WorldWideScience

Sample records for accumbens shell enhances

  1. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    Science.gov (United States)

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  2. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    Directory of Open Access Journals (Sweden)

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  3. Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose 'Liking' and Intake but Scopolamine in Caudal Shell Shifts 'Liking' Toward 'Disgust' and 'Fear'.

    Science.gov (United States)

    Castro, Daniel C; Terry, Rachel A; Berridge, Kent C

    2016-07-01

    The nucleus accumbens (NAc) contains a hedonic hotspot in the rostral half of medial shell, where opioid agonist microinjections are known to enhance positive hedonic orofacial reactions to the taste of sucrose ('liking' reactions). Within NAc shell, orexin/hypocretin also has been reported to stimulate food intake and is implicated in reward, whereas blockade of muscarinic acetylcholine receptors by scopolamine suppresses intake and may have anti-reward effects. Here, we show that NAc microinjection of orexin-A in medial shell amplifies the hedonic impact of sucrose taste, but only within the same anatomically rostral site, identical to the opioid hotspot. By comparison, at all sites throughout medial shell, orexin microinjections stimulated 'wanting' to eat, as reflected by increases in intake of palatable sweet chocolates. At NAc shell sites outside the hotspot, orexin selectively enhanced 'wanting' to eat without enhancing sweetness 'liking' reactions. In contrast, microinjections of the antagonist scopolamine at all sites in NAc shell suppressed sucrose 'liking' reactions as well as suppressing intake of palatable food. Conversely, scopolamine increased aversive 'disgust' reactions elicited by bitter quinine at all NAc shell sites. Finally, scopolamine microinjections localized to the caudal half of medial shell additionally generated a fear-related anti-predator reaction of defensive treading and burying directed toward the corners of the transparent chamber. Together, these results confirm a rostral hotspot in NAc medial shell as a unique site for orexin induction of hedonic 'liking' enhancement, similar to opioid enhancement. They also reveal distinct roles for orexin and acetylcholine signals in NAc shell for hedonic reactions and motivated behaviors.

  4. Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences.

    Science.gov (United States)

    Kerfoot, Erin C; Chattillion, Elizabeth A; Williams, Cedric L

    2008-01-01

    The shell division of the nucleus accumbens receives noradrenergic input from neurons in the nucleus of the solitary tract (NTS) that transmit information regarding fluctuations in peripheral hormonal and autonomic activity. Accumbens shell neurons also receive converging inputs from limbic areas such as the hippocampus and amygdala that process newly acquired information. However, few studies have explored whether peripheral information regarding changes in emotional arousal contributes to memory processing in the accumbens. The beneficial effects on memory produced by emotional arousal and the corresponding activation of NTS neurons may be mediated through influences on neuronal activity in the accumbens shell during memory encoding. To explore this putative relationship, Experiment 1 examined interactions between the NTS and the accumbens shell in modulating memory for responses acquired after footshock training in a water-motivated inhibitory avoidance task. Memory for the noxious shock was significantly improved by posttraining excitation of noradrenergic NTS neurons. The enhanced retention produced by activating NTS neurons was attenuated by suppressing neuronal activity in the accumbens shell with bupivacaine (0.25%/0.5 microl). Experiment 2 examined the direct involvement of accumbens shell noradrenergic activation in the modulation of memory for psychologically arousing events such as a reduction in perceived reward value. Noradrenergic activation of the accumbens shell with phenylephrine (1.0 microg/0.5 microl) produced an enhancement in memory for the frustrating experience relative to control injections as evidenced by runway performance on an extended seven-day retention test. These findings demonstrate a functional relationship between NTS neurons and the accumbens shell in modulating memory following physiological arousal and identifies a role of norepinephrine in modulating synaptic activity in the accumbens shell to facilitate this process.

  5. Optogenetic Stimulation of Accumbens Shell or Shell Projections to Lateral Hypothalamus Produce Differential Effects on the Motivation for Cocaine

    OpenAIRE

    Larson, Erin B.; Wissman, Anne M.; Loriaux, Amy L.; Kourrich, Saïd; Self, David W.

    2015-01-01

    Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addict...

  6. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Directory of Open Access Journals (Sweden)

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  7. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  8. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  9. Oxytocin excites nucleus accumbens shell neurons in vivo.

    Science.gov (United States)

    Moaddab, Mahsa; Hyland, Brian I; Brown, Colin H

    2015-09-01

    Oxytocin modulates reward-related behaviors. The nucleus accumbens shell (NAcSh) is a major relay in the brain reward pathway and expresses oxytocin receptors, but the effects of oxytocin on the activity of NAcSh neurons in vivo are unknown. Hence, we used in vivo extracellular recording to show that intracerebroventricular (ICV) oxytocin administration (0.2μg) robustly increased medial NAcSh neuron mean firing rate; this increase was almost exclusively evident in slow-firing neurons and was not associated with any change in firing pattern. To determine whether oxytocin excitation of medial NAcSh neurons is modulated by drugs that impact the brain reward pathway, we next tested the effects of ICV oxytocin following repeated morphine treatment. In morphine-treated rats, ICV oxytocin did not affect the mean firing rate of medial NAcSh neurons. Taken together, these results show that oxytocin excites medial NAcSh neurons but does not do so after repeated morphine. This could be an important factor in oxytocin modulation of reward-related behaviors, such as drug addiction.

  10. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats.

    Science.gov (United States)

    Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W

    2011-11-09

    Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.

  11. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  12. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...

  13. Overexpression of 5-HT1B mRNA in nucleus accumbens shell projection neurons differentially affects microarchitecture of initiation and maintenance of ethanol consumption

    OpenAIRE

    Furay, AR; Neumaier, JF; Mullenix, AT; Kaiyala, KK; Sandygren, N; Hoplight, BJ

    2010-01-01

    Serotonin 1B (5-HT1B) heteroreceptors on nucleus accumbens shell (NAcSh) projection neurons have been shown to enhance the voluntary consumption of alcohol by rats, presumably by modulating the activity of the mesolimbic reward pathway. The present study examined whether increasing 5-HT1B receptors expressed on NAcSh projection neurons via viral mediated gene transfer enhances ethanol consumption during the initiation or maintenance phase of drinking and alters the temporal pattern of drinkin...

  14. Genetic sex and the volumes of the caudate-putamen, nucleus accumbens core and shell: original data and a review.

    Science.gov (United States)

    Wong, Jordan E; Cao, Jinyan; Dorris, David M; Meitzen, John

    2016-11-01

    Sex differences are widespread across vertebrate nervous systems. Such differences are sometimes reflected in the neural substrate via neuroanatomical differences in brain region volume. One brain region that displays sex differences in its associated functions and pathologies is the striatum, including the caudate-putamen (dorsal striatum), nucleus accumbens core and shell (ventral striatum). The extent to which these differences can be attributed to alterations in volume is unclear. We thus tested whether the volumes of the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell differed by region, sex, and hemisphere in adult Sprague-Dawley rats. As a positive control for detecting sex differences in brain region volume, we measured the sexually dimorphic nucleus of the medial preoptic area (SDN-POA). As expected, SDN-POA volume was larger in males than in females. No sex differences were detected in the volumes of the caudate-putamen, nucleus accumbens core or shell. Nucleus accumbens core volume was larger in the right than left hemisphere across males and females. These findings complement previous reports of lateralized nucleus accumbens volume in humans, and suggest that this may possibly be driven via hemispheric differences in nucleus accumbens core volume. In contrast, striatal sex differences seem to be mediated by factors other than striatal region volume. This conclusion is presented within the context of a detailed review of studies addressing sex differences and similarities in striatal neuroanatomy.

  15. The nucleus accumbens shell and the dorsolateral striatum mediate the reinforcing effects of cocaine through a serial connection

    NARCIS (Netherlands)

    Veeneman, Maartje M J; Damsteegt, Ruth; Vanderschuren, Louk J M J

    The reinforcing and addictive properties of cocaine are thought to rely on the dopaminergic innervation of the striatum. The ventromedial [i.e. nucleus accumbens shell (NAcc) shell] and dorsolateral [dorsolateral striatum (DLS)] regions of the striatum are serially connected, and it is thought that

  16. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine.

    Science.gov (United States)

    Larson, Erin B; Wissman, Anne M; Loriaux, Amy L; Kourrich, Saïd; Self, David W

    2015-02-25

    Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addictive behavior and mood. Presently, it is unknown whether there is a causal link between altered activity in the AcbSh-LH pathway and changes in the motivation for cocaine. In this study, we used an optogenetics approach to either globally stimulate AcbSh neurons or to selectively stimulate AcbSh terminal projections in the LH, in rats self-administering cocaine. We found that stimulation of the AcbSh-LH pathway enhanced the motivation to self-administer cocaine in progressive ratio testing, and led to long-lasting facilitation of cocaine-seeking behavior during extinction tests conducted after withdrawal from cocaine self-administration. In contrast, global AcbSh stimulation reduced extinction responding. We compared these opposing motivational effects with effects on mood using the forced swim test, where both global AcbSh neuron and selective AcbSh-LH terminal stimulation facilitated depression-like behavioral despair. Together, these findings suggest that the AcbSh neurons convey complex, pathway-specific modulation of addiction and depression-like behavior, and that these motivation and mood phenomenon are dissociable.

  17. Transfer of neuroplasticity from nucleus accumbens core to shell is required for cocaine reward.

    Directory of Open Access Journals (Sweden)

    Nicolas Marie

    Full Text Available It is well established that cocaine induces an increase of dendritic spines density in some brain regions. However, few studies have addressed the role of this neuroplastic changes in cocaine rewarding effects and have often led to contradictory results. So, we hypothesized that using a rigorous time- and subject-matched protocol would demonstrate the role of this spine increase in cocaine reward. We designed our experiments such as the same animals (rats were used for spine analysis and behavioral studies. Cocaine rewarding effects were assessed with the conditioned place preference paradigm. Spines densities were measured in the two subdivisions of the nucleus accumbens (NAcc, core and shell. We showed a correlation between the increase of spine density in NAcc core and shell and cocaine rewarding effects. Interestingly, when cocaine was administered in home cages, spine density was increase in NAcc core only. With anisomycin, a protein synthesis inhibitor, injected in the core we blocked spine increase in core and shell and also cocaine rewarding effects. Strikingly, whereas injection of this inhibitor in the shell immediately after conditioning had no effect on neuroplasticity or behavior, its injection 4 hours after conditioning was able to block neuroplasticity in shell only and cocaine-induced place preference. Thus, it clearly appears that the neuronal plasticity in the NAcc core is essential to induce plasticity in the shell, necessary for cocaine reward. Altogether, our data revealed a new mechanism in the NAcc functioning where a neuroplasticity transfer occurred from core to shell.

  18. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...... explored the potential role of NPY in addiction mechanisms using microdialysis to measure extracellular dopamine in vivo after infusion of NPY directly into the accumbal shell region of adult rats. NPY was found to dose-dependently increase extracellular dopamine levels, indicating that NPY could play...

  19. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  20. Functionally distinct dopamine signals in nucleus accumbens core and shell in the freely moving rat

    DEFF Research Database (Denmark)

    Dreyer, Jakob K.; Vander Weele, Caitlin M.; Lovic, Vedran

    2016-01-01

    Dynamic signaling of mesolimbic dopamine (DA) neurons has been implicated in reward learning, drug abuse, and motivation. However, this system is complex because firing patterns of these neurons are heterogeneous; subpopulations receive distinct synaptic inputs, and project to anatomically...... and functionally distinct downstream targets, including the nucleus accumbens (NAc) shell and core. The functional roles of these cell populations and their real-time signaling properties in freely moving animals are unknown. Resolving the real-time DA signal requires simultaneous knowledge of the synchronized...... activity of DA cell subpopulations and assessment of the down-stream functional effect ofDArelease. Because this is not yet possible solely by experimentation in vivo,we combine computational modeling and fast-scan cyclic voltammetry data to reconstruct the functionally relevantDAsignal in...

  1. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding

    Directory of Open Access Journals (Sweden)

    Teghpal eSingh

    2010-10-01

    Full Text Available The nucleus accumbens (NA has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10 sec CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  2. Nucleus accumbens shell, but not core, tracks motivational value of salt.

    Science.gov (United States)

    Loriaux, Amy L; Roitman, Jamie D; Roitman, Mitchell F

    2011-09-01

    To appropriately respond to an affective stimulus, we must be able to track its value across changes in both the external and internal environment. The nucleus accumbens (NAc) is a critical component of reward circuitry, but recent work suggests that the NAc encodes aversion as well as reward. It remains unknown whether differential NAc activity reflects flexible changes in stimulus value when it is altered due to a change in physiological state. We measured the activity of individual NAc neurons when rats were given intraoral infusions of a hypertonic salt solution (0.45 M NaCl) across multiple sessions in which motivational state was manipulated. This normally nonpreferred taste was made rewarding via sodium depletion, which resulted in a strong motivation to seek out and consume salt. Recordings were made in three conditions: while sodium replete (REP), during acute sodium depletion (DEP), and following replenishment of salt to normal sodium balance (POST). We found that NAc neurons in the shell and core subregions responded differently across the three conditions. In the shell, we observed overall increases in NAc activity when the salt solution was nonpreferred (REP) but decreases when the salt solution was preferred (DEP). In the core, overall activity was significantly altered only after sodium balance was restored (POST). The results lend further support to the selective encoding of affective stimuli by the NAc and suggest that NAc shell is particularly involved in flexibly encoding stimulus value based on motivational state.

  3. Repeated toluene exposure increases c-Fos in catecholaminergic cells of the nucleus accumbens shell.

    Science.gov (United States)

    Tomaszycki, Michelle L; Aulerich, Kelsey E; Bowen, Scott E

    2013-01-01

    Toluene is a frequently abused solvent. Previous studies have suggested that toluene acts like other drugs of abuse, specifically on the dopaminergic system in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of the mesolimbic pathway. Although changes in dopamine (DA) levels and c-Fos have been observed in both acute and repeated exposure paradigms, the extent to which c-Fos is localized to catecholaminergic cells is unknown. The present study tested the effects of repeated toluene exposure (1000-4000ppm) on locomotor activity and cells containing c-Fos, tyrosine hydroxylase (TH), or both in the core and shell of the NAc, as well as the anterior and posterior VTA. We focused our study on adolescents, since adolescence is a time of great neural change and a time when individuals tend to be more susceptible to drug abuse. In early tests, toluene dose-dependently increased locomotor activity. Repeated exposure to the highest concentration of toluene resulted in sensitization to toluene's effects on locomotor activity. Although the number of cells immunopositive for c-Fos or TH did not significantly differ across groups, cells immunopositive for TH+c-Fos were higher in the NAc shell of animals exposed to 4000ppm than in animals exposed to air (control) or 1000ppm. Taken together, these findings demonstrate that repeated high dose toluene exposure increases locomotor activity as well as activation of catecholaminergic cells in the shell of the NAc. © 2013 Elsevier Inc. All rights reserved.

  4. Nucleus Accumbens Core and Shell are Necessary for Reinforcer Devaluation Effects on Pavlovian Conditioned Responding.

    Science.gov (United States)

    Singh, Teghpal; McDannald, Michael A; Haney, Richard Z; Cerri, Domenic H; Schoenbaum, Geoffrey

    2010-01-01

    The nucleus accumbens (NA) has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10-s CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  5. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing.

    Science.gov (United States)

    Bassareo, V; Cucca, F; Frau, R; Di Chiara, G

    2015-11-01

    In order to investigate the role of modus operandi in the changes of nucleus accumbens (NAc) dopamine (DA) transmission in sucrose reinforcement, extracellular DA was monitored by microdialysis in the NAc shell and core of rats trained on a fixed-ratio 1 schedule to respond for sucrose pellets by nose poking and lever pressing respectively. After training, rats were tested on three different sessions: sucrose reinforcement, extinction and passive sucrose presentation. In rats responding by nose poking dialysate DA increased in the shell but not in the core under reinforced as well as under extinction sessions. In contrast, in rats responding by lever pressing dialysate DA increased both in the accumbens shell and core under reinforced and extinction sessions. Response non-contingent sucrose presentation increased dialysate DA in the shell and core of rats trained to respond for sucrose by nose poking as well as in those trained by lever pressing. In rats trained to respond for sucrose by nose poking on a FR5 schedule dialysate DA also increased selectively in the NAc shell during reinforced responding and in both the shell and core under passive sucrose presentation. These findings, while provide an explanation for the discrepancies existing in the literature over the responsiveness of shell and core DA in rats responding for food, are consistent with the notion that NAc shell and core DA encode different aspects of reinforcement.

  6. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression.

    Science.gov (United States)

    Barr, Jeffrey L; Forster, Gina L; Unterwald, Ellen M

    2014-08-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.

  7. Selecting danger signals: dissociable roles of nucleus accumbens shell and core glutamate in predictive fear learning.

    Science.gov (United States)

    Li, Susan S Y; McNally, Gavan P

    2015-06-01

    Conditioned stimuli (CSs) vary in their reliability as predictors of danger. Animals must therefore select among CSs those that are appropriate to enter into an association with the aversive unconditioned stimulus (US). The actions of prediction error instruct this stimulus selection so that when prediction error is large, attention to the CS is maintained and learning occurs but when prediction is small attention to the CS is withdrawn and learning is prevented. Here we studied the role of glutamate acting at rat nucleus accumbens shell (AcbSh) and core (AcbC) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in this selection of danger signals. Using associative blocking and unblocking designs in rats, we show that antagonizing AcbSh AMPA receptors via infusions of 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline-2,3-dione (NBQX; 0.5 μg) prevents the unblocking of fear learning, whereas antagonizing AcbC AMPA receptors via infusions of NBQX (0.5 μg) prevents both the blocking and unblocking of fear learning. These results identify dissociable but complementary roles for AcbSh and AcbC glutamate acting at AMPA receptors in selecting danger signals: AcbSh AMPA receptors upregulate attention and learning to CSs that signal surprising USs, whereas AcbC AMPA receptors encode the predicted outcome of each trial.

  8. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell.

    Science.gov (United States)

    Sharf, Ruth; Sarhan, Maysa; Dileone, Ralph J

    2008-08-01

    The lateral hypothalamic neuropeptide orexin (or hypocretin) is implicated in drug addiction. Although a role for orexin has been shown in reward and dependence, the molecular and neural mechanisms are unclear. We investigated the mechanism and neuroanatomic basis of orexin's role in morphine withdrawal. C57BL/6J mice received chronic morphine followed by naloxone (0 or 1 mg/kg, subcutaneous) to precipitate withdrawal. Before naloxone, mice received SB-334867 (0 or 20 mg/kg, intraperitoneal), an orexin 1 receptor (Ox1r) antagonist. Using immunohistochemistry, c-Fos, a marker of cell activation, was quantified in the nucleus accumbens (Acb), lateral hypothalamus (LH), ventral tegmental area (VTA), and locus coeruleus (LC). Retrograde tracing with fluorogold (FG) was performed to determine whether orexin neurons project directly to the Acb. SB-334867 before naloxone significantly attenuated withdrawal symptoms. Withdrawal was accompanied by an increase in c-Fos expression in the Acb shell (AcbSh), which was reduced by SB-334867 but had no effect on the VTA or the LC. Morphine withdrawal increased c-Fos expression in the dorsomedial (DMH) and perifornical (PFA) regions but not in the lateral region of the LH (LLH). Orexin neurons do not appear to form direct connections with Acb neurons. Altogether, these data demonstrate that orexin, acting via Ox1r, is critical for the expression of morphine withdrawal. AcbSh activation during withdrawal is dependent on Ox1r function and is likely mediated by indirect action of LH orexin neurons.

  9. NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell.

    Science.gov (United States)

    Desai, Sagar J; Upadhya, Manoj A; Subhedar, Nishikant K; Kokare, Dadasaheb M

    2013-06-15

    Although the interaction between endogenous neuropeptide Y (NPY) and opioidergic systems in processing of reward has been speculated, experimental evidence is lacking. We investigated the role of NPY, and its Y1 receptors, in the nucleus accumbens shell (AcbSh) in morphine induced reward and reinforcement behavior. Rats were implanted with cannulae targeted at AcbSh for drug administration, and with stimulating electrode in the medial forebrain bundle (MFB). The rats were then conditioned in an operant conditioning chamber for electrical self-stimulation of the MFB. Increased rate of lever pressings was evaluated against the frequency of the stimulating current. Increase in rate of lever presses was considered as a measure of reward and reinforcement. About 30-70% increase in self-stimulation was observed following bilateral intra-AcbSh treatment with morphine, NPY or [Leu(31), Pro(34)]-NPY (NPY Y1/Y5 receptors agonist), however, BIBP3226 (selective NPY Y1 receptors antagonist) produced opposite effect. The reward effect of morphine was significantly potentiated by NPY or [Leu(31), Pro(34)]-NPY, but antagonized by BIBP3226. NPY-immunoreactivity in the AcbSh, arcuate nucleus (ARC) and lateral part of bed nucleus of stria terminalis (BNSTl) was significantly more in the operant conditioned rats than in naïve control. However, morphine administration to the conditioned rats resulted in significant decrease in the NPY-immunoreactivity in all these anatomical regions. Since the role of morphine in modulation of mesolimbic-dopaminergic pathway is well established, we suggest that NPY system in AcbSh, ARC and BNSTl, perhaps acting via Y1-receptor system, may be an important component of the mesolimbic-AcbSh reward circuitry triggered by endogenous opioids.

  10. Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell

    NARCIS (Netherlands)

    Kleijn, J.; Folgering, J. H. A.; van der Hart, M. C. G.; Rollema, H.; Cremers, T. I. F. H.; Westerink, B. H. C.

    2011-01-01

    Nicotine stimulates dopamine (DA) cell firing via a local action at somatodendritic sites in the ventral tegmental area (VTA), increasing DA release in the nucleus accumbens (NAcc). Additionally, nicotine may also modulate DA release via a direct effect in the NAcc. This study examined the

  11. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli

    NARCIS (Netherlands)

    Barrot, Michel; Olivier, Jocelien D A; Perrotti, Linda I; DiLeone, Ralph J; Berton, Olivier; Eisch, Amelia J; Impey, Soren; Storm, Daniel R; Neve, Rachael L; Yin, Jerry C; Zachariou, Venetia; Nestler, Eric J

    2002-01-01

    The transcription factor cAMP response element (CRE)-binding protein (CREB) has been shown to regulate neural plasticity. Drugs of abuse activate CREB in the nucleus accumbens, an important part of the brain's reward pathways, and local manipulations of CREB activity have been shown to affect cocain

  12. Nucleus Accumbens Shell and mPFC but not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking

    Directory of Open Access Journals (Sweden)

    Kelly Lei

    2016-08-01

    Full Text Available Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc and anterior insular cortex (aINS in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results strongly suggest that OX1Rs within the mNAsh, but not the aINS, play a

  13. Metabotropic glutamate receptor blockade in nucleus accumbens shell shifts affective valence toward fear and displeasure

    OpenAIRE

    Richard, Jocelyn M.; Berridge, Kent C

    2010-01-01

    Glutamatergic inputs to the nucleus accumbens (NAc) modulate both appetitive and fearful motivation. Pathological disturbances of glutamate signaling in NAc have been suggested to contribute to motivation disorders, ranging from excessive desire in drug addiction to paranoia in schizophrenia. Metabotropic glutamate receptors are of special interest, as metabotropic Group II receptor (mglu2/3) agonists have been proposed as potential treatments for both addiction and schizophrenia. Here we tes...

  14. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  15. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  16. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    Science.gov (United States)

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  17. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    Science.gov (United States)

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  18. Overexpression of 5-HT(1B) mRNA in nucleus accumbens shell projection neurons differentially affects microarchitecture of initiation and maintenance of ethanol consumption.

    Science.gov (United States)

    Furay, Amy R; Neumaier, John F; Mullenix, Andrew T; Kaiyala, Karl K; Sandygren, Nolan K; Hoplight, Blair J

    2011-02-01

    Serotonin 1B (5-HT(1B)) heteroreceptors on nucleus accumbens shell (NAcSh) projection neurons have been shown to enhance the voluntary consumption of alcohol by rats, presumably by modulating the activity of the mesolimbic reward pathway. The present study examined whether increasing 5-HT(1B) receptors expressed on NAcSh projection neurons by means of virus-mediated gene transfer enhances ethanol consumption during the initiation or maintenance phase of drinking and alters the temporal pattern of drinking behavior. Animals received stereotaxic injections of viral vectors expressing either 5-HT(1B) receptor and green fluorescent protein (GFP) or GFP alone. Home cages equipped with a three-bottle (water and 6 and 12% ethanol) lickometer system recorded animals' drinking behaviors continuously, capturing either initiation or maintenance of drinking behavior patterns. Overexpression of 5-HT(1B) receptors during initiation increased consumption of 12% ethanol during both forced-access and free-choice consumption. There was a shift in drinking pattern for 6% ethanol with an increase in number of drinking bouts per day, although the total number of drinking bouts for 12% ethanol was not different. Finally, increased 5-HT(1B) expression induced more bouts with very high-frequency licking from the ethanol bottle sippers. During the maintenance phase of drinking, there were no differences between groups in total volume of ethanol consumed; however, there was a shift toward drinking bouts of longer duration, especially for 12% ethanol. This suggests that during maintenance drinking, increased 5-HT(1B) receptors facilitate longer drinking bouts of more modest volumes. Taken together, these results indicate that 5-HT(1B) receptors expressed on NAcSh projection neurons facilitate ethanol drinking, with different effects during initiation and maintenance of ethanol-drinking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. δ-Opioid receptors in the accumbens shell mediate the influence of both excitatory and inhibitory predictions on choice.

    Science.gov (United States)

    Laurent, Vincent; Wong, Felix L; Balleine, Bernard W

    2015-01-01

    Stimuli that predict rewarding events can control choice between future actions, and this control could be mediated by δ-opioid receptors in the nucleus accumbens shell (NAc-S). Stimuli predicting the absence of important events can also guide choice, although it remains unknown whether they do so via changes in an accumbal δ-opioid receptor-related process. δ-opioid receptor-eGFP mice were trained to perform two instrumental actions that delivered different food outcomes. Choice between the two actions was then tested in the presence of stimuli paired with either the delivery or the non-delivery of each of the two outcomes. Bilateral infusions of the δ-opioid receptor antagonist naltrindole into the NAc-S were used to determine the role of these receptors at the time of choice and δ-opioid receptor expression in the NAc-S used to assess functional activity. A stimulus predicting a specific outcome biased choice performance towards the action previously earning that same outcome. In contrast, a stimulus signalling the absence of that outcome biased performance away from the action that delivered that outcome towards actions associated with the absence of that outcome. Both effects were associated with increased δ-opioid receptor expression on the membrane of cholinergic interneurons within the NAc-S. Furthermore, both effects were blocked by naltrindole infused into the NAc-S. These findings suggest that δ-opioid receptors in the NAc-S were involved in the effects of predictive learning on choice between actions, whether those predictions involve the presence or absence of specific rewarding events. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  20. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Directory of Open Access Journals (Sweden)

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  1. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation

    NARCIS (Netherlands)

    Kleijn, J.; Wiskerke, J.; Cremers, T. I. F. H.; Schoffelmeer, A. N. M.; Westerink, B. H. C.; Pattij, T.

    2012-01-01

    The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial pre

  2. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell.

    Directory of Open Access Journals (Sweden)

    Paul M Klenowski

    2016-03-01

    Full Text Available The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks and long-term (12 weeks binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.

  3. NMDA antagonist MK 801 in nucleus accumbens core but not shell disrupts the restraint stress-induced reinstatement of extinguished cocaine-conditioned place preference in rats.

    Science.gov (United States)

    De Giovanni, Laura N; Guzman, Andrea S; Virgolini, Miriam B; Cancela, Liliana M

    2016-12-15

    Relapse is a common feature of cocaine addiction. In rodents, it can be elicited by cues, stress or the drug. Restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP) is a useful model to study the mechanisms involved in stress-induced relapse of drug-seeking behavior. There is evidence that the glutamate NMDA receptors are critically involved in drug- and cue-induced reinstatement of seeking behavior and drug-CPP responses. The aim of this study was to investigate the contribution of NMDA receptors within core vs. shell nucleus accumbens (NAc) subregions to restraint stress-induced reinstatement of extinguished cocaine-CPP. After extinction of cocaine-conditioned preference, animals were administered MK 801 systemically or directly into intra-core or intra-shell, and restrained for 30min or left undisturbed in their home-cages. First, we demonstrated that restraint stress-induced reinstatement of extinguished cocaine-CPP depends on the duration of restraint as well as on the context in which it is applied. Second, this effect was blocked by systemic MK 801 administration either before or after restraint. Third, intra-core but not intra-shell administration abrogated the restraint stress-induced reinstatement. These findings show that NMDA receptors within NAc core, but not shell, play a critical role in restraint stress-induced reinstatement of cocaine-CPP.

  4. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose.

    Science.gov (United States)

    Cacciapaglia, Fabio; Saddoris, Michael P; Wightman, R Mark; Carelli, Regina M

    2012-04-01

    Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.

  5. Opposing effects of 5,7-DHT lesions to the core and shell of the nucleus accumbens on the processing of irrelevant stimuli.

    Science.gov (United States)

    Nelson, Andrew J D; Thur, Karen E; Marsden, Charles A; Cassaday, Helen J

    2012-05-01

    There is good evidence that forebrain serotonergic systems modulate cognitive flexibility. Latent inhibition (LI) is a cross-species phenomenon which manifests as poor conditioning to a stimulus that has previously been experienced without consequence and is widely considered an index of the ability to ignore irrelevant stimuli. While much research has focused on dopaminergic mechanisms underlying LI, there is also considerable evidence of serotonergic modulation. However, the neuroanatomical locus of these effects remains poorly understood. Previous work has identified the nucleus accumbens (NAc) as a key component of the neural circuit underpinning LI and furthermore, this work has shown that the core and shell subregions of the NAc contribute differentially to the expression of LI. To examine the role of the serotonergic input to NAc in LI, we tested animals with 5,7-dihydroxytryptamine (5,7-DHT) lesions to the core and shell subregions on LI assessed under experimental conditions that produce LI in shams and subsequently with weak stimulus pre-exposure designed to prevent the emergence of LI in shams. We found that serotonergic deafferentation of the core disrupted LI whereas 5,7-DHT lesions to the shell produced the opposite effect and potentiated LI.

  6. The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal.

    Directory of Open Access Journals (Sweden)

    Mei-Hong Qiu

    Full Text Available BACKGROUND: We have previously shown that modafinil promotes wakefulness via dopamine receptor D(1 and D(2 receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we further explored the role of NAc in sleep-wake cycle and sleep homeostasis by ablating the NAc core and shell, respectively, and examined arousal response following modafinil administration. We found that discrete NAc core and shell lesions produced 26.5% and 17.4% increase in total wakefulness per day, respectively, with sleep fragmentation and a reduced sleep rebound after a 6-hr sleep deprivation compared to control. Finally, NAc core but not shell lesions eliminated arousal effects of modafinil. CONCLUSIONS/SIGNIFICANCE: These results indicate that the NAc regulates sleep-wake behavior and mediates arousal effects of the midbrain dopamine system and stimulant modafinil.

  7. Nitric oxide donors enhance the frequency-dependence of dopamine release in nucleus accumbens

    OpenAIRE

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-01-01

    Abstract Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviours including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber micr...

  8. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  9. Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available OBJECTIVE: In this study, the effect of maternal deprivation (MD and chronic unpredictable stress (CUS in inducing depressive behaviors and associated molecular mechanism were investigated in rats. METHODS: Maternal deprivation was established by separating pups from their mothers for 6 hours daily from postnatal day 1 to day 14. Chronic unpredictable stress was established by water deprivation, elevated open platform, food deprivation, restraint stress and electric foot shock. The depressive behaviors were determined by use of sucrose preference test and forced swim test. RESULTS: Rats in MD/CUS group exhibited lower sucrose preference rate, longer immobility time, and lighter body weights than rats in other groups (MD/control, non-MD/CUS and non-MD/control group. Meanwhile, higher miR-504 expression and lower dopamine receptor D1 (DRD1 and D2 (DRD2 expression were observed in the nucleus accumbens of rats in the MD/CUS group than in the other three groups. MiR-504 expression correlated negatively with DRD1 gene expression and sucrose preference rate in the sucrose preference test, but correlated positively with immobility time in forced swim test. Both DRD2 mRNA and protein expression correlated negatively with immobility time in forced swim test. CONCLUSION: These results suggest that MD enhances behavioral vulnerability to stress during adulthood, which is associated with the upregulation of miR-504 and downregulation of DRD2 expression in the nucleus accumbens.

  10. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference

    Directory of Open Access Journals (Sweden)

    Keke eQi

    2013-10-01

    Full Text Available Orexins are recently found to participate in mediating stress-induced drug relapse. However, the neuroanatomical basis that orexin transmission modulates stress-induced drug seeking remains unknown. The nucleus accumbens shell (NAcSh, best known for its role in appetitive and negative motivation via dopamine receptors, is likely to be the potential important brain area where the orexin system mediates stress-induced drug relapse since the function of dopamine system in the NAcSh can be regulated by orexin transmission. In the present study, a morphine conditioned place preference (CPP model was used to determine whether the two types of orexin receptors would be involved into footshock-induced and/or drug priming-induced CPP reinstatement differentially. The results showed that blockade of orexin-1 or orexin-2 receptor in the NAcSh significantly attenuated stress-induced morphine CPP reinstatement, but neither of the orexin antagonists had any effect on morphine priming-induced reinstatement. These findings indicate that the NAcSh is a brain area through which orexins participate in stress but not drug priming-induced relapse of opioid seeking.

  11. ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL SELF-ADMINISTRATION BY SPRAGUE-DAWLEY RATS AND STIMULATION OF IN VIVO DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS SHELL

    Directory of Open Access Journals (Sweden)

    Maria Antonietta eDe Luca

    2014-10-01

    Full Text Available 2-Arachidonoylglycerol (2-AG is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacyglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA by squirrel monkeys, and anandamide increases nucleus accumbens (NAc shell dopamine (DA in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG (25g/kg/inf iv in single daily 1h sessions for 5 weeks under initial Fixed Ratio (FR 1 schedule. The ratio was subsequently increased to FR2. Active nose-poking increased from the 6th SA session (acquisition phase but no significant increase of nose-pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase, rate responding, as well as number of injections, slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase. The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg ip, 30 min before SA session. In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv. The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.

  12. Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition.

    Science.gov (United States)

    Peterschmitt, Y; Meyer, F; Louilot, A

    2008-06-26

    It has previously been reported that dopamine (DA) responses observed in the core and dorsomedial shell parts of the nucleus accumbens (Nacc) in latent inhibition (LI) are dependent on the left entorhinal cortex (ENT). The present study was designed to investigate the influence of the left ventral subiculum (SUB) closely linked to the ENT on the DA responses obtained in the Nacc during LI, using an aversive conditioned olfactory paradigm and in vivo voltammetry in freely moving rats. In the first (pre-exposure) session, functional blockade of the left SUB was achieved by local microinjection of tetrodotoxin (TTX). In the second session, rats were aversively conditioned to banana odor, the conditional stimulus (CS). In the retention (test) session the results were as follows: (1) pre-exposed (PE) conditioned animals microinjected with TTX, displayed aversion toward the CS; (2) in the core part of the Nacc, for PE-TTX-conditioned rats as for non-pre-exposed (NPE) conditioned animals, DA levels remained close to the baseline whereas DA variations in both groups were significantly different from the DA increases observed in PE-conditioned rats microinjected with the solvent (phosphate-buffered saline (PBS)); (3) in the shell part of the Nacc, for PE-TTX-conditioned rats, DA variations were close to or above the baseline. They were situated between the rapid DA increases observed in NPE-conditioned animals and the transient DA decreases obtained in PE-PBS-conditioned animals. These findings suggest that, in parallel to the left ENT, the left SUB controls DA LI-related responses in the Nacc. The present data may also offer new insight into the pathophysiology of schizophrenia.

  13. The uncompetitive N-methyl-D-aspartate antagonist memantine reduces binge-like eating, food-seeking behavior, and compulsive eating: role of the nucleus accumbens shell.

    Science.gov (United States)

    Smith, Karen L; Rao, Rahul R; Velázquez-Sánchez, Clara; Valenza, Marta; Giuliano, Chiara; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2015-03-13

    Binge-eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. The role of the glutamatergic N-methyl-D-aspartate (NMDA) receptor system in hedonic feeding is poorly understood. The aim of this study was to characterize the effects of the uncompetitive NMDA receptor antagonist memantine on palatable food-induced behavioral adaptations using a rat model, which mimics the characteristic symptomatology observed in binge-eating disorder. For this purpose, we allowed male Wistar rats to respond to obtain a highly palatable, sugary diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day, under a fixed-ratio 1 (FR1) schedule of reinforcement. Upon stabilization of food responding, we tested the effects of memantine on the Chow and Palatable food groups' intake. Then, we tested the effects of memantine on food-seeking behavior, under a second-order schedule of reinforcement. Furthermore, we investigated the effects of memantine on the intake of food when it was offered in an aversive, bright compartment of a light/dark conflict test. Finally, we evaluated the effects of memantine on FR1 responding for food, when microinfused into the nucleus accumbens (NAcc) shell or core. Memantine dose-dependently decreased binge-like eating and fully blocked food-seeking behavior and compulsive eating, selectively in the Palatable food group. The drug treatment did not affect performance of the control Chow food group. Finally, intra-NAcc shell, but not core, microinfusion of memantine decreased binge-like eating. Together, these findings substantiate a role of memantine as a potential pharmacological treatment for binge-eating disorder.

  14. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  15. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  16. Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence

    Science.gov (United States)

    Yang, Ping; Kawasaki, Kazunori; Ando, Masanori; Murase, Norio

    2012-09-01

    A sol-gel method has been developed to fabricate Au/SiO2/quantum dot (QD) core-shell-shell nanostructures with plasmonic-enhanced photoluminescence (PL). Au nanoparticle (NP) was homogeneously coated with a SiO2 shell with adjusted thickness through a Stöber synthesis. When the toluene solution of hydrophobic CdSe/ZnS QDs was mixed with partially hydrolyzed 3-aminopropyltrimethoxysilane (APS) sol, the ligands on the QDs were replaced by a thin functional SiO2 layer because the amino group in partially hydrolyzed APS has strong binding interaction with the QDs. Partially hydrolyzed APS plays an important role as a thin functional layer for the transfers of QDs to water phase and the subsequent connection to aqueous SiO2-coated Au NPs. Although Au NPs were demonstrated as efficient PL quenchers when the SiO2 shell on the Au NPs is thin (less than 5 nm), we found that precise control of the spacing between the Au NP core and the QD shell resulted in QDs with an enhancement of 30 % of PL efficiency. The Au/SiO2/QD core/shell/shell nanostructures also reveal strong surface plasmon scattering, which makes the Au/SiO/QD core-shell-shell nanostructures an excellent dual-modality imaging probe. This technology can serve as a general route for encapsulating a variety of discrete nanomaterials because monodispersed nanostructures often have a similar surface chemistry.

  17. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    NARCIS (Netherlands)

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  18. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study.

    Science.gov (United States)

    Lee, Eun Y; Lee, Hyun S

    2016-03-01

    The paraventricular thalamic nucleus (PVT) is a major relay station to the limbic forebrain areas such as the nucleus accumbens shell (AcbSh). Both PVT and AcbSh are known to receive feeding/arousal-related peptidergic fibers including orexin (ORX) and cocaine- and amphetamine-regulated transcript (CART) peptide. In the first series of experiments, we examined the peptidergic fiber distribution in the AcbSh; the density of ORX (or CART) fibers in the AcbSh was substantially lower than that in the PVT. At the light microscopic level, ORX (or CART) terminals formed close appositions to choline acetyltransferase (ChAT)-, glutamate decarboxylase (GAD)-, or enkephalin (Enk)-immunoreactive neuronal elements in the AcbSh. In the second series of experiments, we addressed the question of whether single ORX (or CART) cells in the hypothalamus provided divergent axon collaterals to the PVT and AcbSh. ORX neurons with dual projections were found in the medial, central, and lateral subdivisions of the lateral hypothalamus (LH), which amounted to an average of 1.6% of total ORX cells. CART neurons with divergent axon collaterals were observed in the LH, zona incerta, dorsal hypothalamic area, and retrochiasmatic nucleus, which represented a mean of 2.5% of total CART cells. None of arcuate CART cells sent dual projections. These data suggested that a portion of ORX (or CART) neurons in the hypothalamus, via divergent axon collaterals, might concurrently modulate the activity of PVT and AcbSh cells to affect feeding and drug-seeking behaviors.

  19. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Directory of Open Access Journals (Sweden)

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  20. Enhanced ability of TRPV1 channels in regulating glutamatergic transmission after repeated morphine exposure in the nucleus accumbens of rat.

    Science.gov (United States)

    Zhang, Haitao; Jia, Dong; Wang, Yuan; Qu, Liang; Wang, Xuelian; Song, Jian; Heng, Lijun; Gao, Guodong

    2017-04-01

    Glutamatergic projections to nucleus accumbens (NAc) drive drug-seeking behaviors during opioids withdrawal. Modulating glutamatergic neurotransmission provides a novel pharmacotherapeutic avenue for treatment of opioids dependence. Great deals of researches have verified that transient receptor potential vanilloid 1 (TRPV1) channels alters synaptic transmitter release and regulate neural plasticity. In the present study, whole-cell patch clamp recordings were adopted to examine the activity of TRPV1 Channels in regulating glutamate-mediated excitatory postsynaptic currents (EPSCs) in NAc of rat during morphine withdrawal for 3days and 3weeks. The data showed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and the amplitudes of evoked excitatory postsynaptic currents (eEPSCs) were increased during morphine withdrawal after applied with capsaicin (TRPV1 agonist). Capsaicin decreased the paired pulse ratio (PPR) and increased sEPSCs frequency but not their amplitudes suggesting a presynaptic locus of action during morphine withdrawal. All these effects were fully blocked by the TRPV1 antagonist Capsazepine. Additionally, In the presence of AM251 (CB1 receptor antagonist), depolarization-induced release of endogenous cannabinoids activated TRPV1 channels to enhance glutamatergic neurotransmission during morphine withdrawal. The functional enhancement of TRPV1 Channels in facilitating glutamatergic transmission was not recorded in dorsal striatum. Our findings demonstrate the ability of TRPV1 in regulating excitatory glutamatergic transmission is enhanced during morphine withdrawal in NAc, which would deepen our understanding of glutamatergic modulation during opioids withdrawal.

  1. Hollow Pollen Shells to Enhance Drug Delivery

    Directory of Open Access Journals (Sweden)

    Alberto Diego-Taboada

    2014-03-01

    Full Text Available Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine, made largely of cellulose, and the outer layer (exine, composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell.

  2. Morphine treatment enhances glutamatergic input onto neurons of the nucleus accumbens via both disinhibitory and stimulating effect.

    Science.gov (United States)

    Yuan, Kejing; Sheng, Huan; Song, Jiaojiao; Yang, Li; Cui, Dongyang; Ma, Qianqian; Zhang, Wen; Lai, Bin; Chen, Ming; Zheng, Ping

    2016-08-22

    Drug addiction is a chronic brain disorder characterized by the compulsive repeated use of drugs. The reinforcing effect of repeated use of drugs on reward plays an important role in morphine-induced addictive behaviors. The nucleus accumbens (NAc) is an important site where morphine treatment produces its reinforcing effect on reward. However, how morphine treatment produces its reinforcing effect on reward in the NAc remains to be clarified. In the present study, we studied the influence of morphine treatment on the effects of DA and observed whether morphine treatment could directly change glutamatergic synaptic transmission in the NAc. We also explored the functional significance of morphine-induced potentiation of glutamatergic synaptic transmission in the NAc at behavioral level. Our results show that (1) morphine treatment removes the inhibitory effect of DA on glutamatergic input onto NAc neurons; (2) morphine treatment potentiates glutamatergic input onto NAc neurons, especially the one from the basolateral amygdala (BLA) to the NAc; (3) blockade of glutamatergic synaptic transmission in the NAc or ablation of projection neurons from BLA to NAc significantly decreases morphine treatment-induced increase in locomotor activity. These results suggest that morphine treatment enhances glutamatergic input onto neurons of the NAc via both disinhibitory and stimulating effect and therefore increases locomotor activity.

  3. Concave Pd-Pt Core-Shell Nanocrystals with Ultrathin Pt Shell Feature and Enhanced Catalytic Performance.

    Science.gov (United States)

    Zhang, Ying; Bu, Lingzheng; Jiang, Kezhu; Guo, Shaojun; Huang, Xiaoqing

    2016-02-10

    One-pot creation of unique concave Pd-Pt core-shell polyhedra has been developed for the first time using an efficient approach. Due to the concave feature and ultrathin Pt shell, the created Pd-Pt core-shell polyhedra exhibit enhanced catalytic performance in both the electrooxidation of methanol and hydrogenation of nitrobenzene, as compared with commercial Pt black and Pd black catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Role of orexin receptors in the nucleus accumbens in dopamine-dependent turning behaviour of rats.

    NARCIS (Netherlands)

    Kotani, A.; Ikeda, H.; Koshikawa, N.; Cools, A.R.

    2008-01-01

    The role of orexin receptors in the nucleus accumbens shell in rat turning behaviour of rats was studied. Unilateral injection of neither the orexin 1 and 2 receptor agonist orexin A (2 microg) nor the orexin 1 receptor antagonist SB 334867 (20 ng) into the nucleus accumbens shell elicited turning b

  5. Enhanced efficiency of a fluorescing nanoparticle with a silver shell

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Wallace C H; Chen Xuewen [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); He Sailing [Centre for Optical and Electromagnetic Research, Zhejiang University, Zhijingang campus, Hangzhou 310058 (China)], E-mail: chchoy@eee.hku.hk

    2009-09-01

    Spontaneous emission (SE) rate and the fluorescence efficiency of a bare fluorescing nanoparticle (NP) and the NP with a silver nanoshell are analyzed rigorously by using a classical electromagnetic approach with the consideration of the nonlocal effect of the silver nano-shell. The dependences of the SE rate and the fluorescence efficiency on the core-shell structure are carefully studied and the physical interpretations of the results are addressed. The results show that the SE rate of a bare NP is much slower than that in the infinite medium by almost an order of magnitude and consequently the fluorescence efficiency is usually low. However, by encapsulating the NP with a silver shell, highly efficient fluorescence can be achieved as a result of a large Purcell enhancement and high out-coupling efficiency (OQE) for a well-designed core-shell structure. We also show that a higher SE rate may not offer a larger fluorescence efficiency since the fluorescence efficiency not only depends on the internal quantum yield but also the OQE.

  6. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    Science.gov (United States)

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  7. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    Science.gov (United States)

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  8. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice.

    Science.gov (United States)

    Kasten, Chelsea R; Boehm, Stephen L

    2014-10-01

    The GABAB agonist baclofen has been widely researched clinically and preclinically as a treatment of alcohol use disorders (AUDs). However, the efficacy of baclofen remains uncertain. The clinically used racemic compound can be separated into separate enantiomers. These enantiomers have produced different profiles in behavioral assays, with the S- compound often being ineffective compared to the R- compound, or the S- compound antagonizing the effects of the R- compound. We have previously demonstrated that the R(+)-baclofen enantiomer decreases binge-like ethanol intake in the Drinking-in-the-Dark (DID) paradigm, whereas the S(-)-baclofen enantiomer increases ethanol intake. One area implicated in drug abuse is the nucleus accumbens shell (NACsh).The current study sought to define the role of the NACsh in the enantioselective effects of baclofen on binge-like ethanol consumption by directly microinjecting each enantiomer into the structure. Following bilateral cannulation of the NACsh, C57Bl/6J mice were given 5 days of access to ethanol or saccharin for 2h, 3h into the dark cycle. On Day 5 mice were given an injection of aCSF, 0.02 R(+)-, 0.04R(+)-, 0.08 S(-)-, or 0.16 S(-)-baclofen (μg/side dissolved in 200nl of aCSF). It was found that the R(+)-baclofen dose-dependently decreased ethanol consumption, whereas the high S(-)-baclofen dose increased ethanol consumption, compared to the aCSF group. Saccharin consumption was not affected. These results further confirm that GABAB receptors and the NACsh shell are integral in mediating ethanol intake. They also demonstrate that baclofen displays bidirectional, enantioselective effects which are important when considering therapeutic uses of the drug.

  9. Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption.

    Science.gov (United States)

    Tian, Chunhua; Du, Yunchen; Xu, Ping; Qiang, Rong; Wang, Ying; Ding, Ding; Xue, Jianlei; Ma, Jun; Zhao, Hongtao; Han, Xijiang

    2015-09-16

    Highly uniform core-shell composites, polypyrrole@polyaniline (PPy@PANI), have been successfully constructed by directing the polymerization of aniline on the surface of PPy microspheres. The thickness of PANI shells, from 30 to 120 nm, can be well controlled by modulating the weight ratio of aniline and PPy microspheres. PPy microspheres with abundant carbonyl groups have very strong affinity to the conjugated chains of PANI, which is responsible for the spontaneous formation of uniform core-shell microstructures. However, the strong affinity between PPy microspheres and PANI shells does not promote the diffusion or reassembly of two kinds of conjugated chains. Coating PPy microspheres with PANI shells increases the complex permittivity and creates the mechanism of interfacial polarization, where the latter plays an important role in increasing the dielectric loss of PPy@PANI composites. With a proper thickness of PANI shells, the moderate dielectric loss will produce well matched characteristic impedance, so that the microwave absorption properties of these composites can be greatly enhanced. Although PPy@PANI composites herein consume the incident electromagnetic wave by absolute dielectric loss, their performances are still superior or comparable to most PANI-based composites ever reported, indicating that they can be taken as a new kind of promising lightweight microwave absorbers. More importantly, microwave absorption of PPy@PANI composites can be simply modulated not only by the thickness of the absorbers, but also the shell thickness to satisfy the applications in different frequency bands.

  10. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    Science.gov (United States)

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  11. Enhancing VTA Cav1.3 L-type Ca(2+) channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens.

    Science.gov (United States)

    Martínez-Rivera, A; Hao, J; Tropea, T F; Giordano, T P; Kosovsky, M; Rice, R C; Lee, A; Huganir, R L; Striessnig, J; Addy, N A; Han, S; Rajadhyaksha, A M

    2017-02-14

    Genetic factors significantly influence susceptibility for substance abuse and mood disorders. Rodent studies have begun to elucidate a role of Cav1.3 L-type Ca(2+) channels in neuropsychiatric-related behaviors, such as addictive and depressive-like behaviors. Human studies have also linked the CACNA1D gene, which codes for the Cav1.3 protein, with bipolar disorder. However, the neurocircuitry and the molecular mechanisms underlying the role of Cav1.3 in neuropsychiatric phenotypes are not well established. In the present study, we directly manipulated Cav1.3 channels in Cav1.2 dihydropyridine insensitive mutant mice and found that ventral tegmental area (VTA) Cav1.3 channels mediate cocaine-related and depressive-like behavior through a common nucleus accumbens (NAc) shell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) mechanism that requires GluA1 phosphorylation at S831. Selective activation of VTA Cav1.3 with (±)-BayK-8644 (BayK) enhanced cocaine conditioned place preference and cocaine psychomotor activity while inducing depressive-like behavior, an effect not observed in S831A phospho-mutant mice. Infusion of the CP-AMPAR-specific blocker Naspm into the NAc shell reversed the cocaine and depressive-like phenotypes. In addition, activation of VTA Cav1.3 channels resulted in social behavioral deficits. In contrast to the cocaine- and depression-related phenotypes, GluA1/A2 AMPARs in the NAc core mediated social deficits, independent of S831-GluA1 phosphorylation. Using a candidate gene analysis approach, we also identified single-nucleotide polymorphisms in the CACNA1D gene associated with cocaine dependence in human subjects. Together, our findings reveal novel, overlapping mechanisms through which VTA Cav1.3 mediates cocaine-related, depressive-like and social phenotypes, suggesting that Cav1.3 may serve as a target for the treatment of neuropsychiatric symptoms.Molecular Psychiatry advance online publication, 14

  12. Enhancing the Communication Channel Through Secure Shell And Irrational DES

    Directory of Open Access Journals (Sweden)

    S.R.M.Krishna,

    2011-03-01

    Full Text Available As the internet grows in popularity and therefore also in size more and more transmission takes place mainly because the technology is more readily available and applications have become more user friendlyallowing entry to less sophisticated user over a broad spectrum.most data transfer are mainly text based not secure and vulnerable to various forms of security risks. So the model that uses SSH for securing channel like intranet/internet which provides client authentication encryption and decryption with high degree of security by transferring the data in an encrypted format, up on this model enhances the efficiency of data transmission by encrypting or decrypting the data with irrational DES.DES is a cryptographic standard however,the applications of it limited because of small key space based on irrational number.Moreover the permutation controlled by data can be performed at high speed in generic cpu.this scheme also expands the key space without costing more to run.and also finally through the combination of secure shell(ssh and irrational DES not only enhances the security of communication channel.it also provides varius applications like remote user creation,remote user deletion,remote command execution,remote system shutdown ,remote file transfer applications in an highly secure manner.

  13. Role of dopamine D1 and D2 receptors in the nucleus accumbens shell on the acquisition and expression of fructose-conditioned flavor-flavor preferences in rats.

    Science.gov (United States)

    Bernal, Sonia Y; Dostova, Irina; Kest, Asher; Abayev, Yana; Kandova, Ester; Touzani, Khalid; Sclafani, Anthony; Bodnar, Richard J

    2008-06-26

    Systemic administration of dopamine D1 (SCH23390) and less so D2 (raclopride) receptor antagonists significantly reduce acquisition and expression of fructose-conditioned flavor preferences (CFP). Because dopamine in the nucleus accumbens shell (NAcS) is implicated in food reward, the present study examined whether NAcS D1 or D2 antagonists altered acquisition and/or expression of fructose-CFP. In Experiment 1, food-restricted rats with bilateral NAcS cannulae were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+/Fs) and a less-preferred 0.2% saccharin solution with mixed another flavor (CS-/s). Unlimited two-bottle tests with the two flavors in saccharin (0.2%: CS+/s, CS-/s) occurred 10 min following total bilateral NAcS doses of 0, 12, 24 or 48 nmol of SCH23390 or raclopride. Preference for CS+/s over CS-/s following vehicle treatment (76%) was significantly reduced by SCH23390 (48 nmol, 62%) and raclopride (24 nmol, 63%). In Experiment 2, rats received bilateral NAcS injections (12 nmol) of SCH23390 or raclopride on one-bottle training (16 ml) days. Yoked control rats received vehicle and were limited to the CS intakes of the D1 and D2 groups, whereas untreated controls without injections received their CS ration during training. Subsequent unlimited two-bottle tests revealed initial preferences of CS+/s over CS-/s in all groups that remained stable in untreated and yoked controls, but were lost over the six tests sessions in D1 and D2 groups. These data indicate that NAcS D1 and D2 antagonists significantly attenuated the expression of the fructose-CFP and did not block acquisition, but hastened extinction of fructose-CFP.

  14. Core-shell potassium niobate nanowires for enhanced nonlinear optical effects

    Science.gov (United States)

    Richter, J.; Steinbrück, A.; Zilk, M.; Sergeyev, A.; Pertsch, T.; Tünnermann, A.; Grange, R.

    2014-04-01

    We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte. We show that the latter leads to a smoother and complete core-shell nanostructure and an easier-to-use synthesis process. A Mie-theory based theoretical approach is presented to model the enhanced second-harmonic generated (SHG) signal of the core-shell wires, illustrating the influence of the fabrication-induced varying geometrical factors of wire radius and shell thickness. A spectroscopic measurement on a core-shell nanowire shows a strong localized surface plasmon resonance close to 900 nm, which matches with the SHG resonance obtained from nonlinear optical experiments with the same nanowire. According to the simulation, this corresponds to a wire radius of 35 nm and a shell thickness of 7.5 nm. By comparing SHG signals measured from an uncoated nanowire and the coated one, we obtain a 250 times enhancement factor. This is less than the calculated enhancement, which considers a cylindrical nanowire with a perfectly smooth shell. Thus, we explain this discrepancy mainly with the roughness of the synthesized gold shell.We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte

  15. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    Directory of Open Access Journals (Sweden)

    Kim G T Pulman

    Full Text Available Stimulation of either GABA(A or GABA(B receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A receptor agonist muscimol and GABA(B receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol stimulated responding but a higher dose (660 pmol induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol also stimulated intake of freely available chow. Muscimol (220-660 pmol was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A or GABA(B receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  16. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg on transcriptional effects of a second METH (2.5 mg/kg injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS or METH-challenged (SM; and METH-pretreated followed by saline-challenged (MS or METH-challenged (MM. Microarray analyses revealed that METH (2.5 mg/kg produced acute changes (1.8-fold; P<0.01 in the expression of 412 (352 upregulated, 60 down-regulated transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh, oxytocin (Oxt, and vasopressin (Avp that were upregulated. Injection of METH (10 mg/kg altered the expression of 503 (338 upregulated, 165 down-regulated transcripts measured one month later (MS group. These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  17. Shell

    OpenAIRE

    Harper, Catherine

    2006-01-01

    Susie MacMurray's Shell installation manifests in Pallant House Gallery, Chichester, like some pulsing exotica, a heavily-textured wall-paper, darkly decorative, heavily luxurious, broodingly present, with more than a hint of the uncanny or the gothic. A remarkable undertaking by an artist of significance, this work's life-span will be just one year, and then it will disappear, leaving no physical trace, but undoubtedly contributing in a much less tangible way to an already rich layering of n...

  18. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    Science.gov (United States)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  19. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles.

    Science.gov (United States)

    Derom, S; Berthelot, A; Pillonnet, A; Benamara, O; Jurdyc, A M; Girard, C; Colas des Francs, G

    2013-12-13

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  20. Dielectric core-shell optical antennas for strong solar absorption enhancement.

    Science.gov (United States)

    Yu, Yiling; Ferry, Vivian E; Alivisatos, A Paul; Cao, Linyou

    2012-07-11

    We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.

  1. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    Science.gov (United States)

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  2. Enhancing the Photoluminescence of Peptide-Coated Nanocrystals with Shell Composition and UV Irradiation

    OpenAIRE

    Tsay, James M.; Doose, Sören; Pinaud, Fabien; Weiss, Shimon

    2005-01-01

    The composition and structure of inorganic shells grown over CdSe semiconductor nanocrystal dots and rods were optimized to yield enhanced photoluminescence properties after ligand exchange followed by coating with phytochelatin-related peptides. We show that, in addition to the peptides imparting superior colloidal properties and providing biofunctionality in a single-step reaction, the improved shells and pretreatment with UV irradiation resulted in high quantum yields for the nanocrystals ...

  3. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    Science.gov (United States)

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  4. Increasing oxytocin receptor expression in the nucleus accumbens of pre-pubertal female prairie voles enhances alloparental responsiveness and partner preference formation as adults

    OpenAIRE

    Keebaugh, Alaine C.; Young, Larry J.

    2011-01-01

    Oxytocin receptors (OXTR) in the nucleus accumbens (NAcc) promote alloparental behavior and partner preference formation in female prairie voles. Within the NAcc there is significant individual variation in OXTR binding and virgin juvenile and adult females with a high density of OXTR in the NAcc display an elevated propensity to engage in alloparental behavior toward novel pups. Over-expression of OXTR in the NAcc of adult female prairie voles using viral vector gene transfer facilitates par...

  5. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Tao, Sha; Yang, Mei; Chen, Huihui; Ren, Mingyue; Chen, Guangwen

    2017-01-15

    A microfluidic-based method for the continuous synthesis of Ag@Cu2O core-shell nanoparticles (NPs) has been developed. It only took 32s to obtain Ag@Cu2O core-shell NPs, indicating a high efficiency of this microfluidic-based method. Triangular Ag nanoprisms were employed as the cores for the overgrowth of Cu2O through the reduction of Cu(OH)4(2-) with ascorbic acid. The as-synthesized samples were characterized by XRD, TEM, SEM, HAADF-STEM, EDX, HRTEM, UV-vis spectra and N2 adsorption-desorption. The characterization results revealed that the as-synthesized Ag@Cu2O core-shell NPs exhibited a well-defined core-shell nanostructure with a polycrystalline shell, which was composed of numbers of Cu2O domains epitaxially growing on the triangular Ag nanoprism. It was concluded that the synthesis parameters such as the molar ratio of trisodium citrate to AgNO3, H2O2 to AgNO3, NaOH to CuSO4, ascorbic acid to CuSO4 and AgNO3 to CuSO4 had significant effect on the synthesis of Ag@Cu2O core-shell NPs. Moreover, Ag@Cu2O core-shell NPs exhibited superior catalytic activity in comparison with pristine Cu2O NPs towards the visible light-driven degradation of methyl orange. This enhanced photocatalytic activity of Ag@Cu2O core-shell NPs was attributed to the larger BET surface area and improved charge separation efficiency. The trapping experiment indicated that holes and superoxide anion radicals were the major reactive species in the photodegradation of methyl orange over Ag@Cu2O core-shell NPs. In addition, Ag@Cu2O core-shell NPs showed no obvious deactivation in the cyclic test.

  6. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    Science.gov (United States)

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  7. Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells

    Science.gov (United States)

    Navau, Carles; Mach-Batlle, Rosa; Parra, Albert; Prat-Camps, Jordi; Laut, Sergi; Del-Valle, Nuria; Sanchez, Alvaro

    2017-03-01

    Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz.

  8. 管壳式换热器壳程的传热强化%Heat Transfer Enhancement in Shell Side of Shell and Tube Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    李若兰; 丁杰; 霍正齐

    2014-01-01

    This article described heat transfer enhancement technology in shell side of the shell and tube heat ex-changer, sketched a typical structure and performance of shell side of heat exchanger, analyzed heat transfer en-hancement mechanism.%本文介绍管壳式换热器壳程的强化传热技术,简述换热器壳程的典型结构、性能,分析强化传热机理。

  9. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling.

    Science.gov (United States)

    Yang, Zhenyu; Janmohamed, Alyf; Lan, Xinzheng; García de Arquer, F Pelayo; Voznyy, Oleksandr; Yassitepe, Emre; Kim, Gi-Hwan; Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Sargent, Edward H

    2015-11-11

    Solution-processed quantum dots are a promising material for large-scale, low-cost solar cell applications. New device architectures and improved passivation have been instrumental in increasing the performance of quantum dot photovoltaic devices. Here we report photovoltaic devices based on inks of quantum dot on which we grow thin perovskite shells in solid-state films. Passivation using the perovskite was achieved using a facile solution ligand exchange followed by postannealing. The resulting hybrid nanostructure created a more intrinsic CQD film, which, when incorporated into a photovoltaic device with graded bandstructure, achieved a record solar cell performance for single-step-deposited CQD films, exhibiting an AM1.5 solar power conversion efficiency of 8.95%.

  10. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.

    Science.gov (United States)

    Ghitza, Udi E; Fabbricatore, Anthony T; Prokopenko, Volodymyr; Pawlak, Anthony P; West, Mark O

    2003-08-13

    Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.

  11. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.

    Science.gov (United States)

    MacAskill, Andrew F; Cassel, John M; Carter, Adam G

    2014-09-01

    Repeated exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we used whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine exposure alters connectivity in the mouse NAc medial shell. Cocaine selectively enhanced amygdala innervation of MSNs expressing D1 dopamine receptors (D1-MSNs) relative to D2-MSNs. We also found that amygdala activity was required for cocaine-induced changes to behavior and connectivity. Finally, we established how heightened amygdala innervation can explain the structural and functional changes evoked by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell type- and input-specific connectivity in the NAc.

  12. Differential shrinkage induced formation of yolk-shell carbon microspheres toward enhanced microwave absorption

    Science.gov (United States)

    Tian, Chunhua; Du, Yunchen; Xu, Haiyan; Xue, Jianlei; Chu, Wenlei; Qiang, Rong; Han, Xijiang; Xu, Ping

    2017-09-01

    Rational design of the microstructure paves new ways for microwave absorbing materials because it can create more facilities for the attenuation of incident electromagnetic waves. In this study, a simple method is proposed to prepare yolk-shell carbon microspheres through differential shrinkage in the internal cores and external shells of polypyrrole microspheres with the assistance of outermost SiO2 coating. This method simplifies the preparation procedures and avoids strictly controlled conditions. The electromagnetic parameters, such as relative complex permittivity and permeability, of the as-prepared yolk-shell carbon microspheres, are investigated in the frequency range of 2.0-18.0 GHz. Compared with solid carbon microspheres, yolk-shell carbon microspheres exhibit significantly enhanced microwave absorption properties in terms of both the reflection loss intensity and absorption bandwidth. The minimum reflection loss value can reach up to -27.5 dB at 8.32 GHz with an absorber thickness of 2.96 mm. The absorption bandwidth over -10.0 dB is in the range of 11.3-16.2 GHz at the typical thickness of 2.0 mm. The enhanced microwave absorption properties may be attributed to the good attenuation ability and well matched characteristic impedance. This work not only provides a promising candidate for microwave absorption, but also provides an attractive strategy to prepare various yolk-shell composites.

  13. Shell-isolated nanoparticle-enhanced Raman spectroscopy: principle and applications (Presentation Recording)

    Science.gov (United States)

    Li, Jian-Feng; Tian, Zhong-Qun

    2015-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that yields fingerprint vibrational information with ultra-high sensitivity. However, only roughened Ag, Au and Cu surfaces can generate strong SERS effect. The lack of materials and morphology generality has severely limited the breadth of SERS practical applications on surface science, electrochemistry and catalysis. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was therefore invented to break the long-standing limitation of SERS. In SHINERS, Au@SiO2 core-shell nanoparticles were rationally designed. The gold core acts as plasmonic antenna and encapsulated by an ultra-thin, uniform and pinhole-free silica shell, can provide high electromagnetic field to enhance the Raman signals of probed molecules. The inert silica shell acts as tunneling barrier prevents the core from interacting with the environment. SHINERS has already been applied to a number of challenging systems, such as hydrogen and CO on Pt(hkl) and Rh(hkl), which can't be realized by traditional SERS. Combining with electrochemical methods, we has investigated the adsorption processes of pyridine at the Au(hkl) single crystal/solution interface, and in-situ monitored the surface electro-oxidation at Au(hkl) electrodes. These pioneering studies demonstrate convincingly the ability of SHINERS in exploring correlations between structure and reactivity as well as in monitoring intermediates at the interfaces. SHINERS was also explored from semiconductor surface for industry, to living bacteria for life science, and to pesticide residue detection for food safety. The concept of shell-isolated nanoparticle-enhancement is being applied to other spectroscopies such as infrared absorption, sum frequency generation and fluorescence. Jian-Feng Li et al., Nature, 2010, 464, 392-395.

  14. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    Science.gov (United States)

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells.

    Science.gov (United States)

    Galloway, Thomas A; Cabo-Fernandez, Laura; Aldous, Iain M; Braga, Filipe; Hardwick, Laurence J

    2017-09-15

    A critical and detailed assessment of using Shell Isolated Nanoparticles for Enhanced Raman Spectroscopy (SHINERS) on different electrode substrates was carried out, providing relative enhancement factors, as well as an evaluation of the distribution of shell-isolated nanoparticles upon the electrode surfaces. The chemical makeup of surface layers formed upon lithium metal electrodes and the mechanism of the oxygen reduction reaction on carbon substrates relevant to lithium-oxygen cells are studied with the employment of the SHINERS technique. SHINERS enhanced the Raman signal at these surfaces showing a predominant Li2O based layer on lithium metal in a variety of electrolytes. The formation of LiO2 and Li2O2, as well as degradation reactions forming Li2CO3, upon planar carbon electrode interfaces and upon composite carbon black electrodes were followed under potential control during the reduction of oxygen in a non-aqueous electrolyte based on dimethyl sulfoxide.

  16. Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging

    Science.gov (United States)

    Hao, Shuwei; Yang, Liming; Qiu, Hailong; Fan, Rongwei; Yang, Chunhui; Chen, Guanying

    2015-06-01

    We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background.We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02287h

  17. Photo-physical properties enhancement of bare and core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  18. Photo-physical properties enhancement of bare and core-shell quantum dots

    Science.gov (United States)

    Mumin, Md Abdul; Akhter, Kazi Farida; Charpentier, Paul A.

    2014-03-01

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC).

  19. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration

    Directory of Open Access Journals (Sweden)

    Hailong Qiu

    2014-01-01

    Full Text Available The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.

  20. Long Wavelength Plasmonic Absorption Enhancement in Silicon Using Optical Lithography Compatible Core-Shell-Type Nanowires

    Directory of Open Access Journals (Sweden)

    Mohammed Shahriar Sabuktagin

    2014-01-01

    Full Text Available Plasmonic properties of rectangular core-shell type nanowires embedded in thin film silicon solar cell structure were characterized using FDTD simulations. Plasmon resonance of these nanowires showed tunability from  nm. However this absorption was significantly smaller than the Ohmic loss in the silver shell due to very low near-bandgap absorption properties of silicon. Prospect of improving enhanced absorption in silicon to Ohmic loss ratio by utilizing dual capability of these nanowires in boosting impurity photovoltaic effect and efficient extraction of the photogenerated carriers was discussed. Our results indicate that high volume fabrication capacity of optical lithography techniques can be utilized for plasmonic absorption enhancement in thin film silicon solar cells over the entire long wavelength range of solar radiation.

  1. Optical investigation of gold shell enhanced 25 nm diameter upconverted fluorescence emission

    Science.gov (United States)

    Green, Kory; Wirth, Janina; Lim, Shuang Fang

    2016-04-01

    We enhance the efficiency of upconverting nanoparticles by investigating the plasmonic coupling of 25 nm diameter NaYF4:Yb, Er nanoparticles with a gold-shell coating, and study the physical mechanism of enhancement by single-particle, time-resolved spectroscopy. A three-fold overall increase in emission intensity, and five-fold increase of green emission for these plasmonically enhanced particles have been achieved. Using a combination of structural and fluorescent imaging, we demonstrate that fluorescence enhancement is based on the photonic properties of single, isolated particles. Time-resolved spectroscopy shows that the increase in fluorescence is coincident with decreased rise time, which we attribute to an enhanced absorption of infrared light and energy transfer from Yb3+ to Er3+ atoms. Time-resolved spectroscopy also shows that fluorescence life-times are decreased to different extents for red and green emission. This indicates that the rate of photon emission is not suppressed, as would be expected for a metallic cavity, but rather enhanced because the metal shell acts as an optical antenna, with differing efficiency at different wavelengths.

  2. Hydrothermal synthesis of core-shell TiO2 to enhance the photocatalytic hydrogen evolution

    Science.gov (United States)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-04-01

    A hydrothermal approach was designed to synthesize core-shell TiO2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core-shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV-vis absorption proves core-shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core-shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  3. Facile synthesis of CdS@TiO{sub 2} core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenhao [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); Pan, Feng, E-mail: chmpf@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); Xu, Leilei [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); Zheng, Minrui; Sow, Chorng Haur [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Wu, Kai [Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); BNLMS, SKLSCUSS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Xu, Guo Qin [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore 138602 (Singapore); National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu Prov. 215123 (China); and others

    2015-09-15

    Graphical abstract: - Highlights: • CdS nanorods were coated with amorphous TiO{sub 2} shells under a mild condition. • The TiO{sub 2} shell thickness can be controlled from 3.5 to 40 nm. • CdS@TiO{sub 2} nanorods exhibit enhanced photocatalytic activities under visible light. • Efficient charge carriers separation leads to the improved photocatalytic activity. - Abstract: Amorphous TiO{sub 2} layers with a controllable thickness from 3.5 to 40 nm were coated on the one-dimensional CdS nanorods surface under mild conditions. Compared to the bare CdS nanorods, the as-prepared CdS@TiO{sub 2} nanorods exhibit enhanced photocatalytic activities for phenol photodecomposition under visible light irradiation. The improved photoactivity is ascribed to the efficient separation of photogenerated electron and hole charge carriers between CdS cores and TiO{sub 2} shells. This study promises a simple approach to fabricating CdS@TiO{sub 2} core–shell structure nanocomposites, and can be applied for other semiconductor cores with TiO{sub 2} shells.

  4. Absorption Enhancement in "Giant" Core/Alloyed-Shell Quantum Dots for Luminescent Solar Concentrator.

    Science.gov (United States)

    Zhao, Haiguang; Benetti, Daniele; Jin, Lei; Zhou, Yufeng; Rosei, Federico; Vomiero, Alberto

    2016-10-01

    Luminescent solar concentrators (LSCs) can potentially reduce the cost of solar cells by decreasing the photoactive area of the device and boosting the photoconversion efficiency (PCE). This study demonstrates the application of "giant" CdSe/Cdx Pb1-x S core/shell quantum dots (QDs) as light harvesters in high performance LSCs with over 1.15% PCE. Pb addition is critical to maximize PCE. First, this study synthesizes "giant" CdSe/Cdx Pb1-x S QDs with high quantum yield (40%), narrow size distribution (<10%), and stable photoluminescence in a wide temperature range (100-300 K). Subsequently these thick alloyed-shell QDs are embedded in a polymer matrix, resulting in a highly transparent composite with absorption spectrum covering the range 300-600 nm, and are applied as active material for prototype LSCs. The latter exhibits a 15% enhancement in efficiency with respect to 1% PCE of the pure-CdS-shelled QDs. This study attributes this increase to the contribution of Pb doping. The results demonstrate a straightforward approach to enhance light absorption in "giant" QDs by metal doping, indicating a promising route to broaden the absorption spectrum and increase the efficiency of LSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    Energy Technology Data Exchange (ETDEWEB)

    Venetz, Theodore J. [Washington River Protection Solutions, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States); Boomer, Kayle D. [Washington River Protection Solutions, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States); Castleberry, Jim L. [Washington River Protection Solutions, Richland, WA (United States)

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.

  6. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    Science.gov (United States)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun; Wang, Xiuyuan; Wang, Huihu

    2016-12-01

    An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  7. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.

    Science.gov (United States)

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P; Alford, Neil M; Riley, D Jason; Xie, Fang

    2016-03-21

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

  8. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.

    Science.gov (United States)

    Cansizoglu, Hilal; Cansizoglu, Mehmet F; Watanabe, Fumiya; Karabacak, Tansel

    2014-06-11

    Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.

  9. Manipulation of subwavelength optical fields and resonant field enhancements of a silver-shell nanocylinder pair and chain waveguides with different core-shell patterns

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Yuan-Fong, E-mail: yfc01@cyu.edu.tw; Li, Huang-Yi; Jiang, Zheng-Hong; Chen, Yi-Fan; Lin, Chih-Sheng; Liu, Min-Shun; Wu, Fong-Lin [Ching Yun University, Department of Electronic Engineering, Taiwan (China); Tsai, Din Ping [National Taiwan University, Department of Physics, Taiwan (China)

    2011-09-15

    Near field optical properties and surface plasmon resonances on a pair of silver-shell nanocylinder and nanochain waveguides with different core-shell patterns which interact with incident plane wave along chain axis are numerically investigated by using the finite element method. Simulation results show that the peak wavelengths and resonant field enhancements are highly tunable by using the nanoshell particles instead of solid ones, revealing a critical relationship among the wavelengths and illuminated direction of incident light, interparticle spacing, radii, and medium of dielectric holes and the patterns of chain waveguides. Besides, nanochain waveguides with different patterns of core-shell that are operated on resonant multipolar modes can provide higher propagation intensities and the transmission ability can be increased by decreasing the size of nanocylinders along the chain axis.

  10. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.

    Science.gov (United States)

    Zhang, Wei; Saliba, Michael; Stranks, Samuel D; Sun, Yao; Shi, Xian; Wiesner, Ulrich; Snaith, Henry J

    2013-09-11

    Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic devices because of their low-cost and potential for high efficiency. Further boosting the performance of solution processed thin-film solar cells without detrimentally increasing the complexity of the device architecture is critically important for commercialization. Here, we demonstrate photocurrent and efficiency enhancement in meso-superstructured organometal halide perovskite solar cells incorporating core-shell Au@SiO2 nanoparticles (NPs) delivering a device efficiency of up to 11.4%. We attribute the origin of enhanced photocurrent to a previously unobserved and unexpected mechanism of reduced exciton binding energy with the incorporation of the metal nanoparticles, rather than enhanced light absorption. Our findings represent a new aspect and lever for the application of metal nanoparticles in photovoltaics and could lead to facile tuning of exciton binding energies in perovskite semiconductors.

  11. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  12. HIPS-GLAD core shell nanorod array photodetectors with enhanced photocurrent and reduced dark current

    Science.gov (United States)

    Keles, Filiz; Cansizoglu, Hilal; Badraddin, Emad O.; Brozak, Matthew P.; Watanabe, Fumiya; Karabacak, Tansel

    2016-10-01

    Vertically aligned core/shell nanorod array photodetectors were fabricated by high pressure sputter (HIPS) deposition of copper indium sulfide (CIS) films on glancing angle deposited (GLAD) indium sulfide (In2S3) nanorods. For comparison, we also studied nanorod photodetectors with conventional low pressure sputtered (LPS) CIS film coatings and counterpart thin film devices incorporating HIPS or LPS-CIS on In2S3 films. HIPS-GLAD core/shell photodetectors have shown a superior photocurrent density response along with lowest dark current density. Photoresponsivity defined with the photocurrent density/dark current density ratio γ = |J ph/J dark| was about ˜1820 for HIPS-GLAD nanorod devices, which is several orders of magnitude higher compared to those of LPS-CIS thin film (γ ˜ 2) and HIPS-CIS thin film (γ ˜ 9) devices, and also about four-fold higher than LPS-CIS nanorod devices (γ ˜ 490). Enhanced photoresponsivity is attributed to the porous microstructure and improved conformality of HIPS-CIS film around the In2S3 nanorods confirmed by SEM and EDS measurements. Due to randomization of the sputtered flux at higher working gas pressures, HIPS can provide a more conformal while at the same time a voidy low-density film around nanostructured surfaces. Reduced interelectrode distance and improved p-n junction interface due to the more uniform conformality of HIPS-CIS result in a higher photocurrent in our HIPS-GLAD devices. In addition, the voids in HIPS-CIS film as a result of its porous nature can behave as highly resistive spots that lower the dark current. Therefore, we have demonstrated that by utilizing a simple and low-temperature HIPS-GLAD method, high-photocurrent and low-dark-current photodetectors can be achieved by controlling the conformality and microstructure of a shell layer around nanorod arrays. HIPS shell coating method can be extended to almost any type of nanostructured substrate.

  13. Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires.

    Science.gov (United States)

    Zhang, Yuan; Lu, Hong-Liang; Wang, Tao; Ren, Qing-Hua; Gu, Yu-Zhu; Li, De-Hui; Zhang, David Wei

    2015-10-07

    The morphological, structural and photoluminescence properties of one-dimensional ZnO/HfO2 core-shell nanowires (NWs) with various thicknesses of HfO2 shell layers are studied in detail in this work. The ZnO NWs have been fabricated by a simple hydrothermal method, which are then coated by thin HfO2 shell layers using atomic layer deposition (ALD). The morphological and structural characterization demonstrates that the HfO2 shells with polycrystalline structures grow on the single-crystalline ZnO NWs conformally. Moreover, the ZnO/HfO2 core/shell NWs show remarkable enhanced ultraviolet (UV) emission with increasing thickness of the HfO2 shell layer compared with bare ZnO NWs. The UV emission intensity for the sample with HfO2 shell thickness of ∼16 nm is about 9 times higher than that of bare ZnO NWs. It mainly results from the decreased surface states by surface passivation of the HfO2 shell layer as well as a typical type-I band alignment in the ZnO/HfO2 core/shell structure. A model is also proposed to explain the evolution of the wide visible emission band with the relatively low intensity of the core/shell structures. Our results suggest that the ZnO/HfO2 core/shell structures have potential applications for high-efficiency optoelectronic devices such as UV light-emitting diodes and lasers.

  14. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators

    Science.gov (United States)

    Zhang, Li; Guo, Hongmei; Wu, Jianhua; Du, Wenjuan

    2012-07-01

    To improve heat transfer performance of shell side of double-pipe heat exchanger with helical fins on its inner tube, some vortex generators (VGs) were installed along the centerline of the helical channel. Heat transfer performance and pressure drop characteristic of the enhanced heat exchangers were investigated using air as the working fluid and steam as the heating medium. The helical fins were in the annulus and span its full width at different helical pitch. Wing-type VGs (delta or rectangular wing) and winglet-type VGs (delta or rectangular winglet pair) were used to combine with helical fins. The friction factor and Nusselt number can be well correlated by power-law correlations in the Reynolds number range studied. In order to evaluate the thermal performance of the shell side enhanced over the shell side without enhancement, comparisons were made under three constraints: (1) identical mass flow rate, IMF; (2) identical pressure drop, IPD and (3) identical pumping power, IPP. The results show the shell side enhanced by the compound heat transfer enhancement has better performance than the shell side only enhanced by helical fins at shorter helical pitch under the three constraints.

  15. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity.

    Science.gov (United States)

    Chen, Siguo; Wei, Zidong; Qi, XueQiang; Dong, Lichun; Guo, Yu-Guo; Wan, Lijun; Shao, Zhigang; Li, Li

    2012-08-15

    We have designed and synthesized a polyaniline (PANI)-decorated Pt/C@PANI core-shell catalyst that shows enhanced catalyst activity and durability compared with nondecorated Pt/C. The experimental results demonstrate that the activity for the oxygen reduction reaction strongly depends on the thickness of the PANI shell and that the greatest enhancement in catalytic properties occurs at a thickness of 5 nm, followed by 2.5, 0, and 14 nm. Pt/C@PANI also demonstrates significantly improved stability compared with that of the unmodified Pt/C catalyst. The high activity and stability of the Pt/C@PANI catalyst is ascribed to its novel PANI-decorated core-shell structure, which induces both electron delocalization between the Pt d orbitals and the PANI π-conjugated ligand and electron transfer from Pt to PANI. The stable PANI shell also protects the carbon support from direct exposure to the corrosive environment.

  16. Enhancing oxidative stability in heated oils using core/shell structures of collagen and α-tocopherol complex.

    Science.gov (United States)

    Gim, Seo Yeong; Hong, Seungmi; Kim, Jisu; Kwon, YongJun; Kim, Mi-Ja; Kim, GeunHyung; Lee, JaeHwan

    2017-11-15

    In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT). α-Tocopherol was substantially protected against heat treatment when α-tocopherol was complexed in collagen core/shell. Oxidative stability in bulk oil was significantly enhanced by added collagen mesh structure or collagen core/shell complex with α-tocopherol compared to that in control bulk oils (pcore/shell with α-tocopherol (p>0.05). Results of DPPH loss in methanol demonstrated that collagen core/shell with α-tocopherol had significantly (pcore/shell complex is a promising way to enhance the stability of α-tocopherol and oxidative stability in oil-rich foods prepared at high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis and characterization of model silica-gold core-shell nanohybrid systems to demonstrate plasmonic enhancement of fluorescence

    Science.gov (United States)

    Roy, Shibsekhar; Dixit, Chandra K.; Woolley, Robert; O'Kennedy, Richard; McDonagh, Colette

    2012-08-01

    In this work, gold-silica plasmonic nanohybrids have been synthesized as model systems which enable tuning of dye fluorescence enhancement/quenching interactions. For each system, a dye-doped silica core is surrounded by a 15 nm spacer region, which in turn is surrounded by gold nanoparticles (GNPs). The GNPs are either covalently conjugated via mercapto silanization to the spacer or encapsulated in a separate external silica shell. The intermediate spacer region can be either dye doped or left undoped to enable quenching and plasmonic enhancement effects respectively. The study indicates that there is a larger enhancement effect when GNPs are encapsulated in the outer shell compared to the system of external conjugation. This is due to the environmental shielding provided by shell encapsulation compared to the exposure of the GNPs to the solvent environment for the externally conjugated system. The fluorescence signal enhancement of the nanohybrid systems was evaluated using a standard HRP-anti-HRP fluorescence based assay platform.

  18. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning

    NARCIS (Netherlands)

    Wichmann, Romy; Fornari, Raquel V.; Roozendaal, Benno

    2012-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of long-term memory of emotionally arousing experiences but have little effect on memory of low-arousing experiences. Although both positive and negative emotionally arousing events tend to be well remembered, studies i

  19. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis.

    Science.gov (United States)

    Zhang, Kun; Qing, Jiang; Gao, Han; Ji, Ji; Liu, Baohong

    2017-01-01

    By coupling shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) with paper chromatography, two birds with one stone method were developed for simultaneous on-site separation and optical detection of multiple components. The established method features high sensitivity of plasmon-enhanced sensing strategies and sufficient temporal and spatial resolution of planar chromatographic techniques.

  20. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure

    Science.gov (United States)

    Gripp, J. A. B.; Góes, L. C. S.; Heuss, O.; Scinocca, F.

    2015-12-01

    Piezoelectric shunt damping is a well-known technique to damp mechanical vibrations of a structure, using a piezoelectric transducer to convert mechanical vibration energy into electrical energy, which is dissipated in an electrical resistance. Resonant shunts consisting of a resistance and an inductance connected to a piezoelectric transducer are used to damp structural vibrations in narrow frequency bands, but their performance is very sensitive to variations in structural modal frequencies and transducer capacitance. In order to overcome this drawback, a piezoelectric shunt damping technique with improved performance and robustness is presented in this paper. The design of the adaptive circuit considers the variation of the host structure’s natural frequency as a project parameter. This paper describes an adaptive resonant piezoelectric vibration absorber enhanced by a synthetic negative capacitance applied to a shell structure. The resonant shunt circuit autonomously adapts its inductance value by comparing the phase difference of the vibration velocity and the current flowing through the shunt circuit. Moreover, a synthetic negative capacitance is added to the shunt circuit to enhance the vibration attenuation provided by the piezoelectric absorber. The circuitry is implemented using analog components. Validation of the proposed method is done by bonding the piezoelectric absorber on a free-formed metallic shell.

  1. Low energy magnetic radiation enhancement in the f7 /2 shell

    Science.gov (United States)

    Karampagia, S.; Brown, B. A.; Zelevinsky, V.

    2017-02-01

    Studies of the γ -ray strength functions can reveal useful information concerning underlying nuclear structure. Accumulated experimental data on the strength functions show an enhancement in the low γ energy region. We have calculated the M 1 strength functions for the Cr,5049 and 48V nuclei in the f7 /2 shell-model basis. We find a low energy enhancement for γ decay similar to that obtained for other nuclei in previous studies, but for the first time we are also able to study the complete distribution related to M 1 emission and absorption. We find that M 1 strength distribution peaks at zero transition energy and falls off exponentially. The height of the peak and the slope of the exponential are approximately independent of the nuclei studied in this model space and the range of initial angular momenta. We show that the slope of the exponential fall off is proportional to the energy of the T =1 pairing gap.

  2. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Giuseppe eGangarossa

    2013-02-01

    Full Text Available The nucleus accumbens (NAc is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP or the Cre-recombinase (Cre under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific ERK phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist, quinpirole (a D2R-like agonist, apomorphine (a non-selective DA receptor agonist, raclopride (a D2R-like antagonist, and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.

  3. Enhancement of luminescence in white emitting strontium fluoride core @ calcium fluoride shell nanoparticles.

    Science.gov (United States)

    Kumam, Nandini; Singh, Ningthoujam Premananda; Singh, Laishram Priyobarta; Srivastava, Sri Krishna

    2015-12-01

    Synthesis of lanthanide-doped fluoride SrF2:3Dy and SrF2:3Dy@CaF2 nanoparticles with different ratios of core to shell (1:0.5, 1:1 and 1:2) has been carried out by employing ethylene glycol route. X-ray diffraction (XRD) patterns reveal that the structure of the prepared nanoparticles was of cubical shape, which is also evident in TEM images. The size of the nanoparticles for core (SrF2:3Dy) is found to increase when core is covered by shell (CaF2). It is also evident from Fourier transform infrared spectroscopy (FTIR) that ethylene glycol successfully controls the growth and acts as a shape modifier by regulating growth rate. In the photoluminescence investigation, emission spectra of SrF2:3Dy is found to be highly enhanced when SrF2:3Dy is covered by CaF2 due to the decrease of cross relaxation amongst the Dy(3+)-Dy(3+) ions. Such type of enhancement of luminescence in homonanostructure SrF2:3Dy@CaF2 (core@shell) has not been studied so far, to the best of the authors' knowledge. This luminescent material exhibits prominently white light emitting properties as shown by the Commission Internationale d'Eclairage (CIE) chromaticity diagram. The calculated correlate colour temperature (CCT) values for SrF2:3Dy, SrF2:3Dy@CaF2 (1:0.05), SrF2:3Dy@CaF2 (1:1) and SrF2:3Dy@CaF2 (1:2) are 5475, 5476, 5384 and 5525 K, respectively, which lie in the cold white region. Graphical abstract White light emitting homonanostructure material SrF2:3Dy@CaF2(core@shell).

  4. Ag@SiO2 Core-shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [ORNL; Li, Zhipeng [Chinese Academy of Sciences; Gu, Baohua [ORNL; Zhang, Zhenyu [ORNL; Xu, Hongxing [Chinese Academy of Sciences

    2009-01-01

    We show that the spatial distribution of the electromagnetic (EM) field enhancement can be probed directly via dynamic evolution of surface-enhanced Raman scattering (SERS) of Rhodamine 6G (R6G) molecules as they diffuse into Ag@SiO2 core-shell nanoparticles. The porous silica shell limits the diffusion of R6G molecules towards inner Ag cores, thereby allowing direct observation and quantification of the spatial distribution of SERS enhancement as molecules migrate from the low to high EM fields inside the dielectric silica shell. Our experimental evidence is validated by the generalized Mie theory, and the approach can potentially offer a novel platform for further investigating the site and spatial distribution of the EM fields and the EM versus chemical enhancement of SERS due to molecular confinement within the Ag@SiO2 nanoshell.

  5. Hydrothermal synthesis of core–shell TiO{sub 2} to enhance the photocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang, E-mail: txfan@sjtu.edu.cn; Zhang, Di

    2016-04-15

    Graphical abstract: Core–shell TiO{sub 2} with interior cavity was synthesized by a hydrothermal approach to enhance the photocatalytic performance. - Highlights: • Core–shell TiO{sub 2} with interior cavity can be synthesized by hydrothermal approach. • Multiple reflection of incident light in cavity can increase the absorption. • Rutile can optimize the bandgap and delay the charge recombination. - Abstract: A hydrothermal approach was designed to synthesize core–shell TiO{sub 2} with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core–shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV–vis absorption proves core–shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core–shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  6. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  7. Ascorbate reduces morphine-induced extracellular DOPAC level in the nucleus accumbens: A microdialysis study in rats.

    Science.gov (United States)

    Rajaei, Z; Alaei, H; Nasimi, A; Amini, H; Ahmadiani, A

    2005-08-16

    Most drugs of abuse increase dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) release in the shell of the nucleus accumbens. The effects of ascorbate, which is known to modulate dopamine neurotransmission, on the extracellular level of DOPAC in the nucleus accumbens of naive rats and of rats treated acutely with morphine were studied by using in vivo microdialysis and high performance liquid chromatography with electrochemical detection (HPLC-ECD). Acute morphine (20 mg/kg ip) treatment increased the level of DOPAC in the nucleus accumbens to approximately 170% of basal level. Acute treatment with ascorbate (500 mg/kg ip) alone did not alter nucleus accumbens' DOPAC level, but pretreatment with ascorbate (500 mg/kg ip) 30 min before morphine administration attenuated the effects of acute morphine on the level of DOPAC. These results suggest that ascorbate modulates the mesolimbic dopaminergic pathway.

  8. Multifunctional Core@Shell Magnetic Nanoprobes for Enhancing Targeted Magnetic Resonance Imaging and Fluorescent Labeling in Vitro and in Vivo.

    Science.gov (United States)

    Zhang, Qian; Yin, Ting; Gao, Guo; Shapter, Joseph G; Lai, Weien; Huang, Peng; Qi, Wen; Song, Jie; Cui, Daxiang

    2017-05-31

    Core@shell magnetic nanoparticles (core@shell MNPs) are attracting widespread attention due to their enhancement properties for potential applications in hyperthermia treatment, magnetic resonance imaging (MRI), diagnostics, and so forth. Herein, we developed a facile thermal decomposition method for controllable synthesis of a superparamagnetic, monodispersed core@shell structure (Co@Mn = CoFe2O4@MnFe2O4) with uniform size distribution (σ core could enhance magnetic anisotropy, and the MnFe2O4 shell could improve the magnetization value. The Co@Mn MNPs were transferred into aqueous solution with an amphiphilic polymer (labeled 2% TAMRA) and functionalized with PEG2k and target molecules (folic acid, FA) to fabricate multifunctional PMATAMRA-Co@Mn-PEG2k-FA nanoprobes. The obtained PMATAMRA-Co@Mn-PEG2k-FA nanoprobes exhibit good biocompatibility, high T2 relaxation values, and long-term fluorescence stability (at least 6 months). Our results demonstrate that the synthesized PMATAMRA-Co@Mn-PEG2k-FA nanoprobes can effectively enhance the targeted MRI and fluorescent labeling in vitro and in vivo. The research outcomes will contribute to the rational design of new nanoprobes and provide a promising pathway to promote core@shell nanoprobes for further clinical contrast MRI and photodynamic therapy in the near future.

  9. Enhanced field emission properties of ZnO-Ag2S core-shell heterojunction nanowires.

    Science.gov (United States)

    Wang, Guojing; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui; Li, Zhengcao

    2016-06-07

    A simple approach to Ag2S quantum dot (QD) modification was used to tune the field emission (FE) properties of ZnO nanowire arrays (NWAs). By a simple and facile successive ionic layer adsorption and reaction (SILAR) approach, Ag2S QDs were uniformly and densely packed on ZnO nanowires (NWs) to form ZnO-Ag2S core-shell heterojunction structures. The FE properties of ZnO NWAs were effectively tuned by controlling the amount of Ag2S QDs. The turn-on field first reduces and then increases as the amount of Ag2S QDs increases, while the trend of the field-enhancement factor is inverse. This is attributed to the clustering of Ag2S QDs into nanoparticles (NPs) which cover the nanowire tips, as SILAR cycles increase.

  10. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  11. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light.

    Science.gov (United States)

    Li, Benxia; Gu, Ting; Ming, Tian; Wang, Junxin; Wang, Peng; Wang, Jianfang; Yu, Jimmy C

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures.

  12. Orientation-induced enhancement in electromagnetic properties of ZnFe2O4/SiO2/PANI core/shell/shell nanostructured disks

    Science.gov (United States)

    Wang, Jiaheng; Or, Siu Wing

    2016-05-01

    ZnFe2O4/SiO2/PANI (ZSP) core/shell/shell nanostructured disks are prepared and fabricated into paraffin-bonded ZSP composite rings with random, vertical, and horizontal orientations of the easy magnetization planes of the ZSP disks in the paraffin binder in order to study the effect of directional orientation of the easy magnetization planes on their electromagnetic properties. The easy magnetization planes induced by shape anisotropy and oriented by a magnetic field in the vertically oriented ring result in a general enhancement in permeability of 7-60% in the broad UHF-Ku (0.1-18 GHz) bands, while those in the horizontally oriented ring lead to a significant enhancement of 58-1100% in the low-frequency L and S (1-4 GHz) bands, in comparison with the randomly oriented ring. The observed permeability agrees with the theoretical prediction based on the Landau-Lifshitz-Gilbert equation and the Bruggeman's effective medium theory. The horizontal and vertical arrangements of dipolar polarizations in the vertically and horizontally oriented rings give rise to 3-11% enhancement and weakening in permittivity, respectively, compared to the randomly oriented ring. The enhancement in permeability also improves and broadens the electromagnetic wave absorption in both vertically and horizontally oriented rings, especially in the L and S bands for the horizontally oriented ring.

  13. Orientation-induced enhancement in electromagnetic properties of ZnFe2O4/SiO2/PANI core/shell/shell nanostructured disks

    Directory of Open Access Journals (Sweden)

    Jiaheng Wang

    2016-05-01

    Full Text Available ZnFe2O4/SiO2/PANI (ZSP core/shell/shell nanostructured disks are prepared and fabricated into paraffin-bonded ZSP composite rings with random, vertical, and horizontal orientations of the easy magnetization planes of the ZSP disks in the paraffin binder in order to study the effect of directional orientation of the easy magnetization planes on their electromagnetic properties. The easy magnetization planes induced by shape anisotropy and oriented by a magnetic field in the vertically oriented ring result in a general enhancement in permeability of 7–60% in the broad UHF–Ku (0.1–18 GHz bands, while those in the horizontally oriented ring lead to a significant enhancement of 58–1100% in the low-frequency L and S (1–4 GHz bands, in comparison with the randomly oriented ring. The observed permeability agrees with the theoretical prediction based on the Landau–Lifshitz–Gilbert equation and the Bruggeman’s effective medium theory. The horizontal and vertical arrangements of dipolar polarizations in the vertically and horizontally oriented rings give rise to 3–11% enhancement and weakening in permittivity, respectively, compared to the randomly oriented ring. The enhancement in permeability also improves and broadens the electromagnetic wave absorption in both vertically and horizontally oriented rings, especially in the L and S bands for the horizontally oriented ring.

  14. The effects of nicotine injection in rat nucleus accumbens on anxiety

    Directory of Open Access Journals (Sweden)

    Ghorbani Yekta B

    2013-05-01

    Full Text Available Background: Previous reports showed that nucleus accumbens involved in the etiology and pathophysiology of major depression, anxiety and addiction. It is not clear that how these mechanisms occur in the brain. In the present study, the influence of direct nicotine injection in the nucleus accumbens in rats’ anxiety-related behavior was investigated. Methods: Wistar rats were used in this study. Male Wistar rats bred in an animal house, in a temperature-controlled (22±2 ◦C room with a 12 hour light/darkcycle. Rats were anesthetized using intraperitoneal injection of ketamine hydrochloride and xylazine, then placed in an stereotactic instrument for microinjection cannula implantation The stainless steel guide cannula was implanted bilaterally in the right and left dorsal the nucleus accumbens shell according to Paxinos and Watson atlas. After recovery, anxiety behavior and locomotor activity were tested. We used the elevated plus maze to test anxiety. This apparatus has widely been employed to test parameters of anxiety-related behaviors including the open armtime percentage (%OAT, open arm entries percentage (%OAE, locomotor activity and we record effect of drugs after injection directly in the nucleus accumbens on anxiety-related behavior.Results: Experiments showed that bilateral injections into the nucleus accumbens Nicotine, acetylcholine receptor agonist, dose 0.1 of the dose (0.05 and 0.1, 0.25, 0.5 microgram per rat caused a significant increase in the percentage of time spent in the open arms (%OAT, compared to the control group. We did not record any significant change locomotor activity and open arm entries percentage (%OAE in rats.Conclusion: Nicotinic receptors in the nucleus accumbens shell involved to anxiety-like behavior in male rats.

  15. Iptkalim inhibits cocaine challenge—induced enhancement of dopamine levels in nucleus accumbens and striatum of rats by up—regulating Kir6.1 and Kir6.2 mRNA expression

    Institute of Scientific and Technical Information of China (English)

    HEHai-Rong; DINGJian-Hua; GUBing; WANGHai; HUGang; LIUYun

    2003-01-01

    AIM:To investigate the effect and mechanism of novel ATP-sensitive potassium channel opener (KCO) iptkalim (IPT) on acute and cocaine challenge-induced alterations in the levels of dopamine (DA) and glutamate (Glu) from nucleus accumbens (NAc), striatum, and prefrontal cortex (PFC) in rats. METHODS: The levels of DA and Glu were assayed using high performance liquid chromatography (HPLC) combined with amperometric and fluorescent detection, respectively. The mRNA levels of Kir6.1, Kir6.2, SUR1, and SUR2 were measured by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: IPT did not affect acute cocaine (30mg/kg,ip)-induced elevations in either DA levels from NAc and striatum or Glu levels from NAc and PFC. An acute cocaine challenge (30mg/kg,ip) on d 21 after withdrawal caused an elevation in DA levels in NAc and striatum. Moreover, the same treatment also increased Gluo levels in PFC and NAc of cocaine-pretreated rats. Repeated IPT injections reversed cocaine challenge-induced DA increase in NAc and striatum. Cocaine challenge increased Kir6.1 and Kir6.2 mRNA expression in striatum and NAc and only elevate Kir6.2 expression in PFC in both cocainepretreated rats and rats pretreated with IPT plus cocaine. Moreover, expression of Kir6.1 and Kir6.2 mRNA was augmented in rats pretreated with IPT plus cocaine compared to rats pretreated with cocaine alone. No significant change was found in the SUR1 and SUR2 expression of all four groups. CONCLUSION:IPT inhibited cocaine challenge-induced enhancement of DA levels in NAc and striatum by up-regulating Kir6.1 and Kir6.2 mRNA expression.

  16. MoS2 /Carbon Nanotube Core-Shell Nanocomposites for Enhanced Nonlinear Optical Performance.

    Science.gov (United States)

    Zhang, Xiaoyan; Selkirk, Andrew; Zhang, Saifeng; Huang, Jiawei; Li, Yuanxin; Xie, Yafeng; Dong, Ningning; Cui, Yun; Zhang, Long; Blau, Werner J; Wang, Jun

    2017-03-08

    Nanocomposites of layered MoS2 and multi-walled carbon nanotubes (CNTs) with core-shell structure were prepared by a simple solvothermal method. The formation of MoS2 nanosheets on the surface of coaxial CNTs has been confirmed by scanning electron microscopy, transmission electron microscopy, absorption spectrum, Raman spectroscopy, and X-ray photoelectron spectroscopy. Enhanced third-order nonlinear optical performances were observed for both femtosecond and nanosecond laser pulses over a broad wavelength range from the visible to the near infrared, compared to those of MoS2 and CNTs alone. The enhancement can be ascribed to the strong coupling effect and the photoinduced charge transfer between MoS2 and CNTs. This work affords an efficient way to fabricate novel CNTs based nanocomposites for enhanced nonlinear light-matter interaction. The versatile nonlinear properties imply a huge potential of the nanocomposites in the development of nanophotonic devices, such as mode-lockers, optical limiters, or optical switches.

  17. 高频电刺激伏隔核壳部对肥胖大鼠摄食相关激素的影响%Effects of high frequency stimulation of nucleus accumbens shell subregion on food intake in obesity rats and regulation of appetite-related hormones

    Institute of Scientific and Technical Information of China (English)

    王秀; 张凯; 张弨; 魏乃礼; 王垚; 刘畅; 赵宝田; 胡文瀚; 张建国

    2015-01-01

    Objective To explore the effects of chronic high frequency deep brain stimulation (DBS) of nucleus accumbens shell subregion on food intake and regulation of appetite-related hormones.Methods High-fat diet induced obesity rats were randomly divided into two groups,namely DBS group and sham-DBS group.Stimulating electrodes were implanted in the bilateral shell subregion of nucleus accumbens.The amount of food intake was measured before and during stimulation.Peripheral concentrations of ghrelin,NPY,and leptin were tested before and after DBS or sham-DBS.Results The amount of food intake began to significantly decrease once stimulation was on.After 7 days' continuous stimulation,peripheral concentrations of NPY and leptin decreased significantly (Leptin:pre-DBS:32 ± 10 vs.post-DBS:20 ± 10pg/ml,P < 0.05 ; NPY:pre-DBS:1 302 ± 287 vs.post-DBS:926 ± 299 pg/ml,P < 0.05),and ghrelin increased significantly (Pre-DBS:1066 ± 310 vs.Post-DBS:1603 ± 848 pg/ml,P < 0.05).Conclusions NAc shell subregion is an effective DBS target to decrease food intake in obesity rats.NAc-shell DBS seems to temporarily inhibit the hypothalamic secretion of NPY.Increase of ghrelin levels maybe a second result of decreased food intake caused by NAc-shell stimulation.%目的 探讨伏隔核壳部(NAc-sh)脑深部电刺激术(DBS)对肥胖大鼠摄食量和摄食相关激素分泌的影响.方法 取8周龄雄性SD大鼠60只,高脂饮食建立肥胖大鼠模型,6个月后取24只肥胖大鼠,采用随机数字表法随机分为NAc-sh高频DBS刺激组(简称刺激组)和假刺激组,每组12只.分别在双侧NAc-sh植入刺激电极固定装置.术后30 d大鼠进食完全恢复后,两组各选取进食量稳定的大鼠10只植入电极行刺激(电压3.0V,波宽100μs,频率180 ~ 200 Hz)或假刺激,并于刺激或假刺激前后断尾取血,放射免疫方法检测外周血胃促生长素、瘦素及神经肽Y(NPY)水平的变化.结果 刺激组大鼠刺激开始摄食量

  18. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis

  19. An Experimental Study on Effect of Palm – Shell Waste Additive to Cement Strenght Enhancement

    Directory of Open Access Journals (Sweden)

    Adi Novriansyah

    2017-03-01

    Full Text Available Enhancing the cement strength through attaching chemical additive has been popular to meet the required condition for a particular well-cementing job. However, due to a low oil-price phenomenon, pouring and additive should be reconsidered because it can raise the cost and make the project become uneconomic. Another additive material in nanocomposite form will be introduced through this experimental study. The nanocomposite material consist of silica nanoparticle, known as “Nanosilica” and a palm-shell-waste, which is abundant in Indonesia. Before making a nanocomposite, the palm-shell should be burned to obtain a charcoal form, ground and sieved to attain a uniform size.   The study focuses on the two parameters, compressive strength and shear bond strength, which can reflect the strength of the cement. These values are obtained by performing a biaxial loading test to the cement sample. Various samples with different concentration of nanocomposite should be prepared and following the mixing, drying, and hardening process before the loading test is carried out. The result from the test shows a positive indication for compressive strength and shear bond strength values, according to the representative well cementing standards. Increasing the nanocomposite concentration on the cement will increase these values. Furthermore, an investigation on the temperature effect confirms that the sample with 700oC burning temperature have highest compressive-strength and shear-bond-strength values. This is a potential opportunity utilizing a waste-based material to produce another product with higher economic value.

  20. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})

  1. Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation.

    Science.gov (United States)

    Wang, Bo; Yang, Jun; Wang, Lei; Wang, Ruihong; Tian, Chungui; Jiang, Baojiang; Tian, Mei; Fu, Honggang

    2013-11-28

    The hollow palladium nanospheres with the porous shell comprised of uniform 5 nm Pd nanoparticles (Pd NS-HP) have been synthesized successfully by employing a simple replacement process between PdCl4(2-) ions and Co with the assistance of a structure-directing agent, polyvinyl pyrrolidone (PVP). Then, the obtained Pd NS-HP is supported on graphene nanosheets (GN) to prepare Pd NS-HP/GN composites by a wet-impregnation method. As the catalyst towards formic acid electrooxidation, the Pd NS-HP/GN composite exhibits a larger electrochemically active surface area, better electrocatalytic activity and better stability compared with Pd nanoparticles/graphene (Pd NP/GN) and commercial Pd/C catalysts. The enhancement in electrocatalytic performance of Pd NS-HP/GN is attributed to the abundant connected pore channels in the inner and exterior surfaces of Pd nanospheres, which could provide a large contact surface for adsorption and transmission of reactants, facilitating the oxidation of formic acid molecules on its surface and also improving the utilization of Pd metal. Moreover, the support of graphene could enhance the stability of the catalyst.

  2. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres.

    Science.gov (United States)

    Cao, Ruijian; Zhang, Xiongfei; Wu, Hong; Wang, Jingtao; Liu, Xiaofei; Jiang, Zhongyi

    2011-03-15

    Pervaporative desulfurization based on membrane technology provides a promising alternative for removal of sulfur substances (as represented by thiophene) in fluid catalytic cracking (FCC) gasoline. The present study focused on the performance enhancement of polydimethylsiloxane (PDMS) membrane by incorporation of core-shell structured silver/silica microspheres. A silane coupling agent, N-[3-(trimethoxysily)propyl]-ethylenediamine (TSD), was used to chelate the Ag(+) via its amino groups and attach the silver seeds onto the silica surface via condensation of its methoxyl groups. The resultant microspheres were characterized by Zeta-positron annihilation lifetime spectroscopy (ZetaPALS), inductively coupled plasmaoptical emission spectrophotometer (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Ag(+)/SiO(2)-PDMS composite membranes were prepared by blending PDMS with the as-synthesized silver/silica microspheres. PALS analysis was used to correlate the apparent fractional free volume with permeation flux. The sorption selectivity towards thiophene was enhanced after incorporation of silver/silica microspheres due to the π-complexation between the silver on the microsphere surface and the thiophene molecules. The pervaporative desulfurization performance of the composite membrane was investigated using thiophene/n-octane mixture as a model gasoline. The composite membrane exhibited an optimum desulfurization performance with a permeation flux of 7.76 kg/(m(2)h) and an enrichment factor of 4.3 at the doping content of 5%. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Ruijian; Zhang Xiongfei [Key Laboratory for Green Chemical Technology, Ministry of Education of China, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wu Hong, E-mail: wuhong2000@gmail.com [Key Laboratory for Green Chemical Technology, Ministry of Education of China, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Wang Jingtao; Liu Xiaofei [Key Laboratory for Green Chemical Technology, Ministry of Education of China, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Jiang Zhongyi [Key Laboratory for Green Chemical Technology, Ministry of Education of China, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2011-03-15

    Pervaporative desulfurization based on membrane technology provides a promising alternative for removal of sulfur substances (as represented by thiophene) in fluid catalytic cracking (FCC) gasoline. The present study focused on the performance enhancement of polydimethylsiloxane (PDMS) membrane by incorporation of core-shell structured silver/silica microspheres. A silane coupling agent, N-[3-(trimethoxysily)propyl]-ethylenediamine (TSD), was used to chelate the Ag{sup +} via its amino groups and attach the silver seeds onto the silica surface via condensation of its methoxyl groups. The resultant microspheres were characterized by Zeta-positron annihilation lifetime spectroscopy (ZetaPALS), inductively coupled plasmaoptical emission spectrophotometer (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Ag{sup +}/SiO{sub 2}-PDMS composite membranes were prepared by blending PDMS with the as-synthesized silver/silica microspheres. PALS analysis was used to correlate the apparent fractional free volume with permeation flux. The sorption selectivity towards thiophene was enhanced after incorporation of silver/silica microspheres due to the {pi}-complexation between the silver on the microsphere surface and the thiophene molecules. The pervaporative desulfurization performance of the composite membrane was investigated using thiophene/n-octane mixture as a model gasoline. The composite membrane exhibited an optimum desulfurization performance with a permeation flux of 7.76 kg/(m{sup 2} h) and an enrichment factor of 4.3 at the doping content of 5%.

  4. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.

    Science.gov (United States)

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-07-06

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd(2+) precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal.

  5. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Science.gov (United States)

    Dong, Alideertu; Huang, Jinfeng; Lan, Shi; Wang, Tao; Xiao, Linghan; Wang, Weiwei; Zhao, Tianyi; Zheng, Xin; Liu, Fengqi; Gao, Ge; Chen, Yuxin

    2011-07-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  6. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  7. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  8. Enhanced fluorescence of graphene oxide by well-controlled Au@SiO2 core-shell nanoparticles.

    Science.gov (United States)

    Li, Cuiyan; Zhu, Yihua; Wang, Siwen; Zhang, Xiaoqing; Yang, Xiaoling; Li, Chunzhong

    2014-01-01

    Graphene and graphene derivatives, including graphene oxide (GO) and reduced GO (rGO), have attracted remarkable attention in different fields due to their unique electronic, thermal, and mechanical properties, whereas the fluorescence property is rarely been studied. This paper reports on metal-enhanced fluorescence Au@SiO2 composite nanoparticles adsorbed graphene oxide nanosheets, where the silica-shell is used to control the distance between gold-core and fluorophore GO, and a positively charged polyelectrolyte poly(allylamine hydrochloride) (PAH) is used to adsorb the negatively charged silica-shell and GO by layer-by-layer assembly (LbL) approach. The silica-shell around the 80 nm gold-core can be well-controlled by ending the reaction at different times. Various analytical techniques were applied to characterize the morphology and optical characters of the as-prepared particles. A more than three-fold increase of the fluorescence intensity of GO was obtained.

  9. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.

    Science.gov (United States)

    Liu, Ni; Xu, Ling; Wang, Hongyu; Xu, Jun; Su, Weining; Ma, Zhongyuan; Chen, Kunji

    2014-12-01

    Eu-doped ZnSe:/ZnS quantum dots (formed as ZnSe:Eu/ZnS QDs) were successfully synthesized by a two-step wet chemical method: nucleation doping and epitaxial shell growing. The sensitization characteristics of Eu-doped ZnSe and ZnSe/ZnS core/shell QD are studied in detail using photoluminescence (PL), PL excitation spectra (PLE) and time-resolved PL spectroscopy. The emission intensity of Eu ions is enhanced and that of ZnSe QDs is decreased, implying that energy was transferred from the excited ZnSe host materials (the donor) to the doped Eu ions (the acceptor). PLE reveals that the ZnSe QDs act as an antenna for the sensitization of Eu ions through an energy transfer process. The dynamics of ZnSe:Eu/ZnS core/shell quantum dots with different shell thicknesses and doping concentrations are studied via PL spectra and fluorescence lifetime spectra. The maximum phosphorescence efficiency is obtained when the doping concentration of Eu is approximately 6% and the sample showed strong white light under ultraviolet lamp illumination. By surface modification with ZnS shell layer, the intensity of Eu-related PL emission is increased approximately three times compared with that of pure ZnSe:Eu QDs. The emission intensity and wavelength of ZnSe:Eu/ZnS core/shell quantum dots can be modulated by different shell thickness and doping concentration. The results provide a valuable insight into the doping control for practical applications in laser, light-emitting diodes and in the field of biotechnology. Copyright © 2014 John Wiley & Sons, Ltd.

  10. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    Science.gov (United States)

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth.

  11. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core-shell nanocrystals show an enhanced electrocatalytic activity for formic acid oxidation compared with commercial Pd black. This journal is © 2014 The Royal Society of Chemistry.

  12. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-19

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.

  13. Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells.

    Science.gov (United States)

    Tu, Shang-Ju; Sheu, Jinn-Kong; Lee, Ming-Lun; Yang, Chih-Ciao; Chang, Kuo-Hua; Yeh, Yu-Hsiang; Huang, Feng-Wen; Lai, Wei-Chih

    2011-06-20

    In this article, the characteristics of GaN-based LEDs grown on Ar-implanted GaN templates to form inverted Al0.27Ga0.83N pyramidal shells beneath an active layer were investigated. GaN-based epitaxial layers grown on the selective Ar-implanted regions had lower growth rates compared with those grown on the implantation-free regions. This resulted in selective growth, and formation of V-shaped concaves in the epitaxial layers. Accordingly, the inverted Al0.27Ga0.83N pyramidal shells were formed after the Al0.27Ga0.83N and GaN layers were subsequently grown on the V-shaped concaves. The experimental results indicate that the light-output power of LEDs with inverted AlGaN pyramidal shells was higher than those of conventional LEDs. With a 20 mA current injection, the output power was enhanced by 10% when the LEDs were embedded with inverted Al0.27Ga0.83N pyramidal shells. The enhancement in output power was primarily due to the light scattering at the Al0.27Ga0.83N/GaN interface, which leads to a higher escape probability for the photons, that is, light-extraction efficiency. Based on the ray tracing simulation, the output power of LEDs grown on Ar-implanted GaN templates can be enhanced by over 20% compared with the LEDs without the embedded AlGaN pyramidal shells, if the AlGaN layers were replaced by Al0.5Ga0.5N layers.

  14. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    Science.gov (United States)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  15. Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery.

    Science.gov (United States)

    Awang, Mariyamni; Seng, Goh Meng

    2008-01-01

    The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives.

  16. Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaosi, E-mail: sci.xsqi@gzu.edu.cn [Physics Department, Guizhou University, Guiyang 550025 (China); Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Hu, Qi; Xu, Jianle; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie [Physics Department, Guizhou University, Guiyang 550025 (China); Zhong, Wei, E-mail: wzhong@nju.edu.cn [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China)

    2016-09-15

    Graphical abstract: In the article, core/shell Fe{sub 3}O{sub 4}/C, Fe/helical carbon nanotubes were synthesized selectively. The results indicated that the optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possibly enhanced microwave absorption mechanisms were also discussed in detail. - Highlights: • An efficient scheme was designed to synthesize core/shell magnetic nanoparticles/carbon-based hybrids. • By controlling the temperature, different categories of core/shell nanohybrids were synthesized. • The obtained Fe/CNT hybrid exhibits enhanced microwave absorption property. • Enhanced microwave absorbing mechanism was discussed in detail. - Abstract: An efficient scheme was designed to selectively synthesize different categories of core/shell structured magnetic nanoparticles/carbon-based nanohybrids such as Fe{sub 3}O{sub 4}/C and Fe/helical carbon nanotubes (HCNTs) through the decomposition of acetylene directly over Fe{sub 2}O{sub 3} nanotubes by controlling the pyrolysis temperature. The measured electromagnetic parameters indicated that the Fe/HCNT nanohybrids exhibited enhanced microwave absorption properties, which may be related to their special structures. The optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL values below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possible enhanced EM absorption mechanisms were also discussed in detail. The results show excellent microwave absorption materials that are lightweight, have strong absorption and a wide absorption frequency band may be realized in these nanohybrids.

  17. Nucleus accumbens μ-opioid receptors mediate social reward.

    Science.gov (United States)

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  18. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.

    NARCIS (Netherlands)

    Fusa, K.; Takahashi, I.; Watanabe, S.; Aono, Y.; Ikeda, H.; Saigusa, T.; Nagase, H.; Suzuki, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro -quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidi

  19. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT : PCBM/ZnO nanorod array hybrid solar cells

    NARCIS (Netherlands)

    Wang, Ting-Chung; Su, Yen-Hsun; Hung, Yun-Kai; Yeh, Chen-Sheng; Huang, Li-Wen; Gomulya, Widianta; Lai, Lai-Hung; Loi, Maria A.; Yang, Jih-Sheng; Wu, Jih-Jen

    2015-01-01

    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropria

  20. Tuning Surface Structure and Strain in Pd-Pt Core-Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction.

    Science.gov (United States)

    Xiong, Yalin; Shan, Hao; Zhou, Zhengnan; Yan, Yucong; Chen, Wenlong; Yang, Yaxiong; Liu, Yongfeng; Tian, He; Wu, Jianbo; Zhang, Hui; Yang, Deren

    2017-02-01

    Icosahedral, octahedral, and cubic Pd@Pt core-shell nanocrystals with two atomic Pt layers are epitaxially generated under thermodynamic control. Such icosahedra exhibit remarkably enhanced catalytic properties for oxygen reduction reaction compared to the octahedra and cubes as well as commercial Pt/C, which can be attributed to ligand and geometry effects, especially twin-induced strain effect that is revealed by geometrical phase analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation of a novel core-shell Ag-graphene@SiO2 nanocomposite for fluorescence enhancement.

    Science.gov (United States)

    Yin, Dongguang; Liu, Binhu; Zhang, Le; Wu, Minghong

    2012-06-01

    A facile one-pot water-in-oil microemulsion method has been developed for the synthesis of a novel core-shell Ag-graphene@SiO2 nanocomposite with fluorescein isothiocyanate (FITC) doped in the shell. During the preparation process, reducing both Ag+ and graphene oxide, and loading of Ag nanoparticles on graphene were occurred in the microemulsion simultaneously. Then FITC was covalently doped in the silica shell through a copolymerization reaction with tetraethoxysilane (TEOS). The morphology and optical properties of the nanocomposite were characterized by transmission electron microscope (TEM), UV-Vis spectrum, fluorescence emission spectrum and FT-IR spectrum, respectively. The results showed that the emission intensity from the as-prepared nanocomposite was 3-fold higher than that of control silica nanoparticles in which graphene was absent. The graphene in the as-prepared nanocomposite exhibited an enhanced effect for the metal enhanced fluorescence (MEF). This enhancement offers a potential increase in overall nanoprobe detectability. This work could provide new insights into fabrication of Ag-graphene based nanocomposites and facilitate their application.

  2. Design of Super-Paramagnetic Core-Shell Nanoparticles for Enhanced Performance of Inverted Polymer Solar Cells.

    Science.gov (United States)

    Jaramillo, Johny; Boudouris, Bryan W; Barrero, César A; Jaramillo, Franklin

    2015-11-18

    Controlling the nature and transfer of excited states in organic photovoltaic (OPV) devices is of critical concern due to the fact that exciton transport and separation can dictate the final performance of the system. One effective method to accomplish improved charge separation in organic electronic materials is to control the spin state of the photogenerated charge-carrying species. To this end, nanoparticles with unique iron oxide (Fe3O4) cores and zinc oxide (ZnO) shells were synthesized in a controlled manner. Then, the structural and magnetic properties of these core-shell nanoparticles (Fe3O4@ZnO) were tuned to ensure superior performance when they were incorporated into the active layers of OPV devices. Specifically, small loadings of the core-shell nanoparticles were blended with the previously well-characterized OPV active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Upon addition of the core-shell nanoparticles, the performance of the OPV devices was increased up to 25% relative to P3HT-PCBM active layer devices that contained no nanoparticles; this increase was a direct result of an increase in the short-circuit current densities of the devices. Furthermore, it was demonstrated that the increase in photocurrent was not due to enhanced absorption of the active layer due to the presence of the Fe3O4@ZnO core-shell nanoparticles. In fact, this increase in device performance occurred because of the presence of the superparamagnetic Fe3O4 in the core of the nanoparticles as incorporation of ZnO only nanoparticles did not alter the device performance. Importantly, however, the ZnO shell of the nanoparticles mitigated the negative optical effect of Fe3O4, which have been observed previously. This allowed the core-shell nanoparticles to outperform bare Fe3O4 nanoparticles when the single-layer nanoparticles were incorporated into the active layer of OPV devices. As such, the new materials described here present a

  3. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency.

    Science.gov (United States)

    Coropceanu, Igor; Bawendi, Moungi G

    2014-07-09

    CdSe/CdS core/shell quantum dots (QDs) have been optimized toward luminescent solar concentration (LSC) applications. Systematically increasing the shell thickness continuously reduced reabsorption up to a factor of 45 for the thickest QDs studied (with ca. 14 monolayers of CdS) compared to the initial CdSe cores. Moreover, an improved synthetic method was developed that retains a high-fluorescence quantum yield, even for particles with the thickest shell volume, for which a quantum yield of 86% was measured in solution. These high quantum yield thick shell quantum dots were embedded in a polymer matrix, yielding highly transparent composites to serve as prototype LSCs, which exhibited an optical efficiency as high as 48%. A Monte Carlo simulation was developed to model LSC performance and to identify the major loss channels for LSCs incorporating the materials developed. The results of the simulation are in excellent agreement with the experimental data.

  4. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    Science.gov (United States)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-02-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  5. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    Science.gov (United States)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-06-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  6. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing

    2015-12-14

    © 2015 by the authors. In the current work, we developed a facile synthesis of yolk/core-shell structured TS-1@mesosilica composites and studied their catalytic performances in the hydroxylation of phenol with H2O2 as the oxidant. The core-shell TS-1@mesosilica composites were prepared via a uniform coating process, while the yolk-shell TS-1@mesosilica composite was prepared using a resorcinol-formaldehyde resin (RF) middle-layer as the sacrificial template. The obtained materials were characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples possessed highly uniform yolk/core-shell structures, high surface area (560–700 m2 g−1) and hierarchical pore structures from oriented mesochannels to zeolite micropores. Importantly, owing to their unique structural properties, these composites exhibited enhanced activity, and also selectivity in the phenol hydroxylation reaction.

  7. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    Directory of Open Access Journals (Sweden)

    Daniel Charles Castro

    2015-06-01

    Full Text Available The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc and ventral pallidum (VP, in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (‘liking’ and motivational incentive salience (‘wanting’ of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating versus intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including ‘liking’ and ‘wanting’ for food rewards.

  8. CREB EXPRESSION IN THE SHELL OF ACCUMBENS NUCLEUS OF RATS WITH CONDITIONED PLACE AVERSION INDUCED BY MORPHINE WITHDRAWAL%吗啡戒断后条件性位置厌恶大鼠伏隔核壳区CREB表达

    Institute of Scientific and Technical Information of China (English)

    李秀梅; 李文强; 乔振; 宋秀花; 李毅

    2013-01-01

    Objective:To explore the changes of cAMP response element binding protein(CREB) in the shell of accumbens nucleus (AcbSH) at the post-formation,post-extinction and post-reinstatement of morphine withdrawal-induced conditioned place aversion (CPA) in rats.Methods:(1)Using an unbiased conditioning paradigm,we treated rats with morphine hydrochloride,10 mg · kg-1,intraperitoneally (ip),twice per day for 6.5 days,subsequently naloxone (0.3 mg · kg-1 ip) was injected on day 6 to precipitate withdrawal,which is paired with the compartment to develop CPA.Then,the rats exhibiting CPA were received 12 extinction trials by being exposed to the two compartments with free exploration.On day 13,the rats with the extinguished CPA were treated with a priming injection of morphine,10 mg · kg-1,ip,followed by naloxone,0.3 mg · kg-1,ip,to reinstate the CPA.(2)Immunohistochemistry technique was used to measure the expression of phosphorylated CREB (p-CREB,Ser-133)in AcbSH.Results:(1)The used experimental procedure could develop obvious CPA in rats,and the CPA could be extincted and reinstated,respectively.(2) At the post-formation of the CPA,the p-CREB expression was significantly increased in the AcbSH (P < 0.05),was significantly decreased at the post-extinction of the CPA(P <0.01),and was increased at the post-reinstatement of the CPA(P <0.01),respectively,compared with that in controls.Conclusion:(1)The AcbSH may be one of anatomic substrates implicating in the CPA induced by morphine withdrawal in rats.(2)The neuroadaptation mediated by CREB may be one of molecular mechanisms of the emotional state and reinforcements in the AcbSH.%目的:探讨慢性吗啡依赖大鼠纳洛酮催瘾戒断后条件性位置厌恶(conditioned place aversion,CPA)建立、消退和重建过程中,伏隔核壳区(shell of accumbens nucleus,AcbSH)内cAMP反应元件结合蛋白(cyclic-3',5'adenosine monophosphate response element binding protein,CREB)蛋白表达的适应性变化.方法:(1

  9. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  10. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  11. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.

    Science.gov (United States)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-11-13

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  12. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    Science.gov (United States)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  13. Facile synthesis of CdS/C core–shell nanospheres with ultrathin carbon layer for enhanced photocatalytic properties and stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Zhang, Fu [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Yu-Ling, E-mail: yulingzhao@zjnu.cn [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Guo, Yan-Chuan [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gong, Peijun [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Li, Zheng-Quan, E-mail: zqli@zjnu.cn [Department of Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Qian, Hai-Sheng, E-mail: shqian@hfut.edu.cn [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-01-30

    Graphical abstract: Uniform CdS/C core–shell nanospheres with several nanometers in thickness for carbon shell have been synthesized successfully; which show enhanced photocatalytic activities than single-component counterparts (CdS nanospheres). - Highlights: • The CdS/C nanospheres have been synthesized by a facile hydrothermal method. • The CdS/C nanospheres showed enhanced photocatalytic properties and photostability. • The as-prepared CdS/C core-shell nanospheres show better biocompatibility. - Abstract: In this work, we described a facile one-pot hydrothermal process developed to synthesize CdS/C core–shell nanospheres successfully. The as-prepared CdS/C core–shell nanospheres are with 100 nm in diameter and the amorphous carbon shell is with several nanometers in thickness. The phase, morphology and structures of the samples were investigated by X-ray power diffraction (XRD) analyses, field-emission scanning electron microscopy (FESEM, JEOL-6700F) and transmission electron microscopy (TEM, JEOL 3010); respectively. The as-prepared CdS/C core–shell nanospheres showed enhanced photocatalytic properties and photostability compared to the single counterpart of CdS nanospheres owing to the efficiently separation of photogenerated electrons (e{sup −}) and holes (h{sup +}) derived from the photocatalyst. In addition, the as-prepared CdS/C core–shell nanospheres might find wide application in wastewater treatment, solar cells, lithium ion batteries, etc.

  14. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  15. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array

    Science.gov (United States)

    Liu, Gui-qiang; Hu, Ying; Liu, Zheng-qi; Cai, Zheng-jie; Zhang, Xiang-nan; Chen, Yuan-hao; Huang, Kuan

    2014-04-01

    We propose and show multispectral optical enhanced transmission in the visible and near-infrared region in a continuous metal film coated with a two-dimensional (2D) hexagonal non-close-packed plasmonic array. The plasmonic array consists of metal/dielectric multilayer core-shell nanoparticles. The excitation of near-field plasmon resonance coupling between adjacent core-shell nanoparticles, plasmon resonance coupling between adjacent metal layers in the nanoparticle, and surface plasmon (SP) waves on the metal film are mainly responsible for the multispectral optical enhanced transmission behavior. The multispectral optical enhanced transmission response could be highly modified in the wavelength range, transparent bandwidth and transmission intensity by varying the geometry parameters including the gap distance between adjacent plasmonic nanoparticles, the size of metal core and the thickness of dielectric layer between the metal layers. In addition, the number of optical enhanced transmission bands increases with the number of metal layers in the plasmonic nanoparticle. The proposed structure shows many merits such as the deep sub-wavelength size, multispectral optical enhanced transmission bands as well as fully retained electric and mechanical properties of the natural metal. These merits may provide promising applications for highly integrated optoelectronic devices including plasmonic filters, nanoscale multiplexers, and nonlinear optics.

  16. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels.

    Science.gov (United States)

    Liu, Bianhua; Han, Guangmei; Zhang, Zhongping; Liu, Renyong; Jiang, Changlong; Wang, Suhua; Han, Ming-Yong

    2012-01-03

    Here, we report the shell thickness-dependent Raman enhancement of silver-coated gold nanoparticles (Au@Ag NPs) for the identification and detection of pesticide residues at various fruit peels. The Raman enhancement of Au@Ag NPs to a large family of sulfur-containing pesticides is ~2 orders of magnitude stronger than those of bare Au and Ag NPs, and there is a strong dependence of the Raman enhancement on the Ag shell thickness. It has been shown for the first time that the huge Raman enhancement is contributed by individual Au@Ag NPs rather than aggregated Au@Ag NPs with "hot spots" among the neighboring NPs. Therefore, the Au@Ag NPs with excellent individual-particle enhancement can be exploited as stand-alone-particle Raman amplifiers for the surface identification and detection of pesticide residues at various peels of fruits, such as apple, grape, mango, pear, and peach. By casting the particle sensors onto fruit peels, several types of pesticide residues (e.g., thiocarbamate and organophosphorous compounds) have been reliably/rapidly detected, for example, 1.5 nanograms of thiram per square centimeter at apple peel under the current unoptimized condition. The surface-lifting spectroscopic technique offers great practical potentials for the on-site assessment and identification of pesticide residues in agricultural products.

  17. Core-shell Mn3O4/birnessite-MnO2 hierachical structure with enhanced adsorption towards methylene blue

    Science.gov (United States)

    Huang, Feifan; Zhou, Bowen; Xiao, Han; Xiao, Wei

    2016-01-01

    The core-shell Mn3O4/birnessite-MnO2 (Mn3O4/MnO2) was successfully established by assembly of birnessite-type MnO2 over Mn3O4 backbones. The product was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), as well as UV-vis absorption spectra (UV-vis) to assess its adsorption of methylene blue (MB) from neutral aqueous solutions. Compared to the individual Mn3O4, the prepared Mn3O4/MnO2 shows enhanced adsorption capability towards MB. Such enhancement is due to the higher surface area and the unique nanosheet shells. The adsorption of MB on the surface of Mn3O4/MnO2 was studied in terms of pseudo-first-order and the pseudo-second-order kinetic models, and the latter was found better. The present study indicates that hierarchically structured core-shell manganese oxides are promising adsorbents for wastewater treatment.

  18. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  19. The preparation of core-shell magnetic silica nanospheres for enhancing magnetism and fluorescence intensity.

    Science.gov (United States)

    Yoo, Jeong Ha; Kim, Jong Sung

    2013-11-01

    Recently, magnetic and luminescent composite silica with structure of micro- and nanospheres containing both magnetic (Fe3O4) nanoparticles (MPs) and quantum dots (QDs) has attracted great interests. In this study, we have prepared core-shell structure of silica spheres in which magnets are incorporated into silica core and QDs into a mesoporous silica shell by using C18-TMS (octade-cyltrimethoxysilane). MPs were synthesized by a co-precipitation method from ferrous and ferric solutions with a molecular ratio of 2:3. Monodisperse magnetic silica cores have been prepared via sol-gel reaction of TEOS (tetraethoxysilane) and water using base catalyst. The size of magnetic silica nanospheres was confirmed by dynamic laser light scattering system (DLS) and scanning electoron microscope (SEM). The pore volume and surface area were calculated by using BET after calcination. The core-shell structure plays an important role in providing more domains for MPs in silica Core and QDs in silica shell. QDs were incorporated into the mesoporous shell by hydrophobic interactions. Magnetic characterization was performed using a superconducting quantum interference device (SQUID). The optical properties of the particles were characterized with UV/Vis spectrometer, PL spectrometer, and fluorescence microscope.

  20. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Science.gov (United States)

    Peciña, Susana; Schulkin, Jay; Berridge, Kent C

    2006-01-01

    Background Corticotropin-releasing factor (CRF) is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior). Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl) or amphetamine (20 μg/0.2 μl). Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng) or amphetamine (20 μg) selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress, or by persistent

  1. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Directory of Open Access Journals (Sweden)

    Schulkin Jay

    2006-04-01

    Full Text Available Abstract Background Corticotropin-releasing factor (CRF is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior. Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl or amphetamine (20 μg/0.2 μl. Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng or amphetamine (20 μg selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress

  2. Optimal Shell Thickness of Metal@Insulator Nanoparticles for Net Enhancement of Photogenerated Polarons in P3HT Films.

    Science.gov (United States)

    Goh, Wei-Peng; Williams, Evan L; Yang, Ren-Bin; Koh, Wee-Shing; Mhaisalkar, Subodh; Ooi, Zi-En

    2016-02-01

    Embedding metal nanoparticles in the active layer of organic solar cells has been explored as a route for improving charge carrier generation, with localized field enhancement as a proposed mechanism. However, embedded metal nanoparticles can also act as charge recombination sites. To suppress such recombination, the metal nanoparticles are commonly coated with a thin insulating shell. At the same time, this insulating shell limits the extent that the localized enhanced electric field influences charge generation in the organic medium. It is presumed that there is an optimal thickness which maximizes field enhancement effects while suppressing recombination. Atomic Layer Deposition (ALD) was used to deposit Al2O3 layers of different thicknesses onto silver nanoparticles (Ag NPs), in a thin film of P3HT. Photoinduced absorption (PIA) spectroscopy was used to study the dependence of the photogenerated P3HT(+) polaron population on the Al2O3 thickness. The optimal thickness was found to be 3-5 nm. This knowledge can be further applied in the design of metal nanoparticle-enhanced solar cells.

  3. Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide.

    Science.gov (United States)

    Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin

    2017-08-16

    In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the Tg of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly-otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA.

  4. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity

    Science.gov (United States)

    Zhou, Juan; Tian, Guohui; Chen, Yajie; Shi, Yunhan; Tian, Chungui; Pan, Kai; Fu, Honggang

    2014-02-01

    Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation.

  5. Enhanced Photocatalytic Properties Of Core@shell Sio2@tio2 Nanoparticles

    OpenAIRE

    Ullah; Sajjad; Ferreira-Neto; Elias P.; Pasa; Andre A.; Alcantara; Carlos C. J.; Acuna; Jose J. S.; Bilmes; Sara A.; Ricci; Maria L. Martinez; Landers; Richard; Fermino; Taina Zampieri; Rodrigues-Filho; Ubirajara P.

    2016-01-01

    SiO2@TiO2 core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO2. Thus, development of facile, reproducible and effective methods for the synthesis of SiO2@TiO2 CSNs and a fundamental understanding of their improved properties, derived from combination of different core and shell materials, is of great importance. Here we report a very facile and reproducible meth...

  6. Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Hafsa, E-mail: hkhurshi@udel.edu [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Hadjipanayis, Costas G. [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Chen, Hongwei [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Li, Wanfeng [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Mao, Hui [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Machaidze, Revaz [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Tzitzios, Vasilis [Institute of Materials Science, “Demokritos” 15310 Athens (Greece); Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States)

    2013-04-15

    We report the use of metallic iron-based nanoparticles for magnetic resonance imaging (MRI) applications. Core/shell structured iron-based nanoparticles prepared by thermally decomposing organo-metallic compounds of iron at high temperature in the presence of hydrophobic surfactants were coated and stabilized in the aqueous solvent using the newly developed polysiloxane PEO–b–PγMPS (poly(ethylene oxide)–block–poly (γ methacryloxypropyl trimethyl oxysilane)) diblock copolymers. Particles are well suspended in water and retain their core–shell morphology after coating with the copolymer. In comparison to the conventionally used iron-oxide nanoparticles, core/shell structured iron/iron-oxide nanoparticles offer a much stronger T{sub 2} shortening effect than that of iron-oxide with the same core size due to their better magnetic properties. -- Highlights: ► Core/shell Fe/Fe-oxide nanoparticles were synthesized by organo-metallic synthesis. ► Water dispersibility was obtained by coating particles with a polysiloxane diblock copolymer. ► In comparison to Fe-oxide, Fe/Fe-oxide nanoparticles offer a much stronger T{sub 2} shortening effect.

  7. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction.

    Science.gov (United States)

    Koenigsmann, Christopher; Santulli, Alexander C; Gong, Kuanping; Vukmirovic, Miomir B; Zhou, Wei-ping; Sutter, Eli; Wong, Stanislaus S; Adzic, Radoslav R

    2011-06-29

    We report on the synthesis, characterization, and electrochemical performance of novel, ultrathin Pt monolayer shell-Pd nanowire core catalysts. Initially, ultrathin Pd nanowires with diameters of 2.0 ± 0.5 nm were generated, and a method has been developed to achieve highly uniform distributions of these catalysts onto the Vulcan XC-72 carbon support. As-prepared wires are activated by the use of two distinctive treatment protocols followed by selective CO adsorption in order to selectively remove undesirable organic residues. Subsequently, the desired nanowire core-Pt monolayer shell motif was reliably achieved by Cu underpotential deposition followed by galvanic displacement of the Cu adatoms. The surface area and mass activity of the acid and ozone-treated nanowires were assessed, and the ozone-treated nanowires were found to maintain outstanding area and mass specific activities of 0.77 mA/cm(2) and 1.83 A/mg(Pt), respectively, which were significantly enhanced as compared with conventional commercial Pt nanoparticles, core-shell nanoparticles, and acid-treated nanowires. The ozone-treated nanowires also maintained excellent electrochemical durability under accelerated half-cell testing, and it was found that the area-specific activity increased by ~1.5 fold after a simulated catalyst lifetime.

  8. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    Science.gov (United States)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  9. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity.

    Science.gov (United States)

    Liu, Xue; Du, Jing; Shao, Yang; Zhao, Shao-Fan; Yao, Ke-Fu

    2017-08-31

    Metallic core-shell nanostructures have inspired prominent research interests due to their better performances in catalytic, optical, electric, and magnetic applications as well as the less cost of noble metal than monometallic nanostructures, but limited by the complicated and expensive synthesis approaches. Development of one-pot and inexpensive method for metallic core-shell nanostructures' synthesis is therefore of great significance. A novel Cu network supported nanoporous Ag-Cu alloy with an Ag shell and an Ag-Cu core was successfully synthesized by one-pot chemical dealloying of Zr-Cu-Ag-Al-O amorphous/crystalline composite, which provides a new way to prepare metallic core-shell nanostructures by a simple method. The prepared nanoporous Ag-Cu@Ag core-shell alloy demonstrates excellent air-stability at room temperature and enhanced oxidative stability even compared with other reported Cu@Ag core-shell micro-particles. In addition, the nanoporous Ag-Cu@Ag core-shell alloy also possesses robust antibacterial activity against E. Coli DH5α. The simple and low-cost synthesis method as well as the excellent oxidative stability promises the nanoporous Ag-Cu@Ag core-shell alloy potentially wide applications.

  10. Enhanced exchange bias and improved ferromagnetic properties in Permalloy–BiFe0.95Co0.05O3 core–shell nanostructures

    Science.gov (United States)

    Javed, K.; Li, W. J.; Ali, S. S.; Shi, D. W.; Khan, U.; Riaz, S.; Han, X. F.

    2015-01-01

    Hybrid core–shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties. PMID:26658956

  11. Enhanced exchange bias and improved ferromagnetic properties in Permalloy-BiFe0.95Co0.05O3 core-shell nanostructures

    Science.gov (United States)

    Javed, K.; Li, W. J.; Ali, S. S.; Shi, D. W.; Khan, U.; Riaz, S.; Han, X. F.

    2015-12-01

    Hybrid core-shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties.

  12. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats.

    Science.gov (United States)

    Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W M; Pasterkamp, R Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J M J

    2012-10-24

    The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4- to 5-week-old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signaling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats.

  13. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    Directory of Open Access Journals (Sweden)

    Jianying Zhang

    Full Text Available The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino groups to effectively remove arsenic in its toxic As(III form (arsenite predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film and internal (intraparticle diffusion can be rate-determining for As(III adsorption. Fourier transform infrared spectroscopy (FTIR indicated that the thiol and amino groups potentially responsible for As(III adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III and thiol groups, and through the surface complexation between As(III and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III adsorption capacity holds promise for the treatment of As(III containing wastewater.

  14. Hiding a Higgs width enhancement from off-shell gg (--> h*) --> ZZ

    CERN Document Server

    Logan, Heather E

    2014-01-01

    Measurements of the off-shell Higgs boson production cross section in gg (--> h*) --> ZZ have recently been used by the CMS and ATLAS collaborations to indirectly constrain the total width of the Higgs boson. I point out that the interpretation of these measurements as a Higgs width constraint can be invalidated if additional neutral Higgs boson(s) are present with masses below about 350 GeV.

  15. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    Science.gov (United States)

    Zhang, Jianying; Ding, Tengda; Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater.

  16. Enhanced charge collection in dye-sensitized solar cells utilizing collector-shell electrodes

    Science.gov (United States)

    Xiao, Manda; Huang, Fuzhi; Xiang, Wanchun; Cheng, Yi-Bing; Spiccia, Leone

    2015-03-01

    Nanostructured porous tin-doped indium oxide (ITO) films were prepared by screen printing of an ITO nanoparticle paste onto conducting fluorine-doped tin oxide (FTO) substrates. The ITO films were subsequently coated with thin layers of TiO2 by the hydrolysis of TiCl4 to form the collector-shell photoelectrodes. The morphology of films was analysed by scanning electron microscope (SEM). It was found that a uniform coating of TiO2 was achieved when three or more deposition cycles were applied. Dye-sensitized solar cells were constructed with the collector-shell photoelectrodes using an electrolyte containing the [Co(bpy)3]2+/3+ (bpy = 2,2‧-bipyridine) redox couple and MK-2, an organic sensitizer and efficiencies of 3.3% achieved. Charge transport in cells utilizing the collector-shell electrodes was found to be 2-6 times faster than those utilizing P25-based TiO2 electrodes.

  17. Au@polymer core-shell nanoparticles for simultaneously enhancing efficiency and ambient stability of organic optoelectronic devices.

    Science.gov (United States)

    Kim, Taesu; Kang, Hyunbum; Jeong, Seonju; Kang, Dong Jin; Lee, Changyeon; Lee, Chun-Ho; Seo, Min-Kyo; Lee, Jung-Yong; Kim, Bumjoon J

    2014-10-08

    In this paper, we report and discuss our successful synthesis of monodispersed, polystyrene-coated gold core-shell nanoparticles (Au@PS NPs) for use in highly efficient, air-stable, organic light-emitting diodes (OLEDs) and organic photovoltaics (OPVs). These core-shell NPs retain the dual functions of (1) the plasmonic effect of the Au core and (2) the stability and solvent resistance of the cross-linked PS shell. The monodispersed Au@PS NPs were incorporated into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film that was located between the ITO substrate and the emitting layer (or active layer) in the devices. The incorporation of the Au@PS NPs provided remarkable improvements in the performances of both OLEDs and OPVs, which benefitted from the plasmonic effect of the Au@PS NPs. The OLED device with the Au@PS NPs achieved an enhancement of the current efficiency that was 42% greater than that of the control device. In addition, the power conversion efficiency was increased from 7.6% to 8.4% in PTB7:PC71BM-based OPVs when the Au@PS NPs were embedded. Direct evidence of the plasmonic effect on optical enhancement of the device was provided by near-field scanning optical microscopy measurements. More importantly, the Au@PS NPs induced a remarkable and simultaneous improvement in the stabilities of the OLED and OPV devices by reducing the acidic and hygroscopic properties of the PEDOT:PSS layer.

  18. Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing.

    Science.gov (United States)

    Nelson, A J D; Thur, K E; Marsden, C A; Cassaday, H J

    2011-12-01

    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates.

  19. Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum.

    Science.gov (United States)

    Meyer, Francisca F; Louilot, Alain

    2011-06-01

    Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.

  20. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness.

    Science.gov (United States)

    Fredin, Lisa A; Li, Zhong; Ratner, Mark A; Lanagan, Michael T; Marks, Tobin J

    2012-11-20

    Dielectric loss in metal oxide core/Al(2)O(3) shell polypropylene nanocomposites scales with the particle surface area. By moderating the interfacial surface area between the phases and using increasing shell thicknesses, dielectric loss is significantly reduced, and thus the energy stored within, and recoverable from, capacitors fabricated from these materials is significantly increased, to as high as 2.05 J/cm(3).

  1. In-depth nanocrystallization enhanced Li-ions batteries performance with nitrogen-doped carbon coated Fe3O4 yolk-shell nanocapsules

    Science.gov (United States)

    Wu, Qianhui; Zhao, Rongfang; Liu, Wenjie; Zhang, Xiue; Shen, Xiao; Li, Wenlong; Diao, Guowang; Chen, Ming

    2017-03-01

    In this paper nitrogen-doped carbon-encapsulation Fe3O4 yolk-shell magnetic nanocapsules (Fe3O4@C-N nanocapsules) have been successfully constructed though a facile hydrothermal method and subsequent annealing process. Fe3O4 nanoparticles are completely enclosed in nitrogen-doped carbon shells with void space between the nanoparticle and the shell. The yolk-shell structure allows Fe3O4 nanoparticles to expand freely without breaking the outer carbon shell during the lithiation/delithiation processes. The volume expansion of Fe3O4 results in the in-depth nanocrystallization. Fortunately, the new generated small nanoparticles can increase the capability with the cycle increase due to the unique confinement effect and excellent electronic conductivity of the nitrogen-doped carbon shells. Hence, after 150 cycles, the discharge capacity of Fe3O4@C-N-700 nanocapsules still remained 832 mA h g-1 at 500 mA g-1, which corresponds to 116.7% of the lowest capacity (713 mA h g-1) at the 16th cycle. We believe that the yolk-shell structure is conducive to enhance the capacity of easy pulverization metal oxidation during the charge/discharge processes.

  2. Porous TiO2-coated Magnetic Core-Shell Nanocomposites: Preparation and Enhanced Photocatalytic Activity

    Institute of Scientific and Technical Information of China (English)

    LIU Hongfei; JI Shengfu; ZHENG Yuanyuan; LI Ming; YANG Hao

    2013-01-01

    The core-shell structured TiO2/SiO2@Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane (TEOS) as silica source and tetrabutyl titanate (TBOT) as titanium sources.The as-obtained structure was composed of a SiO2@Fe3O4 core and a porous TiO2 shell.The diameter of SiO2@Fe3O4 core was about 205 nm with thickness of porous TiO2 of about 5-6 nm.The 9%TiO2/6% SiO2@Fe3O4 microspheres possess the highest BET surface area and the BJH pore volume,which are 373.5 m2·g-1 and 0.28 cm3·g-1,respectively.The 9%TiO2/6%SiO2@Fe3O4 photocatalyst exhibited an excellent performance for the degradation of methyl orange and methylene blue dyes.Two different dyes were completely decolorized in 60 rain under UV irradiation.The photocatalytic activity and the amount of catalyst were almost not decrease after recycling for 6 times by using external magnetic field.

  3. Enhance the Er(3+) Upconversion Luminescence by Constructing NaGdF4:Er(3+)@NaGdF4:Er(3+) Active-Core/Active-Shell Nanocrystals.

    Science.gov (United States)

    Du, Xiaoyu; Wang, Xiangfu; Meng, Lan; Bu, Yanyan; Yan, Xiaohong

    2017-12-01

    NaGdF4:12%Er(3+)@NaGdF4:x%Er(3+) (x = 0, 6, 8, 10, and 12) active-core/active-shell nanoparticles (NPs) were peculiarly synthesized via a delayed nucleation pathway with procedures. The phase, shape, and size of the resulting core-shell NPs are confirmed by transmission electron microscopy and X-ray diffraction. Coated with a NaGdF4:10%Er(3+) active shell around the NaGdF4:12%Er(3+) core NPs, a maximum luminescent enhancement of about 336 times higher than the NaGdF4:12%Er(3+) core-only NPs was observed under the 1540 nm excitation. The intensity ratio of green to red was adjusted through the construction of the core-shell structure and the change of Er(3+) concentration in the shell. By analyzing the lifetimes of emission bands and exploring the energy transition mechanism, the giant luminescence enhancement is mainly attributed to the significant increase in the near-infrared absorption at 1540 nm and efficient energy migration from the shell to core.

  4. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.

    2015-04-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  5. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  6. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes.

    Science.gov (United States)

    Jin, Yun-Ho; Seo, Seung-Deok; Shim, Hyun-Woo; Park, Kyung-Soo; Kim, Dong-Wan

    2012-03-30

    Monodispersed core/shell spinel ferrite/carbon nanoparticles are formed by thermolysis of metal (Fe3+, Co2+) oleates followed by carbon coating. The phase and morphology of nanoparticles are characterized by x-ray diffraction and transmission electron microscopy. Pure Fe3O4 and CoFe2O4 nanoparticles are initially prepared through thermal decomposition of metal–oleate precursors at 310 degrees C and they are found to exhibit poor electrochemical performance because of the easy aggregation of nanoparticles and the resulting increase in the interparticle contact resistance. In contrast, uniform carbon coating of Fe3O4 and CoFe2O4 nanoparticles by low-temperature (180 degrees C) decomposition of malic acid allowed each nanoparticle to be electrically wired to a current collector through a conducting percolative path. Core/shell Fe3O4/C and CoFe2O4/C nanocomposite electrodes show a high specific capacity that can exceed 700 mAh g(-1) after 200 cycles, along with enhanced cycling stability.

  7. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  8. Facile synthesis of Ag@CeO{sub 2} core–shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linen; Fang, Siman [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Ge, Lei, E-mail: gelei08@sina.com [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Han, Changcun; Qiu, Ping; Xin, Yongji [Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China)

    2015-12-30

    Highlights: • Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized. • The Ag@CeO{sub 2} showed dramatic photocatalytic activity than pure CeO{sub 2}. • Improving activity is from a combination of SPR effect and hybrid effects. • The mechanism was proposed and confirmed by ESR and PL results. - Abstract: Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized via a green and facile template-free approach in aqueous solution. As-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (DRS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The structures with different core shapes and controllable shell thickness exhibited unique optical properties. It is found that the nanoscale Ag@CeO{sub 2} core–shell photocatalysts exhibit significantly enhanced photocatalytic activities in the O{sub 2} evolution and MB dye degradation compared to pure CeO{sub 2} nanoparticals. The enhancement in photocatalytic activities can be ascribed to the localized surface plasmon resonance (SPR) of Ag cores. Moreover, larger active interfacial areas and contact between metal/semiconductor in the core–shell structure facilitate transfer of charge carriers and prolong lifetime of photogenerated electron-hole pairs. It is expected that the Ag@CeO{sub 2} core–shell structure may have great potential in a wider range of light-harvesting applications.

  9. Facile synthesis of hierarchical double-shell WO3 microspheres with enhanced photocatalytic activity

    Science.gov (United States)

    Wang, Zhenfeng; Chu, Deqing; Wang, Limin; Wang, Lipeng; Hu, Wenhui; Chen, Xiangyu; Yang, Huifang; Sun, Jingjing

    2017-02-01

    Hierarchical double-shell WO3 microspheres (HDS-WO3) have been successfully obtained through the thermal decomposition of WO3·H2O formed by metal salts as the templates. The products were characterized by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the HDS-WO3 microspheres were analyzed by the Thermogravimetric (TG) and Brunauer-Emmett-Teller (BET) analysis. The synthetic mechanism of the products with hierarchical structures was proposed. The obtained HDS-WO3 exhibits excellent photocatalytic efficiency (84.9%), which is much higher than other WO3 sample under visible light illumination.

  10. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources.

    Science.gov (United States)

    Donzelli, Bruno G G; Ostroff, Gary; Harman, Gary E

    2003-09-01

    A combination of enzyme preparations from Trichoderma atroviride and Serratia marcescens was able to completely degrade high concentrations (100 g/L) of chitin from langostino crab shells to N-acetylglucosamine (78%), glucosamine (2%), and chitobiose (10%). The result was achieved at 32 degrees C in 12 days with no pre-treatment (size reduction or swelling) of the substrate and without removal of the inhibitory end-products from the mixture. Enzymatic degradation of three forms of chitin by Serratia/Trichoderma and Streptomyces/Trichoderma blends was carried out according to a simplex-lattice mixture design. Fitted polynomial models indicated that there was synergy between prokaryotic and fungal enzymes for both hydrolysis of crab chitin and reduction of turbidity of colloidal chitin (primarily endo-type activity). Prokaryotic/fungal enzymes were not synergistic in degrading chitosan. Enzymes from prokaryotic sources had much lower activity against chitosan than enzymes from T. atroviride.

  11. Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

    Directory of Open Access Journals (Sweden)

    Dhanraj S.Pimple

    2014-12-01

    Full Text Available This paper provides heat transfer and friction factor data for single -phase flow in a shell and tube heat exchanger fitted with a helical tape insert. In the double concentric tube heat exchanger, hot air was passed through the inner tube while the cold water was flowed through the annulus. The influences of the helical insert on heat transfer rate and friction factor were studied for counter flow, and Nusselt numbers and friction factor obtained were compared with previous data (Dittus 1930, Petukhov 1970, Moody 1944 for axial flows in the plain tube. The flow considered is in a low Reynolds number range between 2300 and 8800. A maximum percentage gain of 165% in heat transfer rate is obtained for using the helical insert in comparison with the plain tube.

  12. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water.

    Science.gov (United States)

    Li, Shuru; Jiao, Xuan; Yang, Hengquan

    2013-01-29

    Inspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis. Its fundamental properties such as dispersibility in water or organic phase, wettability, and adsorption ability toward hydrophobic organics in water were investigated. It was revealed that these important properties could be facilely adjusted through varying structure and composition. In particular, these materials showed much better adsorption ability toward hydrophobic organic molecules in water than conventional monofunctionalized mesoporous materials, owing to possessing the hydrophobic/hydrophilic domain-segregated and hierarchically functionalized mesoporous structures. The intriguing properties would make mesoporous materials more accessible to many important applications, especially in aqueous systems.

  13. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement.

    Science.gov (United States)

    Wang, Lei; Lv, Zhigang; Hu, Zhaoyang; Sheng, Jian; Hui, Bin; Sun, Jie; Ma, Lan

    2010-03-01

    The regulation of gene expression in the brain reward regions is known to contribute to the pathogenesis and persistence of drug addiction. Increasing evidence suggests that the regulation of gene transcription is mediated by epigenetic mechanisms that alter the chromatin structure at specific gene promoters. To better understand the involvement of epigenetic regulation in drug reinforcement properties, rats were subjected to cocaine self-administration paradigm. Daily histone deacetylase (HDAC) inhibitor infusions in the shell of the nucleus accumbens (NAc) caused an upward shift in the dose-response curve under fixed-ratio schedule and increased the break point under progressive-ratio schedule, indicating enhanced motivation for self-administered drug. The effect of the HDAC inhibitor is attributed to the increased elevation of histone acetylation induced by chronic, but not acute, cocaine experience. In contrast, neutralizing the chronic cocaine-induced increase in histone modification by the bilateral overexpression of HDAC4 in the NAc shell reduced drug motivation. The association between the motivation for cocaine and the transcriptional activation of addiction-related genes by H3 acetylation in the NAc shell was analyzed. Among the genes activated by chronic cocaine experiences, the expression of CaMKIIalpha, but not CaMKIIbeta, correlated positively with motivation for the drug. Lentivirus-mediated shRNA knockdown experiments showed that CaMKIIalpha, but not CaMKIIbeta, in the NAc shell is essential for the maintenance of motivation to self-administered cocaine. These findings suggest that chronic drug-use-induced transcriptional activation of genes, such as CaMKIIalpha, modulated by H3 acetylation in the NAc is a critical regulatory mechanism underlying motivation for drug reinforcement.

  14. Correlation of the plasmon-enhanced photoconductance and photovoltaic properties of core-shell Au@TiO2 network

    Science.gov (United States)

    Yang, Yiqun; Wu, Judy; Li, Jun

    2016-08-01

    This study reveals the contribution of hot electrons from the excited plasmonic nanoparticles in dye sensitized solar cells (DSSCs) by correlating the photoconductance of a core-shell Au@TiO2 network on a micro-gap electrode and the photovolatic properties of this material as photoanodes in DSSCs. The distinct wavelength dependence of these two devices reveals that the plasmon-excited hot electrons can easily overcome the Schottky barrier at Au/TiO2 interface in the whole visible wavelength range and transfer from Au nanoparticles into the TiO2 network. The enhanced charge carrier density leads to higher photoconductance and facilitates more efficient charge separation and photoelectron collection in the DSSCs.

  15. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Fredin, Lisa A.; Li, Zhong; Ratner, Mark A.; Marks, Tobin J. [Department of Chemistry Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lanagan, Michael T. [Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802-4800 (United States)

    2012-11-20

    Dielectric loss in metal oxide core/Al{sub 2}O{sub 3} shell polypropylene nanocomposites scales with the particle surface area. By moderating the interfacial surface area between the phases and using increasing shell thicknesses, dielectric loss is significantly reduced, and thus the energy stored within, and recoverable from, capacitors fabricated from these materials is significantly increased, to as high as 2.05 J/cm{sup 3}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide MCH

    Science.gov (United States)

    Sears, Robert M.; Liu, Rong-Jian; Narayanan, Nandakumar S.; Sharf, Ruth; Yeckel, Mark F.; Laubach, Mark; Aghajanian, George K.; DiLeone, Ralph J.

    2010-01-01

    The lateral hypothalamus (LH) and the nucleus accumbens shell (AcbSh) are brain regions important for food intake. The AcbSh contains high levels of receptor for melanin-concentrating hormone (MCH), a lateral hypothalamic peptide critical for feeding and metabolism. MCH receptor (MCHR1) activation in the AcbSh increases food intake while AcbSh MCHR1 blockade reduces feeding. Here biochemical and cellular mechanisms of MCH action in the rodent AcbSh are described. A reduction of phosphorylation of GluR1 at Serine 845 (pSer845) is shown to occur after both pharmacological and genetic manipulations of MCHR1 activity. These changes depend upon signaling through Gi/o, and result in decreased surface expression of GluR1-containing AMPA receptors (AMPARs). Electrophysiological analysis of medium spiny neurons (MSNs) in the AcbSh revealed decreased amplitude of AMPAR-mediated synaptic events (mEPSC) with MCH treatment. In addition, MCH suppressed action potential firing MSNs through K+ channel activation. Finally, in vivo recordings confirmed that MCH reduces neuronal cell firing in the AcbSh in freely moving animals. The ability of MCH to reduce cell firing in the AcbSh is consistent with a general model from other pharmacological and electrophysiological studies whereby reduced AcbSh neuronal firing leads to food intake. The current work integrates the hypothalamus into this model, providing biochemical and cellular mechanisms whereby metabolic and limbic signals converge to regulate food intake. PMID:20554878

  17. Enhancement of the Luminescence of ZnO Nanorod Arrays by SILAR Coating with a CdS Nanocrystalline Shell Layer

    Science.gov (United States)

    Krishnaveni, M.; Devadason, Suganthi

    2015-02-01

    ZnO/CdS core/shell-type nanorod arrays (NRAs) have been synthesized by a simple chemical method. The thickness of the CdS shell layers was controlled by varying the number of successive ionic layer adsorption and reaction cycles. X-ray diffraction analysis revealed the ZnO had a hexagonal crystal structure and the CdS had a cubic crystal structure. High-resolution transmission electron microscopy revealed that a highly conforming CdS shell layer ˜5 nm thick had been deposited on the ZnO nanorods. High-resolution scanning electron microscopy revealed the presence of hexagonal ZnO nanorods entirely coated with a nanocrystalline CdS shell. The ultraviolet-visible-near infrared absorption spectra of the films were red shifted and the calculated optical energy band gap decreased from 3.25 to 2.46 eV with progressive increase of CdS shell layer thickness. Photoluminescence spectra revealed enhancement of the near-band-edge emission centered at 380 nm of the ZnO NRAs after coating with the CdS shell layer. The observed shift in deep level emissions from yellow to green in the ZnO/CdS core/shell heterostructures has been explained. The measured electrical resistivity of bare ZnO and ZnO/CdS core/shell NRAs was 5.43 × 10-3 Ω cm and 1.25 × 10-3 Ω cm, respectively, when the films were illuminated with visible light.

  18. Microwave-enhanced CO2 gasification of oil palm shell char.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2014-04-01

    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    Science.gov (United States)

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g).

  20. Biostability enhancement of oil core - polysaccharide multilayer shell via photoinitiator free thiol-ene 'click' reaction.

    Science.gov (United States)

    Calcagno, Vincenzo; Vecchione, Raffaele; Sagliano, Angela; Carella, Antonio; Guarnieri, Daniela; Belli, Valentina; Raiola, Luca; Roviello, Antonio; Netti, Paolo A

    2016-06-01

    Layer-by-layer of polyelectrolytes has emerged as one of the easiest and most controlled techniques to deposit ultrathin polymer layers mainly driven by electrostatic interactions. However, this kind of interaction results to be weak and easily breakable in physiological environment. Here we report on the preparation of nanocapsules completely made of natural biomaterials: a lipophilic core (soybean oil and egg lecithin as surfactant) as nanometric template and a polysaccharide-based multilayer shell (glycol chitosan and heparin) covalently cross-linked. We first modified glycol chitosan with a thiol moiety and heparin with an alkene moiety, respectively, and then we built a polymer multilayer film with a covalent cross-linkage among layers, exploiting the light initiated thiol-ene reaction, known as click chemistry. We showed the possibility to perform the covalent cross-linkage without any photoinitiator or metal catalyst, thus avoiding cytotoxic effects and further purification steps. The so realized nanocapsules resulted to be stable and completely biocompatible and, therefore, of interest for the biotechnology fields, mainly for drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering.

    Science.gov (United States)

    Zou, Xiaoxin; Silva, Rafael; Huang, Xiaoxi; Al-Sharab, Jafar F; Asefa, Tewodros

    2013-01-14

    A porous TiO(2)-Ag core-shell nanocomposite material with a large surface area was synthesized by in situ hydrolyzation of Sn(2+)-grafted titanium glycolate microspheres in the presence of Ag(+) ions. The as-prepared nanocomposite material was shown to serve as an efficient self-cleaning surface-enhanced Raman scattering (SERS) substrate.

  2. Ternary Pd-Ni-P hybrid electrocatalysts derived from Pd-Ni core-shell nanoparticles with enhanced formic acid oxidation activity.

    Science.gov (United States)

    Liang, Xin; Liu, Bo; Zhang, Juntao; Lu, Siqi; Zhuang, Zhongbin

    2016-09-25

    Ternary Pd-Ni-P hybrid electrocatalysts were synthesized through low temperature phosphidation of Pd-Ni core-shell nanoparticles. They show enhanced formic acid electro-oxidation activity compared to Pd, Pd-Ni and Pd-P nanoparticles, which is ascribed to the synergistic effect of the Ni and P components with Pd.

  3. Research Progress in Heat Transfer Enhancement Technology of Shell and Tube Heat Exchangers%管壳式换热器强化传热进展

    Institute of Scientific and Technical Information of China (English)

    张轮亭; 邱丽灿; 王臣

    2014-01-01

    管壳式换热器在石油化工领域应用广泛,其强化传热技术的研究受到普遍关注。主要介绍了近年来国内与国外高效节能管壳式换热器强化传热技术研究的进展情况,分别从管侧、壳侧和整体结构改进三方面分析了管壳式换热器的强化传热效果及特点,最后提出了强化传热的发展方向。%The tube and shell heat exchanger is widely used in the petrochemical field; research on the heat transfer enhancement technology is widely concerned. In this paper, research progress in the heat transfer enhancement technology of high efficiency shell and tube heat exchangers was introduced. From three aspects of the tube side, the shell side and the overall improvement, effect and features of the heat transfer enhancement of shell and tube heat exchangers were analyzed. At last, the development direction of the enhanced heat transfer technology was put forward.

  4. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  5. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    Science.gov (United States)

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  6. Encoding of aversion by dopamine and the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2012-09-01

    Full Text Available Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc and the dopamine projection to it are considered an integral part of the brain’s reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias towards reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area (VTA and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus – intraoral infusion of sucrose – has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion versus reward.

  7. Encoding of aversion by dopamine and the nucleus accumbens.

    Science.gov (United States)

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.

  8. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen

  9. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    Science.gov (United States)

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs.

  10. Chronic cannabinoid treatment in adolescent attenuates c-Fos expression in nucleus accumbens of adult estrous rats

    Directory of Open Access Journals (Sweden)

    Samuel I. Brook

    2013-02-01

    Full Text Available Chronic cannabinoid exposure during adolescence may negatively impact brain development and alter adult motivation and behavior. We present evidence that treatment with a cannabinoid agonist during adolescence attenuates estrous-mediated expression of c-Fos within the nucleus accumbens of female rats exposed to a male conspecific. Thirty-two female Long-Evans rats were administered either 0.4 mg/kg of CP-55,940 or vehicle on a daily basis between the ages of 35-45 days. When subjects reached adulthood (days 71-76, they were tested within an exposure paradigm designed to invoke sexual motivation wihtout allowing for consummatory behavior. Female subjects were naturally-cyclins; half were tested when in behavioral estrus (as determined by vaginal cytology and half were tested outside of estrus. c-Fos expression was then quantified in multiple brain regions associated with female sexual motivation, in addition to two control regions. Analyses revealed that untreated females showed more c-Fos-positive neurons when estrous (versus non-estrous within the medial preoptic area of the hypothalamus, the ventromedial hypothalamus, and the nucleus accumbens core and shell. Significant attenuation of this estrous effect was observed within the nucleus accumbens core and shell of drug-treated females. This suggests that adolescent cannabinoid exposure may negatively impact research in our laboratory which indicated that chronic cannabinoid exposure during adolescence persistently attenuates the expression of sexual motivation in female rats and provide a potential neurobiological substrate for those behavioral deficits.

  11. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  12. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting.

    Science.gov (United States)

    Kim, Kyungim; Oh, Keun Sang; Park, Dal Yong; Lee, Jae Young; Lee, Beom Suk; Kim, In San; Kim, Kwangmeyung; Kwon, Ick Chan; Sang, Yoon Kim; Yuk, Soon Hong

    2016-04-28

    A combination therapy consisting of radiotherapy and chemotherapy is performed using the core/shell nanoparticles (NPs) containing gold NPs and doxorubicin (DOX). Gold NPs in the core/shell NPs were utilized as a radiosensitizer. To examine the morphology and size distribution of the core/shell NPs, transmittance electron microscopy and dynamic light scattering were used. The in vitro release behavior, cellular uptake and toxicity were also observed to verify the functionality of the core/shell NPs as a nanocarrier. To demonstrate the advantage of the core/shell NPs over traditional gold NPs reported in the combination therapy, we evaluated the accumulation behavior of the core/shell NPs at the tumor site using the biodistribution. Antitumor efficacy was observed with and without radiation to evaluate the role of gold NPs as a radiosensitizer.

  13. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  14. Facile fabrication of core-shell ZnO/Bi0.5Sb1.5Te3 nanorods: Enhanced photoluminescence through electron charge

    Science.gov (United States)

    Shen, Shengfei; Gao, Hongli; Deng, Yuan; Wang, Yao; Qu, Shengchun

    2016-01-01

    Surface decoration techniques are emerging as promising strategy to improve the optical properties of the ZnO based materials. The core-shell ZnO/Bi0.5Sb1.5Te3 nanorods were grown on a FTO substrate through a facile hydrothermal and magnetron sputtering combined approach. The microstructure of the core-shell nanorod arrays were investigated by the X-ray diffraction (XRD), a field emission Scanning electron microscopy (SEM) and high resolution transmission electron microscope (HTEM). The optical properties of the core-shell nanorod arrays were investigated through the diffuse reflectance absorption spectra and photoluminescence emission. The visible light absorption and especially the photoluminescence emission of the ZnO nanorods are enhanced markedly with the Bi0.5Sb1.5Te3 grains coating the ZnO nanorods through the electron charge.

  15. From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity.

    Science.gov (United States)

    Dai, Changqing; Yang, Yang; Zhao, Zheng; Fisher, Adrian; Liu, Zhiping; Cheng, Daojian

    2017-07-06

    Core-shell segregated bimetallic nanoparticles (NPs) exhibit increased enhanced catalytic performance compared to that of mixed bimetallic NPs. Here, we report a simple, yet efficient, one-pot synthetic strategy to synthesize uniform three-layer core/shell PtCu NPs by adding benzyl ether (BE) in the synthesis process of mixed PtCu NPs. In comparison with commercial Pt/C and also mixed PtCu NPs, the three-layer core/shell PtCu NPs exhibit superior activity in catalyzing the oxygen reduction reaction (ORR), formic acid oxidation reaction (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), mainly due to the ligand (BE)-induced surface segregation of Pt on the surface of the NPs.

  16. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  17. Observation of enhanced chiral asymmetries in the inner-shell photoionization of uniaxially oriented methyloxirane enantiomers

    CERN Document Server

    Tia, Maurice; Kastirke, Gregor; Gatzke, Janine; Kim, Hong-Keun; Trinter, Florian; Rist, Jonas; Hartung, Alexander; Trabert, Daniel; Siebert, Juliane; Henrichs, Kevin; Becht, Jasper; Zeller, Stefan; Gassert, Helena; Wiegandt, Florian; Wallauer, Robert; Kuhlins, Andreas; Schober, Carl; Bauer, Tobias; Wechselberger, Natascha; Burzynski, Phillip; Neff, Jonathan; Weller, Miriam; Metz, Daniel; Kircher, Max; Waitz, Markus; Williams, Joshua B; Schmidt, Lothar; Mueller, Anne D; Knie, Andre; Hans, Andreas; Ltaief, Ltaief Ben; Ehresmann, Arno; Berger, Robert; Fukuzawa, Hironobu; Ueda, Kiyoshi; Schmidt-Boecking, Horst; Doerner, Reinhard; Jahnke, Till; Demekhin, Philipp V; Schoeffler, Markus

    2016-01-01

    Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical, it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer - an effect termed Photoelectron Circular Dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects as the circular dichroism in angular distributions (CDAD). Accordingly, orienting a chiral molecule in space enhances the PECD by a factor of about 10.

  18. ZnO@CdS Core-Shell Heterostructures: Fabrication, Enhanced Photocatalytic, and Photoelectrochemical Performance.

    Science.gov (United States)

    Ding, Meng; Yao, Nannan; Wang, Chenggang; Huang, Jinzhao; Shao, Minghui; Zhang, Shouwei; Li, Ping; Deng, Xiaolong; Xu, Xijin

    2016-12-01

    ZnO nanorods and ZnO@CdS heterostructures have been fabricated on carbon fiber cloth substrates via hydrothermal and electrochemical deposition. Their photocatalytic properties were investigated by measuring the degradation of methylene blue under ultraviolet light irradiation. The result illustrated that the photodegradation efficiency of ZnO@CdS heterostructures was better than that of pure ZnO nanorods, in which the rate constants were about 0.04629 and 0.02617 min(-1). Furthermore, the photocurrent of ZnO@CdS heterostructures achieved 10(2) times enhancement than pure ZnO nanorods, indicating that more free carriers could be generated and transferred in ZnO@CdS heterostructures, which could be responsible for the increased photocatalytic performance.

  19. Synthesis of BiVO4@C Core-Shell Structure on Reduced Graphene Oxide with Enhanced Visible-Light Photocatalytic Activity.

    Science.gov (United States)

    Sun, Zhihua; Li, Chenzhe; Zhu, Shenmin; Cho, Maenghyo; Chen, Zhixin; Cho, Kyeongjae; Liao, Yongliang; Yin, Chao; Zhang, Di

    2015-08-24

    Herein, a facile strategy for the controllable synthesis of BiVO4@C core-shell nanoparticles on reduced graphene oxide (RGO) is reported. The BiVO4 particle size can be controlled in the process by adjusting the volume ratio of glycerol in the sol-gel solution. The glycerol layers adsorbed on BiVO4 (BiVO4@glycerol) made it possible to form hydrogen bonds between BiVO4@glycerol and graphene oxide with the assistance of ultrasound. After thermal treatment, glycerol adsorbed on the BiVO4 particles formed amorphous carbon shells to link the particles and RGO. As a result, the obtained RGO-BiVO4@C nanocomposite showed a five times higher rate in O2 evolution from water under visible-light irradiation. Also, it demonstrated a six times higher photocatalytic performance enhancement than that of pure BiVO4 in the degradation of Rhodamine B. The enhanced performance is attributed to the carbon shells that restrict the growth of BiVO4 , the reduced graphene oxide that improves the electronic conductivity of the composite, and importantly, the bonds formed between the carbon shells and RGO that reduce the recombination loss of photogenerated charges effectively. The strategy is simple, effective, and can be extended to other ternary oxides with controlled size and high performance.

  20. Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer

    Science.gov (United States)

    Pan, Yuanwei; Zhang, Ling'e.; Zeng, Leyong; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2015-12-01

    Multidrug resistance (MDR) of cancers is still a major challenge, and it is very important to develop visualized nanoprobes for the diagnosis and treatment of drug resistant cancers. In this work, we developed a multifunctional delivery system based on DOX-encapsulated NaYF4:Yb/Er@NaGdF4 yolk-shell nanostructures for simultaneous dual-modal imaging and enhanced chemotherapy in drug resistant breast cancer. Using the large pore volume of the nanostructure, the delivery system had a high loading efficiency and excellent stability. Also, an in vitro and in vivo toxicity study showed the good biocompatibility of the as-prepared yolk-shell nanomaterials. Moreover, by nanocarrier delivery, the uptake of DOX could be greatly increased in drug resistant MCF-7/ADR cells. Compared with free DOX, the as-prepared delivery system enhanced the chemotherapy efficacy against MCF-7/ADR cells, indicating the excellent capability for overcoming MDR. Furthermore, core-shell NaYF4:Yb/Er@NaGdF4 improved the upconversion luminescence (UCL) performance, and the designed delivery system could also be applied for simultaneous UCL and magnetic resonance (MR) imaging, which could be a good candidate as a dual-modal imaging nanoprobe. Therefore, we developed a multifunctional yolk-shell delivery system, which could have potential applications as a visualized theranostic nanoprobe to overcome MDR in breast cancer.

  1. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)

    Science.gov (United States)

    Liang, Lijia; Zheng, Chao; Zhang, Haipeng; Xu, Shuping; Zhang, Zhe; Hu, Chengxu; Bi, Lirong; Fan, Zhimin; Han, Bing; Xu, Weiqing

    2014-11-01

    The characteristics of type II microcalcifications in fibroadenoma (FB), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) breast tissues has been analyzed by the fingerprint features of Raman spectroscopy. Fresh breast tissues were first handled to frozen sections and then they were measured by normal Raman spectroscopy. Due to inherently low sensitivity of Raman scattering, Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique was utilized. A total number of 71 Raman spectra and 70 SHINERS spectra were obtained from the microcalcifications in benign and premalignant breast tissues. Principal component analysis (PCA) was used to distinguish the type II microcalcifications between these tissues. This is the first time to detect type II microcalcifications in premalignant (ADH and DCIS) breast tissue frozen sections, and also the first time SHINERS has been utilized for breast cancer detection. Conclusions demonstrated in this paper confirm that SHINERS has great potentials to be applied to the identification of breast lesions as an auxiliary method to mammography in the early diagnosis of breast cancer.

  2. Synthesis, characterization and enhanced photocatalytic performance of Ag{sub 2}S-coupled ZnO/ZnS core/shell nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang, Xitao, E-mail: wangxt@tju.edu.cn [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhao, Wenxi [Tianjin Academy of Environmental Sciences, Tianjin 300191 (China); Wang, Kang [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Sang, Huanxin [Tianjin Academy of Environmental Sciences, Tianjin 300191 (China); He, Zhong [Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2013-08-15

    Highlights: •A new route was developed to synthetize Ag{sub 2}S-coupled ZnO/ZnS core/shell nanorods. •ZnO/ZnS–Ag{sub 2}S nanorods display enhanced photocatalytic activity for H{sub 2} evolution. •Dilute solution of glycerol is used as sacrificial reagent. •Ag{sub 2}S/ZnS molar ratio on the shell affects obviously the photocatalytic performance. -- Abstract: A series of composite photocatalysts comprised of ZnO nanorods core and ZnS–Ag{sub 2}S heterostructural shell layer with different Ag{sub 2}S/ZnS molar ratios have been synthesized via the combination of a low-temperature hydrothermal growth and cation exchange technique. The core/shell nanorods, with the diameters of about 150 nm and the lengths of ranging from a few 100 nm to several micrometers, were fabricated by coating the ZnO nanorods with a layer of ZnS and Ag{sub 2}S composite shell mainly consisting of nanocrystals with the diameters of about 5–8 nm. The characterization from SEM, TEM, EDX, XPS, and UV–Vis DRS reveals that the molar ratio of Ag{sub 2}S/ZnS in shell layer strongly affects the morphologies, distribution of components, photo absorption, and photocatalytic performance of the ZnO/ZnS–Ag{sub 2}S core/shell nanorods. Due to the coupling with low bandgap material Ag{sub 2}S, the ZnO/ZnS–Ag{sub 2}S nanorods have a much higher solar-simulated light absorption capability than that of ZnO/ZnS. As a result, the as-prepared ZnO/ZnS–Ag{sub 2}S nanocomposites exhibited much higher catalytic efficiency for the hydrogen production from glycerol aqueous solution. The superior photo absorption properties and photocatalytic performance of the ZnO/ZnS–Ag{sub 2}S core/shell nanorods may be ascribed to the heterostructure, which enhanced the separation of photo-induced electron–hole pairs.

  3. Fabrication of hydrophilic S/In{sub 2}O{sub 3} core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Sugang; Cao, Zhisheng; Fu, Xianliang [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Department of Chemistry, Anhui Science and Technology University, Anhui Fengyang, 233100 (China)

    2015-01-01

    Graphical abstract: - Highlights: • The elemental core–shell heterostructure was reported for the first time. • The hydrophilic core–shell S/In{sub 2}O{sub 3} photocatalyst was prepared by ball milling. • The rate constant of 10% S/In{sub 2}O{sub 3} is 11.6 and 13.5 times that of In{sub 2}O{sub 3} and S. • The hydrophilicity and efficiently separation of carriers are major factor. - Abstract: Recently, elemental semiconductors as new photocatalysts excited by visible light have attracted great attention due to their potential applications for environmental remediation and clean energy generation. However, it is still a challenge to fabricate elemental photocatalysts with high activity and stability. In this paper, a straightforward ball-milling method was carried out to fabricate core–shell S/In{sub 2}O{sub 3} nanocomposite photocatalyst with high performance. The photocatalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) method, photoluminescence spectra (PL) and super-hydrophilic experiment. The results showed that In{sub 2}O{sub 3} nanoparticles were successfully grown round of S blocks and formed core–shell heterostructures. The 10% S/In{sub 2}O{sub 3} core–shell nanocomposite exhibited the highest photocatalytic activity for degradation of rhodamine B (RhB) under visible light irradiation. The reaction rate constant (k) of the 10% S/In{sub 2}O{sub 3} core–shell nanocomposite is about 8.7 times as high as the sum of pure In{sub 2}O{sub 3} and S because of the formation of core–shell S/In{sub 2}O{sub 3} heterostructures, which might remedy the drawbacks of poor hydrophilicity of S, enhance visible light absorption and separate the photogenerated carriers efficiently. Furthermore, the mechanism of influence on the photocatalytic activity of the S

  4. Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Jamshidi

    2015-01-01

    Full Text Available Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.

  5. High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO2 Core-Shell Nanoparticles.

    Science.gov (United States)

    Yan, Ya; Meng, Lingyan; Zhang, Wenqiang; Zheng, Yan; Wang, Shuo; Ren, Bin; Yang, Zhilin; Yan, Xiaomei

    2017-09-22

    Metal-enhanced fluorescence (MEF) based on localized surface plasmon resonance (LSPR) is an effective strategy to increase the detection sensitivity in biotechnology and biomedicine. Because plasmonic nanoparticles are intrinsically heterogeneous, high-throughput single-particle analysis of MEF in free solution are highly demanded for the mechanistic understanding and control of this nanoscale process. Here, we report the application of a laboratory-built high-sensitivity flow cytometer (HSFCM) to investigate the fluorescence-enhancing effect of individual plasmonic nanoparticles on nearby fluorophore molecules. Ag@SiO2 core-shell nanoparticles were used as the model system which comprised a silver core, a silica shell, and an FITC-doped thin layer of silica shell. FITC-doped silica nanoparticles of the same particle size but without silver core were used as the counterparts. Both the side scattering and fluorescence signals of single nanoparticles in suspension were measured simultaneously by the HSFCM at a speed of thousands of particles per minute. The roles of silver core size (40-100 nm) and fluorophore-metal distance (5-30 nm) were systematically examined. Fluorescence enhancement factor exceeding 30 was observed at silver core size of 70 nm and silica shell thickness of 5 nm. Compared with ensemble-averaged spectrofluorometric measurements, our experimental observation at the single-particle level was well supported by the finite difference time domain (FDTD) calculation. It allows us to achieve a fundamental understanding of MEF, which is important to the design and control of plasmonic nanostructures for efficient fluorescence enhancement.

  6. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    Science.gov (United States)

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications

    Science.gov (United States)

    Zheng, Chao; Shao, Wanting; Paidi, Santosh Kumar; Han, Bing; Fu, Tong; Wu, Di; Bi, Lirong; Xu, Weiqing; Fan, Zhimin; Barman, Ishan

    2015-10-01

    Although tissue staining followed by morphologic identification remains the gold standard for diagnosis of most cancers, such determinations relying solely on morphology are often hampered by inter- and intra-observer variability. Vibrational spectroscopic techniques, in contrast, offer objective markers for diagnoses and can afford disease detection prior to alterations in cellular and extracellular architecture by furnishing a rapid ``omics''-like view of the biochemical status of the probed specimen. Here, we report a classification approach to concomitantly detect microcalcification status and local pathological state in breast tissue, featuring a combination of vibrational spectroscopy that focuses on the tumor and its microenvironment, and multivariate data analysis of spectral markers reflecting molecular expression. We employ the unprecedented sensitivity and exquisite molecular specificity offered by Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) to probe the presence of calcified deposits and distinguish between normal breast tissues, fibroadenoma, atypical ductal hyperplasia, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). By correlating the spectra with the corresponding histologic assessment, we developed partial least squares-discriminant analysis derived decision algorithm that provides excellent diagnostic power in the fresh frozen sections (overall accuracy of 99.4% and 93.6% using SHINs for breast lesions with and without microcalcifications, respectively). The performance of this decision algorithm is competitive with or supersedes that of analogous algorithms employing spontaneous Raman spectroscopy while enabling facile detection due to the considerably higher intensity of SHINERS. Our results pave the way for rapid tissue spectral pathology measurements using SHINERS that can offer a novel stain-free route to accurate and economical diagnoses without human interpretation.Although tissue staining

  8. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-06-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I- V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  9. One-pot synthesis of Au@TiO2 yolk-shell nanoparticles with enhanced photocatalytic activity under visible light.

    Science.gov (United States)

    Sun, Hang; He, Qinrong; She, Ping; Zeng, Shan; Xu, Kongliang; Li, Jiayi; Liang, Song; Liu, Zhenning

    2017-11-01

    Natural biological systems often use hollow structures to decrease reflection and achieve high solar light utilization. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been designed to combine the advantages of noble metal coupling and hollow structures, and subsequently synthesized via a facile one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs not only exhibit reduced reflectance by multiple reflections and scattering within the hollow NPs, but also show enhanced photocatalytic activity in Rhodamine B (RhB) degradation by simultaneously improving light harvesting, charge separation and reaction site accessibility. Specifically, compared to the commercial TiO2 (P25), Au/TiO2 hybrid and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs demonstrate lower reflectance over a broader range and superior photocatalytic activity with more than 98.1% of RhB decomposed within 4h under visible light. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue to the rational design and preparation of efficient photocatalysts for pollutant removal. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  11. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    Directory of Open Access Journals (Sweden)

    Abdelnasser Salah Shebl Ibrahim

    2016-01-01

    Full Text Available The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6% and loading capacity (88.1 μg protein/mg carrier and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  12. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    Science.gov (United States)

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  13. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    Science.gov (United States)

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-05-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free–modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells.

  14. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants.

    Science.gov (United States)

    Watanabe, Y; Suzuki, R; Koike, S; Nagashima, K; Mochizuki, M; Forster, R J; Kobayashi, Y

    2010-11-01

    Cashew nut shell liquid (CNSL) containing antibacterial phenolic compounds was evaluated for its potency as a feed additive for ruminants. In experiment 1, ruminal responses to CNSL supplementation were assessed using a batch culture system. Rumen fluid from cattle was diluted with artificial saliva and incubated for 18h in a batch culture with a mixed diet containing a 30:70 hay:concentrate diet to which raw or heated CNSL was added at a final concentration of 500 μg/mL. In experiment 2, a Rusitec, using rumen fluid from the same cattle, was operated over a period of 7 d during which only raw CNSL was tested at concentrations of 0, 50, 100, or 200 μg/mL, and variations in fermentation and bacterial population were assessed. In experiment 3, a pure culture study was conducted using selected bacteria to determine their susceptibility to CNSL. In experiment 1, methane production was inhibited by raw CNSL (56.9% inhibition) but not by heated CNSL. Total volatile fatty acid concentration was not affected, whereas increased concentrations of propionate and decreased concentrations of acetate and butyrate were observed using either raw or heated CNSL. These changes were more obvious when raw CNSL was tested. In experiment 2, raw CNSL inhibited methanogenesis and increased propionate production in a dose-dependent manner, showing maximum methane inhibition (70.1%) and propionate enhancement (44.4%) at 200 μg/mL supplementation. Raw CNSL increased total volatile fatty acid concentration and dry matter digestibility. Raw CNSL also appeared to induce a dramatic shift in the population of rumen microbiota, based on decreased protozoa numbers and changes in quantitative PCR assay values for representative bacterial species. In experiment 3, using pure cultures, raw CNSL prevented the growth of hydrogen-, formate-, and butyrate-producing rumen bacteria, but not the growth of bacteria involved in propionate production. Based on these data, raw CNSL, rich in the antibacterial

  15. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.

    Science.gov (United States)

    Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin

    2015-06-23

    A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.

  16. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Science.gov (United States)

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  17. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    Science.gov (United States)

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels.

  18. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.

    2011-10-12

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  19. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  20. Enhanced Conductivity in CZTS/Cu(2-x)Se Nanocrystal Thin Films: Growth of a Conductive Shell.

    Science.gov (United States)

    Korala, Lasantha; McGoffin, J Tyler; Prieto, Amy L

    2016-02-01

    Poor charge transport in Cu2ZnSnS4 (CZTS) nanocrystal (NC) thin films presents a great challenge in the fabrication of solar cells without postannealing treatments. We introduce a novel approach to facilitate the charge carrier hopping between CZTS NCs by growing a stoichiometric Cu2Se shell that can be oxidized to form a conductive Cu2-xSe phase when exposed to air. The CZTS/Cu2Se core/shell NCs with varying numbers of shell monolayers were synthesized by the successive ionic layer adsorption and reaction (SILAR) method, and the variation in structural and optical properties of the CZTS NCs with varying shell thicknesses was investigated. Solid-phase sulfide ligand exchange was employed to fabricate NC thin films by layer-by-layer dip coating and a 2 orders of magnitude rise in dark conductivity (∼10(-3) S cm(-1) at 0 monolayer and ∼10(-1) S cm(-1) at 1.5 monolayers) was observed with an increase in the number of shell monolayers. The approach described herein is the first key step in achieving a significant increase in the photoconductivity of as-deposited CZTS NC thin films.

  1. Sexual dimorphism of medium-sized neurons with spines in human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Маја

    2013-01-01

    Full Text Available The nucleus accumbens is a limbic nucleus, representing part of the striatum body, and together with the caudate nucleus and putamen, it lies on the septum. The aim of this study was to examine morphological sexual dimorphism in spine density and also to undertake an immunohistochemical study of expression for estrogen and progesterone receptors in the medium-sized neurons in the nucleus accumbens. The research was conducted on twenty human brains of persons of both sexes, between the age of 20-75 years. The Golgi method was applied to determine the types and subtypes of neurons, morphologies of soma, dendrites and axons, as well as the relations between the cells and glial elements. The following were quantitatively examined: the maximum diameter of the neurons, the minimal diameter of the neurons, and the total length of the dendrites. The expression of receptors for estrogen and progesterone, their distribution and intensity were defined immunohistochemically. The parameters of the bodies of neurons in the shell and core of the nucleus accumbens were studied in both men and women. No statistically significant differences were found. Examination of the spine density showed statistical significance in terms of a higher density of spines in women. Immunohistochemically, in the female brain estrogen expression is diffusely spread in a large number of neurons; it is extra nuclear, of granular appearance and high intensity. In the male brain, expression of estrogen is visible and distributed over about one half of different types of neurons; it is extra nuclear, of granular appearance, mostly of middle and low staining intensity. Expression of progesterone in the female brain was very discreet and on a very small number of neurons; it was extra nuclear and with a weak staining intensity. Expression of progesterone in the male brain was distributed on a small number of neurons. It had a granular appearance, it was extra nuclear, with a very low

  2. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.

    Science.gov (United States)

    Lin, Min; Wang, Yunqing; Sun, Xiuyan; Wang, Wenhai; Chen, Lingxin

    2015-04-15

    The Raman enhancing ability of noble metal nanoparticles (NPs) is an important factor for surface enhanced Raman scattering (SERS) substrate screening, which is generally evaluated by simply mixing as-prepared NPs with Raman reporters for Raman signal measurements. This method usually leads to incredible results because of the NP surface coverage nonuniformity and reporter-induced NP aggregation. Moreover, it cannot realize in situ, continuous SERS characterization. Herein, we proposed a dynamic SERS monitoring strategy for NPs with precisely tuned structures based on a simplified spatially confined NP growth method. Gold nanorod (AuNR) seed NPs were coated with a mesoporous silica (mSiO2) shell. The permeability of mSiO2 for both reactive species and Raman reporters rendered the silver overcoating reaction and SERS indication of NP growth. Additionally, the mSiO2 coating ensured monodisperse NP growth in a Raman reporter-rich reaction system. Moreover, "elastic" features of mSiO2 were observed for the first time, which is crucial for holding the growing NP without breakage. This feature makes the mSiO2 coating adhere to metal NPs throughout the growing process, providing a stable Raman reporter distribution microenvironment near the NPs and ensuring that the substrate's SERS ability comparison is accurate. Three types of NPs, i.e., core-shell Au@AgNR@mSiO2, Au@AuNR@mSiO2, and yolk-shell Au@void@AuNR@mSiO2 NPs, were synthesized via core-shell overgrowth and galvanic replacement methods, showing the versatility of the approach. The living cell SERS labeling ability of Au@AgNR@mSiO2-based tags was also demonstrated. This strategy addresses the problems of multiple batch NP preparation, aggregation, and surface adsorption differentiation, which is a breakthrough for the dynamic comparison of SERS ability of metal NPs with precisely tuned structures and optical properties.

  3. Fabrication of In2O3@In2S3 core-shell nanocubes for enhanced photoelectrochemical performance

    Science.gov (United States)

    Li, Haohua; Chen, Cong; Huang, Xinyou; Leng, Yang; Hou, Mengnan; Xiao, Xiaogu; Bao, Jie; You, Jiali; Zhang, Wenwen; Wang, Yukun; Song, Juan; Wang, Yaping; Liu, Qinqin; Hope, Gregory A.

    2014-02-01

    Herein, we report the facile synthesis of In2O3@In2S3 core-shell nanocubes and their improved photoelectrochemical property. In2O3@In2S3 core-shell nanocubes are grown on a F-doped SnO2 (FTO) glass substrate by a two-step process, which involves the electrodeposition of In2O3 nanocubes and a subsequent ion-exchange treatment. The improved light-harvesting ability and the suitable band alignment of the In2O3@In2S3 core-shell nanocubes generate a remarkable photocurrent density of 6.19 mA cm-2 (at 0 V vs. Ag/AgCl), which is substantially higher than the pristine In2O3 nanocubes. These results provide a new insight into the design of a high-performance photoanode for photoelectrochemical water splitting.

  4. A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong; Zhu, Chengzhou; Li, Yijing; Xia, Haibing; Engelhard, Mark H.; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-11-08

    Currently, three dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity etc. that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of dendritic core-shell structured Au/Pt3Pd ternary metallic aerogels via a one-pot self-assembly gelation strategy. The as-prepared Au/Pt3Pd ternary metallic aerogels demonstrated superior electrochemical performances toward oxygen reduction reaction compared to commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells and the cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction performances of the Pt-based materials via the electronic effect, geometric effect and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties hold great promise in a variety of applications.

  5. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.

    Science.gov (United States)

    Xie, Shilei; Lu, Xihong; Zhai, Teng; Gan, Jiayong; Li, Wei; Xu, Ming; Yu, Minghao; Zhang, Yuan-Ming; Tong, Yexiang

    2012-07-17

    We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

  6. Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb,Er Core-Shell Hybrid and its Tunable Upconversion Enhancement

    Science.gov (United States)

    Chen, Xu; Zhou, Donglei; Xu, Wen; Zhu, Jinyang; Pan, Gencai; Yin, Ze; Wang, He; Zhu, Yongsheng; Shaobo, Cui; Song, Hongwei

    2017-01-01

    Localized electric filed enhancement by surface plasmon resonance (SPR) of noble metal nanoparticles is an effective method to amplify the upconversion luminescence (UCL) strength of upconversion nanoparticles (UCNPs), whereas the highly effective UCL enhancement of UCNPs in colloids has not been realized until now. Here, we designed and fabricated the colloidal Au-Ag nanocage@NaYF4@NaYF4:Yb,Er core-shell hybrid with different intermediate thickness (NaYF4) and tunable SPR peaks from visible wavelength region to NIR region. After the optimization of the intermediate spacer thickness (~7.5 nm) of NaYF4 NPs and the SPR peak (~950 nm) of noble metal nanoparticles, an optimum enhancement as high as ~25 folds was obtained. Systematic investigation indicates that UCL enhancement mainly originates from the influence of the intermediate spacer and the coupling of Au-Ag nanocages with the excitation electromagnetic field of the UCNPs. Our findings may provide a new thinking on designing highly effective metal@UCNPs core-shell hybrid in colloids.

  7. Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb,Er Core-Shell Hybrid and its Tunable Upconversion Enhancement

    Science.gov (United States)

    Chen, Xu; Zhou, Donglei; Xu, Wen; Zhu, Jinyang; Pan, Gencai; Yin, Ze; Wang, He; Zhu, Yongsheng; Shaobo, Cui; Song, Hongwei

    2017-01-01

    Localized electric filed enhancement by surface plasmon resonance (SPR) of noble metal nanoparticles is an effective method to amplify the upconversion luminescence (UCL) strength of upconversion nanoparticles (UCNPs), whereas the highly effective UCL enhancement of UCNPs in colloids has not been realized until now. Here, we designed and fabricated the colloidal Au-Ag nanocage@NaYF4@NaYF4:Yb,Er core-shell hybrid with different intermediate thickness (NaYF4) and tunable SPR peaks from visible wavelength region to NIR region. After the optimization of the intermediate spacer thickness (~7.5 nm) of NaYF4 NPs and the SPR peak (~950 nm) of noble metal nanoparticles, an optimum enhancement as high as ~25 folds was obtained. Systematic investigation indicates that UCL enhancement mainly originates from the influence of the intermediate spacer and the coupling of Au-Ag nanocages with the excitation electromagnetic field of the UCNPs. Our findings may provide a new thinking on designing highly effective metal@UCNPs core-shell hybrid in colloids. PMID:28106128

  8. Semiconductor plasmon induced upconversion enhancement in mCu2-xS@SiO2@Y2O3:Yb(3+),Er(3+) core-shell nanocomposites.

    Science.gov (United States)

    Zhou, Donglei; Li, Dongyu; Zhou, Xiangyu; Xu, Wen; Chen, Xu; Liu, Dali; Zhu, Yongsheng; Song, Hongwei

    2017-09-18

    The ability to modulate the intensity of electromagnetic field by semiconductor plasmon nanoparticles is becoming attractive owing to its unique doping induced local surface plasmon resonance (LSPR) effect different from metals. Herein, we synthesized the mCu2-xS@SiO2@Y2O3:Yb(3+),Er(3+) core-shell composites and experimentally and theoretically studied the semiconductor plasmon induced upconversion (UC) enhancement, and obtained 30 folds UC enhancement compared to that of SiO2@Y2O3:Yb(3+),Er(3+) composites. The UC enhancement was induced by the synthetic effect: amplification of excitation field and the increase of resonance energy transfer (ET) rate from Yb(3+) ions to Er(3+) ions. The experimental results were analyzed in the light of FDTD calculations confirming the effect of amplification of excitation field. In addition, UCL spectra, UC enhancement and dynamics dependent on concentration (Yb(3+)/Er(3+) ions) were investigated and found that the resonance energy transfer (ET) rate from Yb(3+) ions to Er(3+) ions increased ~25% in the effect of LSPR waves. Finally, power dependence of fingerprint identification was successfully performed based on the mCu2-xS@SiO2@Y2O3:Yb(3+),Er(3+) core-shell composites, the color of which can change from green to orange with excitation power increasing. Our work opens up a new concept to design and fabricate the upconversion core-shell structure based on semiconductor plasmon nanoparticles (NPs) and provides applications for upconversion nanocrystals (UCNPs) and semiconductor plasmon NPs in photonics.

  9. Intermittent-access binge consumption of sweet high-fat liquid does not require opioid or dopamine receptors in the nucleus accumbens.

    Science.gov (United States)

    Lardeux, Sylvie; Kim, James J; Nicola, Saleem M

    2015-10-01

    Binge eating disorders are characterized by episodes of intense consumption of high-calorie food. In recently developed animal models of binge eating, rats given intermittent access to such food escalate their consumption over time. Consumption of calorie-dense food is associated with neurochemical changes in the nucleus accumbens, including dopamine release and alterations in dopamine and opioid receptor expression. Therefore, we hypothesized that binge-like consumption on intermittent access schedules is dependent on opioid and/or dopamine neurotransmission in the accumbens. To test this hypothesis, we asked whether injection of dopamine and opioid receptor antagonists into the core and shell of the accumbens reduced consumption of a sweet high-fat liquid in rats with and without a history of intermittent binge access to the liquid. Although injection of a μ opioid agonist increased consumption, none of the antagonists (including μ opioid, δ opioid, κ opioid, D1 dopamine and D2 dopamine receptor antagonists, as well as the broad-spectrum opioid receptor antagonist naltrexone) reduced consumption, and this was the case whether or not the animals had a prior history of intermittent access. These results suggest that consumption of sweet, fatty food does not require opioid or dopamine receptor activation in the accumbens even under intermittent access conditions that resemble human binge episodes.

  10. Designed Formation of Co₃O₄/NiCo₂O₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties.

    Science.gov (United States)

    Hu, Han; Guan, Buyuan; Xia, Baoyu; Lou, Xiong Wen David

    2015-04-29

    Hollow structures with high complexity in shell architecture and composition have attracted tremendous interest because of their great importance for both fundamental studies and practical applications. Herein we report the designed synthesis of novel box-in-box nanocages (NCs) with different shell compositions, namely, Co3O4/NiCo2O4 double-shelled nanocages (DSNCs). Uniform zeolitic imidazolate framework-67/Ni-Co layered double hydroxides yolk-shelled structures are first synthesized and then transformed into Co3O4/NiCo2O4 DSNCs by thermal annealing in air. Importantly, this strategy can be easily extended to prepare other complex DSNCs. When evaluated as electrodes for pseudocapacitors, the Co3O4/NiCo2O4 DSNCs show a high specific capacitance of 972 F g(-1) at a current density of 5 A g(-1) and excellent stability with 92.5% capacitance retention after 12 000 cycles, superior to that of Co3O4 NCs with simple configuration and Co3O4/Co3O4 DSNCs. Besides, the Co3O4/NiCo2O4 DSNCs also exhibit much better electrocatalytic activity for the oxygen evolution reaction than Co3O4 NCs. The greatly improved electrochemical performance of Co3O4/NiCo2O4 DSNCs demonstrates the importance of rational design and synthesis of hollow structures with higher complexity.

  11. Sub-6 nm monodisperse hexagonal core/shell NaGdF4 nanocrystals with enhanced upconversion photoluminescence.

    Science.gov (United States)

    Liu, Jing; Chen, Guanying; Hao, Shuwei; Yang, Chunhui

    2017-01-07

    The ability to fabricate lanthanide-doped upconversion nanocrystals (UCNCs) with tailored size and emission profile has fuelled their uses in a broad spectrum of biological applications. Yet, limited success has been met in the preparation of sub-6 nm UCNCs with efficient upconversion photoluminescence (UCPL), which enable high contrast optical bioimaging with minimized adverse biological effects entailed by size-induced rapid clearance from the body. Here, we present a simple and reproducible approach to synthesize a set of monodispersed hexagonal-phase core NaGdF4:Yb/Ln (Ln = Er, Ho, Tm) of ∼3-4 nm and core/shell NaGdF4:Yb/Ln@NaGdF4 (Ln = Er, Ho, Tm) UCNCs of ∼5-6 nm. We show that the core/shell UCNCs can be up to ∼1000 times more efficient than the corresponding core UCNCs due to the effective suppression of surface-related quenching effects for the core. The observation of prolonged PL lifetime for the core/shell than that for the core UCNCs demonstrates the role of the inert shell layer for the protection of the core. The achievement of sub-6 nm NaGdF4 UCNCs with significantly improved luminescence efficiency constitutes a solid step towards high contrast UCPL optical imaging with secured biological safety.

  12. Constructing a MoS₂ QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity.

    Science.gov (United States)

    Liang, Shijing; Zhou, Zhouming; Wu, Xiuqin; Zhu, Shuying; Bi, Jinhong; Zhou, Limin; Liu, Minghua; Wu, Ling

    2016-02-15

    MoS₂ quantum dots (QDs)/CdS core/shell nanospheres with a hierarchical heterostructure have been prepared by a simple microwave hydrothermal method. The as-prepared samples are characterized by XRD, TEM, SEM, UV-VIS diffuse reflectance spectra (DRS) and N₂-sorption in detail. The photocatalytic activities of the samples are evaluated by water splitting into hydrogen. Results show that the as-prepared MoS₂ QDs/CdS core/shell nanospheres with a diameter of about 300 nm are composed of the shell of CdS nanorods and the core of MoS₂ QDs. For the photocatalytic reaction, the samples exhibit a high stability of the photocatalytic activity and a much higher hydrogen evolution rate than the pure CdS, the composite prepared by a physical mixture, and the Pt-loaded CdS sample. In addition, the stability of CdS has also been greatly enhanced. The effect of the reaction time on the formations of nanospheres, the photoelectric properties and the photocatalytic activities of the samples has been investigated. Finally, a possible photocatalytic reaction process has also been proposed.

  13. Constructing a MoS2 QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Shijing Liang

    2016-02-01

    Full Text Available MoS2 quantum dots (QDs/CdS core/shell nanospheres with a hierarchical heterostructure have been prepared by a simple microwave hydrothermal method. The as-prepared samples are characterized by XRD, TEM, SEM, UV-VIS diffuse reflectance spectra (DRS and N2-sorption in detail. The photocatalytic activities of the samples are evaluated by water splitting into hydrogen. Results show that the as-prepared MoS2 QDs/CdS core/shell nanospheres with a diameter of about 300 nm are composed of the shell of CdS nanorods and the core of MoS2 QDs. For the photocatalytic reaction, the samples exhibit a high stability of the photocatalytic activity and a much higher hydrogen evolution rate than the pure CdS, the composite prepared by a physical mixture, and the Pt-loaded CdS sample. In addition, the stability of CdS has also been greatly enhanced. The effect of the reaction time on the formations of nanospheres, the photoelectric properties and the photocatalytic activities of the samples has been investigated. Finally, a possible photocatalytic reaction process has also been proposed.

  14. Core/Shell Structured TiO2/CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Hwang, Insung; Baek, Minki; Yong, Kijung

    2015-12-23

    In this work, enhanced light stability of perovskite solar cell (PSC) achieved by the introduction of a core/shell-structured CdS/TiO2 electrode and the related mechanism are reported. By a simple solution-based process (SILAR), a uniform CdS shell was coated onto the surface of a TiO2 layer, suppressing the activation of intrinsic trap sites originating from the oxygen vacancies of the TiO2 layer. As a result, the proposed CdS-PSC exhibited highly improved light stability, maintaining nearly 80% of the initial efficiency after 12 h of full sunlight illumination. From the X-ray diffraction analyses, it is suggested that the degradation of the efficiency of PSC during illumination occurs regardless of the decomposition of the perovskite absorber. Considering the light-soaking profiles of the encapsulated cells and the OCVD characteristics, it is likely that the CdS shell had efficiently suppressed the undesirable electron kinetics, such as trapping at the surface defects of the TiO2 and preventing the resultant charge losses by recombination. This study suggests that further complementary research on various effective methods for passivation of the TiO2 layer would be highly meaningful, leading to insight into the fabrication of PSCs stable to UV-light for a long time.

  15. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  16. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.

    Science.gov (United States)

    Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan

    2013-12-15

    In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines.

  17. Enhanced green emission from La0.4F3:Ce0.45,Tb0.15/TiO2 core/shell structure

    Institute of Scientific and Technical Information of China (English)

    T.K. Srinivasan; B.S. Panigrahi; N. Suriyamurthy; P.K. Parida; B. Venkatraman

    2015-01-01

    Nano sized La0.4F3:Ce0.45,Tb0.15 (core), La0.4F3:Ce0.45,Tb0.15 (TiO2) (core) shell, La0.55F:Ce0.45, and La0.85F3:Tb0.15 particles were synthesized by adopting co-precipitation technique in acidic environment and coated with TiO2 to form a core-shell structure by adopting a mechanical dispersion method at room temperature. The synthesized materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis) absorption, photoluminescence and lifetime spectroscopy. The crystal structure of La0.4F3:Ce0.45,Tb0.15 remained the same as LaF3 after being doped with Ce and Tb ions but with a slight decrease in the lattice parameter. TEM image confirmed the for-mation of a core-shell structure. The La0.4F3:Ce0.45,Tb0.15/TiO2 exhibited Tb3+fluorescence enhancement by a factor of 1.76. Scin-tillation from the synthesized materials was also observed under X-ray excitation.

  18. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures.

    Science.gov (United States)

    Wu, Wei; Zhang, Shaofeng; Xiao, Xiangheng; Zhou, Juan; Ren, Feng; Sun, Lingling; Jiang, Changzhong

    2012-07-25

    Mesoporous spindlelike iron oxide/ZnO core-shell heterostructures are successfully fabricated by a low-cost, surfactant-free, and environmentally friendly seed-mediate strategy with the help of postannealing treatment. The material composition and stoichiometry, as well as these magnetic and optical properties, have been examined and verified by means of high-resolution transmission electron microscopy and X-ray diffraction, the thickness of ZnO layer can be simply tailored by the concentration of zinc precursor. Considering that both α-Fe2O3 and ZnO are good photocatalytic materials, we have investigated the photodegradation performances of the core-shell heterostructures using organic dyes Rhodamin B (RhB). It is interesting to find that the as-obtained iron oxides/ZnO core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to the as-used α-Fe2O3 seeds and commercial TiO2 products (P25), mainly owing to the synergistic effect between the narrow and wide bandgap semiconductors and effective electron-hole separation at the interfaces of iron oxides/ZnO.

  19. Dual effects of limbic seizures on psychosis-relevant behaviors shown by nucleus accumbens kindling in rats

    Science.gov (United States)

    Ma, Jingyi; Leung, L. Stan

    2016-01-01

    Background A paradox in epilepsy and psychiatry is that temporal lobe epilepsy is often predisposed to schizophrenic-like psychosis, whereas convulsive therapy can relieve schizophrenic symptoms. We have previously demonstrated that the nucleus accumbens is a key structure in mediating postictal psychosis induced by a hippocampal electrographic seizure. Objective/Hypothesis The purpose of this study is to test a hypothesis that accumbens kindling cumulating in a single (1-time) or repeated (5-times) convulsive seizures have different effects on animal models of psychosis. Methods Electrical stimulation at 60 Hz was applied to nucleus accumbens to evoke afterdischarges until one, or five, convulsive seizures that involved the hind limbs (stage 5 seizures) were attained. Behavioral tests, performed at 3 days after the last seizure, included gating of hippocampal auditory evoked potentials (AEP) and prepulse inhibition to an acoustic startle response (PPI), tested without drug injection or after ketamine (3 mg/kg s.c.) injection, as well as locomotion induced by ketamine or methamphetamine (1 mg/kg i.p.). Results Compared to non-kindled control rats, 1-time, but not 5-times, convulsive seizures induced PPI deficit and decreased gating of hippocampal AEP, without drug injection. Compared to non-kindled rats, 5-times, but not 1-time, convulsive seizures antagonized ketamine-induced hyperlocomotion, ketamine-induced PPI deficit and AEP gating decrease. However, both 1- and 5-times convulsive seizures, significantly enhanced methamphetamine-induced locomotion as compared to non-kindled rats. Conclusions Accumbens kindling ending with 1 convulsive seizure may induce schizophrenic-like behaviors, while repeated (≥ 5) convulsive seizures induced by accumbens kindling may have therapeutic effects on dopamine independent psychosis. PMID:27267861

  20. Diazepam alters cocaine self-administration, but not cocaine-stimulated locomotion or nucleus accumbens dopamine

    OpenAIRE

    2008-01-01

    Cocaine is known to enhance nucleus accumbens dopamine (NAcc DA), serve as a positive reinforcer and produce negative effects, such as anxiety. The influence of diazepam on cocaine intake, cocaine-stimulated behavioral activity and NAcc DA was investigated using self-administration and experimenter-administered intravenous (i.v.) cocaine. In Experiment 1, rats were pretreated with diazepam (0.25 mg/kg) or saline (0.1 ml) 30 minutes prior to 20 daily 1-hr cocaine (0.75 mg/kg/inj) self-administ...

  1. Synergistic effect of double-shelled and sandwiched TiO₂@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity.

    Science.gov (United States)

    Cai, Jiabai; Wu, Xueqing; Li, Shunxing; Zheng, Fengying; Zhu, Licong; Lai, Zhanghua

    2015-02-18

    A novel approach for the fabrication of double-shelled, sandwiched, and nanostructured hollow spheres was proposed, using hydrotherm reaction and calcination. The negatively charged nanoparticles (e.g., Au, Ag, and Pt) could be adsorbed successively onto the positively charged hollow spheres (e.g., TiO2, ZnO, and ZrO2). The resulted nanocomposites (TiO2@Au, as a proof-of-concept) were dispersed in glucose solution under hydrothermal conditions. After calcination, uniform double-shelled and sandwiched TiO2@Au@C hollow spheres were obtained and Au nanoparticles were sandwiched between the shell wall of TiO2 and C. The samples were characterized by SEM, TEM, XRD, XPS, BET, and UV-vis DRS. The photocatalytic activity for the degradation of 4-nitroaniline was in the order of TiO2@Au@C > TiO2@C > TiO2/Au > P25. The visible-light photodegradation rate of 92.65% for 4-nitroaniline was achieved by TiO2@Au@C, which exhibited an increase of 75% compared to Degussa P25 TiO2. Furthermore, no deactivation occurred during catalytic reaction for three times, i.e., the TiO2@Au@C microspheres exhibited superior photocatalytic stability. TiO2@Au@C microspheres could also enhance the photocatalytic activity for hydrogen generation from methanol/water solutions. The synergistic effect of coupling TiO2 hollow spheres with Au nanoparticles and C shell on photocatalytic performance was proved by us. The photoexcited electrons from Au nanoparticles could be captured by the conduction band of TiO2 and then the electron-hole separation was improved. Moreover, both the visible light absorption and the affinity between TiO2 and pollutants could be improved by the coexistence of carbonaceous materials, which could facilitate the photocatalytic interface reaction.

  2. 40% Efficiency enhancement in solar cells using ZnO nanorods as shell prepared via novel hydrothermal synthesis

    Science.gov (United States)

    Ebadi, Mohammad; Zarghami, Zabihullah; Motevalli, Kourosh

    2017-03-01

    Herein, rod-like ZnO nanostructures were synthesized via a novel hydrothermal route using Zn(OAc)2, ethylenediamine and hydrazine as a new set of starting reagents. The as-synthesized products were characterized by techniques including XRD, EDS, SEM, XPS, Pl and FTIR. The prepared ZnO nanostructures were utilized as shell on TiO2 film in DSSCs. Effect of precursor type, morphology and thickness of ZnO shell (number of electrophoresis cycle) on solar cells efficiency were well studied. Our results showed that ethylenediamine has crucial effect on morphology of synthesized ZnO nanostructures and using ZnO nanostructures leads to an increase in DSSCs efficiency compared to bare TiO2 from 4.66 to 7.13% ( 40% improvement). Moreover, highest amount of solar cell efficiency (7.13%) was obtained by using ZnO nanorods with two cycle of electrophoresis for deposition.

  3. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation.

    Science.gov (United States)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  4. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    Science.gov (United States)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  5. Novel ferroferric oxide/polystyrene/silver core-shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering

    Science.gov (United States)

    Liu, Bo; Bai, Chong; Zhao, Dan; Liu, Wei-Liang; Ren, Man-Man; Liu, Qin-Ze; Yang, Zhi-Zhou; Wang, Xin-Qiang; Duan, Xiu-Lan

    2016-02-01

    A novel Ag-coated Fe3O4@Polystyrene core-shell microsphere has been designed via fabrication of Fe3O4@Polystyrene core-shell magnetic microsphere through a seed emulsion polymerization, followed by deposition of Ag nanoparticles using in-situ reduction method. Such magnetic microspheres can be utilized as sensitive surface-enhanced Raman scattering (SERS) substrates, using Rhodamine 6G (R6G) as a probe molecule, with both stable and reproducible performances. The SERS detection limit of R6G decreased to 1 × 10-10 M and the enhancement factor of this substrate on the order of 106 was obtained. In addition, owing to possessing excellent magnetic properties, the resultant microspheres could be separated rapidly by an external magnetic field and utilized repeatedly for three times at least. Therefore, the unique renewable property suggests a new route to eliminate the single-use problem of traditional SERS substrates and will be promising for the practical application.

  6. Overview of the Shell and Tube Heat Exchangers about Heat Transfer Enhancement Technology%管壳式换热器强化传热技术概述

    Institute of Scientific and Technical Information of China (English)

    齐洪洋; 高磊; 张莹莹; 周辰琳

    2012-01-01

    The research progress of shell and tube heat exchanger were summarized. The development, structural improvement and heat transfer enhancement of the heat exchangers were introduced through three aspects,e. g. tube pass,shell pass and the whole tub bundle etc. Compared with the traditional seg-mental baffle heat exchanger, various types of heat exchangers' characteristics about heat transfer enhancement were epitomized. At last,the studying directions of heat exchangers were pointed out.%总结了近年来国内外新型管壳式换热器的研究进展,从管程、壳程、管束三方面介绍了管壳式换热器的发展历程、结构改进及强化传热机理,并与普通弓形折流板换热器进行对比,概括了各式换热器的强化传热特点.最后指出了换热器的研究方向.

  7. Hierarchical core-shell SiO2@PDA@BiOBr microspheres with enhanced visible-light-driven photocatalytic performance.

    Science.gov (United States)

    Zhu, Shuai-Ru; Qi, Qi; Zhao, Wen-Na; Wu, Meng-Ke; Fang, Yuan; Tao, Kai; Yi, Fei-Yan; Han, Lei

    2017-08-29

    To explore catalysts combining highly accessible specific surface areas with low recombination of the photo-induced electron-hole pairs, a novel SiO2@PDA@BiOBr composite photocatalyst with a hierarchical core-shell structure was prepared by a facile solvothermal method. The catalyst shows a superior performance on photodegradation of Rhodamine B under visible light irradiation, especially for SiO2@PDA-2@BiOBr with the reactant kinetics constant (k = 0.0487 min(-1)). The enhanced photocatalytic performance of SiO2@PDA-2@BiOBr was ascribed to the decreased band-gap, higher surface area, and effectively photo-generated electron-hole pairs by the introduction of polydopamine (PDA). In addition, the photocatalytic degradation is initiated by ˙O2(-) derived from dye photosensitization and h(+) from the BiOBr. Cyclic experiments also indicate that the SiO2@PDA-2@BiOBr is reusable during the photodegradation process. The hierarchical core-shell SiO2@PDA@BiOBr photocatalyst will provide a theoretical model for the development of physical chemistry and structural properties of BiOBr-based composites to enhance the photocatalytic performances.

  8. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire.

    Science.gov (United States)

    Zhang, Fang; Ding, Yong; Zhang, Yan; Zhang, Xiaoling; Wang, Zhong Lin

    2012-10-23

    The piezo-phototronic effect is about the use of the piezoelectric potential created inside some materials for enhancing the charge carrier generation or separation at the metal-semiconductor contact or pn junction. In this paper, we demonstrate the impact of the piezo-phototronic effect on the photon sensitivity for a ZnO-CdS core-shell micro/nanowire based visible and UV sensor. CdS nanowire arrays were grown on the surface of a ZnO micro/nanowire to form a ZnO-CdS core-shell nanostructure by a facile hydrothermal method. With the two ends of a ZnO-CdS wire bonded on a polymer substrate, a flexible photodetector was fabricated, which is sensitive simultaneously to both green light (548 nm) and UV light (372 nm). Furthermore, the performance of the photon sensor is much enhanced by the strain-induced piezopotential in the ZnO core through modulation of the Schottky barrier heights at the source and drain contacts. This work demonstrates a new application of the piezotronic effect in photon detectors.

  9. File list: NoD.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  10. File list: Unc.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29234,SRX029236 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  11. File list: ALL.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445333,SRX472711,SRX445335,SRX445331,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  12. File list: ALL.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445335,SRX209198,SRX445331,SRX209194,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  13. File list: InP.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX791596,SRX791600,SRX209801,SRX209802,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  14. File list: His.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...2,SRX029231,SRX029230,SRX029228,SRX209198,SRX209196 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  15. File list: His.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791595,S...0,SRX209199,SRX209196,SRX209197,SRX209198,SRX209194 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  16. File list: ALL.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX209...SRX472713,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  17. File list: Oth.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  18. File list: InP.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9801,SRX209802,SRX209803,SRX791600,SRX791596,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  19. File list: Oth.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  20. File list: Pol.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209215,SRX209214,SRX209213,SRX209218 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  1. File list: Unc.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29238,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  2. File list: Unc.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX029...98892,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  3. File list: Unc.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...98892,SRX698891 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  4. File list: Pol.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209214,SRX209218,SRX209215,SRX209213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  5. File list: InP.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX209802,SRX791596,SRX791600,SRX209801,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  6. File list: NoD.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  7. File list: His.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...8,SRX209196,SRX209197,SRX209198,SRX209194,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  8. File list: Pol.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209218,SRX209215,SRX209213,SRX209214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  9. File list: Oth.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  10. File list: ALL.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX209196,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  11. File list: NoD.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  12. File list: NoD.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  13. File list: His.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX209200,S...7,SRX209211,SRX029230,SRX029232,SRX029228,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  14. File list: Oth.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  15. File list: Pol.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209213,SRX209214,SRX209218,SRX209215 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  16. Morphology of Human Nucleus Accumbens Neurons Based on the Immunohistochemical Expression of Gad67

    Directory of Open Access Journals (Sweden)

    Sazdanovic Maja

    2016-12-01

    Full Text Available The nucleus accumbens is a part of the ventral striatum along with the caudate nucleus and putamen. The role of the human nucleus accumbens in drug addiction and other psychiatric disorders is of great importance. The aim of this study was to characterize medium spiny neurons in the nucleus accumbens according to the immunohistochemical expression of GAD67.

  17. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin

    2017-01-01

    The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.

  18. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles.

    Science.gov (United States)

    Abdi, Fatwa F; Dabirian, Ali; Dam, Bernard; van de Krol, Roel

    2014-08-07

    Recent progress in the development of bismuth vanadate (BiVO4) photoanodes has firmly established it as a promising material for solar water splitting applications. Performance limitations due to intrinsically poor catalytic activity and slow electron transport have been successfully addressed through the application of water oxidation co-catalysts and novel doping strategies. The next bottleneck to tackle is the modest optical absorption in BiVO4, particularly close to its absorption edge of 2.4 eV. Here, we explore the modification of the BiVO4 surface with Ag@SiO2 core-shell plasmonic nanoparticles. A photocurrent enhancement by a factor of ~2.5 is found under 1 sun illumination (AM1.5). We show that this enhancement consists of two contributions: optical absorption and catalysis. The optical absorption enhancement is induced by the excitation of localized surface plasmon resonances in the Ag nanoparticles, and agrees well with our full-field electromagnetic simulations. Far-field effects (scattering) are found to be dominant, with a smaller contribution from near-field plasmonic enhancement. In addition, a significant catalytic enhancement is observed, which is tentatively attributed to the electrocatalytic activity of the Ag@SiO2 nanoparticles.

  19. ZnO/Pt core-shell nanorods on the cotton threads with high enhanced photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Cheng, E-mail: ychang0127@gmail.com; Guo, Jin-You

    2016-09-01

    The ZnO nanorods have been grown on the cotton threads with ZnO seed layer by an aqueous chemical growth method at the low reaction temperature. The ZnO nanorods can provide a good geometric structure to deposit Pt nanoparticles with uniform size by a facile ion sputtering method. The photocatalytic activity of the different lengths of cotton threads with ZnO nanorods were evaluated in the photocatalytic degradation of rhodamine 6G by a 10 W UV light irradiation. The ZnO/Pt core-shell nanorods revealed much higher photodegradation efficiency than ZnO nanorods or commercial TiO{sub 2} nanopowders, which improved the separation of photogenerated electrons and holes. Furthermore, the reusability test can demonstrated that the ZnO/Pt core-shell nanorods on the cotton threads still maintained high photocatalytic activity over five cycles. The ZnO/Pt core-shell nanorods provide a facile, low cost, high surface-to-volume ratio, high photocatalytic efficiency, and high reusability, which shall be also promising in the decomposition of environment pollutants and reusing of wastewater treatment. - Highlights: • ZnO nanorods have been grown on the cotton threads by an ACG method. • ZnO NRs can be used to deposit Pt NPs with uniform size by ion sputtering method. • ZnO/Pt NRs exhibit high photocatalytic efficiency and reusability. • ZnO/Pt NRs shall be exhibited excellent potential for surface-related applications.

  20. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model

    Science.gov (United States)

    Wang, Hanjie; Su, Wenya; Wang, Sheng; Wang, Xiaomin; Liao, Zhenyu; Kang, Chunsheng; Han, Lei; Chang, Jin; Wang, Guangxiu; Pu, Peiyu

    2012-09-01

    Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic nanocrystals; and polymeric lipid shells anchored with functional molecules such as PEG chains, TAT peptides and RGD peptides that can help the vectors to condense the gene, prolong the circulation time, cross the blood brain barrier and target delivery to the cancer tissue. The results showed that the magnetic PLGA/MPLs nanosphere has a nanosized core-shell structure, can achieve sustained drug release and has good DNA binding abilities. Importantly, compared with the control group and other groups with single functionality, it can co-deliver the drug and gene into the same cell in vitro and show the strongest inhibiting effect on the growth of the in situ malignant glioblastoma in vivo. All of these results indicated that the different functional components of magnetic PLGA/MPLs, can form an organic whole and none of them can be dispensed with. The magnetic PLGA/MPLs nanosphere may be another option for treatment of glioblastoma.Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic

  1. [The study of dimethoate by means of vibrational and surface enhanced Raman spectroscopy on Au/Ag core-shell nanoparticles].

    Science.gov (United States)

    He, Qiang; Li, Si; Yu, Dan-Ni; Zhou, Gunag-Ming; Ji, Fang-Ying; Subklew, Guenter

    2010-12-01

    The vibrational structure of dimethoate, with its solid state and saturated solutions at acidic and basic conditions, was characterized with combination of means of FTIR and FT-Raman vibrational spectroscopy technology, and the comprehensive information about the dimethoate molecular groups' vibrational features was obtained. The surface enhanced Raman scattering (SERS) spectra of dimethoate at different concentrations with different acidic and basic conditions, and adsorbed on the substrate's surface of the core-shell Au/Ag nanoparticles, were also obtained. The adsorption states of dimethoate's molecule on the substrate's surface of the core-shell Au/Ag nanoparticles and the effects by the different acid-base conditions were investigated, with speculation of the adsorption mechanism. From the results, v(as)(NH), v(as)(CH3), v(O=C-N), tau(O=C-N), v(P-O), v(P=S), v(C-C) and delta(P-O-C) are the characteristic peaks of inner dimethoate structure's vibrations; and the concentration range in which dimethoate could interact with core-shell Au/Ag nanoparticles fully is about 1.0 x 10(-3) mol * L(-1) both in acidic and basic conditions. Dimethoate's molecule interacts with SERS' substrate surface mainly through P-O-C, O=C-C, (S-CH2), P=S, and CH3 structures; and the effects of dimethoate's hydrolysis path in acidic and basic conditions on the adsorption are discussed, which give some good references for the research of organophosphorus pesticides' transformations in different environmental systems.

  2. Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Jiang, Zhifeng; Wei, Wei; Mao, Danjun; Chen, Cheng; Shi, Yunfei; Lv, Xiaomeng; Xie, Jimin

    2015-01-14

    Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and ciprofloxacin under visible light irradiation. The experimental results indicate that N-doped yolk-shell mesoporous TiO2 hollow microspheres show higher photocatalytic activity than P25 TiO2 under visible light irradiation because of N doping and the unique yolk-shell structure. In addition, Ag-N-TiO2-YSM shows enhanced activity compared with N-TiO2-YSM due to the SPR absorption of silver NPs and the fast generation, separation and transportation of the photogenerated carriers. Moreover, the Ag contents can affect the photocatalytic activity of the Ag-N-TiO2-YSM composite. A suitable amount of Ag deposition gives the highest photocatalytic activity. A higher loading does not improve the photocatalytic activity of N-TiO2-YSM further. The active species generated in the photocatalytic system were also investigated. Based on our experimental results, a possible photocatalytic mechanism was proposed. The strategy presented here gives a promising route towards the development of delicate metal@hollow semiconductor composites for many applications in photocatalysis.

  3. Self Powered Highly Enhanced Dual Wavelength ZnO@CdS Core-Shell Nanorod Arrays Photodetector: An Intelligent Pair.

    Science.gov (United States)

    Sarkar, Sanjit; Basak, Durga

    2015-08-01

    On the face of the impending energy crisis, developing low-energy or even zero-energy photoelectronic devices is extremely important. A multispectral photosensitivity feature of a self-powered device provides an additional powerful tool. We have developed an unprecedented high performance dual wavelength self-powered ZnO@CdS/PEDOT:PSS core-shell nanorods array photodetector through a simple aqueous chemical method wherein a suitable band alignment between an intelligent material pair, i.e. ZnO and CdS, has been utilized. Besides a noteworthy advantage of the devices being that they show a very sharp and prominent dual wavelength photosensitivity, both the ultraviolet and visible light sensitivity (ratio of current under illumination (Iphoto)/current under dark (Idark)) of the device are two orders of higher magnitude than those of pristine ZnO, attaining values of 2.8 × 10(3) and 1.07 × 10(3), respectively. At the same time, temporal responses faster than 20 ms could be achieved with these solution-processed photodetectors. The present study provides a very important direction to engineer core-shell nanostructured devices for dual wavelength high photosensitivity.

  4. Multicomponent (Ce, Cu, Ni) oxides with cage and core-shell structures: tunable fabrication and enhanced CO oxidation activity

    Science.gov (United States)

    Liu, Wei; Tang, Ke; Lin, Ming; June, Lay Ting Ong; Bai, Shi-Qiang; Young, David James; Li, Xu; Yang, Yan-Zhao; Hor, T. S. Andy

    2016-05-01

    Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes.Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes. Electronic supplementary information (ESI) available: Experimental section: materials and characterization; synthesis of materials; catalytic test. Tables S1-S3 and Fig. S1-S8. See DOI: 10.1039/c6nr02383e

  5. Enhanced removal performance by the core-shell zeolites/MgFe-layered double hydroxides (LDHs) for municipal wastewater treatment.

    Science.gov (United States)

    Guo, Lu; Zhang, Xiangling; Chen, Qiaozhen; Ruan, Congying; Leng, Yujie

    2016-04-01

    The application of powdered layer double hydroxides (LDHs) in constructed rapid infiltration system (CRIS) appears to be an appreciable problem still unsolved due to the small particle size and the low density. Therefore, the core-shell zeolites/MgFe-LDHs composites were prepared via using co-precipitation method in present study. To investigate the practical applicability, a detailed organics, ammonia, and total phosphorus removal study were carried out in columns to treat the municipal wastewater. The scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) results confirmed the successful synthesis of core-shell zeolites/MgFe-LDHs through coating on the surface of zeolites. Accordingly, the zeolites/MgFe-LDHs largely reduced the COD by 81.14 %, NH4 (+)-N by 81.50%, and TP by 83.29%. Phosphate adsorption study revealed that the equilibrium adsorption data were better fitted by Langmuir isothermal model, with the maximum adsorption capacity of 79.3651 mg/kg for zeolites/MgFe-LDHs and 38.4615 mg/kg for the natural zeolites. In addition, economic analysis indicated that the reagent cost of synthesis of zeolites/MgFe-LDHs was economical. Herein, the zeolites/MgFe-LDHs solved the natural zeolites problem for poor P removal and the application of powdered LDHs in the solid/liquid separation process, suggesting that it was applicable as potential substrates for the removal of organics, ammonia, and total phosphorus in CRIS.

  6. Rapid feedback processing in human nucleus accumbens and motor thalamus

    NARCIS (Netherlands)

    Schüller, T.; Gründler, T.O.J.; Jocham, G.; Klein, T.A.; Timmermann, L.; Visser-Vandewalle, V.E.R.M.; Kuhn, J.

    2015-01-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structu

  7. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    NARCIS (Netherlands)

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  8. Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants.

    Science.gov (United States)

    An, Qiao; Zhang, Peng; Li, Jun-Mei; Ma, Wan-Fu; Guo, Jia; Hu, Jun; Wang, Chang-Chun

    2012-08-21

    Highly active surface-enhanced Raman scattering (SERS) substrates of Ag nanoparticle (Ag-NP) modified Fe(3)O(4)@carbon core-shell microspheres were synthesized and characterized. The carbon coated Fe(3)O(4) microspheres were prepared via a one-pot solvothermal method and were served as the magnetic supporting substrates. The Ag-NPs were deposited by in situ reduction of AgNO(3) with butylamine and the thickness of the Ag-NP layer was variable by controlling the AgNO(3) concentrations. The structure and integrity of the Fe(3)O(4)@C@Ag composite microspheres were confirmed by TEM, XRD, VSM and UV-visible spectroscopy. In particular, the Ag-NP coated Fe(3)O(4)@carbon core-shell microspheres were shown to be highly active for SERS detections of pentachlorophenol (PCP), diethylhexyl phthalate (DEHP) and trinitrotoluene (TNT). These analytes are representatives of environmentally persistent organic pollutants with typically low SERS activities. The results suggested that the interactions between the carbon on the microsphere substrates and the aromatic cores of the target molecules contributed to the facile pre-concentration of the analytes near the Ag-NP surfaces.

  9. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-07

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm(-2) at the current density of 1 mA cm(-2) and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg(-1) at 0.288 KW kg(-1) and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  10. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  11. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    Science.gov (United States)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  12. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance

    Science.gov (United States)

    Li, Xuan; Yang, Zhengchun; Qi, Wen; Li, Yutao; Wu, Ying; Zhou, Shaoxiong; Huang, Shengming; Wei, Jun; Li, Huijun; Yao, Pei

    2016-02-01

    Herein, binder-free Co3O4@NiCoAl-layered double hydroxide (Co3O4@LDH) core-shell hybrid architectural nanowire arrays were prepared via a two-step hydrothermal synthesis route. LDH nanosheets possessing a large electroactive surface area uniformly dispersed on the surface of Co3O4 nanowires were successfully fabricated allowing for fast electron transport that enhances the electrochemical performance of LDH nanosheets. Co3O4@LDH nanowire arrays of 2 to 1.5 molar ratio (Co3O4:LDH) exhibit high specific capacitance (1104 F g-1 at 1 A g-1), adequate rate capability and cycling stability (87.3% after 5000 cycles), attributed to the synergistic effect between the robust Co3O4 nanowire arrays and LDH nanosheets.

  13. Correlation of the plasmon-enhanced photoconductance and photovoltaic properties of core-shell Au@TiO{sub 2} network

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yiqun [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Wu, Judy [Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States); Li, Jun, E-mail: junli@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002 (China)

    2016-08-29

    This study reveals the contribution of hot electrons from the excited plasmonic nanoparticles in dye sensitized solar cells (DSSCs) by correlating the photoconductance of a core-shell Au@TiO{sub 2} network on a micro-gap electrode and the photovolatic properties of this material as photoanodes in DSSCs. The distinct wavelength dependence of these two devices reveals that the plasmon-excited hot electrons can easily overcome the Schottky barrier at Au/TiO{sub 2} interface in the whole visible wavelength range and transfer from Au nanoparticles into the TiO{sub 2} network. The enhanced charge carrier density leads to higher photoconductance and facilitates more efficient charge separation and photoelectron collection in the DSSCs.

  14. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.

    Science.gov (United States)

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K

    2013-08-22

    Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.

  15. Moderate intensity treadmill exercise alters food preference via dopaminergic plasticity of ventral tegmental area-nucleus accumbens in obese mice.

    Science.gov (United States)

    Chen, Wei; Wang, Hai Jun; Shang, Ning Ning; Liu, Jun; Li, Juan; Tang, Dong Hui; Li, Qiong

    2017-02-22

    Obesity has been associated with the excessive intake of palatable food as well as physical inactivity. To investigate the neurobiological mechanism underlying the exercised-induced prevention and treatment of obesity, the present study examined the effect of treadmill exercise on the preference for palatable food in mice. Levels of tyrosine hydroxylase (TH) in the ventral tegmental area-nucleus accumbens system were also analysed, as well as levels of dopamine, dopamine transporter, and D2 receptors in the nucleus accumbens. Forty C57BL/6J mice were randomly divided into a control group (CG, n=10) and a high-fat diet group (HG, N=30). Mice of the HG group were fed a high-fat diet for 12 weeks in order to induce a model of obesity, following which the obese mice were randomly divided into an obese control group (OG, n=11) and an obese+exercise group (OEG, n=12). OEG mice received 8 weeks of treadmill exercise intervention. Our results indicate that, relative to animals in the OG group, OEG mice exhibited significant decreases in the preference for high-fat diets and insulin resistance, along with increases in the preference for sucrose and milk, TH and D2 receptor expression, and levels of dopamine in the ventral tegmental area-nucleus accumbens system. These results suggest that moderate-intensity treadmill exercise can alter food preference in obese mice, which may be mediated by dopaminergic plasticity of the ventral tegmental area-nucleus accumbens and enhanced insulin sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Opioid receptor antagonism in the nucleus accumbens fails to block the expression of sugar-conditioned flavor preferences in rats.

    Science.gov (United States)

    Bernal, Sonia Y; Touzani, Khalid; Gerges, Meri; Abayev, Yana; Sclafani, Anthony; Bodnar, Richard J

    2010-03-01

    In our prior studies, systemic administration of the opioid receptor antagonist naltrexone (NTX) did not block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing intake. Because opioid signaling in the nucleus accumbens (NAc) is implicated in food reward, this study determined if NTX administered into the NAc would block the expression of sugar-conditioned preferences. In Experiment 1, food-restricted rats with bilateral NAc shell or core cannulae were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+) and a less-preferred 0.2% saccharin solution mixed with another flavor (CS-) during one-bottle sessions. Two-bottle tests with the two flavors mixed in saccharin solutions occurred 10 min following total bilateral NAc shell or core doses of 0, 1, 25 and 50 microg of NTX. The rats preferred the CS+ over CS- following vehicle (80%) and all NTX doses in the shell and core. The CS+ preference was reduced to 64% and 72% by 50 microg NTX in the shell and core, although only the core effect was significant. In Experiment 2, food-restricted rats were trained to drink one flavored saccharin solution (CS+) paired with an intragastic (IG) glucose (8%) infusion and a second flavored saccharin solution (CS-) paired with an IG water infusion. In subsequent two-bottle tests, the rats displayed significant preferences for the CS+ (81-91%) that were unaltered by any NTX dose in the shell or core. CS+ intake, however, was reduced by NTX in the shell, but not the core. These data indicate that accumbal opioid antagonism slightly attenuated, but did not block the expression of sugar-conditioned flavor preferences. Therefore, while opioid drugs can have potent effects on sugar intake they appear less effective in altering sugar-conditioned flavor preferences. (c) 2009 Elsevier Inc. All rights reserved.

  17. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  18. Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles.

    Science.gov (United States)

    Islam, Md Nazrul; Dungani, Rudi; Abdul Khalil, Hps; Alwani, M Siti; Nadirah, Wo Wan; Fizree, H Mohammad

    2013-01-01

    In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and impregnated into the OPTL by vacuum-pressure method. The treated OPTL samples were exposed to natural weathering for the period of 6 and 12 months in West Java, Indonesia according to ASTM D1435-99 standard. Physical and mechanical tests were done for analyzing the changes in phenol formaldehyde-nanoparticles impregnated (PF-NPI) OPTL. FT-IR and SEM studies were done to analyze the morphological changes. The results showed that both exposure time of weathering and concentration of PF-NPI had significant impact on physical and mechanical properties of OPTL. The longer exposure of samples to weathering condition reduced the wave numbers during FT-IR test. However, all these physical, mechanical and morphological changes were significant when compared with the untreated samples or only PF impregnated samples. Thus, it can be concluded that PF-NP impregnation into OPTL improved the resistance against natural weathering and would pave the ground for improved products from OPTL for outdoor conditions.

  19. Enhanced electrorheological performance and antisedimentation property of mesoporous anatase TiO2 shell prepared by hydrothermal process

    Science.gov (United States)

    Wang, Jiahui; Chen, Guowei; Yin, Jianbo; Luo, Chunrong; Zhao, Xiaopeng

    2017-03-01

    Mesoporous anatase TiO2 hollow microspheres (MTHMs) with a high surface area (231.1 m2 g‑1) were synthesized by sol-gel template-assisted approach and hydrothermal process. The materials possessed a uniform diameter of about 620 nm and a mesoporous shell with thickness of about 180 nm. The microspheres were used as dispersing materials for electrorheological (ER) fluids, which exhibited better ER performance and antisedimentation property than common anatase TiO2 hollow microspheres and ordinary anatase TiO2 particles. The yield stress of the MTHM-based ER fluid (30.0 vol%) was approximately 7.8 kPa under an electric field of 3 kV mm‑1, and the sedimentation ratio was maintained above 78% after 250 h. The good ER activity of the MTHM-based ER fluid was mainly attributed to the high surface effect provided by mesoporous and hollow structure of the MTHMs, leading to a high interfacial polarization under the action of an external electric field. The mesoporous and hollow structure also improved the antisedimentation property of the suspensions by lowering the density of microspheres.

  20. Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging.

    Directory of Open Access Journals (Sweden)

    Jos L Campbell

    Full Text Available Development of magnetic resonance imaging (MRI contrast agents that can be readily applied for imaging of biological tissues under clinical settings is a challenging task. This is predominantly due to the expectation of an ideal MR agent being able to be synthesized in large quantities, possessing longer shelf life, reasonable biocompatibility, tolerance against its aggregation in biological fluids, and high relaxivity, resulting in better contrast during biological imaging. Although a repertoire of reports address various aforementioned issues, the previously reported results are far from optimal, which necessitates further efforts in this area. In this study, we demonstrate facile large-scale synthesis of sub-100 nm quasi-cubic magnetite and magnetite/silica core-shell (Mag@SiO2 nanoparticles and their applicability as a biocompatible T2 contrast agent for MRI of biological tissues. Our study suggests that silica-coated magnetite nanoparticles reported in this study can potentially act as improved MR contrast agents by addressing a number of aforementioned issues, including longer shelf life and stability in biological fluids. Additionally, our in vitro and in vivo studies clearly demonstrate the importance of silica coating towards improved applicability of T2 contrast agents for cancer imaging.

  1. Chemical synthesis of Fe/Fe3O4 core-shell composites with enhanced soft magnetic performances

    Science.gov (United States)

    Yang, Bai; Li, Xiaopan; Yang, Xueying; Yu, Ronghai

    2017-04-01

    The large-grain Fe/Fe3O4 composite particles with average size of about 1.2 μm have been fabricated by a facile one-step solvothermal method. The formation of high-purity Fe3O4 as the shells (90.14 wt%) and α-Fe as the cores (9.86 wt%) in the Fe/Fe3O4 composites leads to their high saturation magnetization of 119.6 A m2 Kg-1. Very low coercivity of 30 Oe is obtained in the composites due to their uniform cubic-shaped morphologies. Compared with Fe-based nanosized particles, these micron-sized magnetic Fe/Fe3O4 composites exhibit high air stability and good compactibility with high compressed density of 5.9 g cm-3. The fully compacted sample shows good soft magnetic properties including high magnetic induction B1.2k (H=1200 A/m) of 540 mT and good frequency-dependent magnetic properties with operating frequency up to 50 MHz superior to those of the most traditional soft magnetic ferrites, which promotes their potential applications in high-frequency and high-power magnetic devices.

  2. Local Control of Extracellular Dopamine Levels in the Medial Nucleus Accumbens by a Glutamatergic Projection from the Infralimbic Cortex.

    Science.gov (United States)

    Quiroz, César; Orrú, Marco; Rea, William; Ciudad-Roberts, Andrés; Yepes, Gabriel; Britt, Jonathan P; Ferré, Sergi

    2016-01-20

    It is generally assumed that infralimbic cortex (ILC) and prelimbic cortex, two adjacent areas of the medial prefrontal cortex (mPFC) in rodents, provide selective excitatory glutamatergic inputs to the nucleus accumbens (NAc) shell and core, respectively. It is also generally believed that mPFC influences the extracellular levels of dopamine in the NAc primarily by an excitatory collateral to the ventral tegmental area (VTA). In the present study, we first established the existence of a selective functional connection between ILC and the posteromedial portions of the VTA (pmVTA) and the mNAc shell (pmNAc shell), by measuring striatal neuronal activation (immunohistochemical analysis of ERK1/2 phosphorylation) and glutamate release (in vivo microdialysis) upon ILC electrical stimulation. A novel optogenetic-microdialysis approach allowed the measurement of extracellular concentrations of glutamate and dopamine in the pmNAc shell upon local light-induced stimulation of glutamatergic terminals from ILC. Cortical electrical and local optogenetic stimulation produced significant increases in the extracellular concentrations of glutamate and dopamine in the pmNAc shell. Local blockade of glutamate release by perfusion of an adenosine A2A receptor antagonist in the pmNAc shell blocked the dopamine release induced by local optogenetic stimulation but only partially antagonized dopamine release induced by cortical electrical stimulation. The results demonstrate that ILC excitatory afferents directly modulate the extracellular concentration of dopamine in the pmNAc shell, but also support the involvement of an indirect mechanism of dopamine control, through a concomitant ILC-mediated activation of the pmVTA. Significance statement: We established the existence of a functional connection between the infralimbic cortex (ILC) and the posteromedial portions of the ventral tegmental area (pmVTA) and the medial nucleus acumbens shell (pmNAc shell). A novel optogenetic

  3. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Bartley G. Hoebel

    2012-06-01

    Full Text Available Evidence links dopamine (DA in the nucleus accumbens (NAc shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG, which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related to caloric intake or elevated circulating lipids. When rats consumed more calories of a high-fat meal compared with a low-fat meal, there was a significant increase in extracellular accumbens DA (155% vs. 119%. Systemic injection of a fat emulsion, which like a high-fat diet raises circulating TG but eliminates the factor of taste and allows for the control of caloric intake, also significantly increased extracellular levels of DA (127% compared to an equicaloric glucose solution (70% and saline (85%. Together, this suggests that a rise in circulating TG may contribute to the stimulatory effect of a high-fat diet on NAc DA.

  4. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties

    Science.gov (United States)

    Yin, Haihong; Yu, Ke; Song, Changqing; Wang, Zhiliang; Zhu, Ziqiang

    2014-09-01

    VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm-1. Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

  5. Green synthesis, characterization of Au-Ag core-shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    Science.gov (United States)

    Kirubha, E.; Palanisamy, P. K.

    2014-12-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au-Ag bimetallic core-shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au-Ag nanoparticles are characterized using UV-Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 109. The nonlinear optical parameters such as the nonlinear refractive index n2, nonlinear absorption coefficient β and the third order nonlinear susceptibility χ3 are measured for various wavelengths from 700 nm to 950 nm. The Au-Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G.

  6. An electrochemiluminescence immunosensor for thyroid stimulating hormone based on polyamidoamine-norfloxacin functionalized Pd-Au core-shell hexoctahedrons as signal enhancers.

    Science.gov (United States)

    Liu, Yuting; Zhang, Qiqi; Wang, Haijun; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2015-09-15

    In this work, a novel polyamidoamine-norfloxacin (PAMAM-NFLX) complex and core-shell Pd-Au hexoctahedrons (Pd@Au HOHs) as enhancers are employed for development of a sensitive sandwich-type electrochemiluminescence (ECL) immunosensor to detect thyroid stimulating hormone (TSH). Here, norfloxacin (NFLX) is decorated abundantly on the surface of polyamidoamine (PAMAM) dendrimer via amide linkage to form PAMAM-NFLX complex. Thus, the resultant PAMAM-NFLX can serve as a novel co-reactant to efficiently amplify the ECL signal of peroxydisulfate-oxygen (S2O8(2-)-O2) system. Pd@Au HOHs were used as nano-carriers to assemble detection antibody (Ab2) and the PAMAM-NFLX complex. Besides, it can further enhance the ECL signal by promoting the generation of intermediate free radical HO(•) during the ECL reaction of S2O8(2-)-O2 system. The proposed immunosensor shows high sensitivity and specificity, and responds linearly to the concentration of TSH from 0.05 to 20 μIU mL(-1) with a low detection limit of 0.02 μIU mL(-1) (S/N=3). Moreover, the immunosensor successfully achieves the detection of TSH in practical human blood serum with desirable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Nucleus accumbens μ-opioid receptors mediate social reward

    OpenAIRE

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J. M. J

    2011-01-01

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward, by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05–0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and ...

  8. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2017-05-24

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    Science.gov (United States)

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  10. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  11. Fast and low-cost synthesis of 1D ZnO–TiO{sub 2} core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Simelys, E-mail: simelys.hernandez@iit.it [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Cauda, Valentina; Hidalgo, Diana; Farías Rivera, Vivian; Manfredi, Diego; Chiodoni, Angelica [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pirri, Fabrizio C. [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-12-05

    Highlights: • Simple, fast and low-cost synthesis of 1-D ZnO–TiO{sub 2} core–shell heterostructures. • ZnO NWs completely covered with a shell of anatase TiO{sub 2} nanocrystals in only 3 min. • The TiO{sub 2} shell thickness depends on the impregnation time in the titania synthesis bath. • 2-fold enhancement of photo-electrochemical activity and better stability of ZnONWs. • Forty- times higher photocurrent densities than TiO{sub 2} nanoparticles film. - Abstract: We report on a simple, fast and low-cost synthesis procedure for the complete covering of zinc oxide (ZnO) 1D nanostructures with a protective shell of titania (TiO{sub 2}) nanoparticles. ZnO nanowires (NWs) were grown on transparent F-doped Tin Oxide (FTO) conductive layer on glass by seed layer-assisted hydrothermal route in aqueous media, while the titania shell was deposited on the ZnO NWs through an in situ non-acid sol–gel synthesis. The nanowires impregnation time in the titania sol was varied from 3 to 10 min. The resulting core–shell ZnO–TiO{sub 2} structures were characterized by different techniques, including Scanning and Transmission Electron Microscopy, X-ray diffraction and UV–Vis spectroscopy, confirming the uniform coverage of the wurzite ZnO NWs with anatase TiO{sub 2} nanoparticles (NPs), with a shell thickness dependent on the impregnation time in the titania synthesis bath. Photoelectrochemical (PEC) tests of the ZnO–TiO{sub 2} material, used as anode for the water splitting reaction, confirmed the formation of the heterojunction by the enhanced photocurrent densities, reaching values of about 0.7 mA/cm{sup 2} under simulated solar light (AM1.5G, 100mW/cm{sup 2}). The core–shell photo-anodes performance was about twice and forty- times better than the ones with a film of equivalent thickness of bare ZnO NWs and TiO{sub 2} NPs, respectively. Steady-state measures of the photocurrent over the time and FESEM analysis confirmed that this procedure could be

  12. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function.

    Science.gov (United States)

    Singer, Bryan F; Guptaroy, Bipasha; Austin, Curtis J; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A; Gnegy, Margaret E; Robinson, Terry E; Aragona, Brandon J

    2016-03-01

    Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding.

    Science.gov (United States)

    Baldo, Brian A; Kelley, Ann E

    2007-04-01

    The idea that nucleus accumbens (Acb) dopamine transmission contributes to the neural mediation of reward, at least in a general sense, has achieved wide acceptance. Nevertheless, debate remains over the precise nature of dopamine's role in reward and even over the nature of reward itself. In the present article, evidence is reviewed from studies of food intake, feeding microstructure, instrumental responding for food reinforcement, and dopamine efflux associated with feeding, which suggests that reward processing in the Acb is best understood as an interaction among distinct processes coded by discrete neurotransmitter systems. In agreement with several theories of Acb dopamine function, it is proposed here that allocation of motor effort in seeking food or food-associated conditioned stimuli can be dissociated from computations relevant to the hedonic evaluation of food during the consummatory act. The former appears to depend upon Acb dopamine transmission and the latter upon striatal opioid peptide release. Moreover, dopamine transmission may play a role in 'stamping in' associations between motor acts and goal attainment and perhaps also neural representations corresponding to rewarding outcomes. Finally, evidence is reviewed that amino acid transmission specifically in the Acb shell acts as a central 'circuit breaker' to flexibly enable or terminate the consummatory act, via descending connections to hypothalamic feeding control systems. The heuristic framework outlined above may help explain why dopamine-compromising manipulations that strongly diminish instrumental goal-seeking behaviors leave consummatory activity relatively unaffected.

  14. Selective effects of perinatal ethanol exposure in medial prefrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Lawrence, R Charles; Otero, Nicha K H; Kelly, Sandra J

    2012-01-01

    Ethanol exposure during development is the leading known cause of mental retardation and can result in characteristic physiological and cognitive deficits, often termed Fetal Alcohol Spectrum Disorders (FASD). Previous behavioral findings using rat models of FASD have suggested that there are changes in the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC) following ethanol exposure during development. This study used a rat model of FASD to evaluate dendritic morphology in both the NAC and mPFC and cell number in the NAC. Dendritic morphology in mPFC and NAC was assessed using a modified Golgi stain and analyzed via three dimensional reconstructions with Neurolucida (MBF Bioscience). Cell counts in the NAC (shell and core) were determined using an unbiased stereology procedure (Stereo Investigator (MBF Bioscience)). Perinatal ethanol exposure did not affect neuronal or glial cell population numbers in the NAC. Ethanol exposure produced a sexually dimorphic effect on dendritic branching at one point along the NAC dendrites but was without effect on all other measures of dendritic morphology in the NAC. In contrast, spine density was reduced and distribution was significantly altered in layer II/III neurons of the mPFC following ethanol exposure. Ethanol exposure during development was also associated with an increase in soma size in the mPFC. These findings suggest that previously observed sexually dimorphic changes in activation of the NAC in a rat model of FASD may be due to altered input from the mPFC.

  15. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone.

    Science.gov (United States)

    Sears, Robert M; Liu, Rong-Jian; Narayanan, Nandakumar S; Sharf, Ruth; Yeckel, Mark F; Laubach, Mark; Aghajanian, George K; DiLeone, Ralph J

    2010-06-16

    The lateral hypothalamus and the nucleus accumbens shell (AcbSh) are brain regions important for food intake. The AcbSh contains high levels of receptor for melanin-concentrating hormone (MCH), a lateral hypothalamic peptide critical for feeding and metabolism. MCH receptor (MCHR1) activation in the AcbSh increases food intake, while AcbSh MCHR1 blockade reduces feeding. Here biochemical and cellular mechanisms of MCH action in the rodent AcbSh are described. A reduction of phosphorylation of GluR1 at serine 845 (pSer(845)) is shown to occur after both pharmacological and genetic manipulations of MCHR1 activity. These changes depend upon signaling through G(i/o), and result in decreased surface expression of GluR1-containing AMPA receptors (AMPARs). Electrophysiological analysis of medium spiny neurons (MSNs) in the AcbSh revealed decreased amplitude of AMPAR-mediated synaptic events (mEPSCs) with MCH treatment. In addition, MCH suppressed action potential firing MSNs through K(+) channel activation. Finally, in vivo recordings confirmed that MCH reduces neuronal cell firing in the AcbSh in freely moving animals. The ability of MCH to reduce cell firing in the AcbSh is consistent with a general model from other pharmacological and electrophysiological studies whereby reduced AcbSh neuronal firing leads to food intake. The current work integrates the hypothalamus into this model, providing biochemical and cellular mechanisms whereby metabolic and limbic signals converge to regulate food intake.

  16. Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Venebra-Muñoz, Arturo; Corona-Morales, Aleph; Santiago-García, Juan; Melgarejo-Gutiérrez, Montserrat; Caba, Mario; García-García, Fabio

    2014-06-18

    Environment enrichment conditions have important consequences on subsequent vulnerability to drugs of abuse. The present work examined whether exposure to an enriched environment (EE) decreases oral self-consumption of nicotine. Wistar rats were housed either in a standard environment (SE, four rats per standard cage) or in an EE during 60 days after weaning. EE consisted of eight animals housed in larger cages containing a variety of objects such as boxes, toys, and burrowing material that were changed three times a week. After this period, animals were exposed to nicotine for 3 weeks, where animals chose freely between water and a nicotine solution (0.006% in water). Fluid consumption was evaluated on a daily basis. ΔFosB immunohistochemistry in the prefrontal cortex and nucleus accumbens was also performed. Rats of the EE group consumed less nicotine solution (0.25±0.04 mg/kg/day) than SE rats (0.54±0.05 mg/kg/day). EE increased the number of ΔFos-immunoreactive (ΔFos-ir) cells in the nucleus accumbens core and shell and in the prefrontal cortex, compared with animals in the standard condition. However, rats exposed to nicotine in the SE showed higher ΔFos-ir cells in the nucleus accumbens core and shell than nonexposed rats. Nicotine consumption did not modify ΔFos-ir cells in these brain areas in EE animals. These results support the idea of a possible protective effect of the EE on reward sensitivity and the development of an addictive behavior to nicotine.

  17. ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection.

    Science.gov (United States)

    Zhang, Xiaoliang; Liu, Jianhua; Zhang, Jindan; Vlachopoulos, Nick; Johansson, Erik M J

    2015-05-21

    A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.

  18. Phosphate Shifted Oxygen Reduction Pathway on Fe@Fe2O3 Core-Shell Nanowires for Enhanced Reactive Oxygen Species Generation and Aerobic 4-Chlorophenol Degradation.

    Science.gov (United States)

    Mu, Yi; Ai, Zhihui; Zhang, Lizhi

    2017-07-18

    Phosphate ions widely exist in the environment. Previous studies revealed that the adsorption of phosphate ions on nanoscale zerovalent iron would generate a passivating oxide shell to block reactive sites and thus decrease the direct pollutant reduction reactivity of zerovalent iron. Given that molecular oxygen activation process is different from direct pollutant reduction with nanoscale zerovalent iron, it is still unclear how phosphate ions will affect molecular oxygen activation and reactive oxygen species generation with nanoscale zerovalent iron. In this study, we systematically studied the effect of phosphate ions on molecular oxygen activation with Fe@Fe2O3 nanowires, a special nanoscale zerovalent iron, taking advantages of rotating ring disk electrochemical analysis. It was interesting to find that the oxygen reduction pathway on Fe@Fe2O3 nanowires was gradually shifted from a four-electron reduction pathway to a sequential one-electron reduction one, along with increasing the phosphate ions concentration from 0 to 10 mmol·L(-1). This oxygen reduction pathway change greatly enhanced the molecular oxygen activation and reactive oxygen species generation performances of Fe@Fe2O3 nanowires, and thus increased their aerobic 4-chlorophenol degradation rate by 10 times. These findings shed insight into the possible roles of widely existed phosphate ions in molecular oxygen activation and organic pollutants degradation with nanoscale zerovalent iron.

  19. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    Science.gov (United States)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  20. Synthesis of Hierarchical ZnFe2O4@SiO2@RGO Core-Shell Microspheres for Enhanced Electromagnetic Wave Absorption.

    Science.gov (United States)

    Feng, Jiantao; Hou, Yanhui; Wang, Yechen; Li, Liangchao

    2017-04-26

    Hierarchical structured ZnFe2O4@SiO2@RGO core-shell nanocomposites were prepared via a "coating-coating" route, and its structure, composition and electromagnetic properties were characterized. Compared with the binary composites of ZnFe2O4@SiO2, the hierarchical ZnFe2O4@SiO2@RGO ternary composites exhibited enhanced electromagnetic wave (EMW) absorption properties in terms of the effective bandwidth and minimum reflection loss (RL). Furthermore, EMW absorption properties of the prepared samples can be tuned by changing RGO content and thickness of SiO2 layer to reach the best impedance match. The minimum RL of the sample with a thickness of 2.8 mm can reach -43.9 dB at 13.9 GHz, and its effective bandwidth (RL ≤ -10 dB) was up to 6 GHz. Hence, the obtained products can be a new candidate for lightweight EMW absorbing materials.

  1. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    Science.gov (United States)

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light.

  2. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells

    Science.gov (United States)

    Zhao, Peilu; Li, Dan; Yao, Shiting; Zhang, Yiqun; Liu, Fengmin; Sun, Peng; Chuai, Xiaohong; Gao, Yuan; Lu, Geyu

    2016-06-01

    The hierarchical Ag@C@SnO2@TiO2 nanospheres (ACSTS) have been successfully synthesized by deposition of SnO2 and TiO2 on the Ag@C templates layer by layer. The size of ACSTS is ca. 360 nm while the Ag@C cores have an average diameter of about 300 nm. The rough and porous shell structure consisting of SnO2 and TiO2 ensures a large specific surface area (115.5 m2 g-1). To demonstrate how such a unique structure might lead to more excellent photovoltaic property, several kinds of dye-sensitized solar cells (DSSCs) are also fabricated using different nanospheres based photoanodes. It is found that the ACSTS based DSSC exhibits an obvious improvement in cell performance. According to various technical characterization, the ACSTS can provide dual-functions of light absorption and charge transfer, hence resulting in an enhanced short-circuit photocurrent density of 18.68 mA cm-2 and a higher FF of 63% compared with other DSSCs. The ACSTS cell finally obtains a PCE of up to 8.62%, increasing by 70.4% and 10.2% than hollow TiO2 nanospheres and Ag@C@TiO2 nanospheres based cells, respectively. The improved photovoltaic properties of ACSTS cell can be mainly ascribed to the unique microstructure and the synergistic effect of the encapsulated Ag@C cores.

  3. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.

    Science.gov (United States)

    Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-08-07

    To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm(-2). Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.

  4. Gold nanostar - iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties

    Energy Technology Data Exchange (ETDEWEB)

    Esenturk, Emren Nalbant, E-mail: emren@metu.edu.tr [Middle East Technical University, Department of Chemistry (Turkey); Hight Walker, Angela R. [National Institute of Standards and Technology, Radiation and Biomolecular Physics Division, Physical Measurement Laboratory (United States)

    2013-01-15

    Iron oxide-coated gold nanostars are produced by first synthesizing gold nanostars (ca 150 nm), then introducing a polyvinylpyrollidone coating followed by reducing iron(II) and iron(III) salts on the nanoparticle (NP) surface. Morphological and chemical composition characterizations of these composite nanomaterials were performed via field-emission transmission electron microscopy/energy dispersive spectroscopy studies. The analysis revealed that the majority of the NPs had coating of approximately 1-5 nm thicknesses. The crystal structure of the coating on gold nanostars was determined to be {alpha}-Fe{sub 2}O{sub 3} with X-ray diffraction analysis. X-ray photoelectron spectroscopy confirmed that the coating is Fe{sub 2}O{sub 3}. The magnetic property studies via superconducting quantum interference device magnetometer revealed an antiferromagnetic behavior of the magnetic coating, verifying the existence of antiferromagnetic {alpha}-Fe{sub 2}O{sub 3} layer on gold nanostars. Surface-enhanced Raman scattering (SERS) spectroscopy performed with crystal violet as the probe molecule confirms continued strong SERS activity for gold nanostars after the iron oxide coating. Having both magnetic and plasmonic properties in one NP system makes these particles suitable for various bio-analytical applications such as biomolecule separation, sensing and magnetic imaging.

  5. d-Sulpiride inhibits oral behaviour elicited from the nucleus accumbens of freely moving rats.

    Science.gov (United States)

    Prinssen, E P; Heeren, D J; Cools, A R

    1996-01-01

    The present study analyzed the effect of intra-accumbens administration of the stereoisomers of sulpiride upon (3,4-dihydroxyphenylimino)-2-imidazoline (DPI)-induced changes in oral behaviours and electromyographic patterns of jaw muscles. In line with earlier findings, DPI (5 micrograms) administered into the nucleus accumbens increased chewing and tremor. l-Sulpiride (2-50 ng) had no effect on DPI-induced oro-facial behaviours. d-Sulpiride (10-50 ng) significantly antagonized the DPI-induced increase in chewing and had a biphasic effect on tremor with potentiation (10 ng) followed by attenuation (50 ng). When administered alone, l- or d-sulpiride did not affect oro-facial behaviours. The electromyographic signals, which were analyzed according to a previously described method, were described with the help of three classes: A (the seconds marked by frequency 3 Hz), B (the seconds marked by the frequencies 4-6 Hz); C (the seconds marked by the frequencies 7-15 Hz). DPI enhanced Class B and C of the masseter muscle but did not significantly affect any frequency class of the digastric muscle. l-Sulpiride (2-50 ng) had no effect on DPI-induced (5 micrograms) changes in electromyographic signals. d-Sulpiride (50 ng) antagonized the effects of DPI on Class B of the masseter muscle. Furthermore, d-sulpiride had a biphasic effect on Class C with potentiation (10 ng) followed by attenuation (50 ng). When administered alone, l- or d-sulpiride did not affect the frequency classes of the jaw muscles. It is concluded that d-sulpiride inhibits DPI-induced changes in oral behaviour and electromyographic patterns. It is suggested that d-sulpiride may be effective in the pharmacotherapy of oro-facial dyskinesias in man.

  6. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Mariska eMantione

    2014-05-01

    Full Text Available Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens, even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation targeted at the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. This case report substantiates the assumption that the nucleus accumbens is involved in musical preference, based on the observation of direct stimulation of the accumbens with deep brain stimulation. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties.

  7. A novel fabrication of Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals from Cu{sub 2}O temples and enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqi, E-mail: sfmlab@163.com; Sun, Long; Yan, Ying; Zhu, Zhenfeng

    2016-08-15

    Highlights: • The Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell crystals maintained the same morphology with template. • The crystals exhibit enhanced photocatalytic activity than the pure Cu{sub 2}O crystals. • The photocatalytic activity of different R crystals is diverse from each other. • A possible formation mechanism has been proposed. - Abstract: Uniform and monodispersed Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals have been synthesized successfully at room temperature via a simple chemical etching reaction, using Cu{sub 2}O as sacrificial template. The structure and properties of the crystals were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS). The photocatalytic activity of the Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals was evaluated by photocatalytic decolorization of MeO (methyl orange) aqueous solution at ambient temperature under visible-light irradiation. The results show that the as-prepared Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals revealed core-shell structure, which maintained the same morphology with corresponding template and were composed of cuboctahedron Cu{sub 7}S{sub 4} shell and active Cu{sub 2}O core. Due to the unique Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell structure, the crystals exhibit enhanced photocatalytic activity than that of the pure Cu{sub 2}O crystals, and the photocatalytic activity of different R crystals is diverse from each other. A possible formation mechanism has been proposed.

  8. Effects of the arrangement of triangle-winglet-pair vortex generators on heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins

    Science.gov (United States)

    Zhang, Li; Shang, Bojun; Meng, Huibo; Li, Yaxia; Wang, Cuihua; Gong, Bin; Wu, Jianhua

    2017-01-01

    To improve heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins, triangle-winglet-pair vortex generators (VG) were installed along the centerline of the helical channel with rectangular cross section. The effects of the arrangement of the triangle-winglet-pair VG, such as the geometry, the angle of attack and the quantity on heat transfer performance and pressure drop characteristics have been investigated experimentally to find out the optimal design of the VG. Air was used as working fluid within the range of Re from 680 to 16,000. The results show that, the heat exchange effectiveness of the shell side with VG is 16.6 % higher than that without VG. The vortices and the unsteadiness of the flow introduced by the VG make a great contribution to the increase. Under identical pressure drop condition, the angle of attack of 30° is the best choice compared with 45° and 60°. Under the three constraints, i.e., identical mass flow rate, identical pressure drop and identical pumping power, the largest VG size can achieve the best enhancement effect. Installation of three pairs of VG within one pitch is an optimal design for the shell side used in the present experiments. The enhancement effect of isosceles right triangle is better than that of right triangle in which one acute angle is 30°.

  9. Y2O3:Yb,Er@mSiO2-Cu(x)S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging.

    Science.gov (United States)

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping

    2015-07-28

    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small Cu(x)S nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-Cu(x)S composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached Cu(x)S nanoparticles and the enhanced chemotherapy promoted by the heat from the Cu(x)S-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.

  10. Nucleus accumbens functional connectivity discriminates medication-overuse headache

    Directory of Open Access Journals (Sweden)

    D.M. Torta

    2016-01-01

    Full Text Available Medication-overuse headache (MOH is a secondary form of headache related to the overuse of triptans, analgesics and other acute headache medications. It is believed that MOH and substance addiction share some similar pathophysiological mechanisms. In this study we examined the whole brain resting state functional connectivity of the dorsal and ventral striatum in 30 patients (15 MOH and 15 non-MOH patients to investigate if classification algorithms can successfully discriminate between MOH and non-MOH patients on the basis of the spatial pattern of resting state functional connectivity of the dorsal and ventral striatal region of interest. Our results indicated that both nucleus accumbens and dorsal rostral putamen functional connectivity could discriminate between MOH and non-MOH patients, thereby providing possible support to two interpretations. First, that MOH patients show altered reward functionality in line with drug abusers (alterations in functional connectivity of the nucleus accumbens. Second, that MOH patients show inability to break habitual behavior (alterations in functional connectivity of the dorsal striatum. In conclusion, our data showed that MOH patients were characterized by an altered functional connectivity of motivational circuits at rest. These differences could permit the blind discrimination between the two conditions using classification algorithms. Considered overall, our findings might contribute to the development of novel diagnostic measures.

  11. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao, E-mail: wuchao27@126.com [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Sun, Xiaohu [Management Center for Experiments, Bohai University, 19 Keji Road, Songshan District, Jinzhou, Liaoning Province 121000 (China); Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Gao, Yu, E-mail: gaoyu_1116@163.com [Department of Medical Oncology, First Affiliated Hospital of Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China)

    2014-11-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release. - Highlights: • A novel core-shell DMSS is prepared for improving the dissolution rate of simvastatin. • The diffusional resistance of the mesoporous shell can delay and regulate drug release. • Simvastatin absorbed in DMSS exists in amorphous form due to spatial confinement.

  12. A Facile Route to the Preparation of Highly Uniform ZnO@TiO2 Core-Shell Nanorod Arrays with Enhanced Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2017-01-01

    Full Text Available Design and synthesis of ZnO@TiO2 core-shell nanorod arrays as promising photocatalysts have been widely reported. However, it remains a challenge to develop a low-temperature, low-cost, and environmentally friendly method to prepare ZnO@TiO2 core-shell nanorod arrays over a large area for future device applications. Here, a facile, green, and efficient route is designed to prepare the ZnO@TiO2 nanorod arrays with a highly uniform core-shell structure over a large area on Zn wafer via a vapor-thermal method at relatively low temperature. The growth mechanism is proposed as a layer-by-layer assembly. The photocatalytic decomposition reaction of methylene blue (MB reveals that the ZnO@TiO2 core-shell nanorod arrays have excellent photocatalytic activities when compared with the performance of the ZnO nanorod arrays. The improved photocatalytic activity could be attributed to the core-shell structure, which can effectively reduce the recombination rate of electron-hole pairs, significantly increase the optical absorption range, and offer a high density of surface active catalytic sites for the decomposition of organic pollutants. In addition, it is very easy to separate or recover ZnO@TiO2 core-shell nanorod array catalysts when they are used in water purification processes.

  13. Effects of tetra hydro cannabinol to the dendritc tree and synapses of the accumbens nucleus of wistar rats

    Directory of Open Access Journals (Sweden)

    Dimitrijević I.

    2013-01-01

    Full Text Available Cannabis is one of the most widely used intoxicants; almost half of all 18 year olds in the USA and in most European countries admit to having tried it at least once, and ~10% of that age group are regular users. Δ9-Tetrahydrocannabinol (THC, the principal psychoactive ingredient in marijuana, produces euphoria and relaxation and impairs motor coordination, time sense, and short term memory. In the hippocampus, CBs inhibit GABA release from a subset of interneurons and inhibit glutamate release from principal neurons. Cannabinoids are reported to produce both rapid and long-term changes in synaptic transmission. Our study was carried out on ten male rats out of which brains of six of them were used as the representative sample for electron microscope analysis, while 4 were used for light microspcopy performed by Golgi method. Three were exposed to THC and 3 were controls. Axodendric synapses in the core and shell of the accumbens nucleus (AN were studied under electron microscope. The results have shown widening of the synaptic cleft in the shell of AN. This result is a leading point to our further investigations which are going to involve a behavioral component, and different aspects of morphological studies. [Projekat Ministarstva nauke Republike Srbije, br. III 41020

  14. Electroacupuncture Suppresses Discrete Cue-Evoked Heroin-Seeking and Fos Protein Expression in the Nucleus Accumbens Core in Rats

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2012-01-01

    Full Text Available Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. Here, we used intravenous drug self-administration procedures in rats to further investigate the beneficial effects of electroacupuncture (EA on heroin-seeking behavior in a reinstatement model of relapse. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4 h or 25 infusions for 14 consecutive days. Then the rats were abstinent from heroin for two weeks. 2 Hz EA stimulation was conducted once daily for 14 days during heroin abstinence. We tested these animals for contextual and discrete cue-induced reinstatement of active responses. We also applied immunohistochemistry to detect Fos-positive nuclei in the nucleus accumbens (NACc core and shell after reinstatement test. We found that active responses elicited by both contextual cues and discrete cues were high in the rats trained with heroin than in saline controls. EA treatment significantly reduced active responses elicited by discrete cues. EA stimulation attenuated Fos expression in the core but not the shell of the NACc. Altogether, these results highlight the therapeutic benefit of EA in preventing relapse to drug addiction.

  15. Repeated methamphetamine administration differentially alters fos expression in caudate-putamen patch and matrix compartments and nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Jakub P Jedynak

    Full Text Available BACKGROUND: The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase ("sensitization" in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum--the so-called patch/striosome and matrix. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens. Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens. CONCLUSIONS/SIGNIFICANCE: These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine.

  16. NIF Double Shell outer-shell experiments

    Science.gov (United States)

    Merritt, E. C.; Montgomery, D. S.; Kline, J. L.; Daughton, W. S.; Wilson, D. C.; Dodd, E. S.; Renner, D. B.; Cardenas, T.; Batha, S. H.

    2016-10-01

    At the core of the Double Shell concept is the kinetic energy transfer from the outer shell to the inner shell via collision. This collision sets both the implosion shape of the inner shell, from imprinting of the shape of the outer shell, as well as the maximum energy available to compress the DT fuel. Therefore, it is crucial to be able to control the time-dependent shape of the outer shell, such that the outer shell is nominally round at the collision time. We present the experiment results from our sub-scale ( 1 MJ) NIF outer-shell only shape tuning campaign, where we vary shape by changing a turn-on time delay between the same pulse shape on the inner and outer cone beams. This type of shape tuning is unique to this platform and only possible since the Double Shell design uses a single-shock drive (4.5 ns reverse ramp pulse). The outer-shell only targets used a 5.75 mm diameter standard near-vacuum NIF hohlraum with 0.032 mg/cc He gas fill, and a Be capsule with 0.4% uniform Cu dopant, with 242 um thick ablator. We also present results from a third outer-shell only shot used to measure shell trajectory, which is critical in determining the shell impact time. This work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  17. Tailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction.

    Science.gov (United States)

    AlYami, Noktan M; LaGrow, Alec P; Joya, Khurram S; Hwang, Jinyeon; Katsiev, Khabiboulakh; Anjum, Dalaver H; Losovyj, Yaroslav; Sinatra, Lutfan; Kim, Jin Young; Bakr, Osman M

    2016-06-28

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ∼2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  18. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    Science.gov (United States)

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  19. Tailoring Ruthenium Exposure to Enhance the Performance of fcc Platinum@Ruthenium Core-Shell Electrocatalysts in the Oxygen Evolution Reaction

    KAUST Repository

    AlYami, Noktan Mohammed

    2016-05-17

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The catalytic activities of the synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ~2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  20. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal

    Science.gov (United States)

    Farmany, Abbas; Mortazavi, Seyede Shima; Mahdavi, Hossein

    2016-10-01

    Fe3O4/SiO2 core/shell nanocrystals were synthesized by ultrasond-assisted procedure. The core/shell nanocrystals were characterized using XRD, FT-IR spectroscopy, SEM and BET. The BET analysis confirmed that iron oxide nanocrystal with the surface area of 208.0 m2/g can be used as an excellent adsorbent for organic and inorganic pollutants. The core/shell nanocrystal was used as an adsorbent for removal of insecticide O,O-diethyl-O[2-isopropyl-6-methylpyridimidinyl] phosphorothioate (diazinon). In continue the influence of different parameters such as pH, adsorbent dosage and shaking time on the adsorption capacity were studied. The experimental data were fitted well with the pseudo-second-order kinetic model (R2=0.9706). The adsorption isotherm was described well by Langmuir isotherm.

  1. Reward and reinforcement activity in the nucleus accumbens during learning

    Directory of Open Access Journals (Sweden)

    John Thomas Gale

    2014-04-01

    Full Text Available The nucleus accumbens core (NAcc has been implicated in learning associations between sensory cues and profitable motor responses. However, the precise mechanisms that underlie these functions remain unclear. We recorded single-neuron activity from the NAcc of primates trained to perform a visual-motor associative learning task. During learning, we found two distinct classes of NAcc neurons. The first class demonstrated progressive increases in firing rates at the go-cue, feedback/tone and reward epochs of the task, as novel associations were learned. This suggests that these neurons may play a role in the exploitation of rewarding behaviors. In contrast, the second class exhibited attenuated firing rates, but only at the reward epoch of the task. These findings suggest that some NAcc neurons play a role in reward-based reinforcement during learning.

  2. Reduced Slc6a15 in Nucleus Accumbens D2-Neurons Underlies Stress Susceptibility.

    Science.gov (United States)

    Chandra, Ramesh; Francis, T Chase; Nam, Hyungwoo; Riggs, Lace M; Engeln, Michel; Rudzinskas, Sarah; Konkalmatt, Prasad; Russo, Scott J; Turecki, Gustavo; Iniguez, Sergio D; Lobo, Mary Kay

    2017-07-05

    Previous research demonstrates that Slc6a15, a neutral amino acid transporter, is associated with depression susceptibility. However, no study examined Slc6a15 in the ventral striatum [nucleus accumbens (NAc)] in depression. Given our previous characterization of Slc6a15 as a striatal dopamine receptor 2 (D2)-neuron-enriched gene, we examined the role of Slc6a15 in NAc D2-neurons in mediating susceptibility to stress in male mice. First, we showed that Slc6a15 mRNA was reduced in NAc of mice susceptible to chronic social defeat stress (CSDS), a paradigm that produces behavioral and molecular adaptations that resemble clinical depression. Consistent with our preclinical data, we observed Slc6a15 mRNA reduction in NAc of individuals with major depressive disorder (MDD). The Slc6a15 reduction in NAc occurred selectively in D2-neurons. Next, we used Cre-inducible viruses combined with D2-Cre mice to reduce or overexpress Slc6a15 in NAc D2-neurons. Slc6a15 reduction in D2-neurons caused enhanced susceptibility to a subthreshold social defeat stress (SSDS) as observed by reduced social interaction, while a reduction in social interaction following CSDS was not observed when Slc6a15 expression in D2-neurons was restored. Finally, since both D2-medium spiny neurons (MSNs) and D2-expressing choline acetyltransferase (ChAT) interneurons express Slc6a15, we examined Slc6a15 protein in these interneurons after CSDS. Slc6a15 protein was unaltered in ChAT interneurons. Consistent with this, reducing Slc5a15 selectively in NAc D2-MSNs, using A2A-Cre mice that express Cre selectively in D2-MSNs, caused enhanced susceptibility to SSDS. Collectively, our data demonstrate that reduced Slc6a15 in NAc occurs in MDD individuals and that Slc6a15 reduction in NAc D2-neurons underlies stress susceptibility.SIGNIFICANCE STATEMENT Our study demonstrates a role for reduced Slc6a15, a neutral amino acid transporter, in nucleus accumbens (NAc) in depression and stress susceptibility. The

  3. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs.

    Science.gov (United States)

    Wu, Chao; Sun, Xiaohu; Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying; Gao, Yu

    2014-11-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release.

  4. Synthesis mechanism, enhanced visible-light-photocatalytic properties, and photogenerated hydroxyl radicals of PS@CdS core–shell nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han, E-mail: wanghan960070@126.com; Xu, Qian [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Zheng, Xing, E-mail: znhk113@163.com [Beijing ZNHK Science and Technology Development Co., LTD (China); Han, Wenqing [Baotou Light Industry and Vocational Technical College (China); Zheng, Jingtang, E-mail: jtzheng03@163.com; Jiang, Bo; Xue, Qinzhong; Wu, Mingbo [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China)

    2014-12-15

    In this study, spherical polystyrene (PS)@CdS core–shell structure nanoparticles (CSNPs) were prepared by sonochemical method. The influences of the surfactant PVP, the order of adding precursors, the molar ratio of S/Cd, and the reaction time on structure were carefully studied. Results of SEM, TEM, EDS, XRD, and FT-IR showed that the as-prepared nanohybrids have a typical core–shell structure with 260 nm core and a uniform shell with thickness ranging from 10 to 30 nm, both PVP and the order of adding precursors were the controlling parameters. In addition, the as-synthesized PS@CdS CSNPs exhibited much higher photocatalytic activity for RhB under visible light irradiation compared with pure CdS, which should be attributed to their synergic effect between core and shell, amount of hydroxyl groups on the surface, good monodispersity, and so on. Besides, the production of photogenerated hydroxyl radical ({sup •}OH) was in accordance with the RhB decolorization efficiency from the prepared PS@CdS CSNPs. It indicated that {sup •}OH was the main active oxygen species in the photocatalytic process.

  5. Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@Fe/C core–shell nanocatalysts in alkaline medium

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2013-12-01

    Full Text Available and decoration (MITNAD). This simple, yet efficient technique, resulted in the generation of sub-10 nm sized FeCo@Fe@Pd nanocatalysts (mainly 3-5 nm) from a micron-sized (0.21-1.5 µm) FeCo@Fe/C. The electrocatalytic activities of the core-shell nanocatalysts were...

  6. Ultrasond-assisted synthesis of Fe{sub 3}O{sub 4}/SiO{sub 2} core/shell with enhanced adsorption capacity for diazinon removal

    Energy Technology Data Exchange (ETDEWEB)

    Farmany, Abbas, E-mail: a.farmany@usa.com [Department of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Seyede Shima, E-mail: s.s.mortazavi@iauh.ac.ir [Department of Chemistry, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of); Mahdavi, Hossein [Department of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Fe{sub 3}O{sub 4}/SiO{sub 2} core/shell nanocrystals were synthesized by ultrasond-assisted procedure. The core/shell nanocrystals were characterized using XRD, FT-IR spectroscopy, SEM and BET. The BET analysis confirmed that iron oxide nanocrystal with the surface area of 208.0 m{sup 2}/g can be used as an excellent adsorbent for organic and inorganic pollutants. The core/shell nanocrystal was used as an adsorbent for removal of insecticide O,O-diethyl-O[2-isopropyl-6-methylpyridimidinyl] phosphorothioate (diazinon). In continue the influence of different parameters such as pH, adsorbent dosage and shaking time on the adsorption capacity were studied. The experimental data were fitted well with the pseudo-second-order kinetic model (R{sup 2}=0.9706). The adsorption isotherm was described well by Langmuir isotherm. - Highlights: • Amino functionalized Fe{sub 3}O{sub 4}/SiO{sub 2} core/shell nanocrystals were synthesized ultrasonically. • High surface area of 208.0 m{sup 2}/g of nanocrystal makes it as excellent adsorbent for organic/inorganic pollutants. • High adsorbent capacity obtained for diazinon removal.

  7. Facebook usage on smartphones and gray matter volume of the nucleus accumbens.

    Science.gov (United States)

    Montag, Christian; Markowetz, Alexander; Blaszkiewicz, Konrad; Andone, Ionut; Lachmann, Bernd; Sariyska, Rayna; Trendafilov, Boris; Eibes, Mark; Kolb, Julia; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-06-30

    A recent study has implicated the nucleus accumbens of the ventral striatum in explaining why online-users spend time on the social network platform Facebook. Here, higher activity of the nucleus accumbens was associated with gaining reputation on social media. In the present study, we touched a related research field. We recorded the actual Facebook usage of N=62 participants on their smartphones over the course of five weeks and correlated summary measures of Facebook use with gray matter volume of the nucleus accumbens. It appeared, that in particular higher daily frequency of checking Facebook on the smartphone was robustly linked with smaller gray matter volumes of the nucleus accumbens. The present study gives additional support for the rewarding aspects of Facebook usage. Moreover, it shows the feasibility to include real life behavior variables in human neuroscientific research. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 管壳式换热器换热管的传热强化%Heat Transfer Enhancement of Shell and Tube Heat Exchanger Heat tTransfer Tube

    Institute of Scientific and Technical Information of China (English)

    李若兰; 丁杰; 霍正齐

    2013-01-01

    This paper introduces the heat transfer and saving energy unit of the shell and tube heat exchanger -heat transfer enhancement technology of heat transfer tube and new approaches for the development of heat transfer tech -nology.Briefly introduce the structure , performance of the typical enhanced heat transfer tube and analyze the en-hanced heat transfer mechanism of heat transfer tube.%本文介绍管壳式换热器的传热节能元件-换热管的强化传热技术,指出传热技术发展新途径。简述典型强化换热管的构造、性能,分析换热管强化传热机理。

  9. Nucleus Accumbens MC4-R Stimulation Reduces Food and Ethanol Intake in Adult Rats Regardless of Binge-Like Ethanol Exposure during Adolescence

    Directory of Open Access Journals (Sweden)

    Francisca Carvajal

    2017-09-01

    Full Text Available The melanocortin (MC system regulates feeding and ethanol consumption. Recent evidence shows that melanocortin 4 receptor (MC4-R stimulation within the nucleus accumbens (NAc elicits anorectic responses and reduces ethanol consumption and ethanol palatability in adult rats. Ethanol exposure during adolescence causes long-lasting changes in neural pathways critically involved in neurobehavioral responses to ethanol. In this regard, binge-like ethanol exposure during adolescence reduces basal alpha-melanocyte-stimulating hormone (α-MSH and alters the levels of agouti-related peptide (AgRP in hypothalamic and limbic areas. Given the protective role of MC against excessive ethanol consumption, disturbances in the MC system induced by binge-like ethanol exposure during adolescence might contribute to excessive ethanol consumption during adulthood. In the present study, we evaluated whether binge-like ethanol exposure during adolescence leads to elevated ethanol intake and/or eating disturbance during adulthood. Toward that aim, Sprague-Dawley rats were treated with ethanol (3 g/kg i.p.; BEP group or saline (SP group for 14 days (PND 25 to PND 38. On PND73, all the groups were given access to 20% ethanol on an intermittent schedule. Our results showed that adult rats given intermittent access (IAE to 20% ethanol achieved high spontaneous ethanol intake that was not significantly enhanced by binge-like ethanol pretreatment during adolescence. However, BEP group exhibited an increase in food intake without a parallel increase in body weight (BW relative to SP group suggesting caloric efficiency disturbance. Additionally, we evaluated whether binge-like ethanol exposure during adolescence alters the expected reduction in feeding and ethanol consumption following NAc shell administration of a selective MC4-R agonist in adult rats showing high rates of ethanol consumption. For that, animals in each pretreatment condition (SP and BEP were divided into

  10. Porous Zr(x)Si(1-x)O₂ shell/void/TiO₂ core particles with enhancing transfer for cleaning water.

    Science.gov (United States)

    Zhang, Yuqing; Zhang, Yunge

    2015-06-15

    In order to immobilize TiO2 and prevent TiO2 nanoparticles from damaging polymeric supporters, the porous Zr(x)Si(1-x)O2 shell/void/TiO2 core particles (Zr-SVTs) were fabricated by the synergistic effect between nonionic surfactant P123 ((EO)20(PO)70(EO)20) and oleic acid (CH3(CH2)7CH=CH(CH2)7COOH) and cohydrolysis between TEOS and ZrOCl2·8H2O. Zr-SVTs were characterized by FT-IR, SEM, TEM, EDX and BET. The results show Zr-SVTs exhibit well-developed spherical shape with channels (approximately 5.5 nm in diameter) in porous Zr(x)Si(1-x)O2 shells. Moreover, the preparation conditions of Zr-SVTs were studied and confirmed, and the photocatalytic activity of Zr-SVTs was studied by photodegrading methyl orange in aqueous solution and oil in sewage containing oil. Alternatively, the photocatalytic activity of Zr-SVTs presents better result compared with SiO2 shell/void/TiO2 core (SVT) without doping Zr into the SiO2 shell, which further demonstrates that the Zr(x)Si(1-x)O2 shell could promote the mass transfer inside channels of Zr-SVTs. It suggests that Zr-SVTs with higher photocatalytic activity are desirable for application in water cleaning. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Die Rolle des Nucleus accumbens bei der Akquisition und Expression von instrumentellem Verhalten der Ratte

    OpenAIRE

    Giertler, Christian

    2003-01-01

    Der Nucleus accumbens wird als Schnittstelle aufgefasst, über den limbische und corticale Strukturen, die eine belohnungsbezogene Analyse von sensorischen Signalen vornehmen, Zugang zum motorischen System erhalten. Aufgrund der bekannten Verschaltung der beteiligten Transmittersysteme kommt als Überträger dieser "corticalen Informationen" insbesondere der Neurotransmitter Glutamat in Frage. Darüber hinaus erhält der Nucleus Accumbens dopaminerge Afferenzen, die an einer Vielzahl von Funktione...

  12. The energy-down-shift effect of Cd(0.5)Zn(0.5)S-ZnS core-shell quantum dots on power-conversion-efficiency enhancement in silicon solar cells.

    Science.gov (United States)

    Baek, Seung-Wook; Shim, Jae-Hyoung; Park, Jea-Gun

    2014-09-14

    We found that Cd0.5Zn0.5S-ZnS core (4.2 nm in diameter)-shell (1.2 nm in thickness) quantum dots (QDs) demonstrated a typical energy-down-shift (2.76-4.96 → 2.81 eV), which absorb ultra-violet (UV) light (250-450 nm in wavelength) and emit blue visible light (∼442 nm in wavelength). They showed the quantum yield of ∼80% and their coating on the SiNX film textured p-type silicon solar-cells enhanced the external-quantum-efficiency (EQE) of ∼30% at 300-450 nm in wavelength, thereby enhancing the short-circuit-current-density (JSC) of ∼2.23 mA cm(-2) and the power-conversion-efficiency (PCE) of ∼1.08% (relatively ∼6.04% increase compared with the reference without QDs for p-type silicon solar-cells). In particular, the PCE peaked at a specific coating thickness of the Cd0.5Zn0.5S-ZnS core-shell QD layer; i.e., the 1.08% PCE enhancement at the 8.8 nm thick QD layer.

  13. Shell Analysis Manual

    Science.gov (United States)

    1968-04-01

    loading (e. g. shallow shell theory , Geckeler’s approximation for symmetrically loaded shells, etc.) Although the Shear Deformation and Specialized...interest. Included are the Reissner-Meissner equations, Geckeler’s approximations, shallow - shell theory , Donnell’s theory, and others. A. General Shells of

  14. Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement.

    Science.gov (United States)

    Pratt, Wayne E; Schall, Megan A; Choi, Eugene

    2012-03-09

    Previously, we reported that stimulation of selective serotonin (5-HT) receptor subtypes in the nucleus accumbens shell differentially affected consumption of freely available food. Specifically, activation of 5-HT(6) receptors caused a dose-dependent increase in food intake, while the stimulation of 5-HT(1/7) receptor subtypes decreased feeding [34]. The current experiments tested whether similar pharmacological activation of nucleus accumbens serotonin receptors would also affect appetitive motivation, as measured by the amount of effort non-deprived rats exerted to earn sugar reinforcement. Rats were trained to lever press for sugar pellets on a progressive ratio 2 schedule of reinforcement. Across multiple treatment days, three separate groups (N=8-10) received bilateral infusions of the 5-HT(6) agonist EMD 386088 (at 0.0, 1.0 and 4.0 μg/0.5 μl/side), the 5-HT(1/7) agonist 5-CT (at 0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), or the 5-HT(2C) agonist RO 60-0175 fumarate (at 0, 2.0, or 5.0 μg/0.5 μl/side) into the anterior medial nucleus accumbens prior to a 1-h progressive ratio session. Stimulation of 5-HT(6) receptors caused a dose-dependent increase in motivation as assessed by break point, reinforcers earned, and total active lever presses. Stimulation of 5-HT(1/7) receptors increased lever pressing at the 0.5 μg dose of 5-CT, but inhibited lever presses and break point at 4.0 μg/side. Injection of the 5-HT(2C) agonist had no effect on motivation within the task. Collectively, these experiments suggest that, in addition to their role in modulating food consumption, nucleus accumbens 5-HT(6) and 5-HT(1/7) receptors also differentially regulate the appetitive components of food-directed motivation.

  15. Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Thomas F Münte

    2008-03-01

    Full Text Available The Nucleus accumbens (Nacc has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD, we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be signifi cantly increased compared to a large (n= 83 normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, crosscorrelation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior.

  16. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers

    Science.gov (United States)

    Zhou, Yongcun; Wang, Lu; Zhang, Hu; Bai, Yuanyuan; Niu, Yujuan; Wang, Hong

    2012-07-01

    A kind of polymer based composites was prepared by embedding the fillers of core-shell Ag@SiO2 nanoparticles into the polyimide (PI) matrix. The obtained Ag@SiO2/PI (50% vf of fillers) composites show remarkably improved high thermal conductivity and low relative permittivity. The maximum value of the thermal conductivity of composites is 7.88 W/(mK) and the relative permittivity and dielectric loss are about 11.7 and 0.015 at 1 MHz, respectively. Compared with self-passivated nanometer Al* particles composites, core-shell Ag@SiO2 nano-composite is beneficial to increase the thermal conductivity and reduce the permittivity of the composites. The relative mechanism was studied and discussed.

  17. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity

    Science.gov (United States)

    Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-01

    Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  18. Step-by-step assembly preparation of core-shell Si-mesoporous TiO2 composite nanospheres with enhanced lithium-storage properties.

    Science.gov (United States)

    Sun, Lin; Wang, Fei; Su, Tingting; Du, Hong-Bin

    2017-09-12

    Core-shell structured Si-mesoporous TiO2 (Si@mTiO2) composite nanospheres are designed and prepared via a step-by-step assembly method. Si@mTiO2 exhibit excellent lithium-storage properties when used as anode materials in lithium ion batteries. The reversible specific capacity is maintained at as high as 700 mA h g(-1) with no capacity decay even after 200 cycles at 1 A g(-1).

  19. Core-shell silicon nanowire solar cells.

    Science.gov (United States)

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  20. Metal Oxide Assisted Preparation of Core-Shell Beads with Dense Metal-Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants.

    Science.gov (United States)

    Del Rio, Mateo; Palomino Cabello, Carlos; Gonzalez, Veronica; Maya, Fernando; Parra, Jose B; Cerdà, Victor; Turnes Palomino, Gemma

    2016-08-08

    Dense and homogeneous metal-organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core-shell beads. The ZnO@PS beads are reactive in the presence of 2-methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework-8 (ZIF-8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF-8@ZnO@PS beads can be easily packed in column format for flow-through applications, such as the solid-phase extraction of trace priority-listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4-tert-octylphenol and 4-n-nonylphenol), facilitating their analysis when present at very low levels (coatings.

  1. Numerical Analysis on Enhanced Heat Transfer of the Segmental Baffle in the Shell Side of the Heat Exchanger%弓形折流板强化换热器壳程传热数值分析

    Institute of Scientific and Technical Information of China (English)

    张江勇; 苏慧; 孟强

    2012-01-01

    为了分析弓形折流板强化换热器壳程传热机制,在原换热器模型的基础上增设了折流板.利用FLUENT软件建立弓形折流板换热器的三维模型,模拟得到不同工况下的换热器温度场、流场分布图及传热量、总传热系数等相关数据.将上述数据与原模型数值模拟结果进行对比,结果表明:弓形折流板强化换热器壳程传热效果明显,验证了换热器结构优化的合理性和必要性.%In order to analyze the enhanced heat transfer mechanism of segmental baffle in the shell side of the heat exchanger, segmental baffles were added to optimize the design of the original model of shell-and-tube heat exchanger. The three-dimension models of the segmental baffle heat exchangers were set up using FLUENT software, and distribution maps of temperature field and flow field, relevant datas including the capacity of heat transmission and the total heat transfer coefficient in different conditions were gotten. Comparing the numerical simulation results with the original model data, it is shown that the enhanced heat exchanger effect of segmental baffles in the shell side of the heat exchanger is obvious. So the structure optimization of heat exchanger is' necessary and rational.

  2. Multiple shells in IRC+10216: shell properties

    Science.gov (United States)

    Mauron, N.; Huggins, P. J.

    2000-07-01

    We report on the properties of the multiple shells in the circumstellar envelope of IRC+10216, using deep optical imaging, including data from the Hubble Space Telescope. The intensity profiles confirm the presence of thin ( ~ 0farcs5 -3'' ec), limb-brightened shells in the envelope, seen in stellar and ambient Galactic light scattered by dust. The shells are spaced at irregular intervals of ~ 5'' ec-20'' ec, corresponding to time scales of 200-800 yr, although intervals as short as ~ 1'' ec (40 yr) are seen close to the star. The location of the main shells shows a good correlation with high-resolution, molecular line maps of the inner envelope, indicating that the dust and gas are well coupled. The shell/intershell density contrast is typically ~ 3, and we find that the shells form the dominant mass component of the circumstellar envelope. The shells exhibit important evolutionary effects: the thickness increases with increasing radius, with an effective dispersion velocity of 0.7 km s-1 and there is evidence for shell interactions. Despite the presence of bipolar structure close to the star, the global shell pattern favors a roughly isotropic, episodic mass loss mechanism, with a range of time scales. Based on observations made with the Canada-France-Hawaii telescope, operated by CNRS, NRCC and UH, and on dearchived observations made with the NASA/ESA Hubble Space Telescope, operated by AURA Inc., under NASA contract NAS5-26555

  3. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    Science.gov (United States)

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  4. The nucleus accumbens beyond the anterior commissure: implications for psychosurgery.

    Science.gov (United States)

    Lucas-Neto, Lia; Mourato, Beatriz; Neto, Daniel; Oliveira, Edson; Martins, Hugo; Correia, Francisco; Gonçalves-Ferreira, António

    2014-01-01

    The nucleus accumbens (Acc) is a basal forebrain structure integrated in the dopaminergic cerebral rewarding circuits and implicated in some neuropsychiatric disorders. It has become a target for deep brain stimulation for some of these disorders when refractory to medical treatment. However, it is controversial as to which target is the best and similar results have been achieved with the stimulation of neighboring structures such as the bed nucleus of the stria terminalis (BNST). Previous studies have established the stereotactic anatomy of the human Acc, but some difficulties remain concerning its precise posterior limit, which is assumed to be at the level of the anterior commissure (AC). It is our purpose to clarify the anatomy of this zone, given the importance of its exact identification in psychosurgery. A total of 16 Acc were collected by autopsy, fixed, dissected, embedded and cut in coronal 5-µm slices. The slices were stained with hematoxylin and eosin, marked with anti-D1 and anti-D2 antibodies and analyzed under a microscope. The human Acc has the same cellular structure as the dorsal striatum, except in its posterior subcommissural part where voluminous neurons prevail, similar to and contiguous with the BNST. The Acc is longer than previously described, with a sub- and postcommissural extension behind the AC, continuous with the BNST. © 2014 S. Karger AG, Basel.

  5. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Directory of Open Access Journals (Sweden)

    Daniela eNeuhofer

    2015-03-01

    Full Text Available Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP, a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP of excitatory afferent inputs of medium spiny neurons (MSN in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens

  6. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats.

    Science.gov (United States)

    Pfaus, J G; Damsma, G; Wenkstern, D; Fibiger, H C

    1995-09-25

    In vivo microdialysis was used to monitor extracellular concentrations of dopamine (DA), and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and dorsal striatum of sexually active female rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually active male rat, and copulation. DA increased slightly but significantly in the nucleus accumbens when a sexually active male was placed behind a wire-mesh screen, and further during copulation. DA also increased significantly in the dorsal striatum during copulation; however, the magnitude of this effect was significantly lower than that observed in the nucleus accumbens. The metabolites DOPAC and HVA generally followed DA with a delay, and increased significantly during copulation in both regions. In contrast, forced locomotion on a rotating drum, exposure to a novel testing chamber, and exposure to sex odors did not increase DA significantly in either region, although forced locomotion increased DOPAC significantly in both regions, and HVA significantly in the nucleus accumbens. The magnitude of DA release in the nucleus accumbens was significantly greater during copulation than running, whereas no significant difference was detected for striatal DA release between these two behavioral conditions. These results indicate that novelty or locomotor activity alone do not account for the increase in DA observed in the nucleus accumbens of female rats during copulation, and suggest that DA transmission in the nucleus accumbens is associated with anticipatory and consummatory aspects of sexual activity, as it is in male rats. In the dorsal striatum, however, DA release during copulation may reflect an increase in locomotor activity associated with active pacing of the male.

  7. Nucleus Accumbens and Its Role in Reward and Emotional Circuitry: A Potential Hot Mess in Substance Use and Emotional Disorders

    Directory of Open Access Journals (Sweden)

    Mani Pavuluri

    2017-04-01

    Full Text Available Nucleus accumbens (NAc is a key region in the brain that is integral to both the reward and the emotional systems. The aim of the current paper is to synthesize the basic and the clinical neuroscience discoveries relevant to the NAc for the purpose of two-way translation. Selected literature on the structure and the functionality of the NAc is reviewed across animal and human studies. Dopamine, gamma-aminobutyric acid (GABA and glutamate are the three key neurotransmitters that modulate the reward function and the motor activity. Dissociative roles of the core and the shell of the NAc include getting to the reward and staying on task with discretion, respectively. NAc shows decreased activation to reward in the individuals with major depressive disorder and the bipolar disorder, relative to that healthy controls (HC. The “difficult to please” or insatiability in response to reward in the emotional disorders may possibly be explained by such a neural pattern. Furthermore, it is likely that the increased amygdala activity reported in mood disorders could be accentuating the “wanting” of the reward by the virtue of its connections with the NAc, explaining the potential “hot mess”. In contrast, the NAc shows increased reward response in substance use disorders, relative to HC, in response to reward and emotional tasks. Accurate characterization of the NAc and its functionality in the human imaging studies of mood and substance use has important treatment implications.

  8. Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication

    Science.gov (United States)

    Barkley-Levenson, Amanda M.; Ryabinin, Andrey E.; Crabbe, John C.

    2016-01-01

    The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) – especially in the shell – in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice. PMID:26779672

  9. Core-shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    Science.gov (United States)

    Chen, Jun; Hou, Yuyang; Slade, Robert; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Hua Kun

    2016-08-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped three-dimensional graphene architecture (Co/CoO-NG) were synthesized through a facile hydrothermal method following by heat treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NG to facilitate the catalytic reaction. The synthesized Co/CoO-NG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  10. Core-shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2016-08-01

    Full Text Available Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped three-dimensional graphene architecture (Co/CoO-NG were synthesized through a facile hydrothermal method following by heat treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NG to facilitate the catalytic reaction. The synthesized Co/CoO-NG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  11. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Wang, Meng; Hou, Yuyang; Slade, Robert C T; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  12. Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α

    Directory of Open Access Journals (Sweden)

    Manoharan Y

    2012-07-01

    Full Text Available Yuvaraj Manoharan,1,* Qingmin Ji,2,* Tomohiko Yamazaki,2,3 Shanmugavel Chinnathambi,1 Song Chen,2,4 Ganesan Singaravelu,1 Jonathan P Hill,2 Katsuhiko Ariga,2,5 Nobutaka Hanagata3,6 1Department of Medical Physics, Anna University, Chennai, India; 2Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibarak, 3Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, 4JSPS Research Fellow, Chiyoda-ku, Tokyo, 5JST and CREST, National Institute for Materials Science, Tsukuba, Ibaraki, Japan; 6Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan*These authors contributed equally to this workBackground: Class B CpG oligodeoxynucleotides primarily interact with Toll-like receptor 9 (TLR9 in B cells and enhance the immune system through induction of various interleukins including interleukin-6 in these immune cells. Although free class B CpG oligodeoxynucleotides do not induce interferon (IFN-α production, CpG oligodeoxynucleotide molecules have been reported to induce IFN-α when loaded onto nanoparticles. Here, we investigated the in vitro induction of IFN-α by a nanocarrier delivery system for class B CpG oligodeoxynucleotide molecules.Methods: For improving the capacity to load CpG oligodeoxynucleotide molecules, flake-shell SiO2 nanoparticles with a specific surface area approximately 83-fold higher than that of smooth-surfaced SiO2 nanoparticles were prepared by coating SiO2 nanoparticles with polyethyleneimine (PEI of three different number-average molecular weights (Mns 600, 1800, and 10,000 Da.Results: The capacity of the flake-shell SiO2 nanoparticles to load CpG oligodeoxynucleotides was observed to be 5.8-fold to 6.7-fold higher than that of smooth-surfaced SiO2 nanoparticles and was found to increase with an increase in the Mn of the PEI because the Mn contributed to the positive surface charge density of the nanoparticles. Further

  13. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.

    Science.gov (United States)

    El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël

    2015-12-01

    Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Luminescence enhancement of Y{sub 2}O{sub 3}:Eu{sup 3+} and Y{sub 2}SiO{sub 5}:Ce{sup 3+},Tb{sup 3+} core particles with SiO{sub 2} shells

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [Material Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgia, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California, MX CP 22860 (Mexico); Talbot, J.B. [Material Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [Material Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)

    2011-03-25

    This paper reports on the luminescence and microstructural features of oxide nano-crystalline (Y{sub 2}O{sub 3}:Eu{sup 3+}) and submicron-sized (Y{sub 2}SiO{sub 5}:Ce{sup 3+},Tb{sup 3+}) phosphor cores, produced by two different synthesis techniques, and subsequently coated by an inert shell of SiO{sub 2} using a sol-gel process. The shells mitigate the detrimental effect of the phosphor particle surfaces on the photoluminescence emission properties, thereby increasing luminous output by 20-90%, depending on the core composition and shell thickness. For Y{sub 2}O{sub 3}:Eu{sup 3+}, uniformly shaped, narrow particle size distribution core/shell particles were successfully fabricated. The photoluminescence emission intensity of core nanoparticles increased with increasing Eu{sup 3+} activator concentration and the luminescence emission intensity of the core/shell particles was 20-50% higher than that of the core particles alone. For Y{sub 2}SiO{sub 5}:Ce{sup 3+},Tb{sup 3+}, the core/shell particles showed enhancement of the luminescence emission intensity of 35-90% that of the core particles, depending on the SiO{sub 2} shell thickness.

  15. Stability of CART peptide expression in the nucleus accumbens in aging.

    Science.gov (United States)

    Armbruszt, Simon; Figler, Mária; Ábrahám, Hajnalka

    2015-03-01

    Aging is accompanied by changes of several anorexigenic and orexigenic neuropeptides expressed in various brain areas that control food intake and these changes correlate with senescent anorexia. During aging expression of cocaine- and amphetamine-regulated transcript (CART) peptide was reported to be reduced in the hypothalamic nuclei related to food intake. Although CART peptide is abundant in the nucleus accumbens that also plays a crucial role in the food intake regulation, no data is available about the CART peptide expression in this region through aging. In the present study, CART peptide immunoreactivity was compared in the nucleus accumbens of young adult (4- and 7-month-old) middle-aged (15-month-old) and aging (25-32-month-old) Long-Evans rats. The density of CART-immunoreactive cells and axon terminals in the nucleus accumbens was measured with computer-aided densitometry. CART-immunodensity was similar in the old rats and in the younger animals without significant difference between age groups. In addition, no gender-difference was observed when CART-immunoreactivities in the nucleus accumbens of male and female animals were compared. Our results indicate that CART peptide expression in the nucleus accumbens is stable in adults and does not change with age.

  16. Medial accumbens lesions attenuate testosterone-dependent aggression in male rats.

    Science.gov (United States)

    Albert, D J; Petrovic, D M; Walsh, M L; Jonik, R H

    1989-10-01

    Male hooded rats were castrated and implanted with testosterone-filled Silastic tubes appropriate for maintaining a normal average serum testosterone concentration. They were then given lesions of the medial accumbens nucleus or sham lesions. Twenty-four hours postoperatively each male was housed with a female. Beginning 7 days following pairing and continuing once each week for 4 weeks, each lesioned or sham-lesioned male was observed for aggression toward an unfamiliar male intruder. On the day following each test of aggression toward an unfamiliar male, each lesioned and sham-lesioned male was assessed for defensiveness toward an experimenter. Rats with medial accumbens lesions displayed significantly less aggression toward an unfamiliar male intruder during each of the weekly tests than did sham-lesioned animals. The attenuation was most pronounced in animals with lesions damaging the posterior part of the medial accumbens nucleus (also designated as anterior portion of the bed nucleus of the stria terminalis) in the region of the crossover of the anterior commissure. Although medial accumbens lesions are known to make individually housed rats hyperdefensive toward an experimenter, lesion-induced hyperdefensiveness was not observed in the pair-housed animals in the present experiment. It is argued that the medial accumbens/bed nucleus of the stria terminalis area is an important region in the anterior forebrain for the modulation of hormone-dependent aggression.

  17. EFFECTS OF REVERSIBLE INACTIVATION OF BILATERAL ACCUMBENS NUCLEI ON MEMORY STORAGE: ANIMAL STUDY IN RAT MODEL

    Directory of Open Access Journals (Sweden)

    H.A ALAEI

    2002-12-01

    Full Text Available Introduction. Memory and learning play an important role in human"s life that will become problematic in case disability is weak for any reason. There are many factors that facilitate process of mamory and learning of which accumbens nucleus plays an important role. Accumbens nucleus, which is a part of the limbic system, is one of many nuclei found of the septum in the mesencephalon. This study was performed to determine the effects of reversible Inactivation of a accumbens nuclei by lidocaein on memory storage in rat. Method s. Male wistar rats were surgically implancted with cannulae at the accumbens nuclei (Acb bilaterally one weak later they recived one trial PAL (1 mA 1.S sec and exactly at times zero, 60 and 120 minutes after posttraining, lidocaine was infused into the Acb. Retention was tested two days after training. Latency period before entering into the dark part of the shuttle box and duration of time in darkness were index for evaluation of retention. Results. A significant impaired retention performance was at zero and 60 minutes after posttrianing infusion of lidocaine into the Acb. Infusion administered 120 minutes after training had no effect. Discussion. This study has shown that Accumbens nucleus plays major role in praimary learning and memory and it is probable that by blocking this nucleus dopamine release is diminished which causes the learning process to be delayed consequently.

  18. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    Science.gov (United States)

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  19. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  20. Paraboloid Shell As Footing

    OpenAIRE

    Al Ansari, Mohammed S.

    1999-01-01

    A simplified method for the design of paraboloid shell footing base on the displacement of the shell's crown where the column axial load is transferred to the footing has been developed. A case study was presented to demonstrate the use of the proposed method and to illustrate its capabilities. The results of the proposed method confirm the ability of the shell model in determining accurate and practical results for the design of paraboloid shell footing. Base on the analytical results of thi...

  1. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) core-shell microspheres with enhanced controllability of drug encapsulation and release rate.

    Science.gov (United States)

    Cha, Chaenyung; Jeong, Jae Hyun; Kong, Hyunjoon

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core-shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core-shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.

  2. Multi-functional integration of pore P25@C@MoS2 core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties

    Science.gov (United States)

    Chen, Biao; Zhao, Naiqin; Wei, Chaopeng; Zhou, Jingwen; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2017-04-01

    Ternary anodes have attracted more and more attention due to the characteristic advantages resulting from the effect integration of three different materials on the lithium storage mechanism with functional interfaces interaction. However, clarifying the distribution and interaction of carbon, MoS2 and TiO2 in the MoS2/C/TiO2 composite, which is helpful for the understanding of the formation and lithium storage mechanism of the ternary anodes, is a well-known challenge. Herein, a novel pore core-double shell nanostructure of P25@carbon network supported few-layer MoS2 nanosheet (P25@C@FL-MoS2) is successfully synthesized by a one-pot hydrothermal approach. The distribution and interaction of the carbon, MoS2 and TiO2 in the obtained P25@C@FL-MoS2 hybrid are systematically characterized by transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy analysis et al. It is found that the carbon serves as binder, which supports few-layer MoS2 shell and coats the P25 core via Tisbnd Osbnd C bonds at the same time. Such multi-functional integration with smart structure and strong interfacial contact generates favorable structure stability and interfacial pseudocapacity-like storage mechanism. As a consequence, superior cycling and rate capacity of the muti-functional integration ternary P25@C@FL-MoS2 anode are achieved.

  3. One-pot synthesis of metal-organic framework@SiO2 core-shell nanoparticles with enhanced visible-light photoactivity.

    Science.gov (United States)

    Li, Zong-Qun; Wang, Ai; Guo, Chun-Yan; Tai, Yan-Fang; Qiu, Ling-Guang

    2013-10-14

    This paper presents a novel strategy to prepare Cu3(BTC)2@SiO2 core-shell nanoparticles in the size range of 200-400 nm using a new one-pot strategy under ultrasonic irradiation at room temperature. In this approach, the silica shell thickness could be finely tuned in the size range of 12-60 nm for various reaction times. Nanocomposite thin films were fabricated on the glass substrates by Sol-Gel spin coating using the products for 1.5 h, 2 h and 2.5 h, respectively, and heat treated using an infrared lamp heating system in air. The photocatalytic degradation of phenol in aqueous solution using Cu2(BTC)3@SiO2 thin films was investigated under visible light irradiation at pH 4. After a 45 min reaction with phenol, the degradation rate was up to 93.1%. Moreover, the thin film photocatalysts could be reused 5 times without appreciable loss of photocatalytic activity for degradation of phenol. The present work clearly shows that the films as photocatalysts showed higher photocatalytic performance.

  4. A novel green synthesis of Fe{sub 3}O{sub 4}-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B. [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India); Anitha, K. [Department of Chemistry, S.K. University, Anantapur-515003, Andhra Pradesh (India); Jyothi, N.V.V., E-mail: nvvjyothi01@gmail.com [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India)

    2015-01-15

    We described a novel and eco-friendly method for preparing Fe{sub 3}O{sub 4}-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe{sub 3}O{sub 4}-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV–vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe{sub 3}O{sub 4}-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe{sub 3}O{sub 4}-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe{sub 3}O{sub 4}-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe{sub 3}O{sub 4}-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  5. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Science.gov (United States)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  6. Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots

    Science.gov (United States)

    Holi, Araa Mebdir; Zainal, Zulkarnain; Talib, Zainal Abidin; Lim, Hong-Ngee; Yap, Chi-Chin; Chang, Sook-Keng; Ayal, Asmaa Kadim

    2017-03-01

    Ternary nanostructured Ag2S/CdS/ZnO thin film was prepared by using a simple low-cost hydrothermal method. The hexagonal phase of ZnO nanorods and CdS shells combined with monoclinic Ag2S quantum dots resulted in improved optical and photoelectrochemical properties. CdS shell with high absorption property efficiently compliment the energy levels of ZnO and improved the ability of light absorption. Furthermore, narrow band gap Ag2S also played a vital part in the light harvesting. The photoelectrochemical performance of the ternary nanostructured Ag2S/CdS/ZnO NRs was investigated in a mixture of Na2S and Na2SO3 aqueous solutions under visible light illumination. The Ag2S/CdS/ZnO NRs were found to be more efficient than ZnO NRs, CdS/ZnO NRs, and Ag2S/ZnO NRs as this particular sample gave a maximum photocurrent of 5.69 mA cm-2, which is around 2 and 1.5 times greater than CdS/ZnO NRs and Ag2S/ZnO NRs, respectively. Besides that, it was found that this ternary film possessed 15 times higher photocurrent density than plain ZnO NRs. This is attributed to the larger amount of visible light absorbed by the ternary nanostructured composite.

  7. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode.

    Science.gov (United States)

    Lin, Heng-Yi; Li, Cheng-Hung; Wang, Di-Yan; Chen, Chia-Chun

    2016-01-21

    New silicon based anodic materials in lithium ion batteries (Si-based LIBs) have been developed worldwide to overcome capacity decay during the lithiation/delithiation process. In this study, a composite of Si nanoparticles coated with 5-sulfoisophthalic acid (SPA) doped polyaniline (core/shell SiNPs@PANi/SPA) was prepared and applied as an anode material for LIB applications. The detailed structure of the core/shell SiNPs@PANi/SPA composite was characterized using high-resolution scanning electron microscopy before and after charging/discharging. The electrochemical measurements showed that the SiNPs@PANi/SPA anode exhibited a high capacity of 925 mA h g(-1) and high coulombic efficiency (99.6%) after long-term cycling (1000 cycles). Overall results indicated that the SPA doped polyaniline served as a conductive matrix to improve electrical contact and to provide an adhesive force in Si-based LIBs. Our approach opens a route for the design of efficient silicon nanocomposites for LIB applications.

  8. Equilibration within a semiclassical off-shell transport approach

    CERN Document Server

    Cassing, W

    2000-01-01

    Equilibration times for nuclear matter configurations -- modellingintermediate and high energy nucleus-nucleus collisions -- are evaluated withinthe semiclassical off-shell transport approach developed recently. Thetransport equations are solved for a finite box in coordinate space employingperiodic boundary conditions. The off-shell transport model is shown to giveproper off-shell equilibrium distributions in the limit $t \\to \\infty$ for thenucleon and $\\Delta$-resonance spectral functions. We find that equilibrationtimes within the off-shell approach are only slightly enhanced as compared tothe on-shell limit for the momentum configurations considered.

  9. Fabrication of the novel core-shell MCM-41@mTiO2 composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP)

    Science.gov (United States)

    Wei, Xiao-Na; Wang, Hui-Long; Li, Zhen-Duo; Huang, Zhi-Qiang; Qi, Hui-Ping; Jiang, Wen-Feng

    2016-05-01

    The mesoporous MCM-41@mTiO2 core-shell composite microspheres were synthesized successfully by combining sol-gel and simple hydrothermal treatment. The morphology and microstructure characteristics of the synthesized materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption measurements, X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis/DRS) and Fourier transform infrared spectroscopy (FT-IR). The results indicate that the composite material possesses obvious core/shell structure, a pure mesoporous and well-crystallized TiO2 layer (mTiO2), high specific surface area (316.8 m2/g), large pore volume (0.42 cm3/g) and two different pore sizes (2.6 nm and 11.0 nm). The photocatalytic activity of the novel MCM-41@mTiO2 composite was evaluated by degrading 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous suspension under UV and visible light irradiation. The results were compared with commercial anatase TiO2 and Degussa P25 and the enhanced degradation were obtained with the synthesized MCM-41@mTiO2 composite under the same conditions, which meant that this material can serve as an efficient photocatalyst for the degradation of hazardous organic pollutants in wastewaters.

  10. 核-壳结构双金属纳米颗粒的表面增强拉曼散射的理论研究%Theoretical study of surface enhanced Raman scattering from core-shell bimetallic nanoparticle

    Institute of Scientific and Technical Information of China (English)

    陈李清; 殷一丁

    2012-01-01

    在准静态极限下,首先通过第一性原理推导带壳纳米颗粒的多重极化率,然后运用GN模型研究Ag-Au核-壳结构双金属纳米颗粒的表面增强拉曼散射.研究结果表明,随着Au壳层厚度的增加,短波长处SPR峰发生红移现象,强度减小,而长波长处的SPR峰红移的过程中伴随着强度的增加.%In this paper, we present a first-principles approach to the study of the multipolar moments induced by the coated bimetallic particles in the quasi-static limit. Based on the semiclassi-cal Gersten-Nitzan model, we take one step forward to investigate the the enhancement radio ( R) from bimetallic interface in Ag-Au core-shell structure nanoshell. Numerical results show that the longer wavelength peak red shifts slightly and gets intense, while the shorter wavelength peak red shifts nonlinearly and decreases in intensity with increasing the Au shell thickness.

  11. Synthesis of GdAlO3:Mn(4+),Ge(4+)@Au Core-Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for in Vivo Trimodality Bioimaging.

    Science.gov (United States)

    Liu, Jing-Min; Liu, Yao-Yao; Zhang, Dong-Dong; Fang, Guo-Zhen; Wang, Shuo

    2016-11-09

    The rise of multimodal nanoprobes has promoted the development of new methods to explore multiple molecular targets simultaneously or to combine various bioimaging tools in one assay to more clearly delineate localization and expression of biomarkers. Persistent luminescence nanophosphors (PLNPs) have been qualified as a promising contrast agent for in vivo imaging. The easy surface modification and proper nanostructure design strategy would favor the fabrication of PLNP-based multifunctional nanoprobes for biological application. In this paper, we have proposed novel multifunctional core-shell nanomaterials, applying the Mn(4+) and Ge(4+) co-doped gadolinium aluminate (GdAlO3:Mn(4+),Ge(4+)) PLNPs as the near-infrared persistent luminescence emission center and introducing the gold nanoshell coated on the PLNPs to enhance the luminescence efficiency via plasmon resonance. Our developed core-shell nanoprobes have demonstrated the excellent features of ultrabrightness, superlong afterglow, good monodispersity, low toxicity, and excellent biocompatibility. The well-characterized nanoprobes have been utilized for trimodality in vivo imaging, with near-infrared persistent luminescence for optical imaging, Gd element for magnetic resonance imaging, and Au element for computed tomography imaging.

  12. Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells.

    Science.gov (United States)

    Li, Xinhua; Shi, Tongfei; Liu, Guangqiang; Wen, Long; Zhou, BuKang; Wang, Yuqi

    2015-09-21

    A non-absorbing transparent shell is proposed to be coated on the outer surface of the core photoactive GaInP nanowire array (NWA) of the III-V nanowire (NW)/Si film two-junction solar cell. Interestingly, the diluted (at the filling ratio of 0.25) GaInP NWA with core / transparent shell structure can absorb more light than that in bare denser (at the filling ratio of 0.5) NWA. This allows for less source material consumption during the fabrication of III-V NWA/Si film two-junction cell. Meanwhile, the condition of current matching between the top III-V NWA and Si film sub cell can be easily fulfilled by tailoring the coating thickness of the transparent coating. Beyond the advantages on light absorption, the surface passivation effects introduced by the addition of some transparent dielectric coatings can reduce the surface recombination rate at the top NWA sub cell surface. This facilitates the effective extraction of photo-generated carriers and enhances output stability of the top NWA sub cell. From electrical simulation, a power conversion efficiency of 29.9% can be obtained at the optimized coating geometry.

  13. Formation of ZnO-Cd(OH){sub 2} core-shell nanoparticles by sol-gel method: An approach to modify surface chemistry for stable and enhanced green emission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rupali, E-mail: rupalimishra@rediffmail.co [Department of Physics, University of Allahabad, Allahabad-211002 (India); Nanophosphor Application Centre, University of Allahabad, Allahabad-211002 (India); Yadav, Raghvendra S.; Pandey, Avinash C. [Department of Physics, University of Allahabad, Allahabad-211002 (India); Nanophosphor Application Centre, University of Allahabad, Allahabad-211002 (India); Sanjay, Sharda. S. [Department of Chemistry, Ewing Christian College, Allahabad (India); Dar, Chitra [Department of Physics, University of Allahabad, Allahabad-211002 (India)

    2010-03-15

    We report the formation of highly stable and luminescent ZnO-Cd(OH){sub 2} core-shell nanoparticles by simple introduction of cadmium salt in the initial precursor solution, used to synthesize ZnO nanoparticles by sol-gel route. The cadmium to zinc salt concentration ratio has been also varied to control the growth of ZnO nanoparticles at the smaller particle size. Formation of ZnO-Cd(OH){sub 2} core-shell nanostructure has been confirmed by X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). UV-vis absorption spectroscopy exhibits blue-shift in absorption edge on increasing cadmium concentrations. The photoluminescence emission spectra showed the remarkably stable and enhanced visible (green) emission from suspended ZnO-Cd(OH){sub 2} nanoparticles in comparison to bare ZnO nanoparticles. It is postulated that Cd(OH){sub 2} layer at the surface of ZnO nanoparticles prevents the agglomeration of nanoparticles and efficiently assists the trapping of hole at the surface site, a first step necessary for visible emission. The Fourier transform infrared spectroscopy (FTIR) also supports our assumption about surface chemistry.

  14. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band

    NARCIS (Netherlands)

    Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, D.; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumben

  15. Ceftriaxone attenuates acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens of the rat

    Science.gov (United States)

    Rasmussen, B A; Tallarida, C S; Scholl, J L; Forster, G L; Unterwald, E M; Rawls, S M

    2015-01-01

    Background and Purpose Ceftriaxone is a β‐lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens. Experimental Approach Adult male Sprague–Dawley rats were pretreated with saline or ceftriaxone (200 mg kg−1, i.p. × 10 days) and then challenged with cocaine (15 mg kg−1, i.p.). Motor activity, dopamine efflux (via in vivo microdialysis) and protein levels of tyrosine hydroxylase (TH), the dopamine transporter and organic cation transporter as well as α‐synuclein, Akt and GSK3β were analysed in the nucleus accumbens. Key Results Ceftriaxone‐pretreated rats challenged with cocaine displayed reduced locomotor activity and accumbal dopamine efflux compared with saline‐pretreated controls challenged with cocaine. The reduction in cocaine‐evoked dopamine levels was not counteracted by excitatory amino acid transporter 2 blockade in the nucleus accumbens. Pretreatment with ceftriaxone increased Akt/GSK3β signalling in the nucleus accumbens and reduced levels of dopamine transporter, TH and phosphorylated α‐synuclein, indicating that ceftriaxone affects numerous proteins involved in dopaminergic transmission. Conclusions and Implications These results are the first evidence that ceftriaxone affects cocaine‐evoked dopaminergic transmission, in addition to its well‐described effects on glutamate, and suggest that its ability to attenuate cocaine‐induced behaviours, such as psychomotor activity, is due in part to reduced dopaminergic neurotransmission in the nucleus accumbens. PMID:26375494

  16. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Directory of Open Access Journals (Sweden)

    G. Langer

    2014-08-01

    Full Text Available Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells and outside (pHn-shells a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size normalised aragonite area. Size normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size normalised thickness of the pHlow-shells, these data led us to conclude that low pH exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. The latter is different from normal elongation growth and proceeds through addition of aragonitic layers only, while the production of calcitic layers is confined to elongation growth. Therefore aragonite cannot be regarded as a per se disadvantageous polymorph under ocean acidification conditions.

  17. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Science.gov (United States)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J. M.; Bijma, J.

    2014-12-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.

  18. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  19. Enhanced Photocatalytic Activity of CdS-Decorated TiO2/Carbon Core-Shell Microspheres Derived from Microcrystalline Cellulose

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-03-01

    Full Text Available The fabrication of reusable and biodegradation materials from renewable resources such as cellulose is essential for a sustainable world. The core-shell structured CdS-decorated TiO2/Carbon microspheres (CdS/TiO2/Carbon MS photocatalyst was synthesized with controlled hydrolysis and a novel sonochemical method. It was prepared by using crosslinked microcrystalline cellulose as the core, tetrabutyl titanate as the titania source and CdS as the photosensitizer. The morphology, chemical structure and properties of the obtained material were characterized by many means. Additionally, the photocatalytic activity of the CdS/TiO2/Carbon MS was evaluated by the photodegradation efficiency of Rhodamine B solution, which reached 95.24% under visible light irradiation. This study demonstrated the excellent photocatalytic performance of CdS/TiO2/Carbon MS, which might have promising applications in environmental treatments.

  20. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C. [School of Physical Sciences, ITM University, Turari, Gwalior, MP 474001 (India); Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior MP 474011 (India)

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  1. One-pot controlled synthesis of AuPd@Pd core-shell nanocrystals with enhanced electrocatalytic performances for formic acid oxidation and glycerol oxidation.

    Science.gov (United States)

    Liu, Meng-Ting; Chen, Li-Xian; Li, Dong-Ning; Wang, Ai-Jun; Zhang, Qian-Li; Feng, Jiu-Ju

    2017-12-15

    In this work, AuPd@Pd core-shell nanocrystals (AuPd@Pd NCs) were fabricated by a one-pot co-reduction approach, where theophylline-7-acetic acid (TAA) acted asa new structure-directing agent. The crystal structure and composition were mainly characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), together with X-ray photoelectron spectroscopy (XPS). The growth mechanism of AuPd@Pd NCs was investigated in detail. The obtained AuPd@Pd NCs exhibited superior catalytic characters for formic acid oxidation reaction (FAOR) and glycerol oxidation reaction (GOR) in contrast with commercial Pd black in alkaline media. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon-Carbon Coupling by Tuning the Composition of the Dot's Ligand Shell.

    Science.gov (United States)

    Zhang, Zhengyi; Edme, Kedy; Lian, Shichen; Weiss, Emily A

    2017-03-29

    This Communication describes the photoredox catalysis of a C-C coupling reaction between 1-phenylpyrrolidine (PhPyr) and phenyl trans-styryl sulfone by visible-light-absorbing colloidal CdS quantum dots (QDs), without a sacrificial oxidant or reductant, and without a co-catalyst. Simple kinetic analysis reveals that photo-oxidation of PhPyr by the QDs is the rate-limiting step. Disordering of the ligand shell of the QDs by creating mixed monolayers of oleate and octylphosphonate increases the initial rate of the reaction by a factor of 2.3, and the energy efficiency (mol product/joule of incident photons) of the reaction by a factor of 1.6, by facilitating the hole-transfer step.

  3. Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media

    Science.gov (United States)

    Zheng, Jie-Ning; Li, Shan-Shan; Ma, Xiaohong; Chen, Fang-Yi; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-09-01

    Well-defined core-shell gold-palladium@palladium nanocrystals (AuPd@Pd) are facilely prepared by a simple and green wet-chemical method at 25 °C. A Good's buffer, 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), is used as a reducing agent and a shape-directing agent, while there is no template, seed, organic solvent, or surfactant involved. The AuPd@Pd nanocrystals are uniformly dispersed on graphene nanosheets by ultrasonication, resulting in the formation of graphene supported AuPd@Pd (G-AuPd@Pd). The as-prepared nanocomposites exhibit the improved catalytic activity, good tolerance, and better stability for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline media, compared with the G-Pd and commercial Pd black catalysts. The as-developed method may provide a promising pathway for large-scale fabrication of AuPd-based catalysts.

  4. A single-step route for large-scale synthesis of core-shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic properties

    Science.gov (United States)

    Liu, Qi; Xu, Yan-Ru; Wang, Ai-Jun; Feng, Jiu-Ju

    2016-01-01

    In this report, a facile, seed-less and single-step method is developed for large-scale synthesis of core-shell Pd@Pt dendritic nanocrystals anchored on reduced graphene oxide (Pd@Pt DNC/rGO) under mild conditions. Poly(ethylene oxide) is employed as a structure-directing and stabilizing agent. Compared with commercial Pt/C (20 wt%) and Pd/C (20 wt%) catalysts, the as-obtained nanocomposite has large electrochemically active surface area (114.15 m2gmetal-1), and shows superior catalytic activity and stability with the mass activities of 1210.0 and 1128.5 mAmgmetal-1 for methanol and ethanol oxidation, respectively. The improved catalytic activity is mainly the consequence of the synergistic effects between Pd and Pt of the dendritic structures, as well as rGO as a support.

  5. Optically enhanced SnO2/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Science.gov (United States)

    Kumar, Vijay; Rajaram, P.; Goswami, Y. C.

    2015-08-01

    Synthesis of SnO2/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO2. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  6. Dynamic interaction between medial prefrontal cortex and nucleus accumbens as a function of both motivational state and reinforcer magnitude: A c-Fos immunocytochemistry study

    Science.gov (United States)

    Moscarello, Justin M.; Ben-Shahar, Osnat; Ettenberg, Aaron

    2007-01-01

    This study examined the effects of simultaneous variations in motivational state (food deprivation) and reinforcer magnitude (food presentation) on c-Fos immunoreactivity in the pre-and infralimbic medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) core and shell, and dorsal striatum. In the first experiment, c-Fos was reliably increased in pre- and infralimbic mPFC of animals 12- and 36-h compared to 0-h deprived. In the second experiment, a small meal (2.5g) selectively increased c-Fos immunoreactivity in both mPFC subdivisions of 36-h deprived animals, as well as in both NAcc subdivisions of 12-h deprived animals. Correlational analyses revealed a changing relationship between mPFC subregions and the NAcc compartments to which they project. In subjects 12-h deprived and allowed a small meal, c-Fos counts in prelimbic mPFC and NAcc core were positively correlated, as were those in infralimbic mPFC and NAcc shell (r = . 83 and .76, respectively). The opposite was true of animals 36-h deprived, with prelimbic mPFC/NAcc core and infralimbic mPFC/NAcc shell negatively correlated (r = -.85 and -.82, respectively). The third experiment examined the effects of unrestricted feeding (presentation of 20g food) after 0, 12, or 36-h deprivation. No differences between mean c-Fos counts were found, though prelimbic mPFC/NAcc core, and mPFC/NAcc shell were positively correlated in animals 36-h deprived (r = .76 and .89, respectively). These data suggest that the activity within the mPFC and NAcc, as well as the interaction between the two, change as a complex combinatorial function of motivational state and reinforcer magnitude. Section: Cognitive and Behavioral Neuroscience PMID:17706947

  7. 3D-Array of Au-TiO2 Yolk-Shell as Plasmonic Photocatalyst Boosting Multi-Scattering with Enhanced Hydrogen Evolution.

    Science.gov (United States)

    Shi, Xiaowei; Lou, Zaizhu; Zhang, Peng; Fujitsuka, Mamoru; Majima, Tetsuro

    2016-11-23

    Nowadays, how to convert solar energy efficiently to other energies, such as chemical energy, is an important subject. In the present work, gold nanosphere (AuNS) monoencapsulated in TiO2 hollow nanosphere (Au-TiO2) and three-dimensional assembled array of Au-TiO2 (3D-array) were fabricated to carefully explore the multiscattering effect on the photocatalytic activity of H2 generation under simulated solar light and visible light irradiation, respectively. Au-TiO2 with the inner cavity diameter of 176 nm was uniformly synthesized via SiO2 protection method and then was used as building blocks for construction of 3D-array. The 3D-array exhibited a much higher photocatalytic activity of H2 generation (3.5 folds under visible light irradiation, 1.4 folds under solar light irradiation) than Au-TiO2. Single-particle plasmonic photoluminescence measurement and computational simulation of finite difference time domain (FDTD) were performed to elucidate the detailed mechanisms of photocatalysis. It was suggested that the hot electrons generated by AuNS under visible light irradiation play a significant role during the photocatalysis process. The higher activity of 3D-array is due to the elongation of light path length because of the multiscattering in-between Au-TiO2 and the reflection inside of the TiO2 shell. Therefore, the AuNS has more opportunity to absorb light and more hot electrons are expected to be generated through the electron transfer from AuNS to TiO2 shell, leading to an increment in the H2 generation. This result gives us a new perspective of constructing structures for efficient light utilization.

  8. A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity

    Science.gov (United States)

    Liu, Yu; Yu, Le; Hu, Yong; Guo, Changfa; Zhang, Fumin; Wen (David) Lou, Xiong

    2011-12-01

    Magnetic nest-like γ-Fe2O3/ZnO double-shelled hollow nanostructures have been successfully synthesized via a multi-step process. The materials have been thoroughly characterized by different techniques. These interesting nest-like hollow nanostructures are composed of ZnO nanoflakes grown on the surface of γ-Fe2O3 hollow spheres. Importantly, these magnetic hollow nanostructures show very high visible-light photocatalytic activity for the degradation of different organic dyes including methylene blue (MB), Rhodamine-B (RhB), and methyl orange (MO). It is further demonstrated that these γ-Fe2O3/ZnO hybrid photocatalysts are highly stable and can be used repeatedly.Magnetic nest-like γ-Fe2O3/ZnO double-shelled hollow nanostructures have been successfully synthesized via a multi-step process. The materials have been thoroughly characterized by different techniques. These interesting nest-like hollow nanostructures are composed of ZnO nanoflakes grown on the surface of γ-Fe2O3 hollow spheres. Importantly, these magnetic hollow nanostructures show very high visible-light photocatalytic activity for the degradation of different organic dyes including methylene blue (MB), Rhodamine-B (RhB), and methyl orange (MO). It is further demonstrated that these γ-Fe2O3/ZnO hybrid photocatalysts are highly stable and can be used repeatedly. Electronic supplementary information (ESI) available: XRD/TEM/schematic illustration of charge transfer. See DOI: 10.1039/c1nr11114k

  9. Enhanced Recyclable Magnetized Palm Shell Waste-Based Powdered Activated Carbon for the Removal of Ibuprofen: Insights for Kinetics and Mechanisms.

    Directory of Open Access Journals (Sweden)

    Kien Tiek Wong

    Full Text Available A novel preparation method of magnetized palm shell waste-based powdered activated carbon (MPPAC, avg. size 112 μm was developed. The prepared MPPAC was assessed by several physicochemical analyses, and batch tests were performed for ibuprofen (IBP removal. Field emission scanning electron microscopy (FESEM and N2 gas isotherms revealed that magnetite and maghemite were homogeneous and deposited mostly on the surface of PPAC without a significant clogging effect on the micropores. Isotherm results showed that 3.8% Fe (w/w impregnated PPAC [MPPAC-Fe(3.8%] had about 2.2-fold higher maximum sorption capacity (157.3 mg g-1 and a 2.5-fold higher sorption density (0.23 mg m-2 than pristine PPAC. Both Fourier-transform infrared spectroscopy (FTIR and isotherm data indicated that the high sorption capacity and density of IBP by MPPAC was primarily attributable to donor-acceptor complexes with the C = O group and dispersive π-π interactions with the carbon surface. Based on kinetic and repeated adsorption tests, pore diffusion was the rate-limiting step, and MPPAC-Fe(3.8% had about 1.9~2.8- and 9.1~15.8-fold higher rate constants than MPPAC-Fe(8.6% and palm shell-waste granular activated carbon (PGAC, avg. size 621 μm, respectively. MPPAC showed almost eight fold greater re-adsorption capacity than PPAC due to a thermal catalytic effect of magnetite/maghemite.

  10. Differential transcriptome expression in human nucleus accumbens as a function of loneliness.

    Science.gov (United States)

    Canli, T; Wen, R; Wang, X; Mikhailik, A; Yu, L; Fleischman, D; Wilson, R S; Bennett, D A

    2016-11-01

    Loneliness is associated with impaired mental and physical health. Studies of lonely individuals reported differential expression of inflammatory genes in peripheral leukocytes and diminished activation in brain reward regions such as nucleus accumbens, but could not address gene expression in the human brain. Here, we examined genome-wide RNA expression in post-mortem nucleus accumbens from donors (N=26) with known loneliness measures. Loneliness was associated with 1710 differentially expressed transcripts and genes from 1599 genes (DEGs; false discovery rate PMolecular Psychiatry advance online publication, 1 November 2016; doi:10.1038/mp.2016.186.

  11. Photocatalytic activity of Ag/ZnO core–shell nanoparticles with shell thickness as controlling parameter under green environment

    Science.gov (United States)

    Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee

    2017-02-01

    Plasmonic Ag/ZnO core–shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet–visible (UV–Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core–shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core–shell nanoparticles. The Photocatalytic activities of Ag/ZnO core–shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core–shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core–shell NPs is found to be enhanced with increase in shell thickness.

  12. Dopamine Signaling in the Nucleus Accumbens of Animals Self-Administering Drugs of Abuse

    Science.gov (United States)

    Willuhn, Ingo; Wanat, Matthew J.; Clark, Jeremy J.; Phillips, Paul E. M.

    2013-01-01

    Abuse of psychoactive substances can lead to drug addiction. In animals, addiction is best modeled by drug self-administration paradigms. It has been proposed that the crucial common denominator for the development of drug addiction is the ability of drugs of abuse to increase extracellular concentrations of dopamine in the nucleus accumbens (NAcc). Studies using in vivo microdialysis and chronoamperometry in the behaving animal have demonstrated that drugs of abuse increase tonic dopamine concentrations in the NAcc. However, it is known that dopamine neurons respond to reward-related stimuli on a subsecond timescale. Thus, it is necessary to collect neurochemical information with this level of temporal resolution, as achieved with in vivo fast-scan cyclic voltammetry (FSCV), to fully understand the role of phasic dopamine release in normal behavior and drug addiction. We review studies that investigated the effects of drugs of abuse on NAcc dopamine levels in freely-moving animals using in vivo microdialysis, chronoamperometry and FSCV. After a brief introduction of dopamine anatomy and signal transduction, and a section on current theories of dopamine in natural goal-directed behavior, a discussion of techniques for the in vivo assessment of extracellular dopamine behaving animals is presented. Then, we review studies using these techniques to investigate changes in phasic and tonic dopamine signaling in the NAcc during 1) response-dependent and –independent administration of abused drugs, 2) drug-conditioned stimuli and operant behavior in self-administration paradigms, 3) drug withdrawal, and 4) cue-induced reinstatement of drug seeking. These results are then integrated with current ideas on the role of dopamine in addiction with an emphasis on a model illustrating phasic and tonic NAcc dopamine signaling during different stages of drug addiction. This model predicts that phasic dopamine release in response to drug-related stimuli will be enhanced over

  13. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Directory of Open Access Journals (Sweden)

    Ken Taro Wakabayashi

    2015-02-01

    Full Text Available The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc, a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6-8 s; ~50 µM or ~5% of baseline followed by a larger, more prolonged tonic elevation (~100 µM or 10% of baseline, peak ~15 min. While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine’s peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine’s action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.

  14. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    Science.gov (United States)

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  15. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens.

    Science.gov (United States)

    Ferguson, Deveroux; Shao, Ningyi; Heller, Elizabeth; Feng, Jian; Neve, Rachael; Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Shen, Li; Nestler, Eric J

    2015-02-18

    Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO) family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induction causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our understanding of the molecular adaptations underlying cocaine action.

  16. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Science.gov (United States)

    Wakabayashi, Ken T.; Kiyatkin, Eugene A.

    2015-01-01

    The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6–8 s; ~50 μM or ~5% of baseline) followed by a larger, more prolonged tonic elevation (~100 μM or 10% of baseline, peak ~15 min). While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine's peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine's action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells. PMID:25729349

  17. Effects of inhibitor of κB kinase activity in the nucleus accumbens on emotional behavior.

    Science.gov (United States)

    Christoffel, Daniel J; Golden, Sam A; Heshmati, Mitra; Graham, Ami; Birnbaum, Shari; Neve, Rachael L; Hodes, Georgia E; Russo, Scott J

    2012-11-01

    Inhibitor of κB kinase (IκK) has historically been studied in the context of immune response and inflammation, but recent evidence demonstrates that IκK activity is necessary and sufficient for regulation of neuronal function. Chronic social defeat stress of mice increases IκK activity in the nucleus accumbens (NAc) and this increase is strongly correlated to depression-like behaviors. Inhibition of IκK signaling results in a reversal of chronic social defeat stress-induced social avoidance behavior. Here, we more completely define the role of IκK in anxiety and depressive-like behaviors. Mice underwent stereotaxic microinjection of a herpes simplex virus expressing either green fluorescent protein, a constitutively active form of IκK (IκKca), or a dominant negative form of IκK into the NAc. Of all three experimental groups, only mice expressing IκKca show a behavioral phenotype. Expression of IκKca results in a decrease in the time spent in the non-periphery zones of an open field arena and increased time spent immobile during a forced swim test. No baseline differences in sucrose preference were observed, but following the acute swim stress we noted a marked reduction in sucrose preference. To determine whether IκK activity alters responses to other acute stressors, we examined behavior and spine morphology in mice undergoing an acute social defeat stress. We found that IκKca enhanced social avoidance behavior and promoted thin spine formation. These data show that IκK in NAc is a critical regulator of both depressive- and anxiety-like states and may do so by promoting the formation of immature excitatory synapses.

  18. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play.

    Science.gov (United States)

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J M J; Trezza, Viviana; Manzoni, Olivier J J

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  19. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  20. The effect of electroacupuncture on extinction responding of heroin-seeking behavior and FosB expression in the nucleus accumbens core.

    Science.gov (United States)

    Hu, Airong; Lai, Miaojun; Wei, Jianzi; Wang, Lina; Mao, Huijuan; Zhou, Wenhua; Liu, Sheng

    2013-02-08

    Augmentation of extinction with learning enhancing therapy may offer an effective strategy to combat heroin relapse. Our lab previously found that electroacupuncture (EA) not only significantly reduced cue-induced reinstatement of heroin seeking but also exhibited a promoting effect on the ability of learning and memory. In the present study, we further investigated the effects of EA on the extinction of heroin-seeking behavior in rats with a history of intravenous heroin self-administration. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4h or 25 infusions for 14 consecutive days; then the rats underwent 7 daily 3h extinction sessions in the operant chamber. To assess EA's effects on the extinction response of heroin-associated cues, 2Hz EA was administered 1h before each of the 7 extinction sessions. We also applied immunohistochemistry to detect FosB-positive nuclei in the nucleus accumbens core. We found that EA treatment facilitated the extinction response of heroin seeking but did not alter the locomotor activity in an open field testing environment. EA stimulation attenuated the FosB expression in the core of the nucleus accumbens, a brain region involved in the learning and execution of motor responses. Altogether, these results suggest that EA may provide a novel nonpharmacological approach to enhance extinction learning when combined with extinction therapy for the treatment of heroin addiction.

  1. SERS decoding of micro gold shells moving in microfluidic systems.

    Science.gov (United States)

    Lee, Saram; Joo, Segyeong; Park, Sejin; Kim, Soyoun; Kim, Hee Chan; Chung, Taek Dong

    2010-05-01

    In this study, in situ surface-enhanced Raman scattering (SERS) decoding was demonstrated in microfluidic chips using novel thin micro gold shells modified with Raman tags. The micro gold shells were fabricated using electroless gold plating on PMMA beads with diameter of 15 microm. These shells were sophisticatedly optimized to produce the maximum SERS intensity, which minimized the exposure time for quick and safe decoding. The shell surfaces produced well-defined SERS spectra even at an extremely short exposure time, 1 ms, for a single micro gold shell combined with Raman tags such as 2-naphthalenethiol and benzenethiol. The consecutive SERS spectra from a variety of combinations of Raman tags were successfully acquired from the micro gold shells moving in 25 microm deep and 75 microm wide channels on a glass microfluidic chip. The proposed functionalized micro gold shells exhibited the potential of an on-chip microfluidic SERS decoding strategy for micro suspension array.

  2. Heat Transfer Performance of the Shell Side of Double-Pipe Heat Exchanger Enhanced with Helical Fins%螺旋片强化的套管式换热器壳侧传热特性

    Institute of Scientific and Technical Information of China (English)

    张丽; 田密密; 吴剑华

    2011-01-01

    为揭示螺旋片强化套管式换热器壳侧传热的机理,以指导此类换热器的进一步强化,对螺旋片强化的套管式换热器壳侧的传热和阻力特性进行了实验研究,并与光滑内管换热器进行了比较;利用可实现的k-ε湍流模型,对螺旋片强化的套管式换热器壳侧流体的流动和传热特性进行了数值模拟,研究了正交螺旋坐标系下壳侧螺旋通道中的流场结构.实验结果表明,螺旋片能显著提高套管式换热器壳侧的传热性能;在Re为4000~14000,螺旋升角分别为45°、37°、27°、14°的换热器的传热系数是光滑内管换热器的1.3~4.2倍;螺旋升角越小的换热器传热效果越好,但压降也越大.数值模拟结果表明,螺旋片能改变壳侧流场结构,使流场中产生了二次流动,从而强化了传热;螺旋升角越大,螺旋通道中心处的二次流动越弱.因此,对于螺旋升角较大的换热器,采用螺旋片复合其它强化技术改善螺旋通道中心处的二次流动状况是进一步提高其传热性能的关键.%In order to disc over the heat transfer enhancement mechanisms of the shell side of double-pipe heat exchanger with helical fins and to guide the further heat enhancement of this kind of heat exchanger, heat transfer performance and flow resistance of shell side of the above mentioned heat exchanger were investigated experimentally and compared with those of the heat exchanger with smooth inner tube. The fluid flow characteristic and heat transfer performance of the shell side of double pipe heat exchanger with helical fins were investigated numerically by applying realizable k-ε turbulent model, and using the orthogonal helical coordinate system, the fluid flow characteristics of the shell side helical channel were analyzed. The experimental results show that the heat transfer performance of double-pipe heat exchanger shell side is enhanced significantly by helical fins, and at Re = 4000~14000, the

  3. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Directory of Open Access Journals (Sweden)

    Quintero GC

    2013-09-01

    Full Text Available Gabriel C Quintero1–31Florida State University – Panama, Clayton, Panama; 2Medical University of South Carolina, Charleston, South Carolina, USA; 3Smithsonian Tropical Research Institute, Ancon, Republic of PanamaAbstract: Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR. These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family, and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1 of alpha-amino-3-hydroxy-5-methyl-4

  4. Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO{sub 2} core–shell nanoparticles: Kinetic and thermodynamic profile

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhifeng, E-mail: ntjiangzf@sina.com; Xie, Jimin, E-mail: xiejm391@sohu.com; Jiang, Deli, E-mail: jiangdeli100@yahoo.com; Yan, Zaoxue, E-mail: yanzaoxue@163.com; Jing, Junjie, E-mail: jingjj1975@163.com; Liu, Dong, E-mail: 919457966@qq.com

    2014-02-15

    A green and low-cost adsorbent with both magnetic property and high adsorption capacity was prepared on the basis of nickel magnetic core with silica shell. The surface of the prepared Ni@SiO{sub 2} composite was not modified. The influence of different functional groups and different charged of the dyes on the adsorption process on the non functionalized Ni@SiO{sub 2} have been studied. The results indicated that synthesized adsorbent exhibited higher adsorption capacity for dyes with negative charge/hydroxyl groups as compared to dyes with positive charge/without hydroxyl groups due to the hydrogen bonding interaction and electrostatic interaction between the adsorbent and dyes. Adsorption kinetics and isotherms experiments were carried out and the results indicated that the adsorption process was fitted by pseudo second order kinetics and Freundlich model. The binding of these dyes with magnetic adsorbent surface mainly involves physical adsorption according to D–R model. Furthermore, the adsorption process is spontaneous and endothermic as studied from adsorption thermodynamics. The value of ΔH° and mean free energy further confirmed that physical adsorption is the major adsorption process. After regeneration, the adsorbent still shows high adsorption capacity even for 4 cycles of desorption–adsorption.

  5. GS 455534 selectively suppresses binge eating of palatable food and attenuates dopamine release in the accumbens of sugar-bingeing rats.

    Science.gov (United States)

    Bocarsly, Miriam E; Hoebel, Bartley G; Paredes, Daniel; von Loga, Isabell; Murray, Susan M; Wang, Miaoyuan; Arolfo, Maria P; Yao, Lina; Diamond, Ivan; Avena, Nicole M

    2014-04-01

    Binge eating palatable foods has been shown to have behavioral and neurochemical similarities to drug addiction. GS 455534 is a highly selective reversible aldehyde dehydrogenase 2 inhibitor that has been shown to reduce alcohol and cocaine intake in rats. Given the overlaps between binge eating and drug abuse, we examined the effects of GS 455534 on binge eating and subsequent dopamine release. Sprague-Dawley rats were maintained on a sugar (experiment 1) or fat (experiment 2) binge eating diet. After 25 days, GS 455534 was administered at 7.5 and 15 mg/kg by an intraperitoneal injection, and food intake was monitored. In experiment 3, rats with cannulae aimed at the nucleus accumbens shell were maintained on the binge sugar diet for 25 days. Microdialysis was performed, during which GS 455534 15 mg/kg was administered, and sugar was available. Dialysate samples were analyzed to determine extracellular levels of dopamine. In experiment 1, GS 455534 selectively decreased sugar intake food was made available in the Binge Sugar group but not the Ad libitum Sugar group, with no effect on chow intake. In experiment 2, GS 455534 decreased fat intake in the Binge Fat group, but not the Ad libitum Fat group, however, it also reduced chow intake. In experiment 3, GS 455534 attenuated accumbens dopamine release by almost 50% in binge eating rats compared with the vehicle injection. The findings suggest that selective reversible aldehyde dehydrogenase 2 inhibitors may have the therapeutic potential to reduce binge eating of palatable foods in clinical populations.

  6. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity

    NARCIS (Netherlands)

    van den Heuvel, José K; Furman, Kara; Gumbs, Myrtille C R; Eggels, Leslie; Opland, Darren M; Land, Benjamin B; Kolk, Sharon M; S Narayanan, Nandakumar; Fliers, Eric; Kalsbeek, A.; DiLeone, Ralph J; la Fleur, Susanne E

    2015-01-01

    BACKGROUND: Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we p

  7. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    NARCIS (Netherlands)

    Mantione, Mariska; Figee, Martijn; Denys, D.

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no e

  8. The Role of the Nucleus Accumbens in Knowing when to Respond

    Science.gov (United States)

    Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey

    2011-01-01

    While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…

  9. Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices.

    Science.gov (United States)

    Haruno, Masahiko; Kimura, Minoru; Frith, Christopher D

    2014-08-01

    Much decision-making requires balancing benefits to the self with benefits to the group. There are marked individual differences in this balance such that individualists tend to favor themselves whereas prosocials tend to favor the group. Understanding the mechanisms underlying this difference has important implications for society and its institutions. Using behavioral and fMRI data collected during the performance of the ultimatum game, we show that individual differences in social preferences for resource allocation, so-called "social value orientation," is linked with activity in the nucleus accumbens and amygdala elicited by inequity, rather than activity in insula, ACC, and dorsolateral pFC. Importantly, the presence of cognitive load made prosocials behave more prosocially and individualists more individualistically, suggesting that social value orientation is driven more by intuition than reflection. In parallel, activity in the nucleus accumbens and amygdala, in response to inequity, tracked this behavioral pattern of prosocials and individualists. In addition, we conducted an impunity game experiment with different participants where they could not punish unfair behavior and found that the inequity-correlated activity seen in prosocials during the ultimatum game disappeared. This result suggests that the accumbens and amygdala activity of prosocials encodes "outcome-oriented emotion" designed to change situations (i.e., achieve equity or punish). Together, our results suggest a pivotal contribution of the nucleus accumbens and amygdala to individual differences in sociality.

  10. The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens

    DEFF Research Database (Denmark)

    Meidahl, Anders C.; Orlowski, Dariusz; Sørensen, Jens C. H.;

    2016-01-01

    Nucleus accumbens (NAcc) has been implicated in several psychiatric disorders such as treatment resistant depression (TRD) and obsessive-compulsive disorder (OCD), and has been an ongoing experimental target for deep brain stimulation (DBS) in both rats and humans. In order to translate basic sci...

  11. Spiral Shell Collection

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    In 1988 Zheng Haigen, a seaman with the Towboat Company of the Shanghai Salvage Bureau, began collecting spiral shells. Today he has more than 600 in his collection. The most valuable are the rare parrot shell and a shell whose spirals wind counter-clockwise. In 1991 a miniature conch with a diameter of 0.31 millimeters that he found buried in tons of sand made the Guinness Book of World Records.

  12. Off-Shell Tachyons

    OpenAIRE

    Tang, Yi-Lei

    2015-01-01

    The idea that the new particles invented in some models beyond the standard model can appear only inside the loops is attractive. In this paper, we fill these loops with off-shell tachyons, leading to a solution of the zero results of the loop diagrams involving the off-shell non-tachyonic particles. We also calculate the Passarino-Veltman $A_0^o$ and $B_0^o$ of the off-shell tachyons.

  13. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion.

    Science.gov (United States)

    Damsma, G; Pfaus, J G; Wenkstern, D; Phillips, A G; Fibiger, H C

    1992-02-01

    Extracellular concentrations of dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were examined concurrently, using in vivo microdialysis, in the nucleus accumbens and dorsal striatum of sexually active male rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually receptive female, and copulation. DA increased significantly in the nucleus accumbens when the males were presented with a sexually receptive female behind a screen and increased further during copulation. Although DA also increased significantly in the dorsal striatum during copulation, the magnitude of the effect was significantly lower than that observed in the nucleus accumbens. In contrast, forced locomotion on a rotating drum, exposure to a novel chamber, and exposure to sex odors did not increase DA significantly in either region, although both DOPAC and HVA increased significantly in both regions during the locomotion test. These results indicate that novelty or locomotor activity alone cannot account for the increased extracellular DA concentrations observed in the nucleus accumbens of male rats during the presentation of a sexually receptive female behind a screen, nor can they account for the increased DA concentrations observed in both the nucleus accumbens and dorsal striatum of male rats during copulation. The preferential increase in DA transmission in the nucleus accumbens, compared with that in the striatum, suggests that anticipatory and consummatory aspects of sexual activity may belong to a class of naturally occurring events with reward values that are mediated by DA release in the nucleus accumbens.

  14. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  15. Shell thickness determination of polymer-shelled microbubbles using transmission electron microscopy.

    Science.gov (United States)

    Härmark, Johan; Hebert, Hans; Koeck, Philip J B

    2016-06-01

    Intravenously injected microbubbles (MBs) can be utilized as ultrasound contrast agent (CA) resulting in enhanced image quality. A novel CA, consisting of air filled MBs stabilized with a shell of polyvinyl alcohol (PVA) has been developed. These spherical MBs have been decorated with superparamagnetic iron oxide nanoparticles (SPIONs) in order to serve as both ultrasound and magnetic resonance imaging (MRI) CA. In this study, a mathematical model was introduced that determined the shell thickness of two types of SPIONs decorated MBs (Type A and Type B). The shell thickness of MBs is important to determine, as it affects the acoustical properties. In order to investigate the shell thickness, thin sections of plastic embedded MBs were prepared and imaged using transmission electron microscopy (TEM). However, the sections were cut at random distances from the MB center, which affected the observed shell thickness. Hence, the model determined the average shell thickness of the MBs from corrected mean values of the outer and inner radii observed in the TEM sections. The model was validated using simulated slices of MBs with known shell thickness and radius. The average shell thickness of Type A and Type B MBs were 651nm and 637nm, respectively.

  16. Fabrication of the novel core-shell MCM-41@mTiO{sub 2} composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP)

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao-Na; Wang, Hui-Long, E-mail: hlwang@dlut.edu.cn; Li, Zhen-Duo; Huang, Zhi-Qiang; Qi, Hui-Ping; Jiang, Wen-Feng

    2016-05-30

    Graphical abstract: The mesoporous MCM-41@mTiO{sub 2} composite microspheres with core/shell structure, well-crystallized mesoporous TiO{sub 2} layer, high specific surface, large pore volume and excellent photocatalytic activity were synthesized by combining sol-gel and simple hydrothermal treatment. - Highlights: • The mesoporous MCM-41@mTiO{sub 2} composite was synthesized successfully. • The composite was facilely prepared by combining sol-gel and hydrothermal method. • The composite exhibited high photocatalytic degradation activity for DNBP. • The composite photocatalyst has excellent reproducibility. - Abstract: The mesoporous MCM-41@mTiO{sub 2} core-shell composite microspheres were synthesized successfully by combining sol-gel and simple hydrothermal treatment. The morphology and microstructure characteristics of the synthesized materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurements, X-ray powder diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis/DRS) and Fourier transform infrared spectroscopy (FT-IR). The results indicate that the composite material possesses obvious core/shell structure, a pure mesoporous and well-crystallized TiO{sub 2} layer (mTiO{sub 2}), high specific surface area (316.8 m{sup 2}/g), large pore volume (0.42 cm{sup 3}/g) and two different pore sizes (2.6 nm and 11.0 nm). The photocatalytic activity of the novel MCM-41@mTiO{sub 2} composite was evaluated by degrading 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous suspension under UV and visible light irradiation. The results were compared with commercial anatase TiO{sub 2} and Degussa P25 and the enhanced degradation were obtained with the synthesized MCM-41@mTiO{sub 2} composite under the same conditions, which meant that this material can serve as an efficient photocatalyst for the degradation of hazardous organic pollutants in wastewaters.

  17. Valproate Inhibits Methamphetamine Induced Hyperactivity via Glycogen Synthase Kinase 3β Signaling in the Nucleus Accumbens Core.

    Science.gov (United States)

    Xing, Bo; Liang, Xiao-Ping; Liu, Peng; Zhao, Yan; Chu, Zheng; Dang, Yong-Hui

    2015-01-01

    Valproate (VPA) has recently been shown to influence the behavioral effects of psycho-stimulants. Although glycogen synthase kinase 3β (GSK3β) signaling in the nucleus accumbens (NAc) plays a key role in mediating dopamine (DA)-dependent behaviors, there is less direct evidence that how VPA acts on the GSK3β signaling in the functionally distinct sub-regions of the NAc, the NAc core (NAcC) and the NAc shell (NAcSh), during psycho-stimulant-induced hyperactivity. In the present study, we applied locomotion test after acute methamphetamine (MA) (2 mg/kg) injection to identify the locomotor activity of rats received repeated VPA (300 mg/kg) pretreatment. We next measured phosphor-GSK3β at serine 9 and total GSK3β levels in NAcC and NAcSh respectively to determine the relationship between the effect of VPA on MA-induced hyperlocomotor and changes in GSK3β activity. We further investigated whether microinjection of VPA (300 μg/0.5 μl/side, once daily for 7 consecutive days) into NAcC or NAcSh could affect hyperactivity induced by MA. Our data indicated that repeated VPA treatment attenuated MA-induced hyperlocomotor, and the effect was associated with decreased levels of phosphorylated GSK3β at Ser 9 in the NAcC. Moreover, repeated bilateral intra-NAcC, but not intra-NAcSh VPA treatment, significantly attenuated MA-induced hyperactivity. Our results suggested that GSK3β activity in NAcC contributes to the inhibitory effects of VPA on MA-induced hyperactivity.

  18. Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions

    Science.gov (United States)

    Hamel, Laurie; Thangarasa, Tharshika; Samadi, Osai

    2017-01-01

    The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions. Rats were trained to associate visuo-tactile cues with appetitive, aversive, and neutral outcomes. Following the successful acquisition of the cue-outcome associations, rats received microinfusions of GABAA and GABAB receptor agonists (muscimol/baclofen) or saline into the caudal, intermediate, or rostral NAc core and were then exposed to a superimposition of appetitively and aversively valenced cues versus neutral cues in a “conflict test,” as well as to the appetitive versus neutral cues, and aversive cues versus neutral cues, in separate conditioned preference/avoidance tests. Disruption of activity in the intermediate to caudal parts of the NAc core resulted in a robust avoidance bias in response to motivationally conflicting cues, as well as a potentiated avoidance of aversive cues as compared with control animals, coupled with an attenuated conditioned preference for the appetitive cue. These results suggest that the caudal NAc core may have the capacity to exert bidirectional control over appetitively and aversively motivated responses to valence signals. PMID:28275709

  19. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    Science.gov (United States)

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  20. Core-shell Cd0.2Zn0.8S@BiOX (X = Cl, Br and I) microspheres: a family of hetero-structured catalysts with adjustable bandgaps, enhanced stability and photocatalytic performance under visible light irradiation.

    Science.gov (United States)

    Zhou, Yannan; Wen, Ting; Chang, Binbin; Yang, Baocheng; Wang, Yonggang

    2016-09-21

    Heterostructures consisting of two semiconductors have merited considerable attention in photocatalytic applications due to synergistic effects in complex redox processes. The incorporation of solid solutions into such architectures can further offer extra variability to control the bandgap. In this study, we report the fabrication of a series of core-shell Cd0.2Zn0.8S@BiOX (X = Cl, Br and I) microspheres via a solvothermal route that lead to enhanced photocatalytic performance under visible light irradiation. By optimizing the synthesis conditions, uniform and porous Cd0.2Zn0.8S@BiOX microspheres were achieved. The products were thoroughly characterized by X-ray diffraction studies, scanning electron microscopy, transmission electron microscopy, photoluminescence studies, absorption measurements and the photodegradation of RhB. Remarkably, the electronic structures of Cd0.2Zn0.8S@BiOX composites can be continuously tuned by varying the composition of BiOX to achieve the best catalytic performance under visible light irradiation. Finally, this greatly enhanced visible-light-driven photocatalytic efficiency was observed in the optimized Cd0.2Zn0.8S@BiOI composites when compared to their single-component counterparts, which may be attributed to increased light absorption and improved electron-hole separation. The photocatalytic mechanism has also been proposed based on the experimental evidences and the theoretical band positions of Cd0.2Zn0.8S@BiOI.

  1. 管壳式换热器中旋流片强化管外传热的数值模拟%NUMERICAL SIMULATION OF HEAT TRANSFER ENHANCEMENT BY TWISTED LEAF IN SHELL SIDE OF SHELL-AND-TUBE HEAT EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    周水洪; 邓先和; 徐伟

    2007-01-01

    As a new type of heat transfer augmentation element, twisted-leaf tube bundle support was conducted. Based on the experimental investigation, a shell-side periodic unit channel model of the longitudinal flow type heat exchanger was developed for numerical simulation to analyze the flow and heat transfer information of swirl flow induced by twisted leaf.The section-by-section performance evaluation factors were used to analyze the mechanism of heat transfer enhancement. The results demonstrate that the twisted leaf can produce a helical flow, resulting in the disruption of the continuity and stability of the fluid. The disturbing flow can promote turbulent intensity and enhance heat transfer effectively. The twistedleaf section gives worst integrated performance with a big increase in both heat transfer and pressure loss, and the trail-flow section also has no good performance because of the decayed swirl flow. The free-swirl-flow section provides the best performance with high efficiency and low pressure loss. In order to improve the integrated performance along the whole heat exchanger, it is recommended to optimize the shell side structure parameters to fully use the free swirl flow.%提出并分析了一种新型的传热强化元件--旋流片作为管壳式换热器管隙间支撑物的传热强化机理.在实验基础上,采用周期性单元流道模型数值模拟了旋流片产生的衰减性自旋流的流动和传热特性,并采用分段综合因子分析了传热强化的机理.结果显示,旋流片能起到扰流作用,并使流体强烈地冲刷传热管壁面强化传热.有旋流片段的综合因子最小,尾流段的综合因子接近于1,在自旋流段的综合因子最佳,应当充分利用自旋流段低阻高效的特点对换热器进行优化.

  2. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    Science.gov (United States)

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment.

  3. Dispersion behavior of core-shell silica-polymer nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.

  4. 扭曲椭圆管换热的壳程强化传热特性%Shell side heat transfer enhancement in twisted elliptical tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    谭祥辉; 孙赫; 张立振; 朱冬生

    2012-01-01

    通过搭建扭曲椭圆管换热器壳程传热与压降性能测试平台,对扭曲椭圆管换热器壳程传热与压降性能进行了实验测试,以实验数据为基础对前人得到的壳程传热与压降性能计算准则关系式的应用范围进行了分析,同时拟合得到了测试用扭曲椭圆管换热器壳程传热与压降性能计算准则关系式,设计了与测试扭曲椭圆管换热器结构类似的折流板换热器以及折流杆换热器,采用相关计算方法对换热器的传热与压降性能进行了计算和比较,并分析了3台换热器的综合性能,结果显示扭曲椭圆管换热器传热效果好、压降低,具有很好的工业应用前景.%Heat transfer and pressure drop of twisted elliptical tube heat exchanger with FrM = 79 are tested in the present work. Based on the experimental result, the application range of previous correlations for twisted elliptical tube heat exchanger with FrM>232 and FrM = 64 is analyzed, and correlations of the tested heat exchanger with FrM = 79 are derived. The testing result indicates that there exists a change of fluid flowing state when Re, increases to 8000. Two heat exchangers with similar geometric parameters to the tested one but supported by segmental baffles and rod baffles are designed. Their shell side heat transfer coefficients and pressure drops are calculated with Bell-Delaware method and Gentry's method, respectively. Heat transfer coefficients and pressure drops of the two designed heat exchangers are compared with the tested twisted elliptical tube heat exchanger. Comprehensive performance of the three heat exchangers is studied. The twisted elliptical tube heat exchanger gives the highest heat transfer coefficient and lowest pressure drop. This type of heat exchanger has the advantages of segmental heat exchanger and rod baffle heat exchanger and will be widely used in the industry.

  5. Dopamine D1 and D2 Receptors in the Nucleus Accumbens Core and Shell Mediate Pavlovian-Instrumental Transfer

    Science.gov (United States)

    Lex, Anja; Hauber, Wolfgang

    2008-01-01

    Pavlovian stimuli previously paired with food can markedly elevate the rate of food-reinforced instrumental responding. This effect, termed Pavlovian-instrumental transfer (PIT), depends both on general activating and specific cueing properties of Pavlovian stimuli. Recent evidence suggests that the general activating properties of Pavlovian…

  6. Dopamine D1 and D2 Receptors in the Nucleus Accumbens Core and Shell Mediate Pavlovian-Instrumental Transfer

    Science.gov (United States)

    Lex, Anja; Hauber, Wolfgang

    2008-01-01

    Pavlovian stimuli previously paired with food can markedly elevate the rate of food-reinforced instrumental responding. This effect, termed Pavlovian-instrumental transfer (PIT), depends both on general activating and specific cueing properties of Pavlovian stimuli. Recent evidence suggests that the general activating properties of Pavlovian…

  7. Distinct contributions of dopamine in the dorsolateral striatum and nucleus accumbens shell to the reinforcing properties of cocaine

    National Research Council Canada - National Science Library

    Veeneman - Rijkens, M.M.J; Broekhoven, M.H; Damsteegt, R; Vanderschuren, L.J.M.J

    .... Therefore, we systematically investigated the involvement of dopamine in dorsal and ventral striatal regions in cocaine self-administration, using various schedules of reinforcement in animals...

  8. Infralimbic Prefrontal Cortex Interacts with Nucleus Accumbens Shell to Unmask Expression of Outcome-Selective Pavlovianto- Instrumental Transfer

    Science.gov (United States)

    Keistler, Colby; Barker, Jacqueline M.; Taylor, Jane R.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context…

  9. The off-shell c-map

    CERN Document Server

    Banerjee, Nabamita; Katmadas, Stefanos

    2015-01-01

    The off-shell version of the c-map is presented, based on a systematic off-shell reduction from four to three space-time dimensions for supergravity theories with eight supercharges. In the reduction, the R-symmetry group is enhanced to local [SU(2) x SU(2)]/Z2 =SO(4) and the c-map is effected by a parity transformation in the internal space that interchanges the two SU(2) factors. Vector and tensor supermultiplets are each others conjugate under the c-map and both can be dualized in three dimensions to (on-shell) hypermultiplets. As shown in this paper the off-shell formulation indeed leads to a clarification of many of the intricate issues that play a role in the c-map. The results for off-shell Lagrangians quadratic in space-time derivatives are analyzed in detail and compared to the literature. The underlying reasons are identified why not all of the four-dimensional tensor multiplet Lagrangians can be in the image of the c-map. The advantage of the off-shell approach is, that it also enables a systematic...

  10. Nucleus Accumbens and Dopamine-Mediated Turning Behavior of the Rat: Role of Accumbal Non-dopaminergic Receptors

    NARCIS (Netherlands)

    Ikeda, H.; Kamei, J.; Koshikawa, N.; Cools, A.R.

    2012-01-01

    Accumbal dopamine plays an important role in physiological responses and diseases such as schizophrenia, Parkinson's disease, and depression. Since the nucleus accumbens contains different neurotransmitters, it is important to know how they interact with dopaminergic function: this is because

  11. Theoretical and Experimental Thermal Performance Analysis of Building Shell Components Containing Blown Fiber Glass Insulation Enhanced with Phase Change Material (PCM)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Shrestha, Som S [ORNL; Atchley, Jerald Allen [ORNL; Bianchi, Marcus V [ORNL; Smith, John B [ORNL; Fellinger, Thomas [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences; Lee, Edwin S [ORNL

    2010-01-01

    Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings duri