WorldWideScience

Sample records for accumbens mglur5-homer2-pi3k signaling

  1. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected.

    Science.gov (United States)

    Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit

    2016-01-01

    Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy. PMID:26555033

  2. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli

    OpenAIRE

    Cone, Jackson J; Roitman, Jamie D.; Roitman, Mitchell F.

    2015-01-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also ...

  3. α2δ-1 Signaling in Nucleus Accumbens Is Necessary for Cocaine-Induced Relapse

    OpenAIRE

    Spencer, Sade; Brown, Robyn M.; Quintero, Gabriel C; Kupchik, Yonatan M.; Thomas, Charles A.; Reissner, Kathryn J.; Kalivas, Peter W.

    2014-01-01

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration...

  4. Corticosterone Acts in the Nucleus Accumbens to Enhance Dopamine Signaling and Potentiate Reinstatement of Cocaine Seeking

    Science.gov (United States)

    Graf, Evan N.; Wheeler, Robert A.; Baker, David A.; Ebben, Amanda L.; Hill, Jonathan E.; McReynolds, Jayme R.; Robble, Mykel A.; Vranjkovic, Oliver; Wheeler, Daniel S.; Mantsch, John R.

    2013-01-01

    Stressful life events are important contributors to relapse in recovering cocaine addicts, but the mechanisms by which they influence motivational systems are poorly understood. Studies suggest that stress may “set the stage” for relapse by increasing the sensitivity of brain reward circuits to drug-associated stimuli. We examined the effects of stress and corticosterone on behavioral and neurochemical responses of rats to a cocaine prime after cocaine self-administration and extinction. Exposure of rats to acute electric footshock stress did not by itself reinstate drug-seeking behavior but potentiated reinstatement in response to a subthreshold dose of cocaine. This effect of stress was not observed in adrenalectomized animals, and was reproduced in nonstressed animals by administration of corticosterone at a dose that reproduced stress-induced plasma levels. Pretreatment with the glucocorticoid receptor antagonist RU38486 did not block the corticosterone effect. Corticosterone potentiated cocaine-induced increases in extracellular dopamine in the nucleus accumbens (NAc), and pharmacological blockade of NAc dopamine receptors blocked corticosterone-induced potentiation of reinstatement. Intra-accumbens administration of corticosterone reproduced the behavioral effects of stress and systemic corticosterone. Corticosterone treatment acutely decreased NAc dopamine clearance measured by fast-scan cyclic voltammetry, suggesting that inhibition of uptake2-mediated dopamine clearance may underlie corticosterone effects. Consistent with this hypothesis, intra-accumbens administration of the uptake2 inhibitor normetanephrine potentiated cocaine-induced reinstatement. Expression of organic cation transporter 3, a corticosterone-sensitive uptake2 transporter, was detected on NAc neurons. These findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake. PMID:23864669

  5. Selecting danger signals: dissociable roles of nucleus accumbens shell and core glutamate in predictive fear learning.

    Science.gov (United States)

    Li, Susan S Y; McNally, Gavan P

    2015-06-01

    Conditioned stimuli (CSs) vary in their reliability as predictors of danger. Animals must therefore select among CSs those that are appropriate to enter into an association with the aversive unconditioned stimulus (US). The actions of prediction error instruct this stimulus selection so that when prediction error is large, attention to the CS is maintained and learning occurs but when prediction is small attention to the CS is withdrawn and learning is prevented. Here we studied the role of glutamate acting at rat nucleus accumbens shell (AcbSh) and core (AcbC) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in this selection of danger signals. Using associative blocking and unblocking designs in rats, we show that antagonizing AcbSh AMPA receptors via infusions of 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline-2,3-dione (NBQX; 0.5 μg) prevents the unblocking of fear learning, whereas antagonizing AcbC AMPA receptors via infusions of NBQX (0.5 μg) prevents both the blocking and unblocking of fear learning. These results identify dissociable but complementary roles for AcbSh and AcbC glutamate acting at AMPA receptors in selecting danger signals: AcbSh AMPA receptors upregulate attention and learning to CSs that signal surprising USs, whereas AcbC AMPA receptors encode the predicted outcome of each trial.

  6. Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning.

    Science.gov (United States)

    Sunsay, Ceyhun; Rebec, George V

    2014-10-01

    The prediction-error model of dopamine (DA) signaling has largely been confirmed with various appetitive Pavlovian conditioning procedures and has been supported in tests of Pavlovian extinction. Studies have repeatedly shown, however, that extinction does not erase the original memory of conditioning as the prediction-error model presumes, putting the model at odds with contemporary views that treat extinction as an episode of learning rather than unlearning of conditioning. Here, we combined fast-scan cyclic voltammetry (FSCV) with appetitive Pavlovian conditioning to assess DA release directly during extinction and reinstatement. DA was monitored in the nucleus accumbens core, which plays a key role in reward processing. Following at least 4 daily sessions of 16 tone-food pairings, fast-scan cyclic voltammetry was performed while rats received additional tone-food pairings followed by tone alone presentations (i.e., extinction). Acquisition memory was reinstated with noncontingent presentations of reward and then tested with cue presentation. Tone-food pairings produced transient (1- to 3-s) DA release in response to tone. During extinction, the amplitude of the DA response decreased significantly. Following presentation of 2 noncontingent food pellets, subsequent tone presentation reinstated the DA signal. Our results support the prediction-error model for appetitive Pavlovian extinction but not for reinstatement.

  7. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    OpenAIRE

    Saddoris, Michael P.; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either ...

  8. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  9. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues.

    Science.gov (United States)

    Aitken, Tara J; Greenfield, Venuz Y; Wassum, Kate M

    2016-03-01

    Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc) core. This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one's current need state, such that cues only motivate actions when this is adaptive. But it remains unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here, we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the Pavlovian-to-instrumental transfer effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. Food-predictive stimuli motivate food-seeking behavior. Here, we show that food cues evoke a robust nucleus accumbens core dopamine response when hungry that correlates with the cue's ability to invigorate general food seeking. This response is attenuated when sated, demonstrating that food cue-evoked accumbens dopamine responses are sensitive to the need state information that determines the current adaptive utility of cue-motivated action.

  10. Lithium ameliorates nucleus accumbens phase signaling dysfunction in a genetic mouse model of mania

    OpenAIRE

    Dzirasa, Kafui; Coque, Laurent; Sidor, Michelle M.; Kumar, Sunil; Dancy, Elizabeth A.; Takahashi, Joseph S.; McClung, Colleen A.; Nicolelis, Miguel A.L.

    2010-01-01

    Polymorphisms in circadian genes such as CLOCK convey risk for bipolar disorder. While studies have begun to elucidate the molecular mechanism whereby disruption of Clock alters cellular function within mesolimbic brain regions, little remains known about how these changes alter gross neural circuit function and generate mania-like behaviors in Clock-Δ19 mice. Here we show that the phasic entrainment of nucleus accumbens (NAC) low-gamma (30–55Hz) oscillations to delta (1–4Hz) oscillations is ...

  11. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation

    Science.gov (United States)

    Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.

    2015-01-01

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have

  12. The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens.

    Science.gov (United States)

    Sakae, D Y; Marti, F; Lecca, S; Vorspan, F; Martín-García, E; Morel, L J; Henrion, A; Gutiérrez-Cuesta, J; Besnard, A; Heck, N; Herzog, E; Bolte, S; Prado, V F; Prado, M A M; Bellivier, F; Eap, C B; Crettol, S; Vanhoutte, P; Caboche, J; Gratton, A; Moquin, L; Giros, B; Maldonado, R; Daumas, S; Mameli, M; Jamain, S; El Mestikawy, S

    2015-11-01

    Tonically active cholinergic interneurons (TANs) from the nucleus accumbens (NAc) are centrally involved in reward behavior. TANs express a vesicular glutamate transporter referred to as VGLUT3 and thus use both acetylcholine and glutamate as neurotransmitters. The respective roles of each transmitter in the regulation of reward and addiction are still unknown. In this study, we showed that disruption of the gene that encodes VGLUT3 (Slc17a8) markedly increased cocaine self-administration in mice. Concomitantly, the amount of dopamine (DA) release was strongly augmented in the NAc of VGLUT3(-/-) mice because of a lack of signaling by metabotropic glutamate receptors. Furthermore, dendritic spines and glutamatergic synaptic transmission on medium spiny neurons were increased in the NAc of VGLUT3(-/-) mice. Increased DA and glutamate signaling in the NAc are hallmarks of addiction. Our study shows that TANs use glutamate to reduce DA release and decrease reinforcing properties of cocaine in mice. Interestingly, we also observed an increased frequency of rare variations in SLC17A8 in a cohort of severe drug abusers compared with controls. Our findings identify VGLUT3 as an unexpected regulator of drug abuse. PMID:26239290

  13. Cue-elicited reward-seeking requires extracellular signal-regulated kinase activation in the nucleus accumbens.

    Science.gov (United States)

    Shiflett, Michael W; Martini, Ross P; Mauna, Jocelyn C; Foster, Rebecca L; Peet, Eloise; Thiels, Edda

    2008-02-01

    The motivation to seek out rewards can come under the control of stimuli associated with reward delivery. The ability of cues to motivate reward-seeking behavior depends on the nucleus accumbens (NAcc). The molecular mechanisms in the NAcc that underlie the ability of a cue to motivate reward-seeking are not well understood. We examined whether extracellular signal-regulated kinase (ERK), an important intracellular signaling pathway in learning and memory, has a role in these motivational processes. We first examined p42 ERK (ERK2) activation in the NAcc after rats were trained to associate an auditory stimulus with food delivery and found that, as a consequence of training, presentation of the auditory cue itself was sufficient to increase ERK2 activation in the NAcc. To examine whether inhibition of ERK in the NAcc prevents cue-induced reward-seeking, we infused an inhibitor of ERK, U0126, into the NAcc before assessing rats' instrumental responding in the presence versus absence of the conditioned cue. We found that, whereas vehicle-infused rats showed increased instrumental responding during cue presentation, rats infused with U0126 showed a profound impairment in cue-induced instrumental responding. In contrast, intra-NAcc U0126 infusion had no effect on rats' food-reinforced instrumental responding or their ability to execute conditioned approach behavior. Our results demonstrate learning-related changes in ERK signaling in the NAcc, and that disruption of ERK activation in this structure interferes with the incentive-motivational effects of conditioned stimuli. The molecular mechanisms described here may have implications for cue-elicited drug craving after repeated exposure to drugs of abuse.

  14. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Tünde eMolnár

    2011-12-01

    Full Text Available Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signalling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC and gamma-hydroxybutyrate (GHB that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc. Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neuron-independent way. In this study we show that GHB-evoked Ca2+ transients were also found to constitute a subset of ATP-responsive astrocytes in the NAc. Repetitive Ca2+ dynamics evoked by GHB suggested that Ca2+ was released from internal stores. Similarly to SUC, the GHB-response was also characterized by an effective concentration of 50 µM. We observed that the number of ATP-responsive cells decreased with increasing concentration of either SUC or GHB. Moreover, the concentration dependence of the number of ATP-responsive cells were highly identical as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB, therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in the brain. The SUC-evoked Ca2+ signal remained in mice lacking GABAB receptor type 1 subunit in the presence and absence of the N-Methyl-D-Aspartate (NMDA receptor antagonist (2R-amino-5-phosphonovaleric acid (APV, indicating action mechanisms independent of the GABAB or NMDA receptor subtypes. By molecular docking calculations we found that residues R99, H103, R252 and R281 of the binding crevice of the kidney SUC-responsive membrane receptor SUCNR1 (GPCR91 also predict interaction with GHB, further implying similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC and GHB may represent a link between brain energy states and Ca2+ signalling in astrocytic networks.

  15. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens.

    Directory of Open Access Journals (Sweden)

    Kevin Lloyd

    2015-12-01

    Full Text Available Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a the resolution of uncertainty about the timing of action; (b the direct influence of dopamine over mechanisms associated with making choices; and (c a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps.

  16. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens.

    Science.gov (United States)

    Lloyd, Kevin; Dayan, Peter

    2015-12-01

    Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps. PMID:26699940

  17. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons.

    Science.gov (United States)

    Ortinski, Pavel I; Briand, Lisa A; Pierce, R Christopher; Schmidt, Heath D

    2015-05-01

    Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs. PMID:25596492

  18. Nucleus accumbens receives gastric vagal inputs

    Institute of Scientific and Technical Information of China (English)

    Sangeeta MEHENDALE; Jing-tian XIE; Han H AUNG; Xiong-Fei GUAN; Chun-Su YUAN

    2004-01-01

    AIM: To localize and characterize the response of single accumbal neurons to electrical stimulation of the gastric vagal fibers. METHODS: Unitary responses to electrical stimulation of the ventral and dorsal gastric vagal fibers which serve the proximal stomach were recorded extracellularly in the nucleus accumbens in anesthetized cats.RESULTS: The evoked units recorded in the nucleus accumbens consisted of phasic and tonic responses, with a mean latency of (396±43) ms. Convergence of ventral and dorsal gastric vagal inputs onto single phasic and tonic accumbal units was observed. For tonic inhibitory responses, convergence was exhibited when stimulation applied to both the ventral and dorsal gastric vagal branches resulted in a significantly longer inhibitory period than did stimulation of a single gastric vagal branch. Comparing the gastric vagally evoked accumbal unitary responses to the neuronal responses recorded in the nucleus tractus solitarius, parabrachial nucleus and hypothalamus in our previous studies, our data showed a higher percentage of single spike responses and shorter response duration's in the nucleus accumbens than in the other nuclei. This suggests that the synaptic drive from the gastric vagal inputs to the nucleus accumbens is less powerful than in the other structures. CONCLUSION: The present study localized and characterized gastric vagally evoked responses in the nucleus accumbens, which suggest that the nucleus accumbens may process gastric signals concerned with the ingestive process.

  19. Functional regulation of PI3K-associated signaling in the accumbens by binge alcohol drinking in male but not female mice.

    Science.gov (United States)

    Cozzoli, Debra K; Kaufman, Moriah N; Nipper, Michelle A; Hashimoto, Joel G; Wiren, Kristine M; Finn, Deborah A

    2016-06-01

    It is well established that binge alcohol consumption produces alterations in Group 1 metabotropic glutamate receptors (mGlus) and related signaling cascades in the nucleus accumbens (NAC) of adult male mice, but female and adolescent mice have not been examined. Thus, the first set of studies determined whether repeated binge alcohol consumption produced similar alterations in protein and mRNA levels of Group 1 mGlu-associated signaling molecules in the NAC of male and female adult and adolescent mice. The adult (9 weeks) and adolescent (4 weeks) C57BL/6J mice were exposed to 7 binge alcohol sessions every 3rd day while controls drank water. Repeated binge alcohol consumption produced sexually divergent changes in protein levels and mRNA expression for Group 1 mGlus and downstream signaling molecules in the NAC, but there was no effect of age. Binge alcohol intake decreased mGlu5 levels in females, whereas it decreased indices of phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), 4E-binding protein 1, and p70 ribosomal protein S6 kinase in males. Expression of genes encoding mGlu1, mGlu5, the NR2A subunit of the NMDA receptor, and Homer2 were all decreased by binge alcohol consumption in males, while females were relatively resistant (only phosphoinositide-dependent protein kinase 1 was decreased). The functional implication of these differences was investigated in a separate study by inhibiting mTOR in the NAC (via infusions of rapamycin) before binge drinking sessions. Rapamycin (50 and 100 ng/side) significantly decreased binge alcohol consumption in males, while consumption in females was unaffected. Altogether these results highlight that mTOR signaling in the NAC was necessary to maintain binge alcohol consumption only in male mice and that binge drinking recruits sexually divergent signaling cascades downstream of PI3K and presumably, Group 1 mGlus. Importantly, these findings emphasize that sex should be considered in the development

  20. Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Karina Possa Abrahao

    Full Text Available In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as "sensitized" and the 33% with the lowest levels as "non-sensitized". The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of

  1. Enhanced dopamine D1 and BDNF signaling in the adult dorsal striatum but not nucleus accumbens of prenatal cocaine treated mice

    Directory of Open Access Journals (Sweden)

    Thomas F. Tropea

    2011-12-01

    Full Text Available Previous work from our group and others utilizing animal models have demonstrated long lasting structural and functional alterations in the meso-cortico-striatal dopamine pathway following prenatal cocaine treatment. We have shown that prenatal cocaine treatment results in augmented D1 -induced cyclic AMP (cAMP and cocaine-induced immediate-early gene expression in the striatum of adult mice. In this study we further examined basal as well as cocaine or D1-induced activation of a set of molecules known to be mediators of neuronal plasticity following psychostimulant treatment, with emphasis in the dorsal striatum (Str and nucleus accumbens (NAc of adult mice exposed to cocaine in utero. Basally, in the striatum of prenatal cocaine treated (PCOC mice there were significantly higher levels of a number of the transcription factors studied. Following acute administration of cocaine (15 mg/kg, i.p. or D1 agonist (SKF 82958; 1 mg/kg, i.p. there were significantly higher levels of Ser133 P-CREB, Thr34 P-DARPP-32, and Thr202/Tyr204 P-ERK2 in the Str, that were significantly augmented in PCOC mice. In sharp contrast, in the NAc of those mice, we found increased P-CREB and P-ERK2 in PSAL mice, a response that was not evident in PCOC mice. Examination of Ser 845 P-GluA1 revealed increased levels in PSAL mice, but significantly decreased levels in PCOC mice in both the Str and NAc following acute administration of cocaine or D1 agonist. We also found significantly higher levels of the BDNF precursor, pro-BDNF and one of its receptors, TrkB in the Str of PCOC mice. These results suggest a persistent up-regulation of molecules critical to D1 and BDNF signaling in the Str of adult mice exposed to cocaine in utero. These molecular adaptations may underlie components of the behavioral deficits evident in exposed animals and a subset of exposed humans, and may represent a therapeutic target for ameliorating aspects of the prenatal cocaine-induced phenotype.

  2. Spatially selective reward site responses in tonically active neurons of the nucleus accumbens in behaving rats

    NARCIS (Netherlands)

    A.B. Mulder; R. Shibata; O Trullier; S.I. Wiener

    2005-01-01

    To study how hippocampal output signals conveying spatial and other contextual information might be integrated in the nucleus accumbens, tonically active accumbens neurons were recorded in three unrestrained rats as they performed spatial orientation tasks on an elevated round rotatable platform wit

  3. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  4. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    Science.gov (United States)

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  5. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    Science.gov (United States)

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  6. mTOR signalling in the nucleus accumbens shell is critical for augmented effect of TFF3 on behavioural response to cocaine.

    Science.gov (United States)

    Luo, Yi-Xiao; Han, Hua; Shao, Juan; Gao, Yuan; Yin, Xi; Zhu, Wei-Li; Han, Ying; Shi, Hai-Shui

    2016-01-01

    Neuropeptides play important roles in modulating the rewarding value of abused drugs. Trefoil factor 3 (TFF3) was recently reported to modulate withdrawal syndrome of morphine, but the effects of TFF3 on the cocaine-induced behavioral changes are still elusive. In the present study, cocaine-induced hyperlocomotion and conditioned place preference (CPP) rat paradigms were provided to investigate the role of TFF3 in the reward response to cocaine. High-performance liquid chromatography (HPLC) analysis was used to analyse the dopamine concentration. The results showed that systemic TFF3 administration (0.1 mg/kg i.p.) significantly augmented cocaine- induced hyperlocomotion and CPP formation, without any effects on locomotor activity and aversive or rewarding effects per se. TFF3 significantly augmented the increment of the dopamine concentration in the NAc and the activity of the mTOR signalling pathway induced by acute cocaine exposure (10 mg/kg, i.p.) in the NAc shell, but not the core. The Intra-NAc shell infusion of rapamycin blocked TFF3-induced hyperactivity in cocaine-treatment rats. These findings indicated that TFF3 could potentiate behavioural response to cocaine, which may be associated with regulating dopamine concentration. Furthermore, the findings indicated that mTOR signalling pathway in the NAc shell is important for TFF3-induced enhancement on the cocaine-induced behavioral changes. PMID:27282818

  7. Nucleus accumbens stimulation in pathological obesity.

    Science.gov (United States)

    Harat, Marek; Rudaś, Marcin; Zieliński, Piotr; Birska, Julita; Sokal, Paweł

    2016-01-01

    One of the potential treatment methods of obesity is deep brain stimulation (DBS) of nucleus accumbens. We describe the case of 19 years old woman with hypothalamic obesity. She weighted 151.4 kg before DBS and the non-surgical methods proved to be inefficient. She was treated with implantation of DBS electrode to nucleus accumbens bilaterally. Results were measured with body mass index and neuropsychological tests. Follow-up was 14 months. Fourteen months after surgery weight was 138 kg, BMI was 48.3. Neuropsychological test results were intact. The presented case supports the thesis of treatment of obesity with nucleus accumbens stimulation. PMID:27154450

  8. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    Science.gov (United States)

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  9. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA. PMID:25102783

  10. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus).

    Science.gov (United States)

    Gray, C L; Norvelle, A; Larkin, T; Huhman, K L

    2015-06-01

    Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat. PMID:25721736

  11. Control of nucleus accumbens activity with neurofeedback

    OpenAIRE

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be pres...

  12. TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice

    NARCIS (Netherlands)

    De Vry, Jochen; Vanmierlo, Tim; Martínez-Martínez, Pilar; Losen, Mario; Temel, Yasin; Boere, Janneke; Kenis, Gunter; Steckler, Thomas; Steinbusch, Harry W M; Baets, Marc De; Prickaerts, Jos

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) exerts antidepressant-like effects in the hippocampus and pro-depressant effects in the nucleus accumbens (NAc). It is thought that downstream signaling of the BDNF receptor TrkB mediates the effects of BDNF in these brain structures. Here, we evaluate how Tr

  13. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens.

    Science.gov (United States)

    Tobiansky, Daniel J; Will, Ryan G; Lominac, Kevin D; Turner, Jonathan M; Hattori, Tomoko; Krishnan, Krittika; Martz, Julia R; Nutsch, Victoria L; Dominguez, Juan M

    2016-06-01

    The sex-steroid hormone estradiol (E2) enhances the psychoactive effects of cocaine, as evidenced by clinical and preclinical studies. The medial preoptic area (mPOA), a region in the hypothalamus, is a primary neural locus for neuroendocrine integration, containing one of the richest concentrations of estrogen receptors in the CNS and also has a key role in the regulation of naturally rewarding behaviors. However, whether estradiol enhances the neurochemical response to cocaine by acting in the mPOA is still unclear. Using neurotoxic lesions and microdialysis, we examined whether the mPOA modulates cocaine-induced neurochemical activity in the nucleus accumbens. Tract tracing and immunohistochemical staining were used to determine whether projections from the mPOA to the ventral tegmental area (VTA) are sensitive to estrogen signaling. Finally, estradiol microinjections followed by microdialysis were used to determine whether estrogenic signaling in the mPOA modulates cocaine-induced changes of dopamine in the nucleus accumbens. Results showed that lesions of the mPOA or microinjections of estradiol directly into the mPOA increased cocaine-induced release of dopamine in the nucleus accumbens. Immunohistochemical analyses revealed that the mPOA modulates cocaine responsiveness via projections to both dopaminergic and GABAergic neurons in the VTA, and that these projections are sensitive to estrogenic stimulation. Taken together, these findings point to a novel estradiol-dependent pathway that modulates cocaine-induced neurochemical activity in the mesolimbic system. PMID:26647972

  14. Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress.

    Science.gov (United States)

    Bosch-Bouju, Clémentine; Larrieu, Thomas; Linders, Louisa; Manzoni, Olivier J; Layé, Sophie

    2016-08-01

    Chronic social defeat stress (CSDS) is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP) in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG) signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress. PMID:27452462

  15. Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress

    Directory of Open Access Journals (Sweden)

    Clémentine Bosch-Bouju

    2016-08-01

    Full Text Available Chronic social defeat stress (CSDS is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress.

  16. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Science.gov (United States)

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  17. Histone arginine methylation in cocaine action in the nucleus accumbens.

    Science.gov (United States)

    Damez-Werno, Diane M; Sun, HaoSheng; Scobie, Kimberly N; Shao, Ningyi; Rabkin, Jaclyn; Dias, Caroline; Calipari, Erin S; Maze, Ian; Pena, Catherine J; Walker, Deena M; Cahill, Michael E; Chandra, Ramesh; Gancarz, Amy; Mouzon, Ezekiell; Landry, Joseph A; Cates, Hannah; Lobo, Mary-Kay; Dietz, David; Allis, C David; Guccione, Ernesto; Turecki, Gustavo; Defilippi, Paola; Neve, Rachael L; Hurd, Yasmin L; Shen, Li; Nestler, Eric J

    2016-08-23

    Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction. PMID:27506785

  18. Neural Encoding of Cocaine Seeking Behavior is Coincident with Phasic Dopamine Release in the Accumbens Core and Shell

    OpenAIRE

    Owesson-White, Catarina A.; Ariansen, Jennifer; Stuber, Garret D.; Cleaveland, Nathan A.; Cheer, Joseph F.; Wightman, R. Mark; Carelli, Regina M.

    2009-01-01

    Mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) are part of a complex circuit mediating cocaine-directed behaviors. However, the precise role of rapid (subsecond) dopamine release within the primary sub-regions of the NAc, the core and shell, and its relationship to NAc cell firing during this behavior remain unknown. Here, using fast-scan cyclic voltammetry (FSCV) we report rapid dopamine signaling in both the core and shell, howeve...

  19. Encoding of aversion by dopamine and the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2012-09-01

    Full Text Available Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc and the dopamine projection to it are considered an integral part of the brain’s reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias towards reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area (VTA and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus – intraoral infusion of sucrose – has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion versus reward.

  20. Encoding of aversion by dopamine and the nucleus accumbens.

    Science.gov (United States)

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward. PMID:23055953

  1. File list: ALL.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX209196,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  2. File list: NoD.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  3. File list: Pol.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209214,SRX209218,SRX209215,SRX209213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  4. File list: InP.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX791596,SRX791600,SRX209801,SRX209802,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  5. File list: Oth.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  6. File list: Oth.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  7. File list: Oth.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  8. File list: His.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...2,SRX029231,SRX029230,SRX029228,SRX209198,SRX209196 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  9. File list: NoD.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  10. File list: His.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791595,S...0,SRX209199,SRX209196,SRX209197,SRX209198,SRX209194 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  11. File list: NoD.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  12. File list: His.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX209200,S...7,SRX209211,SRX029230,SRX029232,SRX029228,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  13. File list: Unc.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...98892,SRX698891 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  14. File list: His.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...8,SRX209196,SRX209197,SRX209198,SRX209194,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  15. File list: ALL.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445333,SRX472711,SRX445335,SRX445331,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  16. File list: Pol.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209218,SRX209215,SRX209213,SRX209214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  17. File list: NoD.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  18. File list: Unc.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29238,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  19. File list: Pol.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209215,SRX209214,SRX209213,SRX209218 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  20. File list: Oth.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  1. File list: Unc.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29234,SRX029236 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  2. File list: InP.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX209802,SRX791596,SRX791600,SRX209801,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  3. File list: ALL.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445335,SRX209198,SRX445331,SRX209194,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  4. File list: ALL.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX209...SRX472713,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  5. File list: Unc.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX029...98892,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  6. File list: InP.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9801,SRX209802,SRX209803,SRX791600,SRX791596,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  7. File list: Pol.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209213,SRX209214,SRX209218,SRX209215 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  8. Rapid feedback processing in human nucleus accumbens and motor thalamus.

    Science.gov (United States)

    Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus

    2015-04-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. PMID:25726897

  9. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    NARCIS (Netherlands)

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  10. Rapid feedback processing in human nucleus accumbens and motor thalamus

    NARCIS (Netherlands)

    Schüller, T.; Gründler, T.O.J.; Jocham, G.; Klein, T.A.; Timmermann, L.; Visser-Vandewalle, V.E.R.M.; Kuhn, J.

    2015-01-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structu

  11. [GABA-NO interaction in the N. Accumbens during danger-induced inhibition of exploratory behavior].

    Science.gov (United States)

    2013-01-01

    In Sprague-Dawley rats by means of in vivo microdialysis combined with HPLC analysis, it was shown that presentation to rats during exploratory activity of a tone previously pared with footshock inhibited the exploration and prevented the exploration-induced increase in extracellular levels of citrulline (an NO co-product) in the medial n. accumbens. Intra-accumbal infusions of 20 μM bicuculline, a GABA(A)-receptor antagonist, firstly, partially restored the exploration-induced increase of extracellular citrulline levels in this brain area, which was inhibited by presentation of the tone, previously paired with foot-shock and, secondly, prevented the inhibition of exploratory behavior produced by this sound signal of danger. The data obtained indicate for the first time that signals of danger inhibit exploratory behavior and exploration-induced activation of the accumbal nitrergic system via GABA(A)-receptor mechanisms. PMID:25508395

  12. Nucleus accumbens lesions modulate the effects of Methylphenidate

    OpenAIRE

    Podet, Adam; Lee, Min J.; Swann, Alan C.; Dafny, Nachum

    2010-01-01

    The psychostimulant methylphenidate (MPD, Ritalin) is the prescribed drug of choice for treatment of ADHD. In recent years, the diagnosis rate of ADHD has increased dramatically, as have the number of MPD prescriptions. Repeated exposure to psychostimulants produces behavioral sensitization in rats, an experimental indicator of a drug’s potential liability. In studies on cocaine and amphetamine, this effect has been reported to involve the nucleus accumbens (NAc), one of the nuclei belonging ...

  13. Nucleus accumbens core lesions enhance two-way active avoidance

    OpenAIRE

    Lichtenberg, Nina T.; Kashtelyan, Vadim; Burton, Amanda C.; Bissonette, Gregory B.; Roesch, Matthew R.

    2013-01-01

    The majority of work examining nucleus accumbens core (NAc) has focused on functions pertaining to behaviors guided by appetitive outcomes. These studies have pointed to NAc as being critical for motivating behavior toward desirable outcomes. For example, we have recently shown that lesions of NAc impaired performance on a reward-guided decision-making task that required rats to choose between differently valued rewards. Unfortunately, much less is known about the role that NAc plays in motiv...

  14. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    Science.gov (United States)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  15. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Science.gov (United States)

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  16. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function.

    Science.gov (United States)

    Singer, Bryan F; Guptaroy, Bipasha; Austin, Curtis J; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A; Gnegy, Margaret E; Robinson, Terry E; Aragona, Brandon J

    2016-03-01

    Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not.

  17. Variation in Oxytocin Receptor Density in the Nucleus Accumbens has Differential Effects on Affiliative Behaviors in Monogamous and Polygamous Voles

    OpenAIRE

    Ross, Heather E.; Freeman, Sara M.; Spiegel, Lauren L.; Ren, Xianghui; Terwilliger, Ernest F.; Young, Larry J.

    2009-01-01

    Oxytocin receptors in the nucleus accumbens have been implicated in the regulation of alloparental behavior and pair bond formation in the socially monogamous prairie vole. Oxytocin receptor density in the nucleus accumbens is positively correlated with alloparenting in juvenile and adult female prairie voles, and oxytocin receptor antagonist infused into the nucleus accumbens blocks this behavior. Furthermore, prairie voles have higher densities of oxytocin receptors in the accumbens than no...

  18. Nuclei accumbens phase synchrony predicts decision-making reversals following negative feedback

    NARCIS (Netherlands)

    M.X. Cohen; N. Axmacher; D. Lenartz; C.E. Elger; V. Sturm; T.E. Schlaepfer

    2009-01-01

    The nucleus accumbens plays a key role in reinforcement-guided behaviors. Here, we report that electrophysiological oscillatory phase synchrony between the two nuclei accumbens may play a crucial role in using negative feedback to guide decision making. We recorded local field potentials from the hu

  19. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.

    Science.gov (United States)

    Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R; Ingebretson, Anna; Asp, Anders J; Fischer, Rachel A; Schmidt, Clare; Larson, Erin B; Thomas, Mark John

    2016-01-19

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  20. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Mariska eMantione

    2014-05-01

    Full Text Available Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens, even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation targeted at the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. This case report substantiates the assumption that the nucleus accumbens is involved in musical preference, based on the observation of direct stimulation of the accumbens with deep brain stimulation. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties.

  1. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    Science.gov (United States)

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  2. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons

    Science.gov (United States)

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Barker, David J.; Miranda-Barrientos, Jorge; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens-glutamatergic pathway remains unknown. Here, we report that nAcc photoactivation of mesoaccumbens-glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens-glutamate-fibers lack GABA, the aversion evoked by their photoactivation depends on glutamate and GABA receptor signaling, and not on dopamine receptor signaling. We found that mesoaccumbens-glutamatergic-fibers establish multiple asymmetric synapses on single parvalbumin-GABAergic interneurons, and that nAcc photoactivation of these fibers drives AMPA-mediated cellular firing of parvalbumin-GABAergic interneurons. These parvalbumin-GABAergic-interneurons, in turn, inhibit nAcc medium spiny output neurons, as such, controlling inhibitory neurotransmission within nAcc. The mesoaccumbens-glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion, instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin-GABAergic interneurons. PMID:27019014

  3. The function of nucleus accumbens in drug addiction%伏核在药物成瘾中的作用

    Institute of Scientific and Technical Information of China (English)

    衡立君; 高国栋

    2005-01-01

    Nucleus accumbens, an important component of brain-reward regions, is involved in the reinforcement, tolerance, addiction and expression of withdrawal syndrome of drug addiction. Previous studies of nucleus accumbens in functional anatomy, receptor activation and signal transduction, gene transcription and molecular expression, neuronal plasticity and changes in behavior help us understand the mechanism of drug addiction in the central nervous system, and provide us with basic principles for clinical treatment of drug withdrawal syndrome.%伏核是脑奖赏中枢的重要组成部分,参与成瘾药物的强化、耐受、成瘾过程及药物戒断综合征的表达.对伏核功能解剖、受体激动与信号转导、基因转录与分子表达、神经元可塑性与行为变化等方面的深入研究,将帮助我们揭示药物成瘾的中枢机制,进而为临床戒毒治疗提供理论依据.

  4. Relationship of Dopamine of the Nucleus Accumbens with Intra-infralimbic Apomorphine Microinjection

    OpenAIRE

    Abbas Alimoradian; Javad Sajedianfard; Faegheh Baha-aldini Beigy; Mohammad Reza Panjehshahin; Ali Akbar Owji

    2013-01-01

      Objective(s): The dopamine level of the nucleus accumbens changes during some stereotyped behaviors. To study dopamine level of the nucleus accumbens in intra infralimbic apomorphine-induced climbing, microdialysis probes were implanted into the nucleus accumbens shell of male Sprague Dawley rats weighting 275–400 g.   Materials and Methods: The rats were divided into two groups (apomorphine and control) of least eleven rats in each group. Apomorphine at dose of 5 μg/0.5 μl or its vehicle w...

  5. Neurotransmitter mechanisms in the nucleus accumbens septi and related regions in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I.

    1981-06-30

    The investigation compares the localization of different transmitter candidates, particularly the amino acide ..gamma..-aminobutyrate (GABA) and glutamate (GLU), in limbic and basal ganglia regions in the rat brain. In particular, the characteristics of nucleus accumbens septi have been studied in some detail. GABA neurons have been found in nucleus accumbens, and GABA projections from this nucleus have been identified in restricted basal forebrain and mesencephalic regions. GLU projections from the neo- or allocortex have been found to terminate in nucleus accumbens and other forebrain and hypothalamic nuclei. Neurotransmitters in local neurons have been identified in the hippocampus, nucleus accumbens, septum and caudatoputamen by means of local kainic acid injections, while neurons in the mediobasal hypothalamus have been studied after systemic treatment of newborn animals with monosodium glutamate. The results are discussed as a basis for a better understanding of limbic-basal ganglia interactions.

  6. Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Thomas F Münte

    2008-03-01

    Full Text Available The Nucleus accumbens (Nacc has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD, we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be signifi cantly increased compared to a large (n= 83 normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, crosscorrelation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior.

  7. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    Science.gov (United States)

    Albaugh, Daniel L.; Salzwedel, Andrew; van den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-09-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action.

  8. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    Science.gov (United States)

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  9. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    Science.gov (United States)

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  10. Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.

    Directory of Open Access Journals (Sweden)

    Nicholas A Donnelly

    Full Text Available Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC and nucleus accumbens (NAcb and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT, which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.

  11. Nucleus accumbens-specific interventions in RGS9-2 activity modulate responses to morphine.

    Science.gov (United States)

    Gaspari, Sevasti; Papachatzaki, Maria M; Koo, Ja Wook; Carr, Fiona B; Tsimpanouli, Maria-Efstratia; Stergiou, Eugenia; Bagot, Rosemary C; Ferguson, Deveroux; Mouzon, Ezekiell; Chakravarty, Sumana; Deisseroth, Karl; Lobo, Mary Kay; Zachariou, Venetia

    2014-07-01

    Regulator of G protein signalling 9-2 (Rgs9-2) modulates the actions of a wide range of CNS-acting drugs by controlling signal transduction of several GPCRs in the striatum. RGS9-2 acts via a complex mechanism that involves interactions with Gα subunits, the Gβ5 protein, and the adaptor protein R7BP. Our recent work identified Rgs9-2 complexes in the striatum associated with acute or chronic exposures to mu opioid receptor (MOR) agonists. In this study we use several new genetic tools that allow manipulations of Rgs9-2 activity in particular brain regions of adult mice in order to better understand the mechanism via which this protein modulates opiate addiction and analgesia. We used adeno-associated viruses (AAVs) to express forms of Rgs9-2 in the dorsal and ventral striatum (nucleus accumbens, NAc) in order to examine the influence of this protein in morphine actions. Consistent with earlier behavioural findings from constitutive Rgs9 knockout mice, we show that Rgs9-2 actions in the NAc modulate morphine reward and dependence. Notably, Rgs9-2 in the NAc affects the analgesic actions of morphine as well as the development of analgesic tolerance. Using optogenetics we demonstrate that activation of Channelrhodopsin2 in Rgs9-2-expressing neurons, or in D1 dopamine receptor (Drd1)-enriched medium spiny neurons, accelerates the development of morphine tolerance, whereas activation of D2 dopamine receptor (Drd2)-enriched neurons does not significantly affect the development of tolerance. Together, these data provide new information on the signal transduction mechanisms underlying opiate actions in the NAc.

  12. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala.

    Directory of Open Access Journals (Sweden)

    Jonathan P Fadok

    Full Text Available The neurotransmitter dopamine (DA is essential for learning in a pavlovian fear conditioning paradigm known as fear-potentiated startle (FPS. Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the basolateral amygdala (BLA and nucleus accumbens (NAc is required for long-term memory of FPS. These data provide crucial insight into the dopamine-dependent circuitry involved in the formation of fear-related memory.

  13. Activin-receptor signaling regulates cocaine-primed behavioral and morphological plasticity

    OpenAIRE

    Gancarz, Amy M.; Wang, Zi-Jun; Schroeder, Gabrielle L.; Damez-Werno, Diane; Braunscheidel, Kevin; Mueller, Lauren E.; Monica S Humby; Caccamise, Aaron; Martin, Jennifer A.; Dietz, Karen C.; Neve, Rachael L; Dietz, David M.

    2015-01-01

    Cocaine addiction is a life-long relapsing disorder that results from long-term adaptations within the brain. We find that Activin-receptor signaling, including the transcription factor Smad3, is upregulated in the rat nucleus accumbens shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally alter cocaine seeking, while governing morphological plasticity in nucleus accumbens neurons. These findings reveal that Activin/Smad3 sig...

  14. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.

    Science.gov (United States)

    Melchior, James R; Ferris, Mark J; Stuber, Garret D; Riddle, David R; Jones, Sara R

    2015-09-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse microenvironments. Local electrical stimulation excites all of the neuronal processes in the stimulation field, potentially modulating the dopamine signal - measured using cyclic voltammetry. Optogenetically targeting light stimulation to dopamine

  15. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Directory of Open Access Journals (Sweden)

    Daniela eNeuhofer

    2015-03-01

    Full Text Available Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP, a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP of excitatory afferent inputs of medium spiny neurons (MSN in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens

  16. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence.

    Science.gov (United States)

    Garbusow, Maria; Schad, Daniel J; Sebold, Miriam; Friedel, Eva; Bernhardt, Nadine; Koch, Stefan P; Steinacher, Bruno; Kathmann, Norbert; Geurts, Dirk E M; Sommer, Christian; Müller, Dirk K; Nebe, Stephan; Paul, Sören; Wittchen, Hans-Ulrich; Zimmermann, Ulrich S; Walter, Henrik; Smolka, Michael N; Sterzer, Philipp; Rapp, Michael A; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas

    2016-05-01

    In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. PMID:25828702

  17. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens.

    Science.gov (United States)

    Wu, Binbin; Liang, Yuyuan; Dong, Zhanglei; Chen, Zhichuan; Zhang, Gaolong; Lin, Wenxuan; Wang, Sicong; Wang, Benfu; Ge, Ren-Shan; Lian, Qingquan

    2016-07-22

    Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward. PMID:27126557

  18. Medial accumbens lesions attenuate testosterone-dependent aggression in male rats.

    Science.gov (United States)

    Albert, D J; Petrovic, D M; Walsh, M L; Jonik, R H

    1989-10-01

    Male hooded rats were castrated and implanted with testosterone-filled Silastic tubes appropriate for maintaining a normal average serum testosterone concentration. They were then given lesions of the medial accumbens nucleus or sham lesions. Twenty-four hours postoperatively each male was housed with a female. Beginning 7 days following pairing and continuing once each week for 4 weeks, each lesioned or sham-lesioned male was observed for aggression toward an unfamiliar male intruder. On the day following each test of aggression toward an unfamiliar male, each lesioned and sham-lesioned male was assessed for defensiveness toward an experimenter. Rats with medial accumbens lesions displayed significantly less aggression toward an unfamiliar male intruder during each of the weekly tests than did sham-lesioned animals. The attenuation was most pronounced in animals with lesions damaging the posterior part of the medial accumbens nucleus (also designated as anterior portion of the bed nucleus of the stria terminalis) in the region of the crossover of the anterior commissure. Although medial accumbens lesions are known to make individually housed rats hyperdefensive toward an experimenter, lesion-induced hyperdefensiveness was not observed in the pair-housed animals in the present experiment. It is argued that the medial accumbens/bed nucleus of the stria terminalis area is an important region in the anterior forebrain for the modulation of hormone-dependent aggression.

  19. Relationship of Dopamine of the Nucleus Accumbens with Intra-infralimbic Apomorphine Microinjection

    Directory of Open Access Journals (Sweden)

    Abbas Alimoradian

    2013-06-01

    Full Text Available   Objective(s: The dopamine level of the nucleus accumbens changes during some stereotyped behaviors. To study dopamine level of the nucleus accumbens in intra infralimbic apomorphine-induced climbing, microdialysis probes were implanted into the nucleus accumbens shell of male Sprague Dawley rats weighting 275–400 g.   Materials and Methods: The rats were divided into two groups (apomorphine and control of least eleven rats in each group. Apomorphine at dose of 5 μg/0.5 μl or its vehicle was microinjected into the infralimbic in apomorphine and control groups respectively. Then, changes in dopamine levels in the nucleus accumbens shell were monitored. The concentration of dopamine was measured by High-Performance Liquid Chromatography-Electochemical (HPLC-ECD. Finally, the stereotyped behaviors were recorded. Results: The mean of dopamine levels for all of after microinjection period in control and drug groups were 450% and 150% respectively compared to those of before microinjection period. However, there was no significant difference between groups of apomorphine and control. In addition, the return of dopamine level to the baseline was faster in apomorphine group than the control group. Conclusion: The intra infralimbic apomorphine -induced climbing at dose of 5 μg/0.5 μl was not modulated via the increase of dopamine level in the nucleus accumbens area.

  20. EFFECTS OF REVERSIBLE INACTIVATION OF BILATERAL ACCUMBENS NUCLEI ON MEMORY STORAGE: ANIMAL STUDY IN RAT MODEL

    Directory of Open Access Journals (Sweden)

    H.A ALAEI

    2002-12-01

    Full Text Available Introduction. Memory and learning play an important role in human"s life that will become problematic in case disability is weak for any reason. There are many factors that facilitate process of mamory and learning of which accumbens nucleus plays an important role. Accumbens nucleus, which is a part of the limbic system, is one of many nuclei found of the septum in the mesencephalon. This study was performed to determine the effects of reversible Inactivation of a accumbens nuclei by lidocaein on memory storage in rat. Method s. Male wistar rats were surgically implancted with cannulae at the accumbens nuclei (Acb bilaterally one weak later they recived one trial PAL (1 mA 1.S sec and exactly at times zero, 60 and 120 minutes after posttraining, lidocaine was infused into the Acb. Retention was tested two days after training. Latency period before entering into the dark part of the shuttle box and duration of time in darkness were index for evaluation of retention. Results. A significant impaired retention performance was at zero and 60 minutes after posttrianing infusion of lidocaine into the Acb. Infusion administered 120 minutes after training had no effect. Discussion. This study has shown that Accumbens nucleus plays major role in praimary learning and memory and it is probable that by blocking this nucleus dopamine release is diminished which causes the learning process to be delayed consequently.

  1. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation.

    Science.gov (United States)

    Salamone, J D

    1994-04-18

    In recent years, considerable emphasis has been placed upon the putative role of nucleus accumbens dopamine systems in appetitive motivation and positive reinforcement. However, considerable evidence indicates that brain dopamine in general, and nucleus accumbens dopamine in particular, is involved in aspects of aversive motivation. Administration of dopamine antagonists or localized interference with nucleus accumbens dopamine systems has been shown to disrupt active avoidance behavior. In addition, accumbens dopamine release and metabolism is activated by a wide variety of stressful conditions. A review of the literature indicates that there are substantial similarities between the characteristics of dopaminergic involvement in appetitive and aversive motivation. There is conflicting evidence about the role of dopamine in emotion, and little evidence to suggest that the profound and consistent changes in instrumental behavior produced by interference with DA systems are due to direct dopaminergic mediation of positive affective responses such as hedonia. It is suggested that nucleus accumbens dopamine is involved in aspects of sensorimotor functions that are involved in both appetitive and aversive motivation. PMID:8037860

  2. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    NARCIS (Netherlands)

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  3. Somatostatin receptors in the nucleus accumbens modulate dopamine-dependent but not acetylcholine-dependent turning behaviour of rats.

    NARCIS (Netherlands)

    Ikeda, H.; Kotani, A.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    The role of somatostatin receptors in the nucleus accumbens shell in rat turning behaviour was studied. Unilateral injection of neither the somatostatin receptor agonist somatostatin (1.0 microg) nor the somatostatin receptor antagonist cyclosomatostatin (100.0 ng) into the nucleus accumbens shell e

  4. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...

  5. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    Science.gov (United States)

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  6. Cocaine-induced homeostatic regulation and dysregulation of nucleus accumbens neurons.

    Science.gov (United States)

    Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2011-01-01

    Homeostatic response is an endowed self-correcting/maintaining property for living units, ranging from subcellular domains, single cells, and organs to the whole organism. Homeostatic responses maintain stable function through the ever-changing internal and external environments. In central neurons, several forms of homeostatic regulation have been identified, all of which tend to stabilize the functional output of neurons toward their prior "set-point." Medium spiny neurons (MSNs) within the forebrain region the nucleus accumbens (NAc) play a central role in gating/regulating emotional and motivational behaviors including craving and seeking drugs of abuse. Exposure to highly salient stimuli such as cocaine administration not only acutely activates a certain population of NAc MSNs, but also induces long-lasting changes in these neurons. It is these long-lasting cellular alterations that are speculated to mediate the increasingly strong cocaine-craving and cocaine-seeking behaviors. Why do the potentially powerful homeostatic mechanisms fail to correct or compensate for these drug-induced maladaptations in neurons? Based on recent experimental results, this review proposes a hypothesis of homeostatic dysregulation induced by exposure to cocaine. Specifically, we hypothesize that exposure to cocaine generates false molecular signals which misleads the homeostatic regulation process, resulting in maladaptive changes in NAc MSNs. Thus, many molecular and cellular alterations observed in the addicted brain may indeed result from homeostatic dysregulation. This review is among the first to introduce the concept of homeostatic neuroplasticity to understanding the molecular and cellular maladaptations following exposure to drugs of abuse. PMID:20708038

  7. Effects of inhibitor of κB kinase activity in the nucleus accumbens on emotional behavior.

    Science.gov (United States)

    Christoffel, Daniel J; Golden, Sam A; Heshmati, Mitra; Graham, Ami; Birnbaum, Shari; Neve, Rachael L; Hodes, Georgia E; Russo, Scott J

    2012-11-01

    Inhibitor of κB kinase (IκK) has historically been studied in the context of immune response and inflammation, but recent evidence demonstrates that IκK activity is necessary and sufficient for regulation of neuronal function. Chronic social defeat stress of mice increases IκK activity in the nucleus accumbens (NAc) and this increase is strongly correlated to depression-like behaviors. Inhibition of IκK signaling results in a reversal of chronic social defeat stress-induced social avoidance behavior. Here, we more completely define the role of IκK in anxiety and depressive-like behaviors. Mice underwent stereotaxic microinjection of a herpes simplex virus expressing either green fluorescent protein, a constitutively active form of IκK (IκKca), or a dominant negative form of IκK into the NAc. Of all three experimental groups, only mice expressing IκKca show a behavioral phenotype. Expression of IκKca results in a decrease in the time spent in the non-periphery zones of an open field arena and increased time spent immobile during a forced swim test. No baseline differences in sucrose preference were observed, but following the acute swim stress we noted a marked reduction in sucrose preference. To determine whether IκK activity alters responses to other acute stressors, we examined behavior and spine morphology in mice undergoing an acute social defeat stress. We found that IκKca enhanced social avoidance behavior and promoted thin spine formation. These data show that IκK in NAc is a critical regulator of both depressive- and anxiety-like states and may do so by promoting the formation of immature excitatory synapses.

  8. Cue-Evoked Cocaine “Craving”: Role of Dopamine in the Accumbens Core

    Science.gov (United States)

    Saunders, Benjamin T.; Yager, Lindsay M.

    2013-01-01

    Drug-associated cues can acquire powerful motivational control over the behavior of addicts, and can contribute to relapse via multiple, dissociable mechanisms. Most preclinical models of relapse focus on only one of these mechanisms: the ability of drug cues to reinforce drug-seeking actions following a period of extinction training. However, in addicts, drug cues typically do not follow seeking actions; they precede them. They often produce relapse by evoking a conditioned motivational state (“wanting” or “craving”) that instigates and/or invigorates drug-seeking behavior. Here we used a conflict-based relapse model to ask whether individual variation in the propensity to attribute incentive salience to reward cues predicts variation in the ability of a cocaine cue to produce conditioned motivation (craving) for cocaine. Following self-administration training, responding was curtailed by requiring rats to cross an electrified floor to take cocaine. The subsequent response-independent presentation of a cocaine-associated cue was sufficient to reinstate drug-seeking behavior, despite the continued presence of the adverse consequence. Importantly, there were large individual differences in the motivational properties of the cocaine cue, which were predicted by variation in the propensity to attribute incentive salience to a food cue. Finally, a dopamine antagonist injected into the nucleus accumbens core attenuated, and amphetamine facilitated, cue-evoked cocaine seeking, implicating dopamine signaling in cocaine cue-evoked craving. These data provide a promising preclinical approach for studying sources of individual variation in susceptibility to relapse due to conditioned craving and implicate mesolimbic dopamine in this process. PMID:23986236

  9. Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences.

    Science.gov (United States)

    Kerfoot, Erin C; Chattillion, Elizabeth A; Williams, Cedric L

    2008-01-01

    The shell division of the nucleus accumbens receives noradrenergic input from neurons in the nucleus of the solitary tract (NTS) that transmit information regarding fluctuations in peripheral hormonal and autonomic activity. Accumbens shell neurons also receive converging inputs from limbic areas such as the hippocampus and amygdala that process newly acquired information. However, few studies have explored whether peripheral information regarding changes in emotional arousal contributes to memory processing in the accumbens. The beneficial effects on memory produced by emotional arousal and the corresponding activation of NTS neurons may be mediated through influences on neuronal activity in the accumbens shell during memory encoding. To explore this putative relationship, Experiment 1 examined interactions between the NTS and the accumbens shell in modulating memory for responses acquired after footshock training in a water-motivated inhibitory avoidance task. Memory for the noxious shock was significantly improved by posttraining excitation of noradrenergic NTS neurons. The enhanced retention produced by activating NTS neurons was attenuated by suppressing neuronal activity in the accumbens shell with bupivacaine (0.25%/0.5 microl). Experiment 2 examined the direct involvement of accumbens shell noradrenergic activation in the modulation of memory for psychologically arousing events such as a reduction in perceived reward value. Noradrenergic activation of the accumbens shell with phenylephrine (1.0 microg/0.5 microl) produced an enhancement in memory for the frustrating experience relative to control injections as evidenced by runway performance on an extended seven-day retention test. These findings demonstrate a functional relationship between NTS neurons and the accumbens shell in modulating memory following physiological arousal and identifies a role of norepinephrine in modulating synaptic activity in the accumbens shell to facilitate this process.

  10. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Directory of Open Access Journals (Sweden)

    Quintero GC

    2013-09-01

    Full Text Available Gabriel C Quintero1–31Florida State University – Panama, Clayton, Panama; 2Medical University of South Carolina, Charleston, South Carolina, USA; 3Smithsonian Tropical Research Institute, Ancon, Republic of PanamaAbstract: Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR. These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family, and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1 of alpha-amino-3-hydroxy-5-methyl-4

  11. Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens

    NARCIS (Netherlands)

    de Rover, Mischa; Lodder, Johannes C.; Smidt, Marten P.; Brussaard, Arjen B.

    2006-01-01

    Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens. J Neurophysiol 96: 2034-2041, 2006. First published July 12, 2006; doi:10.1152/jn.00333.2006. We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus

  12. The Role of the Nucleus Accumbens in Knowing when to Respond

    Science.gov (United States)

    Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey

    2011-01-01

    While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…

  13. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    NARCIS (Netherlands)

    Mantione, Mariska; Figee, Martijn; Denys, D.

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no e

  14. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity

    NARCIS (Netherlands)

    van den Heuvel, José K; Furman, Kara; Gumbs, Myrtille C R; Eggels, Leslie; Opland, Darren M; Land, Benjamin B; Kolk, Sharon M; S Narayanan, Nandakumar; Fliers, Eric; Kalsbeek, A.; DiLeone, Ralph J; la Fleur, Susanne E

    2015-01-01

    BACKGROUND: Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we p

  15. Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation

    NARCIS (Netherlands)

    Cohen, Michael X.; Bour, Lo; Mantione, Mariska; Figee, Martijn; Vink, Matthijs; Tijssen, Marina A. J.; van Rootselaar, Anne-Fleur; van den Munckhof, Pepijn; Schuurman, P. Richard; Denys, Damiaan

    2012-01-01

    The nucleus accumbens and medial frontal cortex (MFC) are part of a loop involved in modulating behavior according to anticipated rewards. However, the precise temporal landscape of their electrophysiological interactions in humans remains unknown because it is not possible to record neural activity

  16. Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices.

    Science.gov (United States)

    Haruno, Masahiko; Kimura, Minoru; Frith, Christopher D

    2014-08-01

    Much decision-making requires balancing benefits to the self with benefits to the group. There are marked individual differences in this balance such that individualists tend to favor themselves whereas prosocials tend to favor the group. Understanding the mechanisms underlying this difference has important implications for society and its institutions. Using behavioral and fMRI data collected during the performance of the ultimatum game, we show that individual differences in social preferences for resource allocation, so-called "social value orientation," is linked with activity in the nucleus accumbens and amygdala elicited by inequity, rather than activity in insula, ACC, and dorsolateral pFC. Importantly, the presence of cognitive load made prosocials behave more prosocially and individualists more individualistically, suggesting that social value orientation is driven more by intuition than reflection. In parallel, activity in the nucleus accumbens and amygdala, in response to inequity, tracked this behavioral pattern of prosocials and individualists. In addition, we conducted an impunity game experiment with different participants where they could not punish unfair behavior and found that the inequity-correlated activity seen in prosocials during the ultimatum game disappeared. This result suggests that the accumbens and amygdala activity of prosocials encodes "outcome-oriented emotion" designed to change situations (i.e., achieve equity or punish). Together, our results suggest a pivotal contribution of the nucleus accumbens and amygdala to individual differences in sociality. PMID:24564471

  17. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  18. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    Directory of Open Access Journals (Sweden)

    Daniel Charles Castro

    2015-06-01

    Full Text Available The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc and ventral pallidum (VP, in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (‘liking’ and motivational incentive salience (‘wanting’ of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating versus intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including ‘liking’ and ‘wanting’ for food rewards.

  19. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Science.gov (United States)

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  20. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    Science.gov (United States)

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  1. Choline Transporter Hemizygosity Results in Diminished Basal Extracellular Dopamine Levels in Nucleus Accumbens and Blunts Dopamine Elevations Following Cocaine or Nicotine

    Science.gov (United States)

    Dong, Yu; Dani, John A.; Blakely, Randy D.

    2015-01-01

    Dopamine (DA) signaling in the central nervous system mediates the addictive capacities of multiple commonly abused substances, including cocaine, amphetamine, heroin and nicotine. The firing of DA neurons residing in the ventral tegmental area (VTA), and the release of DA by the projections of these neurons in the nucleus accumbens (NAc), is under tight control by cholinergic signaling mediated by nicotinic acetylcholine (ACh) receptors (nAChRs). The capacity for cholinergic signaling is dictated by the availability and activity of the presynaptic, high-affinity, choline transporter (CHT, SLC5A7) that acquires choline in an activity-dependent matter to sustain ACh synthesis. Here, we present evidence that a constitutive loss of CHT expression, mediated by genetic elimination of one copy of the Slc5a7 gene in mice (CHT+/−), leads to a significant reduction in basal extracellular DA levels in the NAc, as measured by in vivo microdialysis. Moreover, CHT heterozygosity results in blunted DA elevations following systemic nicotine or cocaine administration. These findings reinforce a critical role of ACh signaling capacity in both tonic and drug-modulated DA signaling and argue that genetically-imposed reductions in CHT that lead to diminished DA signaling may lead to poor responses to reinforcing stimuli, possibly contributing to disorders linked to perturbed cholinergic signaling including depression and attention-deficit hyperactivity disorder (ADHD). PMID:23939187

  2. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections.

    Science.gov (United States)

    Kupchik, Yonatan M; Brown, Robyn M; Heinsbroek, Jasper A; Lobo, Mary Kay; Schwartz, Danielle J; Kalivas, Peter W

    2015-09-01

    It is widely accepted that D1 dopamine receptor-expressing striatal neurons convey their information directly to the output nuclei of the basal ganglia, whereas D2-expressing neurons do so indirectly via pallidal neurons. Combining optogenetics and electrophysiology, we found that this architecture does not apply to mouse nucleus accumbens projections to the ventral pallidum. Thus, current thinking attributing D1 and D2 selectivity to accumbens projections akin to dorsal striatal pathways needs to be reconsidered.

  3. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    Science.gov (United States)

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior.

  4. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    Science.gov (United States)

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence. PMID:26411897

  5. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  6. Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards.

    Science.gov (United States)

    Cameron, Courtney M; Wightman, R Mark; Carelli, Regina M

    2014-11-01

    Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. PMID:25174553

  7. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens

    OpenAIRE

    Owesson-White, CA; Roitman, MF; Sombers, LA; Belle, AM; Keithley, RB; Peele, JL; Carelli, RM; Wightman, RM

    2012-01-01

    Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine due to phasic firing – that is, the measurement of dopa...

  8. Reduced Nucleus Accumbens Reactivity and Adolescent Depression following Early-life Stress

    OpenAIRE

    Goff, Bonnie; Gee, Dylan G.; Telzer, Eva H.; Humphreys, Kathryn L.; Gabard-Durnam, Laurel; Flannery, Jessica; Tottenham, Nim

    2012-01-01

    Depression is a common outcome for those having experienced early life stress (ELS). For those individuals, depression typically increases during adolescence and appears to endure into adulthood, suggesting alterations in the development of brain systems involved in depression. Developmentally, the nucleus accumbens (NAcc), a limbic structure associated with reward learning and motivation, typically undergoes dramatic functional change during adolescence; therefore, age-related changes in NAc...

  9. Glucagon-Like Peptide 1 Receptors in Nucleus Accumbens Affect Food Intake

    OpenAIRE

    Dossat, Amanda M.; Lilly, Nicole; Kay, Kristen; Williams, Diana L.

    2011-01-01

    Central glucagon-like peptide 1 receptor (GLP-1R) stimulation suppresses food intake, and hindbrain GLP-1 neurons project to numerous feeding-relevant brain regions. One such region is the nucleus accumbens (NAc), which plays a role in reward and motivated behavior. Using immunohistochemical and retrograde tracing techniques in rats, we identified a robust projection from GLP-1 neurons in the nucleus of the solitary tract to the NAc. We hypothesized that activation of NAc GLP-1Rs suppresses f...

  10. Nucleus accumbens shell, but not core, tracks motivational value of salt

    OpenAIRE

    Loriaux, Amy L.; Roitman, Jamie D.; Roitman, Mitchell F.

    2011-01-01

    To appropriately respond to an affective stimulus, we must be able to track its value across changes in both the external and internal environment. The nucleus accumbens (NAc) is a critical component of reward circuitry, but recent work suggests that the NAc encodes aversion as well as reward. It remains unknown whether differential NAc activity reflects flexible changes in stimulus value when it is altered due to a change in physiological state. We measured the activity of individual NAc neu...

  11. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    OpenAIRE

    Wakabayashi, Ken T.; Kiyatkin, Eugene A

    2015-01-01

    The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within...

  12. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration

    OpenAIRE

    Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum

    2012-01-01

    Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal’s neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effe...

  13. Differential effects of natural rewards and pain on vesicular glutamate transporter expression in the nucleus accumbens

    OpenAIRE

    Tukey, David S.; Lee, Michelle; Xu, Duo; Eberle, Sarah E.; Goffer, Yossef; Manders, Toby R.; Ziff, Edward B.; Wang, Jing

    2013-01-01

    Background Pain and natural rewards such as food elicit different behavioral effects. Both pain and rewards, however, have been shown to alter synaptic activities in the nucleus accumbens (NAc), a key component of the brain reward system. Mechanisms by which external stimuli regulate plasticity at NAc synapses are largely unexplored. Medium spiny neurons (MSNs) from the NAc receive excitatory glutamatergic inputs and modulatory dopaminergic and cholinergic inputs from a variety of cortical an...

  14. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis

    OpenAIRE

    Carlezon, William A; Thomas, Mark J.

    2008-01-01

    The nucleus accumbens (NAc) is a critical element of the mesocorticolimbic system, a brain circuit implicated in reward and motivation. This basal forebrain structure receives dopamine (DA) input from the ventral tegmental area (VTA) and glutamate (GLU) input from regions including the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP). As such, it integrates inputs from limbic and cortical regions, linking motivation with action. The NAc has a well-established role in mediating t...

  15. Nucleus Accumbens is Involved in Human Action Monitoring: Evidence from Invasive Electrophysiological Recordings

    OpenAIRE

    Münte, Thomas F.; Marcus Heldmann; Hermann Hinrichs; Josep Marco-Pallares; Krämer, Ulrike M.; Volker Sturm; Hans-Jochen Heinze

    2008-01-01

    The Nucleus accumbens (Nacc) has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD), we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic mid...

  16. Gene Expression in Accumbens GABA Neurons from Inbred Rats with Different Drug-Taking Behavior

    OpenAIRE

    Sharp, B M; H Chen; S. Gong; Wu, X; Liu, Z.; Hiler, K.; Taylor, W.L.; Matta, S.G.

    2011-01-01

    Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. Based on their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug taking behavio...

  17. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation.

    Science.gov (United States)

    Vassoler, Fair M; White, Samantha L; Hopkins, Thomas J; Guercio, Leonardo A; Espallergues, Julie; Berton, Olivier; Schmidt, Heath D; Pierce, R Christopher

    2013-09-01

    Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents. PMID:24005296

  18. Experience-Dependent Effects of Cocaine Self-Administration/Conditioning on Prefrontal and Accumbens Dopamine Responses

    OpenAIRE

    Ikegami, Aiko; Olsen, Christopher M; D’Souza, Manoranjan S.; Duvauchelle, Christine L.

    2007-01-01

    Experiments were performed to examine the effects of cocaine self-administration and conditioning experience on operant behavior, locomotor activity, and nucleus accumbens (NAcc) and prefrontal cortex (PFC) dopamine (DA) responses. Sensory cues were paired with alternating cocaine and nonreinforcement during 12 (limited training) or 40 (long-term training) daily operant sessions. After limited training, NAcc DA responses to cocaine were significantly enhanced in the presence of cocaine-associ...

  19. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens

    OpenAIRE

    Zhao, Changjiu; Eisinger, Brian Earl; Driessen, Terri M.; Gammie, Stephen C.

    2014-01-01

    Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relat...

  20. Framework for developing a hierarchical model of reward focusing on the nucleus accumbens.

    Science.gov (United States)

    Smith, Wesley; Nair, Satish S; Xu, Dong; Nair, Jyotsna; Beitman, Bernard

    2004-01-01

    Computational modeling using GENESIS platform has led to advances in fabricating a model to test the influence of molecular/proteomic adaptations on behavior due to reward. The nucleus accumbens is an area of the brain that processes information from other parts of the brain and is an integral element of the 'reward pathway' in the brain. A simplified model of the accumbens using one neuron is developed as part of a larger effort to study reward and chemical dependency with a focus on cocaine addiction. A preliminary model of a biologically realistic neuron was developed with inhibitory and excitatory afferents as well as intrasynapse dynamics. The neuron displayed characteristic behavior of a neuron found in the nucleus accumbens including bistability. The neuron has afferents from other neurons via dendrites which carry the inputs relating to behavioral aspects and to learning. To add behavioral aspects to the model, a methodology is developed to model contexts and their reinforcing effects on behavior, similar to cocaine addiction. Results using both the biological and behavioral modeling are encouraging for this preliminary model. PMID:17271623

  1. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    Science.gov (United States)

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project.

  2. Intra-accumbens injections of the adenosine A(2A) agonist CGS 21680 affect effort-related choice behavior in rats

    OpenAIRE

    Stopper, Colin M.; WORDEN, LILA T.; Mingote, Susana; Port, Russell G.; Salamone, John D.; Font Hurtado, Laura; Pereira, Mariana; Farrar, Andrew M.

    2008-01-01

    Rationale: Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements, and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating eff...

  3. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  4. Changes of phosphorylation of cAMP response element binding protein in rat nucleus accumbens after chronic ethanol intake: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    LIJing; LIYue-Hua; YUANXiao-Ru

    2003-01-01

    AIM: To study the changes in the expression and phosphorylation of cAMP response element binding protein(CREB) in the rat nucleus accumbens after chronic ethanol intake and its withdrawal. METHODS: Ethanol wasgiven in drinking water at the concentration of 6 % (v/v), for one month. Changes in the levels of CREB andphospho-CREB (p-CREB) protein in the nucleus accumbens were measured by immunohistochemistry methods.RESULTS: Ethanol given to rats in drinking water decreased the level of p-CREB protein in the nucleus accumbens(-75 %) at the time of exposure to ethanol. The decrement of p-CREB protein in the nucleus accumbens remainedat 24 h (-35 %) and 72 h (-28 %) of ethanol withdrawal, which recovered toward control level after 7 d of ethanolwithdrawal. However, chronic ethanol, as well as ethanol withdrawal failed to produce any significant alteration inthe level of CREB protein in the nucleus accumbens. Naloxone (alone) treatment of rats had no effect on the levelsof CREB and p-CREB protein in the nucleus accumbens. However, when naloxone was administered concurrentlywith ethanol treatment, it antagonized the down-regulation of p-CREB protein in the nucleus accumbens (142 %) ofrats exposed to ethanol. CONCLUSION: A long-term intake of ethanol solution down-regulates the phosphoryla-tion of CREB in the nucleus accumbens, and those changes can be reversed by naloxone, which may be one kindof the molecular mechanisms associated with ethano1 dependence.

  5. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    OpenAIRE

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H

    2009-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg...

  6. α4-Containing GABAA Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol

    OpenAIRE

    Rewal, Mridula; Jurd, Rachel; Gill, T. Michael; He, Dao-Yao; Ron, Dorit; Janak, Patricia H.

    2009-01-01

    Alcohol has subjective and behavioral effects at the pharmacological levels typically reached during the consumption of one or two alcoholic drinks. Here we provide evidence that an α4-subunit-containing gamma-amino-butyric acid A (GABAA) receptor contributes to the consumption of low-to-moderate levels of alcohol. Using viral-mediated RNA-interference (RNAi), we found that reduced expression of the α4 subunit in the nucleus accumbens (NAc) shell of rats decreased their free consumption of an...

  7. Diazepam alters cocaine self-administration, but not cocaine-stimulated locomotion or nucleus accumbens dopamine

    OpenAIRE

    Maier, Esther Y.; Ledesma, Ramon T.; Seiwell, Andrew P.; Duvauchelle, Christine L.

    2008-01-01

    Cocaine is known to enhance nucleus accumbens dopamine (NAcc DA), serve as a positive reinforcer and produce negative effects, such as anxiety. The influence of diazepam on cocaine intake, cocaine-stimulated behavioral activity and NAcc DA was investigated using self-administration and experimenter-administered intravenous (i.v.) cocaine. In Experiment 1, rats were pretreated with diazepam (0.25 mg/kg) or saline (0.1 ml) 30 minutes prior to 20 daily 1-hr cocaine (0.75 mg/kg/inj) self-administ...

  8. Environmental enrichment alters protein expression as well as the proteomic response to cocaine in rat nucleus accumbens

    Science.gov (United States)

    Lichti, Cheryl F.; Fan, Xiuzhen; English, Robert D.; Zhang, Yafang; Li, Dingge; Kong, Fanping; Sinha, Mala; Andersen, Clark R.; Spratt, Heidi; Luxon, Bruce A.; Green, Thomas A.

    2014-01-01

    Prior research demonstrated that environmental enrichment creates individual differences in behavior leading to a protective addiction phenotype in rats. Understanding the mechanisms underlying this phenotype will guide selection of targets for much-needed novel pharmacotherapeutics. The current study investigates differences in proteome expression in the nucleus accumbens of enriched and isolated rats and the proteomic response to cocaine self-administration using a liquid chromatography mass spectrometry (LCMS) technique to quantify 1917 proteins. Results of complementary Ingenuity Pathways Analyses (IPA) and gene set enrichment analyses (GSEA), both performed using protein quantitative data, demonstrate that cocaine increases vesicular transporters for dopamine and glutamate as well as increasing proteins in the RhoA pathway. Further, cocaine regulates proteins related to ERK, CREB and AKT signaling. Environmental enrichment altered expression of a large number of proteins implicated in a diverse number of neuronal functions (e.g., energy production, mRNA splicing, and ubiquitination), molecular cascades (e.g., protein kinases), psychiatric disorders (e.g., mood disorders), and neurodegenerative diseases (e.g., Huntington's and Alzheimer's diseases). Upregulation of energy metabolism components in EC rats was verified using RNA sequencing. Most of the biological functions and pathways listed above were also identified in the Cocaine X Enrichment interaction analysis, providing clear evidence that enriched and isolated rats respond quite differently to cocaine exposure. The overall impression of the current results is that enriched saline-administering rats have a unique proteomic complement compared to enriched cocaine-administering rats as well as saline and cocaine-taking isolated rats. These results identify possible mechanisms of the protective phenotype and provide fertile soil for developing novel pharmacotherapeutics. Proteomics data are available via

  9. Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain.

    Science.gov (United States)

    Imai, Satoshi; Saeki, Mai; Yanase, Makoto; Horiuchi, Hiroshi; Abe, Minako; Narita, Michiko; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2011-10-26

    Neuropathic pain is the most difficult type of pain to control, and patients lose their motivation for the purposive pursuit with a decrease in their quality of life. Using a functional magnetic resonance imaging analysis, we demonstrated that blood oxygenation level-dependent signal intensity was increased in the ipsilateral nucleus accumbens (N.Acc.) following peripheral nerve injury. microRNAs are small, noncoding RNA molecules that direct the post-transcriptional suppression of gene expression, and play an important role in regulating synaptic plasticity. In this study, we found that sciatic nerve ligation induced a drastic decrease in the expression of miR200b and miR429 in N.Acc. neurons. The expression of DNA methyltransferase 3a (DNMT3a), which is the one of the predicted targets of miR200b/429, was significantly increased in the limbic forebrain including N.Acc. at 7 d after sciatic nerve ligation. Double-immunolabeling with antibodies specific to DNMT3a and NR1 showed that DNMT3a-immunoreactivity in the N.Acc. was located in NR1-labeled neurons, indicating that increased DNMT3a proteins were dominantly expressed in postsynaptic neurons in the N.Acc. area under a neuropathic pain-like state. The results of these analyses provide new insight into an epigenetic modification that is accompanied by a dramatic decrease in miR200b and miR429 along with the dysfunction of "mesolimbic motivation/valuation circuitry" under a neuropathic pain-like state. These phenomena may result in an increase in DNMT3a in neurons of the N.Acc. under neuropathic pain, which leads to the long-term transcription-silencing of several genes.

  10. Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene.

    Science.gov (United States)

    Beckley, Jacob T; Randall, Patrick K; Smith, Rachel J; Hughes, Benjamin A; Kalivas, Peter W; Woodward, John J

    2016-05-01

    Abused inhalants are voluntarily inhaled at high concentrations to produce intoxicating effects. Results from animal studies show that the abused inhalant toluene triggers behaviors, such as self-administration and conditioned place preference, which are commonly associated with addictive drugs. However, little is known about how toluene affects neurons within the nucleus accumbens (NAc), a brain region within the basal ganglia that mediates goal-directed behaviors and is implicated in the development and maintenance of addictive behaviors. Here we report that toluene inhibits a component of the after-hyperpolarization potential, and dose-dependently inhibits N-methyl-D-aspartate (NMDA)-mediated currents in rat NAc medium spiny neurons (MSN). Moreover, using the multivariate statistical technique, partial least squares discriminative analysis to analyze electrophysiological measures from rat NAc MSNs, we show that toluene induces a persistent depression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated currents in one subtype of NAc MSNs, and that the electrophysiological features of MSN neurons predicts their sensitivity to toluene. The CB1 receptor antagonist AM281 blocked the toluene-induced long-term depression of AMPA currents, indicating that this process is dependent on endocannabinoid signaling. The neuronal identity of recorded cells was examined using dual histochemistry and shows that toluene-sensitive NAc neurons are dopamine D2 MSNs that express preproenkephalin mRNA. Overall, the results from these studies indicate that physiological characteristics obtained from NAc MSNs during whole-cell patch-clamp recordings reliably predict neuronal phenotype, and that the abused inhalant toluene differentially depresses excitatory neurotransmission in NAc neuronal subtypes. PMID:25752326

  11. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization.

    Science.gov (United States)

    Todtenkopf, M S; Carreiras, T; Melloni, R H; Stellar, J R

    2002-04-01

    The mesolimbic dopamine system has been intensely studied as the neural circuit mediating the locomotor response to psychostimulants and behavioral sensitization. In particular, the dopaminergic innervation of the nucleus accumbens has been implicated as a site responsible for the manifestations of behavioral sensitization. Previous studies have demonstrated an augmented release of dopamine in the nucleus accumbens upon a systemic injection of a psychostimulant. In addition, alterations in the dopaminergic innervation patterns in this brain region have been demonstrated in animals that received repeated injections of cocaine. Furthermore, lesions of projection sites that have terminations in the nucleus accumbens have demonstrated alterations in psychostimulant induced locomotion, both acutely, as well as in sensitization paradigms. Since dopamine in the nucleus accumbens is believed to regulate several excitatory amino acid inputs, the present study examined the effects of a localized electrolytic lesion in the dorsomedial shell of the nucleus accumbens in order to better understand the functional role this brain region has in behavioral sensitization. All animals received bi-daily injections of 15 mg/kg i.p. cocaine. Only those demonstrating behavioral sensitization after a subsequent challenge dose were included in the analysis. Following acute exposure to cocaine, lesioned animals did not show any difference in their locomotor response when compared with sham controls. However, after repeated exposure to cocaine, sensitized animals demonstrated a significant attenuation in locomotor behavior when compared with sensitized sham controls. This decrease in horizontal locomotion persisted 2 days into withdrawal, yet dissipated in the sensitized animals that were challenged 2 weeks following their last injection. The data presented here demonstrate that the dorsomedial shell of the nucleus accumbens plays an important role in the initial stages of behavioral

  12. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning.

    Science.gov (United States)

    Smith-Roe, S L; Kelley, A E

    2000-10-15

    The nucleus accumbens, a brain structure ideally situated to act as an interface between corticolimbic information-processing regions and motor output systems, is well known to subserve behaviors governed by natural reinforcers. In the accumbens core, glutamatergic input from its corticolimbic afferents and dopaminergic input from the ventral tegmental area converge onto common dendrites of the medium spiny neurons that populate the accumbens. We have previously found that blockade of NMDA receptors in the core with the antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol) abolishes acquisition but not performance of an appetitive instrumental learning task (Kelley et al., 1997). Because it is currently hypothesized that concurrent dopamine D(1) and glutamate receptor activation is required for long-term changes associated with plasticity, we wished to examine whether the dopamine system in the accumbens core modulates learning via NMDA receptors. Co-infusion of low doses of the D(1) receptor antagonist SCH-23390 (0.3 nmol) and AP-5 (0.5 nmol) into the accumbens core strongly impaired acquisition of instrumental learning (lever pressing for food), whereas when infused separately, these low doses had no effect. Infusion of the combined low doses had no effect on indices of feeding and motor activity, suggesting a specific effect on learning. We hypothesize that co-activation of NMDA and D(1) receptors in the nucleus accumbens core is a key process for acquisition of appetitive instrumental learning. Such an interaction is likely to promote intracellular events and gene regulation necessary for synaptic plasticity and is supported by a number of cellular models.

  13. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  14. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...... explored the potential role of NPY in addiction mechanisms using microdialysis to measure extracellular dopamine in vivo after infusion of NPY directly into the accumbal shell region of adult rats. NPY was found to dose-dependently increase extracellular dopamine levels, indicating that NPY could play...

  15. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization.

    Science.gov (United States)

    Peng, Qinghua; Sun, Xi; Liu, Ziyong; Yang, Jianghua; Oh, Ki-Wan; Hu, Zhenzhen

    2014-09-01

    Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102. PMID:24953280

  16. Does incentive-elicited nucleus accumbens activation differ by substance of abuse? An examination with adolescents.

    Science.gov (United States)

    Karoly, Hollis C; Bryan, Angela D; Weiland, Barbara J; Mayer, Andrew; Dodd, Andrew; Feldstein Ewing, Sarah W

    2015-12-01

    Numerous questions surround the nature of reward processing in the developing adolescent brain, particularly in regard to polysubstance use. We therefore sought to examine incentive-elicited brain activation in the context of three common substances of abuse (cannabis, tobacco, and alcohol). Due to the role of the nucleus accumbens (NAcc) in incentive processing, we compared activation in this region during anticipation of reward and loss using a monetary incentive delay (MID) task. Adolescents (ages 14-18; 66% male) were matched on age, gender, and frequency of use of any common substances within six distinct groups: cannabis-only (n=14), tobacco-only (n=34), alcohol-only (n=12), cannabis+tobacco (n=17), cannabis+tobacco+alcohol (n=17), and non-using controls (n=38). All groups showed comparable behavioral performance on the MID task. The tobacco-only group showed decreased bilateral nucleus accumbens (NAcc) activation during reward anticipation as compared to the alcohol-only group, the control group, and both polysubstance groups. Interestingly, no differences emerged between the cannabis-only group and any of the other groups. Results from this study suggest that youth who tend toward single-substance tobacco use may possess behavioral and/or neurobiological characteristics that differentiate them from both their substance-using and non-substance-using peers.

  17. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation

    NARCIS (Netherlands)

    Kleijn, J.; Wiskerke, J.; Cremers, T. I. F. H.; Schoffelmeer, A. N. M.; Westerink, B. H. C.; Pattij, T.

    2012-01-01

    The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial pre

  18. Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning

    NARCIS (Netherlands)

    R. Ito; T.W. Robbins; C.M. Pennartz; B.J. Everitt

    2008-01-01

    The nucleus accumbens (NAc) has been implicated in a variety of associative processes that are dependent on the integrity of the amygdala and hippocampus (HPC). However, the extent to which the two subregions of the NAc, the core and shell, form differentiated circuits within the amygdala- and hippo

  19. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  20. The hypomotility elicited by small doses of apomorphine seems exclusively mediated by dopaminergic systems in the nucleus accumbens

    NARCIS (Netherlands)

    Radhakishun, F.S.; Ree, J.M. van

    1987-01-01

    The reduction of motor activity elicited in rats by a subcutaneous injection of a small dose of apomorphine was reversed by pretreatment of the nucleus accumbens with haloperidol (10 pg), sulpride (10 pg) or desenkephalin-γ-endorphin (DEγE) (100 pg or 10 ng). These doses of the compounds did not cha

  1. Regulation of 3H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    International Nuclear Information System (INIS)

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain

  2. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  3. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  4. Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics.

    Science.gov (United States)

    Tupala, E; Hall, H; Bergström, K; Särkioja, T; Räsänen, P; Mantere, T; Callaway, J; Hiltunen, J; Tiihonen, J

    2001-05-01

    Alcohol acts through mechanisms involving the brain neurotransmitter dopamine (DA) with the nucleus accumbens as the key zone for mediating these effects. We evaluated the densities of DA D(2)/D(3) receptors and transporters in the nucleus accumbens and amygdala of post-mortem human brains by using [(125)l]epidepride and [(125)I]PE2I as radioligands in whole hemispheric autoradiography of Cloninger type 1 and 2 alcoholics and healthy controls. When compared with controls, the mean binding of [(125)I]epidepride to DA D(2)/D(3) receptors was 20% lower in the nucleus accumbens and 41% lower in the amygdala, and [(125)I]PE2I binding to DA transporters in the nucleus accumbens was 39% lower in type 1 alcoholics. These data indicate that dopaminergic functions in these limbic areas may be impaired among type 1 alcoholics, due to the substantially lower number of receptor sites. Our results suggest that such a reduction may result in the chronic overuse of alcohol as an attempt to stimulate DA function. PMID:11326293

  5. The nucleus accumbens shell and the dorsolateral striatum mediate the reinforcing effects of cocaine through a serial connection

    NARCIS (Netherlands)

    Veeneman, Maartje M J; Damsteegt, Ruth; Vanderschuren, Louk J M J

    2015-01-01

    The reinforcing and addictive properties of cocaine are thought to rely on the dopaminergic innervation of the striatum. The ventromedial [i.e. nucleus accumbens shell (NAcc) shell] and dorsolateral [dorsolateral striatum (DLS)] regions of the striatum are serially connected, and it is thought that

  6. Dual effects of limbic seizures on psychosis-relevant behaviors shown by nucleus accumbens kindling in rats

    Science.gov (United States)

    Ma, Jingyi; Leung, L. Stan

    2016-01-01

    Background A paradox in epilepsy and psychiatry is that temporal lobe epilepsy is often predisposed to schizophrenic-like psychosis, whereas convulsive therapy can relieve schizophrenic symptoms. We have previously demonstrated that the nucleus accumbens is a key structure in mediating postictal psychosis induced by a hippocampal electrographic seizure. Objective/Hypothesis The purpose of this study is to test a hypothesis that accumbens kindling cumulating in a single (1-time) or repeated (5-times) convulsive seizures have different effects on animal models of psychosis. Methods Electrical stimulation at 60 Hz was applied to nucleus accumbens to evoke afterdischarges until one, or five, convulsive seizures that involved the hind limbs (stage 5 seizures) were attained. Behavioral tests, performed at 3 days after the last seizure, included gating of hippocampal auditory evoked potentials (AEP) and prepulse inhibition to an acoustic startle response (PPI), tested without drug injection or after ketamine (3 mg/kg s.c.) injection, as well as locomotion induced by ketamine or methamphetamine (1 mg/kg i.p.). Results Compared to non-kindled control rats, 1-time, but not 5-times, convulsive seizures induced PPI deficit and decreased gating of hippocampal AEP, without drug injection. Compared to non-kindled rats, 5-times, but not 1-time, convulsive seizures antagonized ketamine-induced hyperlocomotion, ketamine-induced PPI deficit and AEP gating decrease. However, both 1- and 5-times convulsive seizures, significantly enhanced methamphetamine-induced locomotion as compared to non-kindled rats. Conclusions Accumbens kindling ending with 1 convulsive seizure may induce schizophrenic-like behaviors, while repeated (≥ 5) convulsive seizures induced by accumbens kindling may have therapeutic effects on dopamine independent psychosis. PMID:27267861

  7. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  8. Modifications in glutamatergic transmission after dopamine depletion of the nucleus accumbens. A combined in vivo/in vitro electrophysiological study in the rat.

    Science.gov (United States)

    Mulder, A B; Manshanden, I; Vos, P E; Wolterink, G; van Ree, J M; Lopes da Silva, F H

    1996-06-01

    The interaction between the glutamatergic and dopaminergic input in the nucleus accumbens was examined by studying the effects of dopamine depletion of the nucleus accumbens on the local field potentials, and the L-glutamate elicited responses of the nucleus accumbens in anaesthetized rats in vivo. A characteristic field potential in the nucleus accumbens is evoked by electrical stimulation of the fornix/fimbria fibres, with a monosynaptic positive peak at 10 ms (P10). Rats were unilaterally injected with 6-hydroxydopamine in the nucleus accumbens. The contralateral accumbens was sham lesioned. The rats were divided into short-term and long-term survival groups of one to two weeks and 24 weeks, respectively. In the short-term group, a striking increase (up to three times) of the amplitude of the P10 components, at the site of the lesion, compared with the sham lesioned contralateral accumbens and untreated rats, was found. The long-term group could still display a slight increase although on average this was not significantly different from controls. In the short-term group, at the centre of the lesion, the paired-pulse facilitation ratio was significantly smaller than at the more ventral, less denervated, border of the accumbens. These differences were no longer visible in the long-term group. Single-unit activity of the accumbens, elicited by the iontophoretical application of L-glutamate showed, in controls, a maximal firing frequency ranging from 5 to 40 Hz (mean 25 Hz), whereas in the short-term group more than 50% of the accumbens neurons fired with higher frequencies, reaching up to 90 Hz (mean 55 Hz). In the long-term group the firing frequency varied from 5 to 60 Hz (mean 41 Hz). No changes in threshold ejection glutamate current were found for both lesioned groups. In control rats the L-glutamate elicited responses of six cells tested could be suppressed by dopamine whereas in lesioned rats three of the six cells tested were unresponsive to dopamine

  9. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  10. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  11. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    Science.gov (United States)

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.

  12. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    Science.gov (United States)

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors.

  13. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.

    Science.gov (United States)

    MacAskill, Andrew F; Cassel, John M; Carter, Adam G

    2014-09-01

    Repeated exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we used whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine exposure alters connectivity in the mouse NAc medial shell. Cocaine selectively enhanced amygdala innervation of MSNs expressing D1 dopamine receptors (D1-MSNs) relative to D2-MSNs. We also found that amygdala activity was required for cocaine-induced changes to behavior and connectivity. Finally, we established how heightened amygdala innervation can explain the structural and functional changes evoked by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell type- and input-specific connectivity in the NAc.

  14. Familiar companions diminish cocaine conditioning and attenuate cocaine-stimulated dopamine release in the nucleus accumbens.

    Science.gov (United States)

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Wang, Shyi-Wu; Yu, Lung

    2016-06-01

    This study aimed to assess the impact of companions on the rewarding effects of cocaine. Three cage mates, serving as companions, were housed with each experimental mouse throughout cocaine-place conditioning in a cocaine-induced conditioned place preference (CPP) paradigm using conditioning doses of 10 and 20mg/kg. The presence of companions decreased the magnitude of the CPP. At 20mg/kg, cocaine stimulated dopamine (DA) release in the nucleus accumbens as evidenced by a significant decrease in total (spontaneous and electrical stimulation-provoked) DA release in accumbal superfusate samples. The presence of companions prevented this cocaine-stimulated DA release; such a reduction in cocaine-induced DA release may account for the reduction in the magnitude of the CPP in the presence of the companions. Furthermore, cocaine pretreatment (2.5mg/kg) was found to prevent the companion-produced decreases in cocaine (10mg/kg/conditioning)-induced CPP as well as the cocaine (10mg/kg)-stimulated DA release. Moreover, the presence of methamphetamine (MA) (1mg/kg)-treated companions decreased cocaine (20mg/kg/conditioning)-induced CPP and prevented the cocaine (20mg/kg)-stimulated DA release. Finally, the presence of companions decreased the magnitude of the CPP could not seem to be accounted for by cocaine-stimulated corticosterone (CORT) release. Taken together, these results indicate that familiar companions, regardless of their pharmacological status, may exert dampening effects on CPP induced by moderate to high conditioning doses of cocaine, at least in part, by preventing cocaine-stimulated DA release in the nucleus accumbens. PMID:27001454

  15. Task-related functional connectivity of nucleus accumbens in opiate drug addicts during physical detoxification: a cue-elicited task fMRI study%生理脱毒期阿片类药物依赖者线索诱发作业下伏隔核功能连接的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    韩易; 傅先明; 钱若兵; 林彬; 袁季; 魏祥品; 牛朝诗; 汪业汉

    2014-01-01

    目的 探讨生理脱毒期阿片类药物依赖者线索诱发作业下与伏隔核存在异常功能连接的脑区及其在戒断复吸中的作用.方法 生理脱毒期阿片类药物依赖组和健康对照组各18例,在观看与阿片类药物依赖线索相关视频时进行功能磁共振成像扫描,分别选取左、右侧伏隔核为感兴趣区进行功能连接分析,确定与双侧伏隔核存在功能连接的脑区.结果 与健康对照组相比,生理脱毒期阿片类药物依赖组的伏隔核与前额叶(46,29,-9)、岛叶(31,25,-7)、后扣带回(4,-59,19)、楔前叶(4,-63,22)、枕叶(6,71,16)、舌回(11,-37,-8)和距状回(3,-45,7)的功能连接明显高于健康对照组,而与丘脑(-8,-13,2)、前扣带回(-2,44,20)功能连接明显低于健康对照组(P<0.05).结论 生理脱毒期阿片类药物依赖者线索诱导下的伏隔核存在功能异常,这可能是其容易复吸的重要原因之一.%Objective To explore the brain areas which have abnormal functional connectivity with nucleus accumbens in opiate drug addicts during physical detoxification nsing a cue-elicited task-related functional magnetic resonance imaging (fMRI),and to find out the role of nucleus accumbens dysfunction in the relapse of opiate drug dependence during physical detoxification.Methods Eighteen participants of opiate drug addicts during physical detoxification,and eighteen healthy controls performed a cue-elicited craving task in a MRI scanner while signal data were collected.The left and right nucleus accumbens were selected as regions of interest (ROIs) respectively,and calculated the linear correlation between the nucleus accumbens and the entire brain to find out the functional connectivity of the nucleus accumbens.Results Compared with the controls,the functional connectivity between the nucleus accumbens and the prefrontal cortex (46,29,-9),insula(3 1,25,-7),posterior cingutate (4,-59,19),precuneus(4,-63,22),occipital lobe(6,71,16),lingual

  16. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how and why?

    Directory of Open Access Journals (Sweden)

    Marina E Wolf

    2012-06-01

    Full Text Available In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs in two brain regions that are critical for motivation and reward - the ventral tegmental area (VTA and the nucleus accumbens (NAc. This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs. This plasticity is rapid (hours, GluA2-dependent, and can be observed with a single cocaine injection. In addition to strengthening synapses and altering Ca2+ signaling, CP-AMPAR insertion affects subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased dopamine cell activity that occurs during early withdrawal from cocaine exposure. Within the VTA, the group I metabotropic glutamate receptor mGluR1 exerts a negative influence on CP-AMPAR accumulation. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as a treatment for cocaine addiction.

  17. Matrix-assisted laser desorption/ionization tissue profiling of secretoneurin in the nucleus accumbens shell from cocaine-sensitized rats

    OpenAIRE

    Uys, Joachim D.; Grey, Angus C.; Wiggins, Armina; Schwacke, John H.; Schey, Kevin L.; Peter W Kalivas

    2010-01-01

    Proteins in the nucleus accumbens mediate many cocaine-induced behaviors. In an effort to measure changes in nucleus accumbens protein expression as potential biomarkers for addiction, coronal tissue sections were obtained from rats that developed behavioral sensitization after daily administration of cocaine, or from daily saline-treated controls. The tissue sections were subjected to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) profiling and tissue imaging. For...

  18. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    OpenAIRE

    Gilles Erwann Martin; Xincai eJi; Sucharita eSaha

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus), each region providing different informatio...

  19. Galanin-induced decreases in nucleus accumbens/striatum EPSPs and morphine conditioned place preference require both GalR1 and GalR2

    Science.gov (United States)

    Einstein, Emily B.; Asaka, Yukiko; Yeckel, Mark F.; Higley, Michael J.; Picciotto, Marina R.

    2013-01-01

    The neuropeptide galanin has been shown to alter the rewarding properties of morphine. To identify potential cellular mechanisms that might be involved in the ability of galanin to modulate opiate reward, we measured excitatory post-synaptic potentials (EPSPs) using both field and whole-cell recordings from striatal brain slices extracted from wild type mice and mice lacking specific galanin receptor (GalR) subtypes. We found that galanin decreases the amplitude of EPSPs in both the dorsal striatum and nucleus accumbens. We then performed recordings in slices from knockout mice lacking either the GalR1 or GalR2 gene and found that the ability of galanin to decrease EPSP amplitude was absent from both mouse lines, suggesting that both receptor subtypes are required for this effect. In order to determine whether behavioral responses to opiates were dependent on the same receptor subtypes, we tested GalR1 and GalR2 mice for morphine conditioned place preference (CPP). Morphine CPP was significantly attenuated in both GalR1 and GalR2 knockout mice. These data suggest that mesolimbic excitatory signaling is significantly modulated by galanin in a GalR1- and GalR2-dependent manner and that morphine CPP is dependent on the same receptor subtypes. PMID:23387435

  20. Mu-opioid receptor activation in the medial shell of nucleus accumbens promotes alcohol consumption, self-administration and cue-induced reinstatement.

    Science.gov (United States)

    Richard, Jocelyn M; Fields, Howard L

    2016-09-01

    Endogenous opioid signaling in ventral cortico-striatal-pallidal circuitry is implicated in elevated alcohol consumption and relapse to alcohol seeking. Mu-opioid receptor activation in the medial shell of the nucleus accumbens (NAc), a region implicated in multiple aspects of reward processing, elevates alcohol consumption while NAc opioid antagonists reduce it. However, the precise nature of the increases in alcohol consumption, and the effects of mu-opioid agonists on alcohol seeking and relapse are not clear. Here, we tested the effects of the mu-opioid agonist [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) in rat NAc shell on lick microstructure in a free-drinking test, alcohol seeking during operant self-administration, extinction learning and expression, and cue-reinforced reinstatement of alcohol seeking. DAMGO enhanced the number, but not the size of drinking bouts. DAMGO also enhanced operant alcohol self-administration and cue-induced reinstatement, but did not affect extinction learning or elicit reinstatement in the absence of cues. Our results suggest that mu-opioid agonism in NAc shell elevates alcohol consumption, seeking and conditioned reinforcement primarily by enhancing the incentive motivational properties of alcohol and alcohol-paired cues, rather than by modulating palatability, satiety, or reinforcement. PMID:27089981

  1. Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation

    OpenAIRE

    Beyene, Manna; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    The mesolimbic dopamine system is critically involved in modulating reward-seeking behavior and is transiently activated upon presentation of reward-predictive cues. It has previously been shown, using fast-scan cyclic voltammetry in behaving rats, that cues predicting a variety of reinforcers including food/water, cocaine or intracranial self-stimulation (ICSS) elicit time-locked transient fluctuations in dopamine concentration in the nucleus accumbens (NAc) shell. These dopamine transients ...

  2. The NMDA receptor antagonist CPP suppresses long-term potentiation in the rat hippocampal-accumbens pathway in vivo.

    Science.gov (United States)

    Feasey-Truger, K J; ten Bruggencate, G

    1994-08-01

    Excitation of afferent fibres originating in the ventral subiculum of the hippocampus through stimulation of the fimbria elicits field potentials in the nucleus accumbens. When recorded in the dorsomedial aspect of the nucleus accumbens, the evoked field responses consisted of an early, negative-going component (N1) with a peak latency of 8-10 ms, followed by a second negative-going peak (N2) with a latency of 22-24 ms. The N1 response reflects monosynaptic activation of nucleus accumbens neurons; the N2 component appears to be polysynaptic in origin. In control rats, high-frequency stimulation of the fimbria (three trains at 250 Hz, 250 ms, delivered at 50 min intervals) resulted in a long-lasting potentiation of both the N1 and N2 components. The magnitude of potentiation exhibited by the polysynaptic N2 response was typically greater than that of the monosynaptically evoked N1 response. Following delivery of the first train, the amplitude of the N1 and N2 components was increased by approximately 20 and 50% respectively. Administration of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP, 10 mg/kg i.p.) had no significant effects on the evoked nucleus accumbens responses. High-frequency stimulation failed to produce a significant increase in the amplitude of either the N1 or the N2 response when delivered 45-60 min after CPP administration. To test whether the suppressant effects of CPP were time-dependent, two further high-frequency trains were applied 90 and 180 min after administration of the drug.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7981867

  3. Dopamine Receptor Blockade Modulates the Rewarding and Aversive Properties of Nicotine via Dissociable Neuronal Activity Patterns in the Nucleus Accumbens

    OpenAIRE

    Sun, Ninglei; Laviolette, Steven R

    2014-01-01

    The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Usin...

  4. The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment

    OpenAIRE

    Kohls, Gregor; Perino, Michael T.; Taylor, James M.; Madva, Elizabeth N.; Cayless, Sarah J.; Troiani, Vanessa; Price, Elinora; Faja, Susan; Herrington, John D.; Schultz, Robert T.

    2013-01-01

    Human social motivation is characterized by the pursuit of social reward and the avoidance of social punishment. The ventral striatum/nucleus accumbens (VS/Nacc), in particular, has been implicated in the reward component of social motivation, i.e., the ‘wanting’ of social incentives like approval. However, it is unclear to what extent the VS/Nacc is involved in avoiding social punishment like disapproval, an intrinsically pleasant outcome. Thus, we conducted an event-related functional magne...

  5. CaMKII Activity in the Ventral Tegmental Area Gates Cocaine-Induced Synaptic Plasticity in the Nucleus Accumbens

    OpenAIRE

    Liu, Xiaojie; Liu, Yong; Zhong, Peng; Wilkinson, Brianna; Qi, Jinshun; Olsen, Christopher M; Bayer, K. Ulrich; Liu, Qing-song

    2013-01-01

    Addictive drugs such as cocaine induce synaptic plasticity in discrete regions of the reward circuit. The aim of the present study is to investigate whether cocaine-evoked synaptic plasticity in the ventral tegmental area (VTA) and nucleus accumbens (NAc) is causally linked. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of long-term synaptic plasticity, learning, and drug addiction. We examined whether blocking CaMKII activity in the VTA affected cocaine conditio...

  6. The Effects of Nucleus Accumbens μ-opioid and Adenosine 2A Receptor Stimulation and Blockade on Instrumental Learning

    OpenAIRE

    Clissold, Kara A.; Pratt, Wayne E.

    2014-01-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained ...

  7. Certain or uncertain cocaine expectations influence accumbens dopamine responses to self-administered cocaine and non-rewarded operant behavior

    OpenAIRE

    D’Souza, Manoranjan S.; Duvauchelle, Christine L.

    2008-01-01

    Uncertainty and errors in predicting natural rewards influence associative learning and dopamine activity. The present study was conducted to determine the influence of cue-induced cocaine uncertainty, certainty and prediction error on nucleus accumbens dopamine (NAcc DA) in rats. For Certainty training, distinctive sensory cues were present during cocaine availability and alternate cues were paired with non-reinforced (saline) operant sessions. For Uncertainty training, all cues were equally...

  8. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    OpenAIRE

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E.

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different informatio...

  9. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats

    OpenAIRE

    Spiga, S.; Talani, G; Mulas, G.; Licheri, V; Fois, GR; Muggironi, G; Masala, N; Cannizzaro, C; Biggio, G; E. Sanna; Diana, M.

    2014-01-01

    This paper examines the intimate neuroarchitecture of the nucleus accumbens shell region and how it affects synaptic plasticity in alcohol-dependent rats. To do so, a simultaneous morphometrical/immunofluorescence method was applied to visualize various types of dendritic spines and patch-clamp techniques to detect changes in synaptic currents. Using these tools, we show a selective loss of “long thin” spines accompanied by an impaired long-term depression (LTD) in alcohol-dependent rats. Dop...

  10. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Matthew R Holahan

    Full Text Available Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7, tris buffer (n = 6 or a randomized DNA oligonucleotide (n = 7. Animals were then treated systemically with MK-801 (0.1 mg/kg and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  11. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    Directory of Open Access Journals (Sweden)

    Kim G T Pulman

    Full Text Available Stimulation of either GABA(A or GABA(B receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A receptor agonist muscimol and GABA(B receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol stimulated responding but a higher dose (660 pmol induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol also stimulated intake of freely available chow. Muscimol (220-660 pmol was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A or GABA(B receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  12. GSK-3β inhibitors reverse cocaine-induced synaptic transmission dysfunction in the nucleus accumbens.

    Science.gov (United States)

    Zhao, Rui; Chen, Jiaojiao; Ren, Zhaoxiang; Shen, Hui; Zhen, Xuechu

    2016-11-01

    Nucleus accumbens receives glutamatergic projection from the prefrontal cortex (PFC) and dopaminergic input from the Ventral tegmental area (VTA). Recent studies have suggested a critical role for serine/threonine kinase glycogen synthase kinase 3β (GSK3β) in cocaine-induced hyperactivity; however, the effect of GSK3β on the modulation of glutamatergic and dopaminergic afferents is unclear. In this study, we found that the GSK3 inhibitors, LiCl (100 mg/kg, i.p.) or SB216763 (2.5 mg/kg, i.p.), blocked the cocaine-induced hyperlocomotor activity in rats. By employing single-unit recordings in vivo, we found that pretreatment with either SB216763 or LiCl for 15 min reversed the cocaine-inhibited firing frequency of medium spiny neuron (MSN) in the nucleus accumbens (NAc). Preperfusion of SB216763 (5 μM) ameliorated the inhibitory effect of cocaine on both the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (up to 99 ± 6.8% inhibition) and N-methyl-D-aspartic acid receptor (NMDAR)-mediate EPSC (up to 73 ± 9.7% inhibition) in the NAc in brain slices. The effect of cocaine on AMPA and NMDA receptor-mediate excitatory postsynaptic current (EPSC) were mimicked by the D1 -like receptor agonist SKF 38393 and blocked by the D1 -like receptor antagonist SCH 23390, whereas D2 -like receptor agonist or antagonist failed to mimic or to block the action of cocaine. Preperfusion of SB216763 for 5 min also ameliorated the inhibitory effect of SKF38393 on both AMPA and NMDA receptor-mediated components of EPSC, indicate the effect of SB216763 on cocaine was via the D1 -like receptor. Moreover, cocaine inhibited the presynaptic release of glutamate in the NAc, and SB216763 reversed this effect. In conclusion, D1 receptor-GSK3β pathway, which mediates glutamatergic transmission in the NAc core through a presynaptic mechanism, plays an important role in acute cocaine-induced hyperlocomotion. PMID:27377051

  13. Anabolic-androgenic steroids decrease dendritic spine density in the nucleus accumbens of male rats.

    Science.gov (United States)

    Wallin-Miller, Kathryn; Li, Grace; Kelishani, Diana; Wood, Ruth I

    2016-08-25

    Recent studies have demonstrated that anabolic-androgenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8weeks with high-dose testosterone (7.5mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eightweeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F1,14=5.455, p<0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior. PMID:27238893

  14. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis.

    Science.gov (United States)

    Zhang, Yi; Cheng, Yan; Ren, Xingcong; Hori, Tsukasa; Huber-Keener, Kathryn J; Zhang, Li; Yap, Kai Lee; Liu, David; Shantz, Lisa; Qin, Zheng-Hong; Zhang, Suping; Wang, Jianrong; Wang, Hong-Gang; Shih, Ie-Ming; Yang, Jin-Ming

    2012-08-15

    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.

  15. Activation of nucleus accumbens NMDA receptors differentially affects appetitive or aversive taste learning and memory

    Directory of Open Access Journals (Sweden)

    Luis eNuñez-Jaramillo

    2012-04-01

    Full Text Available Taste memory depends on motivational and post-ingestional consequences; thus, it can be aversive (e.g., conditioned taste aversion, CTA if a novel, palatable taste is paired with visceral malaise, or it can be appetitive if no intoxication appears after novel taste consumption, and a taste preference is developed. The nucleus accumbens (NAc plays a role in hedonic reactivity to taste stimuli, and recent findings suggest that reward and aversion are differentially encoded by the activity of NAc neurons. The present study examined whether the requirement for NMDA receptors in the NAc core during rewarding appetitive taste learning differs from that during aversive taste conditioning, as well as during retrieval of appetitive versus aversive taste memory, using the taste preference or CTA model, respectively. Bilateral infusions of NMDA (1 μg/μl, 0.5 μl into the NAc core were performed before acquisition or before retrieval of taste preference or CTA. Activation of NMDA receptors before taste preference training or CTA acquisition did not alter memory formation. Furthermore, NMDA injections before aversive taste retrieval had no effect on taste memory; however, 24 h later, CTA extinction was significantly delayed. Also, NMDA injections, made before familiar appetitive memory retrieval, interrupted the development of taste preference and produced a preference delay 24 h later. These results suggest that memory formation for a novel taste produces neurochemical changes in the NAc core that have differential requirements for NMDA receptors during retrieval of appetitive or aversive memory.

  16. Nucleus accumbens shell, but not core, tracks motivational value of salt.

    Science.gov (United States)

    Loriaux, Amy L; Roitman, Jamie D; Roitman, Mitchell F

    2011-09-01

    To appropriately respond to an affective stimulus, we must be able to track its value across changes in both the external and internal environment. The nucleus accumbens (NAc) is a critical component of reward circuitry, but recent work suggests that the NAc encodes aversion as well as reward. It remains unknown whether differential NAc activity reflects flexible changes in stimulus value when it is altered due to a change in physiological state. We measured the activity of individual NAc neurons when rats were given intraoral infusions of a hypertonic salt solution (0.45 M NaCl) across multiple sessions in which motivational state was manipulated. This normally nonpreferred taste was made rewarding via sodium depletion, which resulted in a strong motivation to seek out and consume salt. Recordings were made in three conditions: while sodium replete (REP), during acute sodium depletion (DEP), and following replenishment of salt to normal sodium balance (POST). We found that NAc neurons in the shell and core subregions responded differently across the three conditions. In the shell, we observed overall increases in NAc activity when the salt solution was nonpreferred (REP) but decreases when the salt solution was preferred (DEP). In the core, overall activity was significantly altered only after sodium balance was restored (POST). The results lend further support to the selective encoding of affective stimuli by the NAc and suggest that NAc shell is particularly involved in flexibly encoding stimulus value based on motivational state. PMID:21697439

  17. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    Science.gov (United States)

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  18. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding

    Directory of Open Access Journals (Sweden)

    Teghpal eSingh

    2010-10-01

    Full Text Available The nucleus accumbens (NA has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10 sec CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  19. Activation of Dopamine Receptors in the Nucleus Accumbens Promotes Sucrose-Reinforced Cued Approach Behavior

    Science.gov (United States)

    du Hoffmann, Johann; Nicola, Saleem M.

    2016-01-01

    Dopamine receptor activation in the nucleus accumbens (NAc) promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety. PMID:27471453

  20. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens.

    Science.gov (United States)

    Dong, Zhifang; Han, Huili; Wang, Meina; Xu, Lin; Hao, Wei; Cao, Jun

    2006-01-01

    Learned association between drugs of abuse and context is essential for the formation of drug conditioned place preference (CPP), which is believed to engage many brain regions including hippocampus and nucleus accumbens (NAc). The underlying mechanisms are not fully understood. Here, we examined whether glucocorticoid receptors (GRs) of hippocampus and NAc influenced the formation of morphine CPP in Sprague Dawley rats. We found that systemic or intrahippocampal infused DMSO vehicle (DMSO 20% in saline) 30 min before daily morphine (10 mg/kg, s.c.) conditioning did not affect the formation of morphine CPP. In contrast, systemic administration (5 mg/kg, s.c.) or intrahippocampal infusion (0, 0.1, 1.0, 10, 20 microg per side) of the GR antagonist RU38486 blocked or impaired the formation of CPP in a dose-dependent manner, respectively. Furthermore, intra-NAc infused RU38486 (10 microg per side) but not DMSO vehicle also prevented the formation of CPP. These results demonstrate that both the GRs of hippocampus and NAc are necessary for the formation of morphine CPP, suggesting a neural network function of the GRs in forming the opiate-associated memory.

  1. Anabolic-androgenic steroids decrease dendritic spine density in the nucleus accumbens of male rats.

    Science.gov (United States)

    Wallin-Miller, Kathryn; Li, Grace; Kelishani, Diana; Wood, Ruth I

    2016-08-25

    Recent studies have demonstrated that anabolic-androgenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8weeks with high-dose testosterone (7.5mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eightweeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F1,14=5.455, p<0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior.

  2. Nucleus accumbens mediates relative motivation for rewards in the absence of choice

    Directory of Open Access Journals (Sweden)

    John A Clithero

    2011-08-01

    Full Text Available To dissociate a choice from its antecedent neural states, motivation associated with the expected outcome must be captured in the absence of choice. Yet, the neural mechanisms that mediate behavioral idiosyncrasies in motivation, particularly with regard to complex economic preferences, are rarely examined in situations without overt decisions. We employed functional magnetic resonance imaging (fMRI in a large sample of participants while they anticipated earning rewards from two different modalities: monetary and candy rewards. An index for relative motivation toward different reward types was constructed using reaction times to the target for earning rewards. Activation in the nucleus accumbens (NAcc and anterior insula (aINS predicted individual variation in relative motivation between our reward modalities. NAcc activation, however, mediated the effects of aINS, indicating the NAcc is the likely source of this relative weighting. These results demonstrate that neural idiosyncrasies in reward efficacy exist even in the absence of explicit choices, and extend the role of NAcc as a critical brain region for such choice-free motivation.

  3. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds.

    Science.gov (United States)

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. PMID:27371827

  4. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia.

    Science.gov (United States)

    Rolland, Benjamin; Amad, Ali; Poulet, Emmanuel; Bordet, Régis; Vignaud, Alexandre; Bation, Rémy; Delmaire, Christine; Thomas, Pierre; Cottencin, Olivier; Jardri, Renaud

    2015-01-01

    Both auditory hallucinations (AH) and visual hallucinations may occur in schizophrenia. One of the main hypotheses underlying their occurrence involves the increased activity of the mesolimbic pathway, which links the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). However, the precise contribution of the mesolimbic pathway in hallucinations across various sensory modalities has not yet been explored. We compared the resting-state functional connectivity (rs-FC) of the NAcc among 16 schizophrenia patients with pure AH, 15 with both visuoauditory hallucinations (VAH), and 14 without hallucinations (NoH). A between-group comparison was performed using random-effects ANCOVA (rs-FC of the bilateral NAcc as the dependent variable, groups as the between-subjects factor, age and Positive and Negative Syndrome Scale scores as covariates; q(false discovery rate [FDR]) hallucinations, but the NAcc FC patterns changed with the complexity of these experiences (ie, 0, 1, or 2 sensory modalities), rather than with severity. This might support the aberrant salience hypothesis of schizophrenia. Moreover, these findings suggest that future clinical and neurobiological studies of hallucinations should evaluate not only the global severity of symptoms but also their sensorial features.

  5. Sensitization of Rapid Dopamine Signaling in the Nucleus Accumbens Core and Shell After Repeated Cocaine in Rats

    OpenAIRE

    Addy, Nii A.; Daberkow, David P.; Ford, Jeremy N.; Garris, Paul A.; Wightman, R. Mark

    2010-01-01

    Repeated cocaine exposure and withdrawal leads to long-term changes, including behavioral and dopamine sensitization to an acute cocaine challenge, that are most pronounced after long withdrawal periods. However, the changes in dopamine neurotransmission after short withdrawal periods are less well defined. To study dopamine neurotransmission after 1-day withdrawal, we used fast-scan cyclic voltammetry (FSCV) to determine whether repeated cocaine alters rapid dopamine release and uptake in th...

  6. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    Science.gov (United States)

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. PMID:25529183

  7. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  8. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    Science.gov (United States)

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux.

  9. Reduced Caudate and Nucleus Accumbens Response to Rewards in Unmedicated Subjects with Major Depressive Disorder

    Science.gov (United States)

    Pizzagalli, Diego A.; Holmes, Avram J.; Dillon, Daniel G.; Goetz, Elena L.; Birk, Jeffrey L.; Bogdan, Ryan; Dougherty, Darin D.; Iosifescu, Dan V.; Rauch, Scott L.; Fava, Maurizio

    2009-01-01

    Objective Major depressive disorder (MDD) is characterized by impaired reward processing, possibly due to dysfunction in the basal ganglia. However, few neuroimaging studies of depression have distinguished between anticipatory and consummatory phases of reward processing. Using functional magnetic resonance imaging (fMRI) and a task that dissociates anticipatory and consummatory phases of reward processing, the authors tested the hypothesis that MDD participants would show reduced reward-related responses in basal ganglia structures. Method A monetary incentive delay task was presented to 30 unmedicated MDD subjects and 31 healthy comparison subjects during fMRI scanning. Whole-brain analyses focused on neural responses to reward-predicting cues and rewarding outcomes (i.e., monetary gains). Secondary analyses focused on the relationship between anhedonic symptoms and basal ganglia volumes. Results Relative to comparison subjects, MDD participants showed significantly weaker responses to gains in the left nucleus accumbens and bilateral caudate. Group differences in these regions were specific to rewarding outcomes and did not generalize to neutral or negative outcomes, although relatively reduced responses to monetary penalties in MDD emerged in other caudate regions. By contrast, evidence for group differences during reward anticipation was weaker, although MDD subjects showed reduced activation to reward cues in a small sector of the left posterior putamen. Among MDD subjects, anhedonic symptoms and depression severity were associated with reduced bilateral caudate volume. Conclusions These results indicate that basal ganglia dysfunction in MDD may affect the consummatory phase of reward processing. Additionally, morphometric results suggest that anhedonia in MDD is related to caudate volume. PMID:19411368

  10. Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats.

    Science.gov (United States)

    Manduca, Antonia; Servadio, Michela; Damsteegt, Ruth; Campolongo, Patrizia; Vanderschuren, Louk Jmj; Trezza, Viviana

    2016-08-01

    Social play behavior is a highly rewarding form of social interaction displayed by young mammals. Social play is important for neurobehavioral development and it has been found to be impaired in several developmental psychiatric disorders. In line with the rewarding properties of social play, we have previously identified the nucleus accumbens (NAc) as an important site of action for endocannabinoid and opioid modulation of this behavior. NAc dopamine has a well-known role in certain components of reward processes, such as incentive motivation. However, its contribution to the positive emotional aspects of social interactions is less clear. Therefore, we investigated the role of dopaminergic neurotransmission in the NAc in social play behavior in rats. We found that intra-NAc infusion of the dopamine releaser/reuptake inhibitor amphetamine increased social play behavior that was dependent on activation of both D1 and D2 dopamine receptors. This increase in social play behavior was mimicked by intra-NAc infusion of the dopamine receptor agonist apomorphine, but not of the dopamine reuptake inhibitor GBR-12909. Blockade of either D1 or D2 NAc dopamine receptors reduced social play in animals highly motivated to play as a result of longer social isolation before testing. Last, blockade of NAc dopamine receptors prevented the play-enhancing effects of endocannabinoid and opioid receptor stimulation. These findings demonstrate an important modulatory role of NAc dopaminergic neurotransmission in social play. Thus, functional activity in the mesolimbic dopamine pathway plays an important role in adaptive social development, whereas abnormal NAc dopamine function may underlie the social impairments observed in developmental psychiatric disorders such as autism, attention deficit hyperactivity disorder or early-onset schizophrenia. PMID:26860202

  11. Regulation of nucleus accumbens transcript levels in mice by early-life social stress and cocaine.

    Science.gov (United States)

    Lo Iacono, Luisa; Valzania, Alessandro; Visco-Comandini, Federica; Viscomi, Maria Teresa; Felsani, Armando; Puglisi-Allegra, Stefano; Carola, Valeria

    2016-04-01

    Much interest has been piqued regarding the quality of one's environment at early ages in modulating the susceptibility to drug addiction in adulthood. However, the molecular mechanisms that are engaged during early trauma and mediate the risk for drug addiction are poorly understood. In rodents, exposure to early-life stress alters the rewarding effects of cocaine, amphetamine, and morphine in adulthood. Recently, we demonstrated that the exposure of juvenile mice to social threat (Social Stress, S-S) promoted cocaine-seeking behavior and relapse of cocaine-seeking after periods of withdrawal, compared with unhandled controls (UN) and with juvenile mice that experienced only daily isolation in a novel environment (no social stress, NS-S). Interestingly, while the exposure to NS-S slightly increased cocaine-seeking behavior compared with UN, the same was not sufficient to promote cocaine reinstatement. In this study, we examined the long-term transcriptional changes that are induced by S-S compared to NS-S and linked the increased susceptibility of S-S mice to cocaine reinstatement. To this end, we performed genome-wide RNA sequencing analysis in the nucleus accumbens (NAC), which revealed that 89 transcripts were differentially expressed between S-S and NS-S mice. By Gene Ontology classification, these hits were enriched in genes that mediate cell proliferation, neuronal differentiation, and neuron/forebrain development. Eleven of these genes have been reported to be involved in substance use disorders, and the remaining genes are novel candidates in this area. We characterized 4 candidates with regard to their significant neurobiological relevance (ZIC1, ZIC2, FABP7, and PRDM12) and measured their expression in the NAC by immunohistochemistry. These findings provide insights into novel molecular mechanisms in NAC that might be associated with the risk of relapse in cocaine-dependent individuals. PMID:26706499

  12. Activation of dopamine receptors in the nucleus accumbens promotes sucrose-reinforced cued approach behavior

    Directory of Open Access Journals (Sweden)

    Saleem M. Nicola

    2016-07-01

    Full Text Available Dopamine receptor activation in the nucleus accumbens (NAc promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.

  13. Neonatal Masculinization Blocks Increased Excitatory Synaptic Input in Female Rat Nucleus Accumbens Core.

    Science.gov (United States)

    Cao, Jinyan; Dorris, David M; Meitzen, John

    2016-08-01

    Steroid sex hormones and genetic sex regulate the phenotypes of motivated behaviors and relevant disorders. Most studies seeking to elucidate the underlying neuroendocrine mechanisms have focused on how 17β-estradiol modulates the role of dopamine in striatal brain regions, which express membrane-associated estrogen receptors. Dopamine action is an important component of striatal function, but excitatory synaptic neurotransmission has also emerged as a key striatal substrate and target of estradiol action. Here, we focus on excitatory synaptic input onto medium spiny neurons (MSNs) in the striatal region nucleus accumbens core (AcbC). In adult AcbC, miniature excitatory postsynaptic current (mEPSC) frequency is increased in female compared with male MSNs. We tested whether increased mEPSC frequency in female MSNs exists before puberty, whether this increased excitability is due to the absence of estradiol or testosterone during the early developmental critical period, and whether it is accompanied by stable neuron intrinsic membrane properties. We found that mEPSC frequency is increased in female compared with male MSNs before puberty. Increased mEPSC frequency in female MSNs is abolished after neonatal estradiol or testosterone exposure. MSN intrinsic membrane properties did not differ by sex. These data indicate that neonatal masculinization via estradiol and/or testosterone action is sufficient for down-regulating excitatory synaptic input onto MSNs. We conclude that excitatory synaptic input onto AcbC MSNs is organized long before adulthood via steroid sex hormone action, providing new insight into a mechanism by which sex differences in motivated behavior and other AbcC functions may be generated or compromised. PMID:27285859

  14. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    Science.gov (United States)

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux. PMID:26706696

  15. Associations between personality changes and nucleus accumbens ablation in opioid addicts

    Institute of Scientific and Technical Information of China (English)

    Hai-kang ZHAO; Chong-wang CHANG; Ning GENG; Li GAO; Jing WANG; Xin WANG; Ya-rong WANG; Xue-lian WANG; Guo-dong GAO

    2012-01-01

    It has been reported that nucleus accumbens (NAc) lesions can help to prevent relapse in opioid addicts.This article aimed to investigate associations between personality changes and NAc lesions.Methods:The surgery group consisted of 78 patients who had received bilateral stereotactic lesions of the NAc to treat opioid addiction.Seventy two non-surgery opioid addicts were appropriately paired with the patients of the surgery group as the non-surgery group.All participants were interviewed in person and received urine tests,naloxone provocative tests and hair tests to determine the prevalence of relapse.Eysenck personality questionnaire (EPQ) and the health survey questionnaire (SF-36) were employed to assess personality and functional health,respectively.Results:In the surgery group,30 participants relapsed,and the non-relapse rate was 61.5% (48/78).Compared with the Chinese normative data,the neuroticism (N) and psychoticism (P) dimensions of the EPQ in the non-surgery group were significantly higher,whereas the lie (L) dimension was significantly lower.There was no significant difference in all dimensions of the EPQ between the surgery group and the Chinese normative data.The N dimension in the relapse group and the L dimension in the surgery group were significantly lower than those of the non-surgery group.The P dimension in the relapse group was significantly higher than that of the non-relapse group.The extraversion (E) dimension was relatively stable between these groups.Conclusion:Although the influence of other factors cannot be excluded,it is apparent that surgically induced NAc lesions are associated with lower P and N dimensions for opioid addicts,and a higher P dimension is associated with a tendency to relapse.

  16. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal-Accumbens Plasticity After Stress.

    Science.gov (United States)

    Segev, Amir; Akirav, Irit

    2016-03-01

    Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub-NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders. PMID:26289146

  17. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration.

    Science.gov (United States)

    Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum

    2012-03-10

    Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal's neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effects of MPD on the firing rates of NAc neuronal units in freely behaving rats. On experimental day 1 (ED1), following a saline injection (control), a 30 min baseline neuronal recording was obtained immediately followed by a 2.5 mg/kg i.p. MPD injection and subsequent 60 min neuronal recording. Daily 2.5 mg/kg MPD injections were given on ED2 through ED6 followed by 3 washout days (ED7 to ED9). On ED10, neuronal recordings were resumed from the same animal after a saline and MPD (rechallenge) injection exactly as obtained on ED1. Sixty-seven NAc neuronal units exhibited similar wave shape, form and amplitude on ED1 and ED10 and their firing rates were used for analysis. MPD administration on ED1 elicited firing rate increases and decreases in 54% of NAc units when compared to their baselines. Six consecutive MPD administrations altered the neuronal baseline firing rates of 85% of NAc units. MPD rechallenge on ED10 elicited significant changes in 63% of NAc units. These alterations in firing rates are hypothesized to be through mechanisms that include D1 and D2-like DA receptor induced cellular adaptation and homeostatic adaptations/deregulation caused by acute and chronic MPD administration. PMID:22248440

  18. The nucleus accumbens 5-HTR₄-CART pathway ties anorexia to hyperactivity.

    Science.gov (United States)

    Jean, A; Laurent, L; Bockaert, J; Charnay, Y; Dusticier, N; Nieoullon, A; Barrot, M; Neve, R; Compan, V

    2012-12-11

    In mental diseases, the brain does not systematically adjust motor activity to feeding. Probably, the most outlined example is the association between hyperactivity and anorexia in Anorexia nervosa. The neural underpinnings of this 'paradox', however, are poorly elucidated. Although anorexia and hyperactivity prevail over self-preservation, both symptoms rarely exist independently, suggesting commonalities in neural pathways, most likely in the reward system. We previously discovered an addictive molecular facet of anorexia, involving production, in the nucleus accumbens (NAc), of the same transcripts stimulated in response to cocaine and amphetamine (CART) upon stimulation of the 5-HT(4) receptors (5-HTR(4)) or MDMA (ecstasy). Here, we tested whether this pathway predisposes not only to anorexia but also to hyperactivity. Following food restriction, mice are expected to overeat. However, selecting hyperactive and addiction-related animal models, we observed that mice lacking 5-HTR(1B) self-imposed food restriction after deprivation and still displayed anorexia and hyperactivity after ecstasy. Decryption of the mechanisms showed a gain-of-function of 5-HTR(4) in the absence of 5-HTR(1B), associated with CART surplus in the NAc and not in other brain areas. NAc-5-HTR(4) overexpression upregulated NAc-CART, provoked anorexia and hyperactivity. NAc-5-HTR(4) knockdown or blockade reduced ecstasy-induced hyperactivity. Finally, NAc-CART knockdown suppressed hyperactivity upon stimulation of the NAc-5-HTR(4). Additionally, inactivating NAc-5-HTR(4) suppressed ecstasy's preference, strengthening the rewarding facet of anorexia. In conclusion, the NAc-5-HTR(4)/CART pathway establishes a 'tight-junction' between anorexia and hyperactivity, suggesting the existence of a primary functional unit susceptible to limit overeating associated with resting following homeostasis rules.

  19. High-frequency stimulation of nucleus accumbens changes in dopaminergic reward circuit.

    Directory of Open Access Journals (Sweden)

    Na Yan

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is a potential remedial therapy for drug craving and relapse, but the mechanism is poorly understood. We investigated changes in neurotransmitter levels during high frequency stimulation (HFS of the unilateral NAc on morphine-induced rats. Sixty adult Wistar rats were randomized into five groups: the control group (administration of saline, the morphine-only group (systematic administration of morphine without electrode implantation, the morphine-sham-stimulation group (systematic administration of morphine with electrode implantation but not given stimulation, the morphine-stimulation group (systematic administration of morphine with electrode implantation and stimulation and the saline-stimulation group (administration of saline with electrode implantation and stimulation. The stimulation electrode was stereotaxically implanted into the core of unilateral NAc and microdialysis probes were unilaterally lowered into the ipsilateral ventral tegmental area (VTA, NAc, and ventral pallidum (VP. Samples from microdialysis probes in the ipsilateral VTA, NAc, and VP were analyzed for glutamate (Glu and γ-aminobutyric acid (GABA by high-performance liquid chromatography (HPLC. The levels of Glu were increased in the ipsilateral NAc and VP of morphine-only group versus control group, whereas Glu levels were not significantly changed in the ipsilateral VTA. Furthermore, the levels of GABA decreased significantly in the ipsilateral NAc, VP, and VTA of morphine-only group when compared with control group. The profiles of increased Glu and reduced GABA in morphine-induced rats suggest that the presence of increased excitatory neurotransmission in these brain regions. The concentrations of the Glu significantly decreased while the levels of GABA increased in ipsilateral VTA, NAc, and VP in the morphine-stimulation group compared with the morphine-only group. No significant changes were seen in the

  20. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving.

    Science.gov (United States)

    Massart, Renaud; Barnea, Royi; Dikshtein, Yahav; Suderman, Matthew; Meir, Oren; Hallett, Michael; Kennedy, Pamela; Nestler, Eric J; Szyf, Moshe; Yadid, Gal

    2015-05-27

    One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 μm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 μm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 μm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving.

  1. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Directory of Open Access Journals (Sweden)

    Ken Taro Wakabayashi

    2015-02-01

    Full Text Available The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc, a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6-8 s; ~50 µM or ~5% of baseline followed by a larger, more prolonged tonic elevation (~100 µM or 10% of baseline, peak ~15 min. While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine’s peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine’s action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.

  2. NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell.

    Science.gov (United States)

    Desai, Sagar J; Upadhya, Manoj A; Subhedar, Nishikant K; Kokare, Dadasaheb M

    2013-06-15

    Although the interaction between endogenous neuropeptide Y (NPY) and opioidergic systems in processing of reward has been speculated, experimental evidence is lacking. We investigated the role of NPY, and its Y1 receptors, in the nucleus accumbens shell (AcbSh) in morphine induced reward and reinforcement behavior. Rats were implanted with cannulae targeted at AcbSh for drug administration, and with stimulating electrode in the medial forebrain bundle (MFB). The rats were then conditioned in an operant conditioning chamber for electrical self-stimulation of the MFB. Increased rate of lever pressings was evaluated against the frequency of the stimulating current. Increase in rate of lever presses was considered as a measure of reward and reinforcement. About 30-70% increase in self-stimulation was observed following bilateral intra-AcbSh treatment with morphine, NPY or [Leu(31), Pro(34)]-NPY (NPY Y1/Y5 receptors agonist), however, BIBP3226 (selective NPY Y1 receptors antagonist) produced opposite effect. The reward effect of morphine was significantly potentiated by NPY or [Leu(31), Pro(34)]-NPY, but antagonized by BIBP3226. NPY-immunoreactivity in the AcbSh, arcuate nucleus (ARC) and lateral part of bed nucleus of stria terminalis (BNSTl) was significantly more in the operant conditioned rats than in naïve control. However, morphine administration to the conditioned rats resulted in significant decrease in the NPY-immunoreactivity in all these anatomical regions. Since the role of morphine in modulation of mesolimbic-dopaminergic pathway is well established, we suggest that NPY system in AcbSh, ARC and BNSTl, perhaps acting via Y1-receptor system, may be an important component of the mesolimbic-AcbSh reward circuitry triggered by endogenous opioids.

  3. Cocaine-Induced Synaptic Alterations in Thalamus to Nucleus Accumbens Projection.

    Science.gov (United States)

    Neumann, Peter A; Wang, Yicun; Yan, Yijin; Wang, Yao; Ishikawa, Masago; Cui, Ranji; Huang, Yanhua H; Sesack, Susan R; Schlüter, Oliver M; Dong, Yan

    2016-08-01

    Exposure to cocaine induces addiction-associated behaviors partially through remodeling neurocircuits in the nucleus accumbens (NAc). The paraventricular nucleus of thalamus (PVT), which projects to the NAc monosynaptically, is activated by cocaine exposure and has been implicated in several cocaine-induced emotional and motivational states. Here we show that disrupting synaptic transmission of select PVT neurons with tetanus toxin activated via retrograde trans-synaptic transport of cre from NAc efferents decreased cocaine self-administration in rats. This projection underwent complex adaptations after self-administration of cocaine (0.75 mg/kg/infusion; 2 h/d × 5 d, 1d overnight training). Specifically, 1d after cocaine self-administration, we observed increased levels of AMPA receptor (AMPAR)-silent glutamatergic synapses in this projection, accompanied by a decreased ratio of AMPAR-to-NMDA receptor (NMDAR)-mediated EPSCs. Furthermore, the decay kinetics of NMDAR EPSCs was significantly prolonged, suggesting insertion of new GluN2B-containing NMDARs to PVT-to-NAc synapses. After 45-d withdrawal, silent synapses within this projection returned to the basal levels, accompanied by a return of the AMPAR/NMDAR ratio and NMDAR decay kinetics to the basal levels. In amygdala and infralimbic prefrontal cortical projections to the NAc, a portion of cocaine-generated silent synapses becomes unsilenced by recruiting calcium-permeable AMPARs (CP-AMPARs) after drug withdrawal. However, the sensitivity of PVT-to-NAc synapses to CP-AMPAR-selective antagonists was not changed after withdrawal, suggesting that CP-AMPAR trafficking is not involved in the evolution of cocaine-generated silent synapses within this projection. Meanwhile, the release probability of PVT-to-NAc synapses was increased after short- and long-term cocaine withdrawal. These results reveal complex and profound alterations at PVT-to-NAc synapses after cocaine exposure and withdrawal. PMID:27074816

  4. Addiction and Reward-related Genes Show Altered Expression in the Postpartum Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Changjiu eZhao

    2014-11-01

    Full Text Available Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET indicated that postpartum (relative to virgin NAC gene expression profile was significantly enriched for genes related to addiction and reward in 5 of 5 independently curated databases (e.g., Malacards, Phenopedia. Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder, and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.

  5. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    Directory of Open Access Journals (Sweden)

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  6. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations.

    Science.gov (United States)

    Pattison, Lindsey P; McIntosh, Scot; Sexton, Tammy; Childers, Steven R; Hemby, Scott E

    2014-10-01

    Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc. PMID:24916769

  7. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Giuseppe eGangarossa

    2013-02-01

    Full Text Available The nucleus accumbens (NAc is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP or the Cre-recombinase (Cre under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific ERK phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist, quinpirole (a D2R-like agonist, apomorphine (a non-selective DA receptor agonist, raclopride (a D2R-like antagonist, and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.

  8. The hypomotility elicited by small doses of apomorphine seems exclusively mediated by dopaminergic systems in the nucleus accumbens

    OpenAIRE

    Radhakishun, F.S.; de Ree, J M

    1987-01-01

    The reduction of motor activity elicited in rats by a subcutaneous injection of a small dose of apomorphine was reversed by pretreatment of the nucleus accumbens with haloperidol (10 pg), sulpride (10 pg) or desenkephalin-γ-endorphin (DEγE) (100 pg or 10 ng). These doses of the compounds did not change motor activity in placebo-treated rats. Pretreatment of the nucleus caudatus with the same neuroleptics or DEγE did not diminish the effect of subcutaneously administered low doses of apomorphi...

  9. Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose 'Liking' and Intake but Scopolamine in Caudal Shell Shifts 'Liking' Toward 'Disgust' and 'Fear'.

    Science.gov (United States)

    Castro, Daniel C; Terry, Rachel A; Berridge, Kent C

    2016-07-01

    The nucleus accumbens (NAc) contains a hedonic hotspot in the rostral half of medial shell, where opioid agonist microinjections are known to enhance positive hedonic orofacial reactions to the taste of sucrose ('liking' reactions). Within NAc shell, orexin/hypocretin also has been reported to stimulate food intake and is implicated in reward, whereas blockade of muscarinic acetylcholine receptors by scopolamine suppresses intake and may have anti-reward effects. Here, we show that NAc microinjection of orexin-A in medial shell amplifies the hedonic impact of sucrose taste, but only within the same anatomically rostral site, identical to the opioid hotspot. By comparison, at all sites throughout medial shell, orexin microinjections stimulated 'wanting' to eat, as reflected by increases in intake of palatable sweet chocolates. At NAc shell sites outside the hotspot, orexin selectively enhanced 'wanting' to eat without enhancing sweetness 'liking' reactions. In contrast, microinjections of the antagonist scopolamine at all sites in NAc shell suppressed sucrose 'liking' reactions as well as suppressing intake of palatable food. Conversely, scopolamine increased aversive 'disgust' reactions elicited by bitter quinine at all NAc shell sites. Finally, scopolamine microinjections localized to the caudal half of medial shell additionally generated a fear-related anti-predator reaction of defensive treading and burying directed toward the corners of the transparent chamber. Together, these results confirm a rostral hotspot in NAc medial shell as a unique site for orexin induction of hedonic 'liking' enhancement, similar to opioid enhancement. They also reveal distinct roles for orexin and acetylcholine signals in NAc shell for hedonic reactions and motivated behaviors.

  10. Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase Ⅳ expression in nucleus accumbens of rats: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Wei-liang BIAN; Gui-qin XIE; Sheng-zhong CUI; Mei-ling WU; Yue-hua LI; Ling-li QUE; Xiao-ru YUAN

    2008-01-01

    Aim: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase Ⅳ (CaM kinase Ⅳ) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of non-selective opioid antagonist (naloxone) on the CaM kinase Ⅳ expression in the NAc and ethanol consumption of rats were also observed. Methods: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase Ⅳ levels in the NAc were analyzed using Western blotting. Results: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase Ⅳ expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenu-ated ethanol intake of rats and antagonized the decrease of CaM kinase Ⅳ in the nuclei of NAc neurons. The cytosolic CaM kinase Ⅳ protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. Conclusion: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase Ⅳ signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase Ⅳ in the NAc.

  11. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence.

    Directory of Open Access Journals (Sweden)

    Mohammed Mamdani

    Full Text Available Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA on genome-wide mRNA and microRNA (miRNA expression in Nucleus Accumbens (NAc of subjects with alcohol dependence (AD; N = 18 and of matched controls (N = 18, six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05. Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05. In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001. Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA. In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL analysis provides novel insights into the etiological mechanisms of AD.

  12. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence.

    Science.gov (United States)

    Mamdani, Mohammed; Williamson, Vernell; McMichael, Gowon O; Blevins, Tana; Aliev, Fazil; Adkins, Amy; Hack, Laura; Bigdeli, Tim; van der Vaart, Andrew D; Web, Bradley Todd; Bacanu, Silviu-Alin; Kalsi, Gursharan; Kendler, Kenneth S; Miles, Michael F; Dick, Danielle; Riley, Brien P; Dumur, Catherine; Vladimirov, Vladimir I

    2015-01-01

    Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD. PMID:26381263

  13. The Effects of Histaminergic Agents in the Nucleus Accumbens of Rats in the Elevated Plus-Maze Test of Anxiety

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Zarrindast

    2010-11-01

    Full Text Available ABSTRACTIntroduction/Aims: The nucleus accumbens (NAc receives histaminergic neurons from tuberomammillary nuclei. There are also reports indicating that central histamine systems are involved in many physiological behavioral processes, including anxiety. The aim of the present study was to assess whether the histaminergic system of the NAc is involved in the anxiety-related behaviors. Methods: As a model of anxiety the elevated plus maze which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents was used in male Wistar rats. Results:Intra-NAc administration of histamine (0.01, 0.1 and 1 μg/rat increased the percentage of open arm time (%OAT and open arm entries (%OAE but not locomotor activity, indicating an anxiolytic response. Furthermore, bilateral microinjections of different doses of the H1 receptor antagonist pyrilamine (0.001, 0.01, 0.1 and 1 μg/rat or the H2 receptor antagonist ranitidine (0.001, 0.01, 0.1 and 1 μg/rat into the NAc increased %OAT and %OAE but not locomotor activity. However, both histamine and histamine receptor antagonists showed an anxiolytic-like effect, the antagonists (1 μg/rat also decreased the histamine response. Discussion: The results may indicate a modulatory effect for the H1 and H2 histamine receptors of nucleus accumbens in the anxiety behavior of rats.

  14. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing.

    Science.gov (United States)

    Bassareo, V; Cucca, F; Frau, R; Di Chiara, G

    2015-11-01

    In order to investigate the role of modus operandi in the changes of nucleus accumbens (NAc) dopamine (DA) transmission in sucrose reinforcement, extracellular DA was monitored by microdialysis in the NAc shell and core of rats trained on a fixed-ratio 1 schedule to respond for sucrose pellets by nose poking and lever pressing respectively. After training, rats were tested on three different sessions: sucrose reinforcement, extinction and passive sucrose presentation. In rats responding by nose poking dialysate DA increased in the shell but not in the core under reinforced as well as under extinction sessions. In contrast, in rats responding by lever pressing dialysate DA increased both in the accumbens shell and core under reinforced and extinction sessions. Response non-contingent sucrose presentation increased dialysate DA in the shell and core of rats trained to respond for sucrose by nose poking as well as in those trained by lever pressing. In rats trained to respond for sucrose by nose poking on a FR5 schedule dialysate DA also increased selectively in the NAc shell during reinforced responding and in both the shell and core under passive sucrose presentation. These findings, while provide an explanation for the discrepancies existing in the literature over the responsiveness of shell and core DA in rats responding for food, are consistent with the notion that NAc shell and core DA encode different aspects of reinforcement.

  15. Investigating the dynamics of the brain response to music: A central role of the ventral striatum/nucleus accumbens.

    Science.gov (United States)

    Mueller, Karsten; Fritz, Thomas; Mildner, Toralf; Richter, Maxi; Schulze, Katrin; Lepsien, Jöran; Schroeter, Matthias L; Möller, Harald E

    2015-08-01

    Ventral striatal activity has been previously shown to correspond well to reward value mediated by music. Here, we investigate the dynamic brain response to music and manipulated counterparts using functional magnetic resonance imaging (fMRI). Counterparts of musical excerpts were produced by either manipulating the consonance/dissonance of the musical fragments or playing them backwards (or both). Results show a greater involvement of the ventral striatum/nucleus accumbens both when contrasting listening to music that is perceived as pleasant and listening to a manipulated version perceived as unpleasant (backward dissonant), as well as in a parametric analysis for increasing pleasantness. Notably, both analyses yielded a ventral striatal response that was strongest during an early phase of stimulus presentation. A hippocampal response to the musical stimuli was also observed, and was largely mediated by processing differences between listening to forward and backward music. This hippocampal involvement was again strongest during the early response to the music. Auditory cortex activity was more strongly evoked by the original (pleasant) music compared to its manipulated counterparts, but did not display a similar decline of activation over time as subcortical activity. These findings rather suggest that the ventral striatal/nucleus accumbens response during music listening is strongest in the first seconds and then declines.

  16. Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available OBJECTIVE: In this study, the effect of maternal deprivation (MD and chronic unpredictable stress (CUS in inducing depressive behaviors and associated molecular mechanism were investigated in rats. METHODS: Maternal deprivation was established by separating pups from their mothers for 6 hours daily from postnatal day 1 to day 14. Chronic unpredictable stress was established by water deprivation, elevated open platform, food deprivation, restraint stress and electric foot shock. The depressive behaviors were determined by use of sucrose preference test and forced swim test. RESULTS: Rats in MD/CUS group exhibited lower sucrose preference rate, longer immobility time, and lighter body weights than rats in other groups (MD/control, non-MD/CUS and non-MD/control group. Meanwhile, higher miR-504 expression and lower dopamine receptor D1 (DRD1 and D2 (DRD2 expression were observed in the nucleus accumbens of rats in the MD/CUS group than in the other three groups. MiR-504 expression correlated negatively with DRD1 gene expression and sucrose preference rate in the sucrose preference test, but correlated positively with immobility time in forced swim test. Both DRD2 mRNA and protein expression correlated negatively with immobility time in forced swim test. CONCLUSION: These results suggest that MD enhances behavioral vulnerability to stress during adulthood, which is associated with the upregulation of miR-504 and downregulation of DRD2 expression in the nucleus accumbens.

  17. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Bartley G. Hoebel

    2012-06-01

    Full Text Available Evidence links dopamine (DA in the nucleus accumbens (NAc shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG, which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related to caloric intake or elevated circulating lipids. When rats consumed more calories of a high-fat meal compared with a low-fat meal, there was a significant increase in extracellular accumbens DA (155% vs. 119%. Systemic injection of a fat emulsion, which like a high-fat diet raises circulating TG but eliminates the factor of taste and allows for the control of caloric intake, also significantly increased extracellular levels of DA (127% compared to an equicaloric glucose solution (70% and saline (85%. Together, this suggests that a rise in circulating TG may contribute to the stimulatory effect of a high-fat diet on NAc DA.

  18. Biphasic firing response of nucleus accumbens neurons elicited by THPB-18 and its correlation with DA receptor subtypes

    Institute of Scientific and Technical Information of China (English)

    Yu FU; Zi-tao ZHU; Xing-zu ZHU; Guo-zhang JIN

    2004-01-01

    AIM: To investigate the possibility whether THPB-18 (l-12-shloroscoulerine) possesses the D1 agonist-D2 antagonist action on meso-accumbens-mPFC DA system. METHODS: Single unit spontaneous firing activity was recorded in the nucleus accumbens (Nac) neurons of naive and unilateral-6-hydroxydopamine (6-OHDA)-lesioned Sprague-Dawley rats. The effects of drugs applied intravenously or iontophoretically were determined by the change of firing rates. RESULTS: Under normal conditions, the systemic administration of THPB-18 produced a decrease-increase biphasic firing pattern in the Nac neurons during cumulative doses. High dose of THPB- 18 was capable of reversing the inhibition induced by both D2 agonist LY171555 and D1/D2 agonist APO on Nac firing activity. Spiperone pretreatment could not block the high dose of THPB-18-induced firing rate increase, which was reversed by the D1 selective antagonist SCH23390. The tested Nac neurons were effectively inhibited by iontophoretically applied THPB-18 in 90% of 6-OHDA-lesioned rats, while THPB-18 caused variable effects on the firing of Nac neurons in the neurons of unlesioned rats. The inhibitory effect of THPB-18 was blocked by iontophoretic application of SCH23390, but not D2 antagonist spiperone. CONCLUSION: Similar to l-stepholidine,THPB-18 also possesses the "D1 agonistic-D2 antagonistic" dual action on the VTA-Nac DA system.

  19. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  20. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    Science.gov (United States)

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase.

  1. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    Science.gov (United States)

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  2. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.

    NARCIS (Netherlands)

    Hirose, N.; Murakawa, K.; Takada, K.; Oi, Y.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2005-01-01

    The effect of interactions among mu- and delta-opioid receptors, especially the putative delta(1)- and delta(2)-opioid receptors, in the nucleus accumbens on accumbal dopamine release was investigated in awake rats by in vivo brain microdialysis. In agreement with previous studies, perfusion of the

  3. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression

    Science.gov (United States)

    Barr, Jeffrey L.; Forster, Gina L.; Unterwald, Ellen M.

    2014-01-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In the present study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-D-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A:NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. PMID:24832868

  4. Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

    Science.gov (United States)

    Zhang, Jianbo; Wang, Na; Chen, Bo; Wang, Yi'nan; He, Jing; Cai, Xintong; Zhang, Hongbo; Wei, Shuguang; Li, Shengbin

    2016-09-01

    Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse. Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction. However, the downstream signaling of CB1R is not fully elucidated. In the present study, we investigated the relationship between CB1R and the extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) signaling in the nucleus accumbens (NAc) and hippocampus in morphine-induced conditioned place preference (CPP), which is used to assess the morphine-induced reward memory. The protein level of CB1R, ERK, CREB, and BDNF were detected by western blotting. Additionally, a CB1R antagonist, AM251, was used to study whether blockade of CB1R altered the CPP and above-mentioned molecules. We found an increase of CB1R expression in the NAc and hippocampus of the mice following morphine CPP, but not those after repeated morphine in home cage without context exposure (NO-CPP). Both morphine CPP and NO-CPP induced an upregulation of ERK, CREB phosphorylation and BDNF expression. Furthermore, pretreatment with AM251 before morphine attenuated the CPP acquisition and CB1R expression as well as the activation of ERK-CREB-BDNF cascade. Collectively, these findings demonstrate that (1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. (2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP. PMID:27461790

  5. Repeated methamphetamine administration differentially alters fos expression in caudate-putamen patch and matrix compartments and nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Jakub P Jedynak

    Full Text Available BACKGROUND: The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase ("sensitization" in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum--the so-called patch/striosome and matrix. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens. Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens. CONCLUSIONS/SIGNIFICANCE: These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine.

  6. The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning.

    Science.gov (United States)

    Clissold, Kara A; Pratt, Wayne E

    2014-11-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained to lever press following daily intra-accumbens injections of the A2A receptor agonist CGS 21680 (at 0.0, 6.0, or 24.0ng/side), the A2A antagonist pro-drug MSX-3 (at 0.0, 1.0, or 3.0μg/side), the μ-opioid agonist DAMGO (at 0.0, 0.025, or 0.025μg/side), or the opioid receptor antagonist naltrexone (at 0.0, 2.0 or 20.0μg/side). After five days, rats continued training without drug injections until lever pressing rates stabilized, and were then tested with a final drug test to assess potential performance effects. Stimulation, but not inhibition, of NAcc adenosine A2A receptors depressed lever pressing during learning and performance tests, but did not impact lever pressing on non-drug days. Both μ-opioid receptor stimulation and blockade inhibited learning of the lever-press response, though only naltrexone treatment caused impairments in lever-pressing after the task had been learned. The effect of A2A receptor stimulation on learning and performance were consistent with known effects of adenosine on effort-related processes, whereas the pattern of lever presses, magazine approaches, and pellet consumption following opioid receptor manipulations suggested that their effects may have been driven by drug-induced shifts in the incentive value of the sugar reinforcer. PMID:25101542

  7. Repeated Cycles of Chronic Intermittent Ethanol Exposure Increases Basal Glutamate in the Nucleus Accumbens of Mice without affecting glutamate transport

    Directory of Open Access Journals (Sweden)

    William C. Griffin

    2015-02-01

    Full Text Available Repeated cycles of chronic intermittent ethanol (CIE exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc is significantly elevated in ethanol dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+ dependent and Na+ independent conditions to determine whether the function of excitatory amino acid transporters (EAATs; also known as system XAG or of system Xc- (Glial cysteine-glutamate exchanger was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (~2 –fold in the NAc of CIE exposed mice (i.e. ethanol-dependent compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+ dependent nor Na+ independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical-striatal pathways underlies the increases in extracellular glutamate found in the nucleus accumbens of ethanol-dependent mice.

  8. Dorsal Periaqueductal gray simultaneously modulates ventral Subiculum induced-plasticity in the Basolateral Amygdala and the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Omer eHorovitz

    2015-03-01

    Full Text Available The ventral subiculum of the hippocampus projects both to the basolateral amygdala, which is typically, associated with a response to aversive stimuli, as well as to the nucleus accumbens, which is typically associated with a response to appetitive stimuli. Traditionally, studies of the responses to emotional events focus on either negative or positive affect-related processes, however, emotional experiences often affect both. The ability of high-level processing brain regions (e.g. medial prefrontal cortex to modulate the balance between negative and positive affect-related regions was examined extensively. In contrast, the ability of low-level processing areas (e.g. periaqueductal grey - PAG to do so, has not been sufficiently studied. To address whether midbrain structures have the ability to modulate limbic regions, we first examined the ventral subiculum stimulation’s (vSub ability to induce plasticity in the basolateral amygdala (BLA and nucleus accumbens (NAcc simultaneously in rats. Further, dorsal PAG (dPAG priming ability to differentially modulate vSub stimulation induced plasticity in the BLA and the NAcc was subsequently examined. vSub stimulation resulted in plasticity in both the BLA and the NAcc simultaneously. Moreover, depending on stimulus intensity, differential dPAG priming effects on LTP in these two regions were observed. The results demonstrate that negative and positive affect-related processes may be simultaneously modulated. Furthermore, under some conditions lower-level processing areas, such as the dPAG, may differentially modulate plasticity in these regions and thus affect the long-term emotional outcome of the experience.

  9. Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding.

    Science.gov (United States)

    Peng, X-X; Lister, A; Rabinowitsch, A; Kolaric, R; Cabeza de Vaca, S; Ziff, E B; Carr, K D

    2015-06-01

    Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for 10 occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-h chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR

  10. Exposure to morphine-associated cues increases mu opioid receptor mRNA expression in the nucleus accumbens of Wistar Kyoto rats.

    Science.gov (United States)

    Dennis, Torry S; Beck, Kevin D; Cominski, Tara P; Bobzean, Samara A M; Kuzhikandathil, Eldo V; Servatius, Richard J; Perrotti, Linda I

    2016-10-15

    The Wistar-Kyoto (WKY) rat has been proposed as a model of anxiety vulnerability as it exhibits pronounced behavioral inhibition, passive avoidance, exaggerated startle response, enhanced HPA-axis activation, and active avoidance that is resistant to extinction. Accumulating evidence suggests that WKY rats respond differently to rewarding stimuli when compared to outbred strains of rat. Conditioned responding to drug-associated cues is linked with alterations in the activation of mu opioid receptors (MOR) and kappa opioid receptors (KOR) in the nucleus accumbens (NAc). Furthermore, alterations in KOR expression/activation in the NAc of WKY rats are implicated in the regulation of some of the components that make up the unique behavioral phenotype of this strain. The purpose of this study was to extend upon previous work from our laboratory by investigating conditioned morphine reward in adult male WKY and SD rats, and to examine levels of KOR mRNA and MOR mRNA in the NAc at baseline and after acquisition of morphine CPP. Our results demonstrate that SD rats displayed morphine-induced CPP to each of the six doses of morphine tested (0.5, 1.25, 2.5, 5, 7.5, or 10mg/kg). Interestingly, WKY rats demonstrated CPP for only the 1.25, 2.5, and 5mg/kg doses, yet no preference at the lowest (0.5mg/kg) or highest (7.5 and 10mg/kg) doses. qPCR analysis of MOR and KOR in the NAc revealed no strain differences in basal levels of MOR, but higher levels of KOR in WKY rats compared to those of SD rats. Interestingly, after completion of the CPP task, WKY rats had overall higher levels of NAc MOR mRNA compared to SD rats; the initial basal differences in NAc KOR levels persisted without change due to CPP in either strain. These results demonstrate that the WKY rat exhibits a unique pattern of behavioral responding to morphine and implicates differences in NAc KOR signaling as a potential source of aversion to higher doses of morphine. Additionally, the CPP-induced upregulation of

  11. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    OpenAIRE

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka; McGinty, Jacqueline F.

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine pri...

  12. Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions

    OpenAIRE

    LaLumiere, Ryan T; Nawar, Erene M.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats (∼300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h la...

  13. Differential Effects of Blockade of Dopamine D1-Family Receptors in Nucleus Accumbens Core or Shell on Reinstatement of Heroin Seeking Induced by Contextual and Discrete Cues

    OpenAIRE

    Bossert, Jennifer M.; Poles, Gabriela C.; Wihbey, Kristina A.; Koya, Eisuke; Shaham, Yavin

    2007-01-01

    In humans, exposure to environmental contexts previously associated with heroin intake can provoke drug relapse, but the neuronal mechanisms mediating this relapse are unknown. Using a drug relapse model, we found previously that reexposing rats to heroin-associated contexts, after extinction of drug-reinforced responding in different contexts, reinstates heroin seeking. This effect is attenuated by inhibition of glutamate transmission in the ventral tegmental area and medial accumbens shell,...

  14. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor

    Directory of Open Access Journals (Sweden)

    Janine Maria Prast

    2014-09-01

    Full Text Available We investigated if counterconditioning with dyadic (i.e., one-to-one social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP, differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1 region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268 in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs, with D2-MSNs (immunolabeled with an anti-DRD2 antibody being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.

  15. The role of D-serine as co-agonist of NMDA receptors in the nucleus accumbens: relevance to cocaine addiction

    OpenAIRE

    D’Ascenzo, Marcello; Podda, Maria Vittoria; Grassi, Claudio

    2014-01-01

    Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc), has a central role in the development and expr...

  16. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats

    OpenAIRE

    Hobson, Benjamin D.; Merritt, Kathryn E.; Bachtell, Ryan K.

    2012-01-01

    Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A1 or A2A receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15...

  17. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is due to a direct increase in phasic dopamine release events

    OpenAIRE

    Aragona, Brandon J.; Cleaveland, Nathan A.; Stuber, Garret D.; Day, Jeremy J.; Carelli, Regina M.; Wightman, R. Mark

    2008-01-01

    Preferential enhancement of dopamine transmission within the nucleus accumbens (NAc) shell is a fundamental aspect of the neural regulation of cocaine reward. Despite its importance, the nature of this effect is poorly understood. Here, we used fast-scan cyclic voltammetry to examine specific transmission processes underlying cocaine-evoked increases in dopamine transmission within the NAc core and shell. Initially, we examined altered terminal dopamine concentrations following global autorec...

  18. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats.

    Science.gov (United States)

    Kitamura, Yoshihisa; Yagi, Takahiko; Kitagawa, Kouhei; Shinomiya, Kazuaki; Kawasaki, Hiromu; Asanuma, Masato; Gomita, Yutaka

    2010-08-01

    The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

  19. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Directory of Open Access Journals (Sweden)

    Schulkin Jay

    2006-04-01

    Full Text Available Abstract Background Corticotropin-releasing factor (CRF is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior. Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl or amphetamine (20 μg/0.2 μl. Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng or amphetamine (20 μg selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress

  20. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats.

    Science.gov (United States)

    Pultorak, Joshua D; Kelm-Nelson, Cynthia A; Holt, Lauren R; Blue, Katherine V; Ciucci, Michelle R; Johnson, Aaron M

    2016-08-01

    Many individuals with Parkinson disease (PD) have difficulty producing normal speech and voice, resulting in problems with interpersonal communication and reduced quality of life. Translational animal models of communicative dysfunction have been developed to assess disease pathology. However, it is unknown whether acoustic feature changes associated with vocal production deficits in these animal models lead to compromised communication. In rodents, male ultrasonic vocalizations (USVs) have a well-established role in functional inter-sexual communication. To test whether acoustic deficits in USVs observed in a PTEN-induced putative kinase 1 (PINK1) knockout (KO) PD rat model compromise communication, we presented recordings of male PINK1 KO USVs and normal wild-type (WT) USVs to female rat listeners. We measured approached behavior and immediate early gene expression (c-Fos) in brain regions implicated in auditory processing and sexual motivation. Our results suggest that females show reduced approach in response to PINK1 KO USVs compared with WT. Moreover, females exposed to PINK1 KO USVs had lower c-Fos immunolabeling in the nucleus accumbens, a region implicated in sexual motivation. These results are the first to demonstrate that vocalization deficits in a rat PD model result in compromised communication. Thus, the PINK1 KO PD model may be valuable for assessing treatments aimed at restoring vocal communicative function. PMID:26313334

  1. Effects of tetra hydro cannabinol to the dendritc tree and synapses of the accumbens nucleus of wistar rats

    Directory of Open Access Journals (Sweden)

    Dimitrijević I.

    2013-01-01

    Full Text Available Cannabis is one of the most widely used intoxicants; almost half of all 18 year olds in the USA and in most European countries admit to having tried it at least once, and ~10% of that age group are regular users. Δ9-Tetrahydrocannabinol (THC, the principal psychoactive ingredient in marijuana, produces euphoria and relaxation and impairs motor coordination, time sense, and short term memory. In the hippocampus, CBs inhibit GABA release from a subset of interneurons and inhibit glutamate release from principal neurons. Cannabinoids are reported to produce both rapid and long-term changes in synaptic transmission. Our study was carried out on ten male rats out of which brains of six of them were used as the representative sample for electron microscope analysis, while 4 were used for light microspcopy performed by Golgi method. Three were exposed to THC and 3 were controls. Axodendric synapses in the core and shell of the accumbens nucleus (AN were studied under electron microscope. The results have shown widening of the synaptic cleft in the shell of AN. This result is a leading point to our further investigations which are going to involve a behavioral component, and different aspects of morphological studies. [Projekat Ministarstva nauke Republike Srbije, br. III 41020

  2. Low expression of nucleus accumbens-associated protein 1 predicts poor prognosis for patients with pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Nishi, Takeshi; Maruyama, Riruke; Urano, Takeshi; Nakayama, Naomi; Kawabata, Yasunari; Yano, Seiji; Yoshida, Manabu; Nakayama, Kentaro; Miyazaki, Kohji; Takenaga, Keizo; Tanaka, Tsuneo; Tajima, Yoshitsugu

    2012-12-01

    Nucleus accumbens-associated protein 1 (NAC1) is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. High expression of NAC1 is considered to have adverse effects on prognosis through negative regulation of growth arrest and DNA-damage-inducible 45-γ interacting protein 1 (GADD45GIP1) in ovarian and cervical carcinomas. In the present study, the expression of NAC1 in pancreatic ductal adenocarcinoma (PDA) was measured using immunohistochemistry and computer-assisted image analysis in order to investigate its correlation with various clinicopathological parameters and prognosis. Patients with low-NAC1 PDA had worse overall survival (P = 0.0010) and a shorter disease-free survival (P = 0.0036) than patients with high-NAC1 PDA. This was a clinical effect opposite to that reported in ovarian and cervical carcinomas. Furthermore, knockdown of NAC1 in pancreatic carcinoma cell lines did not increase expression of the GADD45GIP1 protein. These results indicate that the gene(s) regulated by NAC1 vary depending on the types of carcinoma or originating tissue, and that low expression of NAC1 predicts poor prognosis for patients with PDA.

  3. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Elizabeth E Steinberg

    Full Text Available The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS, a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc, a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  4. Phase-Amplitude Cross-Frequency Coupling in the Human Nucleus Accumbens Tracks Action Monitoring during Cognitive Control

    Directory of Open Access Journals (Sweden)

    Stefan eDürschmid

    2013-10-01

    Full Text Available The Nucleus Accumbens (NAcc is an important structure for the transfer of informationbetween cortical and subcortical structures, especially the prefrontal cortex and thehippocampus. However, the mechanism that allows the NAcc to achieve this integration is notwell understood. Phase-amplitude cross-frequency coupling (PAC of oscillations in differentfrequency bands has been proposed as an effective mechanism to form functional networks tooptimize transfer and integration of information. Here we assess PAC between theta and highgamma oscillations as a potential mechanism that facilitates motor adaptation. To address thisissue we recorded intracranial field potentials directly from the bilateral human NAcc in threepatients while they performed a motor learning task that varied in the level of cognitive controlneeded to perform the task. As in rodents, PAC was observable in the human NAcc, transientlyoccurring contralateral to a movement following the motor response. Importantly, PAC correlatedwith the level of cognitive control needed to monitor the action performed.This functional relationindicates that the NAcc is engaged in action monitoring and supports the evaluation of motorprograms during adaptive behavior by means of PAC.

  5. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    Science.gov (United States)

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-01

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence. PMID:25122682

  6. Differential Gene Expression in the Nucleus Accumbens and Frontal Cortex of Lewis and Fischer 344 Rats Relevant to Drug Addiction

    Science.gov (United States)

    Higuera-Matas, A; Montoya, G. L; Coria, S.M; Miguéns, M; García-Lecumberri, C; Ambrosio, E

    2011-01-01

    Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse. PMID:21886580

  7. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach.

    Science.gov (United States)

    Piray, Payam; Keramati, Mohammad Mahdi; Dezfouli, Amir; Lucas, Caro; Mokri, Azarakhsh

    2010-09-01

    Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum. Modeling dopamine receptors in the NAc as modulators of learning rate for appetitive--but not aversive--stimuli in the critic--but not the actor--we define vulnerability to addiction as a relatively lower learning rate for the appetitive stimuli, compared to aversive stimuli, in the critic. We hypothesize that an imbalance in this learning parameter used by appetitive and aversive learning systems can result in addiction. We elucidate that the interaction between the degree of individual vulnerability and the duration of exposure to drug has two progressive consequences: deterioration of the imbalance and establishment of an abnormal habitual response in the actor. Using computational language, the proposed model describes how development of compulsive behavior can be a function of both degree of drug exposure and individual vulnerability. Moreover, the model describes how involvement of the dorsal striatum in addiction can be augmented progressively. The model also interprets other forms of addiction, such as obesity and pathological gambling, in a common mechanism with drug addiction. Finally, the model provides an answer for the question of why behavioral addictions are triggered in Parkinson's disease patients by D2 dopamine agonist treatments. PMID:20569176

  8. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study.

    Science.gov (United States)

    Lee, S W; Jeong, B S; Choi, J; Kim, J-W

    2015-01-01

    Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level. PMID:25971857

  9. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake.

    Science.gov (United States)

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  10. C-fos protein expression in the anterior amygdaloid area and nc. accumbens in the hypoxic rat brain

    Directory of Open Access Journals (Sweden)

    Babović Siniša S.

    2014-01-01

    Full Text Available Introduction. By examining the production of c-Fos protein, we analyzed the response to the ischemic attack in different brain tissue, two of which are regions of the limbic system: the anterior amygdaloid area and nc. accumbens. Material and Methods. We used the model of rat brain ischemia - four-vessel occlusion, and Pulsinelli’s method. The rats were treated in two ways, according to which they were divided into two groups: a total ischemia (ligation of four blood vessels, i.e. electrocauterization of the vertebral artery with bilateral ligation of the carotid artery - the so-called R-group rats, and transient ischemic attack (ligation of four blood vessels, i.e. electrocauterization of the vertebral artery, with mutual re-ligation of the carotid arteries in the form of transient ischemia - the so-called T-group rats, which can also be called “pre-conditioned group”. Both groups had their own control group. Conclusion. We have concluded that parts of the brain with an important role for the survival have a strong expression of c-fos gene.

  11. Involvement of tissue plasminogen activator-plasmin system in depolarization-evoked dopamine release in the nucleus accumbens of mice.

    Science.gov (United States)

    Ito, Mina; Nagai, Taku; Kamei, Hiroyuki; Nakamichi, Noritaka; Nabeshima, Toshitaka; Takuma, Kazuhiro; Yamada, Kiyofumi

    2006-11-01

    Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin. In the present study, we investigated the role of the tPA-plasmin system in depolarization-evoked dopamine (DA) and acetylcholine (ACh) release in the nucleus accumbens (NAc) and hippocampus, respectively, of mice, by using in vivo microdialysis. Microinjection of either tPA or plasmin significantly potentiated 40 mM KCl-induced DA release without affecting basal DA levels. In contrast, plasminogen activator inhibitor-1 dose-dependently reduced 60 mM KCl-induced DA release. The 60 mM KCl-evoked DA release in the NAc was markedly diminished in tPA-deficient (tPA-/-) mice compared with wild-type mice, although basal DA levels did not differ between the two groups. Microinjections of either exogenous tPA (100 ng) or plasmin (100 ng) into the NAc of tPA-/-mice restored 60 mM KCl-induced DA release, as observed in wild-type mice. In contrast, there was no difference in either basal or 60 mM KCl-induced ACh release in the hippocampus between wild-type and tPA-/-mice. Our findings suggest that the tPA-plasmin system is involved in the regulation of depolarization-evoked DA release in the NAc.

  12. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens.

    Science.gov (United States)

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength. PMID:26257641

  13. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    Science.gov (United States)

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  14. Cocaine-Induced Behavioral Sensitization in Mice: Effects of Microinjection of Dopamine D2 Receptor Antagonist into the Nucleus Accumbens

    Science.gov (United States)

    Jung, Eun-Sol; Lee, Hyo Jin; Sim, Hye-Ri

    2013-01-01

    To determine the role of dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) core in cocaine-induced behavioral sensitization, D2R antagonist, raclopride was bilaterally microinjected (2.5 or 5 nmol) into the NAc core of WT and D2R-/- mice and the initiation and expression phase of cocaine-mediated locomotor sensitization were analyzed. WT and D2R knockout (D2R-/-) mice received bilateral injections of either saline, or raclopride at the NAc core 30 min before each of five daily repeated injections of saline or cocaine (15 mg/kg i.p.). Following 2 weeks of withdrawal after repeated exposure to cocaine, the animals were pre-treated with an intra-accumbal injection of vehicle or raclopride before receiving a systemic cocaine challenge for the expression of sensitization. Animals which had been microinjected raclopride into NAc core displayed the enhancement of cocaine-induced behavioral response for the initiation but also for the expression of sensitization in WT as well as in D2R-/- mice, which was thus unaltered as compared to vehicle-injected control group. These results suggest that D2R in NAc core is not involved in cocaine-induced behavioral sensitization. PMID:24167417

  15. Social Stress and Escalated Drug Self-administration in Mice II. Cocaine and Dopamine in Nucleus Accumbens

    Science.gov (United States)

    Han, Xiao; Albrechet-Souza, Lucas; Doyle, Michelle R.; Shimamoto, Akiko; DeBold, Joseph F.; Miczek, Klaus A.

    2014-01-01

    Rationale Social defeat stress results in escalation of cocaine taking and long-term neural adaptations in rats. How the intensity and timing of social defeat stress determine these effects, particularly in mice, have not been well characterized. Objective This study investigated the effects of mild vs. moderate intensities and durations of social stress on intravenous cocaine self-administration as well as on dopamine (DA) release in nucleus accumbens shell (NAcSh) by using in vivo microdialysis. Methods Adult male CFW mice experienced 10 days of social defeat stress, either mild (15 attack bites in ca. 1.8 min) or moderate (30 attack bites in ca. 3.6 min), and compared to controls that were handled daily. Subsequently, the socially stressed mice were assessed for either (1) intravenous cocaine self-administration, using several unit doses (0, 0.3, 0.6, 1.0 mg/kg/infusion) under limited access conditions, or (2) neural sensitization, as determined by in vivo microdialysis of DA in the NAcSh in response to acute d-amphetamine challenge. Results Social defeat stress resulted in escalated cocaine self-administration in both mild and moderate socially stressed groups. In addition, social defeat stress led to increased DA release after d-amphetamine challenge. Conclusions These data suggest that both mild and moderate socially stressed mice exhibit increased cocaine taking compared to controls, and this increase is associated with escalated dopaminergic responses in the NAcSh. PMID:25216798

  16. Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies.

    Science.gov (United States)

    Bergamini, Giorgio; Sigrist, Hannes; Ferger, Boris; Singewald, Nicolas; Seifritz, Erich; Pryce, Christopher R

    2016-10-01

    Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies. PMID:27036890

  17. Functional deficiency of MHC class I enhances LTP and abolishes LTD in the nucleus accumbens of mice.

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Edamura

    Full Text Available Major histocompatibility complex class I (MHCI molecules were recently identified as novel regulators of synaptic plasticity. These molecules are expressed in various brain areas, especially in regions undergoing activity-dependent synaptic plasticity, but their role in the nucleus accumbens (NAc is unknown. In this study, we investigated the effects of genetic disruption of MHCI function, through deletion of β2-microblobulin, which causes lack of cell surface expression of MHCI. First, we confirmed that MHCI molecules are expressed in the NAc core in wild-type mice. Second, we performed electrophysiological recordings with NAc core slices from wild-type and β2-microglobulin knock-out mice lacking cell surface expression of MHCI. We found that low frequency stimulation induced long-term depression in wild-type but not knock-out mice, whereas high frequency stimulation induced long-term potentiation in both genotypes, with a larger magnitude in knock-out mice. Furthermore, we demonstrated that knock-out mice showed more persistent behavioral sensitization to cocaine, which is a NAc-related behavior. Using this model, we analyzed the density of total AMPA receptors and their subunits GluR1 and GluR2 in the NAc core, by SDS-digested freeze-fracture replica labeling. After repeated cocaine exposure, the density of GluR1 was increased, but there was no change in total AMPA receptors and GluR2 levels in wild-type mice. In contrast, following repeated cocaine exposure, increased densities of total AMPA receptors, GluR1 and GluR2 were observed in knock-out mice. These results indicate that functional deficiency of MHCI enhances synaptic potentiation, induced by electrical and pharmacological stimulation.

  18. Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior.

    Science.gov (United States)

    Floresco, S B; McLaughlin, R J; Haluk, D M

    2008-06-26

    Reinstatement of previously extinguished instrumental responding for drug-related cues has been used as an animal model for relapse of drug abuse, and is differentially affected by inactivation of the core and shell subregions of the nucleus accumbens (NAc). To compare the roles of these subregions in reinstatement induced by cues associated with natural and drug rewards, the present study assessed the effects of inactivation of the NAc core and shell on cue-induced reinstatement of food-seeking behavior. Rats acquired a lever pressing response for food reward paired with a light/tone conditioned stimulus (CS). They were then subjected to extinction, where both food and the CS were withheld. Reinstatement of responding was measured during response-contingent presentations of the CS. Following saline infusions into the NAc core or shell, rats displayed a significant increase in lever pressing during reinstatement sessions. Inactivation of the core, induced by infusion of GABA agonists muscimol and baclofen, attenuated responding for the CS, but did not affect pavlovian approach toward the food receptacle. In contrast, inactivation of the shell had the opposite effect, potentiating responding relative to vehicle treatments. These data suggest that the NAc core and shell play opposing, yet complementary roles in mediating the influence that food-associated conditioned stimuli exert over behavior. The core enables reward-related stimuli to bias the direction and vigor of instrumental responding. In contrast, the shell facilitates alterations in behavior in response to changes in the incentive value of conditioned stimuli. The fact that the NAc core appears to play a similar role in cue-induced reinstatement induced by both natural and drug rewards suggests that this region of the ventral striatum may be a final common pathway through which both drug- and food-associated stimuli may influence the direction and magnitude of ongoing behavior. PMID:18479836

  19. Neonatal finasteride administration decreases dopamine release in nucleus accumbens after alcohol and food presentation in adult male rats.

    Science.gov (United States)

    Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc

    2016-08-01

    Endogenous levels of the neurosteroid (NS) allopregnanolone (AlloP) during neonatal stages are crucial for the correct development of the central nervous system (CNS). In a recent work we reported that the neonatal administration of AlloP or finasteride (Finas), an inhibitor of the enzyme 5α-reductase needed for AlloP synthesis, altered the voluntary consumption of ethanol and the ventrostriatal dopamine (DA) levels in adulthood, suggesting that neonatal NS manipulations can increase alcohol abuse vulnerability in adulthood. Moreover, other authors have associated neonatal NS alterations with diverse dopaminergic (DAergic) alterations. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP alter the DAergic response in the nucleus accumbens (NAcc) during alcohol intake in rats. We administered AlloP or Finas from postnatal day (PND) 5 to PND9. At PND98, we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 12 days. On the last day of consumption, we measured the DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in NAcc in response to ethanol intake. The samples were obtained by means of in vivo microdialysis in freely moving rats, and DA and DOPAC levels were determined by means of high-performance liquid chromatography analysis (HPLC). The results revealed that neonatal Finas increased ethanol consumption in some days of the consumption phase, and decreased the DA release in the NAcc in response to solutions (ethanol+glucose) and food presentation. Taken together, these results suggest that neonatal NS alterations can affect alcohol rewarding properties. PMID:27139934

  20. Sex differences in alcohol consumption and alterations in nucleus accumbens endocannabinoid mRNA in alcohol-dependent rats.

    Science.gov (United States)

    Henricks, Angela M; Berger, Anthony L; Lugo, Janelle M; Baxter-Potter, Lydia N; Bieniasz, Kennedy V; Craft, Rebecca M; McLaughlin, Ryan J

    2016-10-29

    Chronic intermittent alcohol (CIA) exposure produces altered motivational states characterized by anxiety and escalated alcohol consumption during withdrawal. The endocannabinoid (ECB) system contributes to these symptoms, and sex differences in alcohol dependence, as well as bidirectional interactions between ECBs and gonadal hormones have been documented. Thus, we evaluated sex differences in alcohol consumption, anxiety-like behavior, and ECB mRNA expression in the nucleus accumbens (NAc) of alcohol-dependent rats during acute withdrawal. Male rats exposed to six weeks of CIA showed escalated alcohol consumption during acute withdrawal and reductions in NAc N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), DAG lipase alpha (DAGLα), and monoacylglycerol lipase (MAGL) mRNA. Intact alcohol-dependent female rats also escalated their consumption, but notably, this effect was also present in non-dependent females. No differences in NAc ECB mRNA were observed between CIA- and air-exposed females during acute withdrawal. However, when these data were analyzed according to estrous stage, significant differences in NAPEPLD and MAGL mRNA expression emerged in the NAc of air-exposed control rats, which were absent in alcohol-dependent females. We subsequently measured alcohol consumption and NAc ECB mRNA in ovariectomized (OVX) females with or without estradiol (E2) replacement during withdrawal. Neither E2 nor CIA altered alcohol consumption in OVX females. However, E2 reduced both DAGLα and MAGL mRNA, suggesting that E2 may influence the biosynthesis and degradation of 2-arachidonoylglycerol (2-AG) in the NAc. Collectively, these studies indicate sexual dimorphism in alcohol consumption in non-dependent rats and suggest that E2-mediated alterations in NAc ECB mRNA expression during withdrawal may be a mechanism by which sex differences in alcohol dependence emerge. PMID:27578612

  1. Pain relief induces dopamine release in the rat nucleus accumbens during the early but not late phase of neuropathic pain.

    Science.gov (United States)

    Kato, Takahiro; Ide, Soichiro; Minami, Masabumi

    2016-08-26

    Comorbidity of chronic pain and depression has long been recognized in the clinic, and preclinical studies have reported depression-like behaviors in animal models of chronic pain. These findings suggest a common neuronal basis for chronic pain and depression. The neuronal pathway from the ventral tegmental area to the nucleus accumbens (NAc) is critical in the mesolimbic dopamine (DA) reward circuit, and dysfunction of this pathway has been implicated in depression. Although time-dependent development of depression-related behaviors has been reported in chronic pain animals, time-dependent functional changes in this pathway remain to be examined. To address this issue, we examined the effects of two types of rewards, pain relief by intrathecal injection of pregabalin (100μg in 10μL phosphate buffered saline) and 30% sucrose solution intake, on intra-NAc DA release in rats subjected to spinal nerve ligation (SNL). Specifically, the effects were investigated during the early (17-20days after ligation) and late (31-34days after ligation) phases of neuropathic pain. Pain relief increased the intra-NAc DA levels in the SNL rats during the early but not late phase of neuropathic pain. Intake of the sucrose solution increased the intra-NAc DA levels both in the SNL and sham animals during the early phase of neuropathic pain, while it induced DA release in the sham but not SNL animals during the late phase. These results suggest that dysfunction of the mesolimbic DA reward circuit develops in a time-dependent manner. Mesolimbic DA reward circuit dysfunction might be a common neuronal mechanism underlying chronic pain and depression, and a potential target for novel analgesic and antidepressant medications. PMID:27369326

  2. Stimulation-Evoked Dopamine Release in the Nucleus Accumbens Following Cocaine Administration in Rats Perinatally Exposed to Polychlorinated Biphenyls

    Science.gov (United States)

    Sable, Helen J. K.

    2013-01-01

    Exposure to polychlorinated biphenyls (PCBs) alters brain dopamine (DA) concentrations and DA receptor/transporter function, suggesting the reinforcing properties of drugs of abuse acting on the DA system may be affected by PCB exposure. Female Long-Evans rats were orally exposed to 0, 3, or 6mg/kg/day PCBs from 4 weeks prior to breeding until litters were weaned on postnatal day 21. In vivo fixed potential amperometry (FPA) was used in adult anesthetized offspring to determine whether perinatal PCB exposure altered (1) presynaptic DA autoreceptor (DAR) sensitivity, (2) electrically evoked nucleus accumbens (NAc) DA efflux following administration of cocaine, and (3) the rate of depletion of presynaptic DA stores. One adult male and female littermate were tested using FPA following a single injection of cocaine (20mg/kg ip), whereas a second adult male and female littermate were tested following the last of seven daily cocaine injections of the same dose. The carbon fiber recording microelectrode was positioned in the NAc core, and DA oxidation currents (i.e., DA release) evoked by brief stimulation of the medial forebrain bundle (MFB) were quantified before and after administration of cocaine. PCB-exposed rats exhibited enhanced stimulation-evoked DA release (relative to baseline) following a single injection of cocaine. Although nonexposed controls exhibited typical DA sensitization following repeated cocaine administration, this effect was attenuated in PCB-exposed rats. In addition, DAR sensitivity was higher (males only), and the rate of depletion of presynaptic DA stores was greater in PCB-exposed animals relative to nonexposed controls. These results indicate that perinatal PCB exposure can modify DA synaptic transmission in the NAc in a manner previously shown to alter the reinforcing properties of cocaine. PMID:23912914

  3. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration of cocaine:heroin combinations

    Science.gov (United States)

    Pattison, Lindsey P.; McIntosh, Scot; Sexton, Tammy; Childers, Steven R.; Hemby, Scott E.

    2014-01-01

    Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate (Vmax) of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [125I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([125I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd) and binding density (Bmax) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc. PMID:24916769

  4. Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine- mediated regulation of Tiam1

    Directory of Open Access Journals (Sweden)

    Ramesh eChandra

    2013-05-01

    Full Text Available Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spiny neurons (MSNs. These cellular adaptations arise from alterations in genes that are highly implicated in the rearrangement of the actin cytoskeleton, such as Tiam1. Previous studies have demonstrated a crucial role for dopamine receptor 1 (D1-containing striatal MSNs in mediating psychostimulant induced plasticity changes. These D1-MSNs in the nucleus accumbens (NAc positively regulate drug seeking, reward, and locomotor behavioral effects as well as the morphological adaptations of psychostimulant drugs. Here, we demonstrate that rats that actively self-administer cocaine display reduced levels of Tiam1 in the NAc. To further examine the cell type specific contribution to these changes in Tiam1 we used optogenetics to selectively manipulate NAc D1-MSNs or dopamine receptor 2 (D2 expressing MSNs. We find that repeated ChR2 activation of D1-MSNs but not D2-MSNs caused a down-regulation of Tiam1 levels similar to the effects of cocaine. Further, activation of D2-MSNs, which caused a late blunted cocaine-mediated locomotor behavioral response, did not alter Tiam1 levels. We then examined the contribution of D1-MSNs to the cocaine-mediated decrease of Tiam1. Using the light activated chloride pump, eNpHR3.0, we selectively inhibited D1-MSNs during cocaine exposure, which resulted in a behavioral blockade of cocaine-induced locomotor sensitization. Moreover, inhibiting these NAc D1-MSNs during cocaine exposure reversed the down-regulation of Tiam1 gene expression and protein levels. These data demonstrate that altering activity in specific neural circuits with optogenetics can impact the underlying molecular substrates of psychostimulant mediated behavior and function.

  5. Inactivation of the nucleus accumbens core or medial shell attenuates reinstatement of sugar-seeking behavior following sugar priming or exposure to food-associated cues.

    Directory of Open Access Journals (Sweden)

    Peagan Lin

    Full Text Available Re-exposure to either palatable food or to conditioned stimuli associated with food is known to reinstate food-seeking after periods of abstinence. The nucleus accumbens core and shell are important for reinstatement in both food- and drug-seeking paradigms, although their potential differential roles have been difficult to delineate due to methodological differences in paradigms across laboratories. The present studies assessed the effects of temporary inactivation of the core or shell on priming- and cue-induced reinstatement of food-seeking in identically-trained rats. Inactivation of either the nucleus accumbens core (Experiment 1A; N = 10 or medial shell (Experiment 1B; N = 12 blocked priming-induced reinstatement in an equivalent manner. Similarly, inactivation of the core or medial shell (Experiments 2A & 2B; N = 11 each also blocked cue-induced reinstatement, although there was also a significant treatment day X brain region X drug order interaction. Specifically, rats with core inactivation reinstated lever-pressing on the vehicle injection day regardless of whether that was their first or second test, whereas rats that had medial shell inactivation on the first day did not significantly reinstate lever-pressing on the second day of testing (when they received vehicle. Yohimbine, while a reportedly robust pharmacological stressor, was ineffective at inducing reinstatement in the current stress-induced reinstatement procedure. These data suggest that both the nucleus accumbens core and shell serve important roles in reinstatement of food-seeking in response to priming and cues.

  6. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior

    OpenAIRE

    Glass, Michael J.; Robinson, Danielle C.; Waters, Elizabeth; Pickel, Virginia M.

    2013-01-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is co-expressed not only with the dopamine D1 receptor (D1R), but also with the μ-opioid receptor (μ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the ...

  7. Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement.

    Science.gov (United States)

    Pratt, Wayne E; Schall, Megan A; Choi, Eugene

    2012-03-01

    Previously, we reported that stimulation of selective serotonin (5-HT) receptor subtypes in the nucleus accumbens shell differentially affected consumption of freely available food. Specifically, activation of 5-HT(6) receptors caused a dose-dependent increase in food intake, while the stimulation of 5-HT(1/7) receptor subtypes decreased feeding [34]. The current experiments tested whether similar pharmacological activation of nucleus accumbens serotonin receptors would also affect appetitive motivation, as measured by the amount of effort non-deprived rats exerted to earn sugar reinforcement. Rats were trained to lever press for sugar pellets on a progressive ratio 2 schedule of reinforcement. Across multiple treatment days, three separate groups (N=8-10) received bilateral infusions of the 5-HT(6) agonist EMD 386088 (at 0.0, 1.0 and 4.0 μg/0.5 μl/side), the 5-HT(1/7) agonist 5-CT (at 0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), or the 5-HT(2C) agonist RO 60-0175 fumarate (at 0, 2.0, or 5.0 μg/0.5 μl/side) into the anterior medial nucleus accumbens prior to a 1-h progressive ratio session. Stimulation of 5-HT(6) receptors caused a dose-dependent increase in motivation as assessed by break point, reinforcers earned, and total active lever presses. Stimulation of 5-HT(1/7) receptors increased lever pressing at the 0.5 μg dose of 5-CT, but inhibited lever presses and break point at 4.0 μg/side. Injection of the 5-HT(2C) agonist had no effect on motivation within the task. Collectively, these experiments suggest that, in addition to their role in modulating food consumption, nucleus accumbens 5-HT(6) and 5-HT(1/7) receptors also differentially regulate the appetitive components of food-directed motivation.

  8. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence

    OpenAIRE

    Mohammed Mamdani; Vernell Williamson; McMichael, Gowon O.; Tana Blevins; Fazil Aliev; Amy Adkins; Laura Hack; Tim Bigdeli; Andrew D van der Vaart; Bradley Todd Web; Silviu-Alin Bacanu; Gursharan Kalsi; Kendler, Kenneth S.; Miles, Michael F.; Danielle Dick

    2015-01-01

    Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to b...

  9. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Science.gov (United States)

    Fu, Qiang; Zhou, Xiaoyan; Dong, Yun; Huang, Yonghong; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2016-01-01

    The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats. PMID:27404570

  10. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    Full Text Available The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART peptides, particularly with respect to the function of the D3 dopamine receptor (D3R, which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα in the nucleus accumbens (NAc. After repeated oral administration of caffeine (30 mg/kg for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.

  11. Effects of co-administration of 2-arachidonylglycerol (2-AG) and a selective µ-opioid receptor agonist into the nucleus accumbens on high-fat feeding behaviors in the rat.

    Science.gov (United States)

    Parker, Kyle E; McCall, Jordan G; McGuirk, Sophia R; Trivedi, Seema; Miller, Dennis K; Will, Matthew J

    2015-08-27

    Previous research has demonstrated that the nucleus accumbens is a site where opioids and cannabinoids interact to alter feeding behavior. However, the influence of the endocannabinoid 2-arachidonylglycerol (2-AG) on the well-characterized model of intra-accumbens opioid driven high-fat feeding behavior has not been explored. The present experiments examined high-fat feeding associated behaviors produced by the interaction of 2-AG and the μ-opioid receptor agonist DAla(2),N,Me-Phe(4),Gly-ol(5)-enkaphalin (DAMGO) administered into the nucleus accumbens. Sprague-Dawley rats were implanted with bilateral cannulae aimed at the nucleus accumbens and were co-administered both a sub-threshold dose of 2-AG (0 or 0.25 μg/0.5 μl/side) and DAMGO (0, 0.025 μg or 0.25 μg/0.5 μl/side) in all dose combinations, and in a counterbalanced order. Animals were then immediately allowed a 2h-unrestricted access period to a palatable high-fat diet. Consumption, number and duration of food hopper entries, and locomotor activity were all monitored. DAMGO treatment led to an increase in multiple behaviors, including consumption, duration of food hopper entry, and locomotor activity. However, combined intra-accumbens administration of DAMGO and a subthreshold dose of 2-AG led to a significant increase in number of food hopper entries and locomotor activity, compared to DAMGO by itself. The results confirm that intra-accumbens administration of subthreshold dose of the endogenous cannabinoid 2-AG increases the DAMGO-induced approach and locomotor behaviors associated with high-fat feeding. PMID:26100333

  12. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  13. Stress-Induced Locomotor Sensitization to Amphetamine in Adult, but not in Adolescent Rats, Is Associated with Increased Expression of ΔFosB in the Nucleus Accumbens

    Science.gov (United States)

    Carneiro de Oliveira, Paulo E.; Leão, Rodrigo M.; Bianchi, Paula C.; Marin, Marcelo T.; Planeta, Cleopatra da Silva; Cruz, Fábio C.

    2016-01-01

    While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively) were restrained for 2 h once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p.) and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both the adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats. PMID:27672362

  14. Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior.

    Science.gov (United States)

    Stefanik, Michael T; Kupchik, Yonatan M; Kalivas, Peter W

    2016-04-01

    Animal models of relapse reveal that the motivation to seek drug is regulated by enduring morphological and physiological changes in the nucleus accumbens, as well as transient synaptic potentiation in the accumbens core (NAcore) that parallels drug-seeking behavior. The current study sought to examine the link between the behavioral and synaptic consequences of cue-induced cocaine seeking by optically silencing glutamatergic afferents to the NAcore from the prelimbic cortex (PL). Adeno-associated virus coding for the inhibitory opsin archaerhodopsin was microinjected into PL, and optical fibers were targeted to NAcore. Animals were trained to self-administer cocaine followed by extinction training, and then underwent cue-induced reinstatement in the presence or absence of 15 min of optically induced inhibition of PL fibers in NAcore. Inhibiting the PL-to-NAcore projection blocked reinstated behavior and was paralleled by decreased dendritic spine head diameter and AMPA/NMDA ratio relative to sham-laser control rats. Interestingly, while spine density was elevated after extinction training, no further effects were observed by cued reinstatement or optical inhibition. These findings validate the critical role for PL afferents to the NAcore in simultaneously regulating both reinstated behavior and the associated transient synaptic potentiation. PMID:25663648

  15. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Gilles Erwann Martin

    2015-07-01

    Full Text Available It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus, each region providing different information (e.g. spatial, emotional and cognitive. Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD and long-term potentiation (tLTP and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute EtOH has little effects on higher order information coming from the prefrontal cortex (PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.

  16. mTOR signalling in the nucleus accumbens shell is critical for augmented effect of TFF3 on behavioural response to cocaine

    OpenAIRE

    Yi-Xiao Luo; Hua Han; Juan Shao; Yuan Gao; Xi Yin; Wei-Li Zhu; Ying Han; Hai-Shui Shi

    2016-01-01

    Neuropeptides play important roles in modulating the rewarding value of abused drugs. Trefoil factor 3 (TFF3) was recently reported to modulate withdrawal syndrome of morphine, but the effects of TFF3 on the cocaine-induced behavioral changes are still elusive. In the present study, cocaine-induced hyperlocomotion and conditioned place preference (CPP) rat paradigms were provided to investigate the role of TFF3 in the reward response to cocaine. High-performance liquid chromatography (HPLC) a...

  17. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats

    Directory of Open Access Journals (Sweden)

    Howes Nathan J

    2005-05-01

    Full Text Available Abstract Background Animals must frequently make choices between alternative courses of action, seeking to maximize the benefit obtained. They must therefore evaluate the magnitude and the likelihood of the available outcomes. Little is known of the neural basis of this process, or what might predispose individuals to be overly conservative or to take risks excessively (avoiding or preferring uncertainty, respectively. The nucleus accumbens core (AcbC is known to contribute to rats' ability to choose large, delayed rewards over small, immediate rewards; AcbC lesions cause impulsive choice and an impairment in learning with delayed reinforcement. However, it is not known how the AcbC contributes to choice involving probabilistic reinforcement, such as between a large, uncertain reward and a small, certain reward. We examined the effects of excitotoxic lesions of the AcbC on probabilistic choice in rats. Results Rats chose between a single food pellet delivered with certainty (p = 1 and four food pellets delivered with varying degrees of uncertainty (p = 1, 0.5, 0.25, 0.125, and 0.0625 in a discrete-trial task, with the large-reinforcer probability decreasing or increasing across the session. Subjects were trained on this task and then received excitotoxic or sham lesions of the AcbC before being retested. After a transient period during which AcbC-lesioned rats exhibited relative indifference between the two alternatives compared to controls, AcbC-lesioned rats came to exhibit risk-averse choice, choosing the large reinforcer less often than controls when it was uncertain, to the extent that they obtained less food as a result. Rats behaved as if indifferent between a single certain pellet and four pellets at p = 0.32 (sham-operated or at p = 0.70 (AcbC-lesioned by the end of testing. When the probabilities did not vary across the session, AcbC-lesioned rats and controls strongly preferred the large reinforcer when it was certain, and strongly

  18. Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens.

    Science.gov (United States)

    Caputi, Francesca Felicia; Di Benedetto, Manuela; Carretta, Donatella; Bastias del Carmen Candia, Sussy; D'Addario, Claudio; Cavina, Chiara; Candeletti, Sanzio; Romualdi, Patrizia

    2014-03-01

    Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addiction. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen (mCPu and lCPu, respectively) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epigenetic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine induced pDYN gene expression up-regulation in the NA and lCPu, and its down-regulation in the mCPu, whereas KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA and lCPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the lCPu. Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter, consistent with the observed gene expression alterations. The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underlying the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene promoters that result in long-lasting drug-induced plasticity. PMID:24184686

  19. Dissociable contribution of nucleus accumbens and dorsolateral striatum to the acquisition of risk choice behavior in the rat.

    Science.gov (United States)

    Yang, Jen-Hau; Liao, Ruey-Ming

    2015-12-01

    While a growing body of research has suggested that the mesocorticolimbic dopamine systems play a key role in decision making under risk, how the nucleus accumbens (NAC) is involved in the acquisition of risk choice behavior remains unclear. This study used a T-maze task to assess risk-based decision making in which the rat was required to assess the risk by choosing to enter either a small and certain reward arm or a large but uncertain reward arm of the maze. The latter option, when chosen, resulted in provision of 2, 4, or 8 sweeten pellets with a probability (p) of 0.5, 0.25, or 0.125, respectively. Thus the latter arm provided three different conditions of reward ratio, compared to the choice of former arm, which always provided 1 pellet with p=1. This risk choice task was then run with the expected value being equality between the binary choice options. The experimental rats first received an excitoneurotoxic lesion affecting either the NAC or the dorsolateral striatum (DLS) and this was followed by post-lesion behavioral examination. The sham lesion control rats acquired a stable risk choice with regard to each reward ratio over a 10-day test. The pattern of choice behavior appeared in risk-seeking when p=0.5 to obtain 2 pellets, and was risk-averse when larger reward resulted in lower p. The NAC lesion significantly disrupted the acquisition of the aforementioned risk choice behavior and apparently shifted the choice into a risk-averse style for all three reward ratios. No such effect was observed in the rats with DLS lesions. Neither the gross motor action nor the discrimination of different reward magnitudes was impaired by the lesions affecting either the NAC or DLS as assessed by an additional experiment. These findings suggest that firstly there is heterogeneity between NAC and DLS with respect to risk-based decision making, and that secondly the NAC is involved and critical to the acquisition of behavioral choice under risk, specially when the

  20. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking.

    Science.gov (United States)

    Lei, Kelly; Wegner, Scott A; Yu, Ji Hwan; Mototake, Arisa; Hu, Bing; Hopf, Frederic W

    2016-01-01

    Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs) promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc) and anterior insular cortex (aINS) in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh) significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results suggest that OX1Rs within the mNAsh and mPFC, but not the aINS, play a central role in

  1. Local Control of Extracellular Dopamine Levels in the Medial Nucleus Accumbens by a Glutamatergic Projection from the Infralimbic Cortex.

    Science.gov (United States)

    Quiroz, César; Orrú, Marco; Rea, William; Ciudad-Roberts, Andrés; Yepes, Gabriel; Britt, Jonathan P; Ferré, Sergi

    2016-01-20

    It is generally assumed that infralimbic cortex (ILC) and prelimbic cortex, two adjacent areas of the medial prefrontal cortex (mPFC) in rodents, provide selective excitatory glutamatergic inputs to the nucleus accumbens (NAc) shell and core, respectively. It is also generally believed that mPFC influences the extracellular levels of dopamine in the NAc primarily by an excitatory collateral to the ventral tegmental area (VTA). In the present study, we first established the existence of a selective functional connection between ILC and the posteromedial portions of the VTA (pmVTA) and the mNAc shell (pmNAc shell), by measuring striatal neuronal activation (immunohistochemical analysis of ERK1/2 phosphorylation) and glutamate release (in vivo microdialysis) upon ILC electrical stimulation. A novel optogenetic-microdialysis approach allowed the measurement of extracellular concentrations of glutamate and dopamine in the pmNAc shell upon local light-induced stimulation of glutamatergic terminals from ILC. Cortical electrical and local optogenetic stimulation produced significant increases in the extracellular concentrations of glutamate and dopamine in the pmNAc shell. Local blockade of glutamate release by perfusion of an adenosine A2A receptor antagonist in the pmNAc shell blocked the dopamine release induced by local optogenetic stimulation but only partially antagonized dopamine release induced by cortical electrical stimulation. The results demonstrate that ILC excitatory afferents directly modulate the extracellular concentration of dopamine in the pmNAc shell, but also support the involvement of an indirect mechanism of dopamine control, through a concomitant ILC-mediated activation of the pmVTA. Significance statement: We established the existence of a functional connection between the infralimbic cortex (ILC) and the posteromedial portions of the ventral tegmental area (pmVTA) and the medial nucleus acumbens shell (pmNAc shell). A novel optogenetic

  2. Mesolimbic Dopamine Signals the Value of Work

    Science.gov (United States)

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  3. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens.

    Science.gov (United States)

    Danjo, Teruko; Yoshimi, Kenji; Funabiki, Kazuo; Yawata, Satoshi; Nakanishi, Shigetada

    2014-04-29

    Dopamine (DA) transmission from the ventral tegmental area (VTA) is critical for controlling both rewarding and aversive behaviors. The transient silencing of DA neurons is one of the responses to aversive stimuli, but its consequences and neural mechanisms regarding aversive responses and learning have largely remained elusive. Here, we report that optogenetic inactivation of VTA DA neurons promptly down-regulated DA levels and induced up-regulation of the neural activity in the nucleus accumbens (NAc) as evaluated by Fos expression. This optogenetic suppression of DA neuron firing immediately evoked aversive responses to the previously preferred dark room and led to aversive learning toward the optogenetically conditioned place. Importantly, this place aversion was abolished by knockdown of dopamine D2 receptors but not by that of D1 receptors in the NAc. Silencing of DA neurons in the VTA was thus indispensable for inducing aversive responses and learning through dopamine D2 receptors in the NAc.

  4. Alcohol-preferring (P) rats are more sensitive than Wistar rats to the reinforcing effects of cocaine self-administered directly into the nucleus accumbens shell.

    Science.gov (United States)

    Katner, Simon N; Oster, Scott M; Ding, Zheng-Ming; Deehan, Gerald A; Toalston, Jamie E; Hauser, Sheketha R; McBride, William J; Rodd, Zachary A

    2011-10-01

    Wistar rats will self-administer cocaine directly into the nucleus accumbens shell (AcbSh), but not into the nucleus accumbens core. In human and animal literature, there is a genetic association between alcoholism and cocaine dependency. The current experiment examined whether selective breeding for high alcohol preference is also associated with greater sensitivity of the AcbSh to the reinforcing properties of cocaine. P and Wistar rats were given cocaine (0, 100, 200, 400, or 800 pmol/100 nl) to self-infuse into the AcbSh. Rats were given cocaine for the first 4 sessions (acquisition), artificial CSF for sessions 5 and 6 (extinction), and cocaine again in session 7 (reinstatement). During acquisition, P rats self-infused 200-800 pmol cocaine (59 infusions/session), whereas Wistar rats only reliably self-infused 800 pmol cocaine (38 infusions/session). Furthermore, P rats received a greater number of cocaine infusions in the 200, 400 and 800 pmol cocaine groups compared to respective Wistar groups during acquisition. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for cocaine, and reinstated responding in session 7 when cocaine was restored. However, P rats had significantly greater infusions during session 7 compared to session 4 at all concentrations of cocaine tested, whereas Wistar rats only displayed greater infusions during session 7 compared to session 4 at the 400 and 800 pmol cocaine concentrations. The present results suggest that, compared to Wistar rats, the AcbSh of P rats was more sensitive to the reinforcing effects of cocaine. The reinstatement data suggest that the AcbSh of P rats may have become sensitized to the reinforcing effects of cocaine. Overall, the findings from this study support a genetic association between high alcohol preference and greater sensitivity to the reinforcing effects of cocaine. PMID:21723879

  5. Stimulant mechanisms of cathinones - effects of mephedrone and other cathinones on basal and electrically evoked dopamine efflux in rat accumbens brain slices.

    Science.gov (United States)

    Opacka-Juffry, Jolanta; Pinnell, Thomas; Patel, Nisha; Bevan, Melissa; Meintel, Meghan; Davidson, Colin

    2014-10-01

    Mephedrone, an erstwhile "legal high", and some non-abused cathinones (ethcathinone, diethylpropion and bupropion) were tested for stimulant effects in vitro, through assessing their abilities to increase basal and electrically evoked dopamine efflux in rat accumbens brain slices, and compared with cocaine and amphetamine. We also tested mephedrone against cocaine in a dopamine transporter binding study. Dopamine efflux was electrically evoked and recorded using voltammetry in the rat accumbens core. We constructed concentration response curves for these cathinones for effects on basal dopamine levels; peak efflux after local electrical stimulation and the time-constant of the dopamine decay phase, an index of dopamine reuptake. We also examined competition between mephedrone or cocaine and [(125)I]RTI121 at the dopamine transporter. Mephedrone was less potent than cocaine at displacing [(125)I]RTI121. Mephedrone and amphetamine increased basal levels of dopamine in the absence of electrical stimulation. Cocaine, bupropion, diethylpropion and ethcathinone all increased the peak dopamine efflux after electrical stimulation and slowed dopamine reuptake. Cocaine was more potent than bupropion and ethcathinone, while diethylpropion was least potent. Notably, cocaine had the fastest onset of action. These data suggest that, with respect to dopamine efflux, mephedrone is more similar to amphetamine than cocaine. These findings also show that cocaine was more potent than bupropion and ethcathinone while diethylpropion was least potent. Mephedrone's binding to the dopamine transporter is consistent with stimulant effects but its potency was lower than that of cocaine. These findings confirm and further characterize stimulant properties of mephedrone and other cathinones in adolescent rat brain.

  6. The nucleus accumbens as a nexus between values and goals in goal-directed behaviour: a review and a new hypothesis

    Directory of Open Access Journals (Sweden)

    Francesco eMannella

    2013-10-01

    Full Text Available Goal-directed behaviour is a fundamental means by which animals can flexibly solve the challenges posed by variable external and internal conditions. Recently, the processes and brain mechanisms underlying such behaviour have been extensively studied from behavioural, neuroscientific and computational perspectives. This research has highlighted the processes underlying goal-directed behaviour and associated brain systems including prefrontal cortex, basal ganglia and, in particular therein, the nucleus accumbens. This paper focusses on one particular process at the core of goal-directed behaviour: how motivational value is assigned to goals on the basis of internal states and environmental stimuli, and how this supports goal selection processes. Various biological and computational accounts have been given of this problem and of related multiple neural and behaviour phenomena, but we still lack an integrated hypothesis on the generation and use of value for goal selection. This paper proposes an hypothesis that aims to solve this problem and is based on this key elements: (a amygdala and hippocampus establish the motivational value of stimuli and goals; (b prefrontal cortex encodes various types of action outcomes; (c nucleus accumbens integrates different sources of value, representing them in terms of a common currency with the aid of dopamine, and thereby plays a major role in selecting action outcomes within prefrontal cortex. The ‘goals’ pursued by the organism are the outcomes selected by these processes. The hypothesis is developed in the context of a critical review of relevant biological and computational literature which offer it support. The paper shows how the hypothesis has the potential to integrate existing interpretations of motivational value and goal selection.

  7. A decrease in the addition of new cells in the nucleus accumbens and prefrontal cortex between puberty and adulthood in male rats.

    Science.gov (United States)

    Staffend, Nancy A; Mohr, Margaret A; DonCarlos, Lydia L; Sisk, Cheryl L

    2014-06-01

    Adolescence involves shifts in social behaviors, behavioral flexibility, and adaptive risk-taking that coincide with structural remodeling of the brain. We previously showed that new cells are added to brain regions associated with sexual behaviors, suggesting that cytogenesis may be a mechanism for acquiring adult-typical behaviors during adolescence. Whether pubertal cell addition occurs in brain regions associated with behavioral flexibility or motivation and whether these patterns differ between pubertal and adult animals had not been determined. Therefore, we assessed patterns of cell proliferation or survival in the prefrontal cortex and nucleus accumbens. Pubertal and adult male rats were given injections of bromo-deoxyuridine (BrdU). To assess cell proliferation, half of the animals from each group were sacrificed 24 h following the last injection. The remaining animals were sacrificed at Day 30 following the last injection to evaluate cell survival. Adult animals had significantly lower densities of BrdU-immunoreactive (ir) cells in the prefrontal cortex, irrespective of post-BrdU survival time, whereas in the nucleus accumbens, adult animals had a lower density of BrdU-ir cells at the short survival time; however, the density of BrdU-ir cells was equivalent in pubertal and adult animals at the longer survival time. These data provide evidence that cell addition during puberty may contribute to the remodeling of brain regions associated with behavioral flexibility and motivation, and this cell addition continues into adulthood, albeit at lower levels. Higher levels of cell proliferation or survival in younger animals may reflect a higher level of plasticity, possibly contributing to the dynamic remodeling of the pubertal brain. PMID:24339170

  8. Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model.

    Science.gov (United States)

    Flagel, Shelly B; Chaudhury, Sraboni; Waselus, Maria; Kelly, Rebeca; Sewani, Salima; Clinton, Sarah M; Thompson, Robert C; Watson, Stanley J; Akil, Huda

    2016-05-17

    This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with "temperament," including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor. PMID:27114539

  9. Prosocial Signalling

    DEFF Research Database (Denmark)

    Kahsay, Goytom Abraha

    suggested that consumers pay price premium because this sends the signal that the consumer has prosocial preferences and a few empirical studies have documented that reputation plays a key role when consumers choose products containing prosocial components. However, little is known about consumers...... consumer goods and presents empirical evidences from a natural consumption data. This thesis also investigates consumers’ behaviour under a newly introduced pricing system called Pay-What-You-Want (PWYW) and investigates empirically whether reputation signalling can be used as a policy instrument in other...... on the role of social network in facilitating factor input transactions and the role of reputation in reducing enforcement. Finally, the third part consists of one paper which is concerned with investigating the effect of climate change and adaptation policy on agricultural production in Eastern Africa...

  10. Auxin signaling

    OpenAIRE

    Quint, Marcel; Gray, William M.

    2006-01-01

    Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) pro...

  11. gamma-Hydroxybutyrate (GHB) induces GABA(B) receptor independent intracellular Ca2+ transients in astrocytes, but has no effect on GHB or GABA(B) receptors of medium spiny neurons in the nucleus accumbens.

    Science.gov (United States)

    Molnár, T; Antal, K; Nyitrai, G; Emri, Z

    2009-08-18

    We report on cellular actions of the illicit recreational drug gamma-hydroxybutyrate (GHB) in the brain reward area nucleus accumbens. First, we compared the effects of GHB and the GABA(B) receptor agonist baclofen. Neither of them affected the membrane currents of medium spiny neurons in rat nucleus accumbens slices. GABAergic and glutamatergic synaptic potentials of medium spiny neurons, however, were reduced by baclofen but not GHB. These results indicate the lack of GHB as well as postsynaptic GABA(B) receptors, and the presence of GHB insensitive presynaptic GABA(B) receptors in medium spiny neurons. In astrocytes GHB induced intracellular Ca(2+) transients, preserved in slices from GABA(B) receptor type 1 subunit knockout mice. The effects of tetrodotoxin, zero added Ca(2+) with/without intracellular Ca(2+) store depletor cyclopiazonic acid or vacuolar H-ATPase inhibitor bafilomycin A1 indicate that GHB-evoked Ca(2+) transients depend on external Ca(2+) and intracellular Ca(2+) stores, but not on vesicular transmitter release. GHB-induced astrocytic Ca(2+) transients were not affected by the GHB receptor-specific antagonist NCS-382, suggesting the presence of a novel NCS-382-insensitive target for GHB in astrocytes. The activation of astrocytes by GHB implies their involvement in physiological actions of GHB. Our findings disclose a novel profile of GHB action in the nucleus accumbens. Here, unlike in other brain areas, GHB does not act on GABA(B) receptors, but activates an NCS-382 insensitive GHB-specific target in a subpopulation of astrocytes. The lack of either post- or presynaptic effects on medium spiny neurons in the nucleus accumbens distinguishes GHB from many drugs and natural rewards with addictive properties and might explain why GHB has only a weak reinforcing capacity.

  12. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.

    NARCIS (Netherlands)

    Fusa, K.; Takahashi, I.; Watanabe, S.; Aono, Y.; Ikeda, H.; Saigusa, T.; Nagase, H.; Suzuki, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro -quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidi

  13. Control of cocaine-seeking behavior by drug-associated stimuli in rats: Effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens

    OpenAIRE

    Weiss, Friedbert; Maldonado-Vlaar, Carmen S.; Parsons, Loren H; Kerr, Tony M.; Smith, Diana L.; Ben-Shahar, Osnat

    2000-01-01

    The conditioning of the pharmacological actions of cocaine with environmental stimuli is thought to be a critical factor in the long-term addictive potential of this drug. Cocaine-related stimuli may increase the likelihood of relapse by evoking drug craving, and brain-imaging studies have identified the amygdala and nucleus accumbens (NAcc) as putative neuroanatomical substrates for these effects of cocaine cues. To study the significance of environmental stimuli in the recovery of extinguis...

  14. 毁损伏隔核、腹侧苍白球对大鼠觅药行为的影响%The effect of the nucleus accumbens and ventral pallidum lesions on seeking behavior in rats

    Institute of Scientific and Technical Information of China (English)

    贺世明; 高国栋; 胡三觉; 王学廉

    2001-01-01

    Objective To study the reinforcing effect of the nucleus accumbens and ventral pallidum in rats.Method Electrolytic lesions of the nucleus accumbens and ventral pallidum was done separately in 20 rats amd hbejavopr was ,easired by conditioned place preference paradigm in rats.Result Electrolytic lesions of the nucleus accumbens showed an extinction of the place- preference for morphine- paired environment in rats and ventral pallidum lesions significantly decreased the place- preference.Conclusion The nucleus accumbens and ventral pallidum are important sites mediating the reinforcing effects of morphine and the nucleus accumbens- ventral pallidum circuit is a common pathway for opiate reinforcement.%目的探讨伏隔核和腹侧苍白球在药物强化中的作用。方法分别毁损成瘾大鼠伏隔核、腹侧苍白球,利用条件性地点偏好实验测定术前、术后成瘾大鼠对注射吗啡的偏好分,评价伏隔核和腹侧苍白球在药物强化效应的作用。结果毁损大鼠双侧伏隔核能够完全消除大鼠对注射吗啡侧的偏好,毁损腹侧苍白球明显减少成瘾大鼠的地点偏好行为。结论伏隔核和腹侧苍白球是调节强化作用的重要位置,伏隔核-腹侧苍白球通路是药物强化的共同环路。

  15. Effects of intra-amygdala R(+) 7-OH-DPAT on intra-accumbens d-amphetamine-associated learning. I. Pavlovian conditioning.

    Science.gov (United States)

    Hitchcott, P K; Phillips, G D

    1998-12-01

    We have previously obtained evidence that the mesoamygdaloid dopamine projection modulates the acquisition of a conditioned response (CR) elicited by presentation of a conditioned stimulus (CS) predicting the availability of a natural (sucrose) reward. This property was found to be dependent upon D3, but not D1 or D2, dopamine receptor activation. The aim of the present study was to determine whether the mesoamygdaloid dopamine projection is similarly involved in the acquisition of a drug-associated CR. Thus, two groups of rats with guide cannulae aimed at the nucleus accumbens and amygdala were trained using a Pavlovian conditioning procedure in which an initially neutral CS was paired with a computer-controlled, bilateral intraaccumbens infusion of d-amphetamine (the unconditioned stimulus: US). Conditioning sessions were conducted in standard operant chambers, with each session consisting of a single CS-US trial. For one group of rats, CS presentation was positively correlated with the drug US (Paired group), while for the second group CS and US presentations were negatively correlated (Unpaired group). During training, locomotor activity was recorded and was utilised as the measure both of the unconditioned (UR) and conditioned response (CR). A within-subjects design was utilised to investigate the effect of post-session bilateral intraamygdala administration of R(+) 7-OH-DPAT on the development of the drug-associated CR. Hence, both Paired and Unpaired groups were exposed to two different CSs which were presented on alternate sessions. Post-session bilateral intra-amygdala administration of R(+) 7-OH-DPAT (10 nmol) followed sessions in which one CS was presented, while intra-amygdala vehicle followed sessions in which the alternate CS was presented. The development of a CR occurred only in the presence of a CS that had been positively correlated with presentation of the drug US. Post-session, intra-amygdala administration of R(+) 7-OH-DPAT enhanced the

  16. Nucleus accumbens injections of the mGluR2/3 agonist LY379268 increase cue-induced sucrose seeking following adult, but not adolescent sucrose self-administration.

    Science.gov (United States)

    Myal, S; O'Donnell, P; Counotte, D S

    2015-10-01

    Adolescence is often portrayed as a period of enhanced sensitivity to reward, with long-lasting neurobiological changes upon reward exposure. However, we previously found that time-dependent increases in cue-induced sucrose seeking were more pronounced in rats trained to self-administer sucrose as adults than as adolescents. In addition, adult, but not adolescent sucrose self-administration led to a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-Methyl-D-aspartate (AMPA/NMDA) ratio in the nucleus accumbens core, suggesting that long-lasting changes in glutamatergic transmission may affect adult processing of natural rewards. Here we tested whether altering glutamatergic transmission in the nucleus accumbens core via local injection of an mGluR2/3 agonist and antagonist affects cue-induced sucrose seeking following abstinence and whether this is different in the two age groups. Rats began oral sucrose self-administration training (10 days) on postnatal day (P) 35 (adolescents) or P70 (adults). Following 21 days of abstinence, rats received microinjections of the mGluR2/3 agonist LY379268 (0.3 or 1.0 μg/side) or vehicle into the nucleus accumbens core, and 15 min later cue-induced sucrose seeking was assessed. An additional group of rats trained as adults received nucleus accumbens core microinjections of the mGluR2/3 antagonist (RS)-α-Methyl-4-phosphonophenylglycine (MPPG) (0.12 or 0.5 μg/side). Confirming our previous results, adult rats earned more sucrose reinforcers, while sucrose intake per body weight was similar across ages. On abstinence day 22, local injection of the mGluR2/3 agonist LY379268 increased cue-induced sucrose seeking only in adult rats, and had no effect in adolescents. Local injections of the mGluR2/3 antagonist MPPG had no effect on sucrose seeking in adult rats. These data suggest an important developmental difference in the neural substrates of natural reward, specifically a difference in glutamatergic transmission in

  17. Nucleus accumbens injections of the mGluR2/3 agonist LY379268 increase cue-induced sucrose seeking following adult, but not adolescent sucrose self-administration.

    Science.gov (United States)

    Myal, S; O'Donnell, P; Counotte, D S

    2015-10-01

    Adolescence is often portrayed as a period of enhanced sensitivity to reward, with long-lasting neurobiological changes upon reward exposure. However, we previously found that time-dependent increases in cue-induced sucrose seeking were more pronounced in rats trained to self-administer sucrose as adults than as adolescents. In addition, adult, but not adolescent sucrose self-administration led to a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-Methyl-D-aspartate (AMPA/NMDA) ratio in the nucleus accumbens core, suggesting that long-lasting changes in glutamatergic transmission may affect adult processing of natural rewards. Here we tested whether altering glutamatergic transmission in the nucleus accumbens core via local injection of an mGluR2/3 agonist and antagonist affects cue-induced sucrose seeking following abstinence and whether this is different in the two age groups. Rats began oral sucrose self-administration training (10 days) on postnatal day (P) 35 (adolescents) or P70 (adults). Following 21 days of abstinence, rats received microinjections of the mGluR2/3 agonist LY379268 (0.3 or 1.0 μg/side) or vehicle into the nucleus accumbens core, and 15 min later cue-induced sucrose seeking was assessed. An additional group of rats trained as adults received nucleus accumbens core microinjections of the mGluR2/3 antagonist (RS)-α-Methyl-4-phosphonophenylglycine (MPPG) (0.12 or 0.5 μg/side). Confirming our previous results, adult rats earned more sucrose reinforcers, while sucrose intake per body weight was similar across ages. On abstinence day 22, local injection of the mGluR2/3 agonist LY379268 increased cue-induced sucrose seeking only in adult rats, and had no effect in adolescents. Local injections of the mGluR2/3 antagonist MPPG had no effect on sucrose seeking in adult rats. These data suggest an important developmental difference in the neural substrates of natural reward, specifically a difference in glutamatergic transmission in

  18. The hyperanalytic signal

    CERN Document Server

    Bihan, Nicolas Le

    2010-01-01

    The concept of the analytic signal is extended from the case of a real signal with a complex analytic signal to a complex signal with a hypercomplex analytic signal (which we call a hyperanalytic signal) The hyperanalytic signal may be interpreted as an ordered pair of complex signals or as a quaternion signal. The hyperanalytic signal contains a complex orthogonal signal and we show how to obtain this by three methods: a pair of classical Hilbert transforms; a complex Fourier transform; and a quaternion Fourier transform. It is shown how to derive from the hyperanalytic signal a complex envelope and phase using a polar quaternion representation previously introduced by the authors. The complex modulation of a real sinusoidal carrier is shown to generalize the modulation properties of the classical analytic signal. The paper extends the ideas of properness to deterministic complex signals using the hyperanalytic signal. A signal example is presented, with its orthogonal signal, and its complex envelope and ph...

  19. Functional connectivity of nucleus accumbens in heroin addicts: a resting-state fMRI study%静息状态下海洛因成瘾者伏核功能连接的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    黄敏; 钱若兵; 傅先明; 魏祥品; 王昌新; 刘影; 牛朝诗; 汪业汉

    2010-01-01

    Objective To investigate the brain areas having functional connectivity with nucleus accumbens in heroin addicts with resting-state functional magnetic resonance imaging (fMRI), and explore the reward system of heroin addiction. Methods Fifteen participants with heroin addiction,voluntarily admitted to our drug rehabilitation center from June 2009 to March 2010, and 15 healthy controls at the same period were chosen in our study. Resting-state fMRI was performed on these patients; and then, the resting-state brain functional connectivity was also concluded by analyzing the left and right nucleus accumbens selected as regions of interests (ROIs). The corresponding brain areas having functional connections with ROIs were defined in the resting-state and the changes of functional connectivity were observed in heroin addicts. Results In the addiction group, the areas having functional connectivity with double nucleus accumbens included bilateral thalamus, the basal ganglia, the hippocampus, the midbrain and contralateral nucleus accumbens; and anterior cingulate cortex was also significantly correlated with left nucleus accumbens. However, in the control group, only the hippocampus and contralateral nucleus accumbens had these connection and their activity was much weaker than that in the addiction group. Conclusion In the resting-state, reward system of heroin addiction is constituted by the brain areas having functional connectivity with nucleus accumbens. And fMRI can be used to study the functional connections between the brain areas related to the heroin addiction from neuroimaging perspectives.%目的 利用静息态功能磁共振成像(fMRI)技术分析海洛因成瘾者静息状态下与伏核有功能连接的脑区,以探讨海洛因成瘾者"奖赏系统"的组成.方法 选择安徽省戒毒所自2009年6月至2010年3月收治的自愿接受戒毒的海洛因成瘾患者15例作为成瘾组,同期健康体检者15例为对照组,进行静息态fMRI扫描

  20. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell.

    Directory of Open Access Journals (Sweden)

    Paul M Klenowski

    2016-03-01

    Full Text Available The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks and long-term (12 weeks binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.

  1. The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal.

    Directory of Open Access Journals (Sweden)

    Mei-Hong Qiu

    Full Text Available BACKGROUND: We have previously shown that modafinil promotes wakefulness via dopamine receptor D(1 and D(2 receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we further explored the role of NAc in sleep-wake cycle and sleep homeostasis by ablating the NAc core and shell, respectively, and examined arousal response following modafinil administration. We found that discrete NAc core and shell lesions produced 26.5% and 17.4% increase in total wakefulness per day, respectively, with sleep fragmentation and a reduced sleep rebound after a 6-hr sleep deprivation compared to control. Finally, NAc core but not shell lesions eliminated arousal effects of modafinil. CONCLUSIONS/SIGNIFICANCE: These results indicate that the NAc regulates sleep-wake behavior and mediates arousal effects of the midbrain dopamine system and stimulant modafinil.

  2. Changes of CREB in rat hippocampus, prefrontal cortex and nucleus accumbens during three phases of morphine induced conditioned place preference in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lian-fang; ZHU Yong-ping

    2006-01-01

    Objective: To investigate the changes in CREB (cAMP response element binding protein) in hippocampus, PFC(prefrontal cortex) and NAc (nucleus accumbens) during three phases of morphine induced CPP (conditioned place preference) in rats, and to elucidate the role of CREB during the progress of conditioned place preference. Methods: Morphine induced CPP acquisition, extinction and drug primed reinstatement model was established, and CREB expression in each brain area was measured by Western Blot methods. Results: Eight alternating injections of morphine (10 mg/kg) induced CPP, and 8 d saline extinction training that extinguished CPP. CPP was reinstated following a priming injection of morphine (2.5 mg/kg). During the phases of CPP acquisition and reinstatement, the level of CREB expression was significantly changed in different brain areas.Conclusion: It was proved that CPP model can be used as an effective tool to investigate the mechanisms underlying drug-induced reinstatement of drug seeking after extinction, and that morphine induced CPP and drug primed reinstatement may involve activation of the transcription factor CREB in several brain areas, suggesting that the CREB and its target gene regulation pathway may mediate the basic mechanism underlying opioid dependence and its drug seeking behavior.

  3. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses.

    Science.gov (United States)

    Wendler, Etieli; Gaspar, Jessica C C; Ferreira, Tatiana L; Barbiero, Janaína K; Andreatini, Roberto; Vital, Maria A B F; Blaha, Charles D; Winn, Philip; Da Cunha, Claudio

    2014-03-01

    This study examined the effects of bilateral excitotoxic lesions of the nucleus accumbens core (NAc-co), dorsomedial striatum (DMS) or dorsolateral striatum (DLS) of rats on the learning and extinction of Pavlovian and instrumental components of conditioned avoidance responses (CARs). None of the lesions caused sensorimotor deficits that could affect locomotion. Lesions of the NAc-co, but not DMS or DLS, decreased unconditioned and conditioned freezing. The NAc-co and DLS lesioned rats learned the 2-way active avoidance task more slowly. These results suggest: (i) CARs depend on both Pavlovian and instrumental learning; (ii) learning the Pavlovian component of CARs depends on the NAc-co; learning the instrumental component of CARs depends on the DLS, NAc and DMS; (iii) although the NAc-co is also needed for learning the instrumental component, it is not clear whether it plays a role in learning the instrumental component per se or if it simply allows learning of the Pavlovian component which is a pre-condition for learning the instrumental component; (iv) we did not find evidence that the DMS and DLS play the same roles in habit and goal-directed aspects of the instrumental component of CARs as observed in appetitive motivated instrumental responding.

  4. Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity.

    Science.gov (United States)

    David, Hélène N; Abraini, Jacques H

    2002-03-01

    Evidence for functional interactions between metabotropic glutamate (mGlu) receptors and dopamine (DA) neurotransmission is now clearly established. In the present study, we investigated interactions between group III mGlu receptors and D1- and D2-like receptors in the nucleus accumbens (NAcc). Administration, into the NAcc, of the selective group III mGlu receptor agonist, AP4, resulted in an increase in locomotor activity, which was blocked by pretreatment with the group III mGlu receptor antagonist, MPPG. In addition, pretreatment with AP4 further blocked the increase in motor activity induced by the D1-like receptor agonist, SKF 38393, but potentiated the locomotor responses induced by either the D2-like receptor agonist, quinpirole, or coinfusion of SKF 38393 and quinpirole. MPPG reversed the effects of AP4 on the motor responses induced by D1-like and/or D2-like receptor activation. These results confirm that glutamate transmission may control DA-dependent locomotor function through mGlu receptors and further indicate that group III mGlu receptors oppose the behavioural response produced by D1-like receptor activation and favour those produced by D2-like receptor activation. PMID:11906529

  5. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Directory of Open Access Journals (Sweden)

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  6. The role of D-serine as co-agonist of NMDA receptors in the nucleus accumbens: relevance to cocaine addiction

    Directory of Open Access Journals (Sweden)

    Marcello eD'Ascenzo

    2014-07-01

    Full Text Available Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc, has a central role in the development and expression of addictive behaviors. In addition to a broad spectrum of changes that affect morphology and function of NAc excitatory circuits in cocaine–treated animals, impaired N-methyl-D-aspartate receptor (NMDAR-dependent synaptic plasticity is a typical feature. D-serine, a D-amino acid that has been found at high levels in mammalian brain, binds with high affinity the co-agonist site of NMDAR and mediates, along with glutamate, several important processes including synaptic plasticity. Here we review recent literature focusing on cocaine-induced impairment in synaptic plasticity mechanisms in the NAc and on the fundamental role of D-serine as co-agonist of NMDAR in functional and dysfunctional synaptic plasticity within this nucleus. The emerging picture is that reduced D-serine levels play a crucial role in synaptic plasticity relevant to cocaine addiction. This finding opens new perspectives for therapeutic approaches to treat this addictive state.

  7. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Science.gov (United States)

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  8. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats.

    Science.gov (United States)

    Romano-López, Antonio; Méndez-Díaz, Mónica; García, Fabio García; Regalado-Santiago, Citlalli; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2016-08-01

    A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016. PMID:26539755

  9. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens.

    Science.gov (United States)

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Hosseinmardi, Narges; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Khoshbouei, Habibeh

    2016-08-01

    Addictive drugs modulate synaptic transmission in the meso-corticolimbic system by hijacking normal adaptive forms of experience-dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long-term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA-ergic systems in the shell-NAc modulates METH-induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline-treated animals. Intra-NAc infusion of muscimol (GABA receptor agonist) decreased METH-induced enhancement of dentate gyrus (DG)-LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH-induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH-induced hippocampal LTP through a hippocampus-NAc-VTA circuit loop. Synapse 70:325-335, 2016. © 2016 Wiley Periodicals, Inc. PMID:27029021

  10. Modulation of synaptic potentials and cell excitability by dendritic KIR and KAS channels in nucleus accumbens medium spiny neurons: A computational study

    Indian Academy of Sciences (India)

    Jessy John; Rohit Manchanda

    2011-06-01

    The nucleus accumbens (NAc), a critical structure of the brain reward circuit, is implicated in normal goal-directed behaviour and learning as well as pathological conditions like schizophrenia and addiction. Its major cellular substrates, the medium spiny (MS) neurons, possess a wide variety of dendritic active conductances that may modulate the excitatory post synaptic potentials (EPSPs) and cell excitability. We examine this issue using a biophysically detailed 189-compartment stylized model of the NAc MS neuron, incorporating all the known active conductances. We find that, of all the active channels, inward rectifying K+ (KIR) channels play the primary role in modulating the resting membrane potential (RMP) and EPSPs in the down-state of the neuron. Reduction in the conductance of KIR channels evokes facilitatory effects on EPSPs accompanied by rises in local input resistance and membrane time constant. At depolarized membrane potentials closer to up-state levels, the slowly inactivating A-type potassium channel (KAs) conductance also plays a strong role in determining synaptic potential parameters and cell excitability. We discuss the implications of our results for the regulation of accumbal MS neuron biophysics and synaptic integration by intrinsic factors and extrinsic agents such as dopamine.

  11. Active stimulation site of nucleus accumbens deep brain stimulation in obsessive-compulsive disorder is localized in the ventral internal capsule.

    Science.gov (United States)

    van den Munckhof, Pepijn; Bosch, D Andries; Mantione, Mariska H M; Figee, Martijn; Denys, Damiaan A J P; Schuurman, P Richard

    2013-01-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder characterized by persistent thoughts and repetitive ritualistic behaviours. Despite optimal cognitive-behavioral and pharmacological therapy, approximately 10 % of patients remain treatment-resistant. Deep brain stimulation (DBS) is being investigated as experimental therapy for treatment-refractory OCD. In the current study, we determined the relationship between anatomical location of active electrode contacts and clinical outcome in 16 OCD patients undergoing bilateral nucleus accumbens (NAc) DBS. We found that most patients actually do not receive active stimulation in the NAc but in the more laterally, anteriorly and dorsally located ventral part of the anterior limb of the internal capsule, ventral ALIC (vALIC). Our nine patients receiving bilateral vALIC DBS improved on average 73 % on their Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores, whereas the six patients with their centers of stimulation located otherwise improved on average only 42 %. We therefore propose bilateral vALIC as a promising new DBS target for patients with treatment-refractory OCD. Future studies employing a direct vALIC targeting approach in larger patient numbers are needed to test whether this proposal holds true. PMID:23652657

  12. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement.

    Science.gov (United States)

    Anderson, S M; Pierce, R C

    2005-06-01

    The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine. PMID:15922019

  13. Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration

    Directory of Open Access Journals (Sweden)

    Morgan Drake

    2010-02-01

    Full Text Available Abstract Background Many studies of cocaine-responsive gene expression have focused on changes occurring during cocaine exposure, but few studies have examined the persistence of these changes with cocaine abstinence. Persistent changes in gene expression, as well as alterations induced during abstinence may underlie long-lasting drug craving and relapse liability. Results Whole-genome expression analysis was conducted on a rat cocaine binge-abstinence model that has previously been demonstrated to engender increased drug seeking and taking with abstinence. Gene expression changes in two mesolimbic terminal fields (mPFC and NAc were identified in a comparison of cocaine-naïve rats with rats after 10 days of cocaine self-administration followed by 1, 10, or 100 days of enforced abstinence (n = 6-11 per group. A total of 1,461 genes in the mPFC and 414 genes in the NAc were altered between at least two time points (ANOVA, p Conclusions Together, these changes help to illuminate processes and networks involved in abstinence-induced behaviors, including synaptic plasticity, MAPK signaling, and TNF signaling.

  14. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Science.gov (United States)

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054

  15. High and abnormal forms of aggression in rats with extremes in trait anxiety--involvement of the dopamine system in the nucleus accumbens.

    Science.gov (United States)

    Beiderbeck, Daniela I; Reber, Stefan O; Havasi, Andrea; Bredewold, Remco; Veenema, Alexa H; Neumann, Inga D

    2012-12-01

    A better neurobiological understanding of high and abnormal aggression based on adequate animal models is essential for novel therapy and prevention. Selective breeding of rats for extremes in anxiety-related behavior resulted in two behavioral phenotypes with high and abnormal forms of aggression. Rats bred for low anxiety-related behavior (LAB) consistently show highest levels of aggression and little social investigation in the resident-intruder (RI) test, compared with non-selected low-aggressive (NAB) rats. High anxiety-related (HAB) rats also show higher levels of aggression than NAB rats, but to a lesser extent than LAB rats. Accordingly, extremes in inborn anxiety in both directions are linked to an increased aggression level. Further, both LAB and HAB, but not NAB males, display abnormal aggression (attacks towards vulnerable body parts, females or narcotized males), which is particularly prominent in LABs. Also, only in LAB rats, the nucleus accumbens (NAc) was found to be strongly activated in response to the RI test as reflected by increased c-fos and zif268 mRNA expression, and higher local dopamine release compared with NAB males, without differences in local dopamine receptor binding. Consequently, local pharmacological manipulation by infusion of an anesthetic (lidocaine, 20 μg/μl) or a dopamine D2 (haloperidol, 10 ng/μl), but not D1 (SCH-23390 10 ng/μl), receptor antagonist significantly reduced high aggression in LAB rats. Thus, LAB rats are an adequate model to study high and abnormal aggression. In LAB males, this is likely to be linked to hyper-activation of the reward system, as found in psychopathic patients. Specifically, activation of the accumbal dopamine system is likely to underlie the high aggression observed in LAB rats. PMID:22608548

  16. Role of orexin-2 receptors in the nucleus accumbens in antinociception induced by carbachol stimulation of the lateral hypothalamus in formalin test.

    Science.gov (United States)

    Yazdi, Fatemeh; Jahangirvand, Mahboubeh; Ezzatpanah, Somayeh; Haghparast, Abbas

    2016-08-01

    Orexins, which are mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), play an important role in pain modulation. Previously, it has been established that the nucleus accumbens (NAc) is involved in the modulation of formalin-induced nociceptive responses, a model of tonic pain. In this study, the role of intra-accumbal orexin-2 receptors (OX2rs) in the mediation of formalin-induced pain was investigated. A volume of 0.5 μl of 10, 20, and 40 nmol/l solutions of TCS OX2 29, an OX2r antagonist, were unilaterally microinjected into the NAc 5 min before an intra-LH carbachol microinjection (0.5 μl of 250 nmol/l solution). After 5 min, animals received a subcutaneous injection of formalin 2.5% (50 μl) into the hind paw. Pain-related behaviors were assessed at 5 min intervals during a 60-min test period. The findings showed that TCS OX2 29 administration dose dependently blocked carbachol-induced antinociception during both phases of formalin-induced pain. The antianalgesic effect of TCS OX2 29 was greater during the late phase compared with the early phase. These observations suggest that the NAc, as a part of a descending pain-modulatory circuitry, partially mediates LH-induced analgesia in the formalin test through recruitment of OX2rs. This makes the orexinergic system a good potential therapeutic target in the control of persistent inflammatory pain. PMID:26871404

  17. Nucleus Accumbens-Associated Protein 1 Expression Has Potential as a Marker for Distinguishing Oral Epithelial Dysplasia and Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Joji Sekine

    Full Text Available Oral epithelial dysplasia (OED and carcinoma in situ (CIS are defined by dysplastic cells in the epithelium. Over a third of oral squamous cell carcinoma (OSCC patients present with associated OED. However, accurate histopathological diagnosis of such lesions is difficult. Nucleus accumbens-associated protein 1 (NAC1 is a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex family of proteins, and is overexpressed in OSCC. This study aimed to determine whether NAC1 has the potential to be used as a marker to distinguish OED and OSCC.The study included 114 patients (64 men, 50 women. There were 67, 10, and 37 patients with OED, CIS, and OSCC, respectively. NAC1 labeling indices (LIs and immunoreactivity intensities (IRI were evaluated. The patients' pathological classification was significantly associated with age, sex, NAC1 LIs, and NAC1 IRI (p = 0.025, p = 0.022, p 50% positivity the sensitivity, specificity, positive predictive value (PPV, and negative predictive value (NPV were 0.766, 0.910, 0.857, and 0.847, respectively. For NAC1 IRI with ≤ 124 positive pixels, the sensitivity, specificity, PPV, and NPV were 0.787, 0.866, 0.804, and 0.853, respectively. Though there are several potential limitations to this study and the results were obtained from a retrospective analysis of a single site cohort, the data suggest that the NAC1 LIs/IRI is a strong predictor of CIS/OSCC.NAC1 has potential as a marker for distinguishing OED from CIS/OSCC.

  18. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg on transcriptional effects of a second METH (2.5 mg/kg injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS or METH-challenged (SM; and METH-pretreated followed by saline-challenged (MS or METH-challenged (MM. Microarray analyses revealed that METH (2.5 mg/kg produced acute changes (1.8-fold; P<0.01 in the expression of 412 (352 upregulated, 60 down-regulated transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh, oxytocin (Oxt, and vasopressin (Avp that were upregulated. Injection of METH (10 mg/kg altered the expression of 503 (338 upregulated, 165 down-regulated transcripts measured one month later (MS group. These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  19. Long-lasting alterations in membrane properties, K+ currents and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Igor eSpigelman

    2012-06-01

    Full Text Available Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs and larger fast afterhyperpolarizations (fAHPs than MSNs from vehicle-treated animals, all suggestive of increases in K+-channel conductances. Significant increases in the Cs+-sensitive inwardly-rectifying K+-current accounted for the increased input resistance, while increases in the A-type K+-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.

  20. The effect of forced swim stress on morphine sensitization: Involvement of D1/D2-like dopamine receptors within the nucleus accumbens.

    Science.gov (United States)

    Charmchi, Elham; Zendehdel, Morteza; Haghparast, Abbas

    2016-10-01

    Nucleus accumbens (NAc) plays an essential role in morphine sensitization and suppression of pain. Repeated exposure to stress and morphine increases dopamine release in the NAc and may lead to morphine sensitization. This study was carried out in order to investigate the effect of forced swim stress (FSS), as a predominantly physical stressor and morphine on the development of morphine sensitization; focusing on the function of D1/D2-like dopamine receptors in the NAc in morphine sensitization. Eighty-five adult male Wistar rats were bilaterally implanted with cannulae in the NAc and various doses of SCH-23390 (0.125, 0.25, 1 and 4μg/0.5μl/NAc) as a D1 receptor antagonist and sulpiride (0.25, 1 and 4μg/0.5μl/NAc) as a D2 receptor antagonist were microinjected into the NAc, during a sensitization period of 3days, 5min before the induction of FSS. After 10min, animals received subcutaneous morphine injection (1mg/kg). The procedure was followed by 5days free of antagonist, morphine and stress; thereafter on the 9th day, the nociceptive response was evaluated by tail-flick test. The results revealed that the microinjection of sulpiride (at 1 and 4μg/0.5μl/NAc) or SCH-23390 (at 0.25, 1 and 4μg/0.5μl/NAc) prior to FSS and morphine disrupts the antinociceptive effects of morphine and morphine sensitization. Our findings suggest that FSS can potentiate the effect of morphine and causes morphine sensitization which induces antinociception. PMID:27235796

  1. Effects of dopamine depletion from the caudate-putamen and nucleus accumbens septi on the acquisition and performance of a conditional discrimination task.

    Science.gov (United States)

    Robbins, T W; Giardini, V; Jones, G H; Reading, P; Sahakian, B J

    1990-05-28

    Three experiments compared the effects of dopamine depletion from the caudate-putamen (CAUD; dorsal striatum) or nucleus accumbens septi (NAS; ventral striatum), or a systemically administered dopamine receptor antagonist (alpha-flupenthixol) on the acquisition and performance of a conditional discrimination task involving temporal frequency. In Expt. 1, rats receiving 6-hydroxydopamine (6-OHDA) lesions of the CAUD were impaired in the acquisition of a visual version of the task, and rats with 6-OHDA lesions of the NAS were not reliably impaired. Even when the rats with CAUD lesions had acquired the discrimination, they were still significantly slower to collect earned food pellets. Both CAUD and NAS lesions reduced a bias to respond to the faster of the two discriminative stimuli. In Expt. 2, rats with 6-OHDA lesions of CAUD were markedly impaired in their accuracy and speed of responding when they had been trained to criterion preoperatively. These effects could not be mimicked in controls by prefeeding (which had only minor effects on performance). Rats with 6-OHDA-induced lesions of the NAS were unimpaired in either visual or auditory discrimination performance, but were slower to extinguish responding than controls. In Expt. 3, alpha-flupenthixol (0.1-0.56 mg/kg, i.p.) produced dose-dependent impairments in both latency to respond and choice accuracy in visual and auditory versions of the task. In conjunction with other results, these data suggest that (1) dopamine receptor blockade and central dopamine depletion can impair discrimination performance under certain conditions (2) dopamine depletion from the ventral and dorsal striatum, respectively, have dissociable effects on behaviour controlled by conditioned reinforcers and discriminative stimuli and (3) the disruption of discrimination performance by dorsal striatal dopamine depletion is probably attributable to several factors. PMID:2114120

  2. Drug-primed reinstatement of cocaine seeking in mice: increased excitability of medium-sized spiny neurons in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Carlos Cepeda

    2013-10-01

    Full Text Available To examine the mechanisms of drug relapse, we first established a model for cocaine IVSA (intravenous self-administration in mice, and subsequently examined electrophysiological alterations of MSNs (medium-sized spiny neurons in the NAc (nucleus accumbens before and after acute application of cocaine in slices. Three groups were included: master mice trained by AL (active lever pressings followed by IV (intravenous cocaine delivery, yoked mice that received passive IV cocaine administration initiated by paired master mice, and saline controls. MSNs recorded in the NAc shell in master mice exhibited higher membrane input resistances but lower frequencies and smaller amplitudes of sEPSCs (spontaneous excitatory postsynaptic currents compared with neurons recorded from saline control mice, whereas cells in the NAc core had higher sEPSCs frequencies and larger amplitudes. Furthermore, sEPSCs in MSNs of the shell compartment displayed longer decay times, suggesting that both pre- and postsynaptic mechanisms were involved. After acute re-exposure to a low-dose of cocaine in vitro, an AP (action potential-dependent, persistent increase in sEPSC frequency was observed in both NAc shell and core MSNs from master, but not yoked or saline control mice. Furthermore, re-exposure to cocaine induced membrane hyperpolarization, but concomitantly increased excitability of MSNs from master mice, as evidenced by increased membrane input resistance, decreased depolarizing current to generate APs, and a more negative Thr (threshold for firing. These data demonstrate functional differences in NAc MSNs after chronic contingent versus non-contingent IV cocaine administration in mice, as well as synaptic adaptations of MSNs before and after acute re-exposure to cocaine. Reversing these functional alterations in NAc could represent a rational target for the treatment of some reward-related behaviors, including drug addiction.

  3. The Effects of Maternal Separation on Adult Methamphetamine Self-Administration, Extinction, Reinstatement, and MeCP2 Immunoreactivity in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Candace R. Lewis

    2013-06-01

    Full Text Available The maternal separation (MS paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA of various drugs of abuse including cocaine, ethanol, opioids, and amphetamine. Methamphetamine (METH causes great harm to both the individual user and to society; yet, no studies have examined the effects of MS on METH SA. This study was performed to examine the effects of MS on the acquisition of METH SA, extinction, and reinstatement of METH-seeking behavior in adulthood. Given the known influence of early life stress and drug exposure on epigenetic processes, group differences in levels of the epigenetic marker methyl CpG binding protein 2 (MeCP2 in the nucleus accumbens (NAc core were also investigated. Long-Evans pups and dams were separated on postnatal days (PND 2-14 for either 180 (MS180 or 15 min (MS15. Male offspring were allowed to acquire METH SA (0.05 mg/kg/infusion in 15 2-hr daily sessions starting at PND67, followed by extinction training and cue-induced reinstatement of METH-seeking behavior. Rats were then assessed for MeCP2 levels in the NAc core by immunohistochemistry. The MS180 group self-administered significantly more METH and acquired SA earlier than the MS15 group. No group differences in extinction or cue-induced reinstatement were observed. MS15 rats had significantly elevated MeCP2-immunoreactive cells in the NAc core as compared to MS180 rats. Together, these data suggest that MS has lasting influences on METH SA as well as epigenetic processes in the brain reward circuitry.

  4. Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome.

    Science.gov (United States)

    Hildebrand, B E; Nomikos, G G; Hertel, P; Schilström, B; Svensson, T H

    1998-01-01

    Mesolimbocortical dopamine (DA) neurotransmission is important in the mediation of the dependence-producing actions of nicotine and other drugs of abuse. Withdrawal from chronic treatment with various types of addictive drugs, including amphetamine, cocaine, ethanol and morphine is associated with a decrease in dopaminergic output in the nucleus accumbens (NAC), whereas the effects of withdrawal from these drugs on dopaminergic output in the medial prefrontal cortex (PFC), as yet, remain largely unknown. This study examined putative changes in the extracellular levels of dopamine and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the NAC and in the PFC of rats displaying behavioral signs of nicotine withdrawal. Rats were infused for 7 days with nicotine via subcutaneously implanted minipumps, whereas control animals carried saline-containing pumps. On the fifth day of infusion a microdialysis probe was implanted in the NAC or the PFC of the rats. Forty-eight hours later the levels of DA and the monoamine metabolites were assessed in the dialysate. The behavioral and biochemical effects of a saline injection and a subsequent challenge with the nicotinic receptor antagonist mecamylamine (1 mg/kg s.c.) were determined. Following mecamylamine challenge in nicotine-treated animals, the levels of DA, DOPAC and HVA in the NAC, but not in the PFC, decreased below pre-injection levels and in relation to control animals. The score of abstinence signs increased in the nicotine-treated rats, as compared both to the score after saline and to that in control animals. The decreased DA output in the NAC in animals displaying nicotine withdrawal signs is similar to that seen after withdrawal of several other drugs of abuse, and may have bearing on motivational deficits associated with the abstinence reactions. PMID:9473676

  5. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Directory of Open Access Journals (Sweden)

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  6. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    Science.gov (United States)

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  7. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    Science.gov (United States)

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment.

  8. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Directory of Open Access Journals (Sweden)

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  9. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration.

    Science.gov (United States)

    Parker, Kyle E; Johns, Howard W; Floros, Ted G; Will, Matthew J

    2014-03-01

    Previous research has demonstrated a dissociation of certain neural mediators that contribute to the increased consumption of a high-fat diet that follows intra-accumbens (Acb) administration of μ-opioid receptor agonists vs. 24-h food deprivation. These two models, both which induce rapid consumption of the diet, have been shown to involve a distributed corticolimbic circuitry, including the amygdala. Specifically, the central amygdala (CeA) has been shown to be involved in high-fat feeding within both opioid and food-deprivation driven models. The present experiments were conducted to examine the more specific role of CeA opioid transmission in mediating high-fat feeding driven by either intra-Acb administration of the μ-opioid agonist d-Ala2-NMe-Phe4-Glyol5-enkephalin (DAMGO) or 24-h home cage food deprivation. Injection of DAMGO into the Acb (0.25 μg/0.5 μl/side) increased consumption of the high-fat diet, but this feeding was unaffected by administration of opioid antagonist, naltrexone (5 μg/0.25 μl/side) administered into the CeA. In contrast, intra-CeA naltrexone administration attenuated high-fat intake driven by 24-h food deprivation, demonstrating a specific role for CeA opioid transmission in high-fat consumption. Intra-CeA naltrexone administration alone had no effect on baseline feeding levels within either feeding model. These findings suggest that CeA opioid transmission mediates consumption of a palatable high-fat diet driven by short-term negative-energy balance (24-h food deprivation), but not intra-Acb opioid receptor activation.

  10. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility

    Directory of Open Access Journals (Sweden)

    Xuekun eDing

    2014-09-01

    Full Text Available Cognitive flexibility is a critical ability for adapting to an ever-changing environment in humans and animals. Deficits in cognitive flexibility are observed in most schizophrenia patients. Previous studies reported that the medial prefrontal cortex-to-ventral striatum and orbital frontal cortex-to-dorsal striatum circuits play important roles in extra- and intra-dimensional strategy switching, respectively. However, the precise function of striatal subregions in flexible behaviors is still unclear. N-methyl-D-aspartate receptors (NMDARs are major glutamate receptors in the striatum that receive glutamatergic projections from the frontal cortex. The membrane insertion of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs depends on NMDAR activation and is required in learning and memory processes. In the present study, we measured set-shifting and reversal learning performance in operant chambers in rats and assessed the effects of blocking NMDARs and Ca2+-permeable AMPARs in striatal subregions on behavioral flexibility. The blockade of NMDARs in the nucleus accumbens (NAc core by AP5 impaired set-shifting ability by causing a failure to modify prior learning. The suppression of NMDAR-mediated transmission in the NAc shell induced a deficit in set-shifting by disrupting the learning and maintenance of novel strategies. During reversal learning, infusions of AP5 into the NAc shell and core impaired the ability to learn and maintain new strategies. However, behavioral flexibility was not significantly affected by blocking NMDARs in the dorsal striatum. We also found that the blockade of Ca2+-permeable AMPARs by NASPM in any subregion of the striatum did not affect strategy switching. These findings suggest that NMDAR-mediated glutamate transmission in the NAc contributes more to cognitive execution compared with the dorsal striatum.

  11. Anti-nociceptive role of neuropeptide Y in the nucleus accumbens in rats with inflammation, an effect modulated by mu- and kappa-opioid receptors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Recent study in our laboratory showed that neuropeptide Y (NPY) plays an antinociceptive role in the nucleus accumbens (NAc) in intact rats. The present study was performed to further investigate the effect of NPY in nociceptive modulation in the NAc of rats with inflammation, and the possible interaction between NPY and the opioid systems. Experimental inflammation was induced by subcutaneous injection of carrageenan into the left hindpaw of rats. Intra-NAc administration of NPY induced a dose-dependent increase of hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulations in rats with inflammation. The anti-nociceptive effect of NPY was significantly blocked by subsequent intra-NAc injection of the Y1 receptor antagonist NPY28-36, suggesting an involvement of Y1 receptor in the NPY-induced anti-nociception. Furthermore, intra-NAc administration of the opioid antagonist naloxone significantly antagonized the increased HWLs induced by preceding intra-NAc injection of NPY, suggesting an involvement of the endogenous opioid system in the NPY-induced anti-nociception in the NAc during inflammation. Moreover, the NPY-induced anti-nociception was attenuated by following intra-NAc injection of the μ-opioid antagonist β-funaltrexamine (β-FNA), and κ-opioid antagonist nor-binaltorphimine (norBNI), but not by δ-opioid antagonist naltrindole, indicating that μ- and κ-opioid receptors, not δ-opioid receptor, are involved in the NPY-induced anti-nociception in the NAc in rats with inflammation.

  12. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    Science.gov (United States)

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (Panimals (Panimals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  13. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects.

    Science.gov (United States)

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg(-1)) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  14. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    Science.gov (United States)

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients. PMID:24339800

  15. Injection of Cocaine-Amphetamine Regulated Transcript (CART) peptide into the nucleus accumbens does not inhibit caffeine-induced locomotor activity: Implications for CART peptide mechanism.

    Science.gov (United States)

    Job, Martin O

    2016-09-01

    Much evidence suggests that intra-nucleus accumbens (NAc) CART peptide (CART 55-102) injection inhibits locomotor activity (LMA) when there is an increase in the release and activity of dopamine (DA) in the NAc. However, this hypothesis has not been fully tested. One way to examine this is to determine if there is a lack of effect of intra-NAc CART peptide on LMA that does not involve increases in DA release in the NAc. Several studies have suggested that caffeine-induced LMA does not involve extracellular DA release in the NAc core. Therefore, in this study, we have examined the effect of injections of CART peptide (2.5μg) into the NAc core on the locomotor effects of caffeine in male Sprague-Dawley rats. Several LMA relevant doses of caffeine were used (0, 10, 20mg/kg i.p.), and an inverted U response curve was found as expected. We determined, in the same animals, that intra-NAc CART peptide had no effect on caffeine-induced LMA whereas it blunted cocaine-mediated LMA, as shown by other reports. We also extended a previous observation in mice by showing that at a LMA activating dose of caffeine there is no alteration of CART peptide levels in the NAc of rats. Our study supports the hypothesis that the inhibitory effects of CART peptide in the NAc may be exerted only under conditions of increased extracellular DA release and activity in this region. Our results also suggest that intra-NAc CART 55-102 does not generally inhibit increases in LMA due to all drugs, but has a more specific inhibitory effect on dopaminergic neurotransmission. PMID:27168116

  16. Kappa opioid receptor activation potentiates the cocaine-induced increase in evoked dopamine release recorded in vivo in the mouse nucleus accumbens.

    Science.gov (United States)

    Ehrich, Jonathan M; Phillips, Paul E M; Chavkin, Charles

    2014-12-01

    Behavioral stressors increase addiction risk in humans and increase the rewarding valence of drugs of abuse including cocaine, nicotine and ethanol in animal models. Prior studies have established that this potentiation of drug reward was mediated by stress-induced release of the endogenous dynorphin opioids and subsequent kappa opioid receptor (KOR) activation. In this study, we used in vivo fast scan cyclic voltammetry to test the hypothesis that KOR activation before cocaine administration might potentiate the evoked release of dopamine from ventral tegmental (VTA) synaptic inputs to the nucleus accumbens (NAc) and thereby increase the rewarding valence of cocaine. The KOR agonist U50488 inhibited dopamine release evoked by either medial forebrain bundle (MFB) or pedunculopontine tegmental nucleus (PPTg) activation of VTA inputs to the shell or core of the mouse NAc. Cocaine administration increased the dopamine response recorded in either the shell or core evoked by either MFB or PPTg stimulation. Administration of U50488 15 min before cocaine blocked the conditioned place preference (CPP) to cocaine, but only significantly reduced the effect of cocaine on the dopamine response evoked by PPTg stimulation to NAc core. In contrast, administration of U50488 60 min before cocaine significantly potentiated cocaine CPP and significantly increased the effects of cocaine on the dopamine response evoked by either MFB or PPTg stimulation, recorded in either NAc shell or core. Results of this study support the concept that stress-induced activation of KOR by endogenous dynorphin opioids may enhance the rewarding valence of drugs of abuse by potentiating the evoked dopamine response. PMID:24971603

  17. Impairment of acquisition of intravenous cocaine self-administration by RNA-interference of dopamine D1-receptors in the nucleus accumbens shell.

    Science.gov (United States)

    Pisanu, Augusta; Lecca, Daniele; Valentini, Valentina; Bahi, Amine; Dreyer, Jean-Luc; Cacciapaglia, Fabio; Scifo, Andrea; Piras, Giovanna; Cadoni, Cristina; Di Chiara, Gaetano

    2015-02-01

    Microdialysis during i.v. drug self-administration (SA) have implicated nucleus accumbens (NAc) shell DA in cocaine and heroin reinforcement. However, this correlative evidence has not been yet substantiated by experimental evidence obtained by studying the effect of selective manipulation of NAc shell DA transmission on cocaine and heroin SA. In order to investigate this issue, DA D1a receptor (D1aR) expression was impaired in the NAc shell and core by locally infusing lentiviral vectors (LV) expressing specific D1aR-siRNAs (LV-siRNAs). Control rats were infused in the same areas with LV expressing GFP. Fifteen days later, rats were trained to acquire i.v. cocaine or heroin self-administration (SA). At the end of behavioral experiments, in order to evaluate the effect of LV-siRNA on D1aR expression, rats were challenged with amphetamine and the brains were processed for immunohistochemical detection of c-Fos and D1aR. Control rats acquired i.v. cocaine and heroin SA. Infusion of LV-siRNAs in the medial NAc shell reduced D1aR density and the number of c-Fos positive nuclei in the NAc shell, while sparing the core, and prevented the acquisition of cocaine, but not heroin SA. In turn, LV-siRNAs infusion in the core reduced D1aR density and the number of c-Fos positive nuclei in the same area, while sparing the shell, and failed to affect acquisition of cocaine. The differential effect of LV impairment of NAc shell D1aR on cocaine and heroin SA indicates that NAc shell DA acting on D1aR specifically mediates cocaine reinforcement. PMID:25446574

  18. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    Science.gov (United States)

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment. PMID:25914922

  19. Administration of activated glial condition medium in the nucleus accumbens extended extinction and intensified reinstatement of methamphetamine-induced conditioned place preference.

    Science.gov (United States)

    Arezoomandan, Reza; Moradi, Marzieh; Attarzadeh-Yazdi, Ghassem; Tomaz, Carlos; Haghparast, Abbas

    2016-07-01

    Methamphetamine (METH) is a psychostimulant drug with significant abuse potential and neurotoxic effects. A high percentage of users relapse to use after detoxification and no effective medication has been developed for treatment of METH addiction. Developing evidences indicated the role of glial cells in drugs abused related phenomena. However, little is known about the role of these cells in the maintenance and reinstatement of METH-seeking behaviors. Therefore, the current study was conducted to clarify the role of glial cells in the maintenance and reinstatement of METH-induced conditioned place preference (CPP) in rats. Astrocyte condition medium (ACM) and neuroglia conditioned medium (NCM) are liquid mediums prepared from primary astrocyte and neuroglia cells. These mediums seem to contain many factors that release by glia cells. CPP was induced by systemic administration of METH (1mg/kg for 5days, s.c.). Following the establishment of CPP, the rats were given daily bilateral injections (0.5μl/side) of either vehicle, ACM or NCM into the nucleus accumbens (NAc) and then were tested for the maintenance and reinstatement. Intra-NAc administration of ACM treated with METH, could extend the extinction period and also, intensified the magnitude of METH reinstatement. Furthermore, intra-accumbal administration of NCM treated with METH notably delayed the extinction period by four days and significantly increased the magnitude of CPP score in the reinstatement phase compared to the post-test phase. Collectively, these findings suggested that activation of glial cells may be involved in the maintenance and reinstatement of METH-seeking behaviors. It provides new evidence that glia cells might be considered as a potential target for the treatment of METH addiction. PMID:27346277

  20. The effects of morphine treatment on the NCAM and its signaling in the MLDS of rats.

    Science.gov (United States)

    Cao, Jun Ping; Wang, Hong Jun; Li, Li; Zhang, Su Ming

    2016-10-01

    Prolonged exposure to opiates induces a constellation of neuroadaptations, especially in the mesolimbic dopamine system (MLDS), which leads to alteration in the function of motivational circuitry. The neural cell adhesion molecule (NCAM) mediates cell-cell interactions and plays an important role in processes associated with neural plasticity. Moreover, it has been shown that NCAM were related to risk of alcoholism in human populations. Here, coimmunoprecipitation and western blotting were used to investigate whether morphine treatment induced alteration of the expression of NCAM or its signaling level in MLDS. The rats receiving escalating dose of morphine treatment were divided into three groups: morphine 1d, 3d and 5d group, which were injected subcutaneously with morphine hydrochloride for 1 day, 3 days and 5 days, respectively. Twelve hours after the last injection, animals were sacrificed and the tissues of ventral tegmental area (VTA), prefrontal cortex (PFC) and nucleus accumbens (NAc) were punched out to examine the expression of NCAM or its signaling level. The results showed that morphine treatment had no significant effect on the expression of NCAM, but downregulated the phosphorylation of NCAM-associated focal adhesion kinase (FAK) in the VTA and PFC of rats. In the NAc of rats, however, the expression of NCAM and its signaling were not altered significantly by morphine treatment. These results indicated that the downregulation of NCAM signaling in the VTA and PFC might be involved in the formation of morphine addiction. PMID:26821693

  1. Phasic Mesolimbic Dopamine Signaling Encodes the Facilitation of Incentive Motivation Produced by Repeated Cocaine Exposure

    Science.gov (United States)

    Ostlund, Sean B; LeBlanc, Kimberly H; Kosheleff, Alisa R; Wassum, Kate M; Maidment, Nigel T

    2014-01-01

    Drug addiction is marked by pathological drug seeking and intense drug craving, particularly in response to drug-related stimuli. Repeated psychostimulant administration is known to induce long-term alterations in mesolimbic dopamine (DA) signaling that are hypothesized to mediate this heightened sensitivity to environmental stimuli. However, there is little direct evidence that drug-induced alteration in mesolimbic DA function underlies this hypersensitivity to motivational cues. In the current study, we tested this hypothesis using fast-scan cyclic voltammetry to monitor phasic DA signaling in the nucleus accumbens core of cocaine-pretreated (6 once-daily injections of 15 mg/kg, i.p.) and drug-naive rats during a test of cue-evoked incentive motivation for food—the Pavlovian-to-instrumental transfer task. We found that prior cocaine exposure augmented both reward seeking and DA release triggered by the presentation of a reward-paired cue. Furthermore, cue-evoked DA signaling positively correlated with cue-evoked food seeking and was found to be a statistical mediator of this behavioral effect of cocaine. Taken together, these findings provide support for the hypothesis that repeated cocaine exposure enhances cue-evoked incentive motivation through augmented phasic mesolimbic DA signaling. This work sheds new light on a fundamental neurobiological mechanism underlying motivated behavior and its role in the expression of compulsive reward seeking. PMID:24804846

  2. Signal Processing of Random Physiological Signals

    CERN Document Server

    Lessard, Charles

    2006-01-01

    Signal Processing of Random Physiological Signals presents the most widely used techniques in signal and system analysis. Specifically, the book is concerned with methods of characterizing signals and systems. Author Charles Lessard provides students and researchers an understanding of the time and frequency domain processes which may be used to evaluate random physiological signals such as brainwave, sleep, respiratory sounds, heart valve sounds, electromyograms, and electro-oculograms.Another aim of the book is to have the students evaluate actual mammalian data without spending most or all

  3. Basic digital signal processing

    CERN Document Server

    Lockhart, Gordon B

    1985-01-01

    Basic Digital Signal Processing describes the principles of digital signal processing and experiments with BASIC programs involving the fast Fourier theorem (FFT). The book reviews the fundamentals of the BASIC program, continuous and discrete time signals including analog signals, Fourier analysis, discrete Fourier transform, signal energy, power. The text also explains digital signal processing involving digital filters, linear time-variant systems, discrete time unit impulse, discrete-time convolution, and the alternative structure for second order infinite impulse response (IIR) sections.

  4. Short-term abstinence from cocaine self-administration, but not passive cocaine infusion, elevates αCaMKII autophosphorylation in the rat nucleus accumbens and medial prefrontal cortex.

    Science.gov (United States)

    Caffino, Lucia; Cassina, Chiara; Giannotti, Giuseppe; Orrù, Alessandro; Moro, Federico; Di Clemente, Angelo; Racagni, Giorgio; Fumagalli, Fabio; Cervo, Luigi

    2014-02-01

    Increases in alpha calcium/calmodulin-dependent protein kinase type II (αCaMKII) activity in the nucleus accumbens shell has been proposed as a core component in the motivation to self-administer cocaine and in priming-induced drug-seeking. Since cocaine withdrawal promotes drug-seeking, we hypothesized that abstinence from cocaine self-administration should enhance αCaMKII as well. We found that short-term abstinence from contingent, but not non-contingent, cocaine i.v. self-administration (2 h/d for 14 d; 0.25 mg/0.1 ml, 6 s infusion) elevates αCaMKII autophosphorylation, but not the kinase expression, in a dynamic, time- and brain region-dependent manner. Increased αCaMKII autophosphorylation in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), but not dorsolateral striatum (dlS), was found 24 h, but not immediately, after the last cocaine self-administration session. Notably, in the mPFC, but not NAc and dlS, αCaMKII autophosphorylation was still enhanced 7 d later. The persistent enhancement in the mPFC of abstinent rats may represent a previously unappreciated contribution to initial incubation of cocaine-seeking. PMID:23953174

  5. Functional connectivity of nucleus accumbens in internet game addicts: a resting - state fMRI study%网络游戏成瘾者伏核功能连接静息态fMRI的研究

    Institute of Scientific and Technical Information of China (English)

    钱若兵; 傅先明; 翁传波; 林彬; 牛朝诗; 汪业汉

    2012-01-01

    目的 利用静息态功能磁共振(fMRI)分析网络游戏成瘾者与伏核存在功能连接的脑区,了解伏核功能异常在网络游戏成瘾发病机制中的作用.方法 网络游戏成瘾者和健康对照组各17例,扫描前上网玩耍自己喜欢的网络游戏,60 min后突然中止网络使用,对被试的网络游戏渴求程度进行心理学测评;休息30 min后进行静息态fMRI扫描,分别选取左、右侧伏核为感兴趣区进行脑功能连接分析,确定与双侧伏核有功能连接的脑区,并将激活程度与网络游戏渴求程度进行相关分析.结果 网络游戏成瘾青少年对网络游戏内容的渴望程度、喜欢程度、再次上网的渴望程度明显高于健康对照组(P<0.05);网络游戏成瘾组的伏核与前扣带回、中脑、海马功能连接明显高于健康对照组,而与前额叶、颞叶及枕叶功能连接明显低于健康对照组(P<0.05);网络游戏成瘾者伏核与前额叶、前扣带回、中脑及海马的功能连接程度和网络游戏渴求程度存在相关性(r=0.70、0.76、0.65、0.79,P<0.05).结论 网络游戏成瘾者伏核功能异常,提示伏核是网络游戏成瘾“奖赏系统”的重要组成部分,伏核功能异常可能参与了网络游戏成瘾的产生与维持.%Objective To analyze the brain areas having functional connectivity with nucleus accumbens in internet game addicts with resting- state functional magnetic resonance imaging (fMRI),and to find out the role of nucleus accumbens dysfunction in the pathogenesis of internet game addiction.Methods Seventeen participants with internet game addiction(IGA),and seventeen healthy controls took part in this study.First,all subjects took 60 minutes for playing their favorite online games and then stopped immediately to assess degree of wishing to play of online games based on psychological measurement; MR imaging was performed on a Philips Intera 3.0T MR imaging scanner,after that,the left and right

  6. An in vivo profile of beta-endorphin release in the arcuate nucleus and nucleus accumbens following exposure to stress or alcohol.

    Science.gov (United States)

    Marinelli, P W; Quirion, R; Gianoulakis, C

    2004-01-01

    The aim of the present study was to determine the effects of distinct categories of stressors on beta-endorphin (beta-EP) release in the arcuate nucleus (ArcN) and nucleus accumbens (NAcb) using in vivo microdialysis. Adult male rats were implanted with a cannula aimed at either the NAcb or the ArcN. On the day of testing, a 2 mm microdialysis probe was inserted into the cannula, and artificial cerebrospinal fluid was infused at 2.0 microl/min. After three baseline collections, animals either had a clothespin applied to the base of their tail for 20 min (a physical/tactile stressor), were exposed to fox urine odour for 20 min (a psychological stressor/species-specific threat), or were administered 2.4 g ethanol/kg body weight, 16.5% w/v, i.p. (a chemical/pharmacological stressor) with control animals receiving an equivalent volume of saline. Both tail-pinch and fox odour significantly increased beta-EP release from the ArcN (P<0.05), whilst only tail-pinch enhanced beta-EP release from the NAcb (P<0.01). On the other hand, alcohol stimulated beta-EP release in the NAcb as compared with saline-treated controls (P<0.01), but not in the ArcN. Although the increase in extracellular beta-EP produced by the other stressors was relatively rapid, there was a 90-min delay before alcohol administration caused beta-EP levels to exceed that of saline-injected controls. In conclusion, the fact that physical and fear-inducing psychological stressors stimulate beta-EP release in the ArcN and only physical stressors stimulate beta-EP release in the NAcb, indicates that stressors with different properties are processed differently in the brain. Also, an injection of alcohol caused a delayed increase of beta-EP in the NAcb but not the ArcN, indicating that alcohol may recruit a mechanism that is, at least partially, distinct from stress-related pathways. PMID:15283974

  7. ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL SELF-ADMINISTRATION BY SPRAGUE-DAWLEY RATS AND STIMULATION OF IN VIVO DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS SHELL

    Directory of Open Access Journals (Sweden)

    Maria Antonietta eDe Luca

    2014-10-01

    Full Text Available 2-Arachidonoylglycerol (2-AG is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacyglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA by squirrel monkeys, and anandamide increases nucleus accumbens (NAc shell dopamine (DA in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG (25g/kg/inf iv in single daily 1h sessions for 5 weeks under initial Fixed Ratio (FR 1 schedule. The ratio was subsequently increased to FR2. Active nose-poking increased from the 6th SA session (acquisition phase but no significant increase of nose-pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase, rate responding, as well as number of injections, slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase. The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg ip, 30 min before SA session. In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv. The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.

  8. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Directory of Open Access Journals (Sweden)

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  9. Clinical observation of physiological and psychological reactions to electric stimulation of the amygdaloid nucleus and the nucleus accumbens in heroin addicts after detoxification

    Institute of Scientific and Technical Information of China (English)

    FANG Jun; GU Jian-wen; YANG Wen-tao; QIN Xue-ying; HU Yong-hua

    2012-01-01

    Background Stereotactic surgery has been used to treat heroin abstinence in China since 2000 by ablating the amygdaloid nucleus (AMY) and the nucleus accumbens (NAc),which also provides opportunity to identify the relationship between these nuclei and addiction.Our study aimed to explore the physiological and psychological effects of electrically stimulating the AMY and the NAc in herein addicts after detoxification by observing changes of heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria.Methods A total of 70 heroin addicts after detoxification were recruited,and 61 of them were eligible to be given stereotactic surgery for heroin abstinence.The operation was carried out after determining the coordinates of all target nucleuses,and stimulation was performed at the AMY and the NAc solely or jointly.Heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria were recorded and analyzed.Results The average heat rate was (66±10) beats/min before electric stimulation,and significantly increased to (84±14) beats/min during stimulation,and changed to (73±12) beats/min 10 minutes after stimulation.There was a significant elevation of the average arterial pressure from 83 mmHg before stimulation to 98 mmHg during the stimulation,and it then decreased to 90 mmHg after stimulation.Forty-three of the 61 patients showed intense euphoria similar to heroin induced euphoria.The largest number (118/186) of euphoric responses occurred when the AMY and the NAc were stimulated at the same time.Odds ratio was 5.4 (95% CI: 2.4-11.9,P <0.0001) to quantify the association.Results from a Logistic regression model showed a positive correlation between unilateral stimulation of either the AMY or NAC and induction of euphoria (OR >1 ),especially when the left AMY or left NAc was stimulated (P <0.05).Conclusions Our data are consistent with existing results that the AMY and the NAc are related to addiction

  10. Inhibition of the reinstatement of morphine-induced place preference in rats by high-frequency stimulation of the bilateral nucleus accumbens

    Institute of Scientific and Technical Information of China (English)

    MA Yu; CHEN Ning; WANG Hui-min; Meng Fan-gang; ZHANG Jian-guo

    2013-01-01

    Background Opiate addiction remains intractable in a large percentage of patients,and relapse is the biggest hurdle to recovery.Many studies have identified a central role of the nucleus accumbens (NAc) in addiction.Deep brain stimulation (DBS) has the advantages of being reversible,adjustable,and minimally invasive,and it has become a potential neurobiological intervention for addiction.The purpose of our study was to investigate whether high-frequency DBS in the NAc effectively attenuates the reinstatement of morphine seeking in morphine-primed rats.Methods A morphine-dependent group of rats was given increasing doses of morphine during conditioned place preference training.A control group of rats was given equal volumes of saline.After the establishment of this model,withdrawal syndromes were precipitated in these two groups by administering naloxone,and the differences in withdrawal symptoms between the groups were analyzed.Electrodes for DBS were implanted in the bilateral shell of the NAc in the experimental group.The rats were stimulated daily in the NAc for 5 hours per day over 30 days.Changes in the conditioned place preference test and withdrawal symptoms in the rats were investigated and place navigation studies were performed using the Morris water maze.The data were assessed statistically with one-way analysis of variance (ANOVA) followed by Tukey's tests for multiple post hoc comparisons.Results High-frequency stimulation of the bilateral NAc prevented the morphine-induced reinstatement of morphine seeking in the conditioned place preference test.The time spent in the white compartment by rats following 30 days of DBS ((268.25±25.07) seconds) was not significantly different compared with the time spent in the white compartment after relapse was induced by morphine administration ((303.29±34.22) seconds).High-frequency stimulation of the bilateral NAc accelerated the innate decay of drug craving in morphine-dependent rats without significantly

  11. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  12. Fluoxetine disrupts motivation and GABAergic signaling in adolescent female hamsters.

    Science.gov (United States)

    Shannonhouse, John L; DuBois, Dustin W; Fincher, Annette S; Vela, Alejandra M; Henry, Morgan M; Wellman, Paul J; Frye, Gerald D; Morgan, Caurnel

    2016-08-01

    Initial antidepressant treatment can paradoxically worsen symptoms in depressed adolescents by undetermined mechanisms. Interestingly, antidepressants modulate GABAA receptors, which mediate paradoxical effects of other therapeutic drugs, particularly in females. Although the neuroanatomic site of action for this paradox is unknown, elevated GABAA receptor signaling in the nucleus accumbens can disrupt motivation. We assessed fluoxetine's effects on motivated behaviors in pubescent female hamsters - anhedonia in the reward investigational preference (RIP) test as well as anxiety in the anxiety-related feeding/exploration conflict (AFEC) test. We also assessed accumbal signaling by RT-PCR and electrophysiology. Fluoxetine initially worsened motivated behaviors at puberty, relative to adulthood. It also failed to improve these behaviors as pubescent hamsters transitioned into adulthood. Low accumbal mRNA levels of multiple GABAA receptor subunits and GABA-synthesizing enzyme, GAD67, assessed by RT-PCR, suggested low GABAergic tone at puberty. Nonetheless, rapid fluoxetine-induced reductions of α5GABAA receptor and BDNF mRNA levels at puberty were consistent with age-related differences in GABAergic responses to fluoxetine and disruption of the motivational state. Whole-cell patch clamping of accumbal slices also suggested low GABAergic tone by the low amplitude of miniature inhibitory postsynaptic currents (mIPSCs) at puberty. It also confirmed age-related differences in GABAergic responses to fluoxetine. Specifically, fluoxetine potentiated mIPSC amplitude and frequency at puberty, but attenuated the amplitude during adulthood. These results implicate GABAergic tone and GABAA receptor plasticity in adverse motivational responses and resistance to fluoxetine during adolescence. PMID:27068049

  13. Digital signal processing laboratory

    CERN Document Server

    Kumar, B Preetham

    2011-01-01

    INTRODUCTION TO DIGITAL SIGNAL PROCESSING Brief Theory of DSP ConceptsProblem SolvingComputer Laboratory: Introduction to MATLAB®/SIMULINK®Hardware Laboratory: Working with Oscilloscopes, Spectrum Analyzers, Signal SourcesDigital Signal Processors (DSPs)ReferencesDISCRETE-TIME LTI SIGNALS AND SYSTEMS Brief Theory of Discrete-Time Signals and SystemsProblem SolvingComputer Laboratory: Simulation of Continuous Time and Discrete-Time Signals and Systems ReferencesTIME AND FREQUENCY ANALYSIS OF COMMUNICATION SIGNALS Brief Theory of Discrete-Time Fourier Transform (DTFT), Discrete Fourier Transform

  14. Multiplexing oscillatory biochemical signals.

    Science.gov (United States)

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  15. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids.

    Science.gov (United States)

    Hryhorczuk, Cecile; Florea, Marc; Rodaros, Demetra; Poirier, Isabelle; Daneault, Caroline; Des Rosiers, Christine; Arvanitogiannis, Andreas; Alquier, Thierry; Fulton, Stephanie

    2016-02-01

    Overconsumption of dietary fat is increasingly linked with motivational and emotional impairments. Human and animal studies demonstrate associations between obesity and blunted reward function at the behavioral and neural level, but it is unclear to what degree such changes are a consequence of an obese state and whether they are contingent on dietary lipid class. We sought to determine the impact of prolonged ad libitum intake of diets rich in saturated or monounsaturated fat, separate from metabolic signals associated with increased adiposity, on dopamine (DA)-dependent behaviors and to identify pertinent signaling changes in the nucleus accumbens (NAc). Male rats fed a saturated (palm oil), but not an isocaloric monounsaturated (olive oil), high-fat diet exhibited decreased sensitivity to the rewarding (place preference) and locomotor-sensitizing effects of amphetamine as compared with low-fat diet controls. Blunted amphetamine action by saturated high-fat feeding was entirely independent of caloric intake, weight gain, and plasma levels of leptin, insulin, and glucose and was accompanied by biochemical and behavioral evidence of reduced D1R signaling in the NAc. Saturated high-fat feeding was also tied to protein markers of increased AMPA receptor-mediated plasticity and decreased DA transporter expression in the NAc but not to alterations in DA turnover and biosynthesis. Collectively, the results suggest that intake of saturated lipids can suppress DA signaling apart from increases in body weight and adiposity-related signals known to affect mesolimbic DA function, in part by diminishing D1 receptor signaling, and that equivalent intake of monounsaturated dietary fat protects against such changes. PMID:26171719

  16. Cell signaling review series

    Institute of Scientific and Technical Information of China (English)

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  17. Signal sciences workshop. Proceedings

    International Nuclear Information System (INIS)

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing

  18. Retinoid signalling during embryogenesis

    NARCIS (Netherlands)

    Pijnappel, W.W.M.; Hendriks, H.F.J.; Durston, A.J.

    1996-01-01

    Conclusion: Retinoids are suspected to have multiple functions during embryogenesis, which are carried out via various different signal transduction pathways involving active retinoids and nuclear retinoid receptors. Research focuses on the identification of the retinoid signal transduction componen

  19. Danger signals in stroke.

    Science.gov (United States)

    Gelderblom, Mathias; Sobey, Christopher G; Kleinschnitz, Christoph; Magnus, Tim

    2015-11-01

    Danger molecules are the first signals released from dying tissue after stroke. These danger signals bind to receptors on immune cells that will result in their activation and the release of inflammatory and neurotoxic mediators, resulting in amplification of the immune response and subsequent enlargement of the damaged brain volume. The release of danger signals is a central event that leads to a multitude of signals and cascades in the affected and neighbouring tissue, therefore providing a potential target for therapy.

  20. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  1. Tetrapyrrole Signaling in Plants

    Science.gov (United States)

    Larkin, Robert M.

    2016-01-01

    Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.

  2. Deep brain stimulation of nucleus accumbens for refractory anorexia nervosa%脑深部电刺激治疗难治性神经性厌食症

    Institute of Scientific and Technical Information of China (English)

    孙伯民; 李殿友; 占世坤; 林国珍; 庞琦

    2012-01-01

    Objective To study the effect of deep brain stimulation (DBS) in bilateral nucleus accumbens (NAc) for patients with refractory anorexia nervosa.Methods Four patients with severe,refractory anorexia nervosa who failed to psychological,medical and behavior therapies underwent DBS of bilateral NAc.DBS electrodes were implanted by MRI guided stereotactic surgery.The body mass index (BMI) and other psychiatrist - rated scales such as Yale - Brown obsessive - compulsive rating scale (YBOCS) and Hamilton anxiety rating scale ( HAMA ) were performed as a double - blind clinical assessment before and after surgery by psychiatrists.Results All patients were followed - up from 9 to 50 months (mean 39 months).Compared with preoperative baseline condition (mean BMI =11.4),the score was gradually increased to normal ( BMI > 17.9) after stimulation for 3 - 12 months.Meanwhile,their eating behavior,OCD,anxiety symptoms were also improved slowly but steadily.The menstrual of all these patients recovered after stimulation of 3 - 12 months.The DBS devices of 2 patients were removed 30 months after the surgery because the battery were worn out and the effects were stable during the follow - up period.There was no severe side effect and complication in these patients.Conclusions NAc stimulation is very effective and safe for the treatment of refractory anorexia nervosa.It is a promising procedure to improve anorexia symptoms as well as its accompanied psychiatric symptoms.%目的 探讨脑深部电刺激(DBS)治疗难治性神经性厌食症.方法 4例经过心理及药物治疗无效的难治性神经性厌食症患者,接受磁共振导向立体定向双侧伏隔核DBS植入,术后给予持续慢性高频电刺激.采用身体质量指数(BMI)及其他精神科量表如Yale - Brown强迫症量表(YBOCS)、汉密尔顿焦虑量表(HAMA)评估DBS治疗难治性神经性厌食症的长期疗效.结果 所有患者随访9-50个月(平均39个月).经过3-12个月的慢性电

  3. Altered neural reward and loss processing and prediction error signalling in depression.

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela; Diener, Carsten; Flor, Herta

    2015-08-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  4. Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1.

    Science.gov (United States)

    Prince, Courtney D; Rau, Andrew R; Yorgason, Jordan T; España, Rodrigo A

    2015-01-21

    Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine signaling or cocaine self-administration, particularly under high effort conditions. To address this, we examined the effects of hypocretin receptor 1, and/or hypocretin receptor 2 blockade on dopamine signaling and cocaine reinforcement. We used in vivo fast scan cyclic voltammetry to test the effects of hypocretin antagonists on dopamine signaling in the nucleus accumbens core and a progressive ratio schedule to examine the effects of these antagonists on cocaine self-administration. Results demonstrate that blockade of either hypocretin receptor 1 or both hypocretin receptor 1 and 2 significantly reduces the effects of cocaine on dopamine signaling and decreases the motivation to take cocaine. In contrast, blockade of hypocretin receptor 2 alone had no significant effects on dopamine signaling or self-administration. These findings suggest a differential involvement of the two hypocretin receptors, with hypocretin receptor 1 appearing to be more involved than hypocretin receptor 2 in the regulation of dopamine signaling and cocaine self-administration. When considered with the existing literature, these data support the hypothesis that hypocretins exert a permissive influence on dopamine signaling and motivated behavior via preferential actions on hypocretin receptor 1. PMID:25496218

  5. Separating signal from noise

    OpenAIRE

    Lev, Nir; Peled, Ron; Peres, Yuval

    2013-01-01

    Suppose that a sequence of numbers $x_n$ (a `signal') is transmitted through a noisy channel. The receiver observes a noisy version of the signal with additive random fluctuations, $x_n + \\xi_n$, where $\\xi_n$ is a sequence of independent standard Gaussian random variables. Suppose further that the signal is known to come from some fixed space of possible signals. Is it possible to fully recover the transmitted signal from its noisy version? Is it possible to at least detect that a non-zero s...

  6. Acoustic Signal Processing

    Science.gov (United States)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  7. Reliable Signal Transduction

    Science.gov (United States)

    Wollman, Roy

    Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation - that is dynamics - to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2 +)) , and nuclear factor kappa-B (NF- κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.

  8. Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test

    Directory of Open Access Journals (Sweden)

    Carvalho M.C.

    2005-01-01

    Full Text Available It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM. The present study uses a new approach (HPLC by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance. The study involved two experiments: i saline or midazolam (0.5 mg/kg before the first trial, and ii saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%. Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%, amygdala (78.96%, dorsal hippocampus (70.33%, and nucleus accumbens (73.58% of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM. A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05. These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.

  9. Geometric Signal Compression

    Institute of Scientific and Technical Information of China (English)

    Kun Zhou; Hu-Jun Bao; Jiao-Ying Shi; Qun-Sheng Peng

    2004-01-01

    Compression of mesh attributes becomes a challenging problem due to the great need for efficient storage and fast transmission. This paper presents a novel geometric signal compression framework for all mesh attributes, including position coordinates, normal, color, texture, etc. Within this framework, mesh attributes are regarded as geometric signals defined on mesh surfaces. A planar parameterization algorithm is first proposed to map 3D meshes to 2D parametric meshes. Geometric signals are then transformed into 2D signals, which are sampled into 2D regular signals using an adaptive sampling method. The JPEG2000 standard for still image compression is employed to effectively encode these regular signals into compact bit-streams with high rate/distortion ratios. Experimental results demonstrate the great application potentials of this framework.

  10. Digital signal processing

    CERN Document Server

    O'Shea, Peter; Hussain, Zahir M

    2011-01-01

    In three parts, this book contributes to the advancement of engineering education and that serves as a general reference on digital signal processing. Part I presents the basics of analog and digital signals and systems in the time and frequency domain. It covers the core topics: convolution, transforms, filters, and random signal analysis. It also treats important applications including signal detection in noise, radar range estimation for airborne targets, binary communication systems, channel estimation, banking and financial applications, and audio effects production. Part II considers sel

  11. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  12. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    Science.gov (United States)

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  13. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  14. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  15. Growth factor signalling.

    Science.gov (United States)

    de Laat, S W; Boonstra, J; Defize, L H; Kruijer, W; van der Saag, P T; Tertoolen, L G; van Zoelen, E J; den Hertog, J

    1999-01-01

    Signalling between cells in the developing vertebrate embryo is essential for normal embryonic development. In the mid 1970's, signal transduction research started at the Hubrecht Laboratory with special emphasis on analysis of the signalling mechanisms that direct cell proliferation and differentiation. The introduction of in vitro model systems contributed tremendously to the success of the signal transduction research at the Hubrecht Laboratory. Initially neuroblastoma cell lines, and later embryonal carcinoma and embryonal stem cells played an important role in identification of the molecular key players in developmental signalling. For instance, embryonal carcinoma cells were used to identify and characterise polypeptide growth factors. Growth factor signalling research was extended to analysis of growth factor receptor activation. Moreover, the second messenger systems that are linked to growth factor receptors were studied, as well as the nuclear responses to growth factor receptor activation. Finally, the role of growth factor signalling in differentiation was established using embryonal carcinoma cells. Here, we will review work that was characteristic for the growth factor receptor signalling research that was done at the Hubrecht Laboratory between 1980 and the early 1990's.

  16. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    Goutsias, J.; Heijmans, H.J.A.M.

    1998-01-01

    [PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis and synthes

  17. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi...

  18. Second-hand signals

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten

    2014-01-01

    of signal of firms, which is based on a formalized common practice of external, academic experts referring to firms in their peer reviewed publications. The findings provide qualitative evidence that helps explain why and how this new type of ‘second‐hand’ signal is created, validated and systematically...

  19. SignalR blueprints

    CERN Document Server

    Ingebrigtsen, Einar

    2015-01-01

    This book is designed for software developers, primarily those with knowledge of C#, .NET, and JavaScript. Good knowledge and understanding of SignalR is assumed to allow efficient programming of core elements and applications in SignalR.

  20. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  1. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  2. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  3. Exosomes in developmental signalling.

    Science.gov (United States)

    McGough, Ian John; Vincent, Jean-Paul

    2016-07-15

    In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes - extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling. PMID:27436038

  4. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  5. Biological signals as handicaps.

    Science.gov (United States)

    Grafen, A

    1990-06-21

    An ESS model of Zahavi's handicap principle is constructed. This allows a formal exposition of how the handicap principle works, and shows that its essential elements are strategic. The handicap model is about signalling, and it is proved under fairly general conditions that if the handicap principle's conditions are met, then an evolutionarily stable signalling equilibrium exists in a biological signalling system, and that any signalling equilibrium satisfies the conditions of the handicap principle. Zahavi's major claims for the handicap principle are thus vindicated. The place of cheating is discussed in view of the honesty that follows from the handicap principle. Parallel signalling models in economics are discussed. Interpretations of the handicap principle are compared. The models are not fully explicit about how females use information about male quality, and, less seriously, have no genetics. A companion paper remedies both defects in a model of the handicap principle at work in sexual selection. PMID:2402153

  6. Adaptive signal processor

    International Nuclear Information System (INIS)

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 μsec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed

  7. Signal sampling circuit

    OpenAIRE

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converter via a respective output switch. The output switch of each channel opens for a tracking time period when the track-and-hold circuit is in a tracking mode for sampling the signal, and closes for a ...

  8. Signal flow analysis

    CERN Document Server

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  9. Hedgehog signaling and steroidogenesis.

    Science.gov (United States)

    Finco, Isabella; LaPensee, Christopher R; Krill, Kenneth T; Hammer, Gary D

    2015-01-01

    Since its discovery nearly 30 years ago, the Hedgehog (Hh) signaling pathway has been shown to be pivotal in many developmental and pathophysiological processes in several steroidogenic tissues, including the testis, ovary, adrenal cortex, and placenta. New evidence links the evolutionarily conserved Hh pathway to the steroidogenic organs, demonstrating how Hh signaling can influence their development and homeostasis and can act in concert with steroids to mediate physiological functions. In this review, we highlight the role of the components of the Hh signaling pathway in steroidogenesis of endocrine tissues. PMID:25668018

  10. Nuclear localization signal in a cancer-related transcriptional regulator protein NAC1.

    Science.gov (United States)

    Okazaki, Kosuke; Nakayama, Naomi; Nariai, Yuko; Nakayama, Kentaro; Miyazaki, Kohji; Maruyama, Riruke; Kato, Hiroaki; Kosugi, Shunichi; Urano, Takeshi; Sakashita, Gyosuke

    2012-10-01

    Nucleus accumbens-associated protein 1 (NAC1) might have potential oncogenic properties and participate in regulatory networks for pluripotency. Although NAC1 is described as a transcriptional regulator, the nuclear import machinery of NAC1 remains unclear. We found, using a point mutant, that dimer formation was not committed to the nuclear localization of NAC1 and, using deletion mutants, that the amino-terminal half of NAC1 harbored a potential nuclear localization signal (NLS). Wild type, but not mutants of this region, alone was sufficient to drive the importation of green fluorescent protein (GFP) into the nucleus. Bimax1, a synthetic peptide that blocks the importin α/β pathway, impaired nuclear localization of NAC1 in cells. We also used the binding properties of importin to demonstrate that this region is an NLS. Furthermore, the transcriptional regulator function of NAC1 was dependent on its nuclear localization activity in cells. Taken together, these results show that the region with a bipartite motif constitutes a functional nuclear import sequence in NAC1 that is independent of NAC1 dimer formation. The identification of an NAC1 NLS thus clarifies the mechanism through which NAC1 translocates to the nucleus to regulate the transcription of genes involved in oncogenicity and pluripotency.

  11. Reward devaluation and heroin escalation is associated with differential expression of CRF signaling genes.

    Science.gov (United States)

    McFalls, Ashley J; Imperio, Caesar G; Bixler, Georgina; Freeman, Willard M; Grigson, Patricia Sue; Vrana, Kent E

    2016-05-01

    One of the most damaging aspects of drug addiction is the degree to which natural rewards (family, friends, employment) are devalued in favor of seeking, obtaining and taking drugs. We have utilized an animal model of reward devaluation and heroin self-administration to explore the role of the coricotropin releasing factor (CRF) pathway. Given access to a saccharin cue followed by the opportunity to self-administer heroin, animals will parse into distinct phenotypes that suppress their saccharin intake (in favor of escalating heroin self-administration) or vice versa. We find that large saccharin suppressors (large heroin takers) demonstrate increased mRNA expression for elements of the CRF signaling pathway (CRF, CRF receptors and CRF binding protein) within the hippocampus, medial prefrontal cortex and the ventral tegmental area. Moreover, there were no gene expression changes of these components in the nucleus accumbens. Use of bisulfite conversion sequencing suggests that changes in CRF binding protein and CRF receptor gene expression may be mediated by differential promoter methylation. PMID:26655889

  12. Association between regulator of G protein signaling 9-2 and body weight.

    Directory of Open Access Journals (Sweden)

    Jeffrey L Waugh

    Full Text Available Regulator of G protein signaling 9-2 (RGS9-2 is a protein that is highly enriched in the striatum, a brain region that mediates motivation, movement and reward responses. We identified a naturally occurring 5 nucleotide deletion polymorphism in the human RGS9 gene and found that the mean body mass index (BMI of individuals with the deletion was significantly higher than those without. A splicing reporter minigene assay demonstrated that the deletion had the potential to significantly decrease the levels of correctly spliced RGS9 gene product. We measured the weights of rats after virally transduced overexpression of RGS9-2 or the structurally related RGS proteins, RGS7, or RGS11, in the nucleus accumbens (NAc and observed a reduction in body weight after overexpression of RGS9-2 but not RGS7 or 11. Conversely, we found that the RGS9 knockout mice were heavier than their wild-type littermates and had significantly higher percentages of abdominal fat. The constituent adipocytes were found to have a mean cross-sectional area that was more than double that of corresponding cells from wild-type mice. However, food intake and locomotion were not significantly different between the two strains. These studies with humans, rats and mice implicate RGS9-2 as a factor in regulating body weight.

  13. Modulation by group I mGLU receptor activation and group III mGLU receptor blockade of locomotor responses induced by D1-like and D2-like receptor agonists in the nucleus accumbens.

    Science.gov (United States)

    Rouillon, Christophe; Degoulet, Mickael; Chevallier, Karine; Abraini, Jacques H; David, Hélène N

    2008-03-10

    Evidence for functional motor interactions between group I and group III metabotropic glutamatergic (mGlu) receptors and dopamine neurotransmission is now clearly established [David, H.N., Abraini, J.H., 2001a. The group I metabotropic glutamate receptor antagonist S-4-CPG modulates the locomotor response produced by the activation of D1-like, but not D2-like, dopamine receptors in the rat nucleus accumbens. Eur. J. Neurosci. 15, 2157-2164, David, H.N., Abraini, J.H., 2002. Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity. Eur. J. Neurosci. 15, 869-875]. Nevertheless, whether or not and how, activation of group I and blockade of group III mGlu receptors modulate the motor responses induced by the activation of dopaminergic receptors in the NAcc still remains unknown. Answering this question needs to be assessed since functional interactions between neurotransmitters in the NAcc are well known to depend upon the level of activation of glutamatergic and/or dopaminergic receptors and because the effects of glutamatergic receptor agonists and antagonists on dopaminergic receptor-mediated locomotor responses are not always reciprocal as shown in previous studies. Our results show that activation of group I mGlu receptors by DHPG in the NAcc potentiated the locomotor response induced by intra-NAcc activation of D1-like receptors and blocked those induced by D2-like presynaptic or postsynaptic receptors. Alternatively, blockade of group III mGlu receptors by MPPG in the NAcc potentiated the locomotor responses mediated by D1-like receptors and by D2-like postsynaptic receptors and inhibited that induced by D2-like presynaptic receptors. These results compiled with previous data demonstrate that group I mGlu receptors and group III mGlu receptors can modulate the locomotor responses produced by D1-like and/or D2-like receptor agonists in a complex phasic and tonic

  14. Signaling in muscle contraction.

    Science.gov (United States)

    Kuo, Ivana Y; Ehrlich, Barbara E

    2015-02-02

    Signaling pathways regulate contraction of striated (skeletal and cardiac) and smooth muscle. Although these are similar, there are striking differences in the pathways that can be attributed to the distinct functional roles of the different muscle types. Muscles contract in response to depolarization, activation of G-protein-coupled receptors and other stimuli. The actomyosin fibers responsible for contraction require an increase in the cytosolic levels of calcium, which signaling pathways induce by promoting influx from extracellular sources or release from intracellular stores. Rises in cytosolic calcium stimulate numerous downstream calcium-dependent signaling pathways, which can also regulate contraction. Alterations to the signaling pathways that initiate and sustain contraction and relaxation occur as a consequence of exercise and pathophysiological conditions.

  15. Error-prone signalling.

    Science.gov (United States)

    Johnstone, R A; Grafen, A

    1992-06-22

    The handicap principle of Zahavi is potentially of great importance to the study of biological communication. Existing models of the handicap principle, however, make the unrealistic assumption that communication is error free. It seems possible, therefore, that Zahavi's arguments do not apply to real signalling systems, in which some degree of error is inevitable. Here, we present a general evolutionarily stable strategy (ESS) model of the handicap principle which incorporates perceptual error. We show that, for a wide range of error functions, error-prone signalling systems must be honest at equilibrium. Perceptual error is thus unlikely to threaten the validity of the handicap principle. Our model represents a step towards greater realism, and also opens up new possibilities for biological signalling theory. Concurrent displays, direct perception of quality, and the evolution of 'amplifiers' and 'attenuators' are all probable features of real signalling systems, yet handicap models based on the assumption of error-free communication cannot accommodate these possibilities. PMID:1354361

  16. Signals from the Cosmos.

    Science.gov (United States)

    Lichtman, Jeffrey M.

    1991-01-01

    Introduces the basics of radio astronomy and describes how to assemble several simple systems for receiving radio signals from the cosmos. Includes schematics, parts lists, working drawings, and contact information for radio astronomy suppliers. (11 references) (Author/JJK)

  17. Foundations of signal processing

    CERN Document Server

    Vetterli, Martin; Goyal, Vivek K

    2014-01-01

    This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression. The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localisation, the limitations of uncertainty and computational costs. Standard engineering notation is used throughout, making mathematical examples easy for students to follow, understand and apply. It includes over 150 homework problems and over 180 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, ...

  18. Topological signal processing

    CERN Document Server

    Robinson, Michael

    2014-01-01

    Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information.  Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known.  This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations.  Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

  19. Modularity in signaling systems

    International Nuclear Information System (INIS)

    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications. (paper)

  20. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues.

    Science.gov (United States)

    Wenzel, Jennifer M; Cheer, Joseph F

    2014-01-01

    The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues. PMID:25225488

  1. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenzel

    2014-09-01

    Full Text Available The mesolimbic dopamine (DA system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc. Implementation of fast-scan cyclic voltammetry (FSCV confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission, and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed interval (FI schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability – time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increase DA levels during the interval and disrupt this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.

  2. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues.

    Science.gov (United States)

    Wenzel, Jennifer M; Cheer, Joseph F

    2014-01-01

    The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.

  3. Signal-light nomogram

    Science.gov (United States)

    Gordon, J. I.; Edgerton, C. F.; Duntley, S. Q.

    1975-01-01

    A nomogram is presented for predicting the sighting range for white, steady-burning signal lights. The theoretical and experimental bases are explained and instructions are provided for its use for a variety of practical problems concerning the visibility of signal lights. The nomogram is appropriate for slant path as well as horizontal sightings, and the gain of range achieved by utilizing binoculars can be predicted by use of it.

  4. Digital signal processing: Handbook

    Science.gov (United States)

    Goldenberg, L. M.; Matiushkin, B. D.; Poliak, M. N.

    The fundamentals of the theory and design of systems and devices for the digital processing of signals are presented. Particular attention is given to algorithmic methods of synthesis and digital processing equipment in communication systems (e.g., selective digital filtering, spectral analysis, and variation of the signal discretization frequency). Programs for the computer-aided analysis of digital filters are described. Computational examples are presented, along with tables of transfer function coefficients for recursive and nonrecursive digital filters.

  5. Modest Advertising Signals Strength.

    OpenAIRE

    Ram Orzach; Per Baltzer Overgaard; Yair Tauman

    2001-01-01

    This paper presents a signaling model where both price and advertising expenditures are used as signals of the initially unobservable quality of a newly introduced experience good. Consumers can be either "fastidious" or "indifferent". Fastidious individuals place a greater value on a high-quality product and a lesser value on the low-quality product than do indifferent individuals. It is shown that a sensible separating equilibrium exists where both firms set their full information prices. H...

  6. Updating dopamine reward signals

    OpenAIRE

    Schultz, Wolfram

    2013-01-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily ...

  7. Ultrahigh bandwidth signal processing

    Science.gov (United States)

    Oxenløwe, Leif Katsuo

    2016-04-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, and hence useful for all types of data signals including coherent multi-level modulation formats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signals. In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral magnification of the OFDM signal. Utilising such telescopic arrangements, it has become possible to perform a number of interesting functionalities, which will be described in the presentation. This includes conversion from OFDM to Nyquist WDM, compression of WDM channels to a single Nyquist channel and WDM regeneration. These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platforms like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described.

  8. Wnt Signaling in Bone

    Science.gov (United States)

    Kubota, Takuo; Michigami, Toshimi; Ozono, Keiichi

    2010-01-01

    Wnt signaling is involved not only in embryonic development but also in maintenance of homeostasis in postnatal tissues. Multiple lines of evidence have increased understanding of the roles of Wnt signaling in bone since mutations in the LRP5 gene were identified in human bone diseases. Canonical Wnt signaling promotes mesenchymal progenitor cells to differentiate into osteoblasts. The canonical Wnt/β-catenin pathway possibly through Lrp6, a co-receptor for Wnts as well as Lrp5, in osteoblasts regulates bone resorption by increasing the OPG/RANKL ratio. However, endogenous inhibitors of Wnt signaling including sclerostin block bone formation. Regulation of sclerostin appears to be one of the mechanisms of PTH anabolic actions on bone. Since sclerostin is almost exclusively expressed in osteocytes, inhibition of sclerostin is the most promising design. Surprisingly, Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum, but not by directly promoting bone formation. Pharmacological intervention may be considered in many components of the canonical Wnt signaling pathway, although adverse effects and tumorigenicity to other tissues are important. More studies will be needed to fully understand how the Wnt signaling pathway actually influences bone metabolism and to assure the safety of new interventions. PMID:23926379

  9. Digital Signal Processing applied to Physical Signals

    CERN Document Server

    Alberto, Diego; Musa, L

    2011-01-01

    It is well known that many of the scientific and technological discoveries of the XXI century will depend on the capability of processing and understanding a huge quantity of data. With the advent of the digital era, a fully digital and automated treatment can be designed and performed. From data mining to data compression, from signal elaboration to noise reduction, a processing is essential to manage and enhance features of interest after every data acquisition (DAQ) session. In the near future, science will go towards interdisciplinary research. In this work there will be given an example of the application of signal processing to different fields of Physics from nuclear particle detectors to biomedical examinations. In Chapter 1 a brief description of the collaborations that allowed this thesis is given, together with a list of the publications co-produced by the author in these three years. The most important notations, definitions and acronyms used in the work are also provided. In Chapter 2, the last r...

  10. Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo.

    Science.gov (United States)

    Nagai, Taku; Nakamuta, Shinichi; Kuroda, Keisuke; Nakauchi, Sakura; Nishioka, Tomoki; Takano, Tetsuya; Zhang, Xinjian; Tsuboi, Daisuke; Funahashi, Yasuhiro; Nakano, Takashi; Yoshimoto, Junichiro; Kobayashi, Kenta; Uchigashima, Motokazu; Watanabe, Masahiko; Miura, Masami; Nishi, Akinori; Kobayashi, Kazuto; Yamada, Kiyofumi; Amano, Mutsuki; Kaibuchi, Kozo

    2016-02-01

    Dopamine (DA) type 1 receptor (D1R) signaling in the striatum presumably regulates neuronal excitability and reward-related behaviors through PKA. However, whether and how D1Rs and PKA regulate neuronal excitability and behavior remain largely unknown. Here, we developed a phosphoproteomic analysis method to identify known and novel PKA substrates downstream of the D1R and obtained more than 100 candidate substrates, including Rap1 GEF (Rasgrp2). We found that PKA phosphorylation of Rasgrp2 activated its guanine nucleotide-exchange activity on Rap1. Cocaine exposure activated Rap1 in the nucleus accumbens in mice. The expression of constitutively active PKA or Rap1 in accumbal D1R-expressing medium spiny neurons (D1R-MSNs) enhanced neuronal firing rates and behavioral responses to cocaine exposure through MAPK. Knockout of Rap1 in the accumbal D1R-MSNs was sufficient to decrease these phenotypes. These findings demonstrate a novel DA-PKA-Rap1-MAPK intracellular signaling mechanism in D1R-MSNs that increases neuronal excitability to enhance reward-related behaviors. PMID:26804993

  11. Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model.

    Directory of Open Access Journals (Sweden)

    Spring Valdivia

    Full Text Available Overconsumption of palatable energy-dense foods has negative health implications and it is associated with obesity and several eating disorders. Currently, little is known about the neuronal circuitries activated by the acute ingestion of a rewarding stimulus. Here, we used a combination of immunohistochemistry, pharmacology and neuronal tracing analyses to examine the role of the mesolimbic system in general, and the orexin neurons in particular, in a simple experimental test in which naïve mice are allowed to spontaneously eat a pellet of a high fat diet (HFD for 2 h. We found that acute HFD activates c-Fos expression in several reward-related brain areas, including the ventral tegmental area (VTA, nucleus accumbens, central amygdala and lateral hypothalamic area. We also found that: i- HFD-mediated orosensory stimulation was required for the mesolimbic pathway activation, ii- acute HFD differentially activates dopamine neurons of the paranigral, parabrachial pigmented and interfascicular sub-regions of the VTA, and iii- orexin neurons of the lateral hypothalamic area are responsive to acute HFD. Moreover, orexin signaling blockade, with the orexin 1 receptor antagonist SB-334867, reduces acute HFD consumption and c-Fos induction in the VTA but not in the other mesolimbic nuclei under study. Finally, we found that most orexin neurons responsive to acute HFD innervate the VTA. Our results show that acute HFD consumption recruits the mesolimbic system and that the full manifestation of this eating behavior requires the activation of orexin signaling.

  12. The effect of active and passive intravenous cocaine administration on the extracellular signal-regulated kinase (ERK) activity in the rat brain.

    Science.gov (United States)

    Miszkiel, Joanna; Detka, Jan; Cholewa, Joanna; Frankowska, Małgorzata; Nowak, Ewa; Budziszewska, Bogusława; Przegaliński, Edmund; Filip, Małgorzata

    2014-08-01

    According to a current hypothesis of learning processes, recent papers pointed out to an important role of the extracellular signal-regulated kinase (ERK), in drug addiction. We employed the Western blotting techniques to examine the ERK activity immediately after cocaine iv self-administration and in different drug-free withdrawal periods in rats. To distinguish motivational vs. pharmacological effects of the psychostimulant intake, a "yoked" procedure was used. Animals were decapitated after 14 daily cocaine self-administration sessions or on the 1st, 3rd or 10th extinction days. At each time point the activity of the ERK was assessed in several brain structures, including the prefrontal cortex, hippocampus, dorsal striatum and nucleus accumbens. Passive, repeated iv cocaine administration resulted in a 45% increase in ERK phosphorylation in the hippocampus while cocaine self-administration did not change brain ERK activity. On the 1st day of extinction, the activity of the ERK in the prefrontal cortex was decreased in rats with a history of cocaine chronic intake: by 66% for "active" cocaine group and by 35% for "yoked" cocaine group. On the 3rd day the reduction in the ERK activity (25-34%) was observed in the hippocampus for both cocaine-treated groups, and also in the nucleus accumbens for "yoked" cocaine group (40%). On the 10th day of extinction there was no significant alteration in ERK activity in any group of rats. Our findings suggest that cortical ERK is involved in cocaine seeking behavior in rats. They also indicate the time and regional adaptations in this enzyme activity after cocaine withdrawal. PMID:24948065

  13. Selective D3 Receptor Antagonist SB-277011-A Potentiates the Effect of Cocaine on Extracellular Dopamine in the Nucleus Accumbens: a Dual Core-Shell Voltammetry Study in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    Francesca Formenti

    2008-11-01

    Full Text Available Dopamine (DA D3 receptors have been associated with drug intake and abuse and selectively distribute in the brain circuits responding to drug administration. Here we examined the effects of an acute systemic administration of cocaine (15 mg/kg alone or preceded by treatment with the selective D3 receptor antagonist SB-277011-A (10 mg/kg on DA levels concurrently in the rat nucleus accumbens shell and core sub-regions (NAcshell and NAccore, respectively. It is shown that cocaine increases extracellular DA in both compartments and that blocking D3 receptors with SB-277011-A, although the latter is devoid of dopaminergic effects per se, potentiates these effects. No differences in the amplitude of the response were observed between NAcshell and NAccore compartments, though the dopaminergic response in the NAcshell was transient whereas that in the NAccore rose slowly to reach a plateau. These results demonstrate the feasibility to use multiprobe voltammetry to measure discrete monoaminergic responses in discrete areas of the brain and confirm the effect of D3 receptors antagonist at modifying the neurochemical effects of cocaine.

  14. VLSI signal processing technology

    CERN Document Server

    Swartzlander, Earl

    1994-01-01

    This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec­ tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al­ gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro­ cessors and architectures - several examples and case studies of existing DSP chips are discussed in...

  15. Signaling cascades modulate the speed of signal propagation through space.

    Directory of Open Access Journals (Sweden)

    Christopher C Govern

    Full Text Available BACKGROUND: Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. METHODOLOGY/PRINCIPAL FINDINGS: We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. CONCLUSIONS/SIGNIFICANCE: Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  16. Signal integrity characterization techniques

    CERN Document Server

    Bogatin, Eric

    2009-01-01

    "Signal Integrity Characterization Techniques" addresses the gap between traditional digital and microwave curricula all while focusing on a practical and intuitive understanding of signal integrity effects within the data transmission channel. High-speed interconnects such as connectors, PCBs, cables, IC packages, and backplanes are critical elements of differential channels that must be designed using today's most powerful analysis and characterization tools.Both measurements and simulation must be done on the device under test, and both activities must yield data that correlates with each other. Most of this book focuses on real-world applications of signal integrity measurements - from backplane for design challenges to error correction techniques to jitter measurement technologies. The authors' approach wisely addresses some of these new high-speed technologies, and it also provides valuable insight into its future direction and will teach the reader valuable lessons on the industry.

  17. Telemetry Ranging: Signal Processing

    Science.gov (United States)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  18. Purinergic signalling and diabetes

    DEFF Research Database (Denmark)

    Burnstock, Geoffrey; Novak, Ivana

    2013-01-01

    The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes...... type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling...... molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic...

  19. Updating dopamine reward signals.

    Science.gov (United States)

    Schultz, Wolfram

    2013-04-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations.

  20. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  1. TOR signalling in plants.

    Science.gov (United States)

    Rexin, Daniel; Meyer, Christian; Robaglia, Christophe; Veit, Bruce

    2015-08-15

    Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.

  2. Understanding signal integrity

    CERN Document Server

    Thierauf, Stephen C

    2010-01-01

    This unique book provides you with practical guidance on understanding and interpreting signal integrity (SI) performance to help you with your challenging circuit board design projects. You find high-level discussions of important SI concepts presented in a clear and easily accessible format, including question and answer sections and bulleted lists.This valuable resource features rules of thumb and simple equations to help you make estimates of critical signal integrity parameters without using circuit simulators of CAD (computer-aided design). The book is supported with over 120 illustratio

  3. Electronic signal conditioning

    CERN Document Server

    NEWBY, BRUCE

    1994-01-01

    At technician level, brief references to signal conditioning crop up in a fragmented way in various textbooks, but there has been no single textbook, until now!More advanced texts do exist but they are more mathematical and presuppose a higher level of understanding of electronics and statistics. Electronic Signal Conditioning is designed for HNC/D students and City & Guilds Electronics Servicing 2240 Parts 2 & 3. It will also be useful for BTEC National, Advanced GNVQ, A-level electronics and introductory courses at degree level.

  4. Mechanisms of auxin signaling.

    Science.gov (United States)

    Lavy, Meirav; Estelle, Mark

    2016-09-15

    The plant hormone auxin triggers complex growth and developmental processes. Its underlying molecular mechanism of action facilitates rapid switching between transcriptional repression and gene activation through the auxin-dependent degradation of transcriptional repressors. The nuclear auxin signaling pathway consists of a small number of core components. However, in most plants each component is represented by a large gene family. The modular construction of the pathway can thus produce diverse transcriptional outputs depending on the cellular and environmental context. Here, and in the accompanying poster, we outline the current model for TIR1/AFB-dependent auxin signaling with an emphasis on recent studies. PMID:27624827

  5. Hybrid ECG signal conditioner

    Science.gov (United States)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Circuit with high common-mode rejection has ability to filter and amplify accepted analog electrocardiogram (ECG) signals of varying amplitude, shape, and polarity. In addition, low power circuit develops standardized pulses that can be counted and averaged by heart/breath rate processor.

  6. Mediation as Signal

    NARCIS (Netherlands)

    Holler, M.J.; Lindner, I.

    2004-01-01

    This paper analyzes mediation as a signal. Starting from a stylized case, a game theoretical model of one-sided incomplete information, taken from Cho and Kreps (1987), is applied to discuss strategic effects of mediation. It turns out that to reject mediation can be interpreted as a ”negative signa

  7. Wnt signaling in osteosarcoma.

    Science.gov (United States)

    Lin, Carol H; Ji, Tao; Chen, Cheng-Fong; Hoang, Bang H

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60-70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies. PMID:24924167

  8. Small Turing universal signal machines

    Directory of Open Access Journals (Sweden)

    Jérôme Durand-Lose

    2009-06-01

    Full Text Available This article aims at providing signal machines as small as possible able to perform any computation (in the classical understanding. After presenting signal machines, it is shown how to get universal ones from Turing machines, cellular-automata and cyclic tag systems. Finally a halting universal signal machine with 13 meta-signals and 21 collision rules is presented.

  9. Analog and digital signal processing

    Science.gov (United States)

    Baher, H.

    The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.

  10. Education - A Job Market Signal?

    OpenAIRE

    Leino, Topias

    2008-01-01

    This paper reviews the theoretical and empirical literature on job market signalling and on education as a job market signal. Possible economic implications of educational job market signalling to an individual and the society are represented based on existing theories. The paper also reviews central methods in empirical testing of the signalling/screening hypothesis. The empirical section of the paper carries out two alternative methods for testing the signalling/sorting hypothesis. The firs...

  11. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  12. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  13. Insulin signaling and addiction

    OpenAIRE

    Lynette C Daws; Avison, Malcolm J.; Robertson, Sabrina D.; Niswender, Kevin D.; Galli, Aurelio; Saunders, Christine

    2011-01-01

    Across species, the brain evolved to respond to natural rewards such as food and sex. These physiological responses are important for survival, reproduction and evolutionary processes. It is no surprise, therefore, that many of the neural circuits and signaling pathways supporting reward processes are conserved from Caenorhabditis elegans to Drosophilae, to rats, monkeys and humans. The central role of dopamine (DA) in encoding reward and in attaching salience to external environmental cues i...

  14. Mediation as Signal

    OpenAIRE

    Holler, M.J.; Lindner, I.

    2004-01-01

    This paper analyzes mediation as a signal. Starting from a stylized case, a game theoretical model of one-sided incomplete information, taken from Cho and Kreps (1987), is applied to discuss strategic effects of mediation. It turns out that to reject mediation can be interpreted as a ”negative signal” while the interpretation of accepting or proposing mediation is ambiguous and does not necessarily change the prior beliefs of the uninformed party. This asymmetry suggests that, in equilibrium,...

  15. Olfactory signaling in insects.

    Science.gov (United States)

    Wicher, Dieter

    2015-01-01

    The detection of volatile chemical information in insects is performed by three types of olfactory receptors, odorant receptors (ORs), specific gustatory receptor (GR) proteins for carbon dioxide perception, and ionotropic receptors (IRs) which are related to ionotropic glutamate receptors. All receptors form heteromeric assemblies; an OR complex is composed of an odor-specific OrX protein and a coreceptor (Orco). ORs and GRs have a 7-transmembrane topology as for G protein-coupled receptors, but they are inversely inserted into the membrane. Ligand-gated ion channels (ionotropic receptors) and ORs operate as IRs activated by volatile chemical cues. ORs are evolutionarily young receptors, and they first appear in winged insects and seem to be evolved to allow an insect to follow sparse odor tracks during flight. In contrast to IRs, the ORs can be sensitized by repeated subthreshold odor stimulation. This process involves metabotropic signaling. Pheromone receptors are especially sensitive and require an accessory protein to detect the lipid-derived pheromone molecules. Signaling cascades involved in pheromone detection depend on intensity and duration of stimuli and underlie a circadian control. Taken together, detection and processing of volatile information in insects involve ionotropic as well as metabotropic mechanisms. Here, I review the cellular signaling events associated with detection of cognate ligands by the different types of odorant receptors.

  16. fMRI study on heroin-related cues induced craving in heroin addicts long after nucleus accumbens ablation%伏隔核缺失后海洛因成瘾者线索诱导渴求的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    常海峰; 陈磊; 王玮; 王亚蓉; 李强; 王学廉; 李玮; 朱佳; 吴宁; 郑颖; 李楠

    2012-01-01

    Objective To study the relevance between craving and brain response to heroin-related cues in heroin addicts long after nucleus accumbens ablation. Methods 10 heroin addicts long after nucleus accumbens ablation and 10 demographically-matched heroin addicts were included in this study. The subjects underwent the heroin-cue induction paradigm of fMRI. The data were analyzed by the SPM5 software. Results The heroin-dependent group reported significantly increased craving following exposure to heroin-reated cues. The activated brain regions included the hippocampus, caudate, inferior frontal gyrus, middle temporal gyrus, gyrus emporalis inferior, middle occipital gyrus and inferior parietal lobule. The group after nucleus accumbens ablation did not report raving change. The activated brain regions included the hippocampus, middle temporal gyrus, gyrus temporalis inferior, inferior parietal lobule and middle occipital gyrus. Compared with the heroin group, the group after nucleus accumbens ablation showed greater activation in nucleus accumbens and lower activation in precuneus and lingual gyrus. Conclusion The nucleus accumbens may play an important role in the process of drug cues-induced craving.%目的 研究伏隔核缺失的海洛因成瘾者在完成药物线索诱导渴求任务时大脑反应,及其与主观渴求程度变化的关系.方法 10例伏隔核缺失的海洛因成瘾者和10例人口学及吸毒史相匹配的海洛因成瘾者纳入该实验.行图片药物线索诱导渴求的fMRI扫描.数据由SPM5软件分析.MR扫描前后,对被试者进行海洛因渴求程度评分.结果 暴露于线索后,海洛因成瘾组渴求明显升高,激活脑区包括海马、尾状核,额下回、颞中回、颞下回、枕中回、顶下小叶;伏隔核缺失组渴求无变化,激活脑区包括海马,颞中回、颞下回、顶下小叶、枕中回;伏隔核缺失组与海洛因成瘾组相比显示伏隔核激活减弱,楔前叶和

  17. Nucleus Accumbens 1, a Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad protein binds to TAR DNA-binding protein 43 and has a potential role in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Scofield, M D; Korutla, L; Jackson, T G; Kalivas, P W; Mackler, S A

    2012-12-27

    Protein degradation is a critical component of cellular maintenance. The intracellular translocation and targeting of the Ubiquitin Proteasome System (UPS) differentially coordinates a protein's half-life and thereby its function. Nucleus Accumbens 1 (NAC1), a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex (POZ/BTB) family of proteins, participates in the coordinated proteolysis of synaptic proteins by mediating recruitment of the UPS to dendritic spines. Here we report a novel interaction between NAC1 and TAR DNA-binding protein 43 (TDP-43), a protein identified as the primary component of ubiquitinated protein aggregates found in patients with Amyotrophic Lateral Sclerosis (ALS). In vitro translated full-length TDP-43 associated with both the POZ/BTB domain and the non-POZ/BTB domain of NAC1 in GST pulldown assays. Other POZ/BTB proteins (including zinc finger POZ/BTB proteins and atypical POZ/BTB proteins) showed weak interactions with TDP-43. In addition, NAC1 and TDP-43 were present in the same immunocomplexes in different regions of mouse brain and spinal cord. In primary spinal cord cultures, TDP-43 expression was mainly nuclear, whereas NAC1 was both nuclear and cytoplasmic. In order to mimic ALS-like toxicity in the spinal cord culture system, we elevated extracellular glutamate levels resulting in the selective loss of motor neurons. Using this model, it was found that glutamate toxicity elicited a dose-dependent translocation of TDP-43 out of the nucleus of cholinergic neurons and increased the co-localization of NAC1 and TDP-43. These findings suggest that NAC1 may function to link TDP-43 to the proteasome; thereby, facilitating the post-translational modifications of TDP-43 that lead to the development of ALS.

  18. Iptkalim inhibits cocaine challenge—induced enhancement of dopamine levels in nucleus accumbens and striatum of rats by up—regulating Kir6.1 and Kir6.2 mRNA expression

    Institute of Scientific and Technical Information of China (English)

    HEHai-Rong; DINGJian-Hua; GUBing; WANGHai; HUGang; LIUYun

    2003-01-01

    AIM:To investigate the effect and mechanism of novel ATP-sensitive potassium channel opener (KCO) iptkalim (IPT) on acute and cocaine challenge-induced alterations in the levels of dopamine (DA) and glutamate (Glu) from nucleus accumbens (NAc), striatum, and prefrontal cortex (PFC) in rats. METHODS: The levels of DA and Glu were assayed using high performance liquid chromatography (HPLC) combined with amperometric and fluorescent detection, respectively. The mRNA levels of Kir6.1, Kir6.2, SUR1, and SUR2 were measured by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: IPT did not affect acute cocaine (30mg/kg,ip)-induced elevations in either DA levels from NAc and striatum or Glu levels from NAc and PFC. An acute cocaine challenge (30mg/kg,ip) on d 21 after withdrawal caused an elevation in DA levels in NAc and striatum. Moreover, the same treatment also increased Gluo levels in PFC and NAc of cocaine-pretreated rats. Repeated IPT injections reversed cocaine challenge-induced DA increase in NAc and striatum. Cocaine challenge increased Kir6.1 and Kir6.2 mRNA expression in striatum and NAc and only elevate Kir6.2 expression in PFC in both cocainepretreated rats and rats pretreated with IPT plus cocaine. Moreover, expression of Kir6.1 and Kir6.2 mRNA was augmented in rats pretreated with IPT plus cocaine compared to rats pretreated with cocaine alone. No significant change was found in the SUR1 and SUR2 expression of all four groups. CONCLUSION:IPT inhibited cocaine challenge-induced enhancement of DA levels in NAc and striatum by up-regulating Kir6.1 and Kir6.2 mRNA expression.

  19. The Signal Space Separation method

    CERN Document Server

    Taulu, S; Simola, J; Taulu, Samu; Kajola, Matti; Simola, Juha

    2004-01-01

    Multichannel measurement with hundreds of channels essentially covers all measurable degrees of freedom of a curl and source free vector field, like the magnetic field in a volume free of current sources (e.g. in magnetoencephalography, MEG). A functional expansion solution of Laplace's equation enables one to separate signals arising from the sphere enclosing the interesting sources, e.g. the currents in the brain, from the rest of the signals. The signal space separation (SSS) is accomplished by calculating individual basis vectors for each term of the functional expansion solution to create a signal basis covering all measurable signal vectors. Any signal vector has a unique SSS decomposition with separate coefficients for the interesting signals and signals coming from outside the interesting volume. Thus, SSS basis provides an elegant method to remove external disturbances, and to transform the interesting signals to virtual sensor configurations. SSS can also be used in compensating the movements of the...

  20. Uncertainty product of composite signals

    International Nuclear Information System (INIS)

    The well known uncertainty product of communication theory for a signal in the time domain and its Fourier transform in the frequency domain is studied for a 'composite signal', i.e. a 'pure' signal to which a time-delayed replica is added. This uncertainty product shows the appearance of local maxima and minima as a function of the time delay, leading to the following conjecture: the uncertainty product of a non-Gaussian composite signal can be smaller than that of the 'pure' signal. As an example this conjecture will be proven for the derivative of the Gaussian signal and for the Cauchy distribution. The effect on the uncertainty product of adding a delayed scaled replica of a signal to the original signal in the time domain leads to an important possibility for interpretation in the study of the reverberation phenomenon in echo-location signals of dolphins. (author). Letter-to-the-editor

  1. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  2. Kappa-opioid receptor signaling and brain reward function

    OpenAIRE

    Bruijnzeel, Adrie W.

    2009-01-01

    The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administrati...

  3. Phonocardiography Signal Processing

    CERN Document Server

    Abbas, Abbas K

    2009-01-01

    The auscultation method is an important diagnostic indicator for hemodynamic anomalies. Heart sound classification and analysis play an important role in the auscultative diagnosis. The term phonocardiography refers to the tracing technique of heart sounds and the recording of cardiac acoustics vibration by means of a microphone-transducer. Therefore, understanding the nature and source of this signal is important to give us a tendency for developing a competent tool for further analysis and processing, in order to enhance and optimize cardiac clinical diagnostic approach. This book gives the

  4. Sphingosine signaling and atherogenesis

    DEFF Research Database (Denmark)

    Xu, Cang-bao; Hansen-Schwartz, Jacob; Edvinsson, Lars

    2004-01-01

    Sphingosine-1-phosphate (S1P) has diverse biological functions acting inside cells as a second messenger to regulate cell proliferation and survival, and extracellularly, as a ligand for a group of G protein-coupled receptors (GPCRs) named the endothelial differentiation gene (EDG) family. Five......+ mobilization, and expression of adhesion molecules. The formation of an atherosclerotic lesion occurs through activation of cellular events that include monocyte adhesion to the endothelium and vascular smooth muscle cell (VSMC) migration and proliferation. Thus, S1P signaling may play an important role...

  5. Multiscale Signal Analysis and Modeling

    CERN Document Server

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  6. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  7. Wireless data signal transmission system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver.......The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver....

  8. Two-dimensional signal analysis

    CERN Document Server

    Garello, René

    2010-01-01

    This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.

  9. Minimum signals in classical physics

    Institute of Scientific and Technical Information of China (English)

    邓文基; 许基桓; 刘平

    2003-01-01

    The bandwidth theorem for Fourier analysis on any time-dependent classical signal is shown using the operator approach to quantum mechanics. Following discussions about squeezed states in quantum optics, the problem of minimum signals presented by a single quantity and its squeezing is proposed. It is generally proved that all such minimum signals, squeezed or not, must be real Gaussian functions of time.

  10. Vertebrate Hedgehog signaling: cilia rule

    OpenAIRE

    Stainier Didier YR; Wilson Christopher W

    2010-01-01

    Abstract The Hedgehog (Hh) signaling pathway differentially utilizes the primary cilium in mammals and fruit flies. Recent work, including a study in BMC Biology, demonstrates that Hh signals through the cilium in zebrafish, clarifying the evolution of Hh signal transduction. See research article: http://www.biomedcentral.com/1741-7007/8/65

  11. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique ro...

  12. Rise-Time Distortion of Signal without Carrying Signal

    Science.gov (United States)

    Bukhman, N. S.

    2016-08-01

    The article deals with one-dimensional problem of rise-time distortion signal without carrying signal, that appears in the starting point intermittently, that is signal distortion at front edge or one of its derivative. The authors show that front edge of signal isn't distorted in case of propagation in unrestricted (including absorbing) area (amplitude of starting signal step or of one of its derivatives doesn't change) and move with the accuracy of vacuum light speed. The paper proves that it is the time interval shortage that causes signal loss with the route extension, but not the reduction of its starting amplitude, during which front edge of signal retains its starting value. The research presents new values for this time interval.

  13. Binary-Signal Recovery

    Science.gov (United States)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  14. Finding Signals for Plant Promoters

    Institute of Scientific and Technical Information of China (English)

    Weimou Zheng

    2003-01-01

    The strongest signal of plant promoter is searched with the model of single motif with two types. It turns out that the dominant type is the TATA-box. The other type may be called TATA-less signal, and may be used in gene finders for promoter recognition. While the TATA signals are very close for the monocot and the dicot, their TATA-less signals are significantly different. A general and flexible multi-motif model is also proposed for promoter analysis based on dynamic programming. By extending the Gibbs sampler to the dynamic programming and introducing temperature, an efficient algorithm is developed for searching signals in plant promoters.

  15. Detection of signals in noise

    CERN Document Server

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  16. Signals and systems for dummies

    CERN Document Server

    Wickert, Mark

    2013-01-01

    Getting mixed signals in your signals and systems course? The concepts covered in a typical signals and systems course are often considered by engineering students to be some of the most difficult to master. Thankfully, Signals & Systems For Dummies is your intuitive guide to this tricky course, walking you step-by-step through some of the more complex theories and mathematical formulas in a way that is easy to understand. From Laplace Transforms to Fourier Analyses, Signals & Systems For Dummies explains in plain English the difficult concepts that can trip you up

  17. [Signal Processing Suite Design

    Science.gov (United States)

    Sahr, John D.; Mir, Hasan; Morabito, Andrew; Grossman, Matthew

    2003-01-01

    Our role in this project was to participate in the design of the signal processing suite to analyze plasma density measurements on board a small constellation (3 or 4) satellites in Low Earth Orbit. As we are new to space craft experiments, one of the challenges was to simply gain understanding of the quantity of data which would flow from the satellites, and possibly to interact with the design teams in generating optimal sampling patterns. For example, as the fleet of satellites were intended to fly through the same volume of space (displaced slightly in time and space), the bulk plasma structure should be common among the spacecraft. Therefore, an optimal, limited bandwidth data downlink would take advantage of this commonality. Also, motivated by techniques in ionospheric radar, we hoped to investigate the possibility of employing aperiodic sampling in order to gain access to a wider spatial spectrum without suffering aliasing in k-space.

  18. Olfactory receptor signaling.

    Science.gov (United States)

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  19. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  20. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    Science.gov (United States)

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  1. Unmixing binocular signals

    Directory of Open Access Journals (Sweden)

    Sidney R Lehky

    2011-08-01

    Full Text Available Incompatible images presented to the two eyes lead to perceptual oscillations in which one image at a time is visible. Early models portrayed this binocular rivalry as involving reciprocal inhibition between monocular representations of images, occurring at an early visual stage prior to binocular mixing. However, psychophysical experiments found conditions where rivalry could also occur at a higher, more abstract level of representation. In those cases, the rivalry was between image representations dissociated from eye-of-origin information, rather than between monocular representations from the two eyes. Moreover, neurophysiological recordings found the strongest rivalry correlate in inferotemporal cortex, a high-level, predominantly binocular visual area involved in object recognition, rather than early visual structures. An unresolved issue is how can the separate identities of the two images be maintained after binocular mixing in order for rivalry to be possible at higher levels? Here we demonstrate that after the two images are mixed, they can be unmixed at any subsequent stage using a physiologically plausible nonlinear signal-processing algorithm, non-negative matrix factorization, previously proposed for parsing object parts during object recognition. The possibility that unmixed left and right images can be regenerated at late stages within the visual system provides a mechanism for creating various binocular representations and interactions de novo in different cortical areas for different purposes, rather than inheriting then from early areas. This is a clear example how nonlinear algorithms can lead to highly non-intuitive behavior in neural information processing.

  2. Purinergic signaling in epilepsy.

    Science.gov (United States)

    Rassendren, François; Audinat, Etienne

    2016-09-01

    Until recently, analysis of the mechanisms underlying epilepsy was centered on neuron dysfunctions. Accordingly, most of the available pharmacological treatments aim at reducing neuronal excitation or at potentiating neuronal inhibition. These therapeutic options can lead to obvious secondary effects, and, moreover, seizures cannot be controlled by any known medication in one-third of the patients. A purely neurocentric view of brain functions and dysfunctions has been seriously questioned during the past 2 decades because of the accumulation of experimental data showing the functional importance of reciprocal interactions between glial cells and neurons. In the case of epilepsy, our current knowledge of the human disease and analysis of animal models clearly favor the involvement of astrocytes and microglial cells during the progression of the disease, including at very early stages, opening the way to the identification of new therapeutic targets. Purinergic signaling is a fundamental feature of neuron-glia interactions, and increasing evidence indicates that modifications of this pathway contribute to the functional remodeling of the epileptic brain. This Review discusses the recent experimental results indicating the roles of astrocytic and microglial P2X and P2Y receptors in epilepsy. © 2016 Wiley Periodicals, Inc. PMID:27302739

  3. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  4. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  5. Steganography in arrhythmic electrocardiogram signal.

    Science.gov (United States)

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2015-08-01

    Security and privacy of patient data is a vital requirement during exchange/storage of medical information over communication network. Steganography method hides patient data into a cover signal to prevent unauthenticated accesses during data transfer. This study evaluates the performance of ECG steganography to ensure secured transmission of patient data where an abnormal ECG signal is used as cover signal. The novelty of this work is to hide patient data into two dimensional matrix of an abnormal ECG signal using Discrete Wavelet Transform and Singular Value Decomposition based steganography method. A 2D ECG is constructed according to Tompkins QRS detection algorithm. The missed R peaks are computed using RR interval during 2D conversion. The abnormal ECG signals are obtained from the MIT-BIH arrhythmia database. Metrics such as Peak Signal to Noise Ratio, Percentage Residual Difference, Kullback-Leibler distance and Bit Error Rate are used to evaluate the performance of the proposed approach.

  6. Steganography in arrhythmic electrocardiogram signal.

    Science.gov (United States)

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2015-08-01

    Security and privacy of patient data is a vital requirement during exchange/storage of medical information over communication network. Steganography method hides patient data into a cover signal to prevent unauthenticated accesses during data transfer. This study evaluates the performance of ECG steganography to ensure secured transmission of patient data where an abnormal ECG signal is used as cover signal. The novelty of this work is to hide patient data into two dimensional matrix of an abnormal ECG signal using Discrete Wavelet Transform and Singular Value Decomposition based steganography method. A 2D ECG is constructed according to Tompkins QRS detection algorithm. The missed R peaks are computed using RR interval during 2D conversion. The abnormal ECG signals are obtained from the MIT-BIH arrhythmia database. Metrics such as Peak Signal to Noise Ratio, Percentage Residual Difference, Kullback-Leibler distance and Bit Error Rate are used to evaluate the performance of the proposed approach. PMID:26736533

  7. Integrins mediating bone signal transduction

    Institute of Scientific and Technical Information of China (English)

    HE Chuanglong; WANG Yuanliang; YANG Lihua; ZHANG Jun

    2004-01-01

    Integrin-mediated adhesions play critical roles in diverse cell functions. Integrins offers a platform on which mechanical stimuli, cytoskeletal organization, biochemical signals can concentrate. Mechanical stimuli transmitted by integrins influence the cytoskeleton, in turn, the cytoskeleton influences cell adhesion via integrins, then cell adhesion results in a series of signal transduction cascades. In skeleton, integrins also have a key role for bone resoption by osteoclasts and reformation by osteoblasts. In present review, the proteins involved in integrin signal transduction and integrin signal transduction pathways were discussed, mainly on the basic mechanisms of integrin signaling and the roles of integrins in bone signal transduction, which may give insight into new therapeutic agents to all kinds of skeletal diseases and new strategies for bone tissue engineering.

  8. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... of the excitation signal. Although a gain in signal-to-noise ratio of about 20 dB is theoretically possible for the time-bandwidth product available in ultrasound, it is shown that the effects of transducer weighting and tissue attenuation reduce the maximum gain at 10 dB for robust compression with low sidelobes...... is described. Application of coded excitation in array imaging is evaluated through simulations in Field II. The low degree of the orthogonality among coded signals for ultrasound systems is first discussed, and the effect of mismatched filtering in the cross-correlation properties of the signals is evaluated...

  9. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  10. Introduction to digital signal processing

    CERN Document Server

    Kuc, Roman

    2008-01-01

    This book approaches digital Signal Processing and filter design in a Novel way, by presenting the relevant theory and then having the Student apply it by implementing signal processing routines on a computer. This mixture of theory and application has worked successfully. With this approach, the students receive a deeper and intuitive understanding of the theory, its applications and its limitations. This text also includes projects that require students to write Computer programs to accomplish signal processing projects.

  11. Image quality. Signals and information

    International Nuclear Information System (INIS)

    Among many parameters relating image quality, neutrons and observed signals prior to handle observed signals are considered in this report. A relation between signals and their qualities on neutron images is studied considering on neutron intensity and its statistical character, effective energy, and characteristic of neutron detection systems. Geometrical parameter of neutron beam is discussed as the other importance to characterize image quality.(author)

  12. Fundamentals of statistical signal processing

    CERN Document Server

    Kay, Steven M

    1993-01-01

    A unified presentation of parameter estimation for those involved in the design and implementation of statistical signal processing algorithms. Covers important approaches to obtaining an optimal estimator and analyzing its performance; and includes numerous examples as well as applications to real- world problems. MARKETS: For practicing engineers and scientists who design and analyze signal processing systems, i.e., to extract information from noisy signals — radar engineer, sonar engineer, geophysicist, oceanographer, biomedical engineer, communications engineer, economist, statistician, physicist, etc.

  13. Semi-classical signal analysis

    CERN Document Server

    Laleg-Kirati, Taous-Meriem; Sorine, Michel

    2010-01-01

    This study introduces a new signal analysis method called SCSA, based on a semi-classical approach. The main idea in the SCSA is to interpret a pulse-shaped signal as a potential of a Schr\\"odinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms.

  14. Gibberellin Signal Transduction in Rice

    Institute of Scientific and Technical Information of China (English)

    Liu-Min Fan; Xiaoyan Feng; Yu Wang; Xing Wang Deng

    2007-01-01

    In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transduction in rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments in the identification of GA signaling pathway components, the discovery of GA-induced destruction of GA signaling represser (DELLA protein), and the possible mechanism underlying the regulation of GA-responsive gene expression in rice.

  15. Pragmatic circuits signals and filters

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi

  16. Rhomboids, signalling and cell biology.

    Science.gov (United States)

    Freeman, Matthew

    2016-06-15

    Here, I take a somewhat personal perspective on signalling control, focusing on the rhomboid-like superfamily of proteins that my group has worked on for almost 20 years. As well as describing some of the key and recent advances, I attempt to draw out signalling themes that emerge. One important message is that the genetic and biochemical perspective on signalling has tended to underplay the importance of cell biology. There is clear evidence that signalling pathways exploit the control of intracellular trafficking, protein quality control and degradation and other cell biological phenomena, as important regulatory opportunities.

  17. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy;

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds...

  18. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation.

    Science.gov (United States)

    Chen, Han-Ting; Ruan, Nan-Yu; Chen, Jin-Chung; Lin, Tzu-Yung

    2012-09-24

    The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  19. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation

    Directory of Open Access Journals (Sweden)

    Jin‑Chung Chen

    2012-09-01

    Full Text Available The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3. To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2 activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  20. Correlation theory-based signal processing method for CMF signals

    Science.gov (United States)

    Shen, Yan-lin; Tu, Ya-qing

    2016-06-01

    Signal processing precision of Coriolis mass flowmeter (CMF) signals affects measurement accuracy of Coriolis mass flowmeters directly. To improve the measurement accuracy of CMFs, a correlation theory-based signal processing method for CMF signals is proposed, which is comprised of the correlation theory-based frequency estimation method and phase difference estimation method. Theoretical analysis shows that the proposed method eliminates the effect of non-integral period sampling signals on frequency and phase difference estimation. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of frequency and phase difference estimation and has better estimation performance than the adaptive notch filter, discrete Fourier transform and autocorrelation methods in terms of frequency estimation and the data extension-based correlation, Hilbert transform, quadrature delay estimator and discrete Fourier transform methods in terms of phase difference estimation, which contributes to improving the measurement accuracy of Coriolis mass flowmeters.