber micr...

  15. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  16. Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available OBJECTIVE: In this study, the effect of maternal deprivation (MD and chronic unpredictable stress (CUS in inducing depressive behaviors and associated molecular mechanism were investigated in rats. METHODS: Maternal deprivation was established by separating pups from their mothers for 6 hours daily from postnatal day 1 to day 14. Chronic unpredictable stress was established by water deprivation, elevated open platform, food deprivation, restraint stress and electric foot shock. The depressive behaviors were determined by use of sucrose preference test and forced swim test. RESULTS: Rats in MD/CUS group exhibited lower sucrose preference rate, longer immobility time, and lighter body weights than rats in other groups (MD/control, non-MD/CUS and non-MD/control group. Meanwhile, higher miR-504 expression and lower dopamine receptor D1 (DRD1 and D2 (DRD2 expression were observed in the nucleus accumbens of rats in the MD/CUS group than in the other three groups. MiR-504 expression correlated negatively with DRD1 gene expression and sucrose preference rate in the sucrose preference test, but correlated positively with immobility time in forced swim test. Both DRD2 mRNA and protein expression correlated negatively with immobility time in forced swim test. CONCLUSION: These results suggest that MD enhances behavioral vulnerability to stress during adulthood, which is associated with the upregulation of miR-504 and downregulation of DRD2 expression in the nucleus accumbens.

  17. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  18. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference

    Directory of Open Access Journals (Sweden)

    Keke eQi

    2013-10-01

    Full Text Available Orexins are recently found to participate in mediating stress-induced drug relapse. However, the neuroanatomical basis that orexin transmission modulates stress-induced drug seeking remains unknown. The nucleus accumbens shell (NAcSh, best known for its role in appetitive and negative motivation via dopamine receptors, is likely to be the potential important brain area where the orexin system mediates stress-induced drug relapse since the function of dopamine system in the NAcSh can be regulated by orexin transmission. In the present study, a morphine conditioned place preference (CPP model was used to determine whether the two types of orexin receptors would be involved into footshock-induced and/or drug priming-induced CPP reinstatement differentially. The results showed that blockade of orexin-1 or orexin-2 receptor in the NAcSh significantly attenuated stress-induced morphine CPP reinstatement, but neither of the orexin antagonists had any effect on morphine priming-induced reinstatement. These findings indicate that the NAcSh is a brain area through which orexins participate in stress but not drug priming-induced relapse of opioid seeking.

  19. The uncompetitive N-methyl-D-aspartate antagonist memantine reduces binge-like eating, food-seeking behavior, and compulsive eating: role of the nucleus accumbens shell.

    Science.gov (United States)

    Smith, Karen L; Rao, Rahul R; Velázquez-Sánchez, Clara; Valenza, Marta; Giuliano, Chiara; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2015-03-13

    Binge-eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. The role of the glutamatergic N-methyl-D-aspartate (NMDA) receptor system in hedonic feeding is poorly understood. The aim of this study was to characterize the effects of the uncompetitive NMDA receptor antagonist memantine on palatable food-induced behavioral adaptations using a rat model, which mimics the characteristic symptomatology observed in binge-eating disorder. For this purpose, we allowed male Wistar rats to respond to obtain a highly palatable, sugary diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day, under a fixed-ratio 1 (FR1) schedule of reinforcement. Upon stabilization of food responding, we tested the effects of memantine on the Chow and Palatable food groups' intake. Then, we tested the effects of memantine on food-seeking behavior, under a second-order schedule of reinforcement. Furthermore, we investigated the effects of memantine on the intake of food when it was offered in an aversive, bright compartment of a light/dark conflict test. Finally, we evaluated the effects of memantine on FR1 responding for food, when microinfused into the nucleus accumbens (NAcc) shell or core. Memantine dose-dependently decreased binge-like eating and fully blocked food-seeking behavior and compulsive eating, selectively in the Palatable food group. The drug treatment did not affect performance of the control Chow food group. Finally, intra-NAcc shell, but not core, microinfusion of memantine decreased binge-like eating. Together, these findings substantiate a role of memantine as a potential pharmacological treatment for binge-eating disorder.

  20. Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition.

    Science.gov (United States)

    Peterschmitt, Y; Meyer, F; Louilot, A

    2008-06-26

    It has previously been reported that dopamine (DA) responses observed in the core and dorsomedial shell parts of the nucleus accumbens (Nacc) in latent inhibition (LI) are dependent on the left entorhinal cortex (ENT). The present study was designed to investigate the influence of the left ventral subiculum (SUB) closely linked to the ENT on the DA responses obtained in the Nacc during LI, using an aversive conditioned olfactory paradigm and in vivo voltammetry in freely moving rats. In the first (pre-exposure) session, functional blockade of the left SUB was achieved by local microinjection of tetrodotoxin (TTX). In the second session, rats were aversively conditioned to banana odor, the conditional stimulus (CS). In the retention (test) session the results were as follows: (1) pre-exposed (PE) conditioned animals microinjected with TTX, displayed aversion toward the CS; (2) in the core part of the Nacc, for PE-TTX-conditioned rats as for non-pre-exposed (NPE) conditioned animals, DA levels remained close to the baseline whereas DA variations in both groups were significantly different from the DA increases observed in PE-conditioned rats microinjected with the solvent (phosphate-buffered saline (PBS)); (3) in the shell part of the Nacc, for PE-TTX-conditioned rats, DA variations were close to or above the baseline. They were situated between the rapid DA increases observed in NPE-conditioned animals and the transient DA decreases obtained in PE-PBS-conditioned animals. These findings suggest that, in parallel to the left ENT, the left SUB controls DA LI-related responses in the Nacc. The present data may also offer new insight into the pathophysiology of schizophrenia.

  1. ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL SELF-ADMINISTRATION BY SPRAGUE-DAWLEY RATS AND STIMULATION OF IN VIVO DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS SHELL

    Directory of Open Access Journals (Sweden)

    Maria Antonietta eDe Luca

    2014-10-01

    Full Text Available 2-Arachidonoylglycerol (2-AG is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacyglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA by squirrel monkeys, and anandamide increases nucleus accumbens (NAc shell dopamine (DA in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG (25g/kg/inf iv in single daily 1h sessions for 5 weeks under initial Fixed Ratio (FR 1 schedule. The ratio was subsequently increased to FR2. Active nose-poking increased from the 6th SA session (acquisition phase but no significant increase of nose-pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase, rate responding, as well as number of injections, slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase. The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg ip, 30 min before SA session. In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv. The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.

  2. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    NARCIS (Netherlands)

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  3. Enhanced ability of TRPV1 channels in regulating glutamatergic transmission after repeated morphine exposure in the nucleus accumbens of rat.

    Science.gov (United States)

    Zhang, Haitao; Jia, Dong; Wang, Yuan; Qu, Liang; Wang, Xuelian; Song, Jian; Heng, Lijun; Gao, Guodong

    2017-04-01

    Glutamatergic projections to nucleus accumbens (NAc) drive drug-seeking behaviors during opioids withdrawal. Modulating glutamatergic neurotransmission provides a novel pharmacotherapeutic avenue for treatment of opioids dependence. Great deals of researches have verified that transient receptor potential vanilloid 1 (TRPV1) channels alters synaptic transmitter release and regulate neural plasticity. In the present study, whole-cell patch clamp recordings were adopted to examine the activity of TRPV1 Channels in regulating glutamate-mediated excitatory postsynaptic currents (EPSCs) in NAc of rat during morphine withdrawal for 3days and 3weeks. The data showed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and the amplitudes of evoked excitatory postsynaptic currents (eEPSCs) were increased during morphine withdrawal after applied with capsaicin (TRPV1 agonist). Capsaicin decreased the paired pulse ratio (PPR) and increased sEPSCs frequency but not their amplitudes suggesting a presynaptic locus of action during morphine withdrawal. All these effects were fully blocked by the TRPV1 antagonist Capsazepine. Additionally, In the presence of AM251 (CB1 receptor antagonist), depolarization-induced release of endogenous cannabinoids activated TRPV1 channels to enhance glutamatergic neurotransmission during morphine withdrawal. The functional enhancement of TRPV1 Channels in facilitating glutamatergic transmission was not recorded in dorsal striatum. Our findings demonstrate the ability of TRPV1 in regulating excitatory glutamatergic transmission is enhanced during morphine withdrawal in NAc, which would deepen our understanding of glutamatergic modulation during opioids withdrawal.

  4. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Directory of Open Access Journals (Sweden)

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  5. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study.

    Science.gov (United States)

    Lee, Eun Y; Lee, Hyun S

    2016-03-01

    The paraventricular thalamic nucleus (PVT) is a major relay station to the limbic forebrain areas such as the nucleus accumbens shell (AcbSh). Both PVT and AcbSh are known to receive feeding/arousal-related peptidergic fibers including orexin (ORX) and cocaine- and amphetamine-regulated transcript (CART) peptide. In the first series of experiments, we examined the peptidergic fiber distribution in the AcbSh; the density of ORX (or CART) fibers in the AcbSh was substantially lower than that in the PVT. At the light microscopic level, ORX (or CART) terminals formed close appositions to choline acetyltransferase (ChAT)-, glutamate decarboxylase (GAD)-, or enkephalin (Enk)-immunoreactive neuronal elements in the AcbSh. In the second series of experiments, we addressed the question of whether single ORX (or CART) cells in the hypothalamus provided divergent axon collaterals to the PVT and AcbSh. ORX neurons with dual projections were found in the medial, central, and lateral subdivisions of the lateral hypothalamus (LH), which amounted to an average of 1.6% of total ORX cells. CART neurons with divergent axon collaterals were observed in the LH, zona incerta, dorsal hypothalamic area, and retrochiasmatic nucleus, which represented a mean of 2.5% of total CART cells. None of arcuate CART cells sent dual projections. These data suggested that a portion of ORX (or CART) neurons in the hypothalamus, via divergent axon collaterals, might concurrently modulate the activity of PVT and AcbSh cells to affect feeding and drug-seeking behaviors.

  6. Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence

    Science.gov (United States)

    Yang, Ping; Kawasaki, Kazunori; Ando, Masanori; Murase, Norio

    2012-09-01

    A sol-gel method has been developed to fabricate Au/SiO2/quantum dot (QD) core-shell-shell nanostructures with plasmonic-enhanced photoluminescence (PL). Au nanoparticle (NP) was homogeneously coated with a SiO2 shell with adjusted thickness through a Stöber synthesis. When the toluene solution of hydrophobic CdSe/ZnS QDs was mixed with partially hydrolyzed 3-aminopropyltrimethoxysilane (APS) sol, the ligands on the QDs were replaced by a thin functional SiO2 layer because the amino group in partially hydrolyzed APS has strong binding interaction with the QDs. Partially hydrolyzed APS plays an important role as a thin functional layer for the transfers of QDs to water phase and the subsequent connection to aqueous SiO2-coated Au NPs. Although Au NPs were demonstrated as efficient PL quenchers when the SiO2 shell on the Au NPs is thin (less than 5 nm), we found that precise control of the spacing between the Au NP core and the QD shell resulted in QDs with an enhancement of 30 % of PL efficiency. The Au/SiO2/QD core/shell/shell nanostructures also reveal strong surface plasmon scattering, which makes the Au/SiO/QD core-shell-shell nanostructures an excellent dual-modality imaging probe. This technology can serve as a general route for encapsulating a variety of discrete nanomaterials because monodispersed nanostructures often have a similar surface chemistry.

  7. Morphine treatment enhances glutamatergic input onto neurons of the nucleus accumbens via both disinhibitory and stimulating effect.

    Science.gov (United States)

    Yuan, Kejing; Sheng, Huan; Song, Jiaojiao; Yang, Li; Cui, Dongyang; Ma, Qianqian; Zhang, Wen; Lai, Bin; Chen, Ming; Zheng, Ping

    2016-08-22

    Drug addiction is a chronic brain disorder characterized by the compulsive repeated use of drugs. The reinforcing effect of repeated use of drugs on reward plays an important role in morphine-induced addictive behaviors. The nucleus accumbens (NAc) is an important site where morphine treatment produces its reinforcing effect on reward. However, how morphine treatment produces its reinforcing effect on reward in the NAc remains to be clarified. In the present study, we studied the influence of morphine treatment on the effects of DA and observed whether morphine treatment could directly change glutamatergic synaptic transmission in the NAc. We also explored the functional significance of morphine-induced potentiation of glutamatergic synaptic transmission in the NAc at behavioral level. Our results show that (1) morphine treatment removes the inhibitory effect of DA on glutamatergic input onto NAc neurons; (2) morphine treatment potentiates glutamatergic input onto NAc neurons, especially the one from the basolateral amygdala (BLA) to the NAc; (3) blockade of glutamatergic synaptic transmission in the NAc or ablation of projection neurons from BLA to NAc significantly decreases morphine treatment-induced increase in locomotor activity. These results suggest that morphine treatment enhances glutamatergic input onto neurons of the NAc via both disinhibitory and stimulating effect and therefore increases locomotor activity.

  8. Hollow Pollen Shells to Enhance Drug Delivery

    Directory of Open Access Journals (Sweden)

    Alberto Diego-Taboada

    2014-03-01

    Full Text Available Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine, made largely of cellulose, and the outer layer (exine, composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell.

  9. Role of orexin receptors in the nucleus accumbens in dopamine-dependent turning behaviour of rats.

    NARCIS (Netherlands)

    Kotani, A.; Ikeda, H.; Koshikawa, N.; Cools, A.R.

    2008-01-01

    The role of orexin receptors in the nucleus accumbens shell in rat turning behaviour of rats was studied. Unilateral injection of neither the orexin 1 and 2 receptor agonist orexin A (2 microg) nor the orexin 1 receptor antagonist SB 334867 (20 ng) into the nucleus accumbens shell elicited turning b

  10. Enhanced efficiency of a fluorescing nanoparticle with a silver shell

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Wallace C H; Chen Xuewen [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); He Sailing [Centre for Optical and Electromagnetic Research, Zhejiang University, Zhijingang campus, Hangzhou 310058 (China)], E-mail: chchoy@eee.hku.hk

    2009-09-01

    Spontaneous emission (SE) rate and the fluorescence efficiency of a bare fluorescing nanoparticle (NP) and the NP with a silver nanoshell are analyzed rigorously by using a classical electromagnetic approach with the consideration of the nonlocal effect of the silver nano-shell. The dependences of the SE rate and the fluorescence efficiency on the core-shell structure are carefully studied and the physical interpretations of the results are addressed. The results show that the SE rate of a bare NP is much slower than that in the infinite medium by almost an order of magnitude and consequently the fluorescence efficiency is usually low. However, by encapsulating the NP with a silver shell, highly efficient fluorescence can be achieved as a result of a large Purcell enhancement and high out-coupling efficiency (OQE) for a well-designed core-shell structure. We also show that a higher SE rate may not offer a larger fluorescence efficiency since the fluorescence efficiency not only depends on the internal quantum yield but also the OQE.

  11. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    Science.gov (United States)

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  12. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice.

    Science.gov (United States)

    Kasten, Chelsea R; Boehm, Stephen L

    2014-10-01

    The GABAB agonist baclofen has been widely researched clinically and preclinically as a treatment of alcohol use disorders (AUDs). However, the efficacy of baclofen remains uncertain. The clinically used racemic compound can be separated into separate enantiomers. These enantiomers have produced different profiles in behavioral assays, with the S- compound often being ineffective compared to the R- compound, or the S- compound antagonizing the effects of the R- compound. We have previously demonstrated that the R(+)-baclofen enantiomer decreases binge-like ethanol intake in the Drinking-in-the-Dark (DID) paradigm, whereas the S(-)-baclofen enantiomer increases ethanol intake. One area implicated in drug abuse is the nucleus accumbens shell (NACsh).The current study sought to define the role of the NACsh in the enantioselective effects of baclofen on binge-like ethanol consumption by directly microinjecting each enantiomer into the structure. Following bilateral cannulation of the NACsh, C57Bl/6J mice were given 5 days of access to ethanol or saccharin for 2h, 3h into the dark cycle. On Day 5 mice were given an injection of aCSF, 0.02 R(+)-, 0.04R(+)-, 0.08 S(-)-, or 0.16 S(-)-baclofen (μg/side dissolved in 200nl of aCSF). It was found that the R(+)-baclofen dose-dependently decreased ethanol consumption, whereas the high S(-)-baclofen dose increased ethanol consumption, compared to the aCSF group. Saccharin consumption was not affected. These results further confirm that GABAB receptors and the NACsh shell are integral in mediating ethanol intake. They also demonstrate that baclofen displays bidirectional, enantioselective effects which are important when considering therapeutic uses of the drug.

  13. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    Science.gov (United States)

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  14. Enhancing VTA Cav1.3 L-type Ca(2+) channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens.

    Science.gov (United States)

    Martínez-Rivera, A; Hao, J; Tropea, T F; Giordano, T P; Kosovsky, M; Rice, R C; Lee, A; Huganir, R L; Striessnig, J; Addy, N A; Han, S; Rajadhyaksha, A M

    2017-02-14

    Genetic factors significantly influence susceptibility for substance abuse and mood disorders. Rodent studies have begun to elucidate a role of Cav1.3 L-type Ca(2+) channels in neuropsychiatric-related behaviors, such as addictive and depressive-like behaviors. Human studies have also linked the CACNA1D gene, which codes for the Cav1.3 protein, with bipolar disorder. However, the neurocircuitry and the molecular mechanisms underlying the role of Cav1.3 in neuropsychiatric phenotypes are not well established. In the present study, we directly manipulated Cav1.3 channels in Cav1.2 dihydropyridine insensitive mutant mice and found that ventral tegmental area (VTA) Cav1.3 channels mediate cocaine-related and depressive-like behavior through a common nucleus accumbens (NAc) shell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) mechanism that requires GluA1 phosphorylation at S831. Selective activation of VTA Cav1.3 with (±)-BayK-8644 (BayK) enhanced cocaine conditioned place preference and cocaine psychomotor activity while inducing depressive-like behavior, an effect not observed in S831A phospho-mutant mice. Infusion of the CP-AMPAR-specific blocker Naspm into the NAc shell reversed the cocaine and depressive-like phenotypes. In addition, activation of VTA Cav1.3 channels resulted in social behavioral deficits. In contrast to the cocaine- and depression-related phenotypes, GluA1/A2 AMPARs in the NAc core mediated social deficits, independent of S831-GluA1 phosphorylation. Using a candidate gene analysis approach, we also identified single-nucleotide polymorphisms in the CACNA1D gene associated with cocaine dependence in human subjects. Together, our findings reveal novel, overlapping mechanisms through which VTA Cav1.3 mediates cocaine-related, depressive-like and social phenotypes, suggesting that Cav1.3 may serve as a target for the treatment of neuropsychiatric symptoms.Molecular Psychiatry advance online publication, 14

  15. Enhancing the Communication Channel Through Secure Shell And Irrational DES

    Directory of Open Access Journals (Sweden)

    S.R.M.Krishna,

    2011-03-01

    Full Text Available As the internet grows in popularity and therefore also in size more and more transmission takes place mainly because the technology is more readily available and applications have become more user friendlyallowing entry to less sophisticated user over a broad spectrum.most data transfer are mainly text based not secure and vulnerable to various forms of security risks. So the model that uses SSH for securing channel like intranet/internet which provides client authentication encryption and decryption with high degree of security by transferring the data in an encrypted format, up on this model enhances the efficiency of data transmission by encrypting or decrypting the data with irrational DES.DES is a cryptographic standard however,the applications of it limited because of small key space based on irrational number.Moreover the permutation controlled by data can be performed at high speed in generic cpu.this scheme also expands the key space without costing more to run.and also finally through the combination of secure shell(ssh and irrational DES not only enhances the security of communication channel.it also provides varius applications like remote user creation,remote user deletion,remote command execution,remote system shutdown ,remote file transfer applications in an highly secure manner.

  16. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg on transcriptional effects of a second METH (2.5 mg/kg injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS or METH-challenged (SM; and METH-pretreated followed by saline-challenged (MS or METH-challenged (MM. Microarray analyses revealed that METH (2.5 mg/kg produced acute changes (1.8-fold; P<0.01 in the expression of 412 (352 upregulated, 60 down-regulated transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh, oxytocin (Oxt, and vasopressin (Avp that were upregulated. Injection of METH (10 mg/kg altered the expression of 503 (338 upregulated, 165 down-regulated transcripts measured one month later (MS group. These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  17. Core-shell potassium niobate nanowires for enhanced nonlinear optical effects

    Science.gov (United States)

    Richter, J.; Steinbrück, A.; Zilk, M.; Sergeyev, A.; Pertsch, T.; Tünnermann, A.; Grange, R.

    2014-04-01

    We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte. We show that the latter leads to a smoother and complete core-shell nanostructure and an easier-to-use synthesis process. A Mie-theory based theoretical approach is presented to model the enhanced second-harmonic generated (SHG) signal of the core-shell wires, illustrating the influence of the fabrication-induced varying geometrical factors of wire radius and shell thickness. A spectroscopic measurement on a core-shell nanowire shows a strong localized surface plasmon resonance close to 900 nm, which matches with the SHG resonance obtained from nonlinear optical experiments with the same nanowire. According to the simulation, this corresponds to a wire radius of 35 nm and a shell thickness of 7.5 nm. By comparing SHG signals measured from an uncoated nanowire and the coated one, we obtain a 250 times enhancement factor. This is less than the calculated enhancement, which considers a cylindrical nanowire with a perfectly smooth shell. Thus, we explain this discrepancy mainly with the roughness of the synthesized gold shell.We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte

  18. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    Directory of Open Access Journals (Sweden)

    Kim G T Pulman

    Full Text Available Stimulation of either GABA(A or GABA(B receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A receptor agonist muscimol and GABA(B receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol stimulated responding but a higher dose (660 pmol induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol also stimulated intake of freely available chow. Muscimol (220-660 pmol was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A or GABA(B receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  19. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    Science.gov (United States)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  20. Increasing oxytocin receptor expression in the nucleus accumbens of pre-pubertal female prairie voles enhances alloparental responsiveness and partner preference formation as adults

    OpenAIRE

    Keebaugh, Alaine C.; Young, Larry J.

    2011-01-01

    Oxytocin receptors (OXTR) in the nucleus accumbens (NAcc) promote alloparental behavior and partner preference formation in female prairie voles. Within the NAcc there is significant individual variation in OXTR binding and virgin juvenile and adult females with a high density of OXTR in the NAcc display an elevated propensity to engage in alloparental behavior toward novel pups. Over-expression of OXTR in the NAcc of adult female prairie voles using viral vector gene transfer facilitates par...

  1. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    Science.gov (United States)

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  2. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    Science.gov (United States)

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  3. Dielectric core-shell optical antennas for strong solar absorption enhancement.

    Science.gov (United States)

    Yu, Yiling; Ferry, Vivian E; Alivisatos, A Paul; Cao, Linyou

    2012-07-11

    We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.

  4. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    Science.gov (United States)

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  5. Enhancing the Photoluminescence of Peptide-Coated Nanocrystals with Shell Composition and UV Irradiation

    OpenAIRE

    Tsay, James M.; Doose, Sören; Pinaud, Fabien; Weiss, Shimon

    2005-01-01

    The composition and structure of inorganic shells grown over CdSe semiconductor nanocrystal dots and rods were optimized to yield enhanced photoluminescence properties after ligand exchange followed by coating with phytochelatin-related peptides. We show that, in addition to the peptides imparting superior colloidal properties and providing biofunctionality in a single-step reaction, the improved shells and pretreatment with UV irradiation resulted in high quantum yields for the nanocrystals ...

  6. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.

    Science.gov (United States)

    Ghitza, Udi E; Fabbricatore, Anthony T; Prokopenko, Volodymyr; Pawlak, Anthony P; West, Mark O

    2003-08-13

    Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.

  7. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.

    Science.gov (United States)

    MacAskill, Andrew F; Cassel, John M; Carter, Adam G

    2014-09-01

    Repeated exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we used whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine exposure alters connectivity in the mouse NAc medial shell. Cocaine selectively enhanced amygdala innervation of MSNs expressing D1 dopamine receptors (D1-MSNs) relative to D2-MSNs. We also found that amygdala activity was required for cocaine-induced changes to behavior and connectivity. Finally, we established how heightened amygdala innervation can explain the structural and functional changes evoked by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell type- and input-specific connectivity in the NAc.

  8. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Tao, Sha; Yang, Mei; Chen, Huihui; Ren, Mingyue; Chen, Guangwen

    2017-01-15

    A microfluidic-based method for the continuous synthesis of Ag@Cu2O core-shell nanoparticles (NPs) has been developed. It only took 32s to obtain Ag@Cu2O core-shell NPs, indicating a high efficiency of this microfluidic-based method. Triangular Ag nanoprisms were employed as the cores for the overgrowth of Cu2O through the reduction of Cu(OH)4(2-) with ascorbic acid. The as-synthesized samples were characterized by XRD, TEM, SEM, HAADF-STEM, EDX, HRTEM, UV-vis spectra and N2 adsorption-desorption. The characterization results revealed that the as-synthesized Ag@Cu2O core-shell NPs exhibited a well-defined core-shell nanostructure with a polycrystalline shell, which was composed of numbers of Cu2O domains epitaxially growing on the triangular Ag nanoprism. It was concluded that the synthesis parameters such as the molar ratio of trisodium citrate to AgNO3, H2O2 to AgNO3, NaOH to CuSO4, ascorbic acid to CuSO4 and AgNO3 to CuSO4 had significant effect on the synthesis of Ag@Cu2O core-shell NPs. Moreover, Ag@Cu2O core-shell NPs exhibited superior catalytic activity in comparison with pristine Cu2O NPs towards the visible light-driven degradation of methyl orange. This enhanced photocatalytic activity of Ag@Cu2O core-shell NPs was attributed to the larger BET surface area and improved charge separation efficiency. The trapping experiment indicated that holes and superoxide anion radicals were the major reactive species in the photodegradation of methyl orange over Ag@Cu2O core-shell NPs. In addition, Ag@Cu2O core-shell NPs showed no obvious deactivation in the cyclic test.

  9. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    Science.gov (United States)

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH.

  10. Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells

    Science.gov (United States)

    Navau, Carles; Mach-Batlle, Rosa; Parra, Albert; Prat-Camps, Jordi; Laut, Sergi; Del-Valle, Nuria; Sanchez, Alvaro

    2017-03-01

    Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz.

  11. 管壳式换热器壳程的传热强化%Heat Transfer Enhancement in Shell Side of Shell and Tube Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    李若兰; 丁杰; 霍正齐

    2014-01-01

    This article described heat transfer enhancement technology in shell side of the shell and tube heat ex-changer, sketched a typical structure and performance of shell side of heat exchanger, analyzed heat transfer en-hancement mechanism.%本文介绍管壳式换热器壳程的强化传热技术,简述换热器壳程的典型结构、性能,分析强化传热机理。

  12. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling.

    Science.gov (United States)

    Yang, Zhenyu; Janmohamed, Alyf; Lan, Xinzheng; García de Arquer, F Pelayo; Voznyy, Oleksandr; Yassitepe, Emre; Kim, Gi-Hwan; Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Sargent, Edward H

    2015-11-11

    Solution-processed quantum dots are a promising material for large-scale, low-cost solar cell applications. New device architectures and improved passivation have been instrumental in increasing the performance of quantum dot photovoltaic devices. Here we report photovoltaic devices based on inks of quantum dot on which we grow thin perovskite shells in solid-state films. Passivation using the perovskite was achieved using a facile solution ligand exchange followed by postannealing. The resulting hybrid nanostructure created a more intrinsic CQD film, which, when incorporated into a photovoltaic device with graded bandstructure, achieved a record solar cell performance for single-step-deposited CQD films, exhibiting an AM1.5 solar power conversion efficiency of 8.95%.

  13. Shell-isolated nanoparticle-enhanced Raman spectroscopy: principle and applications (Presentation Recording)

    Science.gov (United States)

    Li, Jian-Feng; Tian, Zhong-Qun

    2015-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that yields fingerprint vibrational information with ultra-high sensitivity. However, only roughened Ag, Au and Cu surfaces can generate strong SERS effect. The lack of materials and morphology generality has severely limited the breadth of SERS practical applications on surface science, electrochemistry and catalysis. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was therefore invented to break the long-standing limitation of SERS. In SHINERS, Au@SiO2 core-shell nanoparticles were rationally designed. The gold core acts as plasmonic antenna and encapsulated by an ultra-thin, uniform and pinhole-free silica shell, can provide high electromagnetic field to enhance the Raman signals of probed molecules. The inert silica shell acts as tunneling barrier prevents the core from interacting with the environment. SHINERS has already been applied to a number of challenging systems, such as hydrogen and CO on Pt(hkl) and Rh(hkl), which can't be realized by traditional SERS. Combining with electrochemical methods, we has investigated the adsorption processes of pyridine at the Au(hkl) single crystal/solution interface, and in-situ monitored the surface electro-oxidation at Au(hkl) electrodes. These pioneering studies demonstrate convincingly the ability of SHINERS in exploring correlations between structure and reactivity as well as in monitoring intermediates at the interfaces. SHINERS was also explored from semiconductor surface for industry, to living bacteria for life science, and to pesticide residue detection for food safety. The concept of shell-isolated nanoparticle-enhancement is being applied to other spectroscopies such as infrared absorption, sum frequency generation and fluorescence. Jian-Feng Li et al., Nature, 2010, 464, 392-395.

  14. Photo-physical properties enhancement of bare and core-shell quantum dots

    Science.gov (United States)

    Mumin, Md Abdul; Akhter, Kazi Farida; Charpentier, Paul A.

    2014-03-01

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC).

  15. Long Wavelength Plasmonic Absorption Enhancement in Silicon Using Optical Lithography Compatible Core-Shell-Type Nanowires

    Directory of Open Access Journals (Sweden)

    Mohammed Shahriar Sabuktagin

    2014-01-01

    Full Text Available Plasmonic properties of rectangular core-shell type nanowires embedded in thin film silicon solar cell structure were characterized using FDTD simulations. Plasmon resonance of these nanowires showed tunability from  nm. However this absorption was significantly smaller than the Ohmic loss in the silver shell due to very low near-bandgap absorption properties of silicon. Prospect of improving enhanced absorption in silicon to Ohmic loss ratio by utilizing dual capability of these nanowires in boosting impurity photovoltaic effect and efficient extraction of the photogenerated carriers was discussed. Our results indicate that high volume fabrication capacity of optical lithography techniques can be utilized for plasmonic absorption enhancement in thin film silicon solar cells over the entire long wavelength range of solar radiation.

  16. Optical investigation of gold shell enhanced 25 nm diameter upconverted fluorescence emission

    Science.gov (United States)

    Green, Kory; Wirth, Janina; Lim, Shuang Fang

    2016-04-01

    We enhance the efficiency of upconverting nanoparticles by investigating the plasmonic coupling of 25 nm diameter NaYF4:Yb, Er nanoparticles with a gold-shell coating, and study the physical mechanism of enhancement by single-particle, time-resolved spectroscopy. A three-fold overall increase in emission intensity, and five-fold increase of green emission for these plasmonically enhanced particles have been achieved. Using a combination of structural and fluorescent imaging, we demonstrate that fluorescence enhancement is based on the photonic properties of single, isolated particles. Time-resolved spectroscopy shows that the increase in fluorescence is coincident with decreased rise time, which we attribute to an enhanced absorption of infrared light and energy transfer from Yb3+ to Er3+ atoms. Time-resolved spectroscopy also shows that fluorescence life-times are decreased to different extents for red and green emission. This indicates that the rate of photon emission is not suppressed, as would be expected for a metallic cavity, but rather enhanced because the metal shell acts as an optical antenna, with differing efficiency at different wavelengths.

  17. Hydrothermal synthesis of core-shell TiO2 to enhance the photocatalytic hydrogen evolution

    Science.gov (United States)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-04-01

    A hydrothermal approach was designed to synthesize core-shell TiO2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core-shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV-vis absorption proves core-shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core-shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  18. Facile synthesis of CdS@TiO{sub 2} core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenhao [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); Pan, Feng, E-mail: chmpf@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); Xu, Leilei [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); Zheng, Minrui; Sow, Chorng Haur [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Wu, Kai [Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); BNLMS, SKLSCUSS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Xu, Guo Qin [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu Prov. 215123 (China); and others

    2015-09-15

    Graphical abstract: - Highlights: • CdS nanorods were coated with amorphous TiO{sub 2} shells under a mild condition. • The TiO{sub 2} shell thickness can be controlled from 3.5 to 40 nm. • CdS@TiO{sub 2} nanorods exhibit enhanced photocatalytic activities under visible light. • Efficient charge carriers separation leads to the improved photocatalytic activity. - Abstract: Amorphous TiO{sub 2} layers with a controllable thickness from 3.5 to 40 nm were coated on the one-dimensional CdS nanorods surface under mild conditions. Compared to the bare CdS nanorods, the as-prepared CdS@TiO{sub 2} nanorods exhibit enhanced photocatalytic activities for phenol photodecomposition under visible light irradiation. The improved photoactivity is ascribed to the efficient separation of photogenerated electron and hole charge carriers between CdS cores and TiO{sub 2} shells. This study promises a simple approach to fabricating CdS@TiO{sub 2} core–shell structure nanocomposites, and can be applied for other semiconductor cores with TiO{sub 2} shells.

  19. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    Science.gov (United States)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun; Wang, Xiuyuan; Wang, Huihu

    2016-12-01

    An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  20. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    Energy Technology Data Exchange (ETDEWEB)

    Venetz, Theodore J. [Washington River Protection Solutions, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States); Boomer, Kayle D. [Washington River Protection Solutions, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States); Castleberry, Jim L. [Washington River Protection Solutions, Richland, WA (United States)

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.

  1. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.

    Science.gov (United States)

    Cansizoglu, Hilal; Cansizoglu, Mehmet F; Watanabe, Fumiya; Karabacak, Tansel

    2014-06-11

    Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.

  2. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning

    NARCIS (Netherlands)

    Wichmann, Romy; Fornari, Raquel V.; Roozendaal, Benno

    2012-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of long-term memory of emotionally arousing experiences but have little effect on memory of low-arousing experiences. Although both positive and negative emotionally arousing events tend to be well remembered, studies i

  3. Manipulation of subwavelength optical fields and resonant field enhancements of a silver-shell nanocylinder pair and chain waveguides with different core-shell patterns

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Yuan-Fong, E-mail: yfc01@cyu.edu.tw; Li, Huang-Yi; Jiang, Zheng-Hong; Chen, Yi-Fan; Lin, Chih-Sheng; Liu, Min-Shun; Wu, Fong-Lin [Ching Yun University, Department of Electronic Engineering, Taiwan (China); Tsai, Din Ping [National Taiwan University, Department of Physics, Taiwan (China)

    2011-09-15

    Near field optical properties and surface plasmon resonances on a pair of silver-shell nanocylinder and nanochain waveguides with different core-shell patterns which interact with incident plane wave along chain axis are numerically investigated by using the finite element method. Simulation results show that the peak wavelengths and resonant field enhancements are highly tunable by using the nanoshell particles instead of solid ones, revealing a critical relationship among the wavelengths and illuminated direction of incident light, interparticle spacing, radii, and medium of dielectric holes and the patterns of chain waveguides. Besides, nanochain waveguides with different patterns of core-shell that are operated on resonant multipolar modes can provide higher propagation intensities and the transmission ability can be increased by decreasing the size of nanocylinders along the chain axis.

  4. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.

    Science.gov (United States)

    Zhang, Wei; Saliba, Michael; Stranks, Samuel D; Sun, Yao; Shi, Xian; Wiesner, Ulrich; Snaith, Henry J

    2013-09-11

    Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic devices because of their low-cost and potential for high efficiency. Further boosting the performance of solution processed thin-film solar cells without detrimentally increasing the complexity of the device architecture is critically important for commercialization. Here, we demonstrate photocurrent and efficiency enhancement in meso-superstructured organometal halide perovskite solar cells incorporating core-shell Au@SiO2 nanoparticles (NPs) delivering a device efficiency of up to 11.4%. We attribute the origin of enhanced photocurrent to a previously unobserved and unexpected mechanism of reduced exciton binding energy with the incorporation of the metal nanoparticles, rather than enhanced light absorption. Our findings represent a new aspect and lever for the application of metal nanoparticles in photovoltaics and could lead to facile tuning of exciton binding energies in perovskite semiconductors.

  5. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Giuseppe eGangarossa

    2013-02-01

    Full Text Available The nucleus accumbens (NAc is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP or the Cre-recombinase (Cre under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific ERK phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist, quinpirole (a D2R-like agonist, apomorphine (a non-selective DA receptor agonist, raclopride (a D2R-like antagonist, and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.

  6. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  7. HIPS-GLAD core shell nanorod array photodetectors with enhanced photocurrent and reduced dark current

    Science.gov (United States)

    Keles, Filiz; Cansizoglu, Hilal; Badraddin, Emad O.; Brozak, Matthew P.; Watanabe, Fumiya; Karabacak, Tansel

    2016-10-01

    Vertically aligned core/shell nanorod array photodetectors were fabricated by high pressure sputter (HIPS) deposition of copper indium sulfide (CIS) films on glancing angle deposited (GLAD) indium sulfide (In2S3) nanorods. For comparison, we also studied nanorod photodetectors with conventional low pressure sputtered (LPS) CIS film coatings and counterpart thin film devices incorporating HIPS or LPS-CIS on In2S3 films. HIPS-GLAD core/shell photodetectors have shown a superior photocurrent density response along with lowest dark current density. Photoresponsivity defined with the photocurrent density/dark current density ratio γ = |J ph/J dark| was about ˜1820 for HIPS-GLAD nanorod devices, which is several orders of magnitude higher compared to those of LPS-CIS thin film (γ ˜ 2) and HIPS-CIS thin film (γ ˜ 9) devices, and also about four-fold higher than LPS-CIS nanorod devices (γ ˜ 490). Enhanced photoresponsivity is attributed to the porous microstructure and improved conformality of HIPS-CIS film around the In2S3 nanorods confirmed by SEM and EDS measurements. Due to randomization of the sputtered flux at higher working gas pressures, HIPS can provide a more conformal while at the same time a voidy low-density film around nanostructured surfaces. Reduced interelectrode distance and improved p-n junction interface due to the more uniform conformality of HIPS-CIS result in a higher photocurrent in our HIPS-GLAD devices. In addition, the voids in HIPS-CIS film as a result of its porous nature can behave as highly resistive spots that lower the dark current. Therefore, we have demonstrated that by utilizing a simple and low-temperature HIPS-GLAD method, high-photocurrent and low-dark-current photodetectors can be achieved by controlling the conformality and microstructure of a shell layer around nanorod arrays. HIPS shell coating method can be extended to almost any type of nanostructured substrate.

  8. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators

    Science.gov (United States)

    Zhang, Li; Guo, Hongmei; Wu, Jianhua; Du, Wenjuan

    2012-07-01

    To improve heat transfer performance of shell side of double-pipe heat exchanger with helical fins on its inner tube, some vortex generators (VGs) were installed along the centerline of the helical channel. Heat transfer performance and pressure drop characteristic of the enhanced heat exchangers were investigated using air as the working fluid and steam as the heating medium. The helical fins were in the annulus and span its full width at different helical pitch. Wing-type VGs (delta or rectangular wing) and winglet-type VGs (delta or rectangular winglet pair) were used to combine with helical fins. The friction factor and Nusselt number can be well correlated by power-law correlations in the Reynolds number range studied. In order to evaluate the thermal performance of the shell side enhanced over the shell side without enhancement, comparisons were made under three constraints: (1) identical mass flow rate, IMF; (2) identical pressure drop, IPD and (3) identical pumping power, IPP. The results show the shell side enhanced by the compound heat transfer enhancement has better performance than the shell side only enhanced by helical fins at shorter helical pitch under the three constraints.

  9. Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires.

    Science.gov (United States)

    Zhang, Yuan; Lu, Hong-Liang; Wang, Tao; Ren, Qing-Hua; Gu, Yu-Zhu; Li, De-Hui; Zhang, David Wei

    2015-10-07

    The morphological, structural and photoluminescence properties of one-dimensional ZnO/HfO2 core-shell nanowires (NWs) with various thicknesses of HfO2 shell layers are studied in detail in this work. The ZnO NWs have been fabricated by a simple hydrothermal method, which are then coated by thin HfO2 shell layers using atomic layer deposition (ALD). The morphological and structural characterization demonstrates that the HfO2 shells with polycrystalline structures grow on the single-crystalline ZnO NWs conformally. Moreover, the ZnO/HfO2 core/shell NWs show remarkable enhanced ultraviolet (UV) emission with increasing thickness of the HfO2 shell layer compared with bare ZnO NWs. The UV emission intensity for the sample with HfO2 shell thickness of ∼16 nm is about 9 times higher than that of bare ZnO NWs. It mainly results from the decreased surface states by surface passivation of the HfO2 shell layer as well as a typical type-I band alignment in the ZnO/HfO2 core/shell structure. A model is also proposed to explain the evolution of the wide visible emission band with the relatively low intensity of the core/shell structures. Our results suggest that the ZnO/HfO2 core/shell structures have potential applications for high-efficiency optoelectronic devices such as UV light-emitting diodes and lasers.

  10. Synthesis and characterization of model silica-gold core-shell nanohybrid systems to demonstrate plasmonic enhancement of fluorescence

    Science.gov (United States)

    Roy, Shibsekhar; Dixit, Chandra K.; Woolley, Robert; O'Kennedy, Richard; McDonagh, Colette

    2012-08-01

    In this work, gold-silica plasmonic nanohybrids have been synthesized as model systems which enable tuning of dye fluorescence enhancement/quenching interactions. For each system, a dye-doped silica core is surrounded by a 15 nm spacer region, which in turn is surrounded by gold nanoparticles (GNPs). The GNPs are either covalently conjugated via mercapto silanization to the spacer or encapsulated in a separate external silica shell. The intermediate spacer region can be either dye doped or left undoped to enable quenching and plasmonic enhancement effects respectively. The study indicates that there is a larger enhancement effect when GNPs are encapsulated in the outer shell compared to the system of external conjugation. This is due to the environmental shielding provided by shell encapsulation compared to the exposure of the GNPs to the solvent environment for the externally conjugated system. The fluorescence signal enhancement of the nanohybrid systems was evaluated using a standard HRP-anti-HRP fluorescence based assay platform.

  11. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis.

    Science.gov (United States)

    Zhang, Kun; Qing, Jiang; Gao, Han; Ji, Ji; Liu, Baohong

    2017-01-01

    By coupling shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) with paper chromatography, two birds with one stone method were developed for simultaneous on-site separation and optical detection of multiple components. The established method features high sensitivity of plasmon-enhanced sensing strategies and sufficient temporal and spatial resolution of planar chromatographic techniques.

  12. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure

    Science.gov (United States)

    Gripp, J. A. B.; Góes, L. C. S.; Heuss, O.; Scinocca, F.

    2015-12-01

    Piezoelectric shunt damping is a well-known technique to damp mechanical vibrations of a structure, using a piezoelectric transducer to convert mechanical vibration energy into electrical energy, which is dissipated in an electrical resistance. Resonant shunts consisting of a resistance and an inductance connected to a piezoelectric transducer are used to damp structural vibrations in narrow frequency bands, but their performance is very sensitive to variations in structural modal frequencies and transducer capacitance. In order to overcome this drawback, a piezoelectric shunt damping technique with improved performance and robustness is presented in this paper. The design of the adaptive circuit considers the variation of the host structure’s natural frequency as a project parameter. This paper describes an adaptive resonant piezoelectric vibration absorber enhanced by a synthetic negative capacitance applied to a shell structure. The resonant shunt circuit autonomously adapts its inductance value by comparing the phase difference of the vibration velocity and the current flowing through the shunt circuit. Moreover, a synthetic negative capacitance is added to the shunt circuit to enhance the vibration attenuation provided by the piezoelectric absorber. The circuitry is implemented using analog components. Validation of the proposed method is done by bonding the piezoelectric absorber on a free-formed metallic shell.

  13. The effects of nicotine injection in rat nucleus accumbens on anxiety

    Directory of Open Access Journals (Sweden)

    Ghorbani Yekta B

    2013-05-01

    Full Text Available Background: Previous reports showed that nucleus accumbens involved in the etiology and pathophysiology of major depression, anxiety and addiction. It is not clear that how these mechanisms occur in the brain. In the present study, the influence of direct nicotine injection in the nucleus accumbens in rats’ anxiety-related behavior was investigated. Methods: Wistar rats were used in this study. Male Wistar rats bred in an animal house, in a temperature-controlled (22±2 ◦C room with a 12 hour light/darkcycle. Rats were anesthetized using intraperitoneal injection of ketamine hydrochloride and xylazine, then placed in an stereotactic instrument for microinjection cannula implantation The stainless steel guide cannula was implanted bilaterally in the right and left dorsal the nucleus accumbens shell according to Paxinos and Watson atlas. After recovery, anxiety behavior and locomotor activity were tested. We used the elevated plus maze to test anxiety. This apparatus has widely been employed to test parameters of anxiety-related behaviors including the open armtime percentage (%OAT, open arm entries percentage (%OAE, locomotor activity and we record effect of drugs after injection directly in the nucleus accumbens on anxiety-related behavior.Results: Experiments showed that bilateral injections into the nucleus accumbens Nicotine, acetylcholine receptor agonist, dose 0.1 of the dose (0.05 and 0.1, 0.25, 0.5 microgram per rat caused a significant increase in the percentage of time spent in the open arms (%OAT, compared to the control group. We did not record any significant change locomotor activity and open arm entries percentage (%OAE in rats.Conclusion: Nicotinic receptors in the nucleus accumbens shell involved to anxiety-like behavior in male rats.

  14. Iptkalim inhibits cocaine challenge—induced enhancement of dopamine levels in nucleus accumbens and striatum of rats by up—regulating Kir6.1 and Kir6.2 mRNA expression

    Institute of Scientific and Technical Information of China (English)

    HEHai-Rong; DINGJian-Hua; GUBing; WANGHai; HUGang; LIUYun

    2003-01-01

    AIM:To investigate the effect and mechanism of novel ATP-sensitive potassium channel opener (KCO) iptkalim (IPT) on acute and cocaine challenge-induced alterations in the levels of dopamine (DA) and glutamate (Glu) from nucleus accumbens (NAc), striatum, and prefrontal cortex (PFC) in rats. METHODS: The levels of DA and Glu were assayed using high performance liquid chromatography (HPLC) combined with amperometric and fluorescent detection, respectively. The mRNA levels of Kir6.1, Kir6.2, SUR1, and SUR2 were measured by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: IPT did not affect acute cocaine (30mg/kg,ip)-induced elevations in either DA levels from NAc and striatum or Glu levels from NAc and PFC. An acute cocaine challenge (30mg/kg,ip) on d 21 after withdrawal caused an elevation in DA levels in NAc and striatum. Moreover, the same treatment also increased Gluo levels in PFC and NAc of cocaine-pretreated rats. Repeated IPT injections reversed cocaine challenge-induced DA increase in NAc and striatum. Cocaine challenge increased Kir6.1 and Kir6.2 mRNA expression in striatum and NAc and only elevate Kir6.2 expression in PFC in both cocainepretreated rats and rats pretreated with IPT plus cocaine. Moreover, expression of Kir6.1 and Kir6.2 mRNA was augmented in rats pretreated with IPT plus cocaine compared to rats pretreated with cocaine alone. No significant change was found in the SUR1 and SUR2 expression of all four groups. CONCLUSION:IPT inhibited cocaine challenge-induced enhancement of DA levels in NAc and striatum by up-regulating Kir6.1 and Kir6.2 mRNA expression.

  15. Enhancement of luminescence in white emitting strontium fluoride core @ calcium fluoride shell nanoparticles.

    Science.gov (United States)

    Kumam, Nandini; Singh, Ningthoujam Premananda; Singh, Laishram Priyobarta; Srivastava, Sri Krishna

    2015-12-01

    Synthesis of lanthanide-doped fluoride SrF2:3Dy and SrF2:3Dy@CaF2 nanoparticles with different ratios of core to shell (1:0.5, 1:1 and 1:2) has been carried out by employing ethylene glycol route. X-ray diffraction (XRD) patterns reveal that the structure of the prepared nanoparticles was of cubical shape, which is also evident in TEM images. The size of the nanoparticles for core (SrF2:3Dy) is found to increase when core is covered by shell (CaF2). It is also evident from Fourier transform infrared spectroscopy (FTIR) that ethylene glycol successfully controls the growth and acts as a shape modifier by regulating growth rate. In the photoluminescence investigation, emission spectra of SrF2:3Dy is found to be highly enhanced when SrF2:3Dy is covered by CaF2 due to the decrease of cross relaxation amongst the Dy(3+)-Dy(3+) ions. Such type of enhancement of luminescence in homonanostructure SrF2:3Dy@CaF2 (core@shell) has not been studied so far, to the best of the authors' knowledge. This luminescent material exhibits prominently white light emitting properties as shown by the Commission Internationale d'Eclairage (CIE) chromaticity diagram. The calculated correlate colour temperature (CCT) values for SrF2:3Dy, SrF2:3Dy@CaF2 (1:0.05), SrF2:3Dy@CaF2 (1:1) and SrF2:3Dy@CaF2 (1:2) are 5475, 5476, 5384 and 5525 K, respectively, which lie in the cold white region. Graphical abstract White light emitting homonanostructure material SrF2:3Dy@CaF2(core@shell).

  16. Ag@SiO2 Core-shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [ORNL; Li, Zhipeng [Chinese Academy of Sciences; Gu, Baohua [ORNL; Zhang, Zhenyu [ORNL; Xu, Hongxing [Chinese Academy of Sciences

    2009-01-01

    We show that the spatial distribution of the electromagnetic (EM) field enhancement can be probed directly via dynamic evolution of surface-enhanced Raman scattering (SERS) of Rhodamine 6G (R6G) molecules as they diffuse into Ag@SiO2 core-shell nanoparticles. The porous silica shell limits the diffusion of R6G molecules towards inner Ag cores, thereby allowing direct observation and quantification of the spatial distribution of SERS enhancement as molecules migrate from the low to high EM fields inside the dielectric silica shell. Our experimental evidence is validated by the generalized Mie theory, and the approach can potentially offer a novel platform for further investigating the site and spatial distribution of the EM fields and the EM versus chemical enhancement of SERS due to molecular confinement within the Ag@SiO2 nanoshell.

  17. Hydrothermal synthesis of core–shell TiO{sub 2} to enhance the photocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang, E-mail: txfan@sjtu.edu.cn; Zhang, Di

    2016-04-15

    Graphical abstract: Core–shell TiO{sub 2} with interior cavity was synthesized by a hydrothermal approach to enhance the photocatalytic performance. - Highlights: • Core–shell TiO{sub 2} with interior cavity can be synthesized by hydrothermal approach. • Multiple reflection of incident light in cavity can increase the absorption. • Rutile can optimize the bandgap and delay the charge recombination. - Abstract: A hydrothermal approach was designed to synthesize core–shell TiO{sub 2} with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core–shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV–vis absorption proves core–shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core–shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  18. 高频电刺激伏隔核壳部对肥胖大鼠摄食相关激素的影响%Effects of high frequency stimulation of nucleus accumbens shell subregion on food intake in obesity rats and regulation of appetite-related hormones

    Institute of Scientific and Technical Information of China (English)

    王秀; 张凯; 张弨; 魏乃礼; 王垚; 刘畅; 赵宝田; 胡文瀚; 张建国

    2015-01-01

    Objective To explore the effects of chronic high frequency deep brain stimulation (DBS) of nucleus accumbens shell subregion on food intake and regulation of appetite-related hormones.Methods High-fat diet induced obesity rats were randomly divided into two groups,namely DBS group and sham-DBS group.Stimulating electrodes were implanted in the bilateral shell subregion of nucleus accumbens.The amount of food intake was measured before and during stimulation.Peripheral concentrations of ghrelin,NPY,and leptin were tested before and after DBS or sham-DBS.Results The amount of food intake began to significantly decrease once stimulation was on.After 7 days' continuous stimulation,peripheral concentrations of NPY and leptin decreased significantly (Leptin:pre-DBS:32 ± 10 vs.post-DBS:20 ± 10pg/ml,P < 0.05 ; NPY:pre-DBS:1 302 ± 287 vs.post-DBS:926 ± 299 pg/ml,P < 0.05),and ghrelin increased significantly (Pre-DBS:1066 ± 310 vs.Post-DBS:1603 ± 848 pg/ml,P < 0.05).Conclusions NAc shell subregion is an effective DBS target to decrease food intake in obesity rats.NAc-shell DBS seems to temporarily inhibit the hypothalamic secretion of NPY.Increase of ghrelin levels maybe a second result of decreased food intake caused by NAc-shell stimulation.%目的 探讨伏隔核壳部(NAc-sh)脑深部电刺激术(DBS)对肥胖大鼠摄食量和摄食相关激素分泌的影响.方法 取8周龄雄性SD大鼠60只,高脂饮食建立肥胖大鼠模型,6个月后取24只肥胖大鼠,采用随机数字表法随机分为NAc-sh高频DBS刺激组(简称刺激组)和假刺激组,每组12只.分别在双侧NAc-sh植入刺激电极固定装置.术后30 d大鼠进食完全恢复后,两组各选取进食量稳定的大鼠10只植入电极行刺激(电压3.0V,波宽100μs,频率180 ~ 200 Hz)或假刺激,并于刺激或假刺激前后断尾取血,放射免疫方法检测外周血胃促生长素、瘦素及神经肽Y(NPY)水平的变化.结果 刺激组大鼠刺激开始摄食量

  19. Enhanced field emission properties of ZnO-Ag2S core-shell heterojunction nanowires.

    Science.gov (United States)

    Wang, Guojing; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui; Li, Zhengcao

    2016-06-07

    A simple approach to Ag2S quantum dot (QD) modification was used to tune the field emission (FE) properties of ZnO nanowire arrays (NWAs). By a simple and facile successive ionic layer adsorption and reaction (SILAR) approach, Ag2S QDs were uniformly and densely packed on ZnO nanowires (NWs) to form ZnO-Ag2S core-shell heterojunction structures. The FE properties of ZnO NWAs were effectively tuned by controlling the amount of Ag2S QDs. The turn-on field first reduces and then increases as the amount of Ag2S QDs increases, while the trend of the field-enhancement factor is inverse. This is attributed to the clustering of Ag2S QDs into nanoparticles (NPs) which cover the nanowire tips, as SILAR cycles increase.

  20. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  1. Orientation-induced enhancement in electromagnetic properties of ZnFe2O4/SiO2/PANI core/shell/shell nanostructured disks

    Science.gov (United States)

    Wang, Jiaheng; Or, Siu Wing

    2016-05-01

    ZnFe2O4/SiO2/PANI (ZSP) core/shell/shell nanostructured disks are prepared and fabricated into paraffin-bonded ZSP composite rings with random, vertical, and horizontal orientations of the easy magnetization planes of the ZSP disks in the paraffin binder in order to study the effect of directional orientation of the easy magnetization planes on their electromagnetic properties. The easy magnetization planes induced by shape anisotropy and oriented by a magnetic field in the vertically oriented ring result in a general enhancement in permeability of 7-60% in the broad UHF-Ku (0.1-18 GHz) bands, while those in the horizontally oriented ring lead to a significant enhancement of 58-1100% in the low-frequency L and S (1-4 GHz) bands, in comparison with the randomly oriented ring. The observed permeability agrees with the theoretical prediction based on the Landau-Lifshitz-Gilbert equation and the Bruggeman's effective medium theory. The horizontal and vertical arrangements of dipolar polarizations in the vertically and horizontally oriented rings give rise to 3-11% enhancement and weakening in permittivity, respectively, compared to the randomly oriented ring. The enhancement in permeability also improves and broadens the electromagnetic wave absorption in both vertically and horizontally oriented rings, especially in the L and S bands for the horizontally oriented ring.

  2. Orientation-induced enhancement in electromagnetic properties of ZnFe2O4/SiO2/PANI core/shell/shell nanostructured disks

    Directory of Open Access Journals (Sweden)

    Jiaheng Wang

    2016-05-01

    Full Text Available ZnFe2O4/SiO2/PANI (ZSP core/shell/shell nanostructured disks are prepared and fabricated into paraffin-bonded ZSP composite rings with random, vertical, and horizontal orientations of the easy magnetization planes of the ZSP disks in the paraffin binder in order to study the effect of directional orientation of the easy magnetization planes on their electromagnetic properties. The easy magnetization planes induced by shape anisotropy and oriented by a magnetic field in the vertically oriented ring result in a general enhancement in permeability of 7–60% in the broad UHF–Ku (0.1–18 GHz bands, while those in the horizontally oriented ring lead to a significant enhancement of 58–1100% in the low-frequency L and S (1–4 GHz bands, in comparison with the randomly oriented ring. The observed permeability agrees with the theoretical prediction based on the Landau–Lifshitz–Gilbert equation and the Bruggeman’s effective medium theory. The horizontal and vertical arrangements of dipolar polarizations in the vertically and horizontally oriented rings give rise to 3–11% enhancement and weakening in permittivity, respectively, compared to the randomly oriented ring. The enhancement in permeability also improves and broadens the electromagnetic wave absorption in both vertically and horizontally oriented rings, especially in the L and S bands for the horizontally oriented ring.

  3. MoS2 /Carbon Nanotube Core-Shell Nanocomposites for Enhanced Nonlinear Optical Performance.

    Science.gov (United States)

    Zhang, Xiaoyan; Selkirk, Andrew; Zhang, Saifeng; Huang, Jiawei; Li, Yuanxin; Xie, Yafeng; Dong, Ningning; Cui, Yun; Zhang, Long; Blau, Werner J; Wang, Jun

    2017-03-08

    Nanocomposites of layered MoS2 and multi-walled carbon nanotubes (CNTs) with core-shell structure were prepared by a simple solvothermal method. The formation of MoS2 nanosheets on the surface of coaxial CNTs has been confirmed by scanning electron microscopy, transmission electron microscopy, absorption spectrum, Raman spectroscopy, and X-ray photoelectron spectroscopy. Enhanced third-order nonlinear optical performances were observed for both femtosecond and nanosecond laser pulses over a broad wavelength range from the visible to the near infrared, compared to those of MoS2 and CNTs alone. The enhancement can be ascribed to the strong coupling effect and the photoinduced charge transfer between MoS2 and CNTs. This work affords an efficient way to fabricate novel CNTs based nanocomposites for enhanced nonlinear light-matter interaction. The versatile nonlinear properties imply a huge potential of the nanocomposites in the development of nanophotonic devices, such as mode-lockers, optical limiters, or optical switches.

  4. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis

  5. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.

    NARCIS (Netherlands)

    Fusa, K.; Takahashi, I.; Watanabe, S.; Aono, Y.; Ikeda, H.; Saigusa, T.; Nagase, H.; Suzuki, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro -quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidi

  6. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})

  7. Nucleus accumbens μ-opioid receptors mediate social reward.

    Science.gov (United States)

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  8. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Science.gov (United States)

    Dong, Alideertu; Huang, Jinfeng; Lan, Shi; Wang, Tao; Xiao, Linghan; Wang, Weiwei; Zhao, Tianyi; Zheng, Xin; Liu, Fengqi; Gao, Ge; Chen, Yuxin

    2011-07-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  9. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  10. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  11. Enhanced fluorescence of graphene oxide by well-controlled Au@SiO2 core-shell nanoparticles.

    Science.gov (United States)

    Li, Cuiyan; Zhu, Yihua; Wang, Siwen; Zhang, Xiaoqing; Yang, Xiaoling; Li, Chunzhong

    2014-01-01

    Graphene and graphene derivatives, including graphene oxide (GO) and reduced GO (rGO), have attracted remarkable attention in different fields due to their unique electronic, thermal, and mechanical properties, whereas the fluorescence property is rarely been studied. This paper reports on metal-enhanced fluorescence Au@SiO2 composite nanoparticles adsorbed graphene oxide nanosheets, where the silica-shell is used to control the distance between gold-core and fluorophore GO, and a positively charged polyelectrolyte poly(allylamine hydrochloride) (PAH) is used to adsorb the negatively charged silica-shell and GO by layer-by-layer assembly (LbL) approach. The silica-shell around the 80 nm gold-core can be well-controlled by ending the reaction at different times. Various analytical techniques were applied to characterize the morphology and optical characters of the as-prepared particles. A more than three-fold increase of the fluorescence intensity of GO was obtained.

  12. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.

    Science.gov (United States)

    Liu, Ni; Xu, Ling; Wang, Hongyu; Xu, Jun; Su, Weining; Ma, Zhongyuan; Chen, Kunji

    2014-12-01

    Eu-doped ZnSe:/ZnS quantum dots (formed as ZnSe:Eu/ZnS QDs) were successfully synthesized by a two-step wet chemical method: nucleation doping and epitaxial shell growing. The sensitization characteristics of Eu-doped ZnSe and ZnSe/ZnS core/shell QD are studied in detail using photoluminescence (PL), PL excitation spectra (PLE) and time-resolved PL spectroscopy. The emission intensity of Eu ions is enhanced and that of ZnSe QDs is decreased, implying that energy was transferred from the excited ZnSe host materials (the donor) to the doped Eu ions (the acceptor). PLE reveals that the ZnSe QDs act as an antenna for the sensitization of Eu ions through an energy transfer process. The dynamics of ZnSe:Eu/ZnS core/shell quantum dots with different shell thicknesses and doping concentrations are studied via PL spectra and fluorescence lifetime spectra. The maximum phosphorescence efficiency is obtained when the doping concentration of Eu is approximately 6% and the sample showed strong white light under ultraviolet lamp illumination. By surface modification with ZnS shell layer, the intensity of Eu-related PL emission is increased approximately three times compared with that of pure ZnSe:Eu QDs. The emission intensity and wavelength of ZnSe:Eu/ZnS core/shell quantum dots can be modulated by different shell thickness and doping concentration. The results provide a valuable insight into the doping control for practical applications in laser, light-emitting diodes and in the field of biotechnology.

  13. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.

    Science.gov (United States)

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-07-06

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd(2+) precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal.

  14. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  15. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    Science.gov (United States)

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth.

  16. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    Directory of Open Access Journals (Sweden)

    Daniel Charles Castro

    2015-06-01

    Full Text Available The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc and ventral pallidum (VP, in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (‘liking’ and motivational incentive salience (‘wanting’ of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating versus intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including ‘liking’ and ‘wanting’ for food rewards.

  17. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-19

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.

  18. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core-shell nanocrystals show an enhanced electrocatalytic activity for formic acid oxidation compared with commercial Pd black. This journal is © 2014 The Royal Society of Chemistry.

  19. Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaosi, E-mail: sci.xsqi@gzu.edu.cn [Physics Department, Guizhou University, Guiyang 550025 (China); Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Hu, Qi; Xu, Jianle; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie [Physics Department, Guizhou University, Guiyang 550025 (China); Zhong, Wei, E-mail: wzhong@nju.edu.cn [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China)

    2016-09-15

    Graphical abstract: In the article, core/shell Fe{sub 3}O{sub 4}/C, Fe/helical carbon nanotubes were synthesized selectively. The results indicated that the optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possibly enhanced microwave absorption mechanisms were also discussed in detail. - Highlights: • An efficient scheme was designed to synthesize core/shell magnetic nanoparticles/carbon-based hybrids. • By controlling the temperature, different categories of core/shell nanohybrids were synthesized. • The obtained Fe/CNT hybrid exhibits enhanced microwave absorption property. • Enhanced microwave absorbing mechanism was discussed in detail. - Abstract: An efficient scheme was designed to selectively synthesize different categories of core/shell structured magnetic nanoparticles/carbon-based nanohybrids such as Fe{sub 3}O{sub 4}/C and Fe/helical carbon nanotubes (HCNTs) through the decomposition of acetylene directly over Fe{sub 2}O{sub 3} nanotubes by controlling the pyrolysis temperature. The measured electromagnetic parameters indicated that the Fe/HCNT nanohybrids exhibited enhanced microwave absorption properties, which may be related to their special structures. The optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL values below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possible enhanced EM absorption mechanisms were also discussed in detail. The results show excellent microwave absorption materials that are lightweight, have strong absorption and a wide absorption frequency band may be realized in these nanohybrids.

  20. CREB EXPRESSION IN THE SHELL OF ACCUMBENS NUCLEUS OF RATS WITH CONDITIONED PLACE AVERSION INDUCED BY MORPHINE WITHDRAWAL%吗啡戒断后条件性位置厌恶大鼠伏隔核壳区CREB表达

    Institute of Scientific and Technical Information of China (English)

    李秀梅; 李文强; 乔振; 宋秀花; 李毅

    2013-01-01

    Objective:To explore the changes of cAMP response element binding protein(CREB) in the shell of accumbens nucleus (AcbSH) at the post-formation,post-extinction and post-reinstatement of morphine withdrawal-induced conditioned place aversion (CPA) in rats.Methods:(1)Using an unbiased conditioning paradigm,we treated rats with morphine hydrochloride,10 mg · kg-1,intraperitoneally (ip),twice per day for 6.5 days,subsequently naloxone (0.3 mg · kg-1 ip) was injected on day 6 to precipitate withdrawal,which is paired with the compartment to develop CPA.Then,the rats exhibiting CPA were received 12 extinction trials by being exposed to the two compartments with free exploration.On day 13,the rats with the extinguished CPA were treated with a priming injection of morphine,10 mg · kg-1,ip,followed by naloxone,0.3 mg · kg-1,ip,to reinstate the CPA.(2)Immunohistochemistry technique was used to measure the expression of phosphorylated CREB (p-CREB,Ser-133)in AcbSH.Results:(1)The used experimental procedure could develop obvious CPA in rats,and the CPA could be extincted and reinstated,respectively.(2) At the post-formation of the CPA,the p-CREB expression was significantly increased in the AcbSH (P < 0.05),was significantly decreased at the post-extinction of the CPA(P <0.01),and was increased at the post-reinstatement of the CPA(P <0.01),respectively,compared with that in controls.Conclusion:(1)The AcbSH may be one of anatomic substrates implicating in the CPA induced by morphine withdrawal in rats.(2)The neuroadaptation mediated by CREB may be one of molecular mechanisms of the emotional state and reinforcements in the AcbSH.%目的:探讨慢性吗啡依赖大鼠纳洛酮催瘾戒断后条件性位置厌恶(conditioned place aversion,CPA)建立、消退和重建过程中,伏隔核壳区(shell of accumbens nucleus,AcbSH)内cAMP反应元件结合蛋白(cyclic-3',5'adenosine monophosphate response element binding protein,CREB)蛋白表达的适应性变化.方法:(1

  1. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT : PCBM/ZnO nanorod array hybrid solar cells

    NARCIS (Netherlands)

    Wang, Ting-Chung; Su, Yen-Hsun; Hung, Yun-Kai; Yeh, Chen-Sheng; Huang, Li-Wen; Gomulya, Widianta; Lai, Lai-Hung; Loi, Maria A.; Yang, Jih-Sheng; Wu, Jih-Jen

    2015-01-01

    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropria

  2. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Directory of Open Access Journals (Sweden)

    Schulkin Jay

    2006-04-01

    Full Text Available Abstract Background Corticotropin-releasing factor (CRF is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior. Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl or amphetamine (20 μg/0.2 μl. Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng or amphetamine (20 μg selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress

  3. Preparation of a novel core-shell Ag-graphene@SiO2 nanocomposite for fluorescence enhancement.

    Science.gov (United States)

    Yin, Dongguang; Liu, Binhu; Zhang, Le; Wu, Minghong

    2012-06-01

    A facile one-pot water-in-oil microemulsion method has been developed for the synthesis of a novel core-shell Ag-graphene@SiO2 nanocomposite with fluorescein isothiocyanate (FITC) doped in the shell. During the preparation process, reducing both Ag+ and graphene oxide, and loading of Ag nanoparticles on graphene were occurred in the microemulsion simultaneously. Then FITC was covalently doped in the silica shell through a copolymerization reaction with tetraethoxysilane (TEOS). The morphology and optical properties of the nanocomposite were characterized by transmission electron microscope (TEM), UV-Vis spectrum, fluorescence emission spectrum and FT-IR spectrum, respectively. The results showed that the emission intensity from the as-prepared nanocomposite was 3-fold higher than that of control silica nanoparticles in which graphene was absent. The graphene in the as-prepared nanocomposite exhibited an enhanced effect for the metal enhanced fluorescence (MEF). This enhancement offers a potential increase in overall nanoprobe detectability. This work could provide new insights into fabrication of Ag-graphene based nanocomposites and facilitate their application.

  4. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    Science.gov (United States)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-02-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  5. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing

    2015-12-14

    © 2015 by the authors. In the current work, we developed a facile synthesis of yolk/core-shell structured TS-1@mesosilica composites and studied their catalytic performances in the hydroxylation of phenol with H2O2 as the oxidant. The core-shell TS-1@mesosilica composites were prepared via a uniform coating process, while the yolk-shell TS-1@mesosilica composite was prepared using a resorcinol-formaldehyde resin (RF) middle-layer as the sacrificial template. The obtained materials were characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples possessed highly uniform yolk/core-shell structures, high surface area (560–700 m2 g−1) and hierarchical pore structures from oriented mesochannels to zeolite micropores. Importantly, owing to their unique structural properties, these composites exhibited enhanced activity, and also selectivity in the phenol hydroxylation reaction.

  6. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.

    Science.gov (United States)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-11-13

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  7. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  8. Facile synthesis of CdS/C core–shell nanospheres with ultrathin carbon layer for enhanced photocatalytic properties and stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Zhang, Fu [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Yu-Ling, E-mail: yulingzhao@zjnu.cn [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Guo, Yan-Chuan [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gong, Peijun [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Li, Zheng-Quan, E-mail: zqli@zjnu.cn [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Qian, Hai-Sheng, E-mail: shqian@hfut.edu.cn [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-01-30

    Graphical abstract: Uniform CdS/C core–shell nanospheres with several nanometers in thickness for carbon shell have been synthesized successfully; which show enhanced photocatalytic activities than single-component counterparts (CdS nanospheres). - Highlights: • The CdS/C nanospheres have been synthesized by a facile hydrothermal method. • The CdS/C nanospheres showed enhanced photocatalytic properties and photostability. • The as-prepared CdS/C core-shell nanospheres show better biocompatibility. - Abstract: In this work, we described a facile one-pot hydrothermal process developed to synthesize CdS/C core–shell nanospheres successfully. The as-prepared CdS/C core–shell nanospheres are with 100 nm in diameter and the amorphous carbon shell is with several nanometers in thickness. The phase, morphology and structures of the samples were investigated by X-ray power diffraction (XRD) analyses, field-emission scanning electron microscopy (FESEM, JEOL-6700F) and transmission electron microscopy (TEM, JEOL 3010); respectively. The as-prepared CdS/C core–shell nanospheres showed enhanced photocatalytic properties and photostability compared to the single counterpart of CdS nanospheres owing to the efficiently separation of photogenerated electrons (e{sup −}) and holes (h{sup +}) derived from the photocatalyst. In addition, the as-prepared CdS/C core–shell nanospheres might find wide application in wastewater treatment, solar cells, lithium ion batteries, etc.

  9. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array

    Science.gov (United States)

    Liu, Gui-qiang; Hu, Ying; Liu, Zheng-qi; Cai, Zheng-jie; Zhang, Xiang-nan; Chen, Yuan-hao; Huang, Kuan

    2014-04-01

    We propose and show multispectral optical enhanced transmission in the visible and near-infrared region in a continuous metal film coated with a two-dimensional (2D) hexagonal non-close-packed plasmonic array. The plasmonic array consists of metal/dielectric multilayer core-shell nanoparticles. The excitation of near-field plasmon resonance coupling between adjacent core-shell nanoparticles, plasmon resonance coupling between adjacent metal layers in the nanoparticle, and surface plasmon (SP) waves on the metal film are mainly responsible for the multispectral optical enhanced transmission behavior. The multispectral optical enhanced transmission response could be highly modified in the wavelength range, transparent bandwidth and transmission intensity by varying the geometry parameters including the gap distance between adjacent plasmonic nanoparticles, the size of metal core and the thickness of dielectric layer between the metal layers. In addition, the number of optical enhanced transmission bands increases with the number of metal layers in the plasmonic nanoparticle. The proposed structure shows many merits such as the deep sub-wavelength size, multispectral optical enhanced transmission bands as well as fully retained electric and mechanical properties of the natural metal. These merits may provide promising applications for highly integrated optoelectronic devices including plasmonic filters, nanoscale multiplexers, and nonlinear optics.

  10. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels.

    Science.gov (United States)

    Liu, Bianhua; Han, Guangmei; Zhang, Zhongping; Liu, Renyong; Jiang, Changlong; Wang, Suhua; Han, Ming-Yong

    2012-01-03

    Here, we report the shell thickness-dependent Raman enhancement of silver-coated gold nanoparticles (Au@Ag NPs) for the identification and detection of pesticide residues at various fruit peels. The Raman enhancement of Au@Ag NPs to a large family of sulfur-containing pesticides is ~2 orders of magnitude stronger than those of bare Au and Ag NPs, and there is a strong dependence of the Raman enhancement on the Ag shell thickness. It has been shown for the first time that the huge Raman enhancement is contributed by individual Au@Ag NPs rather than aggregated Au@Ag NPs with "hot spots" among the neighboring NPs. Therefore, the Au@Ag NPs with excellent individual-particle enhancement can be exploited as stand-alone-particle Raman amplifiers for the surface identification and detection of pesticide residues at various peels of fruits, such as apple, grape, mango, pear, and peach. By casting the particle sensors onto fruit peels, several types of pesticide residues (e.g., thiocarbamate and organophosphorous compounds) have been reliably/rapidly detected, for example, 1.5 nanograms of thiram per square centimeter at apple peel under the current unoptimized condition. The surface-lifting spectroscopic technique offers great practical potentials for the on-site assessment and identification of pesticide residues in agricultural products.

  11. Core-shell Mn3O4/birnessite-MnO2 hierachical structure with enhanced adsorption towards methylene blue

    Science.gov (United States)

    Huang, Feifan; Zhou, Bowen; Xiao, Han; Xiao, Wei

    2016-01-01

    The core-shell Mn3O4/birnessite-MnO2 (Mn3O4/MnO2) was successfully established by assembly of birnessite-type MnO2 over Mn3O4 backbones. The product was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), as well as UV-vis absorption spectra (UV-vis) to assess its adsorption of methylene blue (MB) from neutral aqueous solutions. Compared to the individual Mn3O4, the prepared Mn3O4/MnO2 shows enhanced adsorption capability towards MB. Such enhancement is due to the higher surface area and the unique nanosheet shells. The adsorption of MB on the surface of Mn3O4/MnO2 was studied in terms of pseudo-first-order and the pseudo-second-order kinetic models, and the latter was found better. The present study indicates that hierarchically structured core-shell manganese oxides are promising adsorbents for wastewater treatment.

  12. The preparation of core-shell magnetic silica nanospheres for enhancing magnetism and fluorescence intensity.

    Science.gov (United States)

    Yoo, Jeong Ha; Kim, Jong Sung

    2013-11-01

    Recently, magnetic and luminescent composite silica with structure of micro- and nanospheres containing both magnetic (Fe3O4) nanoparticles (MPs) and quantum dots (QDs) has attracted great interests. In this study, we have prepared core-shell structure of silica spheres in which magnets are incorporated into silica core and QDs into a mesoporous silica shell by using C18-TMS (octade-cyltrimethoxysilane). MPs were synthesized by a co-precipitation method from ferrous and ferric solutions with a molecular ratio of 2:3. Monodisperse magnetic silica cores have been prepared via sol-gel reaction of TEOS (tetraethoxysilane) and water using base catalyst. The size of magnetic silica nanospheres was confirmed by dynamic laser light scattering system (DLS) and scanning electoron microscope (SEM). The pore volume and surface area were calculated by using BET after calcination. The core-shell structure plays an important role in providing more domains for MPs in silica Core and QDs in silica shell. QDs were incorporated into the mesoporous shell by hydrophobic interactions. Magnetic characterization was performed using a superconducting quantum interference device (SQUID). The optical properties of the particles were characterized with UV/Vis spectrometer, PL spectrometer, and fluorescence microscope.

  13. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  14. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats.

    Science.gov (United States)

    Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W M; Pasterkamp, R Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J M J

    2012-10-24

    The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4- to 5-week-old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signaling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats.

  15. Optimal Shell Thickness of Metal@Insulator Nanoparticles for Net Enhancement of Photogenerated Polarons in P3HT Films.

    Science.gov (United States)

    Goh, Wei-Peng; Williams, Evan L; Yang, Ren-Bin; Koh, Wee-Shing; Mhaisalkar, Subodh; Ooi, Zi-En

    2016-02-01

    Embedding metal nanoparticles in the active layer of organic solar cells has been explored as a route for improving charge carrier generation, with localized field enhancement as a proposed mechanism. However, embedded metal nanoparticles can also act as charge recombination sites. To suppress such recombination, the metal nanoparticles are commonly coated with a thin insulating shell. At the same time, this insulating shell limits the extent that the localized enhanced electric field influences charge generation in the organic medium. It is presumed that there is an optimal thickness which maximizes field enhancement effects while suppressing recombination. Atomic Layer Deposition (ALD) was used to deposit Al2O3 layers of different thicknesses onto silver nanoparticles (Ag NPs), in a thin film of P3HT. Photoinduced absorption (PIA) spectroscopy was used to study the dependence of the photogenerated P3HT(+) polaron population on the Al2O3 thickness. The optimal thickness was found to be 3-5 nm. This knowledge can be further applied in the design of metal nanoparticle-enhanced solar cells.

  16. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity

    Science.gov (United States)

    Zhou, Juan; Tian, Guohui; Chen, Yajie; Shi, Yunhan; Tian, Chungui; Pan, Kai; Fu, Honggang

    2014-02-01

    Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation.

  17. Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Hafsa, E-mail: hkhurshi@udel.edu [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Hadjipanayis, Costas G. [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Chen, Hongwei [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Li, Wanfeng [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Mao, Hui [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Machaidze, Revaz [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Tzitzios, Vasilis [Institute of Materials Science, “Demokritos” 15310 Athens (Greece); Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States)

    2013-04-15

    We report the use of metallic iron-based nanoparticles for magnetic resonance imaging (MRI) applications. Core/shell structured iron-based nanoparticles prepared by thermally decomposing organo-metallic compounds of iron at high temperature in the presence of hydrophobic surfactants were coated and stabilized in the aqueous solvent using the newly developed polysiloxane PEO–b–PγMPS (poly(ethylene oxide)–block–poly (γ methacryloxypropyl trimethyl oxysilane)) diblock copolymers. Particles are well suspended in water and retain their core–shell morphology after coating with the copolymer. In comparison to the conventionally used iron-oxide nanoparticles, core/shell structured iron/iron-oxide nanoparticles offer a much stronger T{sub 2} shortening effect than that of iron-oxide with the same core size due to their better magnetic properties. -- Highlights: ► Core/shell Fe/Fe-oxide nanoparticles were synthesized by organo-metallic synthesis. ► Water dispersibility was obtained by coating particles with a polysiloxane diblock copolymer. ► In comparison to Fe-oxide, Fe/Fe-oxide nanoparticles offer a much stronger T{sub 2} shortening effect.

  18. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    Science.gov (United States)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-01

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  19. Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum.

    Science.gov (United States)

    Meyer, Francisca F; Louilot, Alain

    2011-06-01

    Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.

  20. Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing.

    Science.gov (United States)

    Nelson, A J D; Thur, K E; Marsden, C A; Cassaday, H J

    2011-12-01

    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates.

  1. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  2. Enhanced exchange bias and improved ferromagnetic properties in Permalloy–BiFe0.95Co0.05O3 core–shell nanostructures

    Science.gov (United States)

    Javed, K.; Li, W. J.; Ali, S. S.; Shi, D. W.; Khan, U.; Riaz, S.; Han, X. F.

    2015-01-01

    Hybrid core–shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties. PMID:26658956

  3. Enhanced exchange bias and improved ferromagnetic properties in Permalloy-BiFe0.95Co0.05O3 core-shell nanostructures

    Science.gov (United States)

    Javed, K.; Li, W. J.; Ali, S. S.; Shi, D. W.; Khan, U.; Riaz, S.; Han, X. F.

    2015-12-01

    Hybrid core-shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties.

  4. Hiding a Higgs width enhancement from off-shell gg (--> h*) --> ZZ

    CERN Document Server

    Logan, Heather E

    2014-01-01

    Measurements of the off-shell Higgs boson production cross section in gg (--> h*) --> ZZ have recently been used by the CMS and ATLAS collaborations to indirectly constrain the total width of the Higgs boson. I point out that the interpretation of these measurements as a Higgs width constraint can be invalidated if additional neutral Higgs boson(s) are present with masses below about 350 GeV.

  5. Enhanced charge collection in dye-sensitized solar cells utilizing collector-shell electrodes

    Science.gov (United States)

    Xiao, Manda; Huang, Fuzhi; Xiang, Wanchun; Cheng, Yi-Bing; Spiccia, Leone

    2015-03-01

    Nanostructured porous tin-doped indium oxide (ITO) films were prepared by screen printing of an ITO nanoparticle paste onto conducting fluorine-doped tin oxide (FTO) substrates. The ITO films were subsequently coated with thin layers of TiO2 by the hydrolysis of TiCl4 to form the collector-shell photoelectrodes. The morphology of films was analysed by scanning electron microscope (SEM). It was found that a uniform coating of TiO2 was achieved when three or more deposition cycles were applied. Dye-sensitized solar cells were constructed with the collector-shell photoelectrodes using an electrolyte containing the [Co(bpy)3]2+/3+ (bpy = 2,2‧-bipyridine) redox couple and MK-2, an organic sensitizer and efficiencies of 3.3% achieved. Charge transport in cells utilizing the collector-shell electrodes was found to be 2-6 times faster than those utilizing P25-based TiO2 electrodes.

  6. Au@polymer core-shell nanoparticles for simultaneously enhancing efficiency and ambient stability of organic optoelectronic devices.

    Science.gov (United States)

    Kim, Taesu; Kang, Hyunbum; Jeong, Seonju; Kang, Dong Jin; Lee, Changyeon; Lee, Chun-Ho; Seo, Min-Kyo; Lee, Jung-Yong; Kim, Bumjoon J

    2014-10-08

    In this paper, we report and discuss our successful synthesis of monodispersed, polystyrene-coated gold core-shell nanoparticles (Au@PS NPs) for use in highly efficient, air-stable, organic light-emitting diodes (OLEDs) and organic photovoltaics (OPVs). These core-shell NPs retain the dual functions of (1) the plasmonic effect of the Au core and (2) the stability and solvent resistance of the cross-linked PS shell. The monodispersed Au@PS NPs were incorporated into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film that was located between the ITO substrate and the emitting layer (or active layer) in the devices. The incorporation of the Au@PS NPs provided remarkable improvements in the performances of both OLEDs and OPVs, which benefitted from the plasmonic effect of the Au@PS NPs. The OLED device with the Au@PS NPs achieved an enhancement of the current efficiency that was 42% greater than that of the control device. In addition, the power conversion efficiency was increased from 7.6% to 8.4% in PTB7:PC71BM-based OPVs when the Au@PS NPs were embedded. Direct evidence of the plasmonic effect on optical enhancement of the device was provided by near-field scanning optical microscopy measurements. More importantly, the Au@PS NPs induced a remarkable and simultaneous improvement in the stabilities of the OLED and OPV devices by reducing the acidic and hygroscopic properties of the PEDOT:PSS layer.

  7. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement.

    Science.gov (United States)

    Wang, Lei; Lv, Zhigang; Hu, Zhaoyang; Sheng, Jian; Hui, Bin; Sun, Jie; Ma, Lan

    2010-03-01

    The regulation of gene expression in the brain reward regions is known to contribute to the pathogenesis and persistence of drug addiction. Increasing evidence suggests that the regulation of gene transcription is mediated by epigenetic mechanisms that alter the chromatin structure at specific gene promoters. To better understand the involvement of epigenetic regulation in drug reinforcement properties, rats were subjected to cocaine self-administration paradigm. Daily histone deacetylase (HDAC) inhibitor infusions in the shell of the nucleus accumbens (NAc) caused an upward shift in the dose-response curve under fixed-ratio schedule and increased the break point under progressive-ratio schedule, indicating enhanced motivation for self-administered drug. The effect of the HDAC inhibitor is attributed to the increased elevation of histone acetylation induced by chronic, but not acute, cocaine experience. In contrast, neutralizing the chronic cocaine-induced increase in histone modification by the bilateral overexpression of HDAC4 in the NAc shell reduced drug motivation. The association between the motivation for cocaine and the transcriptional activation of addiction-related genes by H3 acetylation in the NAc shell was analyzed. Among the genes activated by chronic cocaine experiences, the expression of CaMKIIalpha, but not CaMKIIbeta, correlated positively with motivation for the drug. Lentivirus-mediated shRNA knockdown experiments showed that CaMKIIalpha, but not CaMKIIbeta, in the NAc shell is essential for the maintenance of motivation to self-administered cocaine. These findings suggest that chronic drug-use-induced transcriptional activation of genes, such as CaMKIIalpha, modulated by H3 acetylation in the NAc is a critical regulatory mechanism underlying motivation for drug reinforcement.

  8. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness.

    Science.gov (United States)

    Fredin, Lisa A; Li, Zhong; Ratner, Mark A; Lanagan, Michael T; Marks, Tobin J

    2012-11-20

    Dielectric loss in metal oxide core/Al(2)O(3) shell polypropylene nanocomposites scales with the particle surface area. By moderating the interfacial surface area between the phases and using increasing shell thicknesses, dielectric loss is significantly reduced, and thus the energy stored within, and recoverable from, capacitors fabricated from these materials is significantly increased, to as high as 2.05 J/cm(3).

  9. In-depth nanocrystallization enhanced Li-ions batteries performance with nitrogen-doped carbon coated Fe3O4 yolk-shell nanocapsules

    Science.gov (United States)

    Wu, Qianhui; Zhao, Rongfang; Liu, Wenjie; Zhang, Xiue; Shen, Xiao; Li, Wenlong; Diao, Guowang; Chen, Ming

    2017-03-01

    In this paper nitrogen-doped carbon-encapsulation Fe3O4 yolk-shell magnetic nanocapsules (Fe3O4@C-N nanocapsules) have been successfully constructed though a facile hydrothermal method and subsequent annealing process. Fe3O4 nanoparticles are completely enclosed in nitrogen-doped carbon shells with void space between the nanoparticle and the shell. The yolk-shell structure allows Fe3O4 nanoparticles to expand freely without breaking the outer carbon shell during the lithiation/delithiation processes. The volume expansion of Fe3O4 results in the in-depth nanocrystallization. Fortunately, the new generated small nanoparticles can increase the capability with the cycle increase due to the unique confinement effect and excellent electronic conductivity of the nitrogen-doped carbon shells. Hence, after 150 cycles, the discharge capacity of Fe3O4@C-N-700 nanocapsules still remained 832 mA h g-1 at 500 mA g-1, which corresponds to 116.7% of the lowest capacity (713 mA h g-1) at the 16th cycle. We believe that the yolk-shell structure is conducive to enhance the capacity of easy pulverization metal oxidation during the charge/discharge processes.

  10. Porous TiO2-coated Magnetic Core-Shell Nanocomposites: Preparation and Enhanced Photocatalytic Activity

    Institute of Scientific and Technical Information of China (English)

    LIU Hongfei; JI Shengfu; ZHENG Yuanyuan; LI Ming; YANG Hao

    2013-01-01

    The core-shell structured TiO2/SiO2@Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane (TEOS) as silica source and tetrabutyl titanate (TBOT) as titanium sources.The as-obtained structure was composed of a SiO2@Fe3O4 core and a porous TiO2 shell.The diameter of SiO2@Fe3O4 core was about 205 nm with thickness of porous TiO2 of about 5-6 nm.The 9%TiO2/6% SiO2@Fe3O4 microspheres possess the highest BET surface area and the BJH pore volume,which are 373.5 m2·g-1 and 0.28 cm3·g-1,respectively.The 9%TiO2/6%SiO2@Fe3O4 photocatalyst exhibited an excellent performance for the degradation of methyl orange and methylene blue dyes.Two different dyes were completely decolorized in 60 rain under UV irradiation.The photocatalytic activity and the amount of catalyst were almost not decrease after recycling for 6 times by using external magnetic field.

  11. Encoding of aversion by dopamine and the nucleus accumbens.

    Science.gov (United States)

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.

  12. Encoding of aversion by dopamine and the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2012-09-01

    Full Text Available Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc and the dopamine projection to it are considered an integral part of the brain’s reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias towards reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area (VTA and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus – intraoral infusion of sucrose – has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion versus reward.

  13. Enhance the Er(3+) Upconversion Luminescence by Constructing NaGdF4:Er(3+)@NaGdF4:Er(3+) Active-Core/Active-Shell Nanocrystals.

    Science.gov (United States)

    Du, Xiaoyu; Wang, Xiangfu; Meng, Lan; Bu, Yanyan; Yan, Xiaohong

    2017-12-01

    NaGdF4:12%Er(3+)@NaGdF4:x%Er(3+) (x = 0, 6, 8, 10, and 12) active-core/active-shell nanoparticles (NPs) were peculiarly synthesized via a delayed nucleation pathway with procedures. The phase, shape, and size of the resulting core-shell NPs are confirmed by transmission electron microscopy and X-ray diffraction. Coated with a NaGdF4:10%Er(3+) active shell around the NaGdF4:12%Er(3+) core NPs, a maximum luminescent enhancement of about 336 times higher than the NaGdF4:12%Er(3+) core-only NPs was observed under the 1540 nm excitation. The intensity ratio of green to red was adjusted through the construction of the core-shell structure and the change of Er(3+) concentration in the shell. By analyzing the lifetimes of emission bands and exploring the energy transition mechanism, the giant luminescence enhancement is mainly attributed to the significant increase in the near-infrared absorption at 1540 nm and efficient energy migration from the shell to core.

  14. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.

    2015-04-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  15. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  16. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes.

    Science.gov (United States)

    Jin, Yun-Ho; Seo, Seung-Deok; Shim, Hyun-Woo; Park, Kyung-Soo; Kim, Dong-Wan

    2012-03-30

    Monodispersed core/shell spinel ferrite/carbon nanoparticles are formed by thermolysis of metal (Fe3+, Co2+) oleates followed by carbon coating. The phase and morphology of nanoparticles are characterized by x-ray diffraction and transmission electron microscopy. Pure Fe3O4 and CoFe2O4 nanoparticles are initially prepared through thermal decomposition of metal–oleate precursors at 310 degrees C and they are found to exhibit poor electrochemical performance because of the easy aggregation of nanoparticles and the resulting increase in the interparticle contact resistance. In contrast, uniform carbon coating of Fe3O4 and CoFe2O4 nanoparticles by low-temperature (180 degrees C) decomposition of malic acid allowed each nanoparticle to be electrically wired to a current collector through a conducting percolative path. Core/shell Fe3O4/C and CoFe2O4/C nanocomposite electrodes show a high specific capacity that can exceed 700 mAh g(-1) after 200 cycles, along with enhanced cycling stability.

  17. Facile synthesis of hierarchical double-shell WO3 microspheres with enhanced photocatalytic activity

    Science.gov (United States)

    Wang, Zhenfeng; Chu, Deqing; Wang, Limin; Wang, Lipeng; Hu, Wenhui; Chen, Xiangyu; Yang, Huifang; Sun, Jingjing

    2017-02-01

    Hierarchical double-shell WO3 microspheres (HDS-WO3) have been successfully obtained through the thermal decomposition of WO3·H2O formed by metal salts as the templates. The products were characterized by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the HDS-WO3 microspheres were analyzed by the Thermogravimetric (TG) and Brunauer-Emmett-Teller (BET) analysis. The synthetic mechanism of the products with hierarchical structures was proposed. The obtained HDS-WO3 exhibits excellent photocatalytic efficiency (84.9%), which is much higher than other WO3 sample under visible light illumination.

  18. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources.

    Science.gov (United States)

    Donzelli, Bruno G G; Ostroff, Gary; Harman, Gary E

    2003-09-01

    A combination of enzyme preparations from Trichoderma atroviride and Serratia marcescens was able to completely degrade high concentrations (100 g/L) of chitin from langostino crab shells to N-acetylglucosamine (78%), glucosamine (2%), and chitobiose (10%). The result was achieved at 32 degrees C in 12 days with no pre-treatment (size reduction or swelling) of the substrate and without removal of the inhibitory end-products from the mixture. Enzymatic degradation of three forms of chitin by Serratia/Trichoderma and Streptomyces/Trichoderma blends was carried out according to a simplex-lattice mixture design. Fitted polynomial models indicated that there was synergy between prokaryotic and fungal enzymes for both hydrolysis of crab chitin and reduction of turbidity of colloidal chitin (primarily endo-type activity). Prokaryotic/fungal enzymes were not synergistic in degrading chitosan. Enzymes from prokaryotic sources had much lower activity against chitosan than enzymes from T. atroviride.

  19. Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

    Directory of Open Access Journals (Sweden)

    Dhanraj S.Pimple

    2014-12-01

    Full Text Available This paper provides heat transfer and friction factor data for single -phase flow in a shell and tube heat exchanger fitted with a helical tape insert. In the double concentric tube heat exchanger, hot air was passed through the inner tube while the cold water was flowed through the annulus. The influences of the helical insert on heat transfer rate and friction factor were studied for counter flow, and Nusselt numbers and friction factor obtained were compared with previous data (Dittus 1930, Petukhov 1970, Moody 1944 for axial flows in the plain tube. The flow considered is in a low Reynolds number range between 2300 and 8800. A maximum percentage gain of 165% in heat transfer rate is obtained for using the helical insert in comparison with the plain tube.

  20. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water.

    Science.gov (United States)

    Li, Shuru; Jiao, Xuan; Yang, Hengquan

    2013-01-29

    Inspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis. Its fundamental properties such as dispersibility in water or organic phase, wettability, and adsorption ability toward hydrophobic organics in water were investigated. It was revealed that these important properties could be facilely adjusted through varying structure and composition. In particular, these materials showed much better adsorption ability toward hydrophobic organic molecules in water than conventional monofunctionalized mesoporous materials, owing to possessing the hydrophobic/hydrophilic domain-segregated and hierarchically functionalized mesoporous structures. The intriguing properties would make mesoporous materials more accessible to many important applications, especially in aqueous systems.

  1. Correlation of the plasmon-enhanced photoconductance and photovoltaic properties of core-shell Au@TiO2 network

    Science.gov (United States)

    Yang, Yiqun; Wu, Judy; Li, Jun

    2016-08-01

    This study reveals the contribution of hot electrons from the excited plasmonic nanoparticles in dye sensitized solar cells (DSSCs) by correlating the photoconductance of a core-shell Au@TiO2 network on a micro-gap electrode and the photovolatic properties of this material as photoanodes in DSSCs. The distinct wavelength dependence of these two devices reveals that the plasmon-excited hot electrons can easily overcome the Schottky barrier at Au/TiO2 interface in the whole visible wavelength range and transfer from Au nanoparticles into the TiO2 network. The enhanced charge carrier density leads to higher photoconductance and facilitates more efficient charge separation and photoelectron collection in the DSSCs.

  2. Chronic cannabinoid treatment in adolescent attenuates c-Fos expression in nucleus accumbens of adult estrous rats

    Directory of Open Access Journals (Sweden)

    Samuel I. Brook

    2013-02-01

    Full Text Available Chronic cannabinoid exposure during adolescence may negatively impact brain development and alter adult motivation and behavior. We present evidence that treatment with a cannabinoid agonist during adolescence attenuates estrous-mediated expression of c-Fos within the nucleus accumbens of female rats exposed to a male conspecific. Thirty-two female Long-Evans rats were administered either 0.4 mg/kg of CP-55,940 or vehicle on a daily basis between the ages of 35-45 days. When subjects reached adulthood (days 71-76, they were tested within an exposure paradigm designed to invoke sexual motivation wihtout allowing for consummatory behavior. Female subjects were naturally-cyclins; half were tested when in behavioral estrus (as determined by vaginal cytology and half were tested outside of estrus. c-Fos expression was then quantified in multiple brain regions associated with female sexual motivation, in addition to two control regions. Analyses revealed that untreated females showed more c-Fos-positive neurons when estrous (versus non-estrous within the medial preoptic area of the hypothalamus, the ventromedial hypothalamus, and the nucleus accumbens core and shell. Significant attenuation of this estrous effect was observed within the nucleus accumbens core and shell of drug-treated females. This suggests that adolescent cannabinoid exposure may negatively impact research in our laboratory which indicated that chronic cannabinoid exposure during adolescence persistently attenuates the expression of sexual motivation in female rats and provide a potential neurobiological substrate for those behavioral deficits.

  3. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Fredin, Lisa A.; Li, Zhong; Ratner, Mark A.; Marks, Tobin J. [Department of Chemistry Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lanagan, Michael T. [Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802-4800 (United States)

    2012-11-20

    Dielectric loss in metal oxide core/Al{sub 2}O{sub 3} shell polypropylene nanocomposites scales with the particle surface area. By moderating the interfacial surface area between the phases and using increasing shell thicknesses, dielectric loss is significantly reduced, and thus the energy stored within, and recoverable from, capacitors fabricated from these materials is significantly increased, to as high as 2.05 J/cm{sup 3}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    Science.gov (United States)

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g).

  5. A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering.

    Science.gov (United States)

    Zou, Xiaoxin; Silva, Rafael; Huang, Xiaoxi; Al-Sharab, Jafar F; Asefa, Tewodros

    2013-01-14

    A porous TiO(2)-Ag core-shell nanocomposite material with a large surface area was synthesized by in situ hydrolyzation of Sn(2+)-grafted titanium glycolate microspheres in the presence of Ag(+) ions. The as-prepared nanocomposite material was shown to serve as an efficient self-cleaning surface-enhanced Raman scattering (SERS) substrate.

  6. Research Progress in Heat Transfer Enhancement Technology of Shell and Tube Heat Exchangers%管壳式换热器强化传热进展

    Institute of Scientific and Technical Information of China (English)

    张轮亭; 邱丽灿; 王臣

    2014-01-01

    管壳式换热器在石油化工领域应用广泛,其强化传热技术的研究受到普遍关注。主要介绍了近年来国内与国外高效节能管壳式换热器强化传热技术研究的进展情况,分别从管侧、壳侧和整体结构改进三方面分析了管壳式换热器的强化传热效果及特点,最后提出了强化传热的发展方向。%The tube and shell heat exchanger is widely used in the petrochemical field; research on the heat transfer enhancement technology is widely concerned. In this paper, research progress in the heat transfer enhancement technology of high efficiency shell and tube heat exchangers was introduced. From three aspects of the tube side, the shell side and the overall improvement, effect and features of the heat transfer enhancement of shell and tube heat exchangers were analyzed. At last, the development direction of the enhanced heat transfer technology was put forward.

  7. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  8. Enhancement of the Luminescence of ZnO Nanorod Arrays by SILAR Coating with a CdS Nanocrystalline Shell Layer

    Science.gov (United States)

    Krishnaveni, M.; Devadason, Suganthi

    2015-02-01

    ZnO/CdS core/shell-type nanorod arrays (NRAs) have been synthesized by a simple chemical method. The thickness of the CdS shell layers was controlled by varying the number of successive ionic layer adsorption and reaction cycles. X-ray diffraction analysis revealed the ZnO had a hexagonal crystal structure and the CdS had a cubic crystal structure. High-resolution transmission electron microscopy revealed that a highly conforming CdS shell layer ˜5 nm thick had been deposited on the ZnO nanorods. High-resolution scanning electron microscopy revealed the presence of hexagonal ZnO nanorods entirely coated with a nanocrystalline CdS shell. The ultraviolet-visible-near infrared absorption spectra of the films were red shifted and the calculated optical energy band gap decreased from 3.25 to 2.46 eV with progressive increase of CdS shell layer thickness. Photoluminescence spectra revealed enhancement of the near-band-edge emission centered at 380 nm of the ZnO NRAs after coating with the CdS shell layer. The observed shift in deep level emissions from yellow to green in the ZnO/CdS core/shell heterostructures has been explained. The measured electrical resistivity of bare ZnO and ZnO/CdS core/shell NRAs was 5.43 × 10-3 Ω cm and 1.25 × 10-3 Ω cm, respectively, when the films were illuminated with visible light.

  9. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    Science.gov (United States)

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  10. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    Science.gov (United States)

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs.

  11. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  12. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  13. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting.

    Science.gov (United States)

    Kim, Kyungim; Oh, Keun Sang; Park, Dal Yong; Lee, Jae Young; Lee, Beom Suk; Kim, In San; Kim, Kwangmeyung; Kwon, Ick Chan; Sang, Yoon Kim; Yuk, Soon Hong

    2016-04-28

    A combination therapy consisting of radiotherapy and chemotherapy is performed using the core/shell nanoparticles (NPs) containing gold NPs and doxorubicin (DOX). Gold NPs in the core/shell NPs were utilized as a radiosensitizer. To examine the morphology and size distribution of the core/shell NPs, transmittance electron microscopy and dynamic light scattering were used. The in vitro release behavior, cellular uptake and toxicity were also observed to verify the functionality of the core/shell NPs as a nanocarrier. To demonstrate the advantage of the core/shell NPs over traditional gold NPs reported in the combination therapy, we evaluated the accumulation behavior of the core/shell NPs at the tumor site using the biodistribution. Antitumor efficacy was observed with and without radiation to evaluate the role of gold NPs as a radiosensitizer.

  14. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  15. Facile fabrication of core-shell ZnO/Bi0.5Sb1.5Te3 nanorods: Enhanced photoluminescence through electron charge

    Science.gov (United States)

    Shen, Shengfei; Gao, Hongli; Deng, Yuan; Wang, Yao; Qu, Shengchun

    2016-01-01

    Surface decoration techniques are emerging as promising strategy to improve the optical properties of the ZnO based materials. The core-shell ZnO/Bi0.5Sb1.5Te3 nanorods were grown on a FTO substrate through a facile hydrothermal and magnetron sputtering combined approach. The microstructure of the core-shell nanorod arrays were investigated by the X-ray diffraction (XRD), a field emission Scanning electron microscopy (SEM) and high resolution transmission electron microscope (HTEM). The optical properties of the core-shell nanorod arrays were investigated through the diffuse reflectance absorption spectra and photoluminescence emission. The visible light absorption and especially the photoluminescence emission of the ZnO nanorods are enhanced markedly with the Bi0.5Sb1.5Te3 grains coating the ZnO nanorods through the electron charge.

  16. Observation of enhanced chiral asymmetries in the inner-shell photoionization of uniaxially oriented methyloxirane enantiomers

    CERN Document Server

    Tia, Maurice; Kastirke, Gregor; Gatzke, Janine; Kim, Hong-Keun; Trinter, Florian; Rist, Jonas; Hartung, Alexander; Trabert, Daniel; Siebert, Juliane; Henrichs, Kevin; Becht, Jasper; Zeller, Stefan; Gassert, Helena; Wiegandt, Florian; Wallauer, Robert; Kuhlins, Andreas; Schober, Carl; Bauer, Tobias; Wechselberger, Natascha; Burzynski, Phillip; Neff, Jonathan; Weller, Miriam; Metz, Daniel; Kircher, Max; Waitz, Markus; Williams, Joshua B; Schmidt, Lothar; Mueller, Anne D; Knie, Andre; Hans, Andreas; Ltaief, Ltaief Ben; Ehresmann, Arno; Berger, Robert; Fukuzawa, Hironobu; Ueda, Kiyoshi; Schmidt-Boecking, Horst; Doerner, Reinhard; Jahnke, Till; Demekhin, Philipp V; Schoeffler, Markus

    2016-01-01

    Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical, it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer - an effect termed Photoelectron Circular Dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects as the circular dichroism in angular distributions (CDAD). Accordingly, orienting a chiral molecule in space enhances the PECD by a factor of about 10.

  17. ZnO@CdS Core-Shell Heterostructures: Fabrication, Enhanced Photocatalytic, and Photoelectrochemical Performance.

    Science.gov (United States)

    Ding, Meng; Yao, Nannan; Wang, Chenggang; Huang, Jinzhao; Shao, Minghui; Zhang, Shouwei; Li, Ping; Deng, Xiaolong; Xu, Xijin

    2016-12-01

    ZnO nanorods and ZnO@CdS heterostructures have been fabricated on carbon fiber cloth substrates via hydrothermal and electrochemical deposition. Their photocatalytic properties were investigated by measuring the degradation of methylene blue under ultraviolet light irradiation. The result illustrated that the photodegradation efficiency of ZnO@CdS heterostructures was better than that of pure ZnO nanorods, in which the rate constants were about 0.04629 and 0.02617 min(-1). Furthermore, the photocurrent of ZnO@CdS heterostructures achieved 10(2) times enhancement than pure ZnO nanorods, indicating that more free carriers could be generated and transferred in ZnO@CdS heterostructures, which could be responsible for the increased photocatalytic performance.

  18. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)

    Science.gov (United States)

    Liang, Lijia; Zheng, Chao; Zhang, Haipeng; Xu, Shuping; Zhang, Zhe; Hu, Chengxu; Bi, Lirong; Fan, Zhimin; Han, Bing; Xu, Weiqing

    2014-11-01

    The characteristics of type II microcalcifications in fibroadenoma (FB), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) breast tissues has been analyzed by the fingerprint features of Raman spectroscopy. Fresh breast tissues were first handled to frozen sections and then they were measured by normal Raman spectroscopy. Due to inherently low sensitivity of Raman scattering, Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique was utilized. A total number of 71 Raman spectra and 70 SHINERS spectra were obtained from the microcalcifications in benign and premalignant breast tissues. Principal component analysis (PCA) was used to distinguish the type II microcalcifications between these tissues. This is the first time to detect type II microcalcifications in premalignant (ADH and DCIS) breast tissue frozen sections, and also the first time SHINERS has been utilized for breast cancer detection. Conclusions demonstrated in this paper confirm that SHINERS has great potentials to be applied to the identification of breast lesions as an auxiliary method to mammography in the early diagnosis of breast cancer.

  19. Synthesis of BiVO4@C Core-Shell Structure on Reduced Graphene Oxide with Enhanced Visible-Light Photocatalytic Activity.

    Science.gov (United States)

    Sun, Zhihua; Li, Chenzhe; Zhu, Shenmin; Cho, Maenghyo; Chen, Zhixin; Cho, Kyeongjae; Liao, Yongliang; Yin, Chao; Zhang, Di

    2015-08-24

    Herein, a facile strategy for the controllable synthesis of BiVO4@C core-shell nanoparticles on reduced graphene oxide (RGO) is reported. The BiVO4 particle size can be controlled in the process by adjusting the volume ratio of glycerol in the sol-gel solution. The glycerol layers adsorbed on BiVO4 (BiVO4@glycerol) made it possible to form hydrogen bonds between BiVO4@glycerol and graphene oxide with the assistance of ultrasound. After thermal treatment, glycerol adsorbed on the BiVO4 particles formed amorphous carbon shells to link the particles and RGO. As a result, the obtained RGO-BiVO4@C nanocomposite showed a five times higher rate in O2 evolution from water under visible-light irradiation. Also, it demonstrated a six times higher photocatalytic performance enhancement than that of pure BiVO4 in the degradation of Rhodamine B. The enhanced performance is attributed to the carbon shells that restrict the growth of BiVO4 , the reduced graphene oxide that improves the electronic conductivity of the composite, and importantly, the bonds formed between the carbon shells and RGO that reduce the recombination loss of photogenerated charges effectively. The strategy is simple, effective, and can be extended to other ternary oxides with controlled size and high performance.

  20. Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer

    Science.gov (United States)

    Pan, Yuanwei; Zhang, Ling'e.; Zeng, Leyong; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2015-12-01

    Multidrug resistance (MDR) of cancers is still a major challenge, and it is very important to develop visualized nanoprobes for the diagnosis and treatment of drug resistant cancers. In this work, we developed a multifunctional delivery system based on DOX-encapsulated NaYF4:Yb/Er@NaGdF4 yolk-shell nanostructures for simultaneous dual-modal imaging and enhanced chemotherapy in drug resistant breast cancer. Using the large pore volume of the nanostructure, the delivery system had a high loading efficiency and excellent stability. Also, an in vitro and in vivo toxicity study showed the good biocompatibility of the as-prepared yolk-shell nanomaterials. Moreover, by nanocarrier delivery, the uptake of DOX could be greatly increased in drug resistant MCF-7/ADR cells. Compared with free DOX, the as-prepared delivery system enhanced the chemotherapy efficacy against MCF-7/ADR cells, indicating the excellent capability for overcoming MDR. Furthermore, core-shell NaYF4:Yb/Er@NaGdF4 improved the upconversion luminescence (UCL) performance, and the designed delivery system could also be applied for simultaneous UCL and magnetic resonance (MR) imaging, which could be a good candidate as a dual-modal imaging nanoprobe. Therefore, we developed a multifunctional yolk-shell delivery system, which could have potential applications as a visualized theranostic nanoprobe to overcome MDR in breast cancer.

  1. Synthesis, characterization and enhanced photocatalytic performance of Ag{sub 2}S-coupled ZnO/ZnS core/shell nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang, Xitao, E-mail: wangxt@tju.edu.cn [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhao, Wenxi [Tianjin Academy of Environmental Sciences, Tianjin 300191 (China); Wang, Kang [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Sang, Huanxin [Tianjin Academy of Environmental Sciences, Tianjin 300191 (China); He, Zhong [Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2013-08-15

    Highlights: •A new route was developed to synthetize Ag{sub 2}S-coupled ZnO/ZnS core/shell nanorods. •ZnO/ZnS–Ag{sub 2}S nanorods display enhanced photocatalytic activity for H{sub 2} evolution. •Dilute solution of glycerol is used as sacrificial reagent. •Ag{sub 2}S/ZnS molar ratio on the shell affects obviously the photocatalytic performance. -- Abstract: A series of composite photocatalysts comprised of ZnO nanorods core and ZnS–Ag{sub 2}S heterostructural shell layer with different Ag{sub 2}S/ZnS molar ratios have been synthesized via the combination of a low-temperature hydrothermal growth and cation exchange technique. The core/shell nanorods, with the diameters of about 150 nm and the lengths of ranging from a few 100 nm to several micrometers, were fabricated by coating the ZnO nanorods with a layer of ZnS and Ag{sub 2}S composite shell mainly consisting of nanocrystals with the diameters of about 5–8 nm. The characterization from SEM, TEM, EDX, XPS, and UV–Vis DRS reveals that the molar ratio of Ag{sub 2}S/ZnS in shell layer strongly affects the morphologies, distribution of components, photo absorption, and photocatalytic performance of the ZnO/ZnS–Ag{sub 2}S core/shell nanorods. Due to the coupling with low bandgap material Ag{sub 2}S, the ZnO/ZnS–Ag{sub 2}S nanorods have a much higher solar-simulated light absorption capability than that of ZnO/ZnS. As a result, the as-prepared ZnO/ZnS–Ag{sub 2}S nanocomposites exhibited much higher catalytic efficiency for the hydrogen production from glycerol aqueous solution. The superior photo absorption properties and photocatalytic performance of the ZnO/ZnS–Ag{sub 2}S core/shell nanorods may be ascribed to the heterostructure, which enhanced the separation of photo-induced electron–hole pairs.

  2. Fabrication of hydrophilic S/In{sub 2}O{sub 3} core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Sugang; Cao, Zhisheng; Fu, Xianliang [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Department of Chemistry, Anhui Science and Technology University, Anhui Fengyang, 233100 (China)

    2015-01-01

    Graphical abstract: - Highlights: • The elemental core–shell heterostructure was reported for the first time. • The hydrophilic core–shell S/In{sub 2}O{sub 3} photocatalyst was prepared by ball milling. • The rate constant of 10% S/In{sub 2}O{sub 3} is 11.6 and 13.5 times that of In{sub 2}O{sub 3} and S. • The hydrophilicity and efficiently separation of carriers are major factor. - Abstract: Recently, elemental semiconductors as new photocatalysts excited by visible light have attracted great attention due to their potential applications for environmental remediation and clean energy generation. However, it is still a challenge to fabricate elemental photocatalysts with high activity and stability. In this paper, a straightforward ball-milling method was carried out to fabricate core–shell S/In{sub 2}O{sub 3} nanocomposite photocatalyst with high performance. The photocatalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) method, photoluminescence spectra (PL) and super-hydrophilic experiment. The results showed that In{sub 2}O{sub 3} nanoparticles were successfully grown round of S blocks and formed core–shell heterostructures. The 10% S/In{sub 2}O{sub 3} core–shell nanocomposite exhibited the highest photocatalytic activity for degradation of rhodamine B (RhB) under visible light irradiation. The reaction rate constant (k) of the 10% S/In{sub 2}O{sub 3} core–shell nanocomposite is about 8.7 times as high as the sum of pure In{sub 2}O{sub 3} and S because of the formation of core–shell S/In{sub 2}O{sub 3} heterostructures, which might remedy the drawbacks of poor hydrophilicity of S, enhance visible light absorption and separate the photogenerated carriers efficiently. Furthermore, the mechanism of influence on the photocatalytic activity of the S

  3. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Science.gov (United States)

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  4. Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Jamshidi

    2015-01-01

    Full Text Available Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.

  5. Sexual dimorphism of medium-sized neurons with spines in human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Маја

    2013-01-01

    Full Text Available The nucleus accumbens is a limbic nucleus, representing part of the striatum body, and together with the caudate nucleus and putamen, it lies on the septum. The aim of this study was to examine morphological sexual dimorphism in spine density and also to undertake an immunohistochemical study of expression for estrogen and progesterone receptors in the medium-sized neurons in the nucleus accumbens. The research was conducted on twenty human brains of persons of both sexes, between the age of 20-75 years. The Golgi method was applied to determine the types and subtypes of neurons, morphologies of soma, dendrites and axons, as well as the relations between the cells and glial elements. The following were quantitatively examined: the maximum diameter of the neurons, the minimal diameter of the neurons, and the total length of the dendrites. The expression of receptors for estrogen and progesterone, their distribution and intensity were defined immunohistochemically. The parameters of the bodies of neurons in the shell and core of the nucleus accumbens were studied in both men and women. No statistically significant differences were found. Examination of the spine density showed statistical significance in terms of a higher density of spines in women. Immunohistochemically, in the female brain estrogen expression is diffusely spread in a large number of neurons; it is extra nuclear, of granular appearance and high intensity. In the male brain, expression of estrogen is visible and distributed over about one half of different types of neurons; it is extra nuclear, of granular appearance, mostly of middle and low staining intensity. Expression of progesterone in the female brain was very discreet and on a very small number of neurons; it was extra nuclear and with a weak staining intensity. Expression of progesterone in the male brain was distributed on a small number of neurons. It had a granular appearance, it was extra nuclear, with a very low

  6. Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications

    Science.gov (United States)

    Zheng, Chao; Shao, Wanting; Paidi, Santosh Kumar; Han, Bing; Fu, Tong; Wu, Di; Bi, Lirong; Xu, Weiqing; Fan, Zhimin; Barman, Ishan

    2015-10-01

    Although tissue staining followed by morphologic identification remains the gold standard for diagnosis of most cancers, such determinations relying solely on morphology are often hampered by inter- and intra-observer variability. Vibrational spectroscopic techniques, in contrast, offer objective markers for diagnoses and can afford disease detection prior to alterations in cellular and extracellular architecture by furnishing a rapid ``omics''-like view of the biochemical status of the probed specimen. Here, we report a classification approach to concomitantly detect microcalcification status and local pathological state in breast tissue, featuring a combination of vibrational spectroscopy that focuses on the tumor and its microenvironment, and multivariate data analysis of spectral markers reflecting molecular expression. We employ the unprecedented sensitivity and exquisite molecular specificity offered by Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) to probe the presence of calcified deposits and distinguish between normal breast tissues, fibroadenoma, atypical ductal hyperplasia, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). By correlating the spectra with the corresponding histologic assessment, we developed partial least squares-discriminant analysis derived decision algorithm that provides excellent diagnostic power in the fresh frozen sections (overall accuracy of 99.4% and 93.6% using SHINs for breast lesions with and without microcalcifications, respectively). The performance of this decision algorithm is competitive with or supersedes that of analogous algorithms employing spontaneous Raman spectroscopy while enabling facile detection due to the considerably higher intensity of SHINERS. Our results pave the way for rapid tissue spectral pathology measurements using SHINERS that can offer a novel stain-free route to accurate and economical diagnoses without human interpretation.Although tissue staining

  7. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    Science.gov (United States)

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  8. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-06-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I- V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  9. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  10. Intermittent-access binge consumption of sweet high-fat liquid does not require opioid or dopamine receptors in the nucleus accumbens.

    Science.gov (United States)

    Lardeux, Sylvie; Kim, James J; Nicola, Saleem M

    2015-10-01

    Binge eating disorders are characterized by episodes of intense consumption of high-calorie food. In recently developed animal models of binge eating, rats given intermittent access to such food escalate their consumption over time. Consumption of calorie-dense food is associated with neurochemical changes in the nucleus accumbens, including dopamine release and alterations in dopamine and opioid receptor expression. Therefore, we hypothesized that binge-like consumption on intermittent access schedules is dependent on opioid and/or dopamine neurotransmission in the accumbens. To test this hypothesis, we asked whether injection of dopamine and opioid receptor antagonists into the core and shell of the accumbens reduced consumption of a sweet high-fat liquid in rats with and without a history of intermittent binge access to the liquid. Although injection of a μ opioid agonist increased consumption, none of the antagonists (including μ opioid, δ opioid, κ opioid, D1 dopamine and D2 dopamine receptor antagonists, as well as the broad-spectrum opioid receptor antagonist naltrexone) reduced consumption, and this was the case whether or not the animals had a prior history of intermittent access. These results suggest that consumption of sweet, fatty food does not require opioid or dopamine receptor activation in the accumbens even under intermittent access conditions that resemble human binge episodes.

  11. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    Science.gov (United States)

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-05-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free–modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells.

  12. Dual effects of limbic seizures on psychosis-relevant behaviors shown by nucleus accumbens kindling in rats

    Science.gov (United States)

    Ma, Jingyi; Leung, L. Stan

    2016-01-01

    Background A paradox in epilepsy and psychiatry is that temporal lobe epilepsy is often predisposed to schizophrenic-like psychosis, whereas convulsive therapy can relieve schizophrenic symptoms. We have previously demonstrated that the nucleus accumbens is a key structure in mediating postictal psychosis induced by a hippocampal electrographic seizure. Objective/Hypothesis The purpose of this study is to test a hypothesis that accumbens kindling cumulating in a single (1-time) or repeated (5-times) convulsive seizures have different effects on animal models of psychosis. Methods Electrical stimulation at 60 Hz was applied to nucleus accumbens to evoke afterdischarges until one, or five, convulsive seizures that involved the hind limbs (stage 5 seizures) were attained. Behavioral tests, performed at 3 days after the last seizure, included gating of hippocampal auditory evoked potentials (AEP) and prepulse inhibition to an acoustic startle response (PPI), tested without drug injection or after ketamine (3 mg/kg s.c.) injection, as well as locomotion induced by ketamine or methamphetamine (1 mg/kg i.p.). Results Compared to non-kindled control rats, 1-time, but not 5-times, convulsive seizures induced PPI deficit and decreased gating of hippocampal AEP, without drug injection. Compared to non-kindled rats, 5-times, but not 1-time, convulsive seizures antagonized ketamine-induced hyperlocomotion, ketamine-induced PPI deficit and AEP gating decrease. However, both 1- and 5-times convulsive seizures, significantly enhanced methamphetamine-induced locomotion as compared to non-kindled rats. Conclusions Accumbens kindling ending with 1 convulsive seizure may induce schizophrenic-like behaviors, while repeated (≥ 5) convulsive seizures induced by accumbens kindling may have therapeutic effects on dopamine independent psychosis. PMID:27267861

  13. Diazepam alters cocaine self-administration, but not cocaine-stimulated locomotion or nucleus accumbens dopamine

    OpenAIRE

    2008-01-01

    Cocaine is known to enhance nucleus accumbens dopamine (NAcc DA), serve as a positive reinforcer and produce negative effects, such as anxiety. The influence of diazepam on cocaine intake, cocaine-stimulated behavioral activity and NAcc DA was investigated using self-administration and experimenter-administered intravenous (i.v.) cocaine. In Experiment 1, rats were pretreated with diazepam (0.25 mg/kg) or saline (0.1 ml) 30 minutes prior to 20 daily 1-hr cocaine (0.75 mg/kg/inj) self-administ...

  14. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants.

    Science.gov (United States)

    Watanabe, Y; Suzuki, R; Koike, S; Nagashima, K; Mochizuki, M; Forster, R J; Kobayashi, Y

    2010-11-01

    Cashew nut shell liquid (CNSL) containing antibacterial phenolic compounds was evaluated for its potency as a feed additive for ruminants. In experiment 1, ruminal responses to CNSL supplementation were assessed using a batch culture system. Rumen fluid from cattle was diluted with artificial saliva and incubated for 18h in a batch culture with a mixed diet containing a 30:70 hay:concentrate diet to which raw or heated CNSL was added at a final concentration of 500 μg/mL. In experiment 2, a Rusitec, using rumen fluid from the same cattle, was operated over a period of 7 d during which only raw CNSL was tested at concentrations of 0, 50, 100, or 200 μg/mL, and variations in fermentation and bacterial population were assessed. In experiment 3, a pure culture study was conducted using selected bacteria to determine their susceptibility to CNSL. In experiment 1, methane production was inhibited by raw CNSL (56.9% inhibition) but not by heated CNSL. Total volatile fatty acid concentration was not affected, whereas increased concentrations of propionate and decreased concentrations of acetate and butyrate were observed using either raw or heated CNSL. These changes were more obvious when raw CNSL was tested. In experiment 2, raw CNSL inhibited methanogenesis and increased propionate production in a dose-dependent manner, showing maximum methane inhibition (70.1%) and propionate enhancement (44.4%) at 200 μg/mL supplementation. Raw CNSL increased total volatile fatty acid concentration and dry matter digestibility. Raw CNSL also appeared to induce a dramatic shift in the population of rumen microbiota, based on decreased protozoa numbers and changes in quantitative PCR assay values for representative bacterial species. In experiment 3, using pure cultures, raw CNSL prevented the growth of hydrogen-, formate-, and butyrate-producing rumen bacteria, but not the growth of bacteria involved in propionate production. Based on these data, raw CNSL, rich in the antibacterial

  15. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.

    Science.gov (United States)

    Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin

    2015-06-23

    A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.

  16. Enhanced Conductivity in CZTS/Cu(2-x)Se Nanocrystal Thin Films: Growth of a Conductive Shell.

    Science.gov (United States)

    Korala, Lasantha; McGoffin, J Tyler; Prieto, Amy L

    2016-02-01

    Poor charge transport in Cu2ZnSnS4 (CZTS) nanocrystal (NC) thin films presents a great challenge in the fabrication of solar cells without postannealing treatments. We introduce a novel approach to facilitate the charge carrier hopping between CZTS NCs by growing a stoichiometric Cu2Se shell that can be oxidized to form a conductive Cu2-xSe phase when exposed to air. The CZTS/Cu2Se core/shell NCs with varying numbers of shell monolayers were synthesized by the successive ionic layer adsorption and reaction (SILAR) method, and the variation in structural and optical properties of the CZTS NCs with varying shell thicknesses was investigated. Solid-phase sulfide ligand exchange was employed to fabricate NC thin films by layer-by-layer dip coating and a 2 orders of magnitude rise in dark conductivity (∼10(-3) S cm(-1) at 0 monolayer and ∼10(-1) S cm(-1) at 1.5 monolayers) was observed with an increase in the number of shell monolayers. The approach described herein is the first key step in achieving a significant increase in the photoconductivity of as-deposited CZTS NC thin films.

  17. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  18. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.

    2011-10-12

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  19. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    Science.gov (United States)

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels.

  20. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.

    Science.gov (United States)

    Lin, Min; Wang, Yunqing; Sun, Xiuyan; Wang, Wenhai; Chen, Lingxin

    2015-04-15

    The Raman enhancing ability of noble metal nanoparticles (NPs) is an important factor for surface enhanced Raman scattering (SERS) substrate screening, which is generally evaluated by simply mixing as-prepared NPs with Raman reporters for Raman signal measurements. This method usually leads to incredible results because of the NP surface coverage nonuniformity and reporter-induced NP aggregation. Moreover, it cannot realize in situ, continuous SERS characterization. Herein, we proposed a dynamic SERS monitoring strategy for NPs with precisely tuned structures based on a simplified spatially confined NP growth method. Gold nanorod (AuNR) seed NPs were coated with a mesoporous silica (mSiO2) shell. The permeability of mSiO2 for both reactive species and Raman reporters rendered the silver overcoating reaction and SERS indication of NP growth. Additionally, the mSiO2 coating ensured monodisperse NP growth in a Raman reporter-rich reaction system. Moreover, "elastic" features of mSiO2 were observed for the first time, which is crucial for holding the growing NP without breakage. This feature makes the mSiO2 coating adhere to metal NPs throughout the growing process, providing a stable Raman reporter distribution microenvironment near the NPs and ensuring that the substrate's SERS ability comparison is accurate. Three types of NPs, i.e., core-shell Au@AgNR@mSiO2, Au@AuNR@mSiO2, and yolk-shell Au@void@AuNR@mSiO2 NPs, were synthesized via core-shell overgrowth and galvanic replacement methods, showing the versatility of the approach. The living cell SERS labeling ability of Au@AgNR@mSiO2-based tags was also demonstrated. This strategy addresses the problems of multiple batch NP preparation, aggregation, and surface adsorption differentiation, which is a breakthrough for the dynamic comparison of SERS ability of metal NPs with precisely tuned structures and optical properties.

  1. A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong; Zhu, Chengzhou; Li, Yijing; Xia, Haibing; Engelhard, Mark H.; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-11-08

    Currently, three dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity etc. that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of dendritic core-shell structured Au/Pt3Pd ternary metallic aerogels via a one-pot self-assembly gelation strategy. The as-prepared Au/Pt3Pd ternary metallic aerogels demonstrated superior electrochemical performances toward oxygen reduction reaction compared to commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells and the cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction performances of the Pt-based materials via the electronic effect, geometric effect and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties hold great promise in a variety of applications.

  2. Fabrication of In2O3@In2S3 core-shell nanocubes for enhanced photoelectrochemical performance

    Science.gov (United States)

    Li, Haohua; Chen, Cong; Huang, Xinyou; Leng, Yang; Hou, Mengnan; Xiao, Xiaogu; Bao, Jie; You, Jiali; Zhang, Wenwen; Wang, Yukun; Song, Juan; Wang, Yaping; Liu, Qinqin; Hope, Gregory A.

    2014-02-01

    Herein, we report the facile synthesis of In2O3@In2S3 core-shell nanocubes and their improved photoelectrochemical property. In2O3@In2S3 core-shell nanocubes are grown on a F-doped SnO2 (FTO) glass substrate by a two-step process, which involves the electrodeposition of In2O3 nanocubes and a subsequent ion-exchange treatment. The improved light-harvesting ability and the suitable band alignment of the In2O3@In2S3 core-shell nanocubes generate a remarkable photocurrent density of 6.19 mA cm-2 (at 0 V vs. Ag/AgCl), which is substantially higher than the pristine In2O3 nanocubes. These results provide a new insight into the design of a high-performance photoanode for photoelectrochemical water splitting.

  3. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.

    Science.gov (United States)

    Xie, Shilei; Lu, Xihong; Zhai, Teng; Gan, Jiayong; Li, Wei; Xu, Ming; Yu, Minghao; Zhang, Yuan-Ming; Tong, Yexiang

    2012-07-17

    We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

  4. Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb,Er Core-Shell Hybrid and its Tunable Upconversion Enhancement

    Science.gov (United States)

    Chen, Xu; Zhou, Donglei; Xu, Wen; Zhu, Jinyang; Pan, Gencai; Yin, Ze; Wang, He; Zhu, Yongsheng; Shaobo, Cui; Song, Hongwei

    2017-01-01

    Localized electric filed enhancement by surface plasmon resonance (SPR) of noble metal nanoparticles is an effective method to amplify the upconversion luminescence (UCL) strength of upconversion nanoparticles (UCNPs), whereas the highly effective UCL enhancement of UCNPs in colloids has not been realized until now. Here, we designed and fabricated the colloidal Au-Ag nanocage@NaYF4@NaYF4:Yb,Er core-shell hybrid with different intermediate thickness (NaYF4) and tunable SPR peaks from visible wavelength region to NIR region. After the optimization of the intermediate spacer thickness (~7.5 nm) of NaYF4 NPs and the SPR peak (~950 nm) of noble metal nanoparticles, an optimum enhancement as high as ~25 folds was obtained. Systematic investigation indicates that UCL enhancement mainly originates from the influence of the intermediate spacer and the coupling of Au-Ag nanocages with the excitation electromagnetic field of the UCNPs. Our findings may provide a new thinking on designing highly effective metal@UCNPs core-shell hybrid in colloids.

  5. Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb,Er Core-Shell Hybrid and its Tunable Upconversion Enhancement

    Science.gov (United States)

    Chen, Xu; Zhou, Donglei; Xu, Wen; Zhu, Jinyang; Pan, Gencai; Yin, Ze; Wang, He; Zhu, Yongsheng; Shaobo, Cui; Song, Hongwei

    2017-01-01

    Localized electric filed enhancement by surface plasmon resonance (SPR) of noble metal nanoparticles is an effective method to amplify the upconversion luminescence (UCL) strength of upconversion nanoparticles (UCNPs), whereas the highly effective UCL enhancement of UCNPs in colloids has not been realized until now. Here, we designed and fabricated the colloidal Au-Ag nanocage@NaYF4@NaYF4:Yb,Er core-shell hybrid with different intermediate thickness (NaYF4) and tunable SPR peaks from visible wavelength region to NIR region. After the optimization of the intermediate spacer thickness (~7.5 nm) of NaYF4 NPs and the SPR peak (~950 nm) of noble metal nanoparticles, an optimum enhancement as high as ~25 folds was obtained. Systematic investigation indicates that UCL enhancement mainly originates from the influence of the intermediate spacer and the coupling of Au-Ag nanocages with the excitation electromagnetic field of the UCNPs. Our findings may provide a new thinking on designing highly effective metal@UCNPs core-shell hybrid in colloids. PMID:28106128

  6. File list: NoD.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  7. File list: Unc.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29234,SRX029236 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  8. File list: ALL.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445333,SRX472711,SRX445335,SRX445331,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  9. File list: ALL.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445335,SRX209198,SRX445331,SRX209194,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  10. File list: InP.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX791596,SRX791600,SRX209801,SRX209802,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  11. File list: His.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...2,SRX029231,SRX029230,SRX029228,SRX209198,SRX209196 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  12. File list: His.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791595,S...0,SRX209199,SRX209196,SRX209197,SRX209198,SRX209194 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  13. File list: ALL.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX209...SRX472713,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  14. File list: Oth.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  15. File list: InP.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9801,SRX209802,SRX209803,SRX791600,SRX791596,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  16. File list: Oth.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  17. File list: Pol.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209215,SRX209214,SRX209213,SRX209218 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  18. File list: Unc.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29238,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  19. File list: Unc.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX029...98892,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  20. File list: Unc.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...98892,SRX698891 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  1. File list: Pol.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209214,SRX209218,SRX209215,SRX209213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  2. File list: InP.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX209802,SRX791596,SRX791600,SRX209801,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  3. File list: NoD.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  4. File list: His.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...8,SRX209196,SRX209197,SRX209198,SRX209194,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  5. File list: Pol.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209218,SRX209215,SRX209213,SRX209214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  6. File list: Oth.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  7. File list: ALL.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX209196,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  8. File list: NoD.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  9. File list: NoD.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  10. File list: His.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX209200,S...7,SRX209211,SRX029230,SRX029232,SRX029228,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  11. File list: Oth.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  12. File list: Pol.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209213,SRX209214,SRX209218,SRX209215 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  13. Designed Formation of Co₃O₄/NiCo₂O₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties.

    Science.gov (United States)

    Hu, Han; Guan, Buyuan; Xia, Baoyu; Lou, Xiong Wen David

    2015-04-29

    Hollow structures with high complexity in shell architecture and composition have attracted tremendous interest because of their great importance for both fundamental studies and practical applications. Herein we report the designed synthesis of novel box-in-box nanocages (NCs) with different shell compositions, namely, Co3O4/NiCo2O4 double-shelled nanocages (DSNCs). Uniform zeolitic imidazolate framework-67/Ni-Co layered double hydroxides yolk-shelled structures are first synthesized and then transformed into Co3O4/NiCo2O4 DSNCs by thermal annealing in air. Importantly, this strategy can be easily extended to prepare other complex DSNCs. When evaluated as electrodes for pseudocapacitors, the Co3O4/NiCo2O4 DSNCs show a high specific capacitance of 972 F g(-1) at a current density of 5 A g(-1) and excellent stability with 92.5% capacitance retention after 12 000 cycles, superior to that of Co3O4 NCs with simple configuration and Co3O4/Co3O4 DSNCs. Besides, the Co3O4/NiCo2O4 DSNCs also exhibit much better electrocatalytic activity for the oxygen evolution reaction than Co3O4 NCs. The greatly improved electrochemical performance of Co3O4/NiCo2O4 DSNCs demonstrates the importance of rational design and synthesis of hollow structures with higher complexity.

  14. Sub-6 nm monodisperse hexagonal core/shell NaGdF4 nanocrystals with enhanced upconversion photoluminescence.

    Science.gov (United States)

    Liu, Jing; Chen, Guanying; Hao, Shuwei; Yang, Chunhui

    2017-01-07

    The ability to fabricate lanthanide-doped upconversion nanocrystals (UCNCs) with tailored size and emission profile has fuelled their uses in a broad spectrum of biological applications. Yet, limited success has been met in the preparation of sub-6 nm UCNCs with efficient upconversion photoluminescence (UCPL), which enable high contrast optical bioimaging with minimized adverse biological effects entailed by size-induced rapid clearance from the body. Here, we present a simple and reproducible approach to synthesize a set of monodispersed hexagonal-phase core NaGdF4:Yb/Ln (Ln = Er, Ho, Tm) of ∼3-4 nm and core/shell NaGdF4:Yb/Ln@NaGdF4 (Ln = Er, Ho, Tm) UCNCs of ∼5-6 nm. We show that the core/shell UCNCs can be up to ∼1000 times more efficient than the corresponding core UCNCs due to the effective suppression of surface-related quenching effects for the core. The observation of prolonged PL lifetime for the core/shell than that for the core UCNCs demonstrates the role of the inert shell layer for the protection of the core. The achievement of sub-6 nm NaGdF4 UCNCs with significantly improved luminescence efficiency constitutes a solid step towards high contrast UCPL optical imaging with secured biological safety.

  15. Constructing a MoS₂ QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity.

    Science.gov (United States)

    Liang, Shijing; Zhou, Zhouming; Wu, Xiuqin; Zhu, Shuying; Bi, Jinhong; Zhou, Limin; Liu, Minghua; Wu, Ling

    2016-02-15

    MoS₂ quantum dots (QDs)/CdS core/shell nanospheres with a hierarchical heterostructure have been prepared by a simple microwave hydrothermal method. The as-prepared samples are characterized by XRD, TEM, SEM, UV-VIS diffuse reflectance spectra (DRS) and N₂-sorption in detail. The photocatalytic activities of the samples are evaluated by water splitting into hydrogen. Results show that the as-prepared MoS₂ QDs/CdS core/shell nanospheres with a diameter of about 300 nm are composed of the shell of CdS nanorods and the core of MoS₂ QDs. For the photocatalytic reaction, the samples exhibit a high stability of the photocatalytic activity and a much higher hydrogen evolution rate than the pure CdS, the composite prepared by a physical mixture, and the Pt-loaded CdS sample. In addition, the stability of CdS has also been greatly enhanced. The effect of the reaction time on the formations of nanospheres, the photoelectric properties and the photocatalytic activities of the samples has been investigated. Finally, a possible photocatalytic reaction process has also been proposed.

  16. Core/Shell Structured TiO2/CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Hwang, Insung; Baek, Minki; Yong, Kijung

    2015-12-23

    In this work, enhanced light stability of perovskite solar cell (PSC) achieved by the introduction of a core/shell-structured CdS/TiO2 electrode and the related mechanism are reported. By a simple solution-based process (SILAR), a uniform CdS shell was coated onto the surface of a TiO2 layer, suppressing the activation of intrinsic trap sites originating from the oxygen vacancies of the TiO2 layer. As a result, the proposed CdS-PSC exhibited highly improved light stability, maintaining nearly 80% of the initial efficiency after 12 h of full sunlight illumination. From the X-ray diffraction analyses, it is suggested that the degradation of the efficiency of PSC during illumination occurs regardless of the decomposition of the perovskite absorber. Considering the light-soaking profiles of the encapsulated cells and the OCVD characteristics, it is likely that the CdS shell had efficiently suppressed the undesirable electron kinetics, such as trapping at the surface defects of the TiO2 and preventing the resultant charge losses by recombination. This study suggests that further complementary research on various effective methods for passivation of the TiO2 layer would be highly meaningful, leading to insight into the fabrication of PSCs stable to UV-light for a long time.

  17. Constructing a MoS2 QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Shijing Liang

    2016-02-01

    Full Text Available MoS2 quantum dots (QDs/CdS core/shell nanospheres with a hierarchical heterostructure have been prepared by a simple microwave hydrothermal method. The as-prepared samples are characterized by XRD, TEM, SEM, UV-VIS diffuse reflectance spectra (DRS and N2-sorption in detail. The photocatalytic activities of the samples are evaluated by water splitting into hydrogen. Results show that the as-prepared MoS2 QDs/CdS core/shell nanospheres with a diameter of about 300 nm are composed of the shell of CdS nanorods and the core of MoS2 QDs. For the photocatalytic reaction, the samples exhibit a high stability of the photocatalytic activity and a much higher hydrogen evolution rate than the pure CdS, the composite prepared by a physical mixture, and the Pt-loaded CdS sample. In addition, the stability of CdS has also been greatly enhanced. The effect of the reaction time on the formations of nanospheres, the photoelectric properties and the photocatalytic activities of the samples has been investigated. Finally, a possible photocatalytic reaction process has also been proposed.

  18. Enhanced green emission from La0.4F3:Ce0.45,Tb0.15/TiO2 core/shell structure

    Institute of Scientific and Technical Information of China (English)

    T.K. Srinivasan; B.S. Panigrahi; N. Suriyamurthy; P.K. Parida; B. Venkatraman

    2015-01-01

    Nano sized La0.4F3:Ce0.45,Tb0.15 (core), La0.4F3:Ce0.45,Tb0.15 (TiO2) (core) shell, La0.55F:Ce0.45, and La0.85F3:Tb0.15 particles were synthesized by adopting co-precipitation technique in acidic environment and coated with TiO2 to form a core-shell structure by adopting a mechanical dispersion method at room temperature. The synthesized materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis) absorption, photoluminescence and lifetime spectroscopy. The crystal structure of La0.4F3:Ce0.45,Tb0.15 remained the same as LaF3 after being doped with Ce and Tb ions but with a slight decrease in the lattice parameter. TEM image confirmed the for-mation of a core-shell structure. The La0.4F3:Ce0.45,Tb0.15/TiO2 exhibited Tb3+fluorescence enhancement by a factor of 1.76. Scin-tillation from the synthesized materials was also observed under X-ray excitation.

  19. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  20. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures.

    Science.gov (United States)

    Wu, Wei; Zhang, Shaofeng; Xiao, Xiangheng; Zhou, Juan; Ren, Feng; Sun, Lingling; Jiang, Changzhong

    2012-07-25

    Mesoporous spindlelike iron oxide/ZnO core-shell heterostructures are successfully fabricated by a low-cost, surfactant-free, and environmentally friendly seed-mediate strategy with the help of postannealing treatment. The material composition and stoichiometry, as well as these magnetic and optical properties, have been examined and verified by means of high-resolution transmission electron microscopy and X-ray diffraction, the thickness of ZnO layer can be simply tailored by the concentration of zinc precursor. Considering that both α-Fe2O3 and ZnO are good photocatalytic materials, we have investigated the photodegradation performances of the core-shell heterostructures using organic dyes Rhodamin B (RhB). It is interesting to find that the as-obtained iron oxides/ZnO core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to the as-used α-Fe2O3 seeds and commercial TiO2 products (P25), mainly owing to the synergistic effect between the narrow and wide bandgap semiconductors and effective electron-hole separation at the interfaces of iron oxides/ZnO.

  1. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.

    Science.gov (United States)

    Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan

    2013-12-15

    In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines.

  2. Synergistic effect of double-shelled and sandwiched TiO₂@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity.

    Science.gov (United States)

    Cai, Jiabai; Wu, Xueqing; Li, Shunxing; Zheng, Fengying; Zhu, Licong; Lai, Zhanghua

    2015-02-18

    A novel approach for the fabrication of double-shelled, sandwiched, and nanostructured hollow spheres was proposed, using hydrotherm reaction and calcination. The negatively charged nanoparticles (e.g., Au, Ag, and Pt) could be adsorbed successively onto the positively charged hollow spheres (e.g., TiO2, ZnO, and ZrO2). The resulted nanocomposites (TiO2@Au, as a proof-of-concept) were dispersed in glucose solution under hydrothermal conditions. After calcination, uniform double-shelled and sandwiched TiO2@Au@C hollow spheres were obtained and Au nanoparticles were sandwiched between the shell wall of TiO2 and C. The samples were characterized by SEM, TEM, XRD, XPS, BET, and UV-vis DRS. The photocatalytic activity for the degradation of 4-nitroaniline was in the order of TiO2@Au@C > TiO2@C > TiO2/Au > P25. The visible-light photodegradation rate of 92.65% for 4-nitroaniline was achieved by TiO2@Au@C, which exhibited an increase of 75% compared to Degussa P25 TiO2. Furthermore, no deactivation occurred during catalytic reaction for three times, i.e., the TiO2@Au@C microspheres exhibited superior photocatalytic stability. TiO2@Au@C microspheres could also enhance the photocatalytic activity for hydrogen generation from methanol/water solutions. The synergistic effect of coupling TiO2 hollow spheres with Au nanoparticles and C shell on photocatalytic performance was proved by us. The photoexcited electrons from Au nanoparticles could be captured by the conduction band of TiO2 and then the electron-hole separation was improved. Moreover, both the visible light absorption and the affinity between TiO2 and pollutants could be improved by the coexistence of carbonaceous materials, which could facilitate the photocatalytic interface reaction.

  3. Rapid feedback processing in human nucleus accumbens and motor thalamus

    NARCIS (Netherlands)

    Schüller, T.; Gründler, T.O.J.; Jocham, G.; Klein, T.A.; Timmermann, L.; Visser-Vandewalle, V.E.R.M.; Kuhn, J.

    2015-01-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structu

  4. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    NARCIS (Netherlands)

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  5. 40% Efficiency enhancement in solar cells using ZnO nanorods as shell prepared via novel hydrothermal synthesis

    Science.gov (United States)

    Ebadi, Mohammad; Zarghami, Zabihullah; Motevalli, Kourosh

    2017-03-01

    Herein, rod-like ZnO nanostructures were synthesized via a novel hydrothermal route using Zn(OAc)2, ethylenediamine and hydrazine as a new set of starting reagents. The as-synthesized products were characterized by techniques including XRD, EDS, SEM, XPS, Pl and FTIR. The prepared ZnO nanostructures were utilized as shell on TiO2 film in DSSCs. Effect of precursor type, morphology and thickness of ZnO shell (number of electrophoresis cycle) on solar cells efficiency were well studied. Our results showed that ethylenediamine has crucial effect on morphology of synthesized ZnO nanostructures and using ZnO nanostructures leads to an increase in DSSCs efficiency compared to bare TiO2 from 4.66 to 7.13% ( 40% improvement). Moreover, highest amount of solar cell efficiency (7.13%) was obtained by using ZnO nanorods with two cycle of electrophoresis for deposition.

  6. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    Science.gov (United States)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  7. Overview of the Shell and Tube Heat Exchangers about Heat Transfer Enhancement Technology%管壳式换热器强化传热技术概述

    Institute of Scientific and Technical Information of China (English)

    齐洪洋; 高磊; 张莹莹; 周辰琳

    2012-01-01

    The research progress of shell and tube heat exchanger were summarized. The development, structural improvement and heat transfer enhancement of the heat exchangers were introduced through three aspects,e. g. tube pass,shell pass and the whole tub bundle etc. Compared with the traditional seg-mental baffle heat exchanger, various types of heat exchangers' characteristics about heat transfer enhancement were epitomized. At last,the studying directions of heat exchangers were pointed out.%总结了近年来国内外新型管壳式换热器的研究进展,从管程、壳程、管束三方面介绍了管壳式换热器的发展历程、结构改进及强化传热机理,并与普通弓形折流板换热器进行对比,概括了各式换热器的强化传热特点.最后指出了换热器的研究方向.

  8. Novel ferroferric oxide/polystyrene/silver core-shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering

    Science.gov (United States)

    Liu, Bo; Bai, Chong; Zhao, Dan; Liu, Wei-Liang; Ren, Man-Man; Liu, Qin-Ze; Yang, Zhi-Zhou; Wang, Xin-Qiang; Duan, Xiu-Lan

    2016-02-01

    A novel Ag-coated Fe3O4@Polystyrene core-shell microsphere has been designed via fabrication of Fe3O4@Polystyrene core-shell magnetic microsphere through a seed emulsion polymerization, followed by deposition of Ag nanoparticles using in-situ reduction method. Such magnetic microspheres can be utilized as sensitive surface-enhanced Raman scattering (SERS) substrates, using Rhodamine 6G (R6G) as a probe molecule, with both stable and reproducible performances. The SERS detection limit of R6G decreased to 1 × 10-10 M and the enhancement factor of this substrate on the order of 106 was obtained. In addition, owing to possessing excellent magnetic properties, the resultant microspheres could be separated rapidly by an external magnetic field and utilized repeatedly for three times at least. Therefore, the unique renewable property suggests a new route to eliminate the single-use problem of traditional SERS substrates and will be promising for the practical application.

  9. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire.

    Science.gov (United States)

    Zhang, Fang; Ding, Yong; Zhang, Yan; Zhang, Xiaoling; Wang, Zhong Lin

    2012-10-23

    The piezo-phototronic effect is about the use of the piezoelectric potential created inside some materials for enhancing the charge carrier generation or separation at the metal-semiconductor contact or pn junction. In this paper, we demonstrate the impact of the piezo-phototronic effect on the photon sensitivity for a ZnO-CdS core-shell micro/nanowire based visible and UV sensor. CdS nanowire arrays were grown on the surface of a ZnO micro/nanowire to form a ZnO-CdS core-shell nanostructure by a facile hydrothermal method. With the two ends of a ZnO-CdS wire bonded on a polymer substrate, a flexible photodetector was fabricated, which is sensitive simultaneously to both green light (548 nm) and UV light (372 nm). Furthermore, the performance of the photon sensor is much enhanced by the strain-induced piezopotential in the ZnO core through modulation of the Schottky barrier heights at the source and drain contacts. This work demonstrates a new application of the piezotronic effect in photon detectors.

  10. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin

    2017-01-01

    The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.

  11. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles.

    Science.gov (United States)

    Abdi, Fatwa F; Dabirian, Ali; Dam, Bernard; van de Krol, Roel

    2014-08-07

    Recent progress in the development of bismuth vanadate (BiVO4) photoanodes has firmly established it as a promising material for solar water splitting applications. Performance limitations due to intrinsically poor catalytic activity and slow electron transport have been successfully addressed through the application of water oxidation co-catalysts and novel doping strategies. The next bottleneck to tackle is the modest optical absorption in BiVO4, particularly close to its absorption edge of 2.4 eV. Here, we explore the modification of the BiVO4 surface with Ag@SiO2 core-shell plasmonic nanoparticles. A photocurrent enhancement by a factor of ~2.5 is found under 1 sun illumination (AM1.5). We show that this enhancement consists of two contributions: optical absorption and catalysis. The optical absorption enhancement is induced by the excitation of localized surface plasmon resonances in the Ag nanoparticles, and agrees well with our full-field electromagnetic simulations. Far-field effects (scattering) are found to be dominant, with a smaller contribution from near-field plasmonic enhancement. In addition, a significant catalytic enhancement is observed, which is tentatively attributed to the electrocatalytic activity of the Ag@SiO2 nanoparticles.

  12. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model

    Science.gov (United States)

    Wang, Hanjie; Su, Wenya; Wang, Sheng; Wang, Xiaomin; Liao, Zhenyu; Kang, Chunsheng; Han, Lei; Chang, Jin; Wang, Guangxiu; Pu, Peiyu

    2012-09-01

    Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic nanocrystals; and polymeric lipid shells anchored with functional molecules such as PEG chains, TAT peptides and RGD peptides that can help the vectors to condense the gene, prolong the circulation time, cross the blood brain barrier and target delivery to the cancer tissue. The results showed that the magnetic PLGA/MPLs nanosphere has a nanosized core-shell structure, can achieve sustained drug release and has good DNA binding abilities. Importantly, compared with the control group and other groups with single functionality, it can co-deliver the drug and gene into the same cell in vitro and show the strongest inhibiting effect on the growth of the in situ malignant glioblastoma in vivo. All of these results indicated that the different functional components of magnetic PLGA/MPLs, can form an organic whole and none of them can be dispensed with. The magnetic PLGA/MPLs nanosphere may be another option for treatment of glioblastoma.Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic

  13. Enhanced removal performance by the core-shell zeolites/MgFe-layered double hydroxides (LDHs) for municipal wastewater treatment.

    Science.gov (United States)

    Guo, Lu; Zhang, Xiangling; Chen, Qiaozhen; Ruan, Congying; Leng, Yujie

    2016-04-01

    The application of powdered layer double hydroxides (LDHs) in constructed rapid infiltration system (CRIS) appears to be an appreciable problem still unsolved due to the small particle size and the low density. Therefore, the core-shell zeolites/MgFe-LDHs composites were prepared via using co-precipitation method in present study. To investigate the practical applicability, a detailed organics, ammonia, and total phosphorus removal study were carried out in columns to treat the municipal wastewater. The scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) results confirmed the successful synthesis of core-shell zeolites/MgFe-LDHs through coating on the surface of zeolites. Accordingly, the zeolites/MgFe-LDHs largely reduced the COD by 81.14 %, NH4 (+)-N by 81.50%, and TP by 83.29%. Phosphate adsorption study revealed that the equilibrium adsorption data were better fitted by Langmuir isothermal model, with the maximum adsorption capacity of 79.3651 mg/kg for zeolites/MgFe-LDHs and 38.4615 mg/kg for the natural zeolites. In addition, economic analysis indicated that the reagent cost of synthesis of zeolites/MgFe-LDHs was economical. Herein, the zeolites/MgFe-LDHs solved the natural zeolites problem for poor P removal and the application of powdered LDHs in the solid/liquid separation process, suggesting that it was applicable as potential substrates for the removal of organics, ammonia, and total phosphorus in CRIS.

  14. Multicomponent (Ce, Cu, Ni) oxides with cage and core-shell structures: tunable fabrication and enhanced CO oxidation activity

    Science.gov (United States)

    Liu, Wei; Tang, Ke; Lin, Ming; June, Lay Ting Ong; Bai, Shi-Qiang; Young, David James; Li, Xu; Yang, Yan-Zhao; Hor, T. S. Andy

    2016-05-01

    Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes.Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes. Electronic supplementary information (ESI) available: Experimental section: materials and characterization; synthesis of materials; catalytic test. Tables S1-S3 and Fig. S1-S8. See DOI: 10.1039/c6nr02383e

  15. Self Powered Highly Enhanced Dual Wavelength ZnO@CdS Core-Shell Nanorod Arrays Photodetector: An Intelligent Pair.

    Science.gov (United States)

    Sarkar, Sanjit; Basak, Durga

    2015-08-01

    On the face of the impending energy crisis, developing low-energy or even zero-energy photoelectronic devices is extremely important. A multispectral photosensitivity feature of a self-powered device provides an additional powerful tool. We have developed an unprecedented high performance dual wavelength self-powered ZnO@CdS/PEDOT:PSS core-shell nanorods array photodetector through a simple aqueous chemical method wherein a suitable band alignment between an intelligent material pair, i.e. ZnO and CdS, has been utilized. Besides a noteworthy advantage of the devices being that they show a very sharp and prominent dual wavelength photosensitivity, both the ultraviolet and visible light sensitivity (ratio of current under illumination (Iphoto)/current under dark (Idark)) of the device are two orders of higher magnitude than those of pristine ZnO, attaining values of 2.8 × 10(3) and 1.07 × 10(3), respectively. At the same time, temporal responses faster than 20 ms could be achieved with these solution-processed photodetectors. The present study provides a very important direction to engineer core-shell nanostructured devices for dual wavelength high photosensitivity.

  16. [The study of dimethoate by means of vibrational and surface enhanced Raman spectroscopy on Au/Ag core-shell nanoparticles].

    Science.gov (United States)

    He, Qiang; Li, Si; Yu, Dan-Ni; Zhou, Gunag-Ming; Ji, Fang-Ying; Subklew, Guenter

    2010-12-01

    The vibrational structure of dimethoate, with its solid state and saturated solutions at acidic and basic conditions, was characterized with combination of means of FTIR and FT-Raman vibrational spectroscopy technology, and the comprehensive information about the dimethoate molecular groups' vibrational features was obtained. The surface enhanced Raman scattering (SERS) spectra of dimethoate at different concentrations with different acidic and basic conditions, and adsorbed on the substrate's surface of the core-shell Au/Ag nanoparticles, were also obtained. The adsorption states of dimethoate's molecule on the substrate's surface of the core-shell Au/Ag nanoparticles and the effects by the different acid-base conditions were investigated, with speculation of the adsorption mechanism. From the results, v(as)(NH), v(as)(CH3), v(O=C-N), tau(O=C-N), v(P-O), v(P=S), v(C-C) and delta(P-O-C) are the characteristic peaks of inner dimethoate structure's vibrations; and the concentration range in which dimethoate could interact with core-shell Au/Ag nanoparticles fully is about 1.0 x 10(-3) mol * L(-1) both in acidic and basic conditions. Dimethoate's molecule interacts with SERS' substrate surface mainly through P-O-C, O=C-C, (S-CH2), P=S, and CH3 structures; and the effects of dimethoate's hydrolysis path in acidic and basic conditions on the adsorption are discussed, which give some good references for the research of organophosphorus pesticides' transformations in different environmental systems.

  17. Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Jiang, Zhifeng; Wei, Wei; Mao, Danjun; Chen, Cheng; Shi, Yunfei; Lv, Xiaomeng; Xie, Jimin

    2015-01-14

    Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and ciprofloxacin under visible light irradiation. The experimental results indicate that N-doped yolk-shell mesoporous TiO2 hollow microspheres show higher photocatalytic activity than P25 TiO2 under visible light irradiation because of N doping and the unique yolk-shell structure. In addition, Ag-N-TiO2-YSM shows enhanced activity compared with N-TiO2-YSM due to the SPR absorption of silver NPs and the fast generation, separation and transportation of the photogenerated carriers. Moreover, the Ag contents can affect the photocatalytic activity of the Ag-N-TiO2-YSM composite. A suitable amount of Ag deposition gives the highest photocatalytic activity. A higher loading does not improve the photocatalytic activity of N-TiO2-YSM further. The active species generated in the photocatalytic system were also investigated. Based on our experimental results, a possible photocatalytic mechanism was proposed. The strategy presented here gives a promising route towards the development of delicate metal@hollow semiconductor composites for many applications in photocatalysis.

  18. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Bartley G. Hoebel

    2012-06-01

    Full Text Available Evidence links dopamine (DA in the nucleus accumbens (NAc shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG, which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related to caloric intake or elevated circulating lipids. When rats consumed more calories of a high-fat meal compared with a low-fat meal, there was a significant increase in extracellular accumbens DA (155% vs. 119%. Systemic injection of a fat emulsion, which like a high-fat diet raises circulating TG but eliminates the factor of taste and allows for the control of caloric intake, also significantly increased extracellular levels of DA (127% compared to an equicaloric glucose solution (70% and saline (85%. Together, this suggests that a rise in circulating TG may contribute to the stimulatory effect of a high-fat diet on NAc DA.

  19. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-07

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm(-2) at the current density of 1 mA cm(-2) and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg(-1) at 0.288 KW kg(-1) and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  20. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    Science.gov (United States)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  1. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  2. Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants.

    Science.gov (United States)

    An, Qiao; Zhang, Peng; Li, Jun-Mei; Ma, Wan-Fu; Guo, Jia; Hu, Jun; Wang, Chang-Chun

    2012-08-21

    Highly active surface-enhanced Raman scattering (SERS) substrates of Ag nanoparticle (Ag-NP) modified Fe(3)O(4)@carbon core-shell microspheres were synthesized and characterized. The carbon coated Fe(3)O(4) microspheres were prepared via a one-pot solvothermal method and were served as the magnetic supporting substrates. The Ag-NPs were deposited by in situ reduction of AgNO(3) with butylamine and the thickness of the Ag-NP layer was variable by controlling the AgNO(3) concentrations. The structure and integrity of the Fe(3)O(4)@C@Ag composite microspheres were confirmed by TEM, XRD, VSM and UV-visible spectroscopy. In particular, the Ag-NP coated Fe(3)O(4)@carbon core-shell microspheres were shown to be highly active for SERS detections of pentachlorophenol (PCP), diethylhexyl phthalate (DEHP) and trinitrotoluene (TNT). These analytes are representatives of environmentally persistent organic pollutants with typically low SERS activities. The results suggested that the interactions between the carbon on the microsphere substrates and the aromatic cores of the target molecules contributed to the facile pre-concentration of the analytes near the Ag-NP surfaces.

  3. Nucleus accumbens μ-opioid receptors mediate social reward

    OpenAIRE

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J. M. J

    2011-01-01

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward, by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05–0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and ...

  4. Local Control of Extracellular Dopamine Levels in the Medial Nucleus Accumbens by a Glutamatergic Projection from the Infralimbic Cortex.

    Science.gov (United States)

    Quiroz, César; Orrú, Marco; Rea, William; Ciudad-Roberts, Andrés; Yepes, Gabriel; Britt, Jonathan P; Ferré, Sergi

    2016-01-20

    It is generally assumed that infralimbic cortex (ILC) and prelimbic cortex, two adjacent areas of the medial prefrontal cortex (mPFC) in rodents, provide selective excitatory glutamatergic inputs to the nucleus accumbens (NAc) shell and core, respectively. It is also generally believed that mPFC influences the extracellular levels of dopamine in the NAc primarily by an excitatory collateral to the ventral tegmental area (VTA). In the present study, we first established the existence of a selective functional connection between ILC and the posteromedial portions of the VTA (pmVTA) and the mNAc shell (pmNAc shell), by measuring striatal neuronal activation (immunohistochemical analysis of ERK1/2 phosphorylation) and glutamate release (in vivo microdialysis) upon ILC electrical stimulation. A novel optogenetic-microdialysis approach allowed the measurement of extracellular concentrations of glutamate and dopamine in the pmNAc shell upon local light-induced stimulation of glutamatergic terminals from ILC. Cortical electrical and local optogenetic stimulation produced significant increases in the extracellular concentrations of glutamate and dopamine in the pmNAc shell. Local blockade of glutamate release by perfusion of an adenosine A2A receptor antagonist in the pmNAc shell blocked the dopamine release induced by local optogenetic stimulation but only partially antagonized dopamine release induced by cortical electrical stimulation. The results demonstrate that ILC excitatory afferents directly modulate the extracellular concentration of dopamine in the pmNAc shell, but also support the involvement of an indirect mechanism of dopamine control, through a concomitant ILC-mediated activation of the pmVTA. Significance statement: We established the existence of a functional connection between the infralimbic cortex (ILC) and the posteromedial portions of the ventral tegmental area (pmVTA) and the medial nucleus acumbens shell (pmNAc shell). A novel optogenetic

  5. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance

    Science.gov (United States)

    Li, Xuan; Yang, Zhengchun; Qi, Wen; Li, Yutao; Wu, Ying; Zhou, Shaoxiong; Huang, Shengming; Wei, Jun; Li, Huijun; Yao, Pei

    2016-02-01

    Herein, binder-free Co3O4@NiCoAl-layered double hydroxide (Co3O4@LDH) core-shell hybrid architectural nanowire arrays were prepared via a two-step hydrothermal synthesis route. LDH nanosheets possessing a large electroactive surface area uniformly dispersed on the surface of Co3O4 nanowires were successfully fabricated allowing for fast electron transport that enhances the electrochemical performance of LDH nanosheets. Co3O4@LDH nanowire arrays of 2 to 1.5 molar ratio (Co3O4:LDH) exhibit high specific capacitance (1104 F g-1 at 1 A g-1), adequate rate capability and cycling stability (87.3% after 5000 cycles), attributed to the synergistic effect between the robust Co3O4 nanowire arrays and LDH nanosheets.

  6. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.

    Science.gov (United States)

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K

    2013-08-22

    Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.

  7. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  8. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function.

    Science.gov (United States)

    Singer, Bryan F; Guptaroy, Bipasha; Austin, Curtis J; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A; Gnegy, Margaret E; Robinson, Terry E; Aragona, Brandon J

    2016-03-01

    Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not.

  9. Chemical synthesis of Fe/Fe3O4 core-shell composites with enhanced soft magnetic performances

    Science.gov (United States)

    Yang, Bai; Li, Xiaopan; Yang, Xueying; Yu, Ronghai

    2017-04-01

    The large-grain Fe/Fe3O4 composite particles with average size of about 1.2 μm have been fabricated by a facile one-step solvothermal method. The formation of high-purity Fe3O4 as the shells (90.14 wt%) and α-Fe as the cores (9.86 wt%) in the Fe/Fe3O4 composites leads to their high saturation magnetization of 119.6 A m2 Kg-1. Very low coercivity of 30 Oe is obtained in the composites due to their uniform cubic-shaped morphologies. Compared with Fe-based nanosized particles, these micron-sized magnetic Fe/Fe3O4 composites exhibit high air stability and good compactibility with high compressed density of 5.9 g cm-3. The fully compacted sample shows good soft magnetic properties including high magnetic induction B1.2k (H=1200 A/m) of 540 mT and good frequency-dependent magnetic properties with operating frequency up to 50 MHz superior to those of the most traditional soft magnetic ferrites, which promotes their potential applications in high-frequency and high-power magnetic devices.

  10. Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging.

    Directory of Open Access Journals (Sweden)

    Jos L Campbell

    Full Text Available Development of magnetic resonance imaging (MRI contrast agents that can be readily applied for imaging of biological tissues under clinical settings is a challenging task. This is predominantly due to the expectation of an ideal MR agent being able to be synthesized in large quantities, possessing longer shelf life, reasonable biocompatibility, tolerance against its aggregation in biological fluids, and high relaxivity, resulting in better contrast during biological imaging. Although a repertoire of reports address various aforementioned issues, the previously reported results are far from optimal, which necessitates further efforts in this area. In this study, we demonstrate facile large-scale synthesis of sub-100 nm quasi-cubic magnetite and magnetite/silica core-shell (Mag@SiO2 nanoparticles and their applicability as a biocompatible T2 contrast agent for MRI of biological tissues. Our study suggests that silica-coated magnetite nanoparticles reported in this study can potentially act as improved MR contrast agents by addressing a number of aforementioned issues, including longer shelf life and stability in biological fluids. Additionally, our in vitro and in vivo studies clearly demonstrate the importance of silica coating towards improved applicability of T2 contrast agents for cancer imaging.

  11. Enhanced electrorheological performance and antisedimentation property of mesoporous anatase TiO2 shell prepared by hydrothermal process

    Science.gov (United States)

    Wang, Jiahui; Chen, Guowei; Yin, Jianbo; Luo, Chunrong; Zhao, Xiaopeng

    2017-03-01

    Mesoporous anatase TiO2 hollow microspheres (MTHMs) with a high surface area (231.1 m2 g‑1) were synthesized by sol-gel template-assisted approach and hydrothermal process. The materials possessed a uniform diameter of about 620 nm and a mesoporous shell with thickness of about 180 nm. The microspheres were used as dispersing materials for electrorheological (ER) fluids, which exhibited better ER performance and antisedimentation property than common anatase TiO2 hollow microspheres and ordinary anatase TiO2 particles. The yield stress of the MTHM-based ER fluid (30.0 vol%) was approximately 7.8 kPa under an electric field of 3 kV mm‑1, and the sedimentation ratio was maintained above 78% after 250 h. The good ER activity of the MTHM-based ER fluid was mainly attributed to the high surface effect provided by mesoporous and hollow structure of the MTHMs, leading to a high interfacial polarization under the action of an external electric field. The mesoporous and hollow structure also improved the antisedimentation property of the suspensions by lowering the density of microspheres.

  12. Selective effects of perinatal ethanol exposure in medial prefrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Lawrence, R Charles; Otero, Nicha K H; Kelly, Sandra J

    2012-01-01

    Ethanol exposure during development is the leading known cause of mental retardation and can result in characteristic physiological and cognitive deficits, often termed Fetal Alcohol Spectrum Disorders (FASD). Previous behavioral findings using rat models of FASD have suggested that there are changes in the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC) following ethanol exposure during development. This study used a rat model of FASD to evaluate dendritic morphology in both the NAC and mPFC and cell number in the NAC. Dendritic morphology in mPFC and NAC was assessed using a modified Golgi stain and analyzed via three dimensional reconstructions with Neurolucida (MBF Bioscience). Cell counts in the NAC (shell and core) were determined using an unbiased stereology procedure (Stereo Investigator (MBF Bioscience)). Perinatal ethanol exposure did not affect neuronal or glial cell population numbers in the NAC. Ethanol exposure produced a sexually dimorphic effect on dendritic branching at one point along the NAC dendrites but was without effect on all other measures of dendritic morphology in the NAC. In contrast, spine density was reduced and distribution was significantly altered in layer II/III neurons of the mPFC following ethanol exposure. Ethanol exposure during development was also associated with an increase in soma size in the mPFC. These findings suggest that previously observed sexually dimorphic changes in activation of the NAC in a rat model of FASD may be due to altered input from the mPFC.

  13. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  14. d-Sulpiride inhibits oral behaviour elicited from the nucleus accumbens of freely moving rats.

    Science.gov (United States)

    Prinssen, E P; Heeren, D J; Cools, A R

    1996-01-01

    The present study analyzed the effect of intra-accumbens administration of the stereoisomers of sulpiride upon (3,4-dihydroxyphenylimino)-2-imidazoline (DPI)-induced changes in oral behaviours and electromyographic patterns of jaw muscles. In line with earlier findings, DPI (5 micrograms) administered into the nucleus accumbens increased chewing and tremor. l-Sulpiride (2-50 ng) had no effect on DPI-induced oro-facial behaviours. d-Sulpiride (10-50 ng) significantly antagonized the DPI-induced increase in chewing and had a biphasic effect on tremor with potentiation (10 ng) followed by attenuation (50 ng). When administered alone, l- or d-sulpiride did not affect oro-facial behaviours. The electromyographic signals, which were analyzed according to a previously described method, were described with the help of three classes: A (the seconds marked by frequency 3 Hz), B (the seconds marked by the frequencies 4-6 Hz); C (the seconds marked by the frequencies 7-15 Hz). DPI enhanced Class B and C of the masseter muscle but did not significantly affect any frequency class of the digastric muscle. l-Sulpiride (2-50 ng) had no effect on DPI-induced (5 micrograms) changes in electromyographic signals. d-Sulpiride (50 ng) antagonized the effects of DPI on Class B of the masseter muscle. Furthermore, d-sulpiride had a biphasic effect on Class C with potentiation (10 ng) followed by attenuation (50 ng). When administered alone, l- or d-sulpiride did not affect the frequency classes of the jaw muscles. It is concluded that d-sulpiride inhibits DPI-induced changes in oral behaviour and electromyographic patterns. It is suggested that d-sulpiride may be effective in the pharmacotherapy of oro-facial dyskinesias in man.

  15. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Mariska eMantione

    2014-05-01

    Full Text Available Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens, even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation targeted at the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. This case report substantiates the assumption that the nucleus accumbens is involved in musical preference, based on the observation of direct stimulation of the accumbens with deep brain stimulation. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties.

  16. Fast and low-cost synthesis of 1D ZnO–TiO{sub 2} core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Simelys, E-mail: simelys.hernandez@iit.it [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Cauda, Valentina; Hidalgo, Diana; Farías Rivera, Vivian; Manfredi, Diego; Chiodoni, Angelica [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pirri, Fabrizio C. [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-12-05

    Highlights: • Simple, fast and low-cost synthesis of 1-D ZnO–TiO{sub 2} core–shell heterostructures. • ZnO NWs completely covered with a shell of anatase TiO{sub 2} nanocrystals in only 3 min. • The TiO{sub 2} shell thickness depends on the impregnation time in the titania synthesis bath. • 2-fold enhancement of photo-electrochemical activity and better stability of ZnONWs. • Forty- times higher photocurrent densities than TiO{sub 2} nanoparticles film. - Abstract: We report on a simple, fast and low-cost synthesis procedure for the complete covering of zinc oxide (ZnO) 1D nanostructures with a protective shell of titania (TiO{sub 2}) nanoparticles. ZnO nanowires (NWs) were grown on transparent F-doped Tin Oxide (FTO) conductive layer on glass by seed layer-assisted hydrothermal route in aqueous media, while the titania shell was deposited on the ZnO NWs through an in situ non-acid sol–gel synthesis. The nanowires impregnation time in the titania sol was varied from 3 to 10 min. The resulting core–shell ZnO–TiO{sub 2} structures were characterized by different techniques, including Scanning and Transmission Electron Microscopy, X-ray diffraction and UV–Vis spectroscopy, confirming the uniform coverage of the wurzite ZnO NWs with anatase TiO{sub 2} nanoparticles (NPs), with a shell thickness dependent on the impregnation time in the titania synthesis bath. Photoelectrochemical (PEC) tests of the ZnO–TiO{sub 2} material, used as anode for the water splitting reaction, confirmed the formation of the heterojunction by the enhanced photocurrent densities, reaching values of about 0.7 mA/cm{sup 2} under simulated solar light (AM1.5G, 100mW/cm{sup 2}). The core–shell photo-anodes performance was about twice and forty- times better than the ones with a film of equivalent thickness of bare ZnO NWs and TiO{sub 2} NPs, respectively. Steady-state measures of the photocurrent over the time and FESEM analysis confirmed that this procedure could be

  17. Nucleus accumbens functional connectivity discriminates medication-overuse headache

    Directory of Open Access Journals (Sweden)

    D.M. Torta

    2016-01-01

    Full Text Available Medication-overuse headache (MOH is a secondary form of headache related to the overuse of triptans, analgesics and other acute headache medications. It is believed that MOH and substance addiction share some similar pathophysiological mechanisms. In this study we examined the whole brain resting state functional connectivity of the dorsal and ventral striatum in 30 patients (15 MOH and 15 non-MOH patients to investigate if classification algorithms can successfully discriminate between MOH and non-MOH patients on the basis of the spatial pattern of resting state functional connectivity of the dorsal and ventral striatal region of interest. Our results indicated that both nucleus accumbens and dorsal rostral putamen functional connectivity could discriminate between MOH and non-MOH patients, thereby providing possible support to two interpretations. First, that MOH patients show altered reward functionality in line with drug abusers (alterations in functional connectivity of the nucleus accumbens. Second, that MOH patients show inability to break habitual behavior (alterations in functional connectivity of the dorsal striatum. In conclusion, our data showed that MOH patients were characterized by an altered functional connectivity of motivational circuits at rest. These differences could permit the blind discrimination between the two conditions using classification algorithms. Considered overall, our findings might contribute to the development of novel diagnostic measures.

  18. Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire.

    Science.gov (United States)

    Zhang, Fang; Niu, Simiao; Guo, Wenxi; Zhu, Guang; Liu, Ying; Zhang, Xiaoling; Wang, Zhong Lin

    2013-05-28

    A branched ZnO-CdS double-shell NW array on the surface of a carbon fiber (CF/ZnO-CdS) was successfully synthesized via a facile two-step hydrothermal method. Based on a single CF/ZnO-CdS wire on a polymer substrate, a flexible photodetector was fabricated, which exhibited ultrahigh photon responsivity under illuminations of blue light (1.11 × 10(5) A/W, 8.99 × 10(-8) W/cm(2), 480 nm), green light (3.83 × 10(4) A/W, 4.48 × 10(-8) W/cm(2), 548 nm), and UV light (1.94 × 10(5) A/W, 1.59 × 10(-8) W/cm(2), 372 nm), respectively. The responsivity of this broadband photon sensor was enhanced further by as much as 60% when the device was subjected to a -0.38% compressive strain. This is because the strain induced a piezopotential in ZnO, which tunes the barrier height at the ZnO-CdS heterojunction interface, leading to an optimized optoelectronic performance. This work demonstrates a promising application of piezo-phototronic effect in nanoheterojunction array based photon detectors.

  19. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells

    Science.gov (United States)

    Zhao, Peilu; Li, Dan; Yao, Shiting; Zhang, Yiqun; Liu, Fengmin; Sun, Peng; Chuai, Xiaohong; Gao, Yuan; Lu, Geyu

    2016-06-01

    The hierarchical Ag@C@SnO2@TiO2 nanospheres (ACSTS) have been successfully synthesized by deposition of SnO2 and TiO2 on the Ag@C templates layer by layer. The size of ACSTS is ca. 360 nm while the Ag@C cores have an average diameter of about 300 nm. The rough and porous shell structure consisting of SnO2 and TiO2 ensures a large specific surface area (115.5 m2 g-1). To demonstrate how such a unique structure might lead to more excellent photovoltaic property, several kinds of dye-sensitized solar cells (DSSCs) are also fabricated using different nanospheres based photoanodes. It is found that the ACSTS based DSSC exhibits an obvious improvement in cell performance. According to various technical characterization, the ACSTS can provide dual-functions of light absorption and charge transfer, hence resulting in an enhanced short-circuit photocurrent density of 18.68 mA cm-2 and a higher FF of 63% compared with other DSSCs. The ACSTS cell finally obtains a PCE of up to 8.62%, increasing by 70.4% and 10.2% than hollow TiO2 nanospheres and Ag@C@TiO2 nanospheres based cells, respectively. The improved photovoltaic properties of ACSTS cell can be mainly ascribed to the unique microstructure and the synergistic effect of the encapsulated Ag@C cores.

  20. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    Science.gov (United States)

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light.

  1. ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection.

    Science.gov (United States)

    Zhang, Xiaoliang; Liu, Jianhua; Zhang, Jindan; Vlachopoulos, Nick; Johansson, Erik M J

    2015-05-21

    A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.

  2. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.

    Science.gov (United States)

    Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-08-07

    To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm(-2). Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.

  3. Gold nanostar - iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties

    Energy Technology Data Exchange (ETDEWEB)

    Esenturk, Emren Nalbant, E-mail: emren@metu.edu.tr [Middle East Technical University, Department of Chemistry (Turkey); Hight Walker, Angela R. [National Institute of Standards and Technology, Radiation and Biomolecular Physics Division, Physical Measurement Laboratory (United States)

    2013-01-15

    Iron oxide-coated gold nanostars are produced by first synthesizing gold nanostars (ca 150 nm), then introducing a polyvinylpyrollidone coating followed by reducing iron(II) and iron(III) salts on the nanoparticle (NP) surface. Morphological and chemical composition characterizations of these composite nanomaterials were performed via field-emission transmission electron microscopy/energy dispersive spectroscopy studies. The analysis revealed that the majority of the NPs had coating of approximately 1-5 nm thicknesses. The crystal structure of the coating on gold nanostars was determined to be {alpha}-Fe{sub 2}O{sub 3} with X-ray diffraction analysis. X-ray photoelectron spectroscopy confirmed that the coating is Fe{sub 2}O{sub 3}. The magnetic property studies via superconducting quantum interference device magnetometer revealed an antiferromagnetic behavior of the magnetic coating, verifying the existence of antiferromagnetic {alpha}-Fe{sub 2}O{sub 3} layer on gold nanostars. Surface-enhanced Raman scattering (SERS) spectroscopy performed with crystal violet as the probe molecule confirms continued strong SERS activity for gold nanostars after the iron oxide coating. Having both magnetic and plasmonic properties in one NP system makes these particles suitable for various bio-analytical applications such as biomolecule separation, sensing and magnetic imaging.

  4. Electroacupuncture Suppresses Discrete Cue-Evoked Heroin-Seeking and Fos Protein Expression in the Nucleus Accumbens Core in Rats

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2012-01-01

    Full Text Available Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. Here, we used intravenous drug self-administration procedures in rats to further investigate the beneficial effects of electroacupuncture (EA on heroin-seeking behavior in a reinstatement model of relapse. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4 h or 25 infusions for 14 consecutive days. Then the rats were abstinent from heroin for two weeks. 2 Hz EA stimulation was conducted once daily for 14 days during heroin abstinence. We tested these animals for contextual and discrete cue-induced reinstatement of active responses. We also applied immunohistochemistry to detect Fos-positive nuclei in the nucleus accumbens (NACc core and shell after reinstatement test. We found that active responses elicited by both contextual cues and discrete cues were high in the rats trained with heroin than in saline controls. EA treatment significantly reduced active responses elicited by discrete cues. EA stimulation attenuated Fos expression in the core but not the shell of the NACc. Altogether, these results highlight the therapeutic benefit of EA in preventing relapse to drug addiction.

  5. Effects of tetra hydro cannabinol to the dendritc tree and synapses of the accumbens nucleus of wistar rats

    Directory of Open Access Journals (Sweden)

    Dimitrijević I.

    2013-01-01

    Full Text Available Cannabis is one of the most widely used intoxicants; almost half of all 18 year olds in the USA and in most European countries admit to having tried it at least once, and ~10% of that age group are regular users. Δ9-Tetrahydrocannabinol (THC, the principal psychoactive ingredient in marijuana, produces euphoria and relaxation and impairs motor coordination, time sense, and short term memory. In the hippocampus, CBs inhibit GABA release from a subset of interneurons and inhibit glutamate release from principal neurons. Cannabinoids are reported to produce both rapid and long-term changes in synaptic transmission. Our study was carried out on ten male rats out of which brains of six of them were used as the representative sample for electron microscope analysis, while 4 were used for light microspcopy performed by Golgi method. Three were exposed to THC and 3 were controls. Axodendric synapses in the core and shell of the accumbens nucleus (AN were studied under electron microscope. The results have shown widening of the synaptic cleft in the shell of AN. This result is a leading point to our further investigations which are going to involve a behavioral component, and different aspects of morphological studies. [Projekat Ministarstva nauke Republike Srbije, br. III 41020

  6. Repeated methamphetamine administration differentially alters fos expression in caudate-putamen patch and matrix compartments and nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Jakub P Jedynak

    Full Text Available BACKGROUND: The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase ("sensitization" in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum--the so-called patch/striosome and matrix. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens. Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens. CONCLUSIONS/SIGNIFICANCE: These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine.

  7. Effects of the arrangement of triangle-winglet-pair vortex generators on heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins

    Science.gov (United States)

    Zhang, Li; Shang, Bojun; Meng, Huibo; Li, Yaxia; Wang, Cuihua; Gong, Bin; Wu, Jianhua

    2017-01-01

    To improve heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins, triangle-winglet-pair vortex generators (VG) were installed along the centerline of the helical channel with rectangular cross section. The effects of the arrangement of the triangle-winglet-pair VG, such as the geometry, the angle of attack and the quantity on heat transfer performance and pressure drop characteristics have been investigated experimentally to find out the optimal design of the VG. Air was used as working fluid within the range of Re from 680 to 16,000. The results show that, the heat exchange effectiveness of the shell side with VG is 16.6 % higher than that without VG. The vortices and the unsteadiness of the flow introduced by the VG make a great contribution to the increase. Under identical pressure drop condition, the angle of attack of 30° is the best choice compared with 45° and 60°. Under the three constraints, i.e., identical mass flow rate, identical pressure drop and identical pumping power, the largest VG size can achieve the best enhancement effect. Installation of three pairs of VG within one pitch is an optimal design for the shell side used in the present experiments. The enhancement effect of isosceles right triangle is better than that of right triangle in which one acute angle is 30°.

  8. Y2O3:Yb,Er@mSiO2-Cu(x)S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging.

    Science.gov (United States)

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping

    2015-07-28

    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small Cu(x)S nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-Cu(x)S composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached Cu(x)S nanoparticles and the enhanced chemotherapy promoted by the heat from the Cu(x)S-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.

  9. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao, E-mail: wuchao27@126.com [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Sun, Xiaohu [Management Center for Experiments, Bohai University, 19 Keji Road, Songshan District, Jinzhou, Liaoning Province 121000 (China); Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Gao, Yu, E-mail: gaoyu_1116@163.com [Department of Medical Oncology, First Affiliated Hospital of Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China)

    2014-11-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release. - Highlights: • A novel core-shell DMSS is prepared for improving the dissolution rate of simvastatin. • The diffusional resistance of the mesoporous shell can delay and regulate drug release. • Simvastatin absorbed in DMSS exists in amorphous form due to spatial confinement.

  10. Die Rolle des Nucleus accumbens bei der Akquisition und Expression von instrumentellem Verhalten der Ratte

    OpenAIRE

    Giertler, Christian

    2003-01-01

    Der Nucleus accumbens wird als Schnittstelle aufgefasst, über den limbische und corticale Strukturen, die eine belohnungsbezogene Analyse von sensorischen Signalen vornehmen, Zugang zum motorischen System erhalten. Aufgrund der bekannten Verschaltung der beteiligten Transmittersysteme kommt als Überträger dieser "corticalen Informationen" insbesondere der Neurotransmitter Glutamat in Frage. Darüber hinaus erhält der Nucleus Accumbens dopaminerge Afferenzen, die an einer Vielzahl von Funktione...

  11. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    Science.gov (United States)

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  12. Tailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction.

    Science.gov (United States)

    AlYami, Noktan M; LaGrow, Alec P; Joya, Khurram S; Hwang, Jinyeon; Katsiev, Khabiboulakh; Anjum, Dalaver H; Losovyj, Yaroslav; Sinatra, Lutfan; Kim, Jin Young; Bakr, Osman M

    2016-06-28

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ∼2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  13. Tailoring Ruthenium Exposure to Enhance the Performance of fcc Platinum@Ruthenium Core-Shell Electrocatalysts in the Oxygen Evolution Reaction

    KAUST Repository

    AlYami, Noktan Mohammed

    2016-05-17

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The catalytic activities of the synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ~2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  14. Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Thomas F Münte

    2008-03-01

    Full Text Available The Nucleus accumbens (Nacc has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD, we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be signifi cantly increased compared to a large (n= 83 normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, crosscorrelation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior.

  15. Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement.

    Science.gov (United States)

    Pratt, Wayne E; Schall, Megan A; Choi, Eugene

    2012-03-09

    Previously, we reported that stimulation of selective serotonin (5-HT) receptor subtypes in the nucleus accumbens shell differentially affected consumption of freely available food. Specifically, activation of 5-HT(6) receptors caused a dose-dependent increase in food intake, while the stimulation of 5-HT(1/7) receptor subtypes decreased feeding [34]. The current experiments tested whether similar pharmacological activation of nucleus accumbens serotonin receptors would also affect appetitive motivation, as measured by the amount of effort non-deprived rats exerted to earn sugar reinforcement. Rats were trained to lever press for sugar pellets on a progressive ratio 2 schedule of reinforcement. Across multiple treatment days, three separate groups (N=8-10) received bilateral infusions of the 5-HT(6) agonist EMD 386088 (at 0.0, 1.0 and 4.0 μg/0.5 μl/side), the 5-HT(1/7) agonist 5-CT (at 0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), or the 5-HT(2C) agonist RO 60-0175 fumarate (at 0, 2.0, or 5.0 μg/0.5 μl/side) into the anterior medial nucleus accumbens prior to a 1-h progressive ratio session. Stimulation of 5-HT(6) receptors caused a dose-dependent increase in motivation as assessed by break point, reinforcers earned, and total active lever presses. Stimulation of 5-HT(1/7) receptors increased lever pressing at the 0.5 μg dose of 5-CT, but inhibited lever presses and break point at 4.0 μg/side. Injection of the 5-HT(2C) agonist had no effect on motivation within the task. Collectively, these experiments suggest that, in addition to their role in modulating food consumption, nucleus accumbens 5-HT(6) and 5-HT(1/7) receptors also differentially regulate the appetitive components of food-directed motivation.

  16. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal

    Science.gov (United States)

    Farmany, Abbas; Mortazavi, Seyede Shima; Mahdavi, Hossein

    2016-10-01

    Fe3O4/SiO2 core/shell nanocrystals were synthesized by ultrasond-assisted procedure. The core/shell nanocrystals were characterized using XRD, FT-IR spectroscopy, SEM and BET. The BET analysis confirmed that iron oxide nanocrystal with the surface area of 208.0 m2/g can be used as an excellent adsorbent for organic and inorganic pollutants. The core/shell nanocrystal was used as an adsorbent for removal of insecticide O,O-diethyl-O[2-isopropyl-6-methylpyridimidinyl] phosphorothioate (diazinon). In continue the influence of different parameters such as pH, adsorbent dosage and shaking time on the adsorption capacity were studied. The experimental data were fitted well with the pseudo-second-order kinetic model (R2=0.9706). The adsorption isotherm was described well by Langmuir isotherm.

  17. NIF Double Shell outer-shell experiments

    Science.gov (United States)

    Merritt, E. C.; Montgomery, D. S.; Kline, J. L.; Daughton, W. S.; Wilson, D. C.; Dodd, E. S.; Renner, D. B.; Cardenas, T.; Batha, S. H.

    2016-10-01

    At the core of the Double Shell concept is the kinetic energy transfer from the outer shell to the inner shell via collision. This collision sets both the implosion shape of the inner shell, from imprinting of the shape of the outer shell, as well as the maximum energy available to compress the DT fuel. Therefore, it is crucial to be able to control the time-dependent shape of the outer shell, such that the outer shell is nominally round at the collision time. We present the experiment results from our sub-scale ( 1 MJ) NIF outer-shell only shape tuning campaign, where we vary shape by changing a turn-on time delay between the same pulse shape on the inner and outer cone beams. This type of shape tuning is unique to this platform and only possible since the Double Shell design uses a single-shock drive (4.5 ns reverse ramp pulse). The outer-shell only targets used a 5.75 mm diameter standard near-vacuum NIF hohlraum with 0.032 mg/cc He gas fill, and a Be capsule with 0.4% uniform Cu dopant, with 242 um thick ablator. We also present results from a third outer-shell only shot used to measure shell trajectory, which is critical in determining the shell impact time. This work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  18. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats.

    Science.gov (United States)

    Pfaus, J G; Damsma, G; Wenkstern, D; Fibiger, H C

    1995-09-25

    In vivo microdialysis was used to monitor extracellular concentrations of dopamine (DA), and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and dorsal striatum of sexually active female rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually active male rat, and copulation. DA increased slightly but significantly in the nucleus accumbens when a sexually active male was placed behind a wire-mesh screen, and further during copulation. DA also increased significantly in the dorsal striatum during copulation; however, the magnitude of this effect was significantly lower than that observed in the nucleus accumbens. The metabolites DOPAC and HVA generally followed DA with a delay, and increased significantly during copulation in both regions. In contrast, forced locomotion on a rotating drum, exposure to a novel testing chamber, and exposure to sex odors did not increase DA significantly in either region, although forced locomotion increased DOPAC significantly in both regions, and HVA significantly in the nucleus accumbens. The magnitude of DA release in the nucleus accumbens was significantly greater during copulation than running, whereas no significant difference was detected for striatal DA release between these two behavioral conditions. These results indicate that novelty or locomotor activity alone do not account for the increase in DA observed in the nucleus accumbens of female rats during copulation, and suggest that DA transmission in the nucleus accumbens is associated with anticipatory and consummatory aspects of sexual activity, as it is in male rats. In the dorsal striatum, however, DA release during copulation may reflect an increase in locomotor activity associated with active pacing of the male.

  19. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Directory of Open Access Journals (Sweden)

    Daniela eNeuhofer

    2015-03-01

    Full Text Available Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP, a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP of excitatory afferent inputs of medium spiny neurons (MSN in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens

  20. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    Science.gov (United States)

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  1. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs.

    Science.gov (United States)

    Wu, Chao; Sun, Xiaohu; Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying; Gao, Yu

    2014-11-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release.

  2. 管壳式换热器换热管的传热强化%Heat Transfer Enhancement of Shell and Tube Heat Exchanger Heat tTransfer Tube

    Institute of Scientific and Technical Information of China (English)

    李若兰; 丁杰; 霍正齐

    2013-01-01

    This paper introduces the heat transfer and saving energy unit of the shell and tube heat exchanger -heat transfer enhancement technology of heat transfer tube and new approaches for the development of heat transfer tech -nology.Briefly introduce the structure , performance of the typical enhanced heat transfer tube and analyze the en-hanced heat transfer mechanism of heat transfer tube.%本文介绍管壳式换热器的传热节能元件-换热管的强化传热技术,指出传热技术发展新途径。简述典型强化换热管的构造、性能,分析换热管强化传热机理。

  3. The energy-down-shift effect of Cd(0.5)Zn(0.5)S-ZnS core-shell quantum dots on power-conversion-efficiency enhancement in silicon solar cells.

    Science.gov (United States)

    Baek, Seung-Wook; Shim, Jae-Hyoung; Park, Jea-Gun

    2014-09-14

    We found that Cd0.5Zn0.5S-ZnS core (4.2 nm in diameter)-shell (1.2 nm in thickness) quantum dots (QDs) demonstrated a typical energy-down-shift (2.76-4.96 → 2.81 eV), which absorb ultra-violet (UV) light (250-450 nm in wavelength) and emit blue visible light (∼442 nm in wavelength). They showed the quantum yield of ∼80% and their coating on the SiNX film textured p-type silicon solar-cells enhanced the external-quantum-efficiency (EQE) of ∼30% at 300-450 nm in wavelength, thereby enhancing the short-circuit-current-density (JSC) of ∼2.23 mA cm(-2) and the power-conversion-efficiency (PCE) of ∼1.08% (relatively ∼6.04% increase compared with the reference without QDs for p-type silicon solar-cells). In particular, the PCE peaked at a specific coating thickness of the Cd0.5Zn0.5S-ZnS core-shell QD layer; i.e., the 1.08% PCE enhancement at the 8.8 nm thick QD layer.

  4. Stability of CART peptide expression in the nucleus accumbens in aging.

    Science.gov (United States)

    Armbruszt, Simon; Figler, Mária; Ábrahám, Hajnalka

    2015-03-01

    Aging is accompanied by changes of several anorexigenic and orexigenic neuropeptides expressed in various brain areas that control food intake and these changes correlate with senescent anorexia. During aging expression of cocaine- and amphetamine-regulated transcript (CART) peptide was reported to be reduced in the hypothalamic nuclei related to food intake. Although CART peptide is abundant in the nucleus accumbens that also plays a crucial role in the food intake regulation, no data is available about the CART peptide expression in this region through aging. In the present study, CART peptide immunoreactivity was compared in the nucleus accumbens of young adult (4- and 7-month-old) middle-aged (15-month-old) and aging (25-32-month-old) Long-Evans rats. The density of CART-immunoreactive cells and axon terminals in the nucleus accumbens was measured with computer-aided densitometry. CART-immunodensity was similar in the old rats and in the younger animals without significant difference between age groups. In addition, no gender-difference was observed when CART-immunoreactivities in the nucleus accumbens of male and female animals were compared. Our results indicate that CART peptide expression in the nucleus accumbens is stable in adults and does not change with age.

  5. EFFECTS OF REVERSIBLE INACTIVATION OF BILATERAL ACCUMBENS NUCLEI ON MEMORY STORAGE: ANIMAL STUDY IN RAT MODEL

    Directory of Open Access Journals (Sweden)

    H.A ALAEI

    2002-12-01

    Full Text Available Introduction. Memory and learning play an important role in human"s life that will become problematic in case disability is weak for any reason. There are many factors that facilitate process of mamory and learning of which accumbens nucleus plays an important role. Accumbens nucleus, which is a part of the limbic system, is one of many nuclei found of the septum in the mesencephalon. This study was performed to determine the effects of reversible Inactivation of a accumbens nuclei by lidocaein on memory storage in rat. Method s. Male wistar rats were surgically implancted with cannulae at the accumbens nuclei (Acb bilaterally one weak later they recived one trial PAL (1 mA 1.S sec and exactly at times zero, 60 and 120 minutes after posttraining, lidocaine was infused into the Acb. Retention was tested two days after training. Latency period before entering into the dark part of the shuttle box and duration of time in darkness were index for evaluation of retention. Results. A significant impaired retention performance was at zero and 60 minutes after posttrianing infusion of lidocaine into the Acb. Infusion administered 120 minutes after training had no effect. Discussion. This study has shown that Accumbens nucleus plays major role in praimary learning and memory and it is probable that by blocking this nucleus dopamine release is diminished which causes the learning process to be delayed consequently.

  6. Medial accumbens lesions attenuate testosterone-dependent aggression in male rats.

    Science.gov (United States)

    Albert, D J; Petrovic, D M; Walsh, M L; Jonik, R H

    1989-10-01

    Male hooded rats were castrated and implanted with testosterone-filled Silastic tubes appropriate for maintaining a normal average serum testosterone concentration. They were then given lesions of the medial accumbens nucleus or sham lesions. Twenty-four hours postoperatively each male was housed with a female. Beginning 7 days following pairing and continuing once each week for 4 weeks, each lesioned or sham-lesioned male was observed for aggression toward an unfamiliar male intruder. On the day following each test of aggression toward an unfamiliar male, each lesioned and sham-lesioned male was assessed for defensiveness toward an experimenter. Rats with medial accumbens lesions displayed significantly less aggression toward an unfamiliar male intruder during each of the weekly tests than did sham-lesioned animals. The attenuation was most pronounced in animals with lesions damaging the posterior part of the medial accumbens nucleus (also designated as anterior portion of the bed nucleus of the stria terminalis) in the region of the crossover of the anterior commissure. Although medial accumbens lesions are known to make individually housed rats hyperdefensive toward an experimenter, lesion-induced hyperdefensiveness was not observed in the pair-housed animals in the present experiment. It is argued that the medial accumbens/bed nucleus of the stria terminalis area is an important region in the anterior forebrain for the modulation of hormone-dependent aggression.

  7. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    Science.gov (United States)

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  8. Shell Analysis Manual

    Science.gov (United States)

    1968-04-01

    loading (e. g. shallow shell theory , Geckeler’s approximation for symmetrically loaded shells, etc.) Although the Shear Deformation and Specialized...interest. Included are the Reissner-Meissner equations, Geckeler’s approximations, shallow - shell theory , Donnell’s theory, and others. A. General Shells of

  9. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  10. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers

    Science.gov (United States)

    Zhou, Yongcun; Wang, Lu; Zhang, Hu; Bai, Yuanyuan; Niu, Yujuan; Wang, Hong

    2012-07-01

    A kind of polymer based composites was prepared by embedding the fillers of core-shell Ag@SiO2 nanoparticles into the polyimide (PI) matrix. The obtained Ag@SiO2/PI (50% vf of fillers) composites show remarkably improved high thermal conductivity and low relative permittivity. The maximum value of the thermal conductivity of composites is 7.88 W/(mK) and the relative permittivity and dielectric loss are about 11.7 and 0.015 at 1 MHz, respectively. Compared with self-passivated nanometer Al* particles composites, core-shell Ag@SiO2 nano-composite is beneficial to increase the thermal conductivity and reduce the permittivity of the composites. The relative mechanism was studied and discussed.

  11. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity

    Science.gov (United States)

    Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-01

    Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  12. Metal Oxide Assisted Preparation of Core-Shell Beads with Dense Metal-Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants.

    Science.gov (United States)

    Del Rio, Mateo; Palomino Cabello, Carlos; Gonzalez, Veronica; Maya, Fernando; Parra, Jose B; Cerdà, Victor; Turnes Palomino, Gemma

    2016-08-08

    Dense and homogeneous metal-organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core-shell beads. The ZnO@PS beads are reactive in the presence of 2-methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework-8 (ZIF-8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF-8@ZnO@PS beads can be easily packed in column format for flow-through applications, such as the solid-phase extraction of trace priority-listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4-tert-octylphenol and 4-n-nonylphenol), facilitating their analysis when present at very low levels (coatings.

  13. Numerical Analysis on Enhanced Heat Transfer of the Segmental Baffle in the Shell Side of the Heat Exchanger%弓形折流板强化换热器壳程传热数值分析

    Institute of Scientific and Technical Information of China (English)

    张江勇; 苏慧; 孟强

    2012-01-01

    为了分析弓形折流板强化换热器壳程传热机制,在原换热器模型的基础上增设了折流板.利用FLUENT软件建立弓形折流板换热器的三维模型,模拟得到不同工况下的换热器温度场、流场分布图及传热量、总传热系数等相关数据.将上述数据与原模型数值模拟结果进行对比,结果表明:弓形折流板强化换热器壳程传热效果明显,验证了换热器结构优化的合理性和必要性.%In order to analyze the enhanced heat transfer mechanism of segmental baffle in the shell side of the heat exchanger, segmental baffles were added to optimize the design of the original model of shell-and-tube heat exchanger. The three-dimension models of the segmental baffle heat exchangers were set up using FLUENT software, and distribution maps of temperature field and flow field, relevant datas including the capacity of heat transmission and the total heat transfer coefficient in different conditions were gotten. Comparing the numerical simulation results with the original model data, it is shown that the enhanced heat exchanger effect of segmental baffles in the shell side of the heat exchanger is obvious. So the structure optimization of heat exchanger is' necessary and rational.

  14. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band

    NARCIS (Netherlands)

    Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, D.; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumben

  15. Core-shell silicon nanowire solar cells.

    Science.gov (United States)

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  16. Ceftriaxone attenuates acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens of the rat

    Science.gov (United States)

    Rasmussen, B A; Tallarida, C S; Scholl, J L; Forster, G L; Unterwald, E M; Rawls, S M

    2015-01-01

    Background and Purpose Ceftriaxone is a β‐lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens. Experimental Approach Adult male Sprague–Dawley rats were pretreated with saline or ceftriaxone (200 mg kg−1, i.p. × 10 days) and then challenged with cocaine (15 mg kg−1, i.p.). Motor activity, dopamine efflux (via in vivo microdialysis) and protein levels of tyrosine hydroxylase (TH), the dopamine transporter and organic cation transporter as well as α‐synuclein, Akt and GSK3β were analysed in the nucleus accumbens. Key Results Ceftriaxone‐pretreated rats challenged with cocaine displayed reduced locomotor activity and accumbal dopamine efflux compared with saline‐pretreated controls challenged with cocaine. The reduction in cocaine‐evoked dopamine levels was not counteracted by excitatory amino acid transporter 2 blockade in the nucleus accumbens. Pretreatment with ceftriaxone increased Akt/GSK3β signalling in the nucleus accumbens and reduced levels of dopamine transporter, TH and phosphorylated α‐synuclein, indicating that ceftriaxone affects numerous proteins involved in dopaminergic transmission. Conclusions and Implications These results are the first evidence that ceftriaxone affects cocaine‐evoked dopaminergic transmission, in addition to its well‐described effects on glutamate, and suggest that its ability to attenuate cocaine‐induced behaviours, such as psychomotor activity, is due in part to reduced dopaminergic neurotransmission in the nucleus accumbens. PMID:26375494

  17. Differential transcriptome expression in human nucleus accumbens as a function of loneliness.

    Science.gov (United States)

    Canli, T; Wen, R; Wang, X; Mikhailik, A; Yu, L; Fleischman, D; Wilson, R S; Bennett, D A

    2016-11-01

    Loneliness is associated with impaired mental and physical health. Studies of lonely individuals reported differential expression of inflammatory genes in peripheral leukocytes and diminished activation in brain reward regions such as nucleus accumbens, but could not address gene expression in the human brain. Here, we examined genome-wide RNA expression in post-mortem nucleus accumbens from donors (N=26) with known loneliness measures. Loneliness was associated with 1710 differentially expressed transcripts and genes from 1599 genes (DEGs; false discovery rate PMolecular Psychiatry advance online publication, 1 November 2016; doi:10.1038/mp.2016.186.

  18. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play.

    Science.gov (United States)

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J M J; Trezza, Viviana; Manzoni, Olivier J J

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  19. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  20. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens.

    Science.gov (United States)

    Ferguson, Deveroux; Shao, Ningyi; Heller, Elizabeth; Feng, Jian; Neve, Rachael; Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Shen, Li; Nestler, Eric J

    2015-02-18

    Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO) family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induction causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our understanding of the molecular adaptations underlying cocaine action.

  1. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    Science.gov (United States)

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  2. Effects of inhibitor of κB kinase activity in the nucleus accumbens on emotional behavior.

    Science.gov (United States)

    Christoffel, Daniel J; Golden, Sam A; Heshmati, Mitra; Graham, Ami; Birnbaum, Shari; Neve, Rachael L; Hodes, Georgia E; Russo, Scott J

    2012-11-01

    Inhibitor of κB kinase (IκK) has historically been studied in the context of immune response and inflammation, but recent evidence demonstrates that IκK activity is necessary and sufficient for regulation of neuronal function. Chronic social defeat stress of mice increases IκK activity in the nucleus accumbens (NAc) and this increase is strongly correlated to depression-like behaviors. Inhibition of IκK signaling results in a reversal of chronic social defeat stress-induced social avoidance behavior. Here, we more completely define the role of IκK in anxiety and depressive-like behaviors. Mice underwent stereotaxic microinjection of a herpes simplex virus expressing either green fluorescent protein, a constitutively active form of IκK (IκKca), or a dominant negative form of IκK into the NAc. Of all three experimental groups, only mice expressing IκKca show a behavioral phenotype. Expression of IκKca results in a decrease in the time spent in the non-periphery zones of an open field arena and increased time spent immobile during a forced swim test. No baseline differences in sucrose preference were observed, but following the acute swim stress we noted a marked reduction in sucrose preference. To determine whether IκK activity alters responses to other acute stressors, we examined behavior and spine morphology in mice undergoing an acute social defeat stress. We found that IκKca enhanced social avoidance behavior and promoted thin spine formation. These data show that IκK in NAc is a critical regulator of both depressive- and anxiety-like states and may do so by promoting the formation of immature excitatory synapses.

  3. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving.

    Science.gov (United States)

    Massart, Renaud; Barnea, Royi; Dikshtein, Yahav; Suderman, Matthew; Meir, Oren; Hallett, Michael; Kennedy, Pamela; Nestler, Eric J; Szyf, Moshe; Yadid, Gal

    2015-05-27

    One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 μm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 μm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 μm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving.

  4. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Directory of Open Access Journals (Sweden)

    Ken Taro Wakabayashi

    2015-02-01

    Full Text Available The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc, a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6-8 s; ~50 µM or ~5% of baseline followed by a larger, more prolonged tonic elevation (~100 µM or 10% of baseline, peak ~15 min. While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine’s peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine’s action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.

  5. Multiple shells in IRC+10216: shell properties

    Science.gov (United States)

    Mauron, N.; Huggins, P. J.

    2000-07-01

    We report on the properties of the multiple shells in the circumstellar envelope of IRC+10216, using deep optical imaging, including data from the Hubble Space Telescope. The intensity profiles confirm the presence of thin ( ~ 0farcs5 -3'' ec), limb-brightened shells in the envelope, seen in stellar and ambient Galactic light scattered by dust. The shells are spaced at irregular intervals of ~ 5'' ec-20'' ec, corresponding to time scales of 200-800 yr, although intervals as short as ~ 1'' ec (40 yr) are seen close to the star. The location of the main shells shows a good correlation with high-resolution, molecular line maps of the inner envelope, indicating that the dust and gas are well coupled. The shell/intershell density contrast is typically ~ 3, and we find that the shells form the dominant mass component of the circumstellar envelope. The shells exhibit important evolutionary effects: the thickness increases with increasing radius, with an effective dispersion velocity of 0.7 km s-1 and there is evidence for shell interactions. Despite the presence of bipolar structure close to the star, the global shell pattern favors a roughly isotropic, episodic mass loss mechanism, with a range of time scales. Based on observations made with the Canada-France-Hawaii telescope, operated by CNRS, NRCC and UH, and on dearchived observations made with the NASA/ESA Hubble Space Telescope, operated by AURA Inc., under NASA contract NAS5-26555

  6. The effect of electroacupuncture on extinction responding of heroin-seeking behavior and FosB expression in the nucleus accumbens core.

    Science.gov (United States)

    Hu, Airong; Lai, Miaojun; Wei, Jianzi; Wang, Lina; Mao, Huijuan; Zhou, Wenhua; Liu, Sheng

    2013-02-08

    Augmentation of extinction with learning enhancing therapy may offer an effective strategy to combat heroin relapse. Our lab previously found that electroacupuncture (EA) not only significantly reduced cue-induced reinstatement of heroin seeking but also exhibited a promoting effect on the ability of learning and memory. In the present study, we further investigated the effects of EA on the extinction of heroin-seeking behavior in rats with a history of intravenous heroin self-administration. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4h or 25 infusions for 14 consecutive days; then the rats underwent 7 daily 3h extinction sessions in the operant chamber. To assess EA's effects on the extinction response of heroin-associated cues, 2Hz EA was administered 1h before each of the 7 extinction sessions. We also applied immunohistochemistry to detect FosB-positive nuclei in the nucleus accumbens core. We found that EA treatment facilitated the extinction response of heroin seeking but did not alter the locomotor activity in an open field testing environment. EA stimulation attenuated the FosB expression in the core of the nucleus accumbens, a brain region involved in the learning and execution of motor responses. Altogether, these results suggest that EA may provide a novel nonpharmacological approach to enhance extinction learning when combined with extinction therapy for the treatment of heroin addiction.

  7. Dynamic interaction between medial prefrontal cortex and nucleus accumbens as a function of both motivational state and reinforcer magnitude: A c-Fos immunocytochemistry study

    Science.gov (United States)

    Moscarello, Justin M.; Ben-Shahar, Osnat; Ettenberg, Aaron

    2007-01-01

    This study examined the effects of simultaneous variations in motivational state (food deprivation) and reinforcer magnitude (food presentation) on c-Fos immunoreactivity in the pre-and infralimbic medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) core and shell, and dorsal striatum. In the first experiment, c-Fos was reliably increased in pre- and infralimbic mPFC of animals 12- and 36-h compared to 0-h deprived. In the second experiment, a small meal (2.5g) selectively increased c-Fos immunoreactivity in both mPFC subdivisions of 36-h deprived animals, as well as in both NAcc subdivisions of 12-h deprived animals. Correlational analyses revealed a changing relationship between mPFC subregions and the NAcc compartments to which they project. In subjects 12-h deprived and allowed a small meal, c-Fos counts in prelimbic mPFC and NAcc core were positively correlated, as were those in infralimbic mPFC and NAcc shell (r = . 83 and .76, respectively). The opposite was true of animals 36-h deprived, with prelimbic mPFC/NAcc core and infralimbic mPFC/NAcc shell negatively correlated (r = -.85 and -.82, respectively). The third experiment examined the effects of unrestricted feeding (presentation of 20g food) after 0, 12, or 36-h deprivation. No differences between mean c-Fos counts were found, though prelimbic mPFC/NAcc core, and mPFC/NAcc shell were positively correlated in animals 36-h deprived (r = .76 and .89, respectively). These data suggest that the activity within the mPFC and NAcc, as well as the interaction between the two, change as a complex combinatorial function of motivational state and reinforcer magnitude. Section: Cognitive and Behavioral Neuroscience PMID:17706947

  8. Core-shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2016-08-01

    Full Text Available Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped three-dimensional graphene architecture (Co/CoO-NG were synthesized through a facile hydrothermal method following by heat treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NG to facilitate the catalytic reaction. The synthesized Co/CoO-NG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  9. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Wang, Meng; Hou, Yuyang; Slade, Robert C T; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  10. Core-shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    Science.gov (United States)

    Chen, Jun; Hou, Yuyang; Slade, Robert; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Hua Kun

    2016-08-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped three-dimensional graphene architecture (Co/CoO-NG) were synthesized through a facile hydrothermal method following by heat treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NG to facilitate the catalytic reaction. The synthesized Co/CoO-NG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  11. Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α

    Directory of Open Access Journals (Sweden)

    Manoharan Y

    2012-07-01

    Full Text Available Yuvaraj Manoharan,1,* Qingmin Ji,2,* Tomohiko Yamazaki,2,3 Shanmugavel Chinnathambi,1 Song Chen,2,4 Ganesan Singaravelu,1 Jonathan P Hill,2 Katsuhiko Ariga,2,5 Nobutaka Hanagata3,6 1Department of Medical Physics, Anna University, Chennai, India; 2Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibarak, 3Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, 4JSPS Research Fellow, Chiyoda-ku, Tokyo, 5JST and CREST, National Institute for Materials Science, Tsukuba, Ibaraki, Japan; 6Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan*These authors contributed equally to this workBackground: Class B CpG oligodeoxynucleotides primarily interact with Toll-like receptor 9 (TLR9 in B cells and enhance the immune system through induction of various interleukins including interleukin-6 in these immune cells. Although free class B CpG oligodeoxynucleotides do not induce interferon (IFN-α production, CpG oligodeoxynucleotide molecules have been reported to induce IFN-α when loaded onto nanoparticles. Here, we investigated the in vitro induction of IFN-α by a nanocarrier delivery system for class B CpG oligodeoxynucleotide molecules.Methods: For improving the capacity to load CpG oligodeoxynucleotide molecules, flake-shell SiO2 nanoparticles with a specific surface area approximately 83-fold higher than that of smooth-surfaced SiO2 nanoparticles were prepared by coating SiO2 nanoparticles with polyethyleneimine (PEI of three different number-average molecular weights (Mns 600, 1800, and 10,000 Da.Results: The capacity of the flake-shell SiO2 nanoparticles to load CpG oligodeoxynucleotides was observed to be 5.8-fold to 6.7-fold higher than that of smooth-surfaced SiO2 nanoparticles and was found to increase with an increase in the Mn of the PEI because the Mn contributed to the positive surface charge density of the nanoparticles. Further

  12. Luminescence enhancement of Y{sub 2}O{sub 3}:Eu{sup 3+} and Y{sub 2}SiO{sub 5}:Ce{sup 3+},Tb{sup 3+} core particles with SiO{sub 2} shells

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [Material Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgia, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California, MX CP 22860 (Mexico); Talbot, J.B. [Material Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [Material Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)

    2011-03-25

    This paper reports on the luminescence and microstructural features of oxide nano-crystalline (Y{sub 2}O{sub 3}:Eu{sup 3+}) and submicron-sized (Y{sub 2}SiO{sub 5}:Ce{sup 3+},Tb{sup 3+}) phosphor cores, produced by two different synthesis techniques, and subsequently coated by an inert shell of SiO{sub 2} using a sol-gel process. The shells mitigate the detrimental effect of the phosphor particle surfaces on the photoluminescence emission properties, thereby increasing luminous output by 20-90%, depending on the core composition and shell thickness. For Y{sub 2}O{sub 3}:Eu{sup 3+}, uniformly shaped, narrow particle size distribution core/shell particles were successfully fabricated. The photoluminescence emission intensity of core nanoparticles increased with increasing Eu{sup 3+} activator concentration and the luminescence emission intensity of the core/shell particles was 20-50% higher than that of the core particles alone. For Y{sub 2}SiO{sub 5}:Ce{sup 3+},Tb{sup 3+}, the core/shell particles showed enhancement of the luminescence emission intensity of 35-90% that of the core particles, depending on the SiO{sub 2} shell thickness.

  13. Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots

    Science.gov (United States)

    Holi, Araa Mebdir; Zainal, Zulkarnain; Talib, Zainal Abidin; Lim, Hong-Ngee; Yap, Chi-Chin; Chang, Sook-Keng; Ayal, Asmaa Kadim

    2017-03-01

    Ternary nanostructured Ag2S/CdS/ZnO thin film was prepared by using a simple low-cost hydrothermal method. The hexagonal phase of ZnO nanorods and CdS shells combined with monoclinic Ag2S quantum dots resulted in improved optical and photoelectrochemical properties. CdS shell with high absorption property efficiently compliment the energy levels of ZnO and improved the ability of light absorption. Furthermore, narrow band gap Ag2S also played a vital part in the light harvesting. The photoelectrochemical performance of the ternary nanostructured Ag2S/CdS/ZnO NRs was investigated in a mixture of Na2S and Na2SO3 aqueous solutions under visible light illumination. The Ag2S/CdS/ZnO NRs were found to be more efficient than ZnO NRs, CdS/ZnO NRs, and Ag2S/ZnO NRs as this particular sample gave a maximum photocurrent of 5.69 mA cm-2, which is around 2 and 1.5 times greater than CdS/ZnO NRs and Ag2S/ZnO NRs, respectively. Besides that, it was found that this ternary film possessed 15 times higher photocurrent density than plain ZnO NRs. This is attributed to the larger amount of visible light absorbed by the ternary nanostructured composite.

  14. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Science.gov (United States)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  15. A novel green synthesis of Fe{sub 3}O{sub 4}-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B. [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India); Anitha, K. [Department of Chemistry, S.K. University, Anantapur-515003, Andhra Pradesh (India); Jyothi, N.V.V., E-mail: nvvjyothi01@gmail.com [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India)

    2015-01-15

    We described a novel and eco-friendly method for preparing Fe{sub 3}O{sub 4}-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe{sub 3}O{sub 4}-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV–vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe{sub 3}O{sub 4}-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe{sub 3}O{sub 4}-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe{sub 3}O{sub 4}-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe{sub 3}O{sub 4}-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  16. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) core-shell microspheres with enhanced controllability of drug encapsulation and release rate.

    Science.gov (United States)

    Cha, Chaenyung; Jeong, Jae Hyun; Kong, Hyunjoon

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core-shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core-shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.

  17. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode.

    Science.gov (United States)

    Lin, Heng-Yi; Li, Cheng-Hung; Wang, Di-Yan; Chen, Chia-Chun

    2016-01-21

    New silicon based anodic materials in lithium ion batteries (Si-based LIBs) have been developed worldwide to overcome capacity decay during the lithiation/delithiation process. In this study, a composite of Si nanoparticles coated with 5-sulfoisophthalic acid (SPA) doped polyaniline (core/shell SiNPs@PANi/SPA) was prepared and applied as an anode material for LIB applications. The detailed structure of the core/shell SiNPs@PANi/SPA composite was characterized using high-resolution scanning electron microscopy before and after charging/discharging. The electrochemical measurements showed that the SiNPs@PANi/SPA anode exhibited a high capacity of 925 mA h g(-1) and high coulombic efficiency (99.6%) after long-term cycling (1000 cycles). Overall results indicated that the SPA doped polyaniline served as a conductive matrix to improve electrical contact and to provide an adhesive force in Si-based LIBs. Our approach opens a route for the design of efficient silicon nanocomposites for LIB applications.

  18. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Directory of Open Access Journals (Sweden)

    Quintero GC

    2013-09-01

    Full Text Available Gabriel C Quintero1–31Florida State University – Panama, Clayton, Panama; 2Medical University of South Carolina, Charleston, South Carolina, USA; 3Smithsonian Tropical Research Institute, Ancon, Republic of PanamaAbstract: Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR. These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family, and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1 of alpha-amino-3-hydroxy-5-methyl-4

  19. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity

    NARCIS (Netherlands)

    van den Heuvel, José K; Furman, Kara; Gumbs, Myrtille C R; Eggels, Leslie; Opland, Darren M; Land, Benjamin B; Kolk, Sharon M; S Narayanan, Nandakumar; Fliers, Eric; Kalsbeek, A.; DiLeone, Ralph J; la Fleur, Susanne E

    2015-01-01

    BACKGROUND: Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we p

  20. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    NARCIS (Netherlands)

    Mantione, Mariska; Figee, Martijn; Denys, D.

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no e

  1. The Role of the Nucleus Accumbens in Knowing when to Respond

    Science.gov (United States)

    Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey

    2011-01-01

    While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…

  2. The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens

    DEFF Research Database (Denmark)

    Meidahl, Anders C.; Orlowski, Dariusz; Sørensen, Jens C. H.;

    2016-01-01

    Nucleus accumbens (NAcc) has been implicated in several psychiatric disorders such as treatment resistant depression (TRD) and obsessive-compulsive disorder (OCD), and has been an ongoing experimental target for deep brain stimulation (DBS) in both rats and humans. In order to translate basic sci...

  3. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion.

    Science.gov (United States)

    Damsma, G; Pfaus, J G; Wenkstern, D; Phillips, A G; Fibiger, H C

    1992-02-01

    Extracellular concentrations of dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were examined concurrently, using in vivo microdialysis, in the nucleus accumbens and dorsal striatum of sexually active male rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually receptive female, and copulation. DA increased significantly in the nucleus accumbens when the males were presented with a sexually receptive female behind a screen and increased further during copulation. Although DA also increased significantly in the dorsal striatum during copulation, the magnitude of the effect was significantly lower than that observed in the nucleus accumbens. In contrast, forced locomotion on a rotating drum, exposure to a novel chamber, and exposure to sex odors did not increase DA significantly in either region, although both DOPAC and HVA increased significantly in both regions during the locomotion test. These results indicate that novelty or locomotor activity alone cannot account for the increased extracellular DA concentrations observed in the nucleus accumbens of male rats during the presentation of a sexually receptive female behind a screen, nor can they account for the increased DA concentrations observed in both the nucleus accumbens and dorsal striatum of male rats during copulation. The preferential increase in DA transmission in the nucleus accumbens, compared with that in the striatum, suggests that anticipatory and consummatory aspects of sexual activity may belong to a class of naturally occurring events with reward values that are mediated by DA release in the nucleus accumbens.

  4. Fabrication of the novel core-shell MCM-41@mTiO2 composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP)

    Science.gov (United States)

    Wei, Xiao-Na; Wang, Hui-Long; Li, Zhen-Duo; Huang, Zhi-Qiang; Qi, Hui-Ping; Jiang, Wen-Feng

    2016-05-01

    The mesoporous MCM-41@mTiO2 core-shell composite microspheres were synthesized successfully by combining sol-gel and simple hydrothermal treatment. The morphology and microstructure characteristics of the synthesized materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption measurements, X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis/DRS) and Fourier transform infrared spectroscopy (FT-IR). The results indicate that the composite material possesses obvious core/shell structure, a pure mesoporous and well-crystallized TiO2 layer (mTiO2), high specific surface area (316.8 m2/g), large pore volume (0.42 cm3/g) and two different pore sizes (2.6 nm and 11.0 nm). The photocatalytic activity of the novel MCM-41@mTiO2 composite was evaluated by degrading 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous suspension under UV and visible light irradiation. The results were compared with commercial anatase TiO2 and Degussa P25 and the enhanced degradation were obtained with the synthesized MCM-41@mTiO2 composite under the same conditions, which meant that this material can serve as an efficient photocatalyst for the degradation of hazardous organic pollutants in wastewaters.

  5. Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells.

    Science.gov (United States)

    Li, Xinhua; Shi, Tongfei; Liu, Guangqiang; Wen, Long; Zhou, BuKang; Wang, Yuqi

    2015-09-21

    A non-absorbing transparent shell is proposed to be coated on the outer surface of the core photoactive GaInP nanowire array (NWA) of the III-V nanowire (NW)/Si film two-junction solar cell. Interestingly, the diluted (at the filling ratio of 0.25) GaInP NWA with core / transparent shell structure can absorb more light than that in bare denser (at the filling ratio of 0.5) NWA. This allows for less source material consumption during the fabrication of III-V NWA/Si film two-junction cell. Meanwhile, the condition of current matching between the top III-V NWA and Si film sub cell can be easily fulfilled by tailoring the coating thickness of the transparent coating. Beyond the advantages on light absorption, the surface passivation effects introduced by the addition of some transparent dielectric coatings can reduce the surface recombination rate at the top NWA sub cell surface. This facilitates the effective extraction of photo-generated carriers and enhances output stability of the top NWA sub cell. From electrical simulation, a power conversion efficiency of 29.9% can be obtained at the optimized coating geometry.

  6. Formation of ZnO-Cd(OH){sub 2} core-shell nanoparticles by sol-gel method: An approach to modify surface chemistry for stable and enhanced green emission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rupali, E-mail: rupalimishra@rediffmail.co [Department of Physics, University of Allahabad, Allahabad-211002 (India); Nanophosphor Application Centre, University of Allahabad, Allahabad-211002 (India); Yadav, Raghvendra S.; Pandey, Avinash C. [Department of Physics, University of Allahabad, Allahabad-211002 (India); Nanophosphor Application Centre, University of Allahabad, Allahabad-211002 (India); Sanjay, Sharda. S. [Department of Chemistry, Ewing Christian College, Allahabad (India); Dar, Chitra [Department of Physics, University of Allahabad, Allahabad-211002 (India)

    2010-03-15

    We report the formation of highly stable and luminescent ZnO-Cd(OH){sub 2} core-shell nanoparticles by simple introduction of cadmium salt in the initial precursor solution, used to synthesize ZnO nanoparticles by sol-gel route. The cadmium to zinc salt concentration ratio has been also varied to control the growth of ZnO nanoparticles at the smaller particle size. Formation of ZnO-Cd(OH){sub 2} core-shell nanostructure has been confirmed by X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). UV-vis absorption spectroscopy exhibits blue-shift in absorption edge on increasing cadmium concentrations. The photoluminescence emission spectra showed the remarkably stable and enhanced visible (green) emission from suspended ZnO-Cd(OH){sub 2} nanoparticles in comparison to bare ZnO nanoparticles. It is postulated that Cd(OH){sub 2} layer at the surface of ZnO nanoparticles prevents the agglomeration of nanoparticles and efficiently assists the trapping of hole at the surface site, a first step necessary for visible emission. The Fourier transform infrared spectroscopy (FTIR) also supports our assumption about surface chemistry.

  7. 核-壳结构双金属纳米颗粒的表面增强拉曼散射的理论研究%Theoretical study of surface enhanced Raman scattering from core-shell bimetallic nanoparticle

    Institute of Scientific and Technical Information of China (English)

    陈李清; 殷一丁

    2012-01-01

    在准静态极限下,首先通过第一性原理推导带壳纳米颗粒的多重极化率,然后运用GN模型研究Ag-Au核-壳结构双金属纳米颗粒的表面增强拉曼散射.研究结果表明,随着Au壳层厚度的增加,短波长处SPR峰发生红移现象,强度减小,而长波长处的SPR峰红移的过程中伴随着强度的增加.%In this paper, we present a first-principles approach to the study of the multipolar moments induced by the coated bimetallic particles in the quasi-static limit. Based on the semiclassi-cal Gersten-Nitzan model, we take one step forward to investigate the the enhancement radio ( R) from bimetallic interface in Ag-Au core-shell structure nanoshell. Numerical results show that the longer wavelength peak red shifts slightly and gets intense, while the shorter wavelength peak red shifts nonlinearly and decreases in intensity with increasing the Au shell thickness.

  8. Synthesis of GdAlO3:Mn(4+),Ge(4+)@Au Core-Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for in Vivo Trimodality Bioimaging.

    Science.gov (United States)

    Liu, Jing-Min; Liu, Yao-Yao; Zhang, Dong-Dong; Fang, Guo-Zhen; Wang, Shuo

    2016-11-09

    The rise of multimodal nanoprobes has promoted the development of new methods to explore multiple molecular targets simultaneously or to combine various bioimaging tools in one assay to more clearly delineate localization and expression of biomarkers. Persistent luminescence nanophosphors (PLNPs) have been qualified as a promising contrast agent for in vivo imaging. The easy surface modification and proper nanostructure design strategy would favor the fabrication of PLNP-based multifunctional nanoprobes for biological application. In this paper, we have proposed novel multifunctional core-shell nanomaterials, applying the Mn(4+) and Ge(4+) co-doped gadolinium aluminate (GdAlO3:Mn(4+),Ge(4+)) PLNPs as the near-infrared persistent luminescence emission center and introducing the gold nanoshell coated on the PLNPs to enhance the luminescence efficiency via plasmon resonance. Our developed core-shell nanoprobes have demonstrated the excellent features of ultrabrightness, superlong afterglow, good monodispersity, low toxicity, and excellent biocompatibility. The well-characterized nanoprobes have been utilized for trimodality in vivo imaging, with near-infrared persistent luminescence for optical imaging, Gd element for magnetic resonance imaging, and Au element for computed tomography imaging.

  9. Equilibration within a semiclassical off-shell transport approach

    CERN Document Server

    Cassing, W

    2000-01-01

    Equilibration times for nuclear matter configurations -- modellingintermediate and high energy nucleus-nucleus collisions -- are evaluated withinthe semiclassical off-shell transport approach developed recently. Thetransport equations are solved for a finite box in coordinate space employingperiodic boundary conditions. The off-shell transport model is shown to giveproper off-shell equilibrium distributions in the limit $t \\to \\infty$ for thenucleon and $\\Delta$-resonance spectral functions. We find that equilibrationtimes within the off-shell approach are only slightly enhanced as compared tothe on-shell limit for the momentum configurations considered.

  10. GS 455534 selectively suppresses binge eating of palatable food and attenuates dopamine release in the accumbens of sugar-bingeing rats.

    Science.gov (United States)

    Bocarsly, Miriam E; Hoebel, Bartley G; Paredes, Daniel; von Loga, Isabell; Murray, Susan M; Wang, Miaoyuan; Arolfo, Maria P; Yao, Lina; Diamond, Ivan; Avena, Nicole M

    2014-04-01

    Binge eating palatable foods has been shown to have behavioral and neurochemical similarities to drug addiction. GS 455534 is a highly selective reversible aldehyde dehydrogenase 2 inhibitor that has been shown to reduce alcohol and cocaine intake in rats. Given the overlaps between binge eating and drug abuse, we examined the effects of GS 455534 on binge eating and subsequent dopamine release. Sprague-Dawley rats were maintained on a sugar (experiment 1) or fat (experiment 2) binge eating diet. After 25 days, GS 455534 was administered at 7.5 and 15 mg/kg by an intraperitoneal injection, and food intake was monitored. In experiment 3, rats with cannulae aimed at the nucleus accumbens shell were maintained on the binge sugar diet for 25 days. Microdialysis was performed, during which GS 455534 15 mg/kg was administered, and sugar was available. Dialysate samples were analyzed to determine extracellular levels of dopamine. In experiment 1, GS 455534 selectively decreased sugar intake food was made available in the Binge Sugar group but not the Ad libitum Sugar group, with no effect on chow intake. In experiment 2, GS 455534 decreased fat intake in the Binge Fat group, but not the Ad libitum Fat group, however, it also reduced chow intake. In experiment 3, GS 455534 attenuated accumbens dopamine release by almost 50% in binge eating rats compared with the vehicle injection. The findings suggest that selective reversible aldehyde dehydrogenase 2 inhibitors may have the therapeutic potential to reduce binge eating of palatable foods in clinical populations.

  11. Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon-Carbon Coupling by Tuning the Composition of the Dot's Ligand Shell.

    Science.gov (United States)

    Zhang, Zhengyi; Edme, Kedy; Lian, Shichen; Weiss, Emily A

    2017-03-29

    This Communication describes the photoredox catalysis of a C-C coupling reaction between 1-phenylpyrrolidine (PhPyr) and phenyl trans-styryl sulfone by visible-light-absorbing colloidal CdS quantum dots (QDs), without a sacrificial oxidant or reductant, and without a co-catalyst. Simple kinetic analysis reveals that photo-oxidation of PhPyr by the QDs is the rate-limiting step. Disordering of the ligand shell of the QDs by creating mixed monolayers of oleate and octylphosphonate increases the initial rate of the reaction by a factor of 2.3, and the energy efficiency (mol product/joule of incident photons) of the reaction by a factor of 1.6, by facilitating the hole-transfer step.

  12. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C. [School of Physical Sciences, ITM University, Turari, Gwalior, MP 474001 (India); Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior MP 474011 (India)

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  13. Enhanced Photocatalytic Activity of CdS-Decorated TiO2/Carbon Core-Shell Microspheres Derived from Microcrystalline Cellulose

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-03-01

    Full Text Available The fabrication of reusable and biodegradation materials from renewable resources such as cellulose is essential for a sustainable world. The core-shell structured CdS-decorated TiO2/Carbon microspheres (CdS/TiO2/Carbon MS photocatalyst was synthesized with controlled hydrolysis and a novel sonochemical method. It was prepared by using crosslinked microcrystalline cellulose as the core, tetrabutyl titanate as the titania source and CdS as the photosensitizer. The morphology, chemical structure and properties of the obtained material were characterized by many means. Additionally, the photocatalytic activity of the CdS/TiO2/Carbon MS was evaluated by the photodegradation efficiency of Rhodamine B solution, which reached 95.24% under visible light irradiation. This study demonstrated the excellent photocatalytic performance of CdS/TiO2/Carbon MS, which might have promising applications in environmental treatments.

  14. A single-step route for large-scale synthesis of core-shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic properties

    Science.gov (United States)

    Liu, Qi; Xu, Yan-Ru; Wang, Ai-Jun; Feng, Jiu-Ju

    2016-01-01

    In this report, a facile, seed-less and single-step method is developed for large-scale synthesis of core-shell Pd@Pt dendritic nanocrystals anchored on reduced graphene oxide (Pd@Pt DNC/rGO) under mild conditions. Poly(ethylene oxide) is employed as a structure-directing and stabilizing agent. Compared with commercial Pt/C (20 wt%) and Pd/C (20 wt%) catalysts, the as-obtained nanocomposite has large electrochemically active surface area (114.15 m2gmetal-1), and shows superior catalytic activity and stability with the mass activities of 1210.0 and 1128.5 mAmg metal-1 for methanol and ethanol oxidation, respectively. The improved catalytic activity is mainly the consequence of the synergistic effects between Pd and Pt of the dendritic structures, as well as rGO as a support.

  15. Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media

    Science.gov (United States)

    Zheng, Jie-Ning; Li, Shan-Shan; Ma, Xiaohong; Chen, Fang-Yi; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-09-01

    Well-defined core-shell gold-palladium@palladium nanocrystals (AuPd@Pd) are facilely prepared by a simple and green wet-chemical method at 25 °C. A Good's buffer, 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), is used as a reducing agent and a shape-directing agent, while there is no template, seed, organic solvent, or surfactant involved. The AuPd@Pd nanocrystals are uniformly dispersed on graphene nanosheets by ultrasonication, resulting in the formation of graphene supported AuPd@Pd (G-AuPd@Pd). The as-prepared nanocomposites exhibit the improved catalytic activity, good tolerance, and better stability for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline media, compared with the G-Pd and commercial Pd black catalysts. The as-developed method may provide a promising pathway for large-scale fabrication of AuPd-based catalysts.

  16. A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity

    Science.gov (United States)

    Liu, Yu; Yu, Le; Hu, Yong; Guo, Changfa; Zhang, Fumin; Wen (David) Lou, Xiong

    2011-12-01

    Magnetic nest-like γ-Fe2O3/ZnO double-shelled hollow nanostructures have been successfully synthesized via a multi-step process. The materials have been thoroughly characterized by different techniques. These interesting nest-like hollow nanostructures are composed of ZnO nanoflakes grown on the surface of γ-Fe2O3 hollow spheres. Importantly, these magnetic hollow nanostructures show very high visible-light photocatalytic activity for the degradation of different organic dyes including methylene blue (MB), Rhodamine-B (RhB), and methyl orange (MO). It is further demonstrated that these γ-Fe2O3/ZnO hybrid photocatalysts are highly stable and can be used repeatedly.Magnetic nest-like γ-Fe2O3/ZnO double-shelled hollow nanostructures have been successfully synthesized via a multi-step process. The materials have been thoroughly characterized by different techniques. These interesting nest-like hollow nanostructures are composed of ZnO nanoflakes grown on the surface of γ-Fe2O3 hollow spheres. Importantly, these magnetic hollow nanostructures show very high visible-light photocatalytic activity for the degradation of different organic dyes including methylene blue (MB), Rhodamine-B (RhB), and methyl orange (MO). It is further demonstrated that these γ-Fe2O3/ZnO hybrid photocatalysts are highly stable and can be used repeatedly. Electronic supplementary information (ESI) available: XRD/TEM/schematic illustration of charge transfer. See DOI: 10.1039/c1nr11114k

  17. 3D-Array of Au-TiO2 Yolk-Shell as Plasmonic Photocatalyst Boosting Multi-Scattering with Enhanced Hydrogen Evolution.

    Science.gov (United States)

    Shi, Xiaowei; Lou, Zaizhu; Zhang, Peng; Fujitsuka, Mamoru; Majima, Tetsuro

    2016-11-23

    Nowadays, how to convert solar energy efficiently to other energies, such as chemical energy, is an important subject. In the present work, gold nanosphere (AuNS) monoencapsulated in TiO2 hollow nanosphere (Au-TiO2) and three-dimensional assembled array of Au-TiO2 (3D-array) were fabricated to carefully explore the multiscattering effect on the photocatalytic activity of H2 generation under simulated solar light and visible light irradiation, respectively. Au-TiO2 with the inner cavity diameter of 176 nm was uniformly synthesized via SiO2 protection method and then was used as building blocks for construction of 3D-array. The 3D-array exhibited a much higher photocatalytic activity of H2 generation (3.5 folds under visible light irradiation, 1.4 folds under solar light irradiation) than Au-TiO2. Single-particle plasmonic photoluminescence measurement and computational simulation of finite difference time domain (FDTD) were performed to elucidate the detailed mechanisms of photocatalysis. It was suggested that the hot electrons generated by AuNS under visible light irradiation play a significant role during the photocatalysis process. The higher activity of 3D-array is due to the elongation of light path length because of the multiscattering in-between Au-TiO2 and the reflection inside of the TiO2 shell. Therefore, the AuNS has more opportunity to absorb light and more hot electrons are expected to be generated through the electron transfer from AuNS to TiO2 shell, leading to an increment in the H2 generation. This result gives us a new perspective of constructing structures for efficient light utilization.

  18. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    Science.gov (United States)

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  19. Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions

    Science.gov (United States)

    Hamel, Laurie; Thangarasa, Tharshika; Samadi, Osai

    2017-01-01

    The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions. Rats were trained to associate visuo-tactile cues with appetitive, aversive, and neutral outcomes. Following the successful acquisition of the cue-outcome associations, rats received microinfusions of GABAA and GABAB receptor agonists (muscimol/baclofen) or saline into the caudal, intermediate, or rostral NAc core and were then exposed to a superimposition of appetitively and aversively valenced cues versus neutral cues in a “conflict test,” as well as to the appetitive versus neutral cues, and aversive cues versus neutral cues, in separate conditioned preference/avoidance tests. Disruption of activity in the intermediate to caudal parts of the NAc core resulted in a robust avoidance bias in response to motivationally conflicting cues, as well as a potentiated avoidance of aversive cues as compared with control animals, coupled with an attenuated conditioned preference for the appetitive cue. These results suggest that the caudal NAc core may have the capacity to exert bidirectional control over appetitively and aversively motivated responses to valence signals. PMID:28275709

  20. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Directory of Open Access Journals (Sweden)

    G. Langer

    2014-08-01

    Full Text Available Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells and outside (pHn-shells a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size normalised aragonite area. Size normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size normalised thickness of the pHlow-shells, these data led us to conclude that low pH exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. The latter is different from normal elongation growth and proceeds through addition of aragonitic layers only, while the production of calcitic layers is confined to elongation growth. Therefore aragonite cannot be regarded as a per se disadvantageous polymorph under ocean acidification conditions.

  1. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Science.gov (United States)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J. M.; Bijma, J.

    2014-12-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.

  2. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  3. Photocatalytic activity of Ag/ZnO core–shell nanoparticles with shell thickness as controlling parameter under green environment

    Science.gov (United States)

    Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee

    2017-02-01

    Plasmonic Ag/ZnO core–shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet–visible (UV–Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core–shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core–shell nanoparticles. The Photocatalytic activities of Ag/ZnO core–shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core–shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core–shell NPs is found to be enhanced with increase in shell thickness.

  4. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    Science.gov (United States)

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment.

  5. Heat Transfer Performance of the Shell Side of Double-Pipe Heat Exchanger Enhanced with Helical Fins%螺旋片强化的套管式换热器壳侧传热特性

    Institute of Scientific and Technical Information of China (English)

    张丽; 田密密; 吴剑华

    2011-01-01

    为揭示螺旋片强化套管式换热器壳侧传热的机理,以指导此类换热器的进一步强化,对螺旋片强化的套管式换热器壳侧的传热和阻力特性进行了实验研究,并与光滑内管换热器进行了比较;利用可实现的k-ε湍流模型,对螺旋片强化的套管式换热器壳侧流体的流动和传热特性进行了数值模拟,研究了正交螺旋坐标系下壳侧螺旋通道中的流场结构.实验结果表明,螺旋片能显著提高套管式换热器壳侧的传热性能;在Re为4000~14000,螺旋升角分别为45°、37°、27°、14°的换热器的传热系数是光滑内管换热器的1.3~4.2倍;螺旋升角越小的换热器传热效果越好,但压降也越大.数值模拟结果表明,螺旋片能改变壳侧流场结构,使流场中产生了二次流动,从而强化了传热;螺旋升角越大,螺旋通道中心处的二次流动越弱.因此,对于螺旋升角较大的换热器,采用螺旋片复合其它强化技术改善螺旋通道中心处的二次流动状况是进一步提高其传热性能的关键.%In order to disc over the heat transfer enhancement mechanisms of the shell side of double-pipe heat exchanger with helical fins and to guide the further heat enhancement of this kind of heat exchanger, heat transfer performance and flow resistance of shell side of the above mentioned heat exchanger were investigated experimentally and compared with those of the heat exchanger with smooth inner tube. The fluid flow characteristic and heat transfer performance of the shell side of double pipe heat exchanger with helical fins were investigated numerically by applying realizable k-ε turbulent model, and using the orthogonal helical coordinate system, the fluid flow characteristics of the shell side helical channel were analyzed. The experimental results show that the heat transfer performance of double-pipe heat exchanger shell side is enhanced significantly by helical fins, and at Re = 4000~14000, the

  6. SERS decoding of micro gold shells moving in microfluidic systems.

    Science.gov (United States)

    Lee, Saram; Joo, Segyeong; Park, Sejin; Kim, Soyoun; Kim, Hee Chan; Chung, Taek Dong

    2010-05-01

    In this study, in situ surface-enhanced Raman scattering (SERS) decoding was demonstrated in microfluidic chips using novel thin micro gold shells modified with Raman tags. The micro gold shells were fabricated using electroless gold plating on PMMA beads with diameter of 15 microm. These shells were sophisticatedly optimized to produce the maximum SERS intensity, which minimized the exposure time for quick and safe decoding. The shell surfaces produced well-defined SERS spectra even at an extremely short exposure time, 1 ms, for a single micro gold shell combined with Raman tags such as 2-naphthalenethiol and benzenethiol. The consecutive SERS spectra from a variety of combinations of Raman tags were successfully acquired from the micro gold shells moving in 25 microm deep and 75 microm wide channels on a glass microfluidic chip. The proposed functionalized micro gold shells exhibited the potential of an on-chip microfluidic SERS decoding strategy for micro suspension array.

  7. Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO{sub 2} core–shell nanoparticles: Kinetic and thermodynamic profile

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhifeng, E-mail: ntjiangzf@sina.com; Xie, Jimin, E-mail: xiejm391@sohu.com; Jiang, Deli, E-mail: jiangdeli100@yahoo.com; Yan, Zaoxue, E-mail: yanzaoxue@163.com; Jing, Junjie, E-mail: jingjj1975@163.com; Liu, Dong, E-mail: 919457966@qq.com

    2014-02-15

    A green and low-cost adsorbent with both magnetic property and high adsorption capacity was prepared on the basis of nickel magnetic core with silica shell. The surface of the prepared Ni@SiO{sub 2} composite was not modified. The influence of different functional groups and different charged of the dyes on the adsorption process on the non functionalized Ni@SiO{sub 2} have been studied. The results indicated that synthesized adsorbent exhibited higher adsorption capacity for dyes with negative charge/hydroxyl groups as compared to dyes with positive charge/without hydroxyl groups due to the hydrogen bonding interaction and electrostatic interaction between the adsorbent and dyes. Adsorption kinetics and isotherms experiments were carried out and the results indicated that the adsorption process was fitted by pseudo second order kinetics and Freundlich model. The binding of these dyes with magnetic adsorbent surface mainly involves physical adsorption according to D–R model. Furthermore, the adsorption process is spontaneous and endothermic as studied from adsorption thermodynamics. The value of ΔH° and mean free energy further confirmed that physical adsorption is the major adsorption process. After regeneration, the adsorbent still shows high adsorption capacity even for 4 cycles of desorption–adsorption.

  8. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections.

    Science.gov (United States)

    Kupchik, Yonatan M; Brown, Robyn M; Heinsbroek, Jasper A; Lobo, Mary Kay; Schwartz, Danielle J; Kalivas, Peter W

    2015-09-01

    It is widely accepted that D1 dopamine receptor-expressing striatal neurons convey their information directly to the output nuclei of the basal ganglia, whereas D2-expressing neurons do so indirectly via pallidal neurons. Combining optogenetics and electrophysiology, we found that this architecture does not apply to mouse nucleus accumbens projections to the ventral pallidum. Thus, current thinking attributing D1 and D2 selectivity to accumbens projections akin to dorsal striatal pathways needs to be reconsidered.

  9. Dopamine D1 and D2 Receptors in the Nucleus Accumbens Core and Shell Mediate Pavlovian-Instrumental Transfer

    Science.gov (United States)

    Lex, Anja; Hauber, Wolfgang

    2008-01-01

    Pavlovian stimuli previously paired with food can markedly elevate the rate of food-reinforced instrumental responding. This effect, termed Pavlovian-instrumental transfer (PIT), depends both on general activating and specific cueing properties of Pavlovian stimuli. Recent evidence suggests that the general activating properties of Pavlovian…

  10. Infralimbic Prefrontal Cortex Interacts with Nucleus Accumbens Shell to Unmask Expression of Outcome-Selective Pavlovianto- Instrumental Transfer

    Science.gov (United States)

    Keistler, Colby; Barker, Jacqueline M.; Taylor, Jane R.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context…

  11. Fabrication of the novel core-shell MCM-41@mTiO{sub 2} composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP)

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao-Na; Wang, Hui-Long, E-mail: hlwang@dlut.edu.cn; Li, Zhen-Duo; Huang, Zhi-Qiang; Qi, Hui-Ping; Jiang, Wen-Feng

    2016-05-30

    Graphical abstract: The mesoporous MCM-41@mTiO{sub 2} composite microspheres with core/shell structure, well-crystallized mesoporous TiO{sub 2} layer, high specific surface, large pore volume and excellent photocatalytic activity were synthesized by combining sol-gel and simple hydrothermal treatment. - Highlights: • The mesoporous MCM-41@mTiO{sub 2} composite was synthesized successfully. • The composite was facilely prepared by combining sol-gel and hydrothermal method. • The composite exhibited high photocatalytic degradation activity for DNBP. • The composite photocatalyst has excellent reproducibility. - Abstract: The mesoporous MCM-41@mTiO{sub 2} core-shell composite microspheres were synthesized successfully by combining sol-gel and simple hydrothermal treatment. The morphology and microstructure characteristics of the synthesized materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurements, X-ray powder diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis/DRS) and Fourier transform infrared spectroscopy (FT-IR). The results indicate that the composite material possesses obvious core/shell structure, a pure mesoporous and well-crystallized TiO{sub 2} layer (mTiO{sub 2}), high specific surface area (316.8 m{sup 2}/g), large pore volume (0.42 cm{sup 3}/g) and two different pore sizes (2.6 nm and 11.0 nm). The photocatalytic activity of the novel MCM-41@mTiO{sub 2} composite was evaluated by degrading 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous suspension under UV and visible light irradiation. The results were compared with commercial anatase TiO{sub 2} and Degussa P25 and the enhanced degradation were obtained with the synthesized MCM-41@mTiO{sub 2} composite under the same conditions, which meant that this material can serve as an efficient photocatalyst for the degradation of hazardous organic pollutants in wastewaters.

  12. Blended Isogeometric Shells

    Science.gov (United States)

    2012-08-01

    engendered by shell intersections, folds, boundary conditions the merging of NURBS patches, etc.We illustrate the blended theory?s performance on a...general and effective treatment of kinematic constraints engendered by shell intersections, folds, boundary con- ditions, the merging of NURBS patches...etc. We illustrate the blended theory’s performance on a series of test problems. Key words: isogeometric analysis, NURBS , shells, rotation-free

  13. Off-Shell Tachyons

    OpenAIRE

    Tang, Yi-Lei

    2015-01-01

    The idea that the new particles invented in some models beyond the standard model can appear only inside the loops is attractive. In this paper, we fill these loops with off-shell tachyons, leading to a solution of the zero results of the loop diagrams involving the off-shell non-tachyonic particles. We also calculate the Passarino-Veltman $A_0^o$ and $B_0^o$ of the off-shell tachyons.

  14. Spiral Shell Collection

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    In 1988 Zheng Haigen, a seaman with the Towboat Company of the Shanghai Salvage Bureau, began collecting spiral shells. Today he has more than 600 in his collection. The most valuable are the rare parrot shell and a shell whose spirals wind counter-clockwise. In 1991 a miniature conch with a diameter of 0.31 millimeters that he found buried in tons of sand made the Guinness Book of World Records.

  15. Core-shell Cd0.2Zn0.8S@BiOX (X = Cl, Br and I) microspheres: a family of hetero-structured catalysts with adjustable bandgaps, enhanced stability and photocatalytic performance under visible light irradiation.

    Science.gov (United States)

    Zhou, Yannan; Wen, Ting; Chang, Binbin; Yang, Baocheng; Wang, Yonggang

    2016-09-21

    Heterostructures consisting of two semiconductors have merited considerable attention in photocatalytic applications due to synergistic effects in complex redox processes. The incorporation of solid solutions into such architectures can further offer extra variability to control the bandgap. In this study, we report the fabrication of a series of core-shell Cd0.2Zn0.8S@BiOX (X = Cl, Br and I) microspheres via a solvothermal route that lead to enhanced photocatalytic performance under visible light irradiation. By optimizing the synthesis conditions, uniform and porous Cd0.2Zn0.8S@BiOX microspheres were achieved. The products were thoroughly characterized by X-ray diffraction studies, scanning electron microscopy, transmission electron microscopy, photoluminescence studies, absorption measurements and the photodegradation of RhB. Remarkably, the electronic structures of Cd0.2Zn0.8S@BiOX composites can be continuously tuned by varying the composition of BiOX to achieve the best catalytic performance under visible light irradiation. Finally, this greatly enhanced visible-light-driven photocatalytic efficiency was observed in the optimized Cd0.2Zn0.8S@BiOI composites when compared to their single-component counterparts, which may be attributed to increased light absorption and improved electron-hole separation. The photocatalytic mechanism has also been proposed based on the experimental evidences and the theoretical band positions of Cd0.2Zn0.8S@BiOI.

  16. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  17. Subregion-specific role of glutamate receptors in the nucleus accumbens on drug context-induced reinstatement of cocaine-seeking behavior in rats.

    Science.gov (United States)

    Xie, Xiaohu; Lasseter, Heather C; Ramirez, Donna R; Ponds, KaiCee L; Wells, Audrey M; Fuchs, Rita A

    2012-03-01

    The functional integrity of the nucleus accumbens (NAC) core and shell is necessary for contextual cocaine-seeking behavior in the reinstatement animal model of drug relapse; however, the neuropharmacological mechanisms underlying this phenomenon are poorly understood. The present study evaluated the contribution of metabotropic glutamate receptor subtype 1 (mGluR1) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor populations to drug context-induced reinstatement of cocaine-seeking behavior. Rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced active lever pressing) was then assessed in the previously cocaine-paired and extinction contexts after JNJ16259685 (mGluR1 antagonist: 0.0, 0.6, or 30 pg/0.3 µl/hemisphere) or CNQX (AMPA/kainate receptor antagonist: 0.0, 0.03, or 0.3 µg/0.3 µl /hemisphere) administration into the NAC core, medial or lateral NAC shell, or the ventral caudate-putamen (vCPu, anatomical control). JNJ16259685 or CNQX in the NAC core dose-dependently impaired contextual cocaine-seeking behavior relative to vehicle. Conversely, CNQX, but not JNJ16259685, in the lateral or medial NAC shell attenuated, whereas CNQX or JNJ16259685 in vCPu failed to inhibit, this behavior. The manipulations failed to alter instrumental behavior in the extinction context, general motor activity or food-reinforced instrumental behavior in control experiments. Thus, glutamate-mediated changes in drug context-induced motivation for cocaine involve distinct neuropharmacological mechanisms within the core and shell subregions of the NAC, with the stimulation of mGlu1 and AMPA/kainate receptors in the NAC core and the stimulation of AMPA/kainate, but not mGlu1, receptors in the NAC shell being necessary for this phenomenon.

  18. Effects of Food Restriction and Sucrose Intake on Synaptic Delivery of AMPA Receptors in Nucleus Accumbens

    OpenAIRE

    Peng, Xing-Xiang; Ziff, Edward B.; Carr, Kenneth D.

    2011-01-01

    Insertion and removal of AMPA receptors from the synaptic membrane underlie dynamic tuning of synaptic transmission and enduring changes in synaptic strength. Preclinical addiction research suggests that AMPA receptor trafficking plays an important role in nucleus accumbens (NAc) neuroplasticity underlying the compulsive and persistent quality of drug-seeking. Considering the parallels between drug addiction and compulsive eating, plus the supranormal reward properties of sucrose, and the rol...

  19. Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis.

    Science.gov (United States)

    Carriere, Nicolas; Besson, Pierre; Dujardin, Kathy; Duhamel, Alain; Defebvre, Luc; Delmaire, Christine; Devos, David

    2014-06-01

    Apathy is characterized by lack of interest, loss of initiative, and flattening of affect. It is a frequent, very disabling nonmotor complication of Parkinson's disease (PD). The condition may notably occur when dopaminergic medications are tapered after the initiation of subthalamic stimulation and thus can be referred to as "dopaminergic apathy." Even in the absence of tapering, some patients may develop a form of apathy as PD progresses. This form is often related to cognitive decline and does not respond to dopaminergic medications (dopa-resistant apathy). We aimed at determining whether dopa-resistant apathy in PD is related to striatofrontal morphological changes. We compared the shape of the striatum (using spherical harmonic parameterization and sampling in a three-dimensional point distribution model [SPHARM-PDM]), cortical thickness, and fractional anisotropy (using tract-based spatial statistics) in 10 consecutive patients with dopamine-refractory apathy, 10 matched nonapathetic PD patients and 10 healthy controls. Apathy in PD was associated with atrophy of the left nucleus accumbens. The SPHARM-PDM analysis highlighted (1) a positive correlation between the severity of apathy and atrophy of the left nucleus accumbens, (2) greater atrophy of the dorsolateral head of the left caudate in apathetic patients than in nonapathetic patients, and (3) greater atrophy in the bilateral nucleus accumbens in apathetic patients than in controls. There were no significant intergroup differences in cortical thickness or fractional anisotropy. Dopa-resistant apathy in PD was associated with atrophy of the left nucleus accumbens and the dorsolateral head of the left caudate.

  20. Shell thickness determination of polymer-shelled microbubbles using transmission electron microscopy.

    Science.gov (United States)

    Härmark, Johan; Hebert, Hans; Koeck, Philip J B

    2016-06-01

    Intravenously injected microbubbles (MBs) can be utilized as ultrasound contrast agent (CA) resulting in enhanced image quality. A novel CA, consisting of air filled MBs stabilized with a shell of polyvinyl alcohol (PVA) has been developed. These spherical MBs have been decorated with superparamagnetic iron oxide nanoparticles (SPIONs) in order to serve as both ultrasound and magnetic resonance imaging (MRI) CA. In this study, a mathematical model was introduced that determined the shell thickness of two types of SPIONs decorated MBs (Type A and Type B). The shell thickness of MBs is important to determine, as it affects the acoustical properties. In order to investigate the shell thickness, thin sections of plastic embedded MBs were prepared and imaged using transmission electron microscopy (TEM). However, the sections were cut at random distances from the MB center, which affected the observed shell thickness. Hence, the model determined the average shell thickness of the MBs from corrected mean values of the outer and inner radii observed in the TEM sections. The model was validated using simulated slices of MBs with known shell thickness and radius. The average shell thickness of Type A and Type B MBs were 651nm and 637nm, respectively.

  1. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    Science.gov (United States)

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project.

  2. 管壳式换热器中旋流片强化管外传热的数值模拟%NUMERICAL SIMULATION OF HEAT TRANSFER ENHANCEMENT BY TWISTED LEAF IN SHELL SIDE OF SHELL-AND-TUBE HEAT EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    周水洪; 邓先和; 徐伟

    2007-01-01

    As a new type of heat transfer augmentation element, twisted-leaf tube bundle support was conducted. Based on the experimental investigation, a shell-side periodic unit channel model of the longitudinal flow type heat exchanger was developed for numerical simulation to analyze the flow and heat transfer information of swirl flow induced by twisted leaf.The section-by-section performance evaluation factors were used to analyze the mechanism of heat transfer enhancement. The results demonstrate that the twisted leaf can produce a helical flow, resulting in the disruption of the continuity and stability of the fluid. The disturbing flow can promote turbulent intensity and enhance heat transfer effectively. The twistedleaf section gives worst integrated performance with a big increase in both heat transfer and pressure loss, and the trail-flow section also has no good performance because of the decayed swirl flow. The free-swirl-flow section provides the best performance with high efficiency and low pressure loss. In order to improve the integrated performance along the whole heat exchanger, it is recommended to optimize the shell side structure parameters to fully use the free swirl flow.%提出并分析了一种新型的传热强化元件--旋流片作为管壳式换热器管隙间支撑物的传热强化机理.在实验基础上,采用周期性单元流道模型数值模拟了旋流片产生的衰减性自旋流的流动和传热特性,并采用分段综合因子分析了传热强化的机理.结果显示,旋流片能起到扰流作用,并使流体强烈地冲刷传热管壁面强化传热.有旋流片段的综合因子最小,尾流段的综合因子接近于1,在自旋流段的综合因子最佳,应当充分利用自旋流段低阻高效的特点对换热器进行优化.

  3. 扭曲椭圆管换热的壳程强化传热特性%Shell side heat transfer enhancement in twisted elliptical tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    谭祥辉; 孙赫; 张立振; 朱冬生

    2012-01-01

    通过搭建扭曲椭圆管换热器壳程传热与压降性能测试平台,对扭曲椭圆管换热器壳程传热与压降性能进行了实验测试,以实验数据为基础对前人得到的壳程传热与压降性能计算准则关系式的应用范围进行了分析,同时拟合得到了测试用扭曲椭圆管换热器壳程传热与压降性能计算准则关系式,设计了与测试扭曲椭圆管换热器结构类似的折流板换热器以及折流杆换热器,采用相关计算方法对换热器的传热与压降性能进行了计算和比较,并分析了3台换热器的综合性能,结果显示扭曲椭圆管换热器传热效果好、压降低,具有很好的工业应用前景.%Heat transfer and pressure drop of twisted elliptical tube heat exchanger with FrM = 79 are tested in the present work. Based on the experimental result, the application range of previous correlations for twisted elliptical tube heat exchanger with FrM>232 and FrM = 64 is analyzed, and correlations of the tested heat exchanger with FrM = 79 are derived. The testing result indicates that there exists a change of fluid flowing state when Re, increases to 8000. Two heat exchangers with similar geometric parameters to the tested one but supported by segmental baffles and rod baffles are designed. Their shell side heat transfer coefficients and pressure drops are calculated with Bell-Delaware method and Gentry's method, respectively. Heat transfer coefficients and pressure drops of the two designed heat exchangers are compared with the tested twisted elliptical tube heat exchanger. Comprehensive performance of the three heat exchangers is studied. The twisted elliptical tube heat exchanger gives the highest heat transfer coefficient and lowest pressure drop. This type of heat exchanger has the advantages of segmental heat exchanger and rod baffle heat exchanger and will be widely used in the industry.

  4. Dispersion behavior of core-shell silica-polymer nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.

  5. Nucleus accumbens injections of the mGluR2/3 agonist LY379268 increase cue-induced sucrose seeking following adult, but not adolescent sucrose self-administration.

    Science.gov (United States)

    Myal, S; O'Donnell, P; Counotte, D S

    2015-10-01

    Adolescence is often portrayed as a period of enhanced sensitivity to reward, with long-lasting neurobiological changes upon reward exposure. However, we previously found that time-dependent increases in cue-induced sucrose seeking were more pronounced in rats trained to self-administer sucrose as adults than as adolescents. In addition, adult, but not adolescent sucrose self-administration led to a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-Methyl-D-aspartate (AMPA/NMDA) ratio in the nucleus accumbens core, suggesting that long-lasting changes in glutamatergic transmission may affect adult processing of natural rewards. Here we tested whether altering glutamatergic transmission in the nucleus accumbens core via local injection of an mGluR2/3 agonist and antagonist affects cue-induced sucrose seeking following abstinence and whether this is different in the two age groups. Rats began oral sucrose self-administration training (10 days) on postnatal day (P) 35 (adolescents) or P70 (adults). Following 21 days of abstinence, rats received microinjections of the mGluR2/3 agonist LY379268 (0.3 or 1.0 μg/side) or vehicle into the nucleus accumbens core, and 15 min later cue-induced sucrose seeking was assessed. An additional group of rats trained as adults received nucleus accumbens core microinjections of the mGluR2/3 antagonist (RS)-α-Methyl-4-phosphonophenylglycine (MPPG) (0.12 or 0.5 μg/side). Confirming our previous results, adult rats earned more sucrose reinforcers, while sucrose intake per body weight was similar across ages. On abstinence day 22, local injection of the mGluR2/3 agonist LY379268 increased cue-induced sucrose seeking only in adult rats, and had no effect in adolescents. Local injections of the mGluR2/3 antagonist MPPG had no effect on sucrose seeking in adult rats. These data suggest an important developmental difference in the neural substrates of natural reward, specifically a difference in glutamatergic transmission in

  6. Theoretical and Experimental Thermal Performance Analysis of Building Shell Components Containing Blown Fiber Glass Insulation Enhanced with Phase Change Material (PCM)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Shrestha, Som S [ORNL; Atchley, Jerald Allen [ORNL; Bianchi, Marcus V [ORNL; Smith, John B [ORNL; Fellinger, Thomas [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences; Lee, Edwin S [ORNL

    2010-01-01

    Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central US climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed paper presents experimental and numerical results from thermal performance studies. These studies focus on blown fiber glass insulation modified with a novel spray-applied microencapsulated PCM. Experimental results are reported for both laboratory-scale and full-size building elements tested in the field. In order to confirm theoretical predictions, PCM enhanced fiber glass insulation was evaluated in a guarded hot box facility to demonstrate heat flow reductions when one side of a test wall is subjected to a temperature increase. The laboratory work showed reductions in heat flow of 30% due to the presence of approximately 20 wt % PCM in the insulation. Field testing of residential attics insulated with blown fiber glass and PCM was completed in Oak Ridge, Tennessee. Experimental work was followed by detailed whole building EnergyPlus simulations in order to generate energy performance data for different US climates. In addition, a series of numerical simulations and field experiments demonstrated a potential for application of a novel PCM fiber glass insulation as enabling technology to be utilized during the attic thermal renovations.

  7. Solubility enhancement and epitaxial core-shell structure of Si-doped ZnO via a specific pulsed laser ablation route

    Science.gov (United States)

    Huang, Chang-Ning; Chen, Shuei-Yuan; Zheng, Yuyuan; Shen, Pouyan

    2015-09-01

    Wurtzite (W)-type ZnO nanocondensates and particulates with enhanced solid solubility of Si4+ and special defect nanostructures were synthesized via pulsed laser ablation of Zn2SiO4/ZnO composite target under a relatively high peak power density of 1.4 × 1012 W/cm2 in high vacuum (3.5 × 10-5 torr). The nanocondensates were either dispersed in an amorphous Zn-O-Si phase as a composite sphere up to submicrons in size or coalesced by the {}, {}, and {} facets as unity and twin. The particulates tended to have an epitaxial 1D commensurate 2× (0002) superstructure (i.e., 1 × 1 × 2 superstructure in 3D) at the edge with enhanced Si4+ doping and the amorphous phase coverage. Such W-ZnO nanocondensates and particulates have modified Raman bands and photoluminescence due to internal compressive stress and overdoped Si4+ in substitutional and/or interstitial sites coupled with charge/volume compensating defects for potential optoelectronic and optocatalytic applications.

  8. Fluorescence-tagged amphiphilic brush copolymer encapsulated Gd2O3 core-shell nanostructures for enhanced T 1 contrast effect and fluorescent imaging

    Science.gov (United States)

    Wang, Fenghe; Peng, Erwin; Liu, Feng; Li, Pingjing; Fong Yau Li, Sam; Xue, Jun Min

    2016-10-01

    To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd3+ ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.

  9. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility

    Directory of Open Access Journals (Sweden)

    Xuekun eDing

    2014-09-01

    Full Text Available Cognitive flexibility is a critical ability for adapting to an ever-changing environment in humans and animals. Deficits in cognitive flexibility are observed in most schizophrenia patients. Previous studies reported that the medial prefrontal cortex-to-ventral striatum and orbital frontal cortex-to-dorsal striatum circuits play important roles in extra- and intra-dimensional strategy switching, respectively. However, the precise function of striatal subregions in flexible behaviors is still unclear. N-methyl-D-aspartate receptors (NMDARs are major glutamate receptors in the striatum that receive glutamatergic projections from the frontal cortex. The membrane insertion of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs depends on NMDAR activation and is required in learning and memory processes. In the present study, we measured set-shifting and reversal learning performance in operant chambers in rats and assessed the effects of blocking NMDARs and Ca2+-permeable AMPARs in striatal subregions on behavioral flexibility. The blockade of NMDARs in the nucleus accumbens (NAc core by AP5 impaired set-shifting ability by causing a failure to modify prior learning. The suppression of NMDAR-mediated transmission in the NAc shell induced a deficit in set-shifting by disrupting the learning and maintenance of novel strategies. During reversal learning, infusions of AP5 into the NAc shell and core impaired the ability to learn and maintain new strategies. However, behavioral flexibility was not significantly affected by blocking NMDARs in the dorsal striatum. We also found that the blockade of Ca2+-permeable AMPARs by NASPM in any subregion of the striatum did not affect strategy switching. These findings suggest that NMDAR-mediated glutamate transmission in the NAc contributes more to cognitive execution compared with the dorsal striatum.

  10. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter

    2014-01-01

    on photocatalytic performance remains unclear. Here we report the synthesis of core–shell structured AuPd NPs with the controlled deposition of one and two monolayers (ML) equivalent of Pd onto Au NPs by colloidal and photodeposition methods. We have determined the shell composition and thickness......The development of efficient photocatalytic routines for producing hydrogen is of great importance as society moves away from energy sources derived from fossil fuels. Recent studies have identified that the addition of metal nanoparticles to TiO2 greatly enhances the photocatalytic performance...... of these materials towards the reforming of alcohols for hydrogen production. The core–shell structured Au–Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness...

  11. Repeated morphine pretreatment reduces glutamatergic synaptic potentiation in the nucleus accumbens induced by acute morphine exposure%慢性吗啡预处理减弱急性吗啡对伏隔核谷氨酸能突触传递的影响

    Institute of Scientific and Technical Information of China (English)

    吴晓杰; 张静; 魏春玲; 刘志强; 任维

    2012-01-01

    Repeated exposure to morphine leads to the addiction, which influences its clinical application seriously. The glutamatergic projection from prefrontal cortex (PFC) to the nucleus accumbens (Nac) plays an important role in rewarding effects. It is still unknown whether morphine exposure changes PFC-Nac synaptic transmission. To address this question, in vivo field excitatory post-synaptic potentials (fEPSPs) induced by electric stimulating PFC-Nac projection fibers were recorded to evaluate the effect of acute morphine exposure (10 mg/kg, s.c.) on glutamatergic synaptic transmission in Nac shell of repeated saline/morphine pretreated rats. It was showed that acute morphine exposure enhanced fEPSP amplitude and reduced paired-pulse ratio (PPR) in saline pretreated rats, which could be reversed by following naloxone injection (1 mg/kg, I.p.), an opiate receptor antagonist. However, repeated morphine pretreatment significantly inhibited both the enhancement of fEPSP amplitude and reduction of PPR induced by acute morphine exposure. Those results indicate that the initial morphine exposure enhances PFC-Nac synaptic transmission by pre-synaptic mechanisms, whereas morphine pretreatment occludes this effect.%吗啡长期作用后会产生成瘾(addiction),严重影响其临床应用.前额叶(prefrontal cortex,PFC)投射至伏隔核(nucleus accumbens,NAc)的谷氨酸能突触对奖赏效应有重要的调节作用,但该突触在吗啡成瘾中的具体作用尚不完全清楚.为探讨PFC至NAc的谷氨酸能突触在成瘾形成过程中的具体作用及其机制,本研究利用成年大鼠在体记录的方式,记录电刺激PFC至NAc谷氨酸能传入纤维引起的NAc壳区场兴奋性突触后电位(filed excitatory postsynaptic potential,fEPSP),观察慢性吗啡/盐水预处理后依次急性皮下注射吗啡及腹腔注射纳络酮对fEPSP幅值和配对脉冲比率(paired-pulse ratio,PPR)的影响.结果显示,与基础fEPSP相比,慢性盐水预处理组急

  12. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement.

    Science.gov (United States)

    Seo, Seung-Jun; Han, Sung-Mi; Cho, Jae-Hoon; Hyodo, Kazuyuki; Zaboronok, Alexander; You, He; Peach, Ken; Hill, Mark A; Kim, Jong-Ki

    2015-11-01

    Core-inner-valence ionization of high-Z nanoparticle atomic clusters can de-excite electrons through various interatomic de-excitation processes, thereby leading to the ionization of both directly exposed atoms and adjacent neutral atoms within the nanoparticles, and to an enhancement in photon-electron emission, which is termed the nanoradiator effect. To investigate the nanoradiator-mediated dose enhancement in the radio-sensitizing of high-Z nanoparticles, the production of reactive oxygen species (ROS) was measured in a gadolinium oxide nanoparticle (Gd-oxide NP) solution under core-inner-valence excitation of Gd with either 50 keV monochromatic synchrotron X-rays or 45 MeV protons. This measurement was compared with either a radiation-only control or a gadolinium-chelate magnetic resonance imaging contrast agent solution containing equal amounts of gadolinium as the separate atomic species in which Gd-Gd interatomic de-excitations are absent. Ionization excitations followed by ROS measurements were performed on nanoparticle-loaded cells or aqueous solutions. Both photoexcitation and proton impact produced a dose-dependent enhancement in the production of ROS by a range of factors from 1.6 to 1.94 compared with the radiation-only control. Enhanced production of ROS, by a factor of 1.83, was observed from Gd-oxide NP atomic clusters compared with the Gd-chelate molecule, with a Gd concentration of 48 μg/mL in the core-level photon excitation, or by a factor of 1.82 under a Gd concentration of 12 μg/mL for the proton impact at 10 Gy (p < 0.02). The enhanced production of ROS in the irradiated nanoparticles suggests the potential for additional therapeutic dose enhancements in radiation treatment via the potent Gd-Gd interatomic de-excitation-driven nanoradiator effect.

  13. Elastic platonic shells.

    Science.gov (United States)

    Yong, Ee Hou; Nelson, David R; Mahadevan, L

    2013-10-25

    On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.

  14. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  15. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    Science.gov (United States)

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-11-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  16. The Mechanical Properties of Castor Seed Shell-polyester Matrix Composites

    OpenAIRE

    S.C. Nwigbo; T.C. Okafor; C.U. Atuanya

    2013-01-01

    A composite with a polyester matrix reinforced with chemically modified shells of castor seed (Ricinus communis) was produced. The effect of the shell (filler) on the mechanical properties of the composite was experimentally quantified. A preliminary study was earlier carried out the shell in terms of their chemical constituents, functional group and mechanical strength. The shell was ground and chemically treated to enhance good bonding and adhesion to the matrix. Composites were fabricated ...

  17. Changes of phosphorylation of cAMP response element binding protein in rat nucleus accumbens after chronic ethanol intake: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    LIJing; LIYue-Hua; YUANXiao-Ru

    2003-01-01

    AIM: To study the changes in the expression and phosphorylation of cAMP response element binding protein(CREB) in the rat nucleus accumbens after chronic ethanol intake and its withdrawal. METHODS: Ethanol wasgiven in drinking water at the concentration of 6 % (v/v), for one month. Changes in the levels of CREB andphospho-CREB (p-CREB) protein in the nucleus accumbens were measured by immunohistochemistry methods.RESULTS: Ethanol given to rats in drinking water decreased the level of p-CREB protein in the nucleus accumbens(-75 %) at the time of exposure to ethanol. The decrement of p-CREB protein in the nucleus accumbens remainedat 24 h (-35 %) and 72 h (-28 %) of ethanol withdrawal, which recovered toward control level after 7 d of ethanolwithdrawal. However, chronic ethanol, as well as ethanol withdrawal failed to produce any significant alteration inthe level of CREB protein in the nucleus accumbens. Naloxone (alone) treatment of rats had no effect on the levelsof CREB and p-CREB protein in the nucleus accumbens. However, when naloxone was administered concurrentlywith ethanol treatment, it antagonized the down-regulation of p-CREB protein in the nucleus accumbens (142 %) ofrats exposed to ethanol. CONCLUSION: A long-term intake of ethanol solution down-regulates the phosphoryla-tion of CREB in the nucleus accumbens, and those changes can be reversed by naloxone, which may be one kindof the molecular mechanisms associated with ethano1 dependence.

  18. Dynamic Analysis of Shells

    Directory of Open Access Journals (Sweden)

    Charles R. Steele

    1995-01-01

    Full Text Available Shell structures are indispensable in virtually every industry. However, in the design, analysis, fabrication, and maintenance of such structures, there are many pitfalls leading to various forms of disaster. The experience gained by engineers over some 200 years of disasters and brushes with disaster is expressed in the extensive archival literature, national codes, and procedural documentation found in larger companies. However, the advantage of the richness in the behavior of shells is that the way is always open for innovation. In this survey, we present a broad overview of the dynamic response of shell structures. The intention is to provide an understanding of the basic themes behind the detailed codes and stimulate, not restrict, positive innovation. Such understanding is also crucial for the correct computation of shell structures by any computer code. The physics dictates that the thin shell structure offers a challenge for analysis and computation. Shell response can be generally categorized by states of extension, inextensional bending, edge bending, and edge transverse shear. Simple estimates for the magnitudes of stress, deformation, and resonance in the extensional and inextensional states are provided by ring response. Several shell examples demonstrate the different states and combinations. For excitation frequency above the extensional resonance, such as in impact and acoustic excitation, a fine mesh is needed over the entire shell surface. For this range, modal and implicit methods are of limited value. The example of a sphere impacting a rigid surface shows that plastic unloading occurs continuously. Thus, there are no short cuts; the complete material behavior must be included.

  19. Extracellular citrulline levels in the nucleus accumbens during the acquisition and extinction of a classical conditioned reflex with pain reinforcement.

    Science.gov (United States)

    Savel'ev, S A; Saul'skaya, N B

    2007-03-01

    Studies on Sprague-Dawley rats using in vivo microdialysis and HPLC showed that the acquisition and performance of a classical conditioned reflex with pain reinforcement was accompanied by increases in the concentrations of citrulline (a side product of nitric oxide formation) and arginine (the substrate of NO synthase) in the intercellular space of the nucleus accumbens. During extinction of the reflex, there was a decrease in the elevation of extracellular citrulline in this brain structure, which correlated with the extent of extinction of the reflex. Recovery of the reflex led to increases in arginine and citrulline levels in the nucleus accumbens. These data suggest that there is an increase in nitric oxide production in the nucleus accumbens during the acquisition and performance of a classical conditioned reflex with pain reinforcement, which decreases as the reflex is extinguished and recovers with recovery of the reflex.

  20. Deep brain stimulation of the nucleus accumbens for the treatment of addiction.

    Science.gov (United States)

    Müller, Ulf J; Voges, Jürgen; Steiner, Johann; Galazky, Imke; Heinze, Hans-Jochen; Möller, Michaela; Pisapia, Jared; Halpern, Casey; Caplan, Arthur; Bogerts, Bernhard; Kuhn, Jens

    2013-04-01

    Despite novel medications and other therapeutic strategies, addiction to psychotropic substances remains one of the most serious public health problems worldwide. In this review, beginning with an introduction of deep brain stimulation (DBS), we highlight the importance of the nucleus accumbens (NAc) in the context of the reward circuitry and addictive behavior. We will provide a short historic overview of other neurosurgical approaches to treat addiction and describe the experimental and preclinical data on DBS in addiction. Finally, we call attention to key ethical issues related to using DBS to treat addiction that are important for future research and the design of clinical trials.

  1. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning.

    Science.gov (United States)

    Smith-Roe, S L; Kelley, A E

    2000-10-15

    The nucleus accumbens, a brain structure ideally situated to act as an interface between corticolimbic information-processing regions and motor output systems, is well known to subserve behaviors governed by natural reinforcers. In the accumbens core, glutamatergic input from its corticolimbic afferents and dopaminergic input from the ventral tegmental area converge onto common dendrites of the medium spiny neurons that populate the accumbens. We have previously found that blockade of NMDA receptors in the core with the antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol) abolishes acquisition but not performance of an appetitive instrumental learning task (Kelley et al., 1997). Because it is currently hypothesized that concurrent dopamine D(1) and glutamate receptor activation is required for long-term changes associated with plasticity, we wished to examine whether the dopamine system in the accumbens core modulates learning via NMDA receptors. Co-infusion of low doses of the D(1) receptor antagonist SCH-23390 (0.3 nmol) and AP-5 (0.5 nmol) into the accumbens core strongly impaired acquisition of instrumental learning (lever pressing for food), whereas when infused separately, these low doses had no effect. Infusion of the combined low doses had no effect on indices of feeding and motor activity, suggesting a specific effect on learning. We hypothesize that co-activation of NMDA and D(1) receptors in the nucleus accumbens core is a key process for acquisition of appetitive instrumental learning. Such an interaction is likely to promote intracellular events and gene regulation necessary for synaptic plasticity and is supported by a number of cellular models.

  2. Multi-Shell Hollow Nanogels with Responsive Shell Permeability.

    Science.gov (United States)

    Schmid, Andreas J; Dubbert, Janine; Rudov, Andrey A; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I; Richtering, Walter

    2016-03-17

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.

  3. Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens.

    Science.gov (United States)

    Wong, L S; Eshel, G; Dreher, J; Ong, J; Jackson, D M

    1991-04-01

    The application of 1.2 and 12.0 micrograms/side of the GABAA receptor agonist 3-aminopropane sulphonic acid bilaterally into the nucleus accumbens (Acb) of rats nonsignificantly depressed locomotor activity as assessed in automated Animex activity cages, while the highest dose (60 micrograms/side) significantly stimulated activity. The GABAA receptor antagonists picrotoxinin (0.0625 and 0.125 micrograms/saide) and bicuculline (0.895 micrograms/side) produced forward locomotion around the cage accompanied by a number of other behaviours. The GABAB agonist baclofen (0.023 and 0.092 micrograms/side) induced a short-lasting (18 min) locomotor depression. None of the GABAB antagonists tested (2-hydroxysaclofen 2.6 micrograms/side, two novel beta-(benzo[b]furan) analogues of baclofen 9G or 9H each 6.8 micrograms/side, 4-aminobutylphosphonic acid 1.32 micrograms/side and phaclofen 0.535 and 2 micrograms/side) significantly affected locomotor activity. In rats pretreated with reserpine and alpha-methyl-p-tyrosine, picrotoxinin (0.0625 and 0.125 micrograms/side) did not significantly alter locomotor activity. Furthermore, when picrotoxinin (0.0625 micrograms/side) was combined with either the selective dopamine (DA) D1 agonist SKF38393 or the selective D2 agonist quinpirole, no significant alteration in locomotor function occurred. When SKF38393 and quinpirole were coadministered, significant stimulation occurred which was further enhanced by the addition of picrotoxinin. It is concluded that GABAA receptors, together with D1 and D2 receptors, play a major role in modulating the control of motor function by the Acb of rats.

  4. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    Science.gov (United States)

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  5. Does incentive-elicited nucleus accumbens activation differ by substance of abuse? An examination with adolescents.

    Science.gov (United States)

    Karoly, Hollis C; Bryan, Angela D; Weiland, Barbara J; Mayer, Andrew; Dodd, Andrew; Feldstein Ewing, Sarah W

    2015-12-01

    Numerous questions surround the nature of reward processing in the developing adolescent brain, particularly in regard to polysubstance use. We therefore sought to examine incentive-elicited brain activation in the context of three common substances of abuse (cannabis, tobacco, and alcohol). Due to the role of the nucleus accumbens (NAcc) in incentive processing, we compared activation in this region during anticipation of reward and loss using a monetary incentive delay (MID) task. Adolescents (ages 14-18; 66% male) were matched on age, gender, and frequency of use of any common substances within six distinct groups: cannabis-only (n=14), tobacco-only (n=34), alcohol-only (n=12), cannabis+tobacco (n=17), cannabis+tobacco+alcohol (n=17), and non-using controls (n=38). All groups showed comparable behavioral performance on the MID task. The tobacco-only group showed decreased bilateral nucleus accumbens (NAcc) activation during reward anticipation as compared to the alcohol-only group, the control group, and both polysubstance groups. Interestingly, no differences emerged between the cannabis-only group and any of the other groups. Results from this study suggest that youth who tend toward single-substance tobacco use may possess behavioral and/or neurobiological characteristics that differentiate them from both their substance-using and non-substance-using peers.

  6. Structural Evolution of Co-Based Metal Organic Frameworks in Pyrolysis for Synthesis of Core-Shells on Nanosheets: Co@CoOx@Carbon-rGO Composites for Enhanced Hydrogen Generation Activity.

    Science.gov (United States)

    Xing, Congcong; Liu, Yanyan; Su, Yongheng; Chen, Yinghao; Hao, Shuo; Wu, Xianli; Wang, Xiangyu; Cao, Huaqiang; Li, Baojun

    2016-06-22

    In this article, Co-based metal organic frameworks (MOFs) with two shapes were used as pyrolysis precursor to synthesize multilayer core-shells composites loaded on reduced graphene oxide (rGO) sheets. The core-shell structures were obtained by the formation of cores from metal ions and carbon shells from carbonization of ligands. Controllable oxidation of Co cores to CoOx shells generated multilayer core-shell structures anchored onto the surface of rGO sheets. The N-doped composites were obtained by adding poly vinylpyrrolidone. The multilayer core-shells composites exhibited superior catalytic activity toward hydrogen generation compared to their single layer counterparts. By using the N-doped multilayer composites, high hydrogen generation specific rate of 5560 mL min(-1) gCo(-1) was achieved at room temperature. The rGO sheets in composites improved their structure stability. These catalysts exhibited high stability after used five cycling. This synergistic strategy proposes simple, efficient, and versatile blue-prints for the fabrication of rGO composites from MOFs-based precursors.

  7. Fabrication of diamond shells

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  8. Sensational spherical shells

    Science.gov (United States)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  9. Stress Resultant Based Elasto-Viscoplastic Thick Shell Model

    Directory of Open Access Journals (Sweden)

    Pawel Woelke

    2012-01-01

    Full Text Available The current paper presents enhancement introduced to the elasto-viscoplastic shell formulation, which serves as a theoretical base for the finite element code EPSA (Elasto-Plastic Shell Analysis [1–3]. The shell equations used in EPSA are modified to account for transverse shear deformation, which is important in the analysis of thick plates and shells, as well as composite laminates. Transverse shear forces calculated from transverse shear strains are introduced into a rate-dependent yield function, which is similar to Iliushin's yield surface expressed in terms of stress resultants and stress couples [12]. The hardening rule defined by Bieniek and Funaro [4], which allows for representation of the Bauschinger effect on a moment-curvature plane, was previously adopted in EPSA and is used here in the same form. Viscoplastic strain rates are calculated, taking into account the transverse shears. Only non-layered shells are considered in this work.

  10. Novel highly ordered core–shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sonal; Hossain, Mohammad D.; Mayanovic, Robert A.; Wirth, Richard; Gordon, Robert A.

    2016-10-26

    Core–shell nanoparticles have potential for a wide range of applications due to the tunability of their magnetic, catalytic, electronic, optical, and other physicochemical properties. A frequent drawback in the design of core–shell nanoparticles and nanocrystals is the lack of control over an extensive, disordered, and compositionally distinct interface that occurs due to the dissimilarity of structural and compositional phases of the core and shell. In this work, we demonstrate a new hydrothermal nanophase epitaxy (HNE) technique to synthesize highly structurally ordered α-Cr2O3@α-Co0.38Cr1.62O2.92 inverted core–shell nanoparticles (CSNs) with evidence for the nanoscale growth of corundum structure beginning from the core and extending completely into the shell of the CSNs with minimal defects at the interface. The high-resolution TEM results show a sharp interface exhibiting epitaxial atomic registry of shell atoms over highly ordered core atoms. The XPS and Co K-edge XANES analyses indicate the +2 oxidation state of cobalt is incorporated in the shell of the CSNs. Our XPS and EXAFS results are consistent with oxygen vacancy formation in order to maintain charge neutrality upon substitution of the Co2+ ion for the Cr3+ ion in the α-Co0.38Cr1.62O2.92 shell. Furthermore, the CSNs exhibit the magnetic exchange bias effect, which is attributed to the exchange anisotropy at the interface made possible by the nanophase epitaxial growth of the α-Co0.38Cr1.62O2.92 shell on the α-Cr2O3 core of the nanoparticles. The combination of a well-structured, sharp interface and novel nanophase characteristics is highly desirable for nanostructures having enhanced magnetic properties.

  11. Dispersion relations and bending losses of cylindrical and spherical shells, slabs, and slot waveguides

    CERN Document Server

    Kozyreff, Gregory

    2016-01-01

    We derive formulas for Whispering Gallery Mode resonances and bending losses in infinite cylindrical dielectric shells and sets of concentric cylindrical shells. The formulas also apply to spherical shells and to sections of bent waveguides. The derivation is based on a WKB treatment of Helmholtz equation and can in principle be extended to any number of concentric shells. A distinctive limit analytically arises in the analysis when two shells are brought at very close distance to one another. In that limit, the two shells act as a slot waveguide. If the two shells are sufficiently apart, we identify a structural resonance between the individual shells, which can either lead to a substantial enhancement or suppression of radiation losses.

  12. Elevated [(18)F]FDOPA utilization in the periaqueductal gray and medial nucleus accumbens of patients with early Parkinson's disease

    DEFF Research Database (Denmark)

    Kumakura, Yoshitaka; Danielsen, Erik H; Gjedde, Albert;

    2009-01-01

    %) in the bilateral medial nucleus accumbens, whereas the expected declines in the trapping of FDOPA were seen in the caudate and putamen. This observation suggests hyperfunction of catecholamine fibres innervating specifically the limbic striatum, which could guide the design of future prospective FDOPA-PET studies...

  13. Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring

    NARCIS (Netherlands)

    Kuhn, J.; Gründler, T.O.J.; Bauer, R.; Huff, W.; Fischer, A.G.; Lenartz, D.; Maarouf, M.; Bührle, C.; Klosterkötter, J.; Ullsperger, M.; Sturm, V.

    2011-01-01

    Following recent advances in neuromodulation therapy for mental disorders, we treated one patient with severe alcohol addiction with deep brain stimulation (DBS) of the nucleus accumbens (NAc). Before and one year following the surgery, we assessed the effects of DBS within the NAc on the addiction

  14. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  15. TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice

    NARCIS (Netherlands)

    De Vry, Jochen; Vanmierlo, Tim; Martínez-Martínez, Pilar; Losen, Mario; Temel, Yasin; Boere, Janneke; Kenis, Gunter; Steckler, Thomas; Steinbusch, Harry W M; Baets, Marc De; Prickaerts, Jos

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) exerts antidepressant-like effects in the hippocampus and pro-depressant effects in the nucleus accumbens (NAc). It is thought that downstream signaling of the BDNF receptor TrkB mediates the effects of BDNF in these brain structures. Here, we evaluate how Tr

  16. Evolution of Luminescence with Shell's Thickness in Colloidal CdSe/CdS Core/Shell Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    LIANG Da-Shun; SHEN Li; WANG Zhi-Bing; CUI Yi-Ping; ZHANG Jia-Yu; YE Yong-Hong

    2008-01-01

    @@ We synthesize colloidal CdSe/CdS core/shell quantum clots with different shell thicknesses, and there are five samples including CdSe core dots, and CdSe/CdS core/shell dots with 1-4 CdS layers.X-ray diffraction and Raman measurements indicate that the stress in CdSe core becomes stronger with the increasing shell thickness, and the optical measurements show that when the shell becomes thicker, the photoluminescence quantum yield is enhanced, and the radiative decay is also expedited.The temperature-dependent optical spectra are measured.The relation between the microstructure and the optical properties is discussed.

  17. 银/二氧化钛核壳纳米颗粒对碲化镉纳米晶的荧光增强研究%Fluorescence Enhancement of CdTe Nanocystals Induced by Ag/TiO2 Core-shell Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    夏峥嵘; 李荣青

    2012-01-01

    利用新合成的复合纳米结构银/二氧化钛核壳纳米颗粒,研究了金属银纳米颗粒对碲化镉纳米晶层荧光的增强情况.结果表明,这种新型复合金属纳米结构能极大地增强发光纳米晶层的荧光强度.银/二氧化钛核壳纳米颗粒是以水合肼、硝酸银和四异丙氧基钛为原材料,利用胶体化学法在水溶液中合成.透射电子显微镜图片表明这种新合成的银/二氧化钛纳米材料基本上呈球形,有较为明显的核壳结构,中间黑色的核是银纳米颗粒,外层颜色较浅部分是二氧化钛壳层.另外,包裹二氧化钛壳层后,银纳米颗粒的表面等离子吸收带从409 nm红移至430 nm,也证实了这种新型核壳纳米材料的形成.将此合成方法得到的银/二氧化钛纳米颗粒和碲化镉纳米晶用旋转涂覆方法进行直接组合后,得到了银纳米颗粒对碲化镉纳米晶荧光的明显增强,并对其增强的物理过程进行了讨论.这种能够增强荧光团发光的新型复合银纳米结构将在发光器件、荧光成像、生物探测等方面具有一定的应用价值.%Metal-enhanced fluorescence from CdTe nanocrystals placed in close proximity to novel synthesized Ag/TiO2 core/shell nanoparticles films is studied. The Ag/TiO2 core-shell nanoparticles are synthesized in the aqueous solutions by colloid chemistry method. Transmission electron microscopy images show that mostly Ag/TiO2 core/shell nanoparticles are clearly core/shell structure and ball-shaped. The deep black cores are Ag nanoparticles and the light-colored shell are titania. In addition, the UV-Vis absorption spectra of Ag nanoparticles have a surface Plasmon absorption at 409 nm arising from the particles. A similar surface plasmon absorption due to Ag nanoparticles is observed for the titania-coated Ag nanoparticles at a wavelength longer than for the Ag nanoparticles. This absorption shift is caused by a high refractive index of the titania shell and

  18. Melamine-assisted one-pot synthesis of hierarchical nitrogen-doped carbon@MoS2 nanowalled core-shell microspheres and their enhanced Li-storage performances

    Science.gov (United States)

    Sun, Fugen; Wei, Yanju; Chen, Jianzhuang; Long, Donghui; Ling, Licheng; Li, Yongsheng; Shi, Jianlin

    2015-07-01

    A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g-1 at 100 mA g-1 after 100 cycles, and a rate capacity of 598 mA h g-1 at 2000 mA g-1 could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g-1 after 100 cycles at 100 mA g-1. These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries.A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology

  19. Active Constrained Layer Damping of Thin Cylindrical Shells

    Science.gov (United States)

    RAY, M. C.; OH, J.; BAZ, A.

    2001-03-01

    The effectiveness of the active constrained layer damping (ACLD) treatments in enhancing the damping characteristics of thin cylindrical shells is presented. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. Experiments are performed to verify the numerical predictions. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  20. From Ewald sphere to Ewald shell in nonlinear optics

    Science.gov (United States)

    Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-07-01

    Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.

  1. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard;

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...... the permeate flux could be enhanced by lowering the pressure. Hence, the amount of water-swollen material influences both cake thickness and resistance....

  2. Simulation for double shell pinch

    Institute of Scientific and Technical Information of China (English)

    Wang Gang-Hua; Hu Xi-Jing; Sun Cheng-Wei

    2004-01-01

    Basic shock phenomena are presented in a composite pinch, a hybrid of the Z-pinch. The successive transfer of current within the plasma structure is demonstrated by our calculations. Properties of the shock wave are described.The current distribution between the two shells after the outer shell hitting the inner shell is also discussed.

  3. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  4. Recent Advances in Shell Evolution with Shell-Model Calculations

    CERN Document Server

    Utsuno, Yutaka; Tsunoda, Yusuke; Shimizu, Noritaka; Honma, Michio; Togashi, Tomoaki; Mizusaki, Takahiro

    2014-01-01

    Shell evolution in exotic nuclei is investigated with large-scale shell-model calculations. After presenting that the central and tensor forces produce distinctive ways of shell evolution, we show several recent results: (i) evolution of single-particle-like levels in antimony and cupper isotopes, (ii) shape coexistence in nickel isotopes understood in terms of configuration-dependent shell structure, and (iii) prediction of the evolution of the recently established $N=34$ magic number towards smaller proton numbers. In any case, large-scale shell-model calculations play indispensable roles in describing the interplay between single-particle character and correlation.

  5. Template-free synthesis of core-shell TiO2 microspheres covered with high-energy {116}-facet-exposed N-doped nanosheets and enhanced photocatalytic activity under visible light.

    Science.gov (United States)

    Chen, Qifeng; Ren, Baosheng; Zhao, Yubao; Xu, Xun; Ge, Heyi; Guan, Ruifang; Zhao, Jincai

    2014-12-15

    Core-shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high-energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core-shell structure is difficult to achieve and requires multiple-steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high-energy facet production. Therefore, it is still a significant challenge to develop low-temperature, template-free, shape-controlled, and relative green self-assembly routes for the formation of core-shell-structured TiO2 microspheres with high-energy facets. Here, we report a template- and hydrofluoric acid free solvothermal self-assembly approach to synthesize core-shell TiO2 microspheres covered with high-energy {116}-facet-exposed nanosheets, an approach in which 1,4-butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high-energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6-tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core-shell structure, {116}-plane-oriented nanosheets, in situ N doping, and large surface areas has been found.

  6. PENGARUH PENGGUNAAN BAFFLE PADA SHELL-AND-TUBE HEAT EXCHANGER

    OpenAIRE

    Ekadewi Anggraini Handoyo

    2001-01-01

    Shell-and-tube heat exchanger is a device commonly used to transfer heat. To enhance the heat transfer occurred and to support the tubes inside the shell, baffles are installed. Better heat transfer is obviously expected in a heat exchanger. A research is done to find out the effect of baffle used toward the effectiveness and pressure drop in heat exchanger. The result is that the effectiveness increases when the baffles are installed. Effectiveness increases as the spacing between the baffle...

  7. An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2013-01-01

    Full Text Available An improved 8-node shell finite element applicable for the geometrically linear and nonlinear analyses of plates and shells is presented. Based on previous first-order shear deformation theory, the finite element model is further improved by the combined use of assumed natural strains and different sets of collocation points for the interpolation of the different strain components. The influence of the shell element with various conditions such as locations, number of enhanced membranes, and shear interpolation is also identified. By using assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, to characterize the efficiency of these modifications of the 8-node shell finite elements, numerical studies are carried out for the geometrically linear and non-linear analysis of plates and shells. In comparison to some other shell elements, numerical examples for the methodology indicate that the modified element described locking-free behavior and better performance. More specifically, the numerical examples of annular plate presented herein show good validity, efficiency, and accuracy to the developed nonlinear shell element.

  8. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Li, Zhina [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2014-09-30

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO{sub 2} or CeO{sub 2}), mixed abrasives ((PS + SiO{sub 2}) or (PS + CeO{sub 2})), core/shell composites (PS/SiO{sub 2} or PS/CeO{sub 2}), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate.

  9. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells.

    Science.gov (United States)

    Liu, Jiwei; Cheng, Jin; Che, Renchao; Xu, Junjie; Liu, Mengmei; Liu, Zhengwang

    2013-04-10

    Yolk-shell microspheres with magnetic Fe3O4 cores and hierarchical copper silicate shells have been successfully synthesized by combining the versatile sol-gel process and hydrothermal reaction. Various yolk-shell microspheres with different core size and shell thickness can be readily synthesized by varying the experimental conditions. Compared to pure Fe3O4, the as-synthesized yolk-shell microspheres exhibit significantly enhanced microwave absorption properties in terms of both the maximum reflection loss value and the absorption bandwidth. The maximum reflection loss value of these yolk-shell microspheres can reach -23.5 dB at 7 GHz with a thickness of 2 mm, and the absorption bandwidths with reflection loss lower than -10 dB are up to 10.4 GHz. Owing to the large specific surface area, high porosity, and synergistic effect of both the magnetic Fe3O4 cores and hierarchical copper silicate shells, these unique yolk-shell microspheres may have the potential as high-efficient absorbers for microwave absorption applications.

  10. Role of dopamine in the plasticity of glutamic acid decarboxylase messenger RNA in the rat frontal cortex and the nucleus accumbens.

    Science.gov (United States)

    Rétaux, S; Trovero, F; Besson, M J

    1994-12-01

    The modulatory role of dopamine (DA) on the expression of mRNA encoding the large isoform of glutamic acid decarboxylase (GAD67), the biosynthesis enzyme of gamma aminobutyric acid (GABA), was examined in GABA neurons of two structures innervated by DA neurons originating from the ventral tegmental area (VTA): the medial frontal cortex (MFC) and the nucleus accumbens (NAcc). A bilateral electrolytic lesion of VTA was performed in rats to produce a DA denervation of both the MFC and NAcc. The efficacy of VTA lesions was verified by measurement of locomotor activity and by immunohistochemical detection of tyrosine hydroxylase in the mesencephalon. GAD67 mRNA was detected by in situ hybridization histochemistry using a 35S-labelled cDNA probe. Densitometric analysis of GAD67 mRNA hybridization signals revealed in VTA-lesioned rats a significant decrease (-24%) in GAD67 mRNA levels in the prelimbic area of the MFC and no significant effect in the anterior cingulate area or the frontoparietal cortex. Single cell analyses by computer-assisted grain counting showed that the decrease in GAD67 mRNA levels in prelimbic MFC was due to a change in GAD67 mRNA expression in a subpopulation of GABA interneurons located in the deep cortical layers (V-VI). By contrast, in the NAcc of VTA-lesioned rats, GAD67 mRNA levels were significantly increased in the anterior part and in the core but were unchanged in the shell part. These results suggest that in two target structures of VTA DA neurons, GAD67 mRNA expression is, in normal conditions, under a tonic stimulatory and a tonic inhibitory DA control in the MFC and the NAcc respectively. A schematic diagram is proposed for functional interactions between these structures.

  11. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation

    Directory of Open Access Journals (Sweden)

    Jianping eZhang

    2013-12-01

    Full Text Available Adenosine A2A receptors (A2ARs in the nucleus accumbens (Acb have been demonstrated to play an important role in the arousal effect of adenosine receptor antagonist caffeine, and may be involved in physiological sleep. To better understand the functions of these receptors in sleep, projections of A2AR neurons were mapped utilizing adeno-associated virus (AAV encoding humanized Renilla green fluorescent protein (hrGFP as a tracer for long axonal pathways. The Cre-dependent AAV was injected into the core (AcbC and shell (AcbSh of the Acb in A2AR-Cre mice. Immunohistochemistry was then used to visualize hrGFP, highlighting the perikarya of the A2AR neurons in the injection sites, and their axons in projection regions. The data revealed that A2AR neurons exhibit medium-sized and either round or elliptic perikarya with their processes within the Acb. Moreover, the projections from the Acb distributed to nuclei in the forebrain, diencephalon, and brainstem. In the forebrain, A2AR neurons from all Acb sub-regions jointly projected to the ventral pallidum, the nucleus of the diagonal band, and the substantia innominata. Heavy projections from the AcbC and the ventral AcbSh, and weaker projections from the medial AcbSh, were observed in the lateral hypothalamus and lateral preoptic area. In the brainstem, the Acb projections were found in the ventral tegmental area, while AcbC and ventral AcbSh also projected to the median raphe nucleus, the dorsal raphe nucleus, and the ventrolateral periaqueductal gray. The results supply a solid base for understanding the roles of the A2AR and A2AR neurons in the Acb, especially in the regulation of sleep.

  12. Comparison of the MK-801-induced appetitive extinction deficit with pressing for reward and associated pERK1/2 staining in prefrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Holahan, Matthew R; Westby, Erin P; Albert, Katrina

    2012-03-01

    Administration of the noncompetitive N-methyl-d-aspartate (NMDA)-receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) has been shown to produce extinction deficits on appetitive operant tasks. The present study sought to further explore this by comparing extinction pressing to pressing for the primary reward and examining associated neural correlates to determine if the MK-801 extinction profile resembled the behavioral and neural profile associated with pressing for primary reward. Immunohistochemical labeling of phosphorylated extracellular signal-regulated kinase-1 and -2(pERK1/2) in the prelimbic (PrL) and infralimbic (IL) cortices and nucleus accumbens shell (AcbSh) and core (AcbC) was examined after rewarded or extinction lever pressing conditions. A dose-response curve revealed a within-day extinction deficit following administration of 0.05 mg/kg MK-801. All doses of MK-801 were associated with reduced IL pERK1/2 staining but only the 0.05 mg/kg dose was associated with elevated AcbSh pERK1/2 labeling. Extinction pressing under the influence of MK-801 was elevated compared to that seen during rewarded pressing-whether on MK-801 or saline. Rewarded pressing following saline or MK-801 was associated with elevated pERK1/2 in the PrL with no similar patterns in the MK-801/extinction group. There was more pERK1/2 labeling in the AcbSh of the MK-801 extinction group than any other condition. These data suggest that the MK-801-induced extinction deficit may be due to the combination of an underactive cortical behavioral inhibition system and an overactive AcbSh reward system.

  13. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    Science.gov (United States)

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors.

  14. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    Science.gov (United States)

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.

  15. Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues.

    Science.gov (United States)

    Rapuano, Kristina M; Zieselman, Amanda L; Kelley, William M; Sargent, James D; Heatherton, Todd F; Gilbert-Diamond, Diane

    2017-01-03

    Obesity is a major public health concern that involves an interaction between genetic susceptibility and exposure to environmental cues (e.g., food marketing); however, the mechanisms that link these factors and contribute to unhealthy eating are unclear. Using a well-known obesity risk polymorphism (FTO rs9939609) in a sample of 78 children (ages 9-12 y), we observed that children at risk for obesity exhibited stronger responses to food commercials in the nucleus accumbens (NAcc) than children not at risk. Similarly, children at a higher genetic risk for obesity demonstrated larger NAcc volumes. Although a recessive model of this polymorphism best predicted body mass and adiposity, a dominant model was most predictive of NAcc size and responsivity to food cues. These findings suggest that children genetically at risk for obesity are predisposed to represent reward signals more strongly, which, in turn, may contribute to unhealthy eating behaviors later in life.

  16. Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues

    Science.gov (United States)

    Rapuano, Kristina M.; Zieselman, Amanda L.; Kelley, William M.; Sargent, James D.; Heatherton, Todd F.

    2017-01-01

    Obesity is a major public health concern that involves an interaction between genetic susceptibility and exposure to environmental cues (e.g., food marketing); however, the mechanisms that link these factors and contribute to unhealthy eating are unclear. Using a well-known obesity risk polymorphism (FTO rs9939609) in a sample of 78 children (ages 9–12 y), we observed that children at risk for obesity exhibited stronger responses to food commercials in the nucleus accumbens (NAcc) than children not at risk. Similarly, children at a higher genetic risk for obesity demonstrated larger NAcc volumes. Although a recessive model of this polymorphism best predicted body mass and adiposity, a dominant model was most predictive of NAcc size and responsivity to food cues. These findings suggest that children genetically at risk for obesity are predisposed to represent reward signals more strongly, which, in turn, may contribute to unhealthy eating behaviors later in life. PMID:27994159

  17. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....

  18. Nitric oxide in the nucleus accumbens is involved in retrieval of inhibitory avoidance memory by nicotine.

    Science.gov (United States)

    Zarrindast, Mohammad Reza; Piri, Morteza; Nasehi, Mohammad; Ebrahimi-Ghiri, Mohaddeseh

    2012-03-01

    In the present study, the possible effect of nitric oxide agents injected into the nucleus accumbens (NAc) in the presence or absence of nicotine on morphine state-dependent memory in adult male Wistar rats was investigated. As a model of memory, a step-through type inhibitory avoidance task was used. Post-training injection of morphine (4 and 6mg/kg) dose dependently induced the impairment of memory retention. Administration of morphine (4 and 6mg/kg) before retention induced state-dependent retrieval of the memory acquired under post-training morphine (6mg/kg) influence. Injection of nicotine before retention (0.25 and 0.5mg/kg) alone and nicotine (0.1, 0.25 and 0.5mg/kg) plus an ineffective dose of morphine (2mg/kg) reversed the post-training morphine-induced memory impairment. The amnesia elicited by morphine (6mg/kg) was also prevented by pre-retention intra-NAc administration of a nitric oxide synthase (NOS) inhibitor, l-NAME (0.24μg/rat, intra-NAc). Interestingly, an ineffective dose of nicotine (0.1mg/kg) in combination with low doses of l-NAME (0.06 and 0.12μg/rat, intra-NAc) synergistically improved memory performance impaired by morphine given after training. It is important to note that intra-NAc administration of l-NAME before retention impaired memory retrieval by itself. In contrast, pre-retention administration of l-arginine, a nitric oxide (NO) precursor (0.25 and 0.5μg/rat, intra-NAc), which had no effect alone, prevented the nicotine reversal of morphine effect on memory. The results suggest a possible role for nitric oxide of nucleus accumbens in the improving effect of nicotine on the morphine-induced amnesia and morphine state-dependent memory.

  19. Oyster shell calcium induced parotid swelling

    Directory of Open Access Journals (Sweden)

    Muthiah Palaniappan

    2014-01-01

    Full Text Available A 59 year old female consumer was started on therapy with oyster shell calcium in combination with vitamin D3 and she presented with swelling below the ear, after two doses. She stopped the drug by herself and the swelling disappeared in one day. She started the drug one day after recovery and again she developed the swelling. She was advised to stop the drug with a suggestion to take lemon to enhance parotid secretion and the swelling subsided. Calcium plays major role in salivary secretion and studies have shown reduced parotid secretion in rats, deficient of vitamin D. But in humans involvement of calcium and vitamin D3 in parotid secretion is unknown. However, the patient had no history of reaction though she had previously taken vitamin D3 with calcium carbonate which was not from oyster shell. Hence, we ruled out vitamin D3 in this reaction and suspecting oyster shell calcium as a culprit. This adverse drug reaction (ADR was assessed using World Health Organization (WHO causality assessment, Naranjo′s and Hartwig severity scales. As per WHO causality assessment scale, the ADR was classified as "certain". This reaction was analyzed as per Naranjo′s algorithm and was classified as probable. According to Hartwig′s severity scale the reaction was rated as mild. Our case is an example of a mild but rare adverse effect of oyster shell calcium carbonate which is widely used.

  20. Searching for nova shells around cataclysmic variables

    CERN Document Server

    Sahman, D I; Knigge, C; Marsh, T R

    2015-01-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using Halpha images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric Halpha Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of approx.2.5 arcmin, indicative of a nova eruption approximately 120 years ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined 4 asynchronous polars, but found no new shells around an...

  1. BOWOOSS: bionic optimized wood shells with sustainability

    Science.gov (United States)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  2. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways.

    Science.gov (United States)

    Barr, Jeffrey L; Deliu, Elena; Brailoiu, G Cristina; Zhao, Pingwei; Yan, Guang; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2015-08-01

    Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway

  3. In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability

    Science.gov (United States)

    Fang, Jiasheng; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Zhao, Shuo; Zhang, Hongxing; Sheng, Xiaoli

    2017-01-01

    A facile strategy has been developed for the synthesis of H-TS-Au microspheres (MCs) with double-shelled hollow architecture and sub-5 nm Au nanoparticles (Au NPs). The synthetic procedure involves the successive sol-gel template-assisted method for the preparation of uniform hierarchical hollow-in-hollow H-TS MCs with TiO2/mSiO2 as yolks/shells, and the unique deposition-precipitation method mediated with Au(en)2Cl3 precursors for the in-situ construction of extremely stable Au NPs under a low-temperature hydrogen reduction. The synthesized H-TS-Au MCs were characterized by TEM, SEM, FTIR, XRD, BET and UV-vis absorption spectra. Catalytic activity of H-TS-Au was evaluated using the reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4. Results established that H-TS-Au MCs possessed a large-size double-shelled architecture with high structural integrity and robustness,which can effectively confine numerous tiny Au NPs and restrict them from sintering aggregation even up to further calcination at 800 °C. Owing to the advantageous structural configuration and the synergistic effect of TiO2/mSiO2 double shells, the H-TS-Au MCs were demonstrated to exhibit a remarkable catalytic activity and stability, and preserve the intact morphology after 6 repeating reduction of 4-NP.

  4. Fabrication and characteristics of spindle Fe2O3@Au core/shell particles

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong-xia; YAO Jian-lin; GU Ren-ao

    2009-01-01

    The fabrication and characteristics of spindle Fe2O3@Au core/shell particle were investigated, and the effect of the core/shell nanoparticles as the surface enhanced Raman spectroscopy (SERS)-active substrates was studied. By using the seed-catalyzed reduction technique, anisotropic Fe2O3@Au core/shell particles with spindle morphology were successfully prepared. The Fe2O3 particles with spindle morphology were initially prepared as original cores. The Au nanoparticles of 2 nm were attached onto the Fe2O3 particles through organosilane molecules. Uniform Au shell formed onto Fe2O3 core modified by Au nanoparticles through the in-situ reduction of HAuCl4. The shell thickness was controlled through regulating the concentration of HAuCl4 solution. The results of TEM, XRD and UV-vis characterization show that the core/shell particles with the original shape of the Fe2O3 particles are obtained and these surfaces are covered by Au shell completely. The surface enhanced Raman spectrum of the probe molecules adsorbed on these core/shell substrates is strong and the intensity is enhanced with the increase of the thickness of Au shell or the aspect ratio of particles. The spindle Fe2O3@Au core/shell particles exhibit optimum (SERS) activity.

  5. Selective serotonin receptor stimulation of the medial nucleus accumbens causes differential effects on food intake and locomotion.

    Science.gov (United States)

    Pratt, Wayne E; Blackstone, Kaitlin; Connolly, Megan E; Skelly, Mary Jane

    2009-10-01

    Substantial evidence suggests that pharmacological manipulations of neural serotonin pathways influence ingestive behaviors. Despite the known role of the nucleus accumbens in directing appetitive and consummatory behavior, there has been little examination of the influences that serotonin receptors may play in modulating feeding within nucleus accumbens circuitry. In these experiments, the authors examined the effects of bilateral nucleus accumbens infusions of the 5-HT1/7 receptor agonist 5-CT (at 0.0, 0.5, 1.0, or 4.0 microg/0.5 microl/side), the 5-HT receptor agonist EMD 386088 (at 0.0, 1.0, and 4.0 microg/0.5 microl/side), or the 5-HT2C preferential agonist RO 60-0175 (at 0.0, 2.0, or 5.0 microg/0.5 microl/side) on food intake and locomotor activity in the rat. Intra-accumbens infusions of 5-CT caused a dose-dependent reduction of food intake and rearing behavior, both in food-restricted animals given 2-hr free access to Purina Protab RMH 3000 Chow, as well as in nondeprived rats offered 2-hr access to a highly palatable fat/sucrose diet. In contrast, stimulation of 5-HT receptors with EMD 386088 caused a dose-dependent increase of intake under both feeding conditions, without affecting measures of locomotion. Infusions of the moderately selective 5-HT2C receptor agonist RO 60-0175 had no effects on feeding or locomotor measures in food-restricted animals, but did reduce intake of the fat/sucrose in nonrestricted animals at the 2.0 microg, but not the 5.0 microg dose. Intra-accumbens infusions of selective antagonists for the 5-HT (SB 269970), 5-HT (SB 252585), and 5-HT2C (RS 102221) receptors did not affect locomotion, and demonstrated no lasting changes in feeding for any of the groups tested. These data are the first to suggest that the activation of different serotonin receptor subtypes within the feeding circuitry of the medial nucleus accumbens differentially influence consummatory behavior.

  6. Inhibition of the reinstatement of morphine-induced place preference in rats by high-frequency stimulation of the bilateral nucleus accumbens

    Institute of Scientific and Technical Information of China (English)

    MA Yu; CHEN Ning; WANG Hui-min; Meng Fan-gang; ZHANG Jian-guo

    2013-01-01

    Background Opiate addiction remains intractable in a large percentage of patients,and relapse is the biggest hurdle to recovery.Many studies have identified a central role of the nucleus accumbens (NAc) in addiction.Deep brain stimulation (DBS) has the advantages of being reversible,adjustable,and minimally invasive,and it has become a potential neurobiological intervention for addiction.The purpose of our study was to investigate whether high-frequency DBS in the NAc effectively attenuates the reinstatement of morphine seeking in morphine-primed rats.Methods A morphine-dependent group of rats was given increasing doses of morphine during conditioned place preference training.A control group of rats was given equal volumes of saline.After the establishment of this model,withdrawal syndromes were precipitated in these two groups by administering naloxone,and the differences in withdrawal symptoms between the groups were analyzed.Electrodes for DBS were implanted in the bilateral shell of the NAc in the experimental group.The rats were stimulated daily in the NAc for 5 hours per day over 30 days.Changes in the conditioned place preference test and withdrawal symptoms in the rats were investigated and place navigation studies were performed using the Morris water maze.The data were assessed statistically with one-way analysis of variance (ANOVA) followed by Tukey's tests for multiple post hoc comparisons.Results High-frequency stimulation of the bilateral NAc prevented the morphine-induced reinstatement of morphine seeking in the conditioned place preference test.The time spent in the white compartment by rats following 30 days of DBS ((268.25±25.07) seconds) was not significantly different compared with the time spent in the white compartment after relapse was induced by morphine administration ((303.29±34.22) seconds).High-frequency stimulation of the bilateral NAc accelerated the innate decay of drug craving in morphine-dependent rats without significantly

  7. Histamine H3 receptor activation inhibits dopamine synthesis but not release or uptake in rat nucleus accumbens.

    Science.gov (United States)

    Aquino-Miranda, Guillermo; Escamilla-Sánchez, Juan; González-Pantoja, Raúl; Bueno-Nava, Antonio; Arias-Montaño, José-Antonio

    2016-07-01

    We studied the effect of activating histamine H3 receptors (H3Rs) on rat nucleus accumbens (rNAcc) dopaminergic transmission by analyzing [(3)H]-dopamine uptake by synaptosomes, and dopamine synthesis and depolarization-evoked [(3)H]-dopamine release in slices. The uptake of [(3)H]-dopamine by rNAcc synaptosomes was not affected by the H3R agonist RAMH (10(-10)-10(-6) M). In rNAcc slices perfusion with RAMH (1 μM) had no significant effect on [(3)H]-dopamine release evoked by depolarization with 30 mM K(+) (91.4 ± 4.5% of controls). The blockade of dopamine D2 autoreceptors with sulpiride (1 μM) enhanced K(+)-evoked [(3)H]-dopamine release (168.8 ± 15.5% of controls), but under this condition RAMH (1 μM) also failed to affect [(3)H]-dopamine release. Dopamine synthesis was evaluated in rNAcc slices incubated with the l-dihydroxyphenylalanine (DOPA) decarboxylase inhibitor NSD-1015 (1 mM). Forskolin-induced DOPA accumulation (220.1 ± 10.4% of controls) was significantly reduced by RAMH (41.1 ± 6.5% and 43.5 ± 9.1% inhibition at 100 nM and 1 μM, respectively), and this effect was prevented by the H3R antagonist ciproxifan (10 μM). DOPA accumulation induced by preventing cAMP degradation with IBMX (iso-butyl-methylxantine, 1 mM) or by activating receptors for the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) with PACAP-27 (1 μM) was reduced (IBMX) or prevented (PACAP-27) by RAMH (100 nM). In contrast, DOPA accumulation induced by 8-Bromo-cAMP (1 mM) was not affected by RAMH (100 nM). These results indicate that in rNAcc H3Rs do not modulate dopamine uptake or release, but regulate dopamine synthesis by inhibiting cAMP formation and thus PKA activation. This article is part of the Special Issue entitled 'Histamine Receptors'.

  8. Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Stefania eZappettini

    2014-10-01

    Full Text Available We here provide functional and immunocytochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs and N-methyl-D-aspartic acid receptors (NMDARs in glutamatergic terminals of the nucleus accumbens (NAc. Immunocytochemical studies showed that a significant percentage of NAc terminals were glutamatergic and possessed GluN1 and α7-containing nAChR. A short-term pre-exposure of synaptosomes to nicotine (30 µM or choline (1 mM caused a significant potentiation of the 100 µM NMDA-evoked [3H]D-aspartate ([3H]D-Asp outflow, which was prevented by α-bungarotoxin (100 nM. The pre-exposure to nicotine (100 µM or choline (1 mM also enhanced the NMDA-induced cytosolic free calcium levels, as measured by FURA-2 fluorescence imaging in individual NAc terminals, an effect also prevented by α-bungarotoxin. Pre-exposure to the α4-nAChR agonists 5IA85380 (10 nM or RJR2429 (1 µM did not modify NMDA-evoked ([3H]D-Asp outflow and calcium transients. The NMDA-evoked ([3H]D-Asp overflow was partially antagonized by the NMDAR antagonists MK801, D-AP5, 5,7-DCKA and R(-CPP and unaffected by the GluN2B-NMDAR antagonists Ro256981 and ifenprodil. Notably, pre-treatment with choline increased GluN2A biotin-tagged proteins. In conclusion, our results show that the GluN2A-NMDA receptor function can be positively regulated in NAc terminals in response to a brief incubation with α7 but not α4 nAChRs agonists. This might be a general feature in different brain areas since a similar nAChR-mediated bolstering of NMDA-induced ([3H]D-Aspoverflow was also observed in hippocampal synaptosomes.

  9. 伏隔核微注射orexin-A对大鼠摄食和活动的影响%The Effect of Orexin-A on Feeding and Locomotor Activity in the Accumbens

    Institute of Scientific and Technical Information of China (English)

    张丽娜; 冯彩华; 柴薪; 王丛丛; 董海龙

    2012-01-01

    目的:探讨伏隔核微注射orexin-A后,大鼠摄食和活动的变化.方法:采用SD大鼠(250-280g),用脑立体定位仪在伏隔核植入微量注射管.大鼠随机分组,分别微注射乳酸格林液( Ringer's),orexin-A 100pmol和500pmol.观察微注射后大鼠0-1h,1-2h,2-4h撮食和0-30min,30-60min,60-90min,90-120min活动性变化.结果:Orexin-A微注射后,大鼠0-1h,1-2h摄食量增加;30-60min,60-90min,90-120min的活动性显著增加(P<0.05 vs对照组).结论:伏隔核是orexin-A刺激大鼠增加摄食量,提高其活动性的作用点.%Objective: To investigate the effect of orexin-A on feeding and locomotor activity in the accumbens shell (Accsh). Methods: SD rats (250-280) were used and implanted a guide cannulae into the accumbens shell (AccSh) by stereotaxic instrument. Then rats were randomly divided into three group and microinjected Ringer's solution, 100 pmol and 500 pmol orexin-A respectiveiy. The feeding were recorded in 0-1h,1-2h,2-4h and locomotor activity were recorded in 0-30 min, 30-60min,60-90min,90-120min after micin-jection. Results: Orexin-A augmented feeding in the 0-1 h and 1-2 h and stimulated locomotor activity in the 30-00 min, 60-90 min, and 90-120 min post-infusion (P < 0.05 vs control group). Conclusion: AccSh is a site of orexin A modulation of feeding behavior and locomotor activity.

  10. Effects of intra-amygdala R(+) 7-OH-DPAT on intra-accumbens d-amphetamine-associated learning. I. Pavlovian conditioning.

    Science.gov (United States)

    Hitchcott, P K; Phillips, G D

    1998-12-01

    We have previously obtained evidence that the mesoamygdaloid dopamine projection modulates the acquisition of a conditioned response (CR) elicited by presentation of a conditioned stimulus (CS) predicting the availability of a natural (sucrose) reward. This property was found to be dependent upon D3, but not D1 or D2, dopamine receptor activation. The aim of the present study was to determine whether the mesoamygdaloid dopamine projection is similarly involved in the acquisition of a drug-associated CR. Thus, two groups of rats with guide cannulae aimed at the nucleus accumbens and amygdala were trained using a Pavlovian conditioning procedure in which an initially neutral CS was paired with a computer-controlled, bilateral intraaccumbens infusion of d-amphetamine (the unconditioned stimulus: US). Conditioning sessions were conducted in standard operant chambers, with each session consisting of a single CS-US trial. For one group of rats, CS presentation was positively correlated with the drug US (Paired group), while for the second group CS and US presentations were negatively correlated (Unpaired group). During training, locomotor activity was recorded and was utilised as the measure both of the unconditioned (UR) and conditioned response (CR). A within-subjects design was utilised to investigate the effect of post-session bilateral intraamygdala administration of R(+) 7-OH-DPAT on the development of the drug-associated CR. Hence, both Paired and Unpaired groups were exposed to two different CSs which were presented on alternate sessions. Post-session bilateral intra-amygdala administration of R(+) 7-OH-DPAT (10 nmol) followed sessions in which one CS was presented, while intra-amygdala vehicle followed sessions in which the alternate CS was presented. The development of a CR occurred only in the presence of a CS that had been positively correlated with presentation of the drug US. Post-session, intra-amygdala administration of R(+) 7-OH-DPAT enhanced the

  11. Probing photoluminescence dynamics of colloidal CdSe/ZnS core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurvir; Tripathi, S.K., E-mail: surya@pu.ac.in

    2014-11-15

    The paper presents the synthesis of thiol capped CdSe/ZnS core/shell nanoparticles with CdSe core and ZnS shell. The thickness of the ZnS shell has been controlled by the regulating the amount of Zn/S precursors for reaction. The steady and transient photoluminescence properties substantiate the growth of ZnS shell over the CdSe cores. High resolution transmission electron microscope and the X-ray diffraction patterns reveal nanocrystalline particles of an average size 3.4 nm packed in wurtzite lattice. Photoluminescence excitation spectra as well as the excitation–emission matrix of CdSe and CdSe/ZnS evidence the growth of ZnS for Type I hetero-junction without interfering the energy states of core. By this method, ZnS layer of 8.84 Å is optimum for fluorescence enhancement of the core/shell quantum dots. The multiexponential fluorescence decay of the quantum dots represents independent radiative recombinations with overlapped energies. It is revealed that the average fluorescence lifetimes of quantum dots decreased with increase in ZnS shell, which is due to the enhanced contribution from initially populated excitonic recombination and the reduction in the surface trap states with shell growth. - Highlights: • Synthesis of MAA capped CdSe/ZnS core/shell QDs with different shell thicknesses. • Shell thickness has been controlled by the amount of shell precursors added. • ZnS shell significantly enhanced the fluorescence quantum yield of QDs. • Superposition of quantum confinement energy model employed for shell thickness. • Probed the fluorescence dynamics of QDs by time resolved fluorescence spectroscopy.

  12. 埃他卡林通过上调Kir6.1和Kir6.2 mRNA表达抑制可卡因激发诱导的大鼠纹状体和伏隔核多巴胺水平的增加%Iptkalim inhibits cocaine challenge-induced enhancement of dopamine levels in nucleus accumbens and striatum of rats by up-regulating Kir6.1 and Kir6.2 mRNA expression

    Institute of Scientific and Technical Information of China (English)

    刘昀; 何海蓉; 丁建花; 顾兵; 汪海; 胡刚

    2003-01-01

    AIM: To investigate the effect and mechanism of novel ATP-sensitive potassium channel opener (KCO) iptkalim(IPT) on acute and cocaine challenge-induced alterations in the levels of dopamine (DA) and glutamate (Glu) fromnucleus accumbens (NAc), striatum, and prefrontal cortex (PFC) in rats. METHODS: The levels of DA and Gluwere assayed using high performance liquid chromatography (HPLC) combined with amperometric and fluores-cent detection, respectively. The mRNA levels of Kir6.1, Kir6.2, SUR1, and SUR2 were measured by semiquantitativereverse transcription polymerase chain reaction (RT-PCR). RESULTS: IPT did not affect acute cocaine (30 mg/kg, ip)-induced elevations in either DA levels from NAc and striatum or Glu levels from NAc and PFC. An acutecocaine challenge (30 mg/kg, ip) on d 21 after withdrawal caused an elevation in DA levels in NAc and striatum.Moreover, the same treatment also increased Glu levels in PFC and NAc of cocaine-pretreated rats. Repeated IPTinjections reversed cocaine challenge-induced DA increase in NAc and striatum. Cocaine challenge increasedKir6.1 and Kir6.2 mRNA expression in striatum and NAc and only elevate Kir6.2 expression in PFC in both cocaine-pretreated rats and rats pretreated with IPT plus cocaine. Moreover, expression of Kir6.1 and Kir6.2 mRNA wasaugmented in rats pretreated with IPT plus cocaine compared to rats pretreated with cocaine alone. No significantchange was found in the SUR1 and SUR2 expression of all four groups. CONCLUSION: IPT inhibited cocainechallenge-induced enhancement of DA levels in NAc and striatum by up-regulating Kir6.1 and Kir6.2 mRNAexpression.%目的:研究钾通道开放剂埃他卡林对急慢性可卡因应用引起的伏隔核、纹状体和额叶皮层的多巴胺和谷氨酸水平变化的影响及其机制.方法:采用高效液相色谱与电化学检测、荧光检测联用的方法测定各脑区谷氨酸和多巴胺的含量;采用半定量逆转录聚合酶链反应(RT-PCR)研究ATP

  13. The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment

    OpenAIRE

    Kohls, Gregor; Perino, Michael T.; Taylor, James M.; Madva, Elizabeth N.; Cayless, Sarah J.; Troiani, Vanessa; Price, Elinora; Faja, Susan; Herrington, John D.; Schultz, Robert T.

    2013-01-01

    Human social motivation is characterized by the pursuit of social reward and the avoidance of social punishment. The ventral striatum/nucleus accumbens (VS/Nacc), in particular, has been implicated in the reward component of social motivation, i.e., the ‘wanting’ of social incentives like approval. However, it is unclear to what extent the VS/Nacc is involved in avoiding social punishment like disapproval, an intrinsically pleasant outcome. Thus, we conducted an event-related functional magne...

  14. Estudio de los Comportamientos Ingestivo, Locomotor, Reactivo y Muricida en Ratas con Lesión del Núcleo Accumbens.

    OpenAIRE

    Pérez Lucena, Esther

    2016-01-01

    Para delimitar la finalidad de la presente investigación se comenzará por presentar el objetivo general de la misma y a continuación sus objetivos concretos. - Objetivo General: Como se ha expuesto en los apartados anteriores, el núcleo accumbens ha sido estudiado desde muy diversos puntos de vista, no obstante, si se realiza una cuantificación de los trabajos publicados sobre el mismo para un conocimiento multidisciplinario e integral del núcle...

  15. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness.

    Science.gov (United States)

    Sun, Xiaolian; Li, Dongguo; Guo, Shaojun; Zhu, Wenlei; Sun, Shouheng

    2016-02-01

    Using a modified seed-mediated method, we synthesized core/shell Au/FePt nanoparticles (NPs) with Au sizes of 4, 7, and 9 nm and the FePt shell was controlled to have similar FePt compositions and 0.5, 1, and 2 nm thickness. We studied both core and shell effects on electrochemical and electrocatalytic properties of the Au/FePt NPs, and found that the Au core did change the redox chemistry of the FePt shell and promoted its electrochemical oxidation of methanol. The catalytic activity was dependent on the FePt thicknesses, but not much on the Au core sizes, and the 1 nm FePt shell was found to be the optimal thickness for catalyzing methanol oxidation in 0.1 M HClO4 + 0.1 M methanol, offering not only high activity (1.19 mA cm(-2) at 0.5 V vs. Ag/AgCl), but also enhanced stability. Our studies demonstrate a general approach to the design and tuning of shell catalysis in the core/shell structure to achieve optimal catalysis for important electrochemical reactions.

  16. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  17. Multi-shell effective interactions

    CERN Document Server

    Tsunoda, Naofumi; Hjorth-Jensen, Morten; Otsuka, Takaharu

    2013-01-01

    Background: Effective interactions, either derived from microscopic theories or based on fitting selected properties of nuclei in specific mass regions, are widely used inputs to shell-model studies of nuclei. Until recently, most shell-model calculations have been confined to a single oscillator shell. Recent interest in nuclei away from the stability line, requires however larger shell-model spaces. Since the derivation of microscopic effective interactions has been limited to degenerate model spaces, there are both conceptual and practical limits to present shell-model calculations that utilize such interactions. Purpose: The aim of this work is to present a novel microscopic method to calculate effective interactions for the nuclear shell model. Its main difference from existing theories is that it can be applied not only to degenerate model spaces but also to non-degenerate model spaces. Methods: The formalism is presented in the form of many-body perturbation theory based on the recently developed Exten...

  18. Nanocomposite plasmonic fluorescence emitters with core/shell configurations

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Xiaoyu; Brener, Igal; Luk, Ting Shan

    2010-07-16

    This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

  19. Nanocomposite plasmonic fluorescence emitters with core/shell configurations.

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Luk, Ting Shan; Miao, Xiaoyu

    2010-06-01

    This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

  20. Enhanced rate capability and cycling stability of core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Wu, Niandu; Cui, Caiyun; Zhou, Pingping [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan 243032 (China)

    2015-09-25

    Highlights: • Core/shell-structured CoFe{sub 2}O{sub 4}/onion-like carbon nanocapsules have been prepared. • CoFe{sub 2}O{sub 4}/C nanocapsules possess good reversibility even when the current density is up to 4C. • CoFe{sub 2}O{sub 4}/C nanocapsules obtain a discharge capacity of 914.2 mA h g{sup −1} after 500 cycles at 0.1C. - Abstract: In this work, core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules have been successfully fabricated by the arc discharge method and air-annealing process and confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The core/shell structure effectively withstands the volume change of CoFe{sub 2}O{sub 4} nanoparticles during the cycling process. Moreover, the onion-like C shells reduce the charge transfer resistance and facilitate electron and ion transport throughout the electrode. As a result, CoFe{sub 2}O{sub 4}/onion-like C nanocapsules exhibit excellent performance as a potential anode material for lithium ion batteries and deliver a reversible capacity of 914.2 mA h g{sup −1} at 0.1C, even after 500 cycles and recover its original capacity when the rate returns from 4C to the initial 0.1C after 120 cycles.

  1. Acetylcholine in the accumbens is decreased by diazepam and increased by benzodiazepine withdrawal: a possible mechanism for dependency.

    Science.gov (United States)

    Rada, Pedro; Hoebel, Bartley G

    2005-01-31

    Diazepam is a benzodiazepine used in the treatment of anxiety, insomnia and seizures, but with the potential for abuse. Like the other benzodiazepine anxiolytics, diazepam does not increase dopamine in the nucleus accumbens. This raises the question as to which other neurotransmitter systems are involved in diazepam dependence. The goal was to monitor dopamine and acetylcholine simultaneously following acute and chronic diazepam treatment and after flumazenil-induced withdrawal. Rats were prepared with microdialysis probes in the nucleus accumbens and given diazepam (2, 5 and 7.5 mg/kg) acutely and again after chronic treatment. Accumbens dopamine and acetylcholine decreased, with signs of tolerance to the dopamine effect. When these animals were put into the withdrawal state with flumazenil, there was a significant rise in acetylcholine (145%, P<0.001) with a smaller significant rise in dopamine (124%, P<0.01). It is suggested that the increase in acetylcholine release, relative to dopamine, is a neural component of the withdrawal state that is aversive.

  2. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Matthew R Holahan

    Full Text Available Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7, tris buffer (n = 6 or a randomized DNA oligonucleotide (n = 7. Animals were then treated systemically with MK-801 (0.1 mg/kg and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  3. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Science.gov (United States)

    Holahan, Matthew R; Madularu, Dan; McConnell, Erin M; Walsh, Ryan; DeRosa, Maria C

    2011-01-01

    Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  4. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    fractionation relations dictate that shell carbonate should be preferentially enriched in C-13 by 3 to 5 per mill (from 30° to 0°C) compared to EPF at a pH of 7.5. Anomalous positive excursions are rarely, if ever, observed in shell carbonate and they have yet to be associated with growth cessation markers in bivalves. The most likely explanation for the lack of anomalous positive values is that the percentage of metabolic carbon increases in EPF when bivalves experience stressful condition. This influx of metabolic carbon is balanced to a measureable extent by the enhanced fractionation of carbon isotopes during shell deposition from EPF at relatively low pH. These two processes may be combined in a quantitative model to extract a historical record of metabolic activity from the carbon isotope profiles of bivalve shells.

  5. NiCo2O4@La0.8Sr0.2MnO3 core-shell structured nanorods as efficient electrocatalyst for Lisbnd O2 battery with enhanced performances

    Science.gov (United States)

    Luo, Yong; Lu, Fanliang; Jin, Chao; Wang, Yarong; Yang, Ruizhi; Yang, Chenghao

    2016-07-01

    La1-xSrxMnO3 perovskite oxides are promising electrocatalysts for Lisbnd O2 batteries because of their excellent intrinsic catalytic activity for oxygen reduction reaction (ORR). However, the relatively inert catalytic activity for oxygen evolution reaction (OER) suppresses their practical applications in Lisbnd O2 battery. Here, nanoscale NiCo2O4 (NCO) layer with high OER catalytic activity has been homogenously incorporated into the surface of La0.8Sr0.2MnO3 (LSM) nanorods to form a core-shell structure. In this typical structure, the ORR mainly occurred on the LSM core, while the OER mainly occurred on the nanoscale NCO shell, and structure damage of catalysts coming from gas evolution can be greatly avoided. The synergy of high catalytic activity and core-shell structure results in the Lisbnd O2 battery with good rate capability and excellent cycle stability, which sustains 80 cycles without capacity attenuation at a high current density of 200 mA g-1.

  6. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  7. 7 CFR 51.2289 - Shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either....

  8. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization.

    Science.gov (United States)

    Peng, Qinghua; Sun, Xi; Liu, Ziyong; Yang, Jianghua; Oh, Ki-Wan; Hu, Zhenzhen

    2014-09-01

    Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102.

  9. Multi-Shell Shell Model for Heavy Nuclei

    CERN Document Server

    Sun, Y; Sun, Yang; Wu, Cheng-Li

    2003-01-01

    Performing a shell model calculation for heavy nuclei has been a long-standing problem in nuclear physics. Here we propose one possible solution. The central idea of this proposal is to take the advantages of two existing models, the Projected Shell Model (PSM) and the Fermion Dynamical Symmetry Model (FDSM), to construct a multi-shell shell model. The PSM is an efficient method of coupling quasi-particle excitations to the high-spin rotational motion, whereas the FDSM contains a successful truncation scheme for the low-spin collective modes from the spherical to the well-deformed region. The new shell model is expected to describe simultaneously the single-particle and the low-lying collective excitations of all known types, yet keeping the model space tractable even for the heaviest nuclear systems.

  10. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia.

    Science.gov (United States)

    Rolland, Benjamin; Amad, Ali; Poulet, Emmanuel; Bordet, Régis; Vignaud, Alexandre; Bation, Rémy; Delmaire, Christine; Thomas, Pierre; Cottencin, Olivier; Jardri, Renaud

    2015-01-01

    Both auditory hallucinations (AH) and visual hallucinations may occur in schizophrenia. One of the main hypotheses underlying their occurrence involves the increased activity of the mesolimbic pathway, which links the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). However, the precise contribution of the mesolimbic pathway in hallucinations across various sensory modalities has not yet been explored. We compared the resting-state functional connectivity (rs-FC) of the NAcc among 16 schizophrenia patients with pure AH, 15 with both visuoauditory hallucinations (VAH), and 14 without hallucinations (NoH). A between-group comparison was performed using random-effects ANCOVA (rs-FC of the bilateral NAcc as the dependent variable, groups as the between-subjects factor, age and Positive and Negative Syndrome Scale scores as covariates; q(false discovery rate [FDR]) hallucinations, but the NAcc FC patterns changed with the complexity of these experiences (ie, 0, 1, or 2 sensory modalities), rather than with severity. This might support the aberrant salience hypothesis of schizophrenia. Moreover, these findings suggest that future clinical and neurobiological studies of hallucinations should evaluate not only the global severity of symptoms but also their sensorial features.

  11. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens.

    Science.gov (United States)

    Dong, Zhifang; Han, Huili; Wang, Meina; Xu, Lin; Hao, Wei; Cao, Jun

    2006-01-01

    Learned association between drugs of abuse and context is essential for the formation of drug conditioned place preference (CPP), which is believed to engage many brain regions including hippocampus and nucleus accumbens (NAc). The underlying mechanisms are not fully understood. Here, we examined whether glucocorticoid receptors (GRs) of hippocampus and NAc influenced the formation of morphine CPP in Sprague Dawley rats. We found that systemic or intrahippocampal infused DMSO vehicle (DMSO 20% in saline) 30 min before daily morphine (10 mg/kg, s.c.) conditioning did not affect the formation of morphine CPP. In contrast, systemic administration (5 mg/kg, s.c.) or intrahippocampal infusion (0, 0.1, 1.0, 10, 20 microg per side) of the GR antagonist RU38486 blocked or impaired the formation of CPP in a dose-dependent manner, respectively. Furthermore, intra-NAc infused RU38486 (10 microg per side) but not DMSO vehicle also prevented the formation of CPP. These results demonstrate that both the GRs of hippocampus and NAc are necessary for the formation of morphine CPP, suggesting a neural network function of the GRs in forming the opiate-associated memory.

  12. PSMC5, a 19S Proteasomal ATPase, Regulates Cocaine Action in the Nucleus Accumbens.

    Directory of Open Access Journals (Sweden)

    Yoko H Ohnishi

    Full Text Available ΔFosB is a stable transcription factor which accumulates in the nucleus accumbens (NAc, a key part of the brain's reward circuitry, in response to chronic exposure to cocaine or other drugs of abuse. While ΔFosB is known to heterodimerize with a Jun family member to form an active transcription factor complex, there has not to date been an open-ended exploration of other possible binding partners for ΔFosB in the brain. Here, by use of yeast two-hybrid assays, we identify PSMC5-also known as SUG1, an ATPase-containing subunit of the 19S proteasomal complex-as a novel interacting protein with ΔFosB. We verify such interactions between endogenous ΔFosB and PSMC5 in the NAc and demonstrate that both proteins also form complexes with other chromatin regulatory proteins associated with gene activation. We go on to show that chronic cocaine increases nuclear, but not cytoplasmic, levels of PSMC5 in the NAc and that overexpression of PSMC5 in this brain region promotes the locomotor responses to cocaine. Together, these findings describe a novel mechanism that contributes to the actions of ΔFosB and, for the first time, implicates PSMC5 in cocaine-induced molecular and behavioral plasticity.

  13. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis.

    Science.gov (United States)

    Carlezon, William A; Thomas, Mark J

    2009-01-01

    The nucleus accumbens (NAc) is a critical element of the mesocorticolimbic system, a brain circuit implicated in reward and motivation. This basal forebrain structure receives dopamine (DA) input from the ventral tegmental area (VTA) and glutamate (GLU) input from regions including the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP). As such, it integrates inputs from limbic and cortical regions, linking motivation with action. The NAc has a well-established role in mediating the rewarding effects of drugs of abuse and natural rewards such as food and sexual behavior. However, accumulating pharmacological, molecular, and electrophysiological evidence has raised the possibility that it also plays an important (and sometimes underappreciated) role in mediating aversive states. Here we review evidence that rewarding and aversive states are encoded in the activity of NAc medium spiny GABAergic neurons, which account for the vast majority of the neurons in this region. While admittedly simple, this working hypothesis is testable using combinations of available and emerging technologies, including electrophysiology, genetic engineering, and functional brain imaging. A deeper understanding of the basic neurobiology of mood states will facilitate the development of well-tolerated medications that treat and prevent addiction and other conditions (e.g., mood disorders) associated with dysregulation of brain motivation systems.

  14. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex.

    Science.gov (United States)

    Muhammad, A; Carroll, C; Kolb, B

    2012-08-02

    The long-term effects of stress during development have been well characterized. However, the effects of developmental stress on the underlying neurological mechanisms related to the reward system are not well understood. The present report studied the long term effects of stress during development on the structural plasticity in the cortical and subcortical regions. Rats exposed to stress during embryonic development (prenatal stress; PS) or soon after birth (maternal separation; MS) were studied for structural alteration at the neuronal level in the nucleus accumbens (NAc), orbital frontal cortex (OFC), and medial prefrontal cortex (mPFC). The findings show that stress during development increased dendritic branching, length, and spine density in the NAc, and subregions of the PFC. PS experience increased dendritic branching and length in the mPFC apical and basilar dendrites. In contrast, a PS-associated decrease in dendritic branching and length was observed in the basilar branches of the OFC. MS resulted in an increase in dendritic growth and spine density in the subregions of the PFC. The effect of PS on neuroanatomy was more robust than MS despite the shorter duration and intensity. The altered dendritic growth and spine density associated with stress during development could have potential impact on NAc and PFC related behaviors.

  15. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons

    Science.gov (United States)

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Barker, David J.; Miranda-Barrientos, Jorge; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens-glutamatergic pathway remains unknown. Here, we report that nAcc photoactivation of mesoaccumbens-glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens-glutamate-fibers lack GABA, the aversion evoked by their photoactivation depends on glutamate and GABA receptor signaling, and not on dopamine receptor signaling. We found that mesoaccumbens-glutamatergic-fibers establish multiple asymmetric synapses on single parvalbumin-GABAergic interneurons, and that nAcc photoactivation of these fibers drives AMPA-mediated cellular firing of parvalbumin-GABAergic interneurons. These parvalbumin-GABAergic-interneurons, in turn, inhibit nAcc medium spiny output neurons, as such, controlling inhibitory neurotransmission within nAcc. The mesoaccumbens-glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion, instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin-GABAergic interneurons. PMID:27019014

  16. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption.

    Science.gov (United States)

    Bell, Richard L; Kimpel, Mark W; McClintick, Jeanette N; Strother, Wendy N; Carr, Lucinda G; Liang, Tiebing; Rodd, Zachary A; Mayfield, R Dayne; Edenberg, Howard J; McBride, William J

    2009-11-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-h dark cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24h/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hours after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (palcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal.

  17. Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning.

    Science.gov (United States)

    Sunsay, Ceyhun; Rebec, George V

    2014-10-01

    The prediction-error model of dopamine (DA) signaling has largely been confirmed with various appetitive Pavlovian conditioning procedures and has been supported in tests of Pavlovian extinction. Studies have repeatedly shown, however, that extinction does not erase the original memory of conditioning as the prediction-error model presumes, putting the model at odds with contemporary views that treat extinction as an episode of learning rather than unlearning of conditioning. Here, we combined fast-scan cyclic voltammetry (FSCV) with appetitive Pavlovian conditioning to assess DA release directly during extinction and reinstatement. DA was monitored in the nucleus accumbens core, which plays a key role in reward processing. Following at least 4 daily sessions of 16 tone-food pairings, fast-scan cyclic voltammetry was performed while rats received additional tone-food pairings followed by tone alone presentations (i.e., extinction). Acquisition memory was reinstated with noncontingent presentations of reward and then tested with cue presentation. Tone-food pairings produced transient (1- to 3-s) DA release in response to tone. During extinction, the amplitude of the DA response decreased significantly. Following presentation of 2 noncontingent food pellets, subsequent tone presentation reinstated the DA signal. Our results support the prediction-error model for appetitive Pavlovian extinction but not for reinstatement.

  18. Individual Variations in Nucleus Accumbens Responses Associated with Major Depressive Disorder Symptoms.

    Science.gov (United States)

    Misaki, Masaya; Suzuki, Hideo; Savitz, Jonathan; Drevets, Wayne C; Bodurka, Jerzy

    2016-02-16

    Abnormal reward-related responses in the nucleus accumbens (NAcc) have been reported for major depressive disorder (MDD) patients. However, variability exists in the reported results, which could be due to heterogeneity in neuropathology of depression. To parse the heterogeneity of MDD we investigated variation of NAcc responses to gain and loss anticipations using fMRI. We found NAcc responses to monetary gain and loss were significantly variable across subjects in both MDD and healthy control (HC) groups. The variations were seen as a hyperactive response subtype that showed elevated activation to the anticipation of both gain and loss, an intermediate response with greater activation to gain than loss, and a suppressed-activity with reduced activation to both gain and loss compared to a non-monetary condition. While these response variability were seen in both MDD and HC subjects, specific symptoms were significantly associated with the right NAcc variation in MDD. Both the hyper- and suppressed-activity subtypes of MDD patients had severe suicidal ideation and anhedonia symptoms. The intermediate subjects had less severity in these symptoms. These results suggest that differing propensities in reward responsiveness in the NAcc may affect the development of specific symptoms in MDD.

  19. Activin A is increased in the nucleus accumbens following a cocaine binge

    Science.gov (United States)

    Wang, Zi-Jun; Martin, Jennifer A.; Gancarz, Amy M.; Adank, Danielle N.; Sim, Fraser J.; Dietz, David M.

    2017-01-01

    Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1+ microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN+ neurons and GFAP+ astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse. PMID:28272550

  20. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis.

    Science.gov (United States)

    Zhang, Yi; Cheng, Yan; Ren, Xingcong; Hori, Tsukasa; Huber-Keener, Kathryn J; Zhang, Li; Yap, Kai Lee; Liu, David; Shantz, Lisa; Qin, Zheng-Hong; Zhang, Suping; Wang, Jianrong; Wang, Hong-Gang; Shih, Ie-Ming; Yang, Jin-Ming

    2012-08-15

    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.

  1. Features of compulsive checking behavior mediated by nucleus accumbens and orbital frontal cortex.

    Science.gov (United States)

    Dvorkin, Anna; Silva, Charmaine; McMurran, Thomas; Bisnaire, Liane; Foster, Jane; Szechtman, Henry

    2010-11-01

    The quinpirole sensitization model of obsessive-compulsive disorder was used to investigate the functional role that brain regions implicated in a neuroanatomical circuit of obsessive-compulsive disorder may play in compulsive checking behavior. Following repeated injections of saline or quinpirole (0.5mg/kg, twice per week, ×8 injections) to induce compulsive checking, rats received N-methyl-d-aspartate lesions of the nucleus accumbens core (NAc), orbital frontal cortex (OFC) and basolateral amygdala, or sham lesions. When retested at 17days post-surgery, the results showed effects of NAc and OFC but not basolateral amygdala lesion. NAc lesions affected measures indicative of the amount of checking behavior, whereas OFC lesions affected indices of staying away from checking. The pattern of results suggested that the functional roles of the NAc and OFC in checking behavior are to control the vigor of motor performance and focus on goal-directed activity, respectively. Furthermore, similarities in behavior between quinpirole sham rats and saline NAc lesion rats suggested that quinpirole may drive the vigor of checking by inhibition of NAc neurons, and that the NAc may be a site for the negative feedback control of checking.

  2. Activation of nucleus accumbens NMDA receptors differentially affects appetitive or aversive taste learning and memory

    Directory of Open Access Journals (Sweden)

    Luis eNuñez-Jaramillo

    2012-04-01

    Full Text Available Taste memory depends on motivational and post-ingestional consequences; thus, it can be aversive (e.g., conditioned taste aversion, CTA if a novel, palatable taste is paired with visceral malaise, or it can be appetitive if no intoxication appears after novel taste consumption, and a taste preference is developed. The nucleus accumbens (NAc plays a role in hedonic reactivity to taste stimuli, and recent findings suggest that reward and aversion are differentially encoded by the activity of NAc neurons. The present study examined whether the requirement for NMDA receptors in the NAc core during rewarding appetitive taste learning differs from that during aversive taste conditioning, as well as during retrieval of appetitive versus aversive taste memory, using the taste preference or CTA model, respectively. Bilateral infusions of NMDA (1 μg/μl, 0.5 μl into the NAc core were performed before acquisition or before retrieval of taste preference or CTA. Activation of NMDA receptors before taste preference training or CTA acquisition did not alter memory formation. Furthermore, NMDA injections before aversive taste retrieval had no effect on taste memory; however, 24 h later, CTA extinction was significantly delayed. Also, NMDA injections, made before familiar appetitive memory retrieval, interrupted the development of taste preference and produced a preference delay 24 h later. These results suggest that memory formation for a novel taste produces neurochemical changes in the NAc core that have differential requirements for NMDA receptors during retrieval of appetitive or aversive memory.

  3. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    Science.gov (United States)

    Albaugh, Daniel L.; Salzwedel, Andrew; van den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-09-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action.

  4. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    Science.gov (United States)

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  5. Shell model and spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Poves, P. [Madrid Univ. Autonoma and IFT, UAM/CSIC, E-28049 (Spain)

    2007-07-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  6. Biomineralisation in Mollusc shells

    Science.gov (United States)

    Dauphin, Y.; Cuif, J. P.; Salomé, M.; Williams, C. T.

    2009-04-01

    The main components of Mollusc shells are carbonate minerals: calcite and aragonite. ACC is present in larval stages. Calcite and aragonite can be secreted simultaneously by the mantle. Despite the small number of varieties, the arrangement of the mineral components is diverse, and dependant upon the taxonomy. They are also associated with organic components much more diverse, the diversity of which reflects the large taxonomic diversity. From TGA analyses, the organic content (water included) is high (>5% in some layers). The biomineralisation process is not a passive precipitation process, but is strongly controlled by the organism. The biological-genetic control is shown by the constancy of the arrangement of the layers, the mineralogy and the microstructure in a given species. Microstructural units (i.e. tablets, prisms etc.) have shapes that do not occur in non-biogenic counterparts. Nacreous tablets, for example, are flattened on their crystallographic c axis, which is normally the axis of maximum growth rate for non-biogenic aragonite. Morever, their inner structure is species-specific: the arrangements of nacreous tablets in Gastropoda - Cephalopoda, and in Bivalvia differ, and the inner arrangement of the nacreous tablets is different in ectocochlear and endocochlear Cephalopoda. The organic-mineral ratios also differ in the various layers of a shell. Differences in chemical composition also demonstrates the biological-genetic control: for example, aragonite has a low Sr content unknown in non-biogenic samples; two aragonitic layers in a shell have different Sr and Mg contents, S is higher in calcitic layers. Decalcification releases soluble (SOM) and insoluble (IOM) organic components. Insoluble components form the main part of the intercrystalline membranes, and contain proteins, polysaccharides and lipids. Soluble phases are present within the crystals and the intercrystalline membranes. These phases are composed of more or less glycosylated proteins

  7. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Science.gov (United States)

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  8. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    Science.gov (United States)

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles.

  9. Dynamic fracture modeling in shell structures based on XFEM

    NARCIS (Netherlands)

    Larsson, R.; Mediavilla, J.; Fagerström, M.

    2011-01-01

    Through-the-thickness crack propagation in thin-walled structures is dealt with in this paper. The formulation is based on the cohesive zone concept applied to a kinematically consistent shell model enhanced with an XFEM-based discontinuous kinematical representation. The resulting formulation compr

  10. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemical Engineering, Tsinghua University, Beijing (China); Zhang, Yan; Zhang, Qingwu [Department of Chemical Engineering, China University of Mining and Technology, Beijing (China); Wang, Xin; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China)

    2009-10-15

    Microcapsules for thermal energy storage and heat-transfer enhancement have attracted great attention. Microencapsulation of n-tetradecane with different shell materials was carried out by phase separation method in this paper. Acrylonitrile-styrene copolymer (AS), acrylonitrile-styrene-butadiene copolymer (ABS) and polycarbonate (PC) were used as the shell materials. The structures, morphologies and the thermal capacities of the microcapsules were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The ternary phase diagrams showed the potential encapsulation capabilities of the three shell materials. The effects of the shell/core ratio and the molecular weight of the shell material on the encapsulation efficiency and the thermal capacity of the microcapsules were also discussed. Microcapsules with melting enthalpy > 100 J/g, encapsulation efficiency 66-75%, particle size<1 {mu}m were obtained for all three shell materials. (author)

  11. Reduced Caudate and Nucleus Accumbens Response to Rewards in Unmedicated Subjects with Major Depressive Disorder

    Science.gov (United States)

    Pizzagalli, Diego A.; Holmes, Avram J.; Dillon, Daniel G.; Goetz, Elena L.; Birk, Jeffrey L.; Bogdan, Ryan; Dougherty, Darin D.; Iosifescu, Dan V.; Rauch, Scott L.; Fava, Maurizio

    2009-01-01

    Objective Major depressive disorder (MDD) is characterized by impaired reward processing, possibly due to dysfunction in the basal ganglia. However, few neuroimaging studies of depression have distinguished between anticipatory and consummatory phases of reward processing. Using functional magnetic resonance imaging (fMRI) and a task that dissociates anticipatory and consummatory phases of reward processing, the authors tested the hypothesis that MDD participants would show reduced reward-related responses in basal ganglia structures. Method A monetary incentive delay task was presented to 30 unmedicated MDD subjects and 31 healthy comparison subjects during fMRI scanning. Whole-brain analyses focused on neural responses to reward-predicting cues and rewarding outcomes (i.e., monetary gains). Secondary analyses focused on the relationship between anhedonic symptoms and basal ganglia volumes. Results Relative to comparison subjects, MDD participants showed significantly weaker responses to gains in the left nucleus accumbens and bilateral caudate. Group differences in these regions were specific to rewarding outcomes and did not generalize to neutral or negative outcomes, although relatively reduced responses to monetary penalties in MDD emerged in other caudate regions. By contrast, evidence for group differences during reward anticipation was weaker, although MDD subjects showed reduced activation to reward cues in a small sector of the left posterior putamen. Among MDD subjects, anhedonic symptoms and depression severity were associated with reduced bilateral caudate volume. Conclusions These results indicate that basal ganglia dysfunction in MDD may affect the consummatory phase of reward processing. Additionally, morphometric results suggest that anhedonia in MDD is related to caudate volume. PMID:19411368

  12. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    Science.gov (United States)

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux.

  13. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    Science.gov (United States)

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking.

  14. High-frequency stimulation of nucleus accumbens changes in dopaminergic reward circuit.

    Directory of Open Access Journals (Sweden)

    Na Yan

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is a potential remedial therapy for drug craving and relapse, but the mechanism is poorly understood. We investigated changes in neurotransmitter levels during high frequency stimulation (HFS of the unilateral NAc on morphine-induced rats. Sixty adult Wistar rats were randomized into five groups: the control group (administration of saline, the morphine-only group (systematic administration of morphine without electrode implantation, the morphine-sham-stimulation group (systematic administration of morphine with electrode implantation but not given stimulation, the morphine-stimulation group (systematic administration of morphine with electrode implantation and stimulation and the saline-stimulation group (administration of saline with electrode implantation and stimulation. The stimulation electrode was stereotaxically implanted into the core of unilateral NAc and microdialysis probes were unilaterally lowered into the ipsilateral ventral tegmental area (VTA, NAc, and ventral pallidum (VP. Samples from microdialysis probes in the ipsilateral VTA, NAc, and VP were analyzed for glutamate (Glu and γ-aminobutyric acid (GABA by high-performance liquid chromatography (HPLC. The levels of Glu were increased in the ipsilateral NAc and VP of morphine-only group versus control group, whereas Glu levels were not significantly changed in the ipsilateral VTA. Furthermore, the levels of GABA decreased significantly in the ipsilateral NAc, VP, and VTA of morphine-only group when compared with control group. The profiles of increased Glu and reduced GABA in morphine-induced rats suggest that the presence of increased excitatory neurotransmis