WorldWideScience

Sample records for accretionary orogens insights

  1. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  2. Juvenile crustal recycling in an accretionary orogen: Insights from contrasting Early Permian granites from central Inner Mongolia, North China

    Science.gov (United States)

    Yuan, Lingling; Zhang, Xiaohui; Xue, Fuhong; Liu, Fulin

    2016-11-01

    Coeval high-K calc-alkaline to alkaline granites constitute important components of post-collisional to post-orogenic igneous suites in most orogenic belts of various ages on Earth and their genesis harbors a key to ascertaining critical geodynamic controls on continental crustal formation and differentiation. This zircon U-Pb dating and geochemical study documents three contrasting Early Permian granites from Erenhot of central Inner Mongolia, eastern Central Asian Orogenic Belt (CAOB) and reveals concurrent high-K calc-alkaline to alkaline granite association derived from successive partial melting of distinct protoliths. The ca. 280 Ma Gancihuduge (GCG) pluton shows a calc-alkaline I-type character, with initial 87Sr/86Sr ratios of 0.7035 to 0.7039, εNd(t) of + 1.87 to + 4.70, zircon εHf(t) of + 8.0 to + 13.2 and δ18O from 7.4 to 8.7‰. The ca. 276 Ma Cailiwusu (CLS) pluton is magnesian and peraluminous, with initial 87Sr/86Sr ratios of 0.7036 to 0.7040, εNd(t) of + 1.9 to + 2.4, zircon εHf(t) of + 6.5 to + 12.1 and δ18O from 9.7 to 10.9‰. These features are consistent with partial melts of mixed sources composed of newly underplated meta-basaltic to -andesitic protoliths and variable supracrustal components, with distinctively higher proportion of the latter in the CLS pluton. By contrast, the ca. 279 Ma Kunduleng (KDL) suite exhibits an A-type magmatic affinity, with typical enrichment in alkalis, Ga, Zr, Nb and Y, εNd(t) of + 2.39 to + 3.55, zircon εHf(t) from + 8.3 to + 12.3 and δ18O values from 6.8 to 7.5‰. These features suggest that they stem from high-temperature fusion of dehydrated K-rich mafic to intermediate protoliths. Besides presenting a snapshot into a stratified crustal architecture in δ18O, these contrasting granites could not only serve as a temporal marker for monitoring post-collisional extension in the aftermath of a retreating subduction zone, but also present spatial magmatic proxy for tracing crustal formation and

  3. Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt (CAOB)

    Science.gov (United States)

    Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.

  4. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    Science.gov (United States)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  5. Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau?

    Science.gov (United States)

    Zhang, Yuqi; Song, Shuguang; Yang, Liming; Su, Li; Niu, Yaoling; Allen, Mark B.; Xu, Xin

    2017-05-01

    Oceanic plateaus with high-Mg rocks in the present-day oceanic crust have attracted much attention for their proposed mantle-plume origins and abnormally high mantle potential temperatures (Tp). However, equivalent rocks in ancient oceanic environments are usually poorly preserved because of deformation and metamorphism. Here we present petrological, geochronological and geochemical data for pillow lavas from Cambrian ophiolites in the Lajishan and Yongjing regions of the South Qilian Accretionary Belt (SQAB), from the southern part of the Qilian Orogen, northern China. Three rock groups can be identified geochemically: (1) sub-alkaline basalts with enriched mid- ocean ridge basalt (E-MORB) affinity; (2) alkaline basalts with oceanic island basalt (OIB) features, probably derived from partial melting of an enriched mantle source; and (3) picrites with MgO (18-22 wt%). Cr-numbers [Cr# = Cr/(Cr + Al)] of spinels from the picrites suggest 18-21% degree of partial melting at the estimated mantle potential temperature (Tp) of 1489-1600 °C, equivalent to values of Cenozoic Hawaiian picrites (1500-1600 °C). Zircons from one gabbro sample yielded a U-Pb Concordia age of 525 ± 3 Ma, suggesting the oceanic crust formed in the Cambrian. Available evidence suggests that Cambrian mantle plume activity is preserved in the South Qilian Accretionary Belt, and influenced the regional tectonics: "jamming" of the trench by thick oceanic crust explains the emplacement and preservation of the oceanic plateau, and gave rise to the generation of concomitant Ordovician inner-oceanic island arc basalts via re-organisation of the subduction zones in the region.

  6. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    Science.gov (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  7. Characterizing structures on borehole images and logging data of the Nankai trough accretionary prism: new insights

    Science.gov (United States)

    Jurado, Maria Jose

    2016-04-01

    IODP has extensively used the D/V Chikyu to drill the Kumano portion of the Nankai Trough, including two well sites within the Kumano Basin. IODP Expeditions 338 and 348 drilled deep into the inner accretionary prism south of the Kii Peninsula collecting a suite of LWD data, including natural gamma ray, electrical resistivity logs and borehole images, suitable to characterize structures (fractures and faults) inside the accretionary prism. Structural interpretation and analysis of logging-while-drilling data in the deep inner prism revealed intense deformation of a generally homogenous lithology characterized by bedding that dips steeply (60-90°) to the NW, intersected by faults and fractures. Multiple phases of deformation are characterized. IODP Expedition borehole images and LWD data acquired in the last decade in previous and results of NantroSEIZE IODP Expeditions (314, 319) were also analyzed to investigate the internal geometries and structures of the Nankai Trough accretionary prism. This study focused mainly on the characterization of the different types of structures and their specific position within the accretionary prism structures. New structural constraints and methodologies as well as a new approach to the characterization of study of active structures inside the prism will be presented.

  8. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    Science.gov (United States)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    insights into the tectonic evolution of accretionary wedges in an intra-arc setting.

  9. Cyclicity, episodicity, and continuity in accretionary wedge evolution: insights from geophysical imaging and physical analogue experiments

    Science.gov (United States)

    Kukowski, N.

    2009-04-01

    Geophysical profiles across active convergent margins reveal different styles and locations of sediment accretion, thrust slices dipping successively steeper towards the hinterland, splay faults, and blind thrusts as well as accumulation spaces e. g. thrust top basins and larger basins formed by regional subsidence, of very variable size and position. Morphologically, the continental slope at most margins can be sub-divided in a lower, middle, and upper slope, with often the middle slope being the most shallowly inclined, suggesting segmented wedges. Beneath the forearc, a subduction channel of a few hundred meters to a few km thickness marks a layer of material transport into greater depth that also hosts the plate interface and décollement zone. The petrographical composition of accretionary wedges and subduction channels as well as related pressures and temperatures are accessible through deep drilling or sampling fossil accretionary complexes now exhumed. The structure, lithology, and tectonic history of forearcs as identified from geophysical and geology field observations hint to parameters possibly controlling material transfer at convergent margins. Among them, sediment supply, which itself is largely controlled by climate, width of the subduction channel, and interplate frictional properties, which also exhibit control on plate coupling and therefore the seismic potential of a forearc, are suggested to be of major importance. These parameters further may undergo temporal fluctuation, e.g. when climate changes or when different material is entering the trench and therefore potentially also the subduction channel. High resolution monitoring of material flux and the evolution of fault zone kinematics of analogue experimental wedges made of granular materials exhibiting frictional behaviour equivalent to that of upper crustal rocks shows that accretionary cycles proceed as a chain of sub-processes, i.e. the development of a thrust slice from initial failure

  10. Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland

    OpenAIRE

    Engström, Adam

    2013-01-01

    Orogenic gold deposits occur within metamorphic belts throughout the world and have through time represented the source for over 25% of the world’s gold production. Although orogenic gold deposits are of great economic importance, controversies exist on the subject of fluid and metal sources and there have been few studies of gold´s distribution and mobility outside of large economic deposits. Research made by Pitcairn et al. (2006), on the Mesozoic Otago and Alpine schists of New Zealand, ob...

  11. Linking the southern West Junggar terrane to the Yili Block: Insights from the oldest accretionary complexes in West Junggar, NW China

    Science.gov (United States)

    Ren, Rong; Han, Bao-Fu; Guan, Shu-Wei; Liu, Bo; Wang, Zeng-Zhen

    2018-06-01

    West Junggar is known to tectonically correlate with East Kazakhstan; however, the tectonic link of the southern West Junggar terrane to adjacent regions still remains uncertain. Here, we examined the oldest accretionary complexes, thus constraining its tectonic evolution and link during the Early-Middle Paleozoic. They have contrasting lithologic, geochemical, and geochronological features and thus, provenances and tectonic settings. The Laba Unit was derived from the Late Ordovician-Early Devonian continental arc system (peaking at 450-420 Ma) with Precambrian substrate, which formed as early as the Early Devonian and metamorphosed during the Permian; however, the Kekeshayi Unit was accumulated in an intra-oceanic arc setting, and includes the pre-Late Silurian and Late Silurian subunits with or without Precambrian sources. Integrated with the regional data, the southern West Junggar terrane revealed a tectonic link to the northern Yili Block during the Late Silurian to Early Devonian, as suggested by the comparable Precambrian zircon age spectra between the southern West Junggar terrane and the micro-continents in the southern Kazakhstan Orocline, the proximal accumulation of the Laba Unit in the continental arc atop the Yili Block, and the sudden appearance of Precambrian zircons in the Kekeshayi Unit during the Late Silurian. This link rejects the proposals of the southern West Junggar terrane as an extension of the northern Kazakhstan Orocline and the Middle Paleozoic amalgamation of West Junggar. A new linking model is thus proposed, in which the southern West Junggar terrane first evolved individually, and then collided with the Yili Block to constitute the Kazakhstan continent during the Late Silurian. The independent and contrasting intra-oceanic and continental arcs also support the Paleozoic archipelago-type evolution of the Central Asian Orogenic Belt.

  12. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    Science.gov (United States)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  13. Mid-Ordovician and Late Devonian magmatism in the Togtokhinshil Complex: new insight into the formation and accretionary evolution of the Lake Zone (western Mongolia)

    Czech Academy of Sciences Publication Activity Database

    Soejono, I.; Buriánek, D.; Svojtka, Martin; Žáček, V.; Čáp, P.; Janoušek, V.

    2016-01-01

    Roč. 61, č. 1 (2016), s. 5-23 ISSN 1802-6222 Institutional support: RVO:67985831 Keywords : Central Asian Orogenic Belt * geochemistry * Lake Zone * magmatism * U-Pb zircon dating Subject RIV: DD - Geochemistry Impact factor: 0.609, year: 2016

  14. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  15. Arc-parallel extension and fluid flow in an ancient accretionary wedge: The San Juan Islands, Washington

    Science.gov (United States)

    Schermer, Elizabeth R.; Gillaspy, J.R.; Lamb, R.

    2007-01-01

    Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.

  16. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents

    Science.gov (United States)

    Mahan, Brandon; Moynier, Frédéric; Beck, Pierre; Pringle, Emily A.; Siebert, Julien

    2018-01-01

    Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).

  17. Palaeozoic polymetamorphism in the North Qinling orogenic belt, Central China: Insights from petrology and in situ titanite and zircon U-Pb geochronology

    NARCIS (Netherlands)

    Li, Y.; Zhou, H.; Li, Q.L.; Xiang, H.; Zhong, Z.Q.; Brouwer, F.M.

    2014-01-01

    The Qinling orogenic belt experienced multiple phases of orogenesis during the Palaeozoic. Unraveling the timing and P- T conditions of these events is the key to understanding the convergence processes between the South China and the North China Blocks. The Songshugou Complex, located in the

  18. Nature and timing of the final collision of Central Asian Orogenic Belt: insights from basic intrusion in the Xilin Gol Complex, Inner Mongolia, China

    NARCIS (Netherlands)

    Li, Y.; Zhou, H.; Brouwer, F.M.; Xiao, W.; Wijbrans, J.R.; Zhao, J.; Zhong, Z.; Liu, H.

    2014-01-01

    The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations

  19. Subduction and exhumation of a continental margin in the Scandinavian Caledonides: Insights from ultrahigh pressure metamorphism, late orogenic basins and 3D numerical modelling

    Science.gov (United States)

    Cuthbert, Simon

    2017-04-01

    The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin

  20. What happens along the flank and corner of a continental indenter? Insights from the easternmost Himalayan orogen and constraints on the models of the India-Asia collision

    Science.gov (United States)

    Haproff, P. J.; Yin, A.; Zuza, A. V.

    2017-12-01

    Investigations of continental collisions often focus on thrust belts oriented perpendicular to the plate-convergence direction and exclude belts that bound the flanks of a continental indenter despite being crucial to understanding the collisional process. Research of the Himalayan orogen, for example, has mostly centered on the east-trending thrust belt between the eastern and western syntaxes, resulting in inadequate examination of the north-trending Indo-Burma Ranges located along the eastern margin of India. To better understand the development of the entire Himalayan orogenic system, we conducted field mapping across the Northern Indo-Burma Range (NIBR), situated at the intersection of the eastern Himalaya and Indo-Burma Ranges. Our research shows that major lithologic units and thrust faults of the Himalaya extend to the NIBR, suggesting a shared geologic evolution. The structural framework of the NIBR consists of a southwest-directed thrust belt cored by a hinterland-dipping duplex, like the Himalaya. However, the Northern Indo-Burma orogen is distinct based on (1) the absence of the Tethyan Himalayan Sequence and southern Gangdese batholith, (2) the absence of the South Tibetan detachment, (3) crustal shortening greater than 80%, (4) an incredibly narrow orogen width of 7-33 km, (5) exposure of an ophiolitic mélange complex as a klippe, (6) and right-slip shear along the active range-bounding thrust fault. Furthermore, lithospheric deformation along the flank and northeast corner of India is characterized by right-slip transpression partitioned between the thrust belt and right-slip faults. Such a regime is interpreted to accommodate both contraction and clockwise rotation of Tibetan lithosphere around India, consistent with existing continuum deformation and rotation models.

  1. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe

    2013-07-01

    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  2. Controls of structural inheritance on orogenic curvature and foreland basin sedimentation: Insights from the Przemyśl area, Western Carpathians

    Science.gov (United States)

    Szaniawski, Rafał; Mazzoli, Stefano; Jankowski, Leszek

    2017-10-01

    Orogenic curvatures can have various origins and are widely debated worldwide. In the Poland-Ukraine border area, the Outer Western Carpathians are characterized by a marked curvature. The origin of this curvature was analysed by integrating stratigraphic information with structural constraints and anisotropy of the magnetic susceptibility (AMS) data. Hangingwall frontal ramp domains are characterized by a relatively simple deformation dominated by layer-parallel shortening and folding around a regional NW-SE trending axis, recorded by an AMS lineation with a similar trend. On the other hand, the N-S trending hangingwall oblique ramp domain is characterized by maximum AMS axes recording transpressional strain either dominated by simple shear (sub-horizontal AMS lineation) or pure shear (steeply plunging AMS lineation) components. Early Miocene basin inversion with two distinct depocentres created a number of different detachment surfaces and thickness variations for the sedimentary successions involved in thrusting. The main depocentre of the Lower-Middle Miocene foredeep was originally located in the recess area of the curved Carpathian front. On the other hand, the occurrence of a salient to the west resulted in the axial zone of the foreland flexure being filled with allochthonous units, thereby dramatically reducing the accommodation space for foredeep sediments in this area. Our results suggest that thrust-belt geometry was controlled by the inherited Mesozoic extensional basin architecture.

  3. The Russian-Kazakh Altai orogen: An overview and main debatable issues

    Directory of Open Access Journals (Sweden)

    Inna Safonova

    2014-07-01

    Full Text Available The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB, between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite- and turbidite (graywacke-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are: (1 Altai-Mongolian terrane (AMT; (2 subduction-accretionary (Rudny Altai, Gorny Altai and collisional (Kalba-Narym terranes; (3 Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ. The evolution of this orogen proceeded in five major stages: (i late Neoproterozoic–early Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii Ordovician–Silurian passive margin; (iii Devonian–Carboniferous active margin and collision of AMT with the Siberian continent; (iv late Paleozoic closure of the PAO and coeval collisional magmatism; (v Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian-Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin, age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.

  4. Geochemistry of mud volcano fluids in the Taiwan accretionary prism

    International Nuclear Information System (INIS)

    You Chenfeng; Gieskes, Joris M.; Lee, Typhoon; Yui Tzenfu; Chen Hsinwen

    2004-01-01

    Taiwan is located at the collision boundary between the Philippine Sea Plate and the Asian Continental Plate and is one of the most active orogenic belts in the world. Fluids sampled from 9 sub-aerial mud volcanoes distributed along two major geological structures in southwestern Taiwan, the Chishan fault and the Gutingkeng anticline, were analyzed to evaluate possible sources of water and the degree of fluid-sediment interaction at depth in an accretionary prism. Overall, the Taiwanese mud volcano fluids are characterized by high Cl contents, up to 347 mM, suggesting a marine origin from actively de-watering sedimentary pore waters along major structures on land. The fluids obtained from the Gutingkeng anticline, as well as from the Coastal Plain area, show high Cl, Na, K, Ca, Mg and NH 4 , but low SO 4 and B concentrations. In contrast, the Chishan fault fluids are much less saline (1/4 seawater value), but show much heavier O isotope compositions (δ 18 O=5.1-6.5 %o). A simplified scenario of mixing between sedimentary pore fluids and waters affected by clay dehydration released at depth can explain several crucial observations including heavy O isotopes, radiogenic Sr contents ( 87 Sr/ 86 Sr=0.71136-0.71283), and relatively low salinities in the Chishan fluids. Gases isolated from the mud volcanoes are predominantly CH 4 and CO 2 , where the CH 4 -C isotopic compositions show a thermogenic component of δ 13 C=-38 %o. These results demonstrate that active mud volcano de-watering in Taiwan is a direct product of intense sediment accretion and plate collision in the region

  5. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a

  6. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt

    Science.gov (United States)

    Zheng, Rongguo; Li, Jinyi; Xiao, Wenjiao; Zhang, Jin

    2018-03-01

    The ages and origins of metasedimentary rocks, which were previously mapped as Precambrian, are critical in rebuilding the orogenic process and better understanding the Phanerozoic continental growth in the Central Asian Orogenic Belt (CAOB). The Beishan Complex was widely distributed in the southern Beishan Orogenic Collage, southernmost CAOB, and their ages and tectonic affinities are still in controversy. The Beishan Complex was previously proposed as fragments drifted from the Tarim Craton, Neoproterozoic Block or Phanerozoic accretionary complex. In this study, we employ detrital zircon age spectra to constrain ages and provenances of metasedimentary sequences of the Beishan Complex in the Chuanshanxun area. The metasedimentary rocks here are dominated by zircons with Paleoproterozoic-Mesoproterozoic age ( 1160-2070 Ma), and yield two peak ages at 1454 and 1760 Ma. One sample yielded a middle Permian peak age (269 Ma), which suggests that the metasedimentary sequences were deposited in the late Paleozoic. The granitoid and dioritic dykes, intruding into the metasedimentary sequences, exhibit zircon U-Pb ages of 268 and 261 Ma, respectively, which constrain the minimum deposit age of the metasedimentary sequences. Zircon U-Pb ages of amphibolite (274 and 216 Ma) indicate that they might be affected by multi-stage metamorphic events. The Beishan Complex was not a fragment drifted from the Tarim Block or Dunhuang Block, and none of cratons or blocks surrounding Beishan Orogenic Collage was the sole material source of the Beishan Complex due to obviously different age spectra. Instead, 1.4 Ga marginal accretionary zones of the Columbia supercontinent might have existed in the southern CAOB, and may provide the main source materials for the sedimentary sequences in the Beishan Complex.

  7. Orogenic, Ophiolitic, and Abyssal Peridotites

    Science.gov (United States)

    Bodinier, J.-L.; Godard, M.

    2003-12-01

    "Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting

  8. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton

    Science.gov (United States)

    Wang, Wei; Cawood, Peter A.; Liu, Shuwen; Guo, Rongrong; Bai, Xiang; Wang, Kang

    2017-09-01

    Accretionary orogens are major sites of modern continental growth, yet their role in the development of Archean continental crust remains enigmatic. Diverse granitoid suites from tonalite-trondhjemite-granodiorite (TTG) to potassic granitoids appeared during late Archean, representing a period of major continental formation and stabilization. In this study, whole-rock geochemical and zircon U-Pb and Lu-Hf isotopic data are reported for Neoarchean granitoid gneisses from the Northern Liaoning Terrane, northeastern North China Craton (NCC). Older granitoid gneisses ( 2592-2537 Ma) define three magmatic zones migrating from southeast to northwest, each showing a common magmatic evolution from high-pressure TTGs to medium-/low-pressure TTGs and potassic granitoids. They have depleted zircon ƐHf(t) of +0.5 to +8.7. Younger 2529-2503 Ma potassic granitoids and TTGs occur throughout the terrane, which are marked by variable zircon ƐHf(t) of -4.7 to +8.1, and are coeval with regional high-grade metamorphism. Petrogenetic modeling and changing Sr/Y and (La/Yb)N of the granitoids suggest that the crust experienced episodic thickening and thinning and became progressively evolved through development of potassic granitoids and sedimentary successions. The metavolcanic basement to the granitoids display tholeiitic to calc-alkaline affinities, together with the top-to-the-northwest thrusting and associated volcanogenic massive sulfide-type Cu-Zn deposits, suggesting cyclic crustal formation of Northern Liaoning within an accretionary orogen with a SE-dipping subduction polarity. Cyclic crustal thickening and thinning is related to tectonic switching from advancing to retreating relations between the downgoing and overriding plate. After 2530 Ma, this accretionary system accreted to the ancient continental nucleus of NCC (Anshan-Benxi Terrane), signifying final lithosphere stabilization.

  9. The evolving energy budget of accretionary wedges

    Science.gov (United States)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the

  10. Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens

    Science.gov (United States)

    Şengör, A. M. Celâl; Özeren, Mehmet Sinan; Keskin, Mehmet; Sakınç, Mehmet; Özbakır, Ali Değer; Kayan, İlhan

    Post-collisional magmatism may be generated by extensive crustal melting in Tibet-type collisional environments or by falling out of slabs from under giant subduction-accretion complexes in Turkic-type collisional orogens giving rise to decompression melting of the asthenospheric mantle replacing the removed oceanic lithosphere. In Turkic-type post-collisional magmatism, the magmatic products are dominantly alkalic to peralkalic and greatly resemble those of extensional regions giving rise to much confusion especially in interpreting old collisional orogenic belts. Such magmatic regions are also host to a variety of economically valuable ore deposits, including gold. One place in the world where today active, Turkic-type post-collisional magmatism is present is the eastern Anatolian high plateau, produced after the terminal Arabia/Eurasia collision in the late Miocene. The plateau is mostly underlain by the late Cretaceous to Oligocene East Anatolian Accretionary Complex, which formed south of the Rhodope-Pontide magmatic arc. This subduction-accretion complex has been further shortening since the collision, but it has also since been domed and became almost entirely covered by at least 15,000 km 3 of volcanic rocks. The volcanic rocks are calc-alkalic in the north, transitional in the middle, and alkalic in the south of the plateau. Where the crust is thinnest today (less than 38 km), the volcanics are derived almost entirely from an enriched mantle. The ages of the volcanics also become younger from north to south, from about 11 Ma to possibly 17th century AD. We interpret the origin of the magmatic rocks as the result of decompression melting of the asthenospheric mantle sucked towards the exposed base of the East Anatolian Accretionary Complex as the oceanic lithosphere beneath it fell out. The lower density of the hot asthospheric material was the cause of the doming. We believe that similar processes dominated the post-collisional tectonics of such vast

  11. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan-Tianshan orogenic collages (NW China)

    Science.gov (United States)

    Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang

    2017-10-01

    The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.

  12. Detachment folding of partially molten crust in accretionary orogens: A new magma-enhanced vertical mass and heat transfer mechanism

    Czech Academy of Sciences Publication Activity Database

    Lehmann, J.; Schulmann, K.; Lexa, O.; Závada, Prokop; Štípská, P.; Hasalová, Pavlína; Belyanin, G.; Corsini, M.

    2017-01-01

    Roč. 9, č. 6 (2017), s. 889-909 ISSN 1941-8264 Institutional support: RVO:67985530 Keywords : continental crust * shear-zone * gneiss domes Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.662, year: 2016

  13. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  14. Effects of Accretionary Prisms on 3-D Long-Period Ground Motion Simulations

    Science.gov (United States)

    Guo, Y.; Koketsu, K.; Miyake, H.

    2014-12-01

    The accretionary prism along the subduction zones such as the Middle America trench or the Nankai trough is considered as an important factor affecting the generation and propagation of long-period ground motions. In Japan, the great earthquake along the Nankai subduction zone which is expected to occur in the near future can generate large long-period ground motions in the metropolitan areas such as Osaka, Nagoya and Tokyo. To investigate the effect of accretionary prism on long-period ground motions, we performed simulations of long-period ground motions for the event (Mw 7.1) that occurred off the Kii peninsula, Japan, at 10:07 on 5 September 2004 (UTC). Our simulation model ranged from the Kinki region to the Kanto region, and included the Osaka, Nobi and Kanto basin. We calculated long-period ground motions for four types of 3-D velocity structure models: (a) model with the accretionary prism (reference model), (b) model where accretionary prism has different 3-D geometry from the reference model, (c) model with the accretionary prism whose velocity, density and Q-value are shifted, (d) model without the accretionary prism. We compared the waveforms calculated for these models and concluded that the accretionary prism along the Nankai subduction zone plays roles in reducing the amplitude of direct waves and extending the duration of coda waves. This is attributed to the trap effect of accretionary prism. Our simulation also suggested that, the edge geometry along the landward side of accretionary prism has major effects on the processes of generation and propagation of long-period ground motions.

  15. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  16. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    Science.gov (United States)

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  17. Late-orogenic mantle garnet pyroxenites evidence mantle refertilization during exhumation of orogenic belt

    Science.gov (United States)

    Chazot, G.; France, L.; Kornprobst, J.; Dallai, L.; Vannucci, R.

    2008-12-01

    The petrological and geochemical study of garnet bearing pyroxenites from four localities (FMC, Morocco, Jordan, Cameroon) demonstrates that these rocks are cumulates crystallised in the lithospheric mantle domain. Metamorphic reactions, exsolutions and trace elements WR analysis demonstrate that their crystallisation pressure ranges between 1 and 2GPa (30 to 60km). The elaboration of the PTt paths for the studied samples attests of important movements in the respective lithospheres. Replaced in the geodynamical contexts, the samples are interpreted to represent the crystallisation of melts formed during exhumation of orogenic domains. Radiogenic isotopes (Sr-Nd) show that in a very same region, the samples are isotopicaly heterogeneous but are similar to the respective regional lithosphere. Initial isotopic ratios lead to propose that the FMC samples have crystallised at the end of the Hercynian orogen and that the samples from the other localities (Morocco, Jordan and Cameroon) have crystallised at the end of the Pan-African orogen. After recalculation at the crystallisation time, the isotopic compositions are in good agreement with the respective regional lithosphere ones and so samples of this study could represent the product of the melting of these lithospheres. The analyses of oxygen stable isotopes allow to precise the model; they show that twelve of the samples come from the melting of a lherzolitic mantle and that the four others come from the melting of a heterogeneous mantle formed of lherzolites and eclogites. The presence of some hydrous minerals such as amphiboles and micas and the trace elements WR analyses show that some of the samples were affected by a late metasomatic event. Results of our study show that thermal relaxation following orogenic events lead to the crystallisation of pyroxenites in the lithosphere. The presence of lage amounts of mantle pyroxenites in old orogenic regions confers physical and chemical particularities to these

  18. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  19. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt

    Science.gov (United States)

    Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili

    2018-03-01

    The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.

  20. Mantle refertilization and magmatism in old orogenic regions: The role of late-orogenic pyroxenites

    Science.gov (United States)

    France, Lydéric; Chazot, Gilles; Kornprobst, Jacques; Dallai, Luigi; Vannucci, Riccardo; Grégoire, Michel; Bertrand, Hervé; Boivin, Pierre

    2015-09-01

    Pyroxenites and garnet pyroxenites are mantle heterogeneities characterized by a lower solidus temperature than the enclosing peridotites; it follows that they are preferentially involved during magma genesis. Constraining their origin, composition, and the interactions they underwent during their subsequent evolution is therefore essential to discuss the sources of magmatism in a given area. Pyroxenites could represent either recycling of crustal rocks in mantle domains or mantle originated rocks (formed either by olivine consuming melt-rock reactions or by crystal fractionation). Petrological and geochemical (major and trace elements, Sr-Nd and O isotopes) features of xenoliths from various occurrences (French Massif-Central, Jordan, Morocco and Cameroon) show that these samples represent cumulates crystallized during melt percolation at mantle conditions. They formed in mantle domains at pressures of 1-2 GPa during post-collisional magmatism (possibly Hercynian for the French Massif-Central, and Panafrican for Morocco, Jordan and Cameroon). The thermal re-equilibration of lithospheric domains, typical of the late orogenic exhumation stages, is also recorded by the samples. Most of the samples display a metasomatic overprint that may be either inherited or likely linked to the recent volcanic activity that occurred in the investigated regions. The crystallization of pyroxenites during late orogenic events has implications for the subsequent evolution of the mantle domains. The presence of large amounts of mantle pyroxenites in old orogenic regions indeed imparts peculiar physical and chemical characteristics to these domains. Among others, the global solidus temperature of the whole lithospheric domain will be lowered; in turn, this implies that old orogenic regions are refertilized zones where magmatic activity would be enhanced.

  1. Evolving lithospheric flexure and paleotopography of the Pyrenean Orogen from 3D flexural modeling and basin analysis

    Science.gov (United States)

    Curry, M. E.; van der Beek, P.; Huismans, R. S.; Muñoz, J. A.

    2017-12-01

    The Pyrenees are an asymmetric, doubly-vergent orogen with retro- and pro- foreland basins that preserve a record of deformation since the Mesozoic. The extensive research and exploration efforts on the mountain belt and flanking foreland basins provide an exceptional dataset for investigating geodynamics and surface processes over large spatial and temporal scales in western Europe. We present the results of a numerical modeling study investigating the spatio-temporal variation in lithospheric flexure in response to the developing orogen. We employ a finite element method to model the 3D flexural deformation of the lithosphere beneath the Pyrenean orogen since the onset of convergence in the late Cretaceous. Using subsurface, geophysical, and structural data, we describe the evolving geometry of both the French Aquitaine and Spanish Ebro foreland basins at the present (post-orogenic), the mid-Eocene (peak orogenic), the Paleocene (early orogenic), and the end of the Cretaceous (pre- to early orogenic). The flexural modeling provides insight into how both the rigidity of the lithosphere and the paleotopographic load have varied over the course of orogenesis to shape the basin geometry. We find that the overriding European plate has higher rigidity than the subducting Iberian plate, with modern Effective Elastic Thickness (EET) values of 20 ± 2 and 12 ± 2 km, respectively. Modeling indicates that the modern rigidity of both plates decreases westward towards the Bay of Biscay. The lithospheric rigidity has increased by 50% since the Mesozoic with early Cenozoic EET values of 13 ± 2 and 8 ± 1 km for the European and Iberian plates, respectively. The topographic load began increasing with convergence in the late Cretaceous, reaching modern levels in the central and eastern Pyrenees by the Eocene. In contrast, the topographic load in the western Pyrenees was 70% of the modern value in the Eocene, and experienced topographic growth through the Oligo-Miocene. The

  2. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    Science.gov (United States)

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  3. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model

    Science.gov (United States)

    Yakubchuk, Alexander

    2004-09-01

    of the Paleo-Pacific Ocean. Several world-class Cu-(Mo)-porphyry, Cu-Pb-Zn VMS and intrusion-related Au mineral camps, which formed in the Altaids at this stage, coincided with the episodes of plate reorganization and oroclinal bending of magmatic arcs. Major Pb-Zn and Cu sedimentary rock-hosted deposits of Kazakhstan and Central Asia formed in backarc rifts, which developed on the earlier amalgamated fragments. Major orogenic gold deposits are intrusion-related deposits, often occurring within black shale-bearing sutured backarc basins with oceanic crust. After amalgamation of the western Altaids, this part of the collage and adjacent cratons were affected by the Siberian superplume, which ascended at the Permian-Triassic transition. This plume-related magmatism produced various deposits, such as famous Ni-Cu-PGE deposits of Norilsk in the northwest of the Siberian craton. In the early Mesozoic, the eastern Altaids were oroclinally bent together with the overlapping Transbaikal magmatic arc in response to the northward migration and anti-clockwise rotation of the North China craton. The following collision of the eastern portion of the Altaid collage with the Siberian craton formed the Mongol-Okhotsk suture zone, which still links the accretionary wedges of central Mongolia and Circum-Pacific belts. In the late Mesozoic, a system of continent-scale conjugate northwest-trending and northeast-trending strike-slip faults developed in response to the southward propagation of the Siberian craton with subsequent post-mineral offset of some metallogenic belts for as much as 70-400 km, possibly in response to spreading in the Canadian basin. India-Asia collision rejuvenated some of these faults and generated a system of impact rifts.

  4. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia

    Science.gov (United States)

    Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang

    2018-05-01

    The architecture and tectonic evolution of the Hegenshan accretionary belt in the Central Asian Orogenic Belt (CAOB) remains debated. Here we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the Hegenshan volcanic-plutonic belt in central Inner Mongolia. Field observations and zircon U-Pb ages allow us to divide the intrusive complex into an early phase at 329-306 Ma and a late phase at 304 to 299 Ma. The intrusive bodies belong to two magma series: calc-alkaline rocks with I-type affinity and A-type granites. The early intrusions are composed of granodiorite, monzogranite and porphyritic granite, and the late calc-alkaline intrusions include gabbro though diorite to granodiorite. The calc-alkaline intrusive rocks exhibit a well-defined compositional trend from gabbro to granite, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. They also exhibit isotopic characteristics of mantle-derived magmas such as low initial 87Sr/86Sr (0.7029-0.7053), positive ɛNd(t) values (0.06-4.76) and low radiogenic Pb isotopic compositions ((206Pb/204Pb)I = 17.907-19.198, (207Pb/204Pb)I = 15.474-15.555, (208Pb/204Pb)I = 37.408-38.893). The marked consistency in geochemical and isotopic compositions between the intrusive rocks and the coeval Baoligaomiao volcanic rocks define a Carboniferous continental arc. Together with available regional data, we infer that this east-west trending continental arc was generated by northward subduction of the Hegenshan ocean during Carboniferous. The late alkali-feldspar granites and the high-Si rhyolites of the Baoligaomiao volcanic succession show similar geochemical compositions with high SiO2 and variable total alkali contents, and low TiO2, MgO and CaO. These rocks are characterized by unusually low Sr and Ba, and high abundances of Zr, Th, Nb, HREEs

  5. Tectonic controls of Holocene erosion in a glaciated orogen

    OpenAIRE

    Adams, Byron A.; Ehlers, Todd A.

    2018-01-01

    Recent work has highlighted a strong, worldwide, glacial impact of orogen erosion rates over the last 2 Ma. While it may be assumed that glaciers increased erosion rates when active, the degree to which past glaciations influence Holocene erosion rates through the adjustment of topography is not known. In this study, we investigate the influence of long-term tectonic and post-glacial topographic controls on erosion in a glaciated orogen, the Olympic Mountains, USA. We present 14 new 10Be and ...

  6. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints

    Science.gov (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan

    2017-05-01

    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  7. Spatial and temporal distribution of the orogenic gold deposits in the Late Palaeozoic Variscides and Southern Tianshan: How orogenic are they?

    NARCIS (Netherlands)

    Boorder, H. de

    2012-01-01

    A principal uncertainty in models of orogenic ore deposits concerns their ages relative to orogenic processes. The yardstick of the relation has resided, loosely, in the peak of metamorphism. Age estimates in the Variscides and Tianshan indicate that most orogenic ore deposits were formed in the

  8. What Can Modern River Profiles Tell Us about Orogenic Processes and Orogen Evolution?

    Science.gov (United States)

    Whipple, K. X.

    2008-12-01

    Numerous lines of evidence from theory, numerical simulations, and physical experiments suggest that orogen evolution is strongly coupled to atmospheric processes through the interrelationships among climate, topography, and erosion rate. In terms of orogenic processes and orogen evolution, these relationships are most important at the regional scale (mean topographic gradient, mean relief above surrounding plains) largely because crustal deformation is most sensitive to erosional unloading averaged over sufficiently long wavelengths. For this reason, and because above moderate erosion rates (> 0.2 mm/yr) hillslope form becomes decoupled from erosion rate, attention has focused on the river network, and even on particularly large rivers. We now have data that demonstrates a monotonic relationship between erosion rate and the channel steepness index (slope normalized for differences in drainage area) in a variety of field settings. Consequently, study of modern river profiles can yield useful information on recent and on-going patterns of rock uplift. It is not yet possible, however, to quantitatively isolate expected climatic and lithologic influences on this relationship. A combination of field studies and theoretical analyses are beginning to reveal the timescale of landscape response, and thus the topographic memory of past conditions. At orogen scale, river profile response to a change in rock uplift rate is on the order of 1-10 Myr. Because of these long response times, the modern profiles of large rivers and their major tributaries can potentially preserve an interpretable record of rock uplift rates since the Miocene and are insensitive to short-term climatic fluctuations. Only significant increases in rock uplift rate, however, are likely to leave a clear topographic signature. Strategies have been developed to differentiate between temporal and spatial (tectonic, climatic, or lithologic) influences on channel profile form, especially where spatially

  9. LATE TRIASSIC OBLIQUE EXTRUSION OF UHP/HP COMPLEXES IN THE ATBASHI ACCRETIONARY COMPLEX OF SOUTH TIANSHAN, KYRGYZSTAN

    Directory of Open Access Journals (Sweden)

    Wenjiao Xiao

    2017-01-01

    Full Text Available The exhumation and tectonic emplacement of eclogites and blueschists take place in forearc accretionary complexes by either forearc- or backarc-directed extrusion, but few examples have been well analysed in detail. Here we present an example of oblique wedge extrusion of UHP/HP rocks in the Atbashi accretionary complex of the Kyrgyz South Tianshan.

  10. Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China

    Directory of Open Access Journals (Sweden)

    Peter G. Betts

    2015-01-01

    Full Text Available We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics, trench geometry, and mechanisms for plateau accretion and continental growth. Transient instabilities of the convergent margin are produced, resulting in: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a “bowed” shaped subducting slab. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau. The plateau shortens and some plateau material subducts. The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin. In the plateau + plume model, plateau accretion causes rapid trench advance. Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate. The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau, effectively embedding the plateau into the overriding plate. A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window. In all of the models, the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian

  11. Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data

    Science.gov (United States)

    Cai, Keda; Sun, Min; Xiao, Wenjiao

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition

  12. New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics

    Science.gov (United States)

    Bermingham, K. R.; Worsham, E. A.; Walker, R. J.

    2018-04-01

    When corrected for the effects of cosmic ray exposure, Mo and Ru nucleosynthetic isotope anomalies in iron meteorites from at least nine different parent bodies are strongly correlated in a manner consistent with variable depletion in s-process nucleosynthetic components. In contrast to prior studies, the new results show no significant deviations from a single correlation trend. In the refined Mo-Ru cosmic correlation, a distinction between the non-carbonaceous (NC) group and carbonaceous chondrite (CC) group is evident. Members of the NC group are characterized by isotope compositions reflective of variable s-process depletion. Members of the CC group analyzed here plot in a tight cluster and have the most s-process depleted Mo and Ru isotopic compositions, with Mo isotopes also slightly enriched in r- and possibly p-process contributions. This indicates that the nebular feeding zone of the NC group parent bodies was characterized by Mo and Ru with variable s-process contributions, but with the two elements always mixed in the same proportions. The CC parent bodies sampled here, by contrast, were derived from a nebular feeding zone that had been mixed to a uniform s-process depleted Mo-Ru isotopic composition. Six molybdenite samples, four glacial diamictites, and two ocean island basalts were analyzed to provide a preliminary constraint on the average Mo isotope composition of the bulk silicate Earth (BSE). Combined results yield an average μ97Mo value of +3 ± 6. This value, coupled with a previously reported μ100Ru value of +1 ± 7 for the BSE, indicates that the isotopic composition of the BSE falls precisely on the refined Mo-Ru cosmic correlation. The overlap of the BSE with the correlation implies that there was homogeneous accretion of siderophile elements for the final accretion of 10 to 20 wt% of Earth's mass. The only known cosmochemical materials with an isotopic match to the BSE, with regard to Mo and Ru, are some members of the IAB iron meteorite complex and enstatite chondrites.

  13. Seismological Constraints on Lithospheric Evolution in the Appalachian Orogen

    Science.gov (United States)

    Fischer, K. M.; Hopper, E.; Hawman, R. B.; Wagner, L. S.

    2017-12-01

    Crust and mantle structures beneath the Appalachian orogen, recently resolved by seismic data from the EarthScope SESAME Flexible Array and Transportable Array, provide new constraints on the scale and style of the Appalachian collision and subsequent lithospheric evolution. In the southern Appalachians, imaging with Sp and Ps phases reveals the final (Alleghanian) suture between the crusts of Laurentia and the Gondwanan Suwannee terrane as a low angle (Kellogg, 2017) isostatic arguments indicate crustal thicknesses were 15-25 km larger at the end of the orogeny, indicating a thick crustal root across the region. The present-day residual crustal root beneath the Blue Ridge mountains is estimated to have a density contrast with the mantle of only 104±20 kg/m3. This value is comparable to other old orogens but lower than values typical of young or active orogens, indicating a loss of lower crustal buoyancy over time. At mantle depths, the negative shear velocity gradient that marks the transition from lithosphere to asthenosphere, as illuminated by Sp phases, varies across the Appalachian orogen. This boundary is shallow beneath the northeastern U.S. and in the zone of Eocene volcanism in Virginia, where low velocity anomalies occur in the upper mantle. These correlations suggest recent active lithosphere-asthenosphere interaction.

  14. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): Implications for the architecture and evolution of the western Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Di; He, Dengfa; Tang, Yong

    2016-05-01

    The Altai-Junggar area in northwestern China is a critical region to gain insights on the tectonic framework and geological evolution of the western Central Asian Orogenic Belt (CAOB). In this study, we report results from integrated geological, geochemical and geophysical investigations on the Wulungu Depression of the Junggar Basin to determine the basement nature of the basin and understand its amalgamation history with the Chinese Altai, within the broad tectonic evolution of the Altai-Junggar area. Based on borehole and seismic data, the Wulungu Depression is subdivided into two NW-trending tectonic units (Suosuoquan Sag and Hongyan High) by southward-vergent thrust faults. The Suosuoquan Sag consists of the Middle-Late Devonian basaltic andesite, andesite, dacite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava flows and shallow marine sediments from a proximal juvenile provenance (zircon εHf(t) = 6.0-14.9), compared to the Late Carboniferous andesite and rhyolite in the Hongyan High. Zircon SIMS U-Pb ages for dacites and andesites indicate that these volcanics in the Suosuoquan Sag and Hongyan High erupted at 376.3 Ma and 313.4 Ma, respectively. The Middle-Late Devonian basaltic andesites from well LC1 are calc-alkaline and exhibit primitive magma-like MgO contents (7.9-8.6%) and Mg# values (66-68), with low initial 87Sr/86Sr (0.703269-0.704808) and positive εNd(t) values (6.6-7.6), and relatively high Zr abundance (98.2-116.0 ppm) and Zr/Y ratios (5.1-5.4), enrichment in LREEs and LILEs (e.g., Th and U) and depletion in Nb, Ta and Ti, suggesting that they were probably derived from a metasomatized depleted mantle in a retro-arc extensional setting. The well LC1 andesitic tuffs, well L8 dacites, well WL1 dacitic tuffs and well L5 andesites belong to calc-alkaline and metaluminous to peraluminous (A/CNK = 0.8-1.7) series, and display low Mg# values (35-46) and variably positive εNd(t) (4

  15. Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB)

    Science.gov (United States)

    Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.

    2016-04-01

    The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is

  16. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang

    2018-03-01

    The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.

  17. Dynamics of Earthquake Faulting in Subduction Zones: Inference from Pseudotachylytes and Ultracataclasites in an Ancient Accretionary Complex

    Directory of Open Access Journals (Sweden)

    K. Ujiie

    2007-11-01

    Full Text Available The fault rocks in ancient accretionary complexes exhumed from seismogenic depths may provide an invaluable opportunity to examine the mechanisms and mechanics of seismic slip in subduction thrusts and splay faults. In order to understand the dynamics of earthquake faulting in subduction zones, we analyzed pseudotachylytes and ultracataclasites from the Shimanto accretionary complex in southwest Japan. doi:10.2204/iodp.sd.s01.21.2007

  18. Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data

    Science.gov (United States)

    Özkan, Mutlu; Çelik, Ömer Faruk; Özyavaş, Aziz

    2018-02-01

    One of the most appropriate approaches to better understand and interpret geologic evolution of an accretionary complex is to make a detailed geologic map. The fact that ophiolite sequences consist of various rock types may require a unique image processing method to map each ophiolite body. The accretionary complex in the study area is composed mainly of ophiolitic and metamorphic rocks along with epi-ophiolitic sedimentary rocks. This paper attempts to map the Late Cretaceous accretionary complex in detail in northern Sivas (within İzmir-Ankara-Erzincan Suture Zone in Turkey) by the analysis of all of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands and field study. The new two hybrid color composite images yield satisfactory results in delineating peridotite, gabbro, basalt, and epi-ophiolitic sedimentary rocks of the accretionary complex in the study area. While the first hybrid color composite image consists of one principle component (PC) and two band ratios (PC1, 3/4, 4/6 in the RGB), the PC5, the original ASTER band 4 and the 3/4 band ratio images were assigned to the RGB colors to generate the second hybrid color composite image. In addition to that, the spectral indices derived from the ASTER thermal infrared (TIR) bands discriminate clearly ultramafic, siliceous, and carbonate rocks from adjacent lithologies at a regional scale. Peridotites with varying degrees of serpentinization illustrated as a single color were best identified in the spectral indices map. Furthermore, the boundaries of ophiolitic rocks based on fieldwork were outlined in detail in some parts of the study area by superimposing the resultant maps of ASTER maps on Google Earth images of finer spatial resolution. Eventually, the encouraging geologic map generated by the image analysis of ASTER data strongly correlates with lithological boundaries from a field survey.

  19. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt

    Science.gov (United States)

    Chen, Ming; Sun, Min

    2017-04-01

    The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of

  20. Strain histories from the eastern Central Range of Taiwan: A record of advection through a collisional orogen

    Science.gov (United States)

    Mondro, Claire A.; Fisher, Donald; Yeh, En-Chao

    2017-05-01

    In the eastern Central Range of Taiwan there is a regional variation in the orientation of maximum finite stretch across the slate belt, with down-dip maximum stretch found in the western Central Range and along-strike maximum stretch in the eastern Central Range. Incremental strain histories from syntectonic fibers in pyrite pressure shadows indicate a progressive change in extension direction from down dip to along strike during deformation, there is a corresponding temporal variation in stretching direction shown in samples from the eastern edge of the Central Range, a pattern that mimics the regional west-to-east spatial variation. These observed temporal and spatial strain distributions are used to evaluate the kinematics associated with slaty cleavage development during advection through the Taiwan orogenic system. The subduction zone beneath the island of Taiwan is influenced by two types of obliquity that have the potential to generate the observed along-strike stretching. First, the plate motion vector of the Philippine Sea plate relative to the Eurasian plate is slightly oblique to the regional strike of the mountain range, which could result in partitioning of strike slip shearing into the interior of the collision. Second, the north-south Luzon volcanic arc on the Philippine Sea Plate is obliquely oriented relative to the northeast-southwest edge of the Eurasian continental margin, which could result in lateral extrusion of the ductile core of the range. Incremental strain histories in cleavage-parallel samples represent a time-for-space equivalence where the stretching direction is fixed relative to the position within the mountain belt architecture (e.g., the topographic divide), and temporal variations in the eastern central Range reflect lateral advection through the strain field in response to accretionary and erosional fluxes. Incremental strain histories in cleavage perpendicular samples show both clockwise and counter-clockwise rotation of

  1. Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Upton, P.; MacKenzie, D.J.

    2009-01-01

    Orogenic hydrothermal systems in the South Island of New Zealand were active during Mesozoic and late Cenozoic collisional deformation and metamorphism of greywacke/schist terranes. Observations on the currently active mountain-building environment yield insights on processes occurring in the upper 5-15 km of the crust, and observations on an adjacent lithologically identical exhumed ancient mountain belt provide information on processes at 10-20 km in the crust. Hydrothermal fluids were mainly derived from metamorphic dehydration reactions and/or circulating topographically driven meteoric water in these mountain belts. Three geochemically and mineralogically different types of hydrothermal alteration and vein mineralisation occurred in these orogenic belts, and gold enrichment (locally economic) occurred in some examples of each of these three types. The first type of alteration involved fluids that were in or near chemical equilibrium with their greenschist facies host rocks. Fluid flow was controlled by discontinuous fractures, and by microshears and grain boundaries in host rocks, in zones from metres to hundreds of metres thick. Vein and alteration mineralogy was similar to that of the host rocks, and included calcite and chlorite. The second type of alteration occurred where the fluids were in distinct disequilibrium with the host rocks. Fracture permeability was important for fluid flow, but abundant host rock alteration occurred as well. The alteration zones were characterised by decomposition of chlorite and replacement by ankeritic carbonate in zones up to tens of metres thick. The mineralising fluid was deep-sourced and initially rock-equilibrated, with some meteoric input. The third type of mineralisation was controlled almost exclusively by fracture permeability, and host rock alteration was minor (centimetre scale). This mineralisation type commonly involved calcite and chlorite as vein and alteration minerals, and mineralisation fluids had a major

  2. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China

    Science.gov (United States)

    Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen

    2018-03-01

    The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently

  3. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  4. Dynamic Settings and Interactions between Basin Subsidence and Orogeny in Zhoukou Depression and Dabie Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a study of the geo-dynamic setting and the relation between orogenic uplift and basin subsidence in the inland Zhoukou depression and Dabie orogenic belt. Since the Mesozoic the evolution of Zhoukou depression can be divided into three stages: (1) foreland basin, (2) transitional stage, (3) fault depression. Formation and variations of basin were not only related to the orogenesis, but also consistent with the orogenic uplift.

  5. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?)

    Science.gov (United States)

    Abd El Monsef, Mohamed

    2015-04-01

    The orogenic gold deposits are a distinctive type of deposits that revealed unique temporal and spatial association with an orogeny. Where, the system of gold veins and related ore minerals was confined to hydrothermal solutions formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens, with the respect to ongoing deep-crustal, subduction-related thermal processes. In Egypt, most of vein-type and dyke-type gold mineralization are restricted to granitic rocks or at least near of granitic intrusion that seems to have had an important influence on gold mineralization. Shear zone-related, mesothermal gold deposits of Fatira and Gidami mines in the northern Eastern Desert of Egypt are found within granitic bodies or at the contact between granites and metavolcanic rocks. The hosting-granitic rocks in Fatira and Gidami areas are mainly of granodioritic composition (I-Type granite) which is related to calc-alkaline magmatic series. However, Fatira granitoids were developed within island arc tectonic settings related to mature island arc system (Late-orogenic stage), at relatively low temperature (around 660° C) and medium pressure between (5 - 10 Kbar). On the other hand, Gidami granitoids were developed during the collision stage in continental arc regime related to active continental margin (Syn-orogeny), which were crystallized at relatively high temperature (700-720° C) and low pressure (around 0.1 Kbar). The ore mineralogy includes pyrite, chalcopyrite, sphalerite, covellite, ilmenite, goethite ± pyrrhotite ± pentlandite ± galena ± molybdenite. Native gold is detected only in Gidami mineralization as small inclusions within pyrite and goethite or as tiny grains scattered within quartz vein (in close proximity to the sulfides). In Fatira deposits, it is detected only by microprobe analysis within the crystal lattice of pyrite and jarosite. Fluid inclusions study for the mineralized

  6. Cenozoic landforms and post-orogenic landscape evolution of the Balkanide orogen: Evidence for alternatives to the tectonic denudation narrative in southern Bulgaria

    Science.gov (United States)

    Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.

    2017-01-01

    Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback

  7. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    Science.gov (United States)

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    characteristics of the Ar Rayn terrane are analogous to the Andean continental margin of Chile, with opposite subduction polarity. The Ar Rayn terrane represents a continental margin arc that lay above a west-dipping subduction zone along a continental block represented by the Afif composite terrane. The concentration of epithermal, porphyry Cu and IOCG mineral systems, of central arc affiliation, along the AAF suggests that the AAF is not an ophiolitic suture zone, but originated as a major intra-arc fault that localized magmatism and mineralization. West-directed oblique subduction and ultimate collision with a land mass from the east (East Gondwana?) resulted in major transcurrent displacement along the AAF, bringing the eastern part of the arc terrane to its present exposed position, juxtaposed across the AAF against a back-arc basin assemblage represented by the Abt schist of the Ad Dawadimi terrane. Our findings indicate that arc formation and accretionary processes in the Arabian shield were still ongoing into the latest Neoproterozoic (Ediacaran), to about 620-600 Ma, and lead us to conclude that evolution of the Ar Rayn terrane (arc formation, accretion, syn- to postorogenic plutonism) defines a final stage of assembly of the Gondwana supercontinent along the northeastern margin of the East African orogen. ?? 2007 Elsevier B.V. All rights reserved.

  8. Occurrence and significance of blueschist in the southern Lachlan Orogen

    International Nuclear Information System (INIS)

    Spaggiari, C.V.; Gray, D.R.; Foster, D.A.; Fanning, C.M.

    2002-01-01

    Serpentinite/talc-matrix melanges, bearing blocks of blueschist metavolcanics, occur within the Heathcote and Governor Fault Zones of the southern Lachlan Orogen. In the Heathcote Fault Zone, serpentinite-matrix melange consists of blocks or small pods of boninite, andesite, ultramafic rocks, chert and volcanogenic sandstone variably metamorphosed to prehnite-pumpellyite, greenschist, or greenschist to blueschist facies. In the Governor Fault Zone, blueschist metavolcanics occur as blocks within serpentinite/talc matrix that is interleaved with prehnite-pumpellyite to greenschist facies, intermediate pressure slate and phyllite. Ar/Ar dating of white mica from slaty mud-matrix (broken formation) indicates that the main fabric development occurred at 446 ± 2 Ma. U-Pb (SHRIMP) dating of titanite from blueschists in the Governor Fault Zone indicates that metamorphism occurred at approximately 450 Ma, close to the time of melange formation. Previously published, Ar/Ar dating of white mica from phyllite and biotite from metadiorite in the Heathcote Fault Zone suggest that blueschist metamorphism occurred at a similar time. These ages are supported by field relationships. Illite crystallinity and b 0 data from white mica, and the preservation of blueschist blocks indicate that these fault zones maintained low temperatures both during and after intermediate- to high-pressure metamorphism. Occurrences of blueschists in the Arthur Lineament of the Tyennan (Delamerian) Orogen in Tasmania, and in the New England Orogen, have different ages, and in conjunction with the occurrences described here, suggest that subduction-accretion processes contributed significantly to the development of the Tasmanides from Cambrian through to Carboniferous times. Copyright (2002) Geological Society of Australia

  9. Asymmetric gravitational spreading - Analogue experiments on the Svecofennian orogen

    Science.gov (United States)

    Nikkilä, Kaisa; Korja, Annakaisa; Koyi, Hemin; Eklund, Olav

    2015-04-01

    Over-thickened orogenic crust may suffer from rheological, gravitational and topographical unbalancing resulting in discharging via gravitational spreading. If the thickened orogen is also hot, then increased temperature may reduce the viscosity of the crust that may induce large-scale horizontal flow. The effect of flow on the crustal architecture has previously been modeled with symmetric two-way spreading or asymmetric one- or two-way spreading (like channel flow) experiments. Most models do not take into account of the contrasting mechanical properties of the juxtaposed terranes. We have made analogue experiments to study gravitational one-way spreading and the interplay between two crustal blocks with contrasting rheological properties. The models are 3 cm thick replicas of 60 km thick crust. They have three horizontal layers representing strong lower, weak middle and brittle upper crust. The models have cuts to study the effect of inherited crustal-scale weakness zones. The experiments have been conducted within a large centrifuge in the Hans Ramberg Tectonic Laboratory at Uppsala University. The analogue models propose that asymmetric, unilateral flow has different effect on the contrasting crustal units, in both horizontal and vertical directions. The laterally heterogeneous crust flows towards the direction of extension, and it rotates and extends the pre-existing weakness zones. The weakness zones facilitate exhumation and they increase strain rate. The weakness zones split the crust into subblocks, which stretch individually and which may show signatures of compression or rotation. The changes in thickness of the model reflect changes in the layers, which may thin or thicken depending on the mechanical properties of crustal layers. A consequence of this the total amount of flattening is less than the model extension. The results are compared to geophysical and geological data from Precambrian Svecofennian orogen in Fennoscandia. The comparison suggest

  10. Landward vergence in accretionary prism, evidence for frontal propagation of earthquakes?

    Science.gov (United States)

    cubas, Nadaya; Souloumiac, Pauline

    2016-04-01

    Landward vergence in accretionary wedges is rare and have been described at very few places: along the Cascadia subduction zone and more recently along Sumatra where the 2004 Mw 9.1 Sumatra-Andaman event and the 2011 tsunami earthquake occurred. Recent studies have suggested a relation between landward thrust faults and frontal propagation of earthquakes for the Sumatra subduction zone. The Cascadia subduction zone is also known to have produced in 1700 a Mw9 earthquake with a large tsunami across the Pacific. Based on mechanical analysis, we propose to investigate if specific frictional properties could lead to a landward sequence of thrusting. We show that landward thrust requires very low effective friction along the megathrust with a rather high internal effective friction. We also show that landward thrust appears close to the extensional critical limit. Along Cascadia and Sumatra, we show that to get landward vergence, the effective basal friction has to be lower than 0.08. This very low effective friction is most likely due to high pore pressure. This high pore pressure could either be a long-term property or due to dynamic effects such as thermal pressurization. The fact that landward vergence appears far from the compressional critical limit favors a dynamic effect. Landward vergence would then highlight thermal pressurization due to occasional or systematic propagation of earthquakes to the trench. As a consequence, the vergence of thrusts in accretionary prism could be used to improve seismic and tsunamigenic risk assessment.

  11. Forearc Basin Stratigraphy and Interactions With Accretionary Wedge Growth According to the Critical Taper Concept

    Science.gov (United States)

    Noda, Atsushi

    2018-03-01

    Forearc basins are important constituents of sediment traps along subduction zones; the basin stratigraphy records various events that the basin experienced. Although the linkage between basin formation and accretionary wedge growth suggests that mass balance exerts a key control on their evolution, the interaction processes between basin and basement remain poorly understood. This study performed 2-D numerical simulations in which basin stratigraphy was controlled by changes in sediment fluxes with accretionary wedge growth according to the critical taper concept. The resultant stratigraphy depended on the degree of filling (i.e., whether the basin was underfilled or overfilled) and the volume balance between the sediment flux supplied to the basin from the hinterland and the accommodation space in the basin. The trenchward progradation of deposition with onlapping contacts on the trenchside basin floor occurred during the underfilled phase, which formed a wedge-shaped sedimentary unit. In contrast, the landward migration of the depocenter, with the tilting of strata, was characteristic for the overfilled phase. Condensed sections marked stratigraphic boundaries, indicating when sediment supply or accommodation space was limited. The accommodation-limited intervals could have formed during the end of wedge uplift or when the taper angle decreased and possibly associated with the development of submarine canyons as conduits for bypassing sediments from the hinterland. Variations in sediment fluxes and their balance exerted a strong influence on the stratigraphic patterns in forearc basins. Assessing basin stratigraphy could be a key to evaluating how subduction zones evolve through their interactions with changing surface processes.

  12. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings

    Science.gov (United States)

    Fukuchi, Rina; Yamaguchi, Asuka; Yamamoto, Yuzuru; Ashi, Juichiro

    2017-08-01

    The paleothermal structure and tectonic evolution of an accretionary prism is basic information for understanding subduction zone seismogenesis. To evaluate the entire paleotemperature profile of the Integrated Ocean Drilling Program (IODP) Site C0002 located in the off-Kumano region of the Nankai Trough and penetrate the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf), we performed a vitrinite reflectance analysis for cuttings and core samples during IODP expeditions 338 and 348: Nankai Trough seismogenic zone experiment. Although vitrinite reflectance values (Ro) tend to increase with depth, two reversals of these values suggested the existence of thrust fault zones with sufficient displacements to offset the paleothermal structure. The estimated maximum paleotemperatures are 42-70°C at 1200-1300 mbsf, 44-100°C at 1600-2400 mbsf, and 56-115°C at 2600-3000 mbsf, respectively. These temperatures roughly coincide with estimated modern temperatures; however, at a smaller scale, the reconstructed partial paleogeothermal gradient (˜60-150°C/km) recorded at the hanging- and footwall of the presumed thrust fault zone is higher than the modern geothermal gradient (˜30-40°C/km). This high paleogeothermal gradient was possibly obtained prior to subduction, reflecting the large heat flow of the young Philippine Sea Plate.

  13. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  14. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2016-04-01

    Carboniferous to Permian. References: Abrajevitch, A., Van der Voo, R., Bazhenov, M.L., Levashova, N.M., McCausland, P.J.A., 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 455, 61-76. Levashova, N., Degtyarev, K., Bazhenov, M., 2012. Oroclinal bending of the Middle and Late Paleozoic volcanic belts in Kazakhstan: Paleomagnetic evidence and geological implications. Geotectonics 46, 285-302. Xiao, W., Huang, B., Han, C., Sun, S., Li, J., 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253-273. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB448000 and 2014CB440801), Hong Kong Research Grant Council (HKU705311P, HKU704712P and HKU17303415), National Science Foundation of China (41273048), HKU seed funding (201111159137) and HKU CRCG grants. This work is a contribution of the Joint Laboratory of Chemical Geodynamics between HKU and CAS (Guangzhou Institute of Geochemistry), IGCP 592 and PROCORE France/Hong Kong Joint Research Scheme.

  15. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism.

    Science.gov (United States)

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-09-29

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall.

  16. Structure and Evolution of the Accretionary Margin of Java-Sumatra. Seismic Data and Numerical Modeling Comparisons.

    Science.gov (United States)

    Kopp, H.; Hindle, D.

    2007-12-01

    We present a numerical model for the evolution of an accretionary prism along a subduction margin. We find the mechanical partitioning of the growing prism into active region, abutting against a deformable backstop, and a relatively undeformed forearc basin is a function of the double tapered basal geometry, where the dip of the detachment is assumed to be opposite above oceanic or continental lithopshere. Varying properties of both materials and detachment can be used to adjust the surface slope and hence geometry of the system, but mechanical partitioning remains essentially the same with the regions becoming broader or narrower. The model appears to closely reproduce the geometry of the Sumatra-Java prism, where a high accretion margin has produced the same distinct mechanical units. Newly prestack depth-migrated marine seismic data reveal the extent and geometry of the active deformation of the deformable backstop, and give indications of some material passing into a subduction channel below the accretionary complex. The deformable backstop appears to be composed of multiple duplex structures, but present day tectonic activity is mostly in the form of transtensive or transpressive deformation, possibly reactivating older dip-slip, accretionary structures. The numerical approach used in the simulation (distinct elements) shows great promise in modelling large deformation in situations such as accretionary prisms, and has also been adapted to incorporate the role of fluid pressure and migration in tandem with large deformation (shortening of the order of 100's of kilometres).

  17. Fault structure, properties and activity of the Makran Accretionary Prism and implications for seismogenic potential

    Science.gov (United States)

    Smith, G. L.; McNeill, L. C.; Henstock, T.; Bull, J. M.

    2011-12-01

    The Makran subduction zone is the widest accretionary prism in the world (~400km), generated by convergence between the Arabian and Eurasian tectonic plates. It represents a global end-member, with a 7km thick incoming sediment section. Accretionary prisms have traditionally been thought to be aseismic due to the presence of unconsolidated sediment and elevated basal pore pressures. The seismogenic potential of the Makran subduction zone is unclear, despite a Mw 8.1 earthquake in 1945 that may have been located on the plate boundary beneath the prism. In this study, a series of imbricate landward dipping (seaward verging) thrust faults have been interpreted across the submarine prism (outer 70 km) using over 6000km of industry multichannel seismic data and bathymetric data. A strong BSR (bottom simulating reflector) is present throughout the prism (excluding the far east). An unreflective décollement is interpreted from the geometry of the prism thrusts. Two major sedimentary units are identified in the input section, the lower of which contains the extension of the unreflective décollement surface. Between 60%-100% of the input section is currently being accreted. The geometry of piggy-back basin stratigraphy shows that the majority of thrusts, including those over 50km from the trench, are recently active. Landward thrusts show evidence for reactivation after periods of quiescence. Negative polarity fault plane reflectors are common in the frontal thrusts and in the eastern prism, where they may be related to increased fault activity and fluid expulsion, and are rarer in older landward thrusts. Significant NE-SW trending basement structures (The Murray Ridge and Little Murray Ridge) on the Arabian plate intersect the deformation front and affect sediment input to the subduction zone. Prism taper and structure are apparently primarily controlled by sediment supply and the secondary influence of subducting basement ridges. The thick, likely distal, sediment

  18. Mechanical behavior in the Nankai inner accretionary prism, IODP Site C0002

    Science.gov (United States)

    Valdez, R. D., II; Saffer, D. M.

    2017-12-01

    Understanding the processes that control seismogenesis and stress state at subduction zones requires knowledge of fault zone and sediment physical and mechanical properties. As part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), Expedition 348 drilled into the Kumano forearc basin and underlying inner accretionary prism at Site C0002, located 35 km landward of the trench. One primary objective was to sample and characterize the mechanical behavior of the inner accretionary prism. Here we report on the frictional and unconfined compressive strength (UCS) of mudstone samples and a clay-rich shear zone recovered from 2182-2209 meters below sea floor (mbsf), determined from triaxial deformation tests at confining pressures from 1 to 7 MPa (UCS measurements on mudstones) and 36 MPa (strength of fault zone). Our results show that at a confining pressure of 1 MPa, the wall rock sediments fail at a peak differential stress of 9.1 MPa with a residual stress of 2.8 MPa. A clear peak and evolution to residual strength remains present at 7 MPa, and both the peak and residual strengths of the mudstones increases systematically with confining pressure. At a confining pressure of 36 MPa, the shear zone sediment yields at a differential stress of 25.2 MPa followed by strain-hardening to a maximum stress of 33.1 MPa. The shear zone is frictionally weaker than the surrounding mudstones, with a friction coefficient (μ) of 0.26-0.31, versus µ = 0.45 for the wall rock. The suite of tests defines a UCS for the mudstone of 7.9 MPa. Our friction data suggest that the inner wedge may be weaker than commonly assumed in applications of critical wedge theory to estimate the properties and conditions in accretionary prisms. One key implication is that for a given basal detachment friction coefficient, higher basal pore pressures (or lower wedge pore pressures) would be required to sustain observed taper angles. Additionally, the

  19. Granite ascent and emplacement during contractional deformation in convergent orogens

    Science.gov (United States)

    Brown, Michael; Solar, Gary S.

    1998-09-01

    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  20. Critical elements in Carlin, epithermal, and orogenic gold deposits

    Science.gov (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  1. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    Science.gov (United States)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  2. Role of mantle dynamics in rebuilding the Tianshan Orogenic Belt in NW China: A seismic tomographic investigation

    Science.gov (United States)

    He, Chuansong; Santosh, M.

    2018-05-01

    The Tianshan orogenic belt, Junggar terrane and Altai terrane are located at the southwestern part of the Central Asian Orogenic Belt (CAOB). Here, we investigate the velocity structure beneath the Xinjiang region in NW China, which includes the Tarim terrane, Tianshan orogenic belt, Junggar terrane and Altai terrane with a view to evaluate the mantle dynamics based on teleseismic data recorded by 103 seismic stations. Our tomographic results show both high and low velocity perturbations beneath the Tianshan orogenic belt. We suggest that the high velocity perturbations beneath this orogenic belt might represent the northward subducted lithosphere of the Tarim Basin and the southward subducted lithosphere of the Junggar Basin. The low velocity structure beneath the Tianshan orogenic belt might represent asthenosphere upwelling that triggered the extensive magmatism which contributed to rebuilding of the Tianshan orogenic belt.

  3. An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle and wedge mechanics

    Science.gov (United States)

    Saffer, D.M.; Bekins, B.A.

    2006-01-01

    At many subduction zones, accretionary complexes form as sediment is off-scraped from the subducting plate. Mechanical models that treat accretionary complexes as critically tapered wedges of sediment demonstrate that pore pressure controls their taper angle by modifying basal and internal shear strength. Here, we combine a numerical model of groundwater flow with critical taper theory to quantify the effects of sediment and de??collement permeability, sediment thickness, sediment partitioning between accretion and underthrusting, and plate convergence rate on steady state pore pressure. Our results show that pore pressure in accretionary wedges can be viewed as a dynamically maintained response to factors which drive pore pressure (source terms) and those that limit flow (permeability and drainage path length). We find that sediment permeability and incoming sediment thickness are the most important factors, whereas fault permeability and the partitioning of sediment have a small effect. For our base case model scenario, as sediment permeability is increased, pore pressure decreases from near-lithostatic to hydrostatic values and allows stable taper angles to increase from ??? 2.5?? to 8??-12.5??. With increased sediment thickness in our models (from 100 to 8000 m), increased pore pressure drives a decrease in stable taper angle from 8.4??-12.5?? to 15?? to <4??) with increased sediment thickness (from <1 to 7 km). One key implication is that hydrologic properties may strongly influence the strength of the crust in a wide range of geologic settings. Copyright 2006 by the American Geophysical Union.

  4. Fluid expulsion sites on the Cascadia accretionary prism: mapping diagenetic deposits with processed GLORIA imagery

    Science.gov (United States)

    Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.

    1994-01-01

    Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.

  5. Methane fluxes and inventories in the accretionary prism of southwestern Taiwan

    Science.gov (United States)

    Lin, L. H.; Chen, N. C.; Yang, T. F.; Hong, W. L.; Chen, H. W.; Chen, H. C.; Hu, C. Y.; Huang, Y. C.; Lin, S.; Su, C. C.; Liao, W. Z.; Sun, C. H.; Wang, P. L.; Yang, T.; Jiang, S. Y.; Liu, C. S.; Wang, Y.; Chung, S. H.

    2017-12-01

    Sediments distributed across marine and terrestrial realms represent the largest methane reservoir on Earth. The degassing of methane facilitated through either geological structures or perturbation would contribute significantly to global climatic fluctuation and elemental cycling. The exact fluxes and processes governing methane production, consumption and transport in a geological system remain largely unknown in part due to the limited coverage and access of samples. In this study, more than 200 sediment cores were collected from offshore and onshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data combined with published data and existing parameters of subduction system were used to calculate methane fluxes across different geochemical transitions and to develop scenarios of mass balance to constrain deep microbial and thermogenic methane production rates within the Taiwanese accretionary prism. The results showed that high methane fluxes tend to be associated with structural features, suggesting a strong structural control on methane transport. A significant portion of ascending methane (>50%) was consumed by anaerobic oxidation of methane at most sites. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater or the atmosphere. The flux imbalance arose primarily from the deep microbial and thermogenic production and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.

  6. Thermo-hydraulics of the Peruvian accretionary complex at 12°S

    Science.gov (United States)

    Kukowski, Nina; Pecher, Ingo

    1999-01-01

    Coupled heat and fluid transport at the Peruvian convergent margin at 12°S wasstudied with finite element modelling. Structural information was available from two seismicreflection lines. Heat production in the oceanic plate, the metamorphic basement, and sedimentswas estimated from literature. Porosity, permeability, and thermal conductivity for the modelswere partly available from Ocean Drilling Program (ODP) Leg 112; otherwise we used empiricalrelations. Our models accounted for a possible permeability anisotropy. The decollement was bestmodelled as a highly permeable zone (10−13 m2). Permeabilities of thePeruvian accretionary wedge adopted from the model calculations fall within the range of 2 to7×10−16 m2 at the ocean bottom to a few 10−18 m2 at the base and need to be anisotropic. Fluid expulsion at the sea floor decreases graduallywith distance from the deformation front and is structure controlled. Small scale variations of heatflux reflected by fluctuations of BSR depths across major faults could be modelled assuming highpermeability in the faults which allow for efficient advective transport along those faults.

  7. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    Science.gov (United States)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  8. Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes

    Science.gov (United States)

    Dymond, J.; Lyle, M.; Finney, B.; Piper, D.Z.; Murphy, K.; Conard, R.; Pisias, N.

    1984-01-01

    The chemical composition of ferromanganese nodules from the three nodule-bearing MANOP sites in the Pacific can be accounted for in a qualitative way by variable contributions of distinct accretionary processes. These accretionary modes are: 1. (1) hydrogenous, i.e., direct precipitation or accumulation of colloidal metal oxides in seawater, 2. (2) oxic diagenesis which refers to a variety of ferromanganese accretion processes occurring in oxic sediments; and 3. (3) suboxic diagenesis which results from reduction of Mn+4 by oxidation of organic matter in the sediments. Geochemical evidence suggests processes (1) and (2) occur at all three MANOP nodule-bearing sites, and process (3) occurs only at the hemipelagic site, H, which underlies the relatively productive waters of the eastern tropical Pacific. A normative model quantitatively accounts for the variability observed in nearly all elements. Zn and Na, however, are not well explained by the three end-member model, and we suggest that an additional accretionary process results in greater variability in the abundances of these elements. Variable contributions from the three accretionary processes result in distinct top-bottom compositional differences at the three sites. Nodule tops from H are enriched in Ni, Cu, and Zn, instead of the more typical enrichments of these elements in nodule bottoms. In addition, elemental correlations typical of most pelagic nodules are reversed at site H. The three accretionary processes result in distinct mineralogies. Hydrogenous precipitation produces ??MnO2. Oxic diagenesis, however, produces Cu-Ni-rich todorokite, and suboxic diagenesis results in an unstable todorokite which transforms to a 7 A?? phase ("birnessite") upon dehydration. The presence of Cu and Ni as charge-balancing cations influence the stability of the todorokite structure. In the bottoms of H nodules, which accrete dominantly by suboxic diagenesis, Na+ and possibly Mn+2 provide much of the charge balance for

  9. Temporal constraints on the kinematics of the destabilization of an orogen : syn- to post-orogenic extensional collapse of the Northern Aegean region

    NARCIS (Netherlands)

    Lips, A.L.W.

    1998-01-01

    The Mediterranean region is situated at the interface of the African and Eurasian plates and has been shaped by the Alpine Orogeny and the subsequent post-orogenic extension during the convergence and collision of the African and Eurasian plates. Numerous tectonic studies have focussed on the role

  10. Temporal constraints on the kinematics of the destabilization of an orogen : syn- to post-orogenic extensional collapse of the Northern Aegean region

    NARCIS (Netherlands)

    Lips, A.L.W.

    1998-01-01

    The Mediterranean region is situated at the interface of the African and Eurasian plates and has been shaped by the Alpine Orogeny and the subsequent post-orogenic extension during the convergence and collision of the African and Eurasian plates. Numerous tectonic studies have focussed on the

  11. Deformation of the Songshugou ophiolite in the Qinling orogen

    Science.gov (United States)

    Sun, Shengsi; Dong, Yunpeng

    2017-04-01

    The Qinling orogen, middle part of the China Central Orogenic Belt, is well documented that was constructed by multiple convergences and subsequent collisions between the North China and South China Blocks mainly based on geochemistry and geochronology of ophiolites, magmatic rocks as well as sedimentary reconstruction. However, this model is lack of constraints from deformation of subduction/collision. The Songshugou ophiolite outcropped to the north of the Shangdan suture zone represents fragments of oceanic crust and upper mantle. Previous works have revealed that the ophiolite was formed at an ocean ridge and then emplaced in the northern Qinling belt. Hence, deformation of the ophiolite would provide constraints for the rifting and subduction processes. The ophiolite consists chiefly of metamorphosed mafic and ultramafic rocks. The ultramafic rocks contain coarse dunite, dunitic mylonite and harzburgite, with minor diopsidite veins. The mafic rocks are mainly amphibolite, garnet amphibolite and amphibole schist, which are considered to be eclogite facies and retrograde metamorphosed oceanic crust. Amphibole grains in the mafic rocks exhibit a strong shape-preferred orientation parallel to the foliation, which is also parallel to the lithologic contacts between mafic and ultramafic rocks. Electron backscattered diffraction (EBSD) analyses show strong olivine crystallographic preferred orientations (CPO) in dunite including A-, B-, and C-types formed by (010)[100], (010)[001] and (100)[001] dislocation slip systems, respectively. A-type CPO suggests high temperature plastic deformation in the upper mantle. In comparison, B-type may be restricted to regions with significantly high water content and high differential stress, and C-type may also be formed in wet condition with lower differential stress. Additionally, the dunite evolved into amphibolite facies metamorphism with mineral assemblages of olivine + talc + anthophyllite. Assuming a pressure of 1.5 GPa

  12. Some aspects of the role of rift inheritance on Alpine-type orogens

    Science.gov (United States)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy; Chevrot, Sébastien

    2017-04-01

    Processes commonly recognized as fundamental for the formation of collisional orogens include oceanic subduction, arc-continent and continent-continent collision. As collisional belts result from the closure of oceanic basins and subsequent inversion of former rifted margins, their formation and evolution may also in theory be closely interlinked with the initial architecture of the former rifted margins. This assumption is indeed more likely to be applicable in the case of Alpine-type orogens, mainly controlled by mechanical processes and mostly devoid of arc-related magmatism. More and more studies from present-day magma-poor rifted margins illustrate the complex evolution of hyperextended domains (i.e. severely thinned continental crust (images across the Pyrenees (PYROPE) and the Alps (CIFALPS) reveal a surprisingly comparable present-day overall crustal and lithospheric structure. Based on the comparison between the two orogens we discuss: (1) the nature and depth of decoupling levels inherited from hyperextension; (2) the implications for restorations and interpretations of orogenic roots (former hyperextended domains vs. lower crust only); and (3) the nature and major role of buttresses in controlling the final stage of collisional processes. Eventually, we discuss the variability of the role of rift-inheritance in building Alpine-type orogens. The Pyrenees seem to represent one extreme, where rift-inheritance is important at different stages of collisional processes. In contrast, in the Alps the role of rift-inheritance is subtler, likely because of its more complex and polyphase compressional deformation history.

  13. Spacing of Imbricated Thrust Faults and the Strength of Thrust-Belts and Accretionary Wedges

    Science.gov (United States)

    Ito, G.; Regensburger, P. V.; Moore, G. F.

    2017-12-01

    The pattern of imbricated thrust blocks is a prominent characteristic of the large-scale structure of thrust-belts and accretionary wedges around the world. Mechanical models of these systems have a rich history from laboratory analogs, and more recently from computational simulations, most of which, qualitatively reproduce the regular patterns of imbricated thrusts seen in nature. Despite the prevalence of these patterns in nature and in models, our knowledge of what controls the spacing of the thrusts remains immature at best. We tackle this problem using a finite difference, particle-in-cell method that simulates visco-elastic-plastic deformation with a Mohr-Coulomb brittle failure criterion. The model simulates a horizontal base that moves toward a rigid vertical backstop, carrying with it an overlying layer of crust. The crustal layer has a greater frictional strength than the base, is cohesive, and is initially uniform in thickness. As the layer contracts, a series of thrust blocks immerge sequentially and form a wedge having a mean taper consistent with that predicted by a noncohesive, critical Coulomb wedge. The widths of the thrust blocks (or spacing between adjacent thrusts) are greatest at the front of the wedge, tend to decrease with continued contraction, and then tend toward a pseudo-steady, minimum width. Numerous experiments show that the characteristic spacing of thrusts increases with the brittle strength of the wedge material (cohesion + friction) and decreases with increasing basal friction for low (laws that will illuminate the basic physical processes controlling systems, as well as allow researchers to use observations of thrust spacing as an independent constraint on the brittle strength of wedges as well as their bases.

  14. Complex thrusting at the toe of the Nankai accretionary prism, NanTroSEIZE Kumano transect

    Science.gov (United States)

    Moore, G. F.; Park, J.; Kodaira, S.; Kaneda, Y.

    2009-12-01

    Seismic reflection data collected over the past 10 years by the Institute for Research on Earth Evolution (IFREE) of Japan Agency for Marine Earth Science and Technology (JAMSTEC) image a zone of complex thrusting at the toe of the Nankai accretionary prism south of Kii Peninsula, Honshu, Japan. The frontal part of the Nankai prism west of Shionomisaki Canyon (SC) at ~136° E, including the Muroto and Ashizuri Transects off Shikoku, is generally formed of imbricate thrusts with spacing of ~ 1-3 km that dip ~25-35° landward and sole into a prominent décollement. Out-of-sequence thrusts (OOSTs) are usually restricted to the landward margin of this imbricate thrust zone. East of SC, in the Kumano Transect area, the imbricate thrust zone is bounded on its seaward edge by a frontal thrust block that is ~5-6 km wide and consists of several OOSTs. The frontal thrust dips ~5-10° under this ~2-4 km thick block, emplacing this thrust sheet over the trench floor. The number and character of thrusts within the frontal thrust block vary laterally along strike. The 2006 Kumano 3D seismic data set images details of one segment of this complex frontal thrust block. Out-of-sequence faulting has led to underplating of several smaller thrust slices and movement along oblique ramps has led to a complex pattern of faulting that cannot be recognized in even closely-spaced 2D seismic lines. The frontal thrust block is further modified by subduction of seamounts and ridges that have caused large slumps of material from the block.

  15. Neodymium and strontium isotope study of ophiolite and orogenic lherzolite petrogenesis

    International Nuclear Information System (INIS)

    Richard, P.; Allegre, C.J.; Paris-7 Univ., 75

    1980-01-01

    Neodymium isotopic analyses have been measured on nine ophiolites and four orogenic lherzolites. Epsilonsub(Nd) varies from +12 to +3 in the ophiolites and from +18 to +2 in the orogenic lherzolites. The majority of the analyses plot on a epsilonsub(Nd)-epsilonsub(Sr) correlation line as defined by Nd and Sr isotopic analyses of oceanic basalts. However, certain ophiolitic and lherzolitic samples exhibit high 87 Sr/ 86 Sr ratios and as such lie to the right of the correlation line towards seawater compositions. From these data one can postulate several origins for ophiolites including that of mid-ocean ridges and ocean islands. If the orogenic lherzolites are interpreted as representative of the mantle occurring below active ridges a more complex model is required involving mantle heterogeneity and multi-episodic chemical fractionation starting prior to 2 Ga ago. (orig.)

  16. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  17. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    Science.gov (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  18. Significant strain accumulation between the deformation front and landward out-of-sequence thrusts in accretionary wedge of SW Taiwan revealed by cGPS and SAR interferometry

    Science.gov (United States)

    Tsai, M. C.

    2017-12-01

    High strain accumulation across the fold-and-thrust belt in Southwestern Taiwan are revealed by the Continuous GPS (cGPS) and SAR interferometry. This high strain is generally accommodated by the major active structures in fold-and-thrust belt of western Foothills in SW Taiwan connected to the accretionary wedge in the incipient are-continent collision zone. The active structures across the high strain accumulation include the deformation front around the Tainan Tableland, the Hochiali, Hsiaokangshan, Fangshan and Chishan faults. Among these active structures, the deformation pattern revealed from cGPS and SAR interferometry suggest that the Fangshan transfer fault may be a left-lateral fault zone with thrust component accommodating the westward differential motion of thrust sheets on both side of the fault. In addition, the Chishan fault connected to the splay fault bordering the lower-slope and upper-slope of the accretionary wedge which could be the major seismogenic fault and an out-of-sequence thrust fault in SW Taiwan. The big earthquakes resulted from the reactivation of out-of-sequence thrusts have been observed along the Nankai accretionary wedge, thus the assessment of the major seismogenic structures by strain accumulation between the frontal décollement and out-of-sequence thrusts is a crucial topic. According to the background seismicity, the low seismicity and mid-crust to mantle events are observed inland and the lower- and upper- slope domain offshore SW Taiwan, which rheologically implies the upper crust of the accretionary wedge is more or less aseimic. This result may suggest that the excess fluid pressure from the accretionary wedge not only has significantly weakened the prism materials as well as major fault zone, but also makes the accretionary wedge landward extension, which is why the low seismicity is observed in SW Taiwan area. Key words: Continuous GPS, SAR interferometry, strain rate, out-of-sequence thrust.

  19. Differential decay of the East-African Antarctic Orogen : an integrated examination of Northeastern Mozambique

    Science.gov (United States)

    Ueda, K.; Jacobs, J.; Emmel, B.; Thomas, R. J.; Matola, R.

    2009-04-01

    collapse of a deeply eroded orogen : Insights from structural, geophysical, and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics 27, TC5009, doi:10.1029/2008TC002284.

  20. Contrasting styles of sedimentation and deformation in the Chugach Terrane accretionary complex, south-central Alaska

    Science.gov (United States)

    Amato, J. M.; Pavlis, T. L.; Worthman, C.; Kochelek, E.; Day, E. M.; Clift, P. D.; Hecker, J.

    2011-12-01

    In southeast Alaska the Chugach terrane represents an accretionary complex associated with several arcs active at 200-65 Ma. This lithostratigraphic unit consists of blueschists with Early Jurassic metamorphic ages and uncertain depositional ages; the Jurassic-Cretaceous McHugh Complex; and the Late Cretaceous Valdez Group. Detrital zircon ages from densely sampled transects reveals patterns in the assembly of the complex. Blueschists are almost totally barren of zircon, suggesting protoliths derived from mafic-intermediate volcanic protoliths far from a continental source. There is an age gap between the blueschists and the McHugh complex interpreted to be caused by an episode of tectonic erosion. The McHugh Complex is two separate units that are lithologically and geochronologically distinct. The older McHugh is a melange is dominated by stratally disrupted volcanic rocks, chert, and argillite. The oldest McHugh rocks have maximum depositional ages (MDA) of 177-150 Ma at Seldovia and 157-145 Ma at Turnagain Arm; the lack of older rocks at Turnagain Arm suggests removal of structural section by faulting. The MDAs of the older McHugh rocks do not decrease progressively away from the arc. There is a 45 m.y. gap in MDA between the older McHugh and the Late Cretaceous McHugh rocks. The younger McHugh rocks are dominated by volcanogenic sandstone and coarse conglomerate and MDA decreases from 100 Ma near the boundary with the older McHugh mesomelange to 85 Ma near the Valdez Group. The Valdez Group consists of coherently bedded turbidites with a MDA range of 85-60 Ma that decreases progressively outboard of the arc source. A sample from the Orca Group of the Prince William terrane is lithologically similar to the Valdez Group and there is no gap in MDA between Valdez and Orca Groups. 55 Ma dikes cut the McHugh and Valdez Groups in the western Chugach and Kenai Mountains. The oldest units of the Chugach terrane are the most deformed, with deformation and metamorphism

  1. Accretionary Tectonics of Rock Complexes in the Western Margin of the Siberian Craton

    Science.gov (United States)

    Likhanov, I. I.; Nozhkin, A. D.; Savko, K. A.

    2018-01-01

    The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic mélange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700-620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640-620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 ± 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550-540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan-Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are

  2. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    Science.gov (United States)

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  3. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  4. Kinematics of post-orogenic extension and exhumation of the Taku Schist, NE Peninsular Malaysia

    NARCIS (Netherlands)

    Md Ali, M.A.; Willingshofer, E.; Matenco, L.; Francois, T.; Daanen, T.P.; Ng, T.F.; Taib, N.I.; Shuib, M.K.

    2016-01-01

    Abstract Recent studies imply that the formation and evolution of many SE Asian basins was driven by extensional detachments or systems of low-angle normal faults that created significant crustal exhumation in their footwalls. In this context, the architecture of the Triassic Indosinian orogen

  5. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    Science.gov (United States)

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.

    2010-01-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  6. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  7. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Science.gov (United States)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  8. Magnetic fabric transposition in folded granite sills in Variscan orogenic wedge

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Calassou, T.; Schulmann, K.; Hrouda, F.; Štípská, P.; Hasalová, Pavlína; Míková, J.; Magna, T.; Mixa, P.

    2017-01-01

    Roč. 94, January (2017), s. 166-183 ISSN 0191-8141 R&D Projects: GA ČR GA14-15632S Institutional support: RVO:67985530 Keywords : orogenic sill * AMS fabric * folding Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.408, year: 2016

  9. Deformation correlations, stress field switches and evolution of an orogenic intersection: The Pan-African Kaoko-Damara orogenic junction, Namibia

    Directory of Open Access Journals (Sweden)

    Ben Goscombe

    2017-11-01

    Full Text Available Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System. Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing, and switches between different deformation events. Horizontal principle compressive stress rotated clockwise ∼180° in total during Kaoko Belt evolution, and ∼135° during Damara Belt evolution. At most stages, stress field variation is progressive and can be attributed to events within the Damara Orogenic System, caused by changes in relative trajectories of the interacting Rio De La Plata, Congo, and Kalahari Cratons. Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ∼590 Ma, involving E–W directed shortening, progressing through different transpressional states with ∼45° rotation of the stress field to strike-slip shear under NW–SE shortening at ∼550–530 Ma. Damaran orogenesis evolved from collision at ∼555–550 Ma with NW–SE directed shortening in common with the Kaoko Belt, and subsequently evolved through ∼90° rotation of the stress field to NE–SW shortening at ∼512–508 Ma. Both Kaoko and Damara orogenic fronts were operating at the same time, with all three cratons being coaxially convergent during the 550–530 Ma period; Rio De La Plata directed SE against the Congo Craton margin, and both together over-riding the Kalahari Craton margin also towards the SE. Progressive stress field rotation was punctuated by rapid and significant switches at ∼530–525 Ma, ∼508 Ma and ∼505 Ma. These three events included: (1 Culmination of main phase orogenesis in the Damara Belt, coinciding with maximum burial and peak metamorphism at 530–525 Ma. This occurred at the same time as termination of transpression and initiation of

  10. Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348

    Science.gov (United States)

    Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew

    2014-05-01

    Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical

  11. Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen

    Science.gov (United States)

    Goscombe, Ben; Hand, Martin; Gray, David

    2003-07-01

    The Kaoko Belt portion of the Damara Orogen, Namibia, is the deeply eroded core of a sinistral transpressional orogen that has half-flower structure geometry centred on the major, 4-5-km-wide Purros Mylonite Zone. Formed between the Congo Craton in the east and Rio De La Plata Craton in Brazil, the Kaoko Belt represents the northern coastal arm of a triple junction within the Pan-African Orogenic System. Consisting of reworked Archaean, Palaeoproterozoic and Mesoproterozoic basement and a cover of Neoproterozoic Damara Sequence, the Kaoko Belt can be sub-divided structurally into three parallel NNW-trending zones. The Eastern Kaoko Zone comprises sub-greenschist facies shelf carbonates that have been uprightly folded. The Central Kaoko Zone contains a slope and deep basin facies succession that has experienced intense deformation, including pervasive reworking of basement into large-scale east-vergent nappes. The Western Kaoko Zone is predominantly deep basin facies of high metamorphic grade intruded by numerous granites. It has experienced intense wrench-style deformation with formation of upright isoclines and steep, crustal-scale shear zones. The Kaoko Belt evolved through three distinct phases of a protracted Pan-African Orogeny in the late Neoproterozoic to Cambrian. (1) An early Thermal Phase (M 1) was responsible for pervasive partial melting and granite emplacement in the Western Kaoko Zone from 656 Ma. (2) The Transpressional Phase produced the geometry of the belt by progressive sinistral shearing between 580 and 550 Ma. Deformation was continuously progressive through two stages and involved both temporal and spatial migration of deformation outwards towards the margin. The early strike-slip Wrench-Stage produced a high-strain L-S fabric by sub-horizontal transport. Deformation became progressively more transpressive, with high-angle convergence and flattening strains during the Convergent-Stage. In this stage, strike-slip movements evolved through

  12. Geological Study of Active Cold Seeps in the Syn-collision Accretionary Prism Kaoping Slope off SW Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Yue Huang

    2006-01-01

    Full Text Available Pogonophoran tube worms, elongated pyrite tubes and authigenic carbonate nodules are used to evaluate the occurrence of potential cold seeps in the syn-collision accretionary prism Kaoping Slope off SW Taiwan. At least two species of pogonophoran tubeworms were found in surface and core sediments. Pyrites occur in three different forms: fillings inside foraminiferal chambers, cements between calcareous microfossils, and elongated tubes. The bottom water off SW Taiwan is aerobic, but authigenic pyrites are found in the surface sediments at several sites, suggesting the existence of local reducing environments enabling the formation of pyrites. These environments are most likely caused by the occurrence of active cold seeps where methane expulses. Authigenic carbonates with highly depleted carbon isotope values (-54 to -43‰ were found at more than 5 locations, in agreement with a methane-derived source for the carbon.

  13. Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars

    Science.gov (United States)

    Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.

    2007-01-01

    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.

  14. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  15. The susceptibility of large river basins to orogenic and climatic drivers

    Science.gov (United States)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-04-01

    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect

  16. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2018-01-01

    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  17. Recent advances about of the orogenic modern belt (1000-500 M.A.) in Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.

    1989-01-01

    Progress in lithologic, structural, tectonic and geo tectonic data about a 1000-500 m.y.orogenic belt developed at the East of Uruguay, arrived in the 80, are here described. Conclusions are mainly based on the 1/100.000 scale geologic map of a 6000 sq. km comprised between Sierra Ballena, Sierra de Animas, Pan de Azucar and Mariscala. These new data clearly states the lithological distribution and contribute to guide strategic prospect ion.

  18. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  19. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model

    Science.gov (United States)

    Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu

    2014-09-01

    The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.

  20. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens

    Science.gov (United States)

    Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin

    2018-04-01

    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and

  1. The effect of flexural isostasy on the response time of orogenic systems

    Science.gov (United States)

    Braun, J.; Margirier, A.; Guerit, L.

    2017-12-01

    The concept of orogenic steady-state implies that mountain belts can reach a dynamic balance between uplift and erosion in order to maintain a quasi-constant shape. The final morphology of the mountain will be a function of the relative efficiency between uplift and erosion and is therefore likely to be modulated by climate. However, reaching such a steady-state cannot be instantaneous and there must exist a time lag between the onset of convergence and the full development of the mountain topography. Similarly, when an orogenic system is subject to a marked change in convergence rate or in climatic conditions, it takes a certain time for it to adapt to such a change and develop a new steady-state morphology. It is during these transient phases that the nature and efficiency of the interactions between tectonics and climate are most likely to be constrained by observations and understood. The duration of this transient stage remains, however, poorly constrained and understood. As shown by many authors (Whipple and Tucker, 1999, for example) the rate at which tectonic systems evolve to reach steady-state is likely controlled by climate and rock strength, which both determine the efficiency of erosional processes, and the rate of uplift. Here we show that isostasy also plays a very important role in determining the length of the transient phase and that, depending on the level of isostatic adjustment, which in turn depends on the flexural strength of the underlying lithosphere, isostasy can change the time it takes for an orogenic system to reach steady-state by an order of magnitude, i.,e. from a few millions to a few tens of millions of years. This has very important implications. It may explain why many young orogenic systems display an increase in uplift and erosion rate millions of years after the onset of collision and that, in these situations, such an increase does not require a steady change in tectonic and/or climate conditions/forcing. We also show that

  2. Cenozoic Deformation of the Tarim Basin (Xinjiang, China): a Record of the Deformation Propagation through the Asian Orogenic System

    Science.gov (United States)

    Laborde, A.; Barrier, L.; Simoes, M.; Li, H.

    2016-12-01

    During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.

  3. Interaction of Structure and Physical Properties in Accretionary Wedges: Examples from the Cascadia and Nankai Trough Subduction Zones

    Science.gov (United States)

    Webb, Susanna I.

    Subduction zones are capable of producing large, megathrust earthquakes that are sometimes tsunamigenic. Structure and physical properties in the accretionary wedge play a role in how far rupture can propagate and how the wedge deforms coseismically. In this dissertation, I use seismic reflection data and velocity models from the Cascadia subduction zone and logging data from the Nankai Trough, Japan, to interpret structure, link structure to the broader wedge deformation history, and investigate the material properties at depth. I present a full structural interpretation of newly acquired seismic reflection data in the central Cascadia margin, which is characterized by dominantly landward vergent faulting in the outer wedge, a very low wedge taper angle, and a broad, lightly deformed lower slope terrace. Two decollements are active: an upper decollement within the sedimentary section, and a basal decollement at the sediment-basement interface. These interpretations help delineate the spatial extent of decollements and suggest that supra-wedge sedimentation may influence the development of the wedge, including the formation of the lower slope terrace and out of sequence fault activity. I use velocity models from central Cascadia to estimate excess pore fluid pressure and overpressure ratio at depth, which do not exceed 5 MPa and 0.15, respectively. No excess pore pressure is documented in the underthrust sediment section, but modest overpressure is likely present in the incoming sediment section and the footwalls of thrust sheets. The analysis of pore pressure shows that (1) if the base of the wedge is weak, it is due to mechanical properties of the sediments or a relatively thin underthrust layer and (2) the Cascadia wedge is relatively well-drained, and thus potentially strong, which can lead to a low wedge taper angle. In the Nankai Trough, Japan, I reprocessed sonic log data to obtain P-wave and S-wave velocity values and estimate elastic moduli. The logs

  4. Calcareous nannofossil biostratigraphy and geochronology of Neogene trench-slope cover sediments in the south Boso Peninsula, central Japan: Implications for the development of a shallow accretionary complex

    Science.gov (United States)

    Chiyonobu, Shun; Yamamoto, Yuzuru; Saito, Saneatsu

    2017-07-01

    The geological structure and calcareous nannofossil biostratigraphy of the Middle to Late Miocene trench-slope succession in the southern Boso Peninsula, central Japan, were examined to obtain chronological constraints on the accretion and formation of the trench-slope architecture. As a result, trench-slope cover sediments (Kinone and Amatsu Formations) are clearly distinguishable from the Early Miocene Hota accretionary complex (Hota Group). The Hota accretionary complex was deposited below the carbonate compensation depth (CCD) and was affected by intense shearing, forming an east-west trending and south-verging fold and thrust belt. In contrast, the trench-slope cover sediments basically have a homoclinal dip, except at the northern rim where they are bounded by fault contact. They contain many species of calcareous nannofossils and foraminifers, which are indicative of their depositional environment above the CCD, and they show shallowing-upward sedimentary structures. Biostratigraphy revealed that the depositional age of the trench-slope sediments is ca. 15-5.5 Ma, suggesting that there is an approximately 2 myr hiatus beween the Miura Group and the underlying accretionary prism. Based on these results, the age of accretion of the Hota Group is inferred to be between ca. 17-15 Ma, and the group is covered by trench-slope sediments overlain on it after ca. 15 Ma. The timing of accretion and the age of the trench-slope basin tend to be younger southward of the Boso Peninsula. The accretionary system of the Boso Peninsula apparently developed in two stages, in the Middle Miocene and in the Late Miocene to Pliocene.

  5. Apatite fission track and (U-Th)/He dating of teschenite intrusions gives time constraints on accretionary processes and development of planation surfaces in the Outer Western Carpathians

    Energy Technology Data Exchange (ETDEWEB)

    Danisik, Martin; Frisch, Wolfgang [Tuebingen Univ. (Germany). Inst. of Geosciences; Panek, Tomas [Ostrava Univ. (Czech Republic). Dept. of Physical Geography and Geoecology; Matysek, Dalibor [Technical Univ. of Ostrava (Czech Republic). Dept. of Geological Engineering; Dunkl, Istvan [Geoscience Center Goettingen (Germany). Sedimentology and Environmental Geology

    2008-09-15

    The age of planation surfaces in the Podbeskydska pahorkatina Upland in the Outer Western Carpathians (OWC, Czech Republic) is constrained by low-temperature thermochronological dating methods for the first time. Our apatite fission track and apatite (U-Th)/He data measured on teschenite intrusions show that planation surfaces in the study area formed in post-Pannonian time (>7.1 Ma) and are therefore younger than traditionally believed. This contradicts the classical concepts, which stipulate that a large regional planation surface of Pannonian age (the so-called ''midmountain level'') developed in the whole Western Carpathians. Geodynamic implications of our data are the following: (i) the investigated Tesin and Godula nappes of the OWC were buried and thermally overprinted in the accretionary wedge in different ways, and consequently experienced different cooling histories. This indicates a dynamic basin setting with an active accretionary process in a subduction zone; (ii) accretionary processes in the OWC were active already during Late Eocene times. (orig.)

  6. Tectono-metamorphic evolution of the Chinese Altai, central Asia: new insights from microstructures

    Science.gov (United States)

    Jiang, Yingde; Zhang, Jian; Schulmann, Karel; Sun, Min; Zhao, Guochun

    2013-04-01

    The Altai Orogen, extending from Russia, through northeast Kazakhstan and northwest China, to western and southern Mongolia, occupies a pivotal position in understanding the accretionary process of the Central Asian Orogenic Belt and has drawn much attention in recent years. However, its orogenic evolution remains poorly constrained, because previous studies were mainly focused on the geochronological and geochemical signatures and much less work has been done on metamorphic and structural studies. Metamorphic rocks widely occur in the southern Altai Range and have previously been separated into high-T/low-P and medium-P types. Recent studies demonstrated that these two kinds of rocks may have similar protoliths, i.e. early Paleozoic arc-related assemblages, but experienced different metamorphic histories. The development of biotite, garnet, staurolite and kyanite metamorphic zonal sequences in the low- to medium- grade rocks, demonstrate typical medium-pressure metamorphism that has been suggested as a major consequence of the orogenesis. The high-T/low-P metamorphism, represented by the growth of garnet+cordierite+sillimanite+k-feldspar and was accompanied by extensive anatexis, remains its tectonic significance poorly constrained. Field structural investigation in the Chinese Altai reveals that the high-T/low-P metamorphic rocks have major S-L fabrics (defined by the strongly aligned biotite and sillimanite) exactly in the same orientations as those developed in the associated medium-P grade rocks. Geochronological studies constrain the major fabrics in both kinds of rocks developed during mid-Devonian, coeval with the strong magmatism in the region. Micro-structural investigation on both kinds of rocks show similar prograde metamorphic history featured by clockwise P-T path evolution. Phase equilibrium modeling in the MnNCKFMASH system indicates that the development of major fabrics in the medium-P metamorphic rocks mainly recorded the notable increase of

  7. Fault Dating in the US Rockies and Large Regional Extent of Deformation Pulses Along the Sevier Orogen of North America.

    Science.gov (United States)

    van der Pluijm, B.; Lynch, E. A.; Pana, D.; Yonkee, A.

    2017-12-01

    Recent Ar dating of clay-rich fault rock in the Canadian Rockies identified multiple orogenic pulses: Late Jurassic (163-146 Ma), Mid-Cretaceous (103-99 Ma), Late Cretaceous (76-72 Ma) and Eocene (54-52 Ma; Pana and van der Pluijm, GSAB 2015). New dating in the US Rockies combined with ages in the most frontal section along an Idaho-Wyoming transect show a remarkably similar age pattern: Meade Thrust, 108-102 Ma; (S)Absaroka Thrust, 73 Ma; Darby-Bear Thrust, 56-50 Ma. These radiometric fault ages in the US Rockies match field and tectono-stratigraphic predictions, analogues to those in the Canadian Rockies. Thus, a remarkably long (>1500km) lateral tract along the North American Sevier orogen is characterized by at least three major orogenic pulses that are structurally contiguous. These orogenic pulses are progressively younger in the direction of easterly thrust fault motion (toward cratonic interior) and are separated by long periods of relative tectonic quiescence. We interpret the extensive regional continuity of deformation pulses and tectonic quiescence along the Sevier Orogen as the result of three plate reorganization events in western North America since the Late Jurassic.

  8. Looking at the roots of the highest mountains: the lithospheric structure of the Himalaya-Tibet and the Zagros orogens. Results from a geophysical-petrological study

    Science.gov (United States)

    Tunini, L.; Jimenez-Munt, I.; Fernandez, M.; Villasenor, A.; Afonso, J. C.; Verges, J.

    2013-12-01

    The Himalaya-Tibet and Zagros orogens are the two most prominent mountain belts built by continental collision. They are part of a huge belt of Cenozoic age which runs from the Pyrenees to Burma. In its central sector, the collision with the southern margin of the Eurasian plate has resulted not only in the building of mountain ranges over the north-eastern edges of the Arabian and Indian plates but also in widespread deformation 1000-3000 km from the suture zones. Zagros and Himalaya-Tibet orogens share many geodynamic processes but at different rates, amount of convergence and stage of development. The study of their present-day structures provides new insights into their quasi coeval collisional event pointing out differences and similarities in the mountain building processes. We present 2D crust and upper mantle cross-sections down to 400 km depth, along four SW-NE trending profiles. Two profiles cross the Zagros Mountains, running from the Mesopotamian Foreland Basin up to the Alborz and Central Iran. Two other profiles run through the Himalaya-Tibetan orogen: the western transect crosses the western Himalaya, Tarim Basin, Tian Shan Mountains and Junggar Basin; the eastern transect runs from the Indian shield to the Beishan Basin, crossing the eastern Himalaya, Tibetan Plateau, Qaidam Basin and Qilian Mountains. We apply the LitMod-2D code which integrates potential fields (gravity and geoid), isostasy (elevation) and thermal (heat flow and temperature distribution) equations, and mantle petrology. The resulting crust and upper mantle structure is constrained by available data on elevation, Bouguer anomaly, geoid height, surface heat flow and seismic data including P- and S-wave tomography models. Our results show distinct deformation patterns between the crust and the lithospheric mantle beneath the Zagros and Himalaya-Tibetan orogens, indicating a strong strain partitioning in both areas. At crustal level, we found a thickening beneath the Zagros and the

  9. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes

    Science.gov (United States)

    Ding, Weiwei; Sun, Zhen; Dadd, Kelsie; Fang, Yinxia; Li, Jiabiao

    2018-04-01

    Internal structures in mature oceanic crust can elucidate understanding of the processes and mechanism of crustal accretion. In this study, we present two multi-channel seismic (MCS) transects across the northern flank of the South China Sea basin to reveal the internal structures related to Cenozoic tectono-magmatic processes during seafloor spreading. Bright reflectors within the oceanic crust, including the Moho, upper crustal reflectors, and lower crustal reflectors, are clearly imaged in these two transects. The Moho reflection displays varied character in continuity, shape and amplitude from the continental slope area to the abyssal basin, and becomes absent in the central part of the basin where abundant seamounts and seamount chains formed after the cessation of seafloor spreading. Dipping reflectors are distinct in most parts of the MCS data but generally confined to the lower crust above the Moho reflection. These lower crustal reflectors merge downward into the Moho without offsetting it, probably arising from shear zones between the crust and mantle characterized by interstitial melt, although we cannot exclude other possibilities such as brittle faulting or magmatic layering in the local area. A notable feature of these lower crustal reflector events is their opposite inclinations. We suggest the two groups of conjugate lower crustal reflector events observed between magnetic anomalies C11 and C8 were associated with two unusual accretionary processes arising from plate reorganizations with southward ridge jumps.

  10. Pressure and Stress Prediction in the Nankai Accretionary Prism: A Critical State Soil Mechanics Porosity-Based Approach

    Science.gov (United States)

    Flemings, Peter B.; Saffer, Demian M.

    2018-02-01

    We predict pressure and stress from porosity in the Nankai accretionary prism with a critical state soil model that describes porosity as a function of mean stress and maximum shear stress, and assumes Coulomb failure within the wedge and uniaxial burial beneath it. At Ocean Drilling Program Sites 1174 and 808, we find that pore pressure in the prism supports 70% to 90% of the overburden (λu = 0.7 to 0.9), for a range of assumed friction angles (5-30°). The prism pore pressure is equal to or greater than that in the underthrust sediments even though the porosity is lower within the prism. The high pore pressures lead to a mechanically weak wedge that supports low maximum shear stress, and this in turn requires very low basal traction to remain consistent with the observed narrowly tapered wedge geometry. We estimate the décollement friction coefficient (μb) to be 0.08-0.38 (ϕb' = 4.6°-21°). Our approach defines a pathway to predict pressure in a wide range of environments from readily observed quantities (e.g., porosity and seismic velocity). Pressure and stress control the form of the Earth's collisional continental margins and play a key role in its greatest earthquakes. However, heretofore, there has been no systematic approach to relate material state (e.g., porosity), pore pressure, and stress in these systems.

  11. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    Science.gov (United States)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often

  12. Geological characters and petrological characters of metamorphosed medium-acidic intrusive complexes in Ludong Orogenic Belt,China

    Institute of Scientific and Technical Information of China (English)

    凌贤长; 胡庆立; 王丽霞

    2002-01-01

    Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino-Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium-acidic intrusive complexes, which can be divided into four types, that's, quartz dioritz, granite dioritz, monzonitic granite and undertint monzonitic granite, principal minerals are plagioclases, potassium feldspars and quartzs, minor minerals are hornblendes, biotites, clinopyxenes and garnets, accessory mineral types and assemblages are very similar, specially, various rocks are mainly fine-grained textures. They have the history of regional amphibolite facies metamorphism and deep-middle-shallow structural layer deformation, and are changed into various gneiss and tectonic system. There are many xenolithes of middle Proterozoic eclogite-host rock extrahigh-high pressure metamorphic complexes, a small xenolithes of early Proterozoic layered metamorphite system and granulites, and ultrabasic-basic rocks of various epoches in the metamorphosed medium-acidic intrusive complexes.

  13. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China

    Science.gov (United States)

    Kun-Feng Qiu,; Taylor, Ryan D.; Yao-Hui Song,; Hao-Cheng Yu,; Kai-Rui Song,; Nan Li,

    2016-01-01

    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in deuterium during the life of the magmatic–hydrothermal system. Alternatively, δD variability may have been caused by a minor amount of mixing with meteoric waters. We propose that the ore-related magma was derived from partial melting of the ancient Mesoproterozoic to Neoproterozoic middle to lower continental crust. This crust was likely metasomatized during earlier subduction, and the crustal magmas may have been contaminated with lithospheric mantle derived magma triggered by MASH (e.g., melting, assimilation, storage, and homogenization) processes during collisional orogeny. In addition, a significant proportion of the metals and sulfur supplied from mafic magma were simultaneously incorporated into the resultant hybrid magmas.

  14. Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia)

    Science.gov (United States)

    Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.

    2017-12-01

    A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.

  15. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China.

    Science.gov (United States)

    Song, Wenlei; Xu, Cheng; Smith, Martin P; Kynicky, Jindrich; Huang, Kangjun; Wei, Chunwan; Zhou, Li; Shu, Qihai

    2016-11-18

    Carbonatites, usually occurring within intra-continental rift-related settings, have strong light rare earth element (LREE) enrichment; they rarely contain economic heavy REE (HREE). Here, we report the identification of Late Triassic HREE-Mo-rich carbonatites in the northernmost Qinling orogen. The rocks contain abundant primary HREE minerals and molybdenite. Calcite-hosted fluid inclusions, inferred to represent a magmatic-derived aqueous fluid phase, contain significant concentrations of Mo (~17 ppm), reinforcing the inference that these carbonatitic magmas had high Mo concentrations. By contrast, Late Triassic carbonatites in southernmost Qinling have economic LREE concentrations, but are depleted in HREE and Mo. Both of these carbonatite types have low δ 26 Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution for REE enrichment in their mantle sources. We propose that the carbonatites in the Qinling orogen were formed, at least in part, by the melting of a subducted carbonate-bearing slab, and that 10 Ma younger carbonatite magmas in the northernmost Qinling metasomatized the thickened eclogitic lower crust to produce high levels of HREE and Mo.

  16. Syn- and Post-Accretionary Structures in the Neoproterozoic Central Allaqi-Heiani Suture Zone, Southeastern Egypt

    Science.gov (United States)

    Abdeen, M. M.; Abdelghaffar, A. A.

    2012-04-01

    The Allaqi-Heiani suture (AHS) is the western part of the main Allaqi-Heiani-Gerf-Onib-Sol Hamed-Yanbu suture and represents one of the Neoproterozoic, arc-arc sutures in the Arabian-Nubian Shield (ANS). It separates the ca. 750 Ma South Eastern Desert terrane in the north from the ca. 830-720 Ma Gabgaba terrane in the south. The AHS is a deformed belt of ophiolitic rocks, syn-tectonic granitoids and metasediments. The central AHS zone is divided into three structural domains. The western domain (Ι) is characterized by NNE low thrusts and SSW-vergent folds. The central domain (ΙΙ) includes upright tight to isoclinal NNW-SSE oriented folds and transpressional faults. The eastern domain (ΙΙΙ) shows NNW-SSE oriented open folds. Structural analysis indicates that the area has a poly-phase deformation history involving at least two events. Event D1 was an N-S to NNE-SSW regional shortening generating the SSW-verging folds and the NNE dipping thrusts. Event D2 was an ENE-WSW shortening producing NNW-SSE oriented folds in the central and eastern parts of the study area and reactivating older thrusts with oblique-slip reverse fault movement. The tectonic evolution of the area involves two episodes of collision: an early collision between the South Eastern Desert terrane and the Gabgaba terrane along the AHS after the consumption of a basin floored by oceanic crust above a north-dipping subduction zone; and a later collision between East- and West-Gondwanas at ca. 750-650 Ma, leading to the closure of the Mozambique Ocean. This collision deformed the AHS along N-S trending shortening zones and produced NW-SE and NE-SW oriented sinistral and dextral transpressional faults, respectively. The early collision episode is related to the terrane accretion during the early Pan-African orogen, while the later phase is related to a late Pan-African or Najd orogen.

  17. Critically Tapered Wedges and Critical State Soil Mechanics: Porosity-based Pressure Prediction in the Nankai Accretionary Prism.

    Science.gov (United States)

    Flemings, P. B.; Saffer, D. M.

    2016-12-01

    We predict pore pressure from porosity measurements at ODP Sites 1174 and 808 in the Nankai Accretionary prism, offshore Japan. For a range of friction angles (5-30 degrees), we estimate that the pore pressure ratio (λ*) ranges from 0.5 to 0.8: the pore pressure supports 50% to 80% of the overburden. Higher friction angles result in higher pressures. For the majority of the scenarios, pressures within the prism parallel the lithostat and are greater than the pressures beneath it. Our results support previous qualitative interpretations at Nankai and elsewhere suggesting that lower porosity above the décollement than below reflects higher mean effective stress there. By coupling a critical state soil model (Modified Cam Clay), which describes porosity as a function of mean and deviator stress, with a stress model that considers the difference in stress states above and below the décollement, we quantitatively show that the prism porosities record significant overpressure despite their lower porosity. As the soil is consumed by the advancing prism, changes in both mean and shear stress drive overpressure generation. Even in the extreme case where only change in mean stress is considered (a vertical end cap model), significant overpressures are generated. The high pressures we predict require an effective friction coefficient (µb') at the décollement of 0.023-0.038. Assuming that the pore pressure at the décollement lies between the values we report for the wedge and the underthrusting sediments, these effective friction coefficients correspond to intrinsic friction coefficients of µb= 0.08-0.38 (f = 4.6 - 21°). These values are comparable to friction coefficients of 0.1-0.4 reported for clay-dominated fault zones in a wide range of settings. By coupling the critical wedge model with an appropriate constitutive model, we present a systematic approach to predict pressure in thrust systems.

  18. A Long-Term Geothermal Observatory Spanning Subseafloor Gas Hydrates in IODP Hole U1364A, Cascadia Accretionary Prism

    Science.gov (United States)

    Becker, K.; Davis, E.; Heesemann, M.; McGuire, J. J.; Collins, J. A.; O'Brien, J. K.; von der Heydt, K.

    2017-12-01

    We report the configuration of and initial results from a 24-thermistor cable installed to 268 m below seafloor (mbsf) in IODP Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The thermistor array spans the gas hydrate stability zone and a clear bottom-simulating reflector at 225-230 mbsf. The thermistor string was deployed in July 2016 along with a seismic-strain observatory into the cased section of a pressure-monitoring Advanced CORK (ACORK) that had been installed in 2010 during IODP Expedition 328. Formation pressures are monitored via permeable screens on the outside of solid steel casing that is sealed at the bottom by a bridge plug and cement up to 302 mbsf. All three observatory systems were connected to the Ocean Networks Canada NEPTUNE cabled observatory Clayoquot Slope node in June of 2017, with the thermistor temperatures being logged by ONC every minute. The thermistor array was designed with concentrated vertical spacing around the BSR and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The initial six weeks of data logged via the ONC connection show a generally linear temperature gradient, with temperatures of about 15.8°C at the BSR depth, consistent with methane hydrate stability at that depth and pressure. Sensor temperatures at most depths are quite stable over this period, with the exceptions of two sensors at 76 and 256 mbsf that show slowly rising temperatures; these could be due to cellular convection of borehole fluids, sensor degradation, or formation processes, but this requires a longer time series to resolve. We will report updated results after four more months of data recording through November 2017, along with any correlations to the pressure records. The data are freely available to all registered ONC users via the ONC data management and archiving system.

  19. Distribution of very low frequency earthquakes in the Nankai accretionary prism influenced by a subducting-ridge

    Science.gov (United States)

    Toh, Akiko; Obana, Koichiro; Araki, Eiichiro

    2018-01-01

    We investigated the distribution of very low frequency earthquakes (VLFEs) that occurred in the shallow accretionary prism of the eastern Nankai trough during one week of VLFE activity in October 2015. They were recorded very close from the sources by an array of broadband ocean bottom seismometers (BBOBSs) equipped in Dense Oceanfloor Network system for Earthquakes and Tsunamis 1 (DONET1). The locations of VLFEs estimated using a conventional envelope correlation method appeared to have a large scatter, likely due to effects of 3D structures near the seafloor and/or sources that the method could not handle properly. Therefore, we assessed their relative locations by introducing a hierarchal clustering analysis based on patterns of relative peak times of envelopes within the array measured for each VLFE. The results suggest that, in the northeastern side of the network, all the detected VLFEs occur 30-40 km landward of the trench axis, near the intersection of a splay fault with the seafloor. Some likely occurred along the splay fault. On the other hand, many VLFEs occur closer to the trench axis in the southwestern side, likely along the plate boundary, and the VLFE activity in the shallow splay fault appears less intense, compared to the northeastern side. Although this could be a snap-shot of activity that becomes more uniform over longer-term, the obtained distribution can be reasonably explained by the change in shear stresses and pore pressures caused by a subducting-ridge below the northeastern side of DONET1. The change in stress state along the strike of the plate boundary, inferred from the obtained VLFE distribution, should be an important indicator of the strain release pattern and localised variations in the tsunamigenic potential of this region.

  20. Local Seismicity Recorded by ChilePEPPER: Implications for Dynamic Accretionary Prism Response and Long-term Prism Evolution

    Science.gov (United States)

    de Moor, A.; Trehu, A. M.; Tryon, M. D.

    2015-12-01

    To investigate the dynamic response of the outer accretionary wedge updip from the patch of greatest slip during the Mw8.8 2010 Maule earthquake, 10 Ocean Bottom Seismometers (OBS) were deployed from May 2012 to March 2013 in a small array with an inter-instrument spacing of ~12 km . Nine instruments were recovered, with 4 recording data on 3 intermediate-band 3-component seismometers and a differential pressure gauge and 5 recording data from absolute pressure gauges. [note: All instruments were also equipped with a fluid flow meter sensitive to flow rates as low as 0.0001 cm/yr in or out of the sediments. However, no flow signal was detected.] Here we present hypocenters for 569 local events that have S-P times less than 17 seconds (i.e. within ~125 km of the array) using hand-picked arrival times and a 1D velocity model derived from a 2D seismic refraction profile through the region (Moscoso et al 2011, EPSL). We analyze the distribution of seismicity in the context of published slip models, ChilePEPPER high-resolution seismic reflection data, critical taper analysis done by Cubas et al 2013 (EPSL), and offshore gravity data. The data show distinct segmentation within the outer prism. The northern section of the study area is characterized by a lack of seismicity, accretion of nearly all incoming sediment and a prism at critical taper. In contrast, abundant seismicity, significant sediment underthrusting at the deformation front and a prism below critical taper angle characterize the southern part of the study area. Both coseismic slip and post-rupture local seismicity can be related to density anomalies within the upper plate as revealed by free air gravity data corrected for the effects of bathymetry and the subducting plate. [ChilePEPPER - Project Evaluating Prism Post-Earthquake Response

  1. Numerical modeling of porosity waves in the Nankai accretionary wedge décollement, Japan: implications for aseismic slip

    Science.gov (United States)

    Joshi, Ajit; Appold, Martin S.

    2017-01-01

    Seismic and hydrologic observations of the Nankai accretionary wedge décollement, Japan, show that overpressures at depths greater than ˜2 km beneath the seafloor could have increased to near lithostatic values due to sediment compaction and diagenesis, clay dehydration, and shearing. The resultant high overpressures are hypothesized then to have migrated in rapid surges or pulses called `porosity waves' up the dip of the décollement. Such high velocities—much higher than expected Darcy fluxes—are possible for porosity waves if the porous media through which the waves travel are deformable enough for porosity and permeability to increase strongly with increasing fluid pressure. The present study aimed to test the hypothesis that porosity waves can travel at rates (kilometers per day) fast enough to cause aseismic slip in the Nankai décollement. The hypothesis was tested using a one-dimensional numerical solution to the fluid mass conservation equation for elastic porous media. Results show that porosity waves generated at depths of ˜2 km from overpressures in excess of lithostatic pressure can propagate at rates sufficient to account for aseismic slip along the décollement over a wide range of hydrogeological conditions. Sensitivity analysis showed porosity wave velocity to be strongly dependent on specific storage, fluid viscosity, and the permeability-depth gradient. Overpressure slightly less than lithostatic pressure could also produce porosity waves capable of traveling at velocities sufficient to cause aseismic slip, provided that hydrogeologic properties of the décollement are near the limits of their geologically reasonable ranges.

  2. Lithologic Controls on Structure Highlight the Role of Fluids in Failure of a Franciscan Complex Accretionary Prism Thrust Fault

    Science.gov (United States)

    Bartram, H.; Tobin, H. J.; Goodwin, L. B.

    2015-12-01

    Plate-bounding subduction zone thrust systems are the source of major earthquakes and tsunamis, but their mechanics and internal structure remain poorly understood and relatively little-studied compared to faults in continental crust. Exposures in exhumed accretionary wedges present an opportunity to study seismogenic subduction thrusts in detail. In the Marin Headlands, a series of thrusts imbricates mechanically distinct lithologic units of the Mesozoic Franciscan Complex including pillow basalt, radiolarian chert, black mudstone, and turbidites. We examine variations in distribution and character of structure and vein occurrence in two exposures of the Rodeo Cove thrust, a fossil plate boundary exposed in the Marin Headlands. We observe a lithologic control on the degree and nature of fault localization. At Black Sand Beach, deformation is localized in broad fault cores of sheared black mudstone. Altered basalts, thrust over greywacke, mudstone, and chert, retain their coherence and pillow structures. Veins are only locally present. In contrast, mudstone is virtually absent from the exposure 2 km away at Rodeo Beach. At this location, deformation is concentrated in the altered basalts, which display evidence of extensive vein-rock interaction. Altered basalts exhibit a pervasive foliation, which is locally disrupted by both foliation-parallel and cross-cutting carbonate-filled veins and carbonate cemented breccia. Veins are voluminous (~50%) at this location. All the structures are cut by anastomosing brittle shear zones of foliated cataclasite or gouge. Analyses of vein chemistry will allow us to compare the sources of fluids that precipitated the common vein sets at Rodeo Beach to the locally developed veins at Black Sand Beach. These observations lead us to hypothesize that in the absence of a mechanically weak lithology, elevated pore fluid pressure is required for shear failure. If so, the vein-rich altered basalt at Rodeo Beach may record failure of an

  3. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    Directory of Open Access Journals (Sweden)

    D. Fischer

    2012-06-01

    Full Text Available The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment.

    Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr−1 to <1 cm yr−1 and the sulfate/methane transition (SMT deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6–9.3 mol m−2 yr−1. Depth-integrated rates of bioirrigation increased from 120 cm yr−1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr−1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM with sulfate high enough to provide hydrogen sulfide for chemosynthesis. Through bioirrigation, macrofauna engineer their geochemical environment and fuel upward sulfide flux via AOM. Furthermore, due to the introduction of oxygenated bottom water into the sediment via bioirrigation, the depth of the sulfide sink gradually deepens towards outer habitats. We therefore suggest that – in addition to the oxygen levels in the water column, which determine whether macrofaunal communities can develop or not – it is the depth of the SMT and thus of sulfide production that determines which chemosynthetic communities are able to exploit the sulfide at depth. We hypothesize that large vesicomyid clams, by efficiently expanding the sulfate zone down into the sediment, could cut off smaller or less mobile organisms, as e.g. small clams and sulfur bacteria, from the sulfide source.

  4. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen

    Science.gov (United States)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong

    2018-05-01

    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  5. Origin and structure of major orogen-scale exhumed strike-slip

    Science.gov (United States)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  6. Evaluation of the Orogenic Belt Hypothesis for the Formation of Thaumasia, Mars

    Science.gov (United States)

    Nahm, A. L.; Schultz, R. A.

    2008-12-01

    The Thaumasia Highlands (TH) and Solis Planum are two of the best-known examples of compressional tectonics on Mars. The TH is a region of high topography located in the southern portion of the Tharsis Province, Mars. Solis Planum is located in eastern Thaumasia. Two hypotheses for the formation of this region have been suggested: sliding on a weak horizon or thrusting analogous to orogenic wedges on Earth. Both hypotheses require a shallowly dipping to sub-horizontal weak horizon below Thaumasia. Wrinkle ridges in Solis Planum are also inferred to sole into a décollement. If Thaumasia formed by thrusting related to sliding on a décollement, then certain conditions must be met as in critical taper wedge mechanics (CTWM) theory. If the angle between the surface slope and the basal décollement is less than predicted by the critical taper equation, the 'subcritical' wedge will deform internally until critical taper is achieved. Once the critical taper has been achieved, internal deformation ceases and the wedge will slide along its base. Formation of orogenic belts on Earth (such as the Central Mountains in Taiwan) can be described using CTWM. This method is applied here to the Thaumasia region on Mars. The surface slope (alpha) was measured in three locations: Syria Planum-Thaumasia margin, Solis Planum, and the TH. Topographic slopes were compared to the results from the critical taper equation. Because the dip of the basal décollement (beta) cannot be measured directly as on Earth, the dip angle was varied at 0 - 10 degrees; these values span the range of likely values based on terrestrial wedges. Pore fluid pressure (lambda) was varied between 0 (dry) and 0.9 (overpressured); these values span the full range of this important unknown parameter. Material properties, such as the coefficients of internal friction and of the basal décollement, were varied using reasonable values. Preliminary results show that for both reasonable (such as lambda = 0, mu b = 0

  7. Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes

    Science.gov (United States)

    Wegmann, S.F.G.; Franke, K.L.; Hughes, S.; Lewis, R.Q.; Lyons, N.; Paris, P.; Ross, K.; Bauer, J.B.; Witt, A.C.

    2011-01-01

    The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post-orogenic landscape remain enigmatic. The non-glaciated Cullasaja River basin of south-western North Carolina, with uniform lithology, frequent debris flows, and the availability of high-resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post-orogenic landscape through the lens of hillslope-channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris-flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint-driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area-elevation and slope distributions is presented that may be representative of post-orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel- hillslope coupling is an important factor in tectonically-inactive (i

  8. Africa Insight

    African Journals Online (AJOL)

    Africa Insight is a quarterly, peer-reviewed journal of the Africa Institute of South Africa. It is accredited by the South African National Department of Higher Education and Training (DHET) and is indexed in the International Bibliography of Social Science (IBSS). It is a multi-disciplinary journal primarily focusing on African ...

  9. EARLY STAGE OF THE CENTRAL ASIAN OROGENIC BELT BUILDING: EVIDENCES FROM THE SOUTHERN SIBERIAN CRATON

    Directory of Open Access Journals (Sweden)

    D. P. Gladkochub

    2017-01-01

    Full Text Available The origin of the Central-Asian Orogenic Belt (CAOB, especially of its northern segment nearby the southern margin of the Siberian craton (SC is directly related to development and closure of the Paleo-Asian Ocean (PAO. Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area to south-east (Baikal area and further to north-east (Patom area. Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions.

  10. 40Ar-39Ar method for age estimation: principles, technique and application in orogenic regions

    International Nuclear Information System (INIS)

    Dalmejer, R.

    1984-01-01

    A variety of the K-Ar method for age estimation by 40 Ar/ 39 Ar recently developed is described. This method doesn't require direct analysis of potassium, its content is calculated as a function of 39 Ar, which is formed from 39 K under neutron activation. Errors resulted from interactions between potassium and calcium nuclei with neutrons are considered. The attention is paid to the technique of gradual heating, used in 40 Ar- 39 Ar method, and of obtaining age spectrum. Aplicabilities of isochronous diagram is discussed for the case of presence of excessive argon in a sample. Examples of 40 Ar- 39 Ar method application for dating events in orogenic regions are presented

  11. The Pan-African Damara Orogen of South West Africa/Namibia

    International Nuclear Information System (INIS)

    Miller, R.McG.

    1983-01-01

    The structural grain of the Damara orogen points to a reversal of spreading and to north-westward subduction of the African cratons below a South American craton and of the Kalahari Craton below the Congo Craton. D 1 recumbent folding was followed by intrusion of 650 m.y.-old granitic rocks, uplift and erosion and deposition of a northern molasse. D 2 deformation in the coastal arm marked the continental collision phase in this region. The final, large-scale deformational event in this region caused westward-vergent back folding which was followed by intrusion of 570 m.y.-old post-tectonic granites. In the Central Zone, widespread intrusion of 550 m.y.-old, syntectonic granites and extrusion of their volcanic equivalents in a 150 km-wide, high-temperature-low-pressure zone along the leading edge of the Congo Craton was accompanied by uplift, erosion and the deposition of K-rich greywackes as a fore-arc sequence above the earlier, spreading-phase deposits in the closing Southern Zone ocean. Sedimentological aspects of the Damara along the southern margin of the orogen suggest that the lower Nama Group, which contains a unique Ediacara fauna and was derived from easterly sources, was deposited between about 650 and 550 m.y. ago during deformation north of the Southern Zone ocean. During the final major deformation event in the Central Zone (D 3 doming), the fore-arc deposits and the underlying passive-margin sediments to the south were deformed. The Damaran granitic rocks are Hercynotype; granites make up 96 per cent of the more than 200 plutons. Average compositions have a slightly less calc-alkaline character than typical compressional margin granitic suites. Early granites have I-type chemistries and appear to have been derived from deep crustal sources, whereas most of the young granites have intermediate to S-type compositions and were generated at various crustal levels

  12. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    Science.gov (United States)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  13. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt

    Science.gov (United States)

    Ren, Zhi; Zhou, Taofa; Hollings, Pete; White, Noel C.

    2018-05-01

    The Shapinggou molybdenum deposit is located in the Qinling-Dabie Orogen, which hosts the world's largest molybdenum belt. The igneous rocks at Shapinggou can be divided into two stages (136-127 Ma and 118-114 Ma), the early suite of felsic (136-127 Ma, SiO2 = 58.0 to 72.9 wt%) and mafic rocks (133-128 Ma, SiO2 = 45.2 to 57.0 wt%), and a later suite comprising syenite (117 Ma, SiO2 = 64.2 to 65.0 wt%), quartz syenite porphyry (116 Ma, 62.5 to 70.0 wt%), granite porphyry (112 Ma, SiO2 = 75.5 to 77.6 wt%) and diorite porphyry (111 Ma, SiO2 = 56.6 to 59.7 wt%). The early-stage felsic rocks display high SiO2, Al2O3, Na2O, K2O, Sr, LREE contents, and Sr/Y, (La/Yb)N ratios, initial Sr isotope ratios of 0.7076 to 0.7089, but low MgO, FeOT, Y, Yb contents and negative εNd(t) values, consistent with partial melting of the lower continental crust. The early-stage mafic rocks exhibit low SiO2, high MgO, Ni and Cr contents, consistent with an upper mantle source, but trace element and isotope data suggest a role for crustal contamination. The late-stage syenite and quartz syenite porphyry show high abundances of Na2O, K2O, Al2O3, HFSEs (e.g., Th, U, Zr, Hf) and significant negative Eu anomalies. The late-stage granite porphyry displays high SiO2 contents, and depletions in Ba, Sr, Eu and Ti. The geochemical features of the late-stage intrusions are similar to A-type granites. Crystal fractionation of plagioclase, K-feldspar, biotite/ muscovite, amphibole/ garnet and Fe-Ti oxides controlled the evolution of the magma. The geochemical and isotopic data suggest that the rocks at Shapinggou were likely derived from a mixed source of lithospheric mantle, subducted continental crust of the Yangtze Block (Kongling Group) and partial melts of the Dabie Complex. Early stage rocks represent melts of the source with a lower proportion of Dabie Complex materials, whereas late stage rocks were derived from a source with a higher proportion Dabie Complex component. The geochemical and

  14. Field guide to the Mesozoic accretionary complex along Turnagain Arm and Kachemak Bay, south-central Alaska

    Science.gov (United States)

    Bradley, Dwight C.; Kusky, Timothy M.; Karl, Susan M.; Haeussler, Peter J.

    1997-01-01

    Turnagain Arm, just east of Anchorage, provides a readily accessible, world-class cross section through a Mesozoic accretionary wedge. Nearly continuous exposures along the Seward Highway, the Alaska Railroad, and the shoreline of Turnagain Arm display the two main constituent units of the Chugach terrane: the McHugh Complex and Valdez Group. In this paper we describe seven bedrock geology stops along Turnagain Arm, and two others in the Chugach Mountains just to the north (Stops 1-7 and 9), which will be visited as part of the May, 1997 field trip of the Alaska Geological Society. Outcrops along Turnagain Arm have already been described in two excellent guidebook articles (Clark, 1981; Winkler and others 1984), both of which remain as useful and valid today as when first published. Since the early 1980's, studies along Turnagain Arm have addressed radiolarian ages of chert and conodont ages of limestone in the McHugh Complex (Nelson and others, 1986, 1987); geochemistry of basalt in the McHugh Complex (Nelson and Blome, 1991); post-accretion brittle faulting (Bradley and Kusky, 1990; Kusky and others, 1997); and the age and tectonic setting of gold mineralization (Haeussler and others, 1995). Highlights of these newer findings will described both in the text below, and in the stop descriptions.Superb exposures along the southeastern shore of Kachemak Bay show several other features of the McHugh Complex that are either absent or less convincing along Turnagain Arm. While none of these outcrops can be reached via the main road network, they are still reasonably accessible - all are within an hour by motorboat from Homer, seas permitting. Here, we describe seven outcrops along the shore of Kachemak Bay that we studied between 1989 and 1993 during geologic mapping of the Seldovia 1:250,000- scale quadrangle. These outcrops (Stops 61-67) will not be part of the 1997 itinerary, but are included here tor the benefit of those who may wish to visit them later.

  15. La Galite Archipelago (Tunisia, North Africa): Stratigraphic and petrographic revision and insights for geodynamic evolution of the Maghrebian Chain

    Science.gov (United States)

    Belayouni, Habib; Brunelli, Daniele; Clocchiatti, Roberto; Di Staso, Angelida; El Hassani, Iz-Eddine El Amrani; Guerrera, Francesco; Kassaa, Samia; Ouazaa, Nejia Laridhi; Martín, Manuel Martín; Serrano, Francisco; Tramontana, Mario

    2010-01-01

    The location of the La Galite Archipelago on the Internal/External Zones of the Maghrebian Chain holds strong interest for the reconstruction of the geodynamic evolution of the Mesomediterranean Microplate-Africa Plate Boundary Zone. New stratigraphic and petrographic data on sedimentary successions intruded upon by plutonic rocks enabled a better definition of the palaeogeographic and palaeotectonic evolutionary model of the area during the early-middle Miocene. The lower Miocene sedimentary units ( La Galite Flysch and Numidian-like Flysch) belong to the Mauritanian (internal) and Massylian (external) sub-Domains of the Maghrebian Chain, respectively. These deposits are related to a typical syn-orogenic deposition in the Maghrebian Flysch Basin Domain, successively backthrusted above the internal units. The backthrusting age is post-Burdigalian (probably Langhian-Serravallian) and the compressional phase represents the last stage in the building of the accretionary wedge of the Maghrebian orogen. These flysch units may be co-relatable to the similar well-known formations along the Maghrebian and Betic Chains. The emplacement of potassic peraluminous magmatism, caused local metamorphism in the Late Serravallian-Early Tortonian (14-10 Ma), after the last compressional phase (backthrusting), during an extensional tectonic event. This extensional phase is probably due to the opening of a slab break-off in the deep subduction system. La Galite Archipelago represents a portion of the Maghrebian Flysch Basin tectonically emplaced above the southern margin of the "Mesomediterranean Microplate" which separated the Piemontese-Ligurian Ocean from a southern oceanic branch of the Tethys (i.e. the Maghrebian Flysch Basin). The possible presence of an imbricate thrust system between La Galite Archipelago and northern Tunisia may be useful to exclude the petroleum exploration from the deformed sectors of the offshore area considered.

  16. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  17. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    Science.gov (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  18. The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions

    NARCIS (Netherlands)

    Qiu, H.N.; Wijbrans, J.R.

    2008-01-01

    The pressure-temperature-time evolution of the UHP eclogites of Dabie-Sulu, in the eastern sector of the Central Orogenic Belt of China shows a complex pattern of predominantly Triassic, and to a lesser extent Early Paleozoic ages.

  19. A discussion on the tectonic implications of Ediacaran late- to post-orogenic A-type granite in the northeastern Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Robinson, F. A.; Bonin, B.; Pease, V.; Anderson, J. L.

    2017-03-01

    The transition from late-orogenic to post-orogenic magmatism following major orogenic episodes such as the Neoproterozoic to Cambrian East African Orogen (EAO) is an important, yet not well-understood geological event marking the cessation of subduction-controlled magmatism between buoyant lithospheric fragments. Forming the northern part of the EAO in the Arabian-Nubian Shield are three granitic suites that successively intruded the same northeastern area and post-date the 640 Ma major orogenic episode: (1) 620-600 Ma alkali feldspar (hypersolvous) granite with alkaline/ferroan/A-type geochemistry, (2) 599 Ma granite cumulates (some garnet-bearing) with calc-alkaline/magnesian affinities, and (3) 584-566 Ma alkali feldspar (hypersolvous) granite (aegirine-bearing) with a distinctive peralkaline/ferroan/A-type signature. Combining whole-rock geochemistry from the southern and northern Arabian Shield, suites 1 and 2 are suggested to be products of late-orogenic slab tear/rollback inducing asthenospheric mantle injection and lower crustal melting/fractionation toward A-type/ferroan geochemistry. Suite 3, however, is suggested to be produced by post-orogenic lithospheric delamination, which replaced the older mantle with new asthenospheric (rare earth element-enriched) mantle that ultimately becomes the thermal boundary layer of the new lithosphere. Major shear zones, such as the 620-540 Ma Najd Fault System (NFS), are some of the last tectonic events recorded across the Arabian Shield. Data presented here suggest that the NFS is directly related to the late-orogenic (620-600 Ma) slab tear/rollback in the northeastern Shield as it met with opposing subduction polarity in the southern Shield. Furthermore, this study infers that east and west Gondwana amalgamation interacted with opposing convergence reflected by the NFS.

  20. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Science.gov (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  1. Uranium cycle and tectono-metamorphic evolution of the Lufilian Pan-African orogenic belt (Zambia)

    International Nuclear Information System (INIS)

    Eglinger, Aurelien

    2013-01-01

    Uranium is an incompatible and lithophile element, and thus more concentrated in silicate melt produced by the partial melting of the mantle related to continental crust formation. Uranium can be used as a geochemical tracer to discuss the generation and the evolution of continental crust. This thesis, focused on the Pan-African Lufilian belt in Zambia, combines structural geology, metamorphic petrology and thermos-barometry, fluid inclusions, geochemistry and geochronology in order to characterize the uranium cycle for this crustal segment. Silici-clastic and evaporitic sediments have been deposited within an intra-continental rift during the dislocation of the Rodinia super-continent during the early Neo-proterozoic. U-Pb ages on detrital zircon grains in these units indicate a dominant Paleo-proterozoic provenance. The same zircon grains show sub-chondritic εHf (between 0 and -15) and yield Hf model ages between ∼2.9 and 2.5 Ga. These data suggest that the continental crust was generated before the end of the Archean (< 2.5 Ga) associated with uranium extraction from the mantle. This old crust has been reworked by deformation and metamorphism during the Proterozoic. Uranium has been re-mobilized and reconcentrated during several orogenic cycles until the Pan-African orogeny. During this Pan-African cycle, U-Pb and REY (REE and Yttrium) signatures of uranium oxides indicate a first mineralizing event at ca. 650 Ma during the continental rifting. This event is related to late diagenesis hydrothermal processes at the basement/cover interface with the circulation of basinal brines linked to evaporites of the Roan. The second stage, dated at 530 Ma, is connected to metamorphic highly saline fluid circulations, synchronous to the metamorphic peak of the Lufilian orogeny (P=9±3 kbar; T=610±30 deg. C). These fluids are derived from the Roan evaporite dissolution. Some late uranium re-mobilizations are described during exhumation of metamorphic rocks and their

  2. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  3. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen.

    Science.gov (United States)

    Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars

    2017-01-01

    Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya-Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle's elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya-Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide.

  4. Perovskite, reaction product of a harzburgite with Jurassic– Cretaceous accretionary wedge fluids (Western Carpathians, Slovakia: evidence from the whole-rock and mineral trace element data

    Directory of Open Access Journals (Sweden)

    Putiš Marián

    2016-04-01

    Full Text Available Perovskite (Prv was discovered in an abyssal harzburgite from a “mélange” type blueschist-bearing accretionary wedge of the Western Carpathians (Meliata Unit, Slovakia. Perovskite-1 formation in serpentinized orthopyroxene may be simplified by the mass-balance reaction: Ca2Si2O6 (Ca-pyroxene-member+2Fe2TiO4 (ulvöspinel molecule in spinel+2H2O+O2=2CaTiO3 (Prv+2SiO2+4FeOOH (goethite. Perovskite-2 occurs in a chlorite-rich blackwall zone separating serpentinite and rodingite veins, and in rodingite veins alone. The bulk-rock trace-element patterns suggest negligible differences from visually and microscopically less (“core” to strongly serpentinized harzburgite due to serpentinization and rodingitization: an enrichment in LREE(La,Ce, Cs, ±Ba, U, Nb, Pb, As, Sb, ±Nd and Li in comparison with HREE, Rb and Sr. The U/Pb perovskite ages at ~135 Ma are interpreted to record the interaction of metamorphic fluids with harzburgite blocks in the Neotethyan Meliatic accretionary wedge. Our LA-ICP-MS mineral study provides a complex view on trace element behaviour during the two stages of rodingitization connected with Prv genesis. The positive anomalies of Cs, U, Ta, Pb, As, Sb, Pr and Nd in Cpx, Opx and Ol are combined with the negative anomalies of Rb, Ba, Th, Nb and Sr in these minerals. The similar positive anomalies of Cs, U, Ta, ±Be, As, Sb found in typical serpentinization and rodingitization minerals, with variable contents of La, Ce and Nd, and negative anomalies of Rb, Ba, Th, Nb and Sr suggest involvement of crustal fluids during MP-LP/LT accretionary wedge metamorphism. LA-ICP-MS study revealed strong depletion in LREE from Prv-1 to Prv-2, and a typically negative Eu (and Ti anomaly for Prv-1, while a positive Eu (and Ti anomaly for Prv-2. Our multi-element diagram depicts enrichment in U, Nb, La, Ce, As, Sb, Pr, Nd and decreased Rb, Ba, Th, Ta, Pb, Sr, Zr in both Prv generations. In general, both Prv generations are very close to the

  5. Tectonic and Sedimentation Interactions in the East Caribbean Subduction Zone: AN Overview from the Orinoco Delta to the Barbados Accretionary Prism

    Science.gov (United States)

    Deville, E.

    2011-12-01

    Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region

  6. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings

    Science.gov (United States)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.

    2017-09-01

    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  7. Magnitude of crustal shortening and structural framework of the easternmost Himalayan orogen, northern Indo-Burma Ranges of northeastern India

    Science.gov (United States)

    Haproff, P. J.; Yin, A.

    2016-12-01

    Along-strike variation in crustal shortening throughout the Himalayan orogen has been attributed to (1) diachronous, eastward-increasing convergence, or (2) localized controls including pre-collisional stratigraphic configuration and climate. In this study, we present new geologic maps and balanced cross-sections across the easternmost segment of the Himalayan orogen, the N-S-trending N. Indo-Burma Ranges of northeastern India. First order structures are NE-dipping, km-wide ductile thrust shear zones with mylonitic fabrics indicating top-to-the SW motion. Major structures include the Mayodia klippe and Hunli window, generated during folding of the SW-directed Tidding thrust and duplexing of Lesser Himalayan rocks (LHS) at depth. Reconstruction of two balanced cross-sections yields minimum shortening estimates of 70% (48 km) and 71% (133 km), respectively. The widths of the orogen for each transect are 21 km and 54 km, respectively. Our percent strain values are comparable to that of western Arunachal Himalaya, reflecting eastward-increasing strain due to counterclockwise rotation of India during convergence or along-strike variation in India's subduction angle. However, shortening magnitudes much less than that of the Sikkim (641 km), Bhutan (414-615 km), and western Arunachal Himalaya (515-775 km) could signal eastward increasing shortening of a unique Himalayan stratigraphic framework, evidenced by few GHC rocks, absence of Tethyan strata, and an extensive subduction mélange and forearc complex.

  8. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; van der Pluijm, B.A. (Univ. of Michigan, Ann Arbor (USA))

    1990-11-01

    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  9. Organic molecular paleohypsometry: A new approach to reconstructing the paleoelevation history of an orogen

    Science.gov (United States)

    Hren, M. T.; Ouimet, W. B.

    2017-12-01

    Paleoelevation data is critical to understanding the links and feedbacks between rock-uplift and erosion yet few approaches have proved successful in quantifying changes in paleoelevation rapidly eroding, tropical landscapes. In addition, quantitative methods of reconstructing paleoelevation from marine sedimentary archives are lacking. Here we present a new approach to quantifying changes in paleoelevation that is based on the geochemical signature of organic matter exported via the main river networks of an orogen. This new approach builds on fundamentals of stable isotope paleoaltimetry and is akin to the theory behind cosmogenic isotope records of catchment-integrated erosion. Specifically, we utilize predictable patterns of precipitation and organic molecular biomarker stable isotopes to relate the hypsometry of organic matter in a catchment to the geochemical signal in exported organic carbon. We present data from two sites (the cold temperate White Mountains of New Hampshire, USA and the tropical, rapidly eroding landscape of Taiwan) to demonstrate this relationship between exported carbon geochemistry and catchment hypsometry and the validity of this approach.

  10. Devonian magmatism in the Timan Range, Arctic Russia - subduction, post-orogenic extension, or rifting?

    Science.gov (United States)

    Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.

    2016-11-01

    Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.

  11. Three-dimensional thermoluminescence spectra of different origin quartz from Altay Orogenic belt, Xinjiang, China

    International Nuclear Information System (INIS)

    Tan Kaixuan; Liu Zehua; Zeng Sheng; Liu Yan; Xie Yanshi; Rieser, Uwe

    2009-01-01

    Three-dimensional thermoluminescence spectra are measured for different types of geological origin quartz from the Altay orogenic belt, northern Xinjiang, China. The results show striking differences which appear to be characteristic of their geological origin. Granitic quartz is dominated by emission bands at 420-430 nm, 550-560 nm, at a temperature of 170 deg. C. Pegmatite quartz is characterized by an intense 480 nm emission band at 170 deg. C. Volcanic quartz has exclusive UV (340-360 nm) and violet (410-430 nm) emission bands. Hydrothermal quartz exhibits very different TL spectral characteristics because of different hydrothermal activity and mineralization. Only one TL peaks at 485 nm/170 deg. C was observed in sedimentary quartz. An intense 730 nm emission band observed at 170 deg. C considered generally to be characteristics of feldspar was observed in quartz from granite and hydrothermal Au-bearing quartz. This TL peak is probably related to the centre of [FeO 4 ] 0 on an Si site. All samples show an intense 990-1000 nm emission band at 330 deg. C. Identical types of quartz formed in different regions or different geological and tectonic settings can also exhibit striking differences in TL spectra.

  12. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    Science.gov (United States)

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  13. Uraniferous alaskitic granites with special reference to the Damara Orogenic Belt

    International Nuclear Information System (INIS)

    Toens, P.D.; Corner, B.

    1980-10-01

    The control and patterns of uranium mineralisation in the alaskitic granites of the Damara Orogenic Belt are discussed. The polyphase Damara metamorphism produced high-grade metamorphic assemblages, migmatites and syn-, late-, and post-tectonic anatectic granites through reactivation of the basement and overlying Damara rocks. During anatexis the incompatible elements, particularly the uranium derived from these formations, were incorporated into the melts which then rose, in an attempt to attain gravitational equilibrium, by varying distances depending on the depth of origin of the melts, on their water content and on the availability of tensional environments. Fractional crystallisation during ascent and increased water content concentrated the uranium into residual melts which finally crystallised as alaskitic pegmatitic granite. Structural episodes played an important part in the emplacement of the uraniferous granites and the presence of marble bands was an important factor in not only providing a structural trap for the alaskitic melts and associated uranium-rich volatiles, but also by leading to the boiling of the magma and the subsequent deposition of uranium. The present-day level of erosion is considered to be an important factor contributing to the preservation of many of the uraniferous granite bodies. In addition it is suggested that secondary enrichment occurring above the water-table in the prevailing desert environment is an important criterion in enriching the tenor of mineralisation to ore grades. The exploration techniques necessary for the location of uraniferous granite bodies are briefly outlined [af

  14. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran

    Directory of Open Access Journals (Sweden)

    Taghipour Batoul

    2015-03-01

    Full Text Available The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ, within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist and footwall (meta-limestone rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG type shear zone and orogenic type gold mineralisation.

  15. Australian provenance for Upper Permian to Cretaceous rocks forming accretionary complexes on the New Zealand sector of the Gondwana land margin

    International Nuclear Information System (INIS)

    Pickard, A.L.; Barley, M.E.

    2000-01-01

    U-Pb (SHRIMP) detrital zircon age patterns are reported for 12 samples of Permian to Cretaceous turbiditic quartzo-feldspathic sandstone from the Torlesse and Waipapa suspect terranes of New Zealand. Their major Permian to Triassic, and minor Early Palaeozoic and Mesoproterozoic, age components indicate that most sediment was probably derived from the Carboniferous to Triassic New England Orogen in northeastern Australia. Rapid deposition of voluminous Torlesse/Waipapa turbidite fans during the Late Permian to Late Triassic appears to have been directly linked to uplift and exhumation of the magmatically active orogen during the 265-230 Ma Hunter-Bowen event. This period of cordilleran-type orogeny allowed transport of large volumes of quartzo-feldspathic sediment across the convergent Gondwana land margin. Post-Triassic depocentres also received (recycled?) sediment from the relict orogen as well as from Jurassic and Cretaceous volcanic provinces now offshore from southern Queensland and northern New South Wales. The detailed provenance-age fingerprints provided by the detrital zircon data are also consistent with progressive southward derivation of sediment: from northeastern Queensland during the Permian, southeastern Queensland during the Triassic, and northeastern New South Wales - Lord Howe Rise - Norfolk Ridge during the Jurassic to Cretaceous. Although the dextral sense of displacement is consistent with the tectonic regime during this period, detailed characterisation of source terranes at this scale is hindered by the scarcity of published zircon age data for igneous and sedimentary rocks in Queensland and northern New South Wales. Mesoproterozoic and Neoproterozoic age components cannot be adequately matched with likely source terranes in the Australian-Antarctic Precambrian craton, and it is possible they originated in the Proterozoic cores of the Cathaysia and Yangtze Blocks of southeast China. Copyright (1999) Geological Society of Australia

  16. Isotopic and chemical evidence for three accretionary magmatic arcs ( 1.79 - 1.42 Ga) in the SW Amazon Craton, Mato Grosso State, Brazil

    International Nuclear Information System (INIS)

    Geraldes, Mauro Cesar; Teixeira, Wilson; Schmus, William Randall van

    2000-01-01

    Twenty-one U/Pb ages of granitoids in the SW Amazon craton define three crustal accretionary events during the Paleo-and Mesoproterozoic that represent significant portions of the Rio Negro-Juruena Province and the Rondonian/San Ignacio province. Two events refer to the Rio Negro-Juruena province: The Alto Jauru greenstone belt comprises acid volcanics and tonalite to granite gneisses with U/Pb ages from 1790 to 1750 Ma. Sm/Nd isotopic data (e N -d (t) from +2.6 to +2.2 and T DM from 2.0 to 1.80 Ga) indicate a volcanic arc with juvenile signatures for these units. The second event (Cachoeirinha arc) comprises granites to tonalites with U/Pb ages from 1580 to 1530 Ma. Sm/Nd results. (author)

  17. Calcite twinning strain variations across the Proterozoic Grenville orogen and Keweenaw-Kapuskasing inverted foreland, USA and Canada

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2017-11-01

    Full Text Available We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW to Ft. Ann, New York (SE, including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains across the Central Gneiss Belt (CGB; 3 samples, the Central Metasedimentary Belt (CMB; 27 samples, the Central Granulite Terrane (CGT; Adirondack's; 13 samples and the Ottawan Orogenic Lid (OOL; 11 samples. Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (∼1150 Ma; n = 4 document these marbles formed during the Shawinigan (1190–1140 Ma part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound, then becomes parallel to the Grenville thrust direction (NW–SE across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE. Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11 and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8. Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2. The better-developed e1 sets (n = 406 record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146 preserve a margin-parallel (SW–NE horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV, perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville

  18. Neotethyan rifting-related ore occurrences: study of an accretionary mélange complex (Darnó Unit, NE Hungary

    Directory of Open Access Journals (Sweden)

    Kiss Gabriella B.

    2016-02-01

    Full Text Available The geology of the NE Hungarian Darnó Unit is rather complicated, as it is composed mostly of a Jurassic accretionary mélange complex, according to the most recent investigations. The magmatic and sedimentary rock blocks of the mélange represent products of different evolutionary stages of the Neotethys; including Permian and Triassic sedimentary rocks of marine rifting related origin, Triassic pillow basalt of advanced rifting related origin and Jurassic pillow basalt originated in back-arc-basin environment. This small unit contains a copper-gold occurrence in the Permian marly-clayey limestone, an iron enrichment in the Triassic sedimentary succession, a copper-silver ore occurrence in Triassic pillow basalts and a copper ore indication, occurring both in the Triassic and Jurassic pillow basalts. The present study deals with the Cu(-Ag occurrence in the Triassic basalt and the Fe occurrence in the Triassic sedimentary succession. The former shows significant similarities with the Michigan-type mineralizations, while the latter has typical characteristics of the Fe-SEDEX deposits. All the above localities fit well into the new geological model of the investigated area. The mineralizations represent the different evolutionary stages of the Neotethyan rifting and an epigenetic, Alpine metamorphism-related process and their recent, spatially close position is the result of the accretionary mélange formation. Thus, the Darnó Unit represents a perfect natural laboratory for studying and understanding the characteristic features of several different rifting related ore forming processes.

  19. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides

    Science.gov (United States)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.

    2013-04-01

    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  20. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China

    Science.gov (United States)

    Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao

    2018-01-01

    Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical

  1. Linking orogen and peripheral foreland basin: conceptual model and application to the Southalpine-Dinaric (Friuli) orocline

    Science.gov (United States)

    Heberer, Bianca; Neubauer, Franz

    2010-05-01

    Surface uplift and rock exhumation within an orogen are generally a consequence of convergence, and can often be linked with subsidence in a peripheral foreland. Since vertical loads act on the entire lithosphere, these processes can, therefore, be considered as plate-scale processes. Here, we propose a conceptual model for this linkage for the Friuli orocline and its surrounding units. The Friuli orocline stretches from the ENE-trending Southern Alps to the SE-trending Dinarides. There, two Neogene stages of convergence and associated deformation can be differentiated: (1) a Mid-Late Miocene phase of increased surface uplift and intra-orogenic subsidence of sedimentary basins reflecting intra-orogenic crustal-scale folding. Depocentres are e.g. the flexural Belluno, Ljubljana and Klagenfurt basins. (2) A second stage of convergence during Late Pliocene-Pleistocene times led to overall surface uplift in the orogen and contemporaneous pronounced subsidence in the peripheral foreland basin (Venetian platform and the northern Adriatic Sea). We propose, that the spatially variable extent of subsidence originates in variably strong orogen-basin coupling, i.e. weak coupling during stage 1 vs. strong coupling during stage 2. This interpretation is based on the apatite fission track age pattern, the distribution of intra-orogenic Neogene sediment basins and subsidence analyses in the foreland basin (Barbieri et al., 2007). Available low-temperature thermochronological data for the Southern Alps and the NW Dinarides are sparse, in contrast to a dense network of primarily apatite fission track ages north of the Periadriatic lineament (e.g. summarized by Luth & Willingshofer, 2008). AFT ages adjacent to the eastern Periadriatic Lineament mainly range from 15 to 25 Ma (Hejl, 1997; Fodor et al., 2008). Detrital studies on Oligocene to Miocene sediments from the Venetian foreland basin yielded dominant age groups clustering roughly around 20 and 30 Ma (Stefani et al., 2008

  2. Understanding erosion rates in the Himalayan orogen: A case study from the Arun Valley

    Science.gov (United States)

    Olen, Stephanie M.; Bookhagen, Bodo; Hoffmann, Bernd; Sachse, Dirk; Adhikari, D. P.; Strecker, Manfred R.

    2015-10-01

    Understanding the rates and pattern of erosion is a key aspect of deciphering the impacts of climate and tectonics on landscape evolution. Denudation rates derived from terrestrial cosmogenic nuclides (TCNs) are commonly used to quantify erosion and bridge tectonic (Myr) and climatic (up to several kiloyears) time scales. However, how the processes of erosion in active orogens are ultimately reflected in 10Be TCN samples remains a topic of discussion. We investigate this problem in the Arun Valley of eastern Nepal with 34 new 10Be-derived catchment-mean denudation rates. The Arun Valley is characterized by steep north-south gradients in topography and climate. Locally, denudation rates increase northward, from <0.2 mm yr-1 to ~1.5 mm yr-1 in tributary samples, while main stem samples appear to increase downstream from ~0.2 mm yr-1 at the border with Tibet to 0.91 mm yr-1 in the foreland. Denudation rates most strongly correlate with normalized channel steepness (R2 = 0.67), which has been commonly interpreted to indicate tectonic activity. Significant downstream decrease of 10Be concentration in the main stem Arun suggests that upstream sediment grains are fining to the point that they are operationally excluded from the processed sample. This results in 10Be concentrations and denudation rates that do not uniformly represent the upstream catchment area. We observe strong impacts on 10Be concentrations from local, nonfluvial geomorphic processes, such as glaciation and landsliding coinciding with areas of peak rainfall rates, pointing toward climatic modulation of predominantly tectonically driven denudation rates.

  3. Late Palaeozoic magmatism in the northern New England Orogen - evidence from U-Pb SHRIMP dating in the Yarrol and Connors provinces, central Queensland

    International Nuclear Information System (INIS)

    Withnall, I.W.; Hutton, L.J.; Hayward, M.A.; Blake, P.; Fanning, C.M.; Burch, G.

    1999-01-01

    Full text: The northern part of the New England Orogen in central Queensland has been divided into three provinces, which are from east to west, the Wandilla, Yarrol and Connors Provinces. Previous workers suggested that the provinces are elements in an Early Carboniferous west-dipping subduction system with the Wandilla Province representing the accretionary wedge, the Yarrol Province a forearc basin and the Connors Province the volcanic arc. Farther west, a fourth province, the Drummond Basin, is interpreted as a back-arc basin. The Connors Province crops out in two areas, the Auburn Arch in the south and Connors Arch in the north. Prior to the present study, some workers recognised two superimposed volcanic arcs, one in the Late Devonian and a second in the Early Permian. Other workers have challenged this model suggesting that the rocks in the Connors Province were mainly Late Carboniferous to Early Permian and that they recorded a period of continental extension. U-Pb SHRIMP dating in the Connors Province has confirmed the existence of at least episodic Early Carboniferous magmatism from the Tournaisian to Namurian in both the Auburn and Connors Arches. We suggest that the Tournaisian rocks are vestiges of the Early Carboniferous volcanic arc suggested by earlier workers. Ages of ∼350Ma and ∼349Ma in the Connors Province are similar to ages for volcanics in Cycle 1 in the Drummond Basin and to volcanics in the lower part of the Rockhampton Group in the Yarrol Province. Magmatism in the Drummond Basin and Yarrol Province continued into the Visean although no early Visean rocks have yet been recognised in the Connors Province. The mid-Carboniferous (late Visean) may represent an important change in the evolution of the region. East of the Auburn Arch, in the Yarrol Province, this time corresponds to the boundary between the Rockhampton Group and Lorray Formation, and is marked by a sudden increase in regional radiometric response. It represents the start of

  4. Timing and nature of Holocene glacier advances at the northwestern end of the Himalayan-Tibetan orogen

    Science.gov (United States)

    Saha, Sourav; Owen, Lewis A.; Orr, Elizabeth N.; Caffee, Marc W.

    2018-05-01

    Holocene glacial chronostratigraphies are developed for four glaciated valleys at the northwestern end of the Himalayan-Tibetan orogen using geomorphic mapping and cosmogenic 10Be surface exposure dating. The study areas include the Hamtah valley in the Lahul Himalaya, and the Karzok, Lato and upper Stok valleys in Zanskar. Five local glacial stages are dated to ∼10.4, ∼6.1-3.3, ∼2.1-0.9, ∼0.7-0.4, and ∼0.3-0.2 ka based on 49 new moraine boulder ages. Large age dispersions are evident for each of the local glacial stages. This is especially the case for ∼6.1-3.3 and ∼2.1-0.9 ka, which is likely a result of prior and/or incomplete exposures in very young moraine boulders. An additional compilation of 187 published 10Be moraine boulder ages help define seven Himalayan Holocene regional glacial stages (HHs) for the northwestern end of the Himalayan-Tibetan orogen. These HHs date to ∼10.9-9.3, ∼8.2-7.4, ∼6.9-4.3, ∼4.5-2.8, ∼2.7-1.8, ∼1.8-0.9, and forced northerly migration of the Intertropical Convergence Zone and enhanced summer monsoon. The timing of the majority of HHs during mid- and late Holocene corresponds well with the North Atlantic cooling that is likely teleconnected via mid-latitude westerlies, particularly during ∼8 ka and after ∼5 ka. These chronostratigraphies suggest that Holocene glaciation in the northwestern part of the Himalayan-Tibetan orogen is largely influenced by long-term orbital forcing amplified by large-scale migration of the Earth's thermal equator and the associated hemispheric oceanic-atmospheric systems.

  5. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    Science.gov (United States)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  6. Characterization of structures of the Nankai Trough accretionary prism from integrated analyses of LWD log response, resistivity images and clay mineralogy of cuttings: Expedition 338 Site C0002

    Science.gov (United States)

    Jurado, Maria Jose; Schleicher, Anja

    2014-05-01

    The objective of our research is a detailed characterization of structures on the basis of LWD oriented images and logs,and clay mineralogy of cuttings from Hole C0002F of the Nankai Trough accretionary prism. Our results show an integrated interpretation of structures derived from borehole images, petrophysical characterization on LWD logs and cuttings mineralogy. The geometry of the structure intersected at Hole C0002F has been characterized by the interpretation of oriented borehole resistivity images acquired during IODP Expedition 338. The characterization of structural features, faults and fracture zones is based on a detailed post-cruise interpretation of bedding and fractures on borehole images and also on the analysis of Logging While Drilling (LWD) log response (gamma radioactivity, resistivity and sonic logs). The interpretation and complete characterization of structures (fractures, fracture zones, fault zones, folds) was achieved after detailed shorebased reprocessing of resistivity images, which allowed to enhance bedding and fracture's imaging for geometry and orientation interpretation. In order to characterize distinctive petrophysical properties based on LWD log response, it could be compared with compositional changes derived from cuttings analyses. Cuttings analyses were used to calibrate and to characterize log response and to verify interpretations in terms of changes in composition and texture at fractures and fault zones defined on borehole images. Cuttings were taken routinely every 5 m during Expedition 338, indicating a clay-dominated lithology of silty claystone with interbeds of weakly consolidated, fine sandstones. The main mineralogical components are clay minerals, quartz, feldspar and calcite. Selected cuttings were taken from areas of interest as defined on LWD logs and images. The clay mineralogy was investigated on the LWD) data allowed us to characterize structural, petrophysical and mineralogical properties at fracture and

  7. Early Cretaceous wedge extrusion in the Indo-Burma Range accretionary complex: implications for the Mesozoic subduction of Neotethys in SE Asia

    Science.gov (United States)

    Zhang, Ji'en; Xiao, Wenjiao; Windley, Brian F.; Cai, Fulong; Sein, Kyaing; Naing, Soe

    2017-06-01

    The Indo-Burma Range (IBR) of Myanmar, the eastern extension of the Yarlung-Tsangpo Neotethyan belt of Tibet in China, contains mélanges with serpentinite, greenschist facies basalt, chert, sericite schist, silty slate and unmetamorphosed Triassic sandstone, mudstone and siltstone interbedded with chert in the east, and farther north high-pressure blueschist and eclogite blocks in the Naga Hills mélange. Our detailed mapping of the Mindat and Magwe sections in the middle IBR revealed a major 18 km antiformal isocline in a mélange in which greenschist facies rocks in the core decrease in grade eastwards and westwards symmetrically `outwards' to lower grade sericite schist and silty slate, and at the margins to unmetamorphosed sediments, and these metamorphic rocks are structurally repeated in small-scale imbricated thrust stacks. In the Mindat section the lower western boundary of the isoclinal mélange is a thrust on which the metamorphic rocks have been transported over unmetamorphosed sediments of the Triassic Pane Chaung Group, and the upper eastern boundary is a normal fault. These relations demonstrate that the IBR metamorphic rocks were exhumed by wedge extrusion in a subduction-generated accretionary complex. Along strike to the north in the Naga Hills is a comparable isoclinal mélange in which central eclogite lenses are succeeded `outwards' by layers of glaucophane schist and glaucophanite, and to lower grade greenschist facies sericite schist and slate towards the margins. In the Natchaung area (from west to east) unmetamorphosed Triassic sediments overlie quartzites, sericite schists, actinolite schists and meta-volcanic amphibolites derived from MORB-type basalt, which are in fault contact with peridotite. Olivine in the peridotite has undulatory extinction suggesting deformation at 600-700 °C, similar to the peak temperature of the amphibolite; these relations suggest generation in a metamorphic sole. The amphibolites have U/Pb zircon ages of 119

  8. Tectonic evolution of a part of the Tethyside orogenic collage: The Kargi Massif, northern Turkey

    Science.gov (United States)

    Tüysüz, Okan

    1990-02-01

    The central part of the Rhodope-Pontide fragment, one of the major tectonic units in Turkey, provides critical data for evaluating the Cimmeride and Alpide evolution of the Mediterranean Tethysides. Tectonic events that affected the central part of the Rhodope-Pontide fragment since the end of the Paleozoic, generated east-west trending belts with the event of every episode redeforming and partly obliterating the structures of previous episodes. This evolution may be conveniently described in terms of three major episodes: (1) Two different realms of pre-Dogger oceanic rocks are present in the area. The northern realm coincided with main branch of Paleo-Tethys that was being actively destroyed by south dipping subduction. The southern realm, the Karakaya ocean, a back arc basin related to this subduction, began opening by rifting of a retroarc carbonate platform during the Permo-Triassic. To the west a continental domain with sparse magmatism seperated the two oceanic areas. Toward the east the two oceans become united by the wedging out of the continental domain. These two pre-Dogger oceans closed during the Lias, and their remnants were emplaced between the southern margin of Laurasia and the fragments of the Cimmerian continent. (2) The second episode partly overlapped the first with rifting south of the Cimmerian continent fragment during the Lias. This rifting was followed by a transgression which covered the ruins of the Cimmeride orogenic belt by the Malm. This rifting concurrently led to the development of the northern branch of the Neo-Tethys and a south facing Atlantic-type continental margin. A southerly thickening sedimentary prism developed on this margin during the Lias to early Cretaceous interval. (3) The floor of the northern branch of Neo-Tethys began to be consumed along the north dipping subduction zone beneath the previosly constructed continental margin. This convergent margin generated a magmatic arc to the north and to the south a subduction

  9. Two modes of orogenic collapse of the Pamir plateau recorded by titanite

    Science.gov (United States)

    Stearns, M. A.; Hacker, B. R.; Ratschbacher, L.; Rutte, D.; Kylander-Clark, A. R.

    2013-12-01

    Processes that operate in the mid- to lower crust during and following continent-continent collision are important for understanding how orogenic plateaux transition from thickening to collapse. In the central and southern Pamir, mid- to lower crustal rocks crop out in two belts of extensional domes. The central Pamir domes were exhumed by symmetrical N-S extension. In contrast, the southern Pamir domes were exhumed by asymmetrical top to the south (NNW-SSE) extension via a rolling-hinge detachment. To investigate the high-temperature exhumation history, titanites were dated using LASS (laser ablation split stream-ICP-MS). A multi-collector ICP was used to collect U-Pb isotopic ratios and a single collector ICP-MS was used to measure trace-element abundances. The data indicate that the central Pamir domes began exhumation synchronously at ~17 Ma. Titanite from the southern Pamir record two periods of protracted (re)crystallization: older metamorphic dates ranging from ~35-18 Ma and younger igneous and metamorphic dates from ~15-7 Ma. Samples with single populations of titanite dates are present throughout both groups. Samples with more-complex date populations typically have distinct trace-element (e.g., Sr, Y, Zr, and Nb) groups that can be used to distinguish different date populations (e.g., older dates may have higher Zr and younger dates lower Zr). The distinct early exhumation histories of the north and south Pamir require either a diachronous single process or two semi-independent processes. The N to S sequence of exhumation, ranges of dates, and overall extension directions may be related to two important plate-tectonic events inferred from seismic data: 1) breakoff of the northward subducting Indian slab around ~20 Ma, and 2) southward subduction and northwestward rollback of the Asian lithosphere between ~15-10 Ma based on geodetic convergence rates and Benioff zone length. We interpret these two lithospheric-detachment events to have driven the

  10. Geochemical modeling of orogenic gold deposit using PCANN hybrid method in the Alut, Kurdistan province, Iran

    Science.gov (United States)

    Mohammadzadeh, Mohammadjafar; Nasseri, Aynur

    2018-03-01

    In this paper stream sediments based geochemical exploration program with the aim of delineating potentially promising areas by a comprehensive stepwise optimization approach from univariate statistics, PCA, ANN, and fusion method PCANN were under taken for an orogenic gold deposit located in the Alut, Kurdistan province, NW of Iran. At first the data were preprocessed and then PCA were applied to determine the maximum variability directions of elements in the area. Subsequently the artificial neural network (ANN) was used for quick estimation of elemental concentration, as well as discriminating anomalous populations and intelligent determination of internal structure among the data. However, both the methods revealed constraints for modeling. To overcome the deficiency and shortcoming of each individual method a new methodology is presented by integration of both "PCA & ANN" referred as PCANN method. For integrating purpose, the detected PCs pertinent to ore mineralization selected and intruded to neural network structure, as a result different MLPs with various algorithms and structures were produced. The resulting PCANN maps suggest that the gold mineralization and its pathfinder elements (Au, Mo, W, Bi, Sb, Cu, Pb, Ag & As) are associated with metamorphic host rocks intruded by granite bodies in the Alut area. In addition, more concealed and distinct Au anomalies with higher intensity were detected, confirming the privileges of the method in evaluating susceptibility of the area in delineating new hidden potential zones. The proposed method demonstrates simpler network architecture, easy computational implementation, faster training speed, as well as no need to consider any primary assumption about the behavior of data and their probability distribution type, with more satisfactory predicting performance for generating gold potential map of the area. Comparing the results of three methods (PCA, ANN and PCANN), representing the higher efficiency and more

  11. Fluid-driven normal faulting earthquake sequences in the Taiwan orogen

    Science.gov (United States)

    Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui

    2017-04-01

    Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5

  12. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria

    Science.gov (United States)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.

    2015-10-01

    high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.

  13. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

    Science.gov (United States)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure

    2018-02-01

    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  14. Seismic evidence for multiple-stage exhumation of high/ultrahigh pressure metamorphic rocks in the eastern Dabie orogenic belt

    Science.gov (United States)

    Luo, Yinhe; Zhao, Kaifeng; Tang, Chi-Chia; Xu, Yixian

    2018-05-01

    The Dabie-Sulu orogenic belt in China contains one of the largest exposures of high and ultrahigh pressure (HP and UHP) metamorphic rocks in the world. The origin of HP/UHP metamorphic rocks and their exhumation to the surface in this belt have attracted great interest in the geologic community because the study of exhumation history of HP/UHP rocks helps to understand the process of continental-continental collision and the tectonic evolution of post-collision. However, the exhumation mechanism of the HP-UHP rocks to the surface is still contentious. In this study, by deploying 28 broadband seismic stations in the eastern Dabie orogenic belt and combining seismic data from 40 stations of the China National Seismic Network (CNSN), we image the high-resolution crustal isotropic shear velocity and radial anisotropy structure using ambient noise tomography. Our high-resolution 3D models provide new information about the exhumation mechanism of HP/UHP rocks and the origin of two dome structures.

  15. Sulfur and lead isotope geochemistry of the orogenic gold deposits in the eastern Kunlun area, Qinghai province

    International Nuclear Information System (INIS)

    Feng Chengyou; Zhang Dequan; Li Daxin; She Hongquan; Zhu Huaping

    2003-01-01

    Based on researches on the basic geological characteristics and sulfur and lead isotopic geochemistry of four typical gold deposits, it is considered that they have many similar geo-geochemical characteristics and are all related genetically to orogenic process. Therefore, they should belong to a type of orogenic gold deposits according to the newest classification of gold deposits provided by Kerrich et al. (2000). There is a big change in the average 34 S values of the sulfides selected from different deposits, varying from -3.7‰-4.4‰ and tower-shape distribution is apparent. The lead isotope in four gold deposits is characterized by high compositions and minor changes, with 206 Pb/ 204 Pb > 18.3380, 207 Pb/ 204 Pb > 15.5555, 208 Pb/ 204 Pb >38.1796 in ores and wall-rocks, it can be concluded that the ore-forming material consisting of sulfur and lead are mainly derived from wall-rocks. Intensive subduction and collision during late Paleozoic and early Mesozoic not only formed deep faults, large-scale shear belt, and low-order folds and faults but also induced fluidization and mineralization, and resulted in formation and zonal distribution of several large or medium gold deposits in this area. (authors)

  16. Extreme mass flux from the glaciated, collisional St. Elias Orogen: Preliminary results from IODP Expedition 341 (Invited)

    Science.gov (United States)

    Gulick, S. P.; Jaeger, J. M.

    2013-12-01

    Integrated Ocean Drilling Program Expedition 341 drilled a cross-margin transect to investigate the linkages between global climate change, modification of the dynamics of surficial processes, and subsequent tectonic responses. The Gulf of Alaska (GoA) borders the St. Elias orogen, the highest coastal mountain range on Earth. Exp. 341 drilled five sites within a regional seismic reflection grid that spans from the distal Surveyor Fan to the continental shelf. More than 3000 m of high-quality core coupled with seismic reflection profiles collected with nested vertical resolution allows us to address the major objectives of drilling in the GoA. These objectives were to: 1) document the tectonic response of an active orogenic system to late Miocene to recent climate change; 2) establish the timing of advance/retreat phases of the northern Cordilleran ice sheet to test its relation to dynamics of other global ice sheets; 3) implement an expanded source-to-sink study of the interactions between glacial, tectonic, and oceanographic processes responsible for creation of one of the thickest Neogene high-latitude continental margin sequences; 4) understand the dynamics of productivity, nutrients, freshwater input to the ocean, and ocean circulation in the northeast Pacific and their role in the global carbon cycle, and 5) document the spatial and temporal behavior of the geomagnetic field at extremely high temporal resolution in an under-sampled region of the globe. The Exp. 341 cross-margin transect discovered transitions in sediment accumulation rates from >100 m/Ma at the distal site to > 1000 m/Ma in the proximal fan, slope and on the continental shelf that provide a telescoping view of strata formation from the Miocene to the Holocene. Complete recovery and development of spliced sedimentary records of the Pleistocene through Holocene were achieved at the distal, proximal, and slope Sites U1417, U1418, and U1419, respectively, because of exceptional piston core

  17. Miocene magmatism and tectonics within the Peri-Alboran orogen (western Mediterranean)

    Science.gov (United States)

    El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.

    2014-07-01

    The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar isotopic ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar isotopic age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain magmatism. These two sets of data allow us to place the magmatic activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive magmatic events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras magmatic province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf

  18. Natural and mining-related mercury in an orogenic greywacke terrane, South Island, New Zealand

    International Nuclear Information System (INIS)

    Holley, E.A.; Craw, D.; Kim, J.P.

    2010-01-01

    Mercury (Hg) is naturally present in warm springs and mesothermal (orogenic) gold-bearing quartz vein systems in the South Island of New Zealand. Mercury amalgamation was used historically in ore processing at gold (Au) mines, resulting in composite natural and anthropogenic Hg signatures at these sites. This study compares natural Hg enrichment of the Au vein systems, residual anthropogenic Hg added for amalgamation, and enrichment of naturally present Hg during ore processing. Mercury concentration data are presented for solids and water at historic mine sites, the modern Macraes mine, fault-related warm springs, and zones of naturally occurring cinnabar and Hg-bearing Au. Arsenic (As) concentrations are also presented, as As is the most environmentally significant element in this tectonic setting. Tailings and processing residues at historic mine sites (Blackwater mine, West Coast; Golden Point and Golden Bar, Hyde-Macraes shear zone) contain up to 1000 mg/kg Hg, and in adjacent surface waters Hg is at or slightly above background from 0.6 to 0.8 ng/L. Relative to South Island Hg, As is more environmentally significant: solid wastes at some historic mine and mineral processing sites contain up to 30.5 wt% As due to enrichment of natural As in mineralised rocks. Shallow groundwater and processing waters at the modern Macraes mine are up to 0.01 mg/L Hg due to natural Hg in mineralised rocks, and no significant Hg elevation is evident in nearby surface waters, which are 3 to 10 4 times higher than primary ore, and Hg is disproportionally increased relative to As, indicating that much of the Hg was added during the amalgamation process. Natural cinnabar deposition from warm springs results in localised, strongly elevated Hg, equal to or less than the Hg contents in historic mine processing residues. Warm spring precipitates are up to 111 mg/kg Hg and waters are 0.3 μg/L Hg, comparable to data reported for active North Island geothermal (epithermal-style) systems

  19. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran)

    Science.gov (United States)

    Taghipour, Batoul; Ahmadnejad, Farhad

    2015-03-01

    The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation. Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385

  20. Multiple fluid sources/pathways and severe thermal gradients during formation of the Jílové orogenic gold deposit, Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Zachariáš, J.; Žák, Karel; Pudilová, M.; Snee, L. W.

    2013-01-01

    Roč. 54, October (2013), s. 81-109 ISSN 0169-1368 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : Orogenic gold deposits * Carbon isotopes * Oxygen isotopes * Bismuth * Age * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.383, year: 2013

  1. AN EARLY PERMIAN GARNET-BEATING PERALUMINOUS GRANITIC PLUTON IN THE SOUTH TIANSHAN OROGENIC BELT, NW CHINA: PETROLOGICAL, MINERALOGICAL AND GEOCHEMICAL CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Qie Qin

    2017-01-01

    Full Text Available The Ku’erchu granitic pluton (283±4 Ma was exposed in the eastern part of the South Tianshan Orogenic Belt. The granites from the intrusion are mainly composed of orthoclase (~45 vol. %, plagioclase (~15 vol. %, quartz (~20 vol. %, muscovite (~10 vol. % and biotite (~5 vol. %, with accessory minerals including garnet, zircon and Fe-Ti oxide.

  2. Bicarbonate-rich fluid inclusions and hydrogen diffusion in quartz from the Libčice orogenic gold deposit, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Hrstka, Tomáš; Dubessy, J.; Zachariáš, J.

    2011-01-01

    Roč. 281, 3-4 (2011), s. 317-332 ISSN 0009-2541 Institutional research plan: CEZ:AV0Z30130516 Keywords : bicarbonate * fluid inclusions * hydrogen diffusion * orogenic gold deposits * raman spectroscopy Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.518, year: 2011

  3. Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt

    Czech Academy of Sciences Publication Activity Database

    Carmichael, A.; Waters, J. A.; Batchelor, C. J.; Coleman, D. M.; Suttner, T. J.; Kido, E.; Moore, L. M.; Chadimová, Leona

    2016-01-01

    Roč. 32, 1 April (2016), s. 213-231 ISSN 1342-937X Institutional support: RVO:67985831 Keywords : Central Asian Orogenic Belt * chemostratigraphy * Devonian-Carboniferous * Hangenberg Event * West Junggar Subject RIV: DB - Geology ; Mineralogy Impact factor: 6.959, year: 2016

  4. Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogen, central China: implications for the geodynamic evolution of the North Qinling arc–back-arc system

    NARCIS (Netherlands)

    Wang, H.; Wu, Y.B.; Qin, Z.W.; Zhu, L.Q.; Liu, Q.; Liu, X.C.; Gao, J.; Wijbrans, J.R.; Gong, H.J.; Yuan, H.L.

    2013-01-01

    The tectonic properties of the Erlangping unit and the subduction polarity of oceanic basins in the North Qinling-Tongbai orogen have been the focus of debate for more than twenty years. The resolution of these controversies hinges on the refined constraints on the location and nature of

  5. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong

    2003-01-01

    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  6. An overview of the regional, geological and structural setting of the uraniferous granites in the Damara Orogen, Namibia

    International Nuclear Information System (INIS)

    Brynard, H.J.; Andreoli, M.A.G.

    1988-01-01

    Uranium-bearing granites, comprising both potentially economic deposits and source rocks for uranium deposits in duricrustal and sedimentary sequences, occur in the Damara Orogen of Namibia. The economically important uraniferous granites are mainly confined to the Central Zone, delimited by the Omaruru and Okahandja lineaments, which demarcate the boundary between two markedly different magnetic and hence depositional and/or tectonic regimes. Various models to explain the origin and evolution of the uranium-enriched granites have been proposed to date, none of which are found to explain the observed petrological phenomena adequately. The paper critically reviews the existing literature on the origin of the granites and some criteria for exploration are discussed. (author). 24 refs, 6 figs, 2 tabs

  7. Constraining a Precambrian Wilson Cycle lifespan: An example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland

    Science.gov (United States)

    Nicoli, Gautier; Thomassot, Emilie; Schannor, Mathias; Vezinet, Adrien; Jovovic, Ivan

    2018-01-01

    In the Phanerozoic, plate tectonic processes involve the fragmentation of the continental mass, extension and spreading of oceanic domains, subduction of the oceanic lithosphere and lateral shortening that culminate with continental collision (i.e. Wilson cycle). Unlike modern orogenic settings and despite the collection of evidence in the geological record, we lack information to identify such a sequence of events in the Precambrian. This is why it is particularly difficult to track plate tectonics back to 2.0 Ga and beyond. In this study, we aim to show that a multidisciplinary approach on a selected set of samples from a given orogeny can be used to place constraints on crustal evolution within a P-T-t-d-X space. We combine field geology, petrological observations, thermodynamic modelling (Theriak-Domino) and radiogenic (U-Pb, Lu-Hf) and stable isotopes (δ18O) to quantify the duration of the different steps of a Wilson cycle. For the purpose of this study, we focus on the Proterozoic Nagssugtoqidian Orogenic Belt (NOB), in the Tasiilaq area, South-East Greenland. Our study reveals that the Nagssugtoqidian Orogen was the result of a complete three stages juvenile crust production (Xjuv) - recycling/reworking sequence: (I) During the 2.60-2.95 Ga period, the Neoarchean Skjoldungen Orogen remobilised basement lithologies formed at TDM 2.91 Ga with progressive increase of the discharge of reworked material (Xjuv from 75% to 50%; δ18O: 4-8.5‰). (II) After a period of crustal stabilization (2.35-2.60 Ga), discrete juvenile material inputs (δ18O: 5-6‰) at TDM 2.35 Ga argue for the formation of an oceanic lithosphere and seafloor spreading over a period of 0.2 Ga (Xjuv from < 25% to 70%). Lateral shortening is set to have started at ca. 2.05 Ga with the accretion of volcanic/magmatic arcs (i.e. Ammassalik Intrusive Complex) and by subduction of small oceanic domains (M1: 520 ± 60 °C at 6.6 ± 1.4 kbar). (III) Continental collision between the North Atlantic

  8. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

    Science.gov (United States)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza

    2017-08-01

    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  9. Expansion of the granitic post-orogenic magmatism in the formation of Serrinha (Northeastern Bahia, B R), Sao Francisco craton

    International Nuclear Information System (INIS)

    Rios, Debora Correia; Conceicao, Herbet; Rosa, Maria de Lourdes da Silva; Marinho, Moacyr Moura; Davis, Donaldo Wayne

    2005-01-01

    The Pedra Vermelha Granitic Massif, located at the North area of Serrinha Nucleus, presents a circular shape, being intrusive at the Archaean geoscience-magmatic basement rocks and the Paleoproterozoic volcano sedimentary sequences. The single zircon U-Pb dating yield a crystallization age of 2080 ± 8 Ma. The geological, petrographic al and litogeochemical characteristics of the studied rocks are similar to those of the Morro do Lopes granitic magmatism (2076 ± 6 a 2071 ± 6 Ma), which is located at the South area of this nucleus. These allow us to infer that those post-orogenic alkaline bodies are widespread throughout the Serrinha Nucleus and constitute its last Paleoproterozoic magmatic expression. (author)

  10. The Sanfengshan copper deposit and early Carboniferous volcanogenic massive sulfide mineralization in the Beishan orogenic belt, Northwestern China

    Science.gov (United States)

    Wang, Jialin; Gu, Xuexiang; Zhang, Yongmei; Zhou, Chao; He, Ge; Liu, Ruiping

    2018-03-01

    The Sanfengshan copper deposit, located in the Beishan orogenic belt, Northwestern China, is hosted in the lower member of the Hongliuyuan Formation, an early Carboniferous metavolcanic-sedimentary sequence. Mineralization occurs as stratiform, stratiform-like and lenticular orebodies, and comprises of laminated, brecciated, banded, massive, and disseminated ores. The mineralogy is dominated by pyrite, chalcopyrite and sphalerite. Fe-Mn chert is widely distributed and generally occurs as massive, laminated, bands or lenses, which are consistent with the orebody. Alteration at Sanfengshan displays a clear concentric zoning pattern and the footwall alteration is more intense and somewhat thicker than the hanging-wall alteration. Systematic geochemical investigation on the volcanic rocks in this area shows that the basalts of the Hongliuyuan Formation (HLY) are predominantly tholeiites with nearly flat rare earth element (REE) pattern, insignificant negative anomalies of high field strength elements (HFSEs), and low Ti/V and Th/Nb ratios. They were most likely derived from partial melting of depleted asthenospheric mantle and formed in a fore-arc setting during initiation of the southward subduction of the Paleo-Asian Ocean. The basalts of the Maotoushan Formation (MTS) display a calc-alkaline nature and are enriched in large ion lithophile elements (LILEs) and depleted in HFSEs, suggesting an active continental margin setting. Sulfur isotope (δ34S) values of the sulfide and sulfate minerals vary between 0‰ and 5.4‰, which are consistent with sulfur derivation from leaching of the host volcanic rocks, although a direct magmatic contribution cannot be ruled out. The Re-Os isotope data of pyrite yield an isochron age of 353 ± 35 Ma, consistent with the age of the host HLY basalts. Thus, a syngenetic (volcanogenic massive sulfide) model is proposed and it is concluded that the Sanfengshan copper deposit is a typical Cyprus-type VMS deposit that formed in an early

  11. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  12. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    Science.gov (United States)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  13. SPECIFIC VELOCITY STRUCTURE OF THE UPPER MANTLE IN THE TRANSBAIKALIA SEGMENT OF THE MONGOLIA-OKHOTSK OROGENIC BELT

    Directory of Open Access Journals (Sweden)

    V. M. Soloviev

    2017-01-01

    Full Text Available The paper presents the results of deep seismic studies on Geophysical Reference Profile 1-SB (Sredneargunsk – Ust-Karenga – Taksimo – Vitim in East Transbaikalia,Russia. The1200 kmlong profile crosses the major tectonic structures of the Central Asian fold belt: the Argun median massif, the Selenga-Stanovoy and Transbaikalia folded regions, and the Baikal rift zone. Its northwestern fragment extends into the Angara-Lena monocline of the Siberian platform. The southeastern (Transbaikalia and northwestern (Baikal-Patom fragments of the profile are based on the spot (differential seismic sounding technique using explosions and 40-tonne vibrators. The south­eastern (Transbaikalia fragment shows small crustal thickness values (~40 km, an almost horizontal position of the Moho, and high velocities of longitudinal waves (~8.4 km/sec beneath the Moho. The analysis of parallelism graphs and the dynamic expression of the wave refracted from the Moho suggests a less than 5–10 km thick layer of high velocities and low gradients below Moho. The database on theterritoryofTransbaikaliaincludes ~200 wave arrival times from large earthquakes, which were refracted at the Moho at distances of ~200–1400 km. As part of the tomographic interpretation, using additional DSS data on the Moho, theterritoryofTransbaikaliahas been mapped to show the patterns of the threshold velocity values at the Moho. The seismic data was used to contour an area with high velocity values in the mantle in the central part of the Mongolia-Okhotsk orogenic belt and the neighboring fold structures of Transbaikalia. According to the analysis of the seismic and geologic data on the study area, the mantle layer with high velocity values in the Mongolian-Okhotsk orogenic belt may be represented by the eclogitic rock plates.

  14. Proofs that Develop Insight

    Science.gov (United States)

    Weber, Keith

    2010-01-01

    Many mathematics educators have noted that mathematicians do not only read proofs to gain conviction but also to obtain insight. The goal of this article is to discuss what this insight is from mathematicians' perspective. Based on interviews with nine research-active mathematicians, two sources of insight are discussed. The first is reading a…

  15. Thermotectonic history of the Marañón Fold-Thrust Belt, Peru: Insights into mineralisation in an evolving orogen

    Science.gov (United States)

    Scherrenberg, Arne F.; Kohn, Barry P.; Holcombe, Rodney J.; Rosenbaum, Gideon

    2016-01-01

    Fold-thrust belts along convergent margins around the world host major ore deposits. The origin of such ore deposits is commonly episodic and so are the temporal and spatial variations in deformation styles in these fold-thrust belts. Here we focus on the Marañón Fold-Thrust Belt (MFTB) of the Peruvian Andes, and demonstrate a link between the spatio-temporal distribution of ore deposits and thick-skinned tectonics. We present low-temperature thermochronology results from the MFTB that document the uplift/exhumation history and timing of thick-skinned tectonics and vergence reversal. Our results suggest that the thermal history of the MFTB involved two discrete intervals of opposed-vergence, large-scale crustal deformation since the Late Cretaceous. An early interval, at 80-20 Ma, was associated with folding and east-vergent thin-skinned tectonics, and was followed by west-vergent thick-skinned deformation at 20-0 Ma. Furthermore, our findings suggest that thick-skinned contraction was coincident with increased focusing of mineralising fluids and ore deposition in the MFTB during the early Miocene, and in the mid-Miocene both mineralisation and deformation were enhanced by subduction of the Nazca Ridge underneath the South American Plate.

  16. Records of Mesoproterozoic taphrogenic events in the eastern basement of the Araçuaí Orogen, southeast Brazil

    Directory of Open Access Journals (Sweden)

    Tobias Maia Rabelo Fonte-Boa

    Full Text Available ABSTRACT: The history of palaeocontinents alternates long fragmentation to drift periods with relatively short agglutination intervals. One of the products of a Rhyacian-Orosirian orogeny was a palaeocontinent that brought together the basement of the Araçuaí-West Congo orogen (AWCO with regions now located in the São Francisco and Congo cratons. From ca. 2 Ga to ca. 0.7 Ga, this large region of the São Francisco-Congo palaeocontinent was spared of orogenic events, but underwent at least five taphrogenic events recorded by anorogenic magmatism and/or sedimentation. The taphrogenic events are well documented in the AWCO proximal portions and neighboring cratonic regions, but lack evidence in the AWCO high-grade core. Our studies on amphibolites intercalated in the Rhyacian Pocrane complex, basement of the Rio Doce magmatic arc, allowed to the recognition of two Mesoproterozoic taphrogenic episodes. The oldest one, a Calymmian episode, is recorded by amphibolites with a zircon magmatic crystallization age at 1529 ± 37 Ma (U-Pb SHRIMP, and lithochemical signature of basaltic magmatism related to continental intraplate settings. Another set of amphibolite bodies records the youngest taphrogenic episode, a Stenian event, with a zircon magmatic crystallization age at 1096 ± 20 Ma (U-Pb SHRIMP, and lithochemical signature similar to mature magmatism of continental rift setting. The Calymmian episode (ca. 1.5 Ga correlates to the Espinhaço II basin stage and mafic dikes of the northern Espinhaço, Chapada Diamantina and Curaçá domains, while the Stenian episode (ca. 1.1 Ga correlates to the Espinhaço III basin stage. We also present U-Pb data for 87 detrital zircon grains from a quartzite lens intercalated in the Pocrane complex, the Córrego Ubá quartzite. Its age spectrum shows main peaks at 1176 ± 21 Ma (35%, 1371 ± 30 Ma (18%, 1536 ± 22 Ma (19%, 1803 ± 36 Ma (17% and 1977 ± 38 Ma (12%, suggesting a Stenian (ca. 1176 Ma maximum

  17. Frictional Heat Generation and Slip Duration Estimated From Micro-fault in an Exhumed Accretionary Complex and Their Relations to the Scaling Law for Slow Earthquakes

    Science.gov (United States)

    Hashimoto, Y.; Morita, K.; Okubo, M.; Hamada, Y.; Lin, W.; Hirose, T.; Kitamura, M.

    2015-12-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area (Q, the product of friction coefficient, normal stress and slip velocity) and slip duration (t) to fit the diffusion pattern. Thermal diffusivity (0.98*10-8m2/s) and thermal conductivity (2.0 W/mK) were measured. In the result, 2000-2500J/m2 of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~104-~105s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~108-~1011J, which is consistent with rupture area of 105-108m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and

  18. A geological evidence of very low frequency earthquake inferred from vitrinite thermal records across a microfault within on-land accretionary complex.

    Science.gov (United States)

    Morita, K.; Hashimoto, Y.; Hirose, T.; Hamada, Y.; Kitamura, M.

    2014-12-01

    Generation of friction heat associated with fault slip is controlled by friction, slip distance and fault thickness. Nature of fault slip can be estimated from the record of frictional heating along a fault (e.g., Fulton et al., 2012). Purpose of this study is to detect the record of frictional heating along a microfault observed in on-land accretionary complex, Shimanto Belt, SW Japan using vitrinite reflectance (Ro) and to examine the characteristics of fault slip in deeper subduction zone. The study area is located in Nonokawa formation, the Cretaceous Shimanto Belt, in Kochi Prefecture, Southwest Japan. We found a carbonaceous material concentrated layer (CMCL) in the formation. Some micro-faults cut the layer. The thickness of CMCL is about 3-4m. Ro of host rock is about 0.98-1.1% and of fault rock is over 1.2%. Kitamura et al. (2012) pointed out that fracturing energy may control the high Ro within fault zone. To avoid the effect of fracturing on Ro, we tired to detect a diffusion pattern of frictional heating in host rocks. Distribution of Ro is mapped in thin sections to make the Ro-distance pattern perpendicular to the fault plane. Within the fracture zone, abnormally high Ro (about 2.0% or above) was observed. Ro was 1.25% at the wall of fracture zone and decreases to 1.1% at about 5cm from the wall. We interpreted that the Ro-distance pattern was resulted from the thermal diffusion. Using this diffusion pattern, the characteristic fault parameters, such as friction, slip rate and rise time (Tr) was examined. We set parameters Q (= friction times slip rate). We have simulated frictional heating and Ro maturation on the basis of the method by Sweeny and Burnham (1990). Grid search was conducted to find the best fitted combination of Q and Tr at the smallest residual between simulated Ro and observed Ro. In the result, we estimated about 1500 (Pa m/s) of Q and about 130000(s) of Tr. Because the base temperature is about 185˚C based on the 1.1% of Ro, the

  19. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden

    2013-07-01

    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  20. Evidences for an orogenic-induced global cooling at the Frasnian-Famennian boundary (ca 376 Ma BP)

    Science.gov (United States)

    Averbuch, O.; Tribovillard, N.; Devleeschouwer, X.; Riquier, L.

    2003-04-01

    Late Devonian time (Famennian, 376--362 Ma BP) is a period of both intense orogenic activity and drastic climatic variations with the onset of a major glaciation event upon parts of the Gondwanian Southern America and Africa situated in high southern latitudes. This global cooling event is coeval with a significant fall in the atmospheric CO_2 content as suggested both by stomatal data and modelling. In the stratigraphic record, the Frasnian-Famennian transition is characterized by a great loss of biotic diversity and pronounced environmental changes with the demise of reefal carbonate platforms and the deposition of extensive organic-rich levels (Kellwasser levels) in Late Frasnian times followed by a rapid global scale sea-level fall and an increase in detrital input in the basal Famennian. We propose to relate the Famennian global cooling and the associated environnmental changes to the development of major mountain cordilleras extending on one hand from the Urals to South America (including the Central Asian, the European, the Northern African, the Appalachian belts) and on the other hand from the western American Antler to the Arctic Ellesmerian belt. Extensive high pressure metamorphic rocks dated between ca 380 and 360 Ma BP, pervasive deformations distributed along the belt (Eo-Variscan phase) and synorogenic molassic rocks trapped within the flexural foreland basins indicate a major collisional event in Late Frasnian-Famennian times inducing an important crustal thickening and associated high continental relief. The major drop in the atmospheric CO2 content would be driven by the conjunction of two orogenic-induced mechanisms : (1) the intensification of silicate weathering on the continental areas as attested by a major rise in the 87Sr/86Sr composition of sea water at the Frasnian-Famennian boundary ; the coeval development of vascular plants on emerged lands is also probably an important factor in enhanced chemical weathering of continental soils (2

  1. Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions

    Science.gov (United States)

    Wu, Kai; Ding, Xing; Ling, Ming-Xing; Sun, Wei-dong; Zhang, Li-Peng; Hu, Yong-Bin; Huang, Rui-Fang

    2018-03-01

    Serpentinites are important volatile and fluid mobile element repositories in oceanic lithosphere and subduction zones, and thus provide significant constraints on global geochemical cycles and tectonic evolution at convergent margins. In this contribution, two types of serpentinites from the Mianlue suture zone in the Qinling orogenic belt, central China, are identified on the basis of detailed mineralogical and geochemical study. Serpentinites from the Jianchaling region (Group 1) are composed of lizardite/chrysotile + magnesite + magnetite. Most of these serpentinites (Group 1a), consist of pseudomorphic orthopyroxene and olivine, and are characterized by low Al2O3/SiO2, high MgO/SiO2 and Ir-type PGEs to Pt ratios, suggesting a residual mantle origin. Meanwhile, the U-shape REE pattern and positive Eu, Sr and Ba anomalies of these serpentinites indicate that serpentinization fluids have interacted with gabbroic cumulates at moderately high temperatures or associate with the chlorinity and redox conditions of the fluid. Considering the limited mobility of U in the hydrating fluids for the Group 1a serpentinites, hydrating fluids for these serpentinites are most likely derived from the dehydrated slab, and have been in equilibrium with subducting sediments. There are also some serpentinites with low-grade metamorphic recrystallization from the Jianchaling region (Group 1b), represented by recrystallized serpentine minerals (antigorite). The trace element compositions of these Group 1b serpentinites suggest that partial dehydration of serpentinites associated with the transformation from lizardite to antigorite in subduction zone is also likely to affect the geochemistry of serpentinites. Serpentinites from the Liangyazi region (Group 2) are composed of antigorite + dolomite + spinel + magnetite. The high Cr number (0.65-0.80) and low Ti concentrations of spinels in Group 2 serpentinites indicate a refractory mantle wedge origin. Fertile major element compositions

  2. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    Science.gov (United States)

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  3. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    Science.gov (United States)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  4. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  5. Aeromagnetic study of the Hengshan-Wutai-Fuping region: Unraveling a crustal profile of the Paleoproterozoic Trans-North China Orogen

    Science.gov (United States)

    Zhang, Jian; Zhao, Guochun; Shen, Wenlue; Li, Sanzhong; Sun, Min

    2015-11-01

    An integrated crustal profile of the intervening Trans-North China Orogen (TNCO) is one of the key issues to understanding the tectonic evolution of the North China Craton. However, the existing geological studies focus only on the surface-mapping based petrological, geochemical and structural analysis, but lack subsurface geophysical evidence and thus make the crustal profile interpretations ambiguous. In contrast, the current geophysical data covers a very large-scale lithospheric mantle and fails to image the detailed structural pattern of the orogenic crust. To achieve this goal, we present high-resolution aeromagnetic data for the Hengshan-Wutai-Fuping region, the largest exposure of the central TNCO. The reduced-to-pole magnetic anomaly map firstly verifies the regional tectonic subdivision that the high-grade metamorphic terranes (i.e. Hengshan and Fuping Complexes) are consistent with high-magnetic responses and long-wavelength anomalies, intervened by a low-grade terrane (Wutai Complex) characterized by low-magnetic responses and short-wavelength anomalies. 3D Euler deconvolution reveals that the tendencies of the clustered solutions show large consistence with the major structural pattern of the region which is characterized by a fan-shaped doubly-vergent orogenic wedge. Upward continuation further shows that the northwest part of the orogen yields a thicker crust and is most likely located closer to the paleosubduction zone. The new aeromagnetic data, combined with structural, petrological and metamorphic data indicate that an eastward-dipping subduction zone was most possibly active before the collision of the Western and Eastern Blocks, leading to the formation of the TNCO and the final amalgamation of the North China Craton.

  6. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage

    Science.gov (United States)

    Bader, Thomas; Franz, Leander; Ratschbacher, Lothar; de Capitani, Christian; Webb, A. Alexander G.; Yang, Zhao; Pfänder, Jörg A.; Hofmann, Mandy; Linnemann, Ulf

    2013-07-01

    Orogens with multiple (ultra)high-pressure ((U)HP) and (ultra)high-temperature ((U)HT) metamorphic events provide a complex but telling record of oceanic and continental interaction. The Early Paleozoic history of the "Heart of China," the Qinling orogenic collage, offers snapshots of at least three (U)HP and two (U)HT metamorphic events. The preservation of remnants of both oceanic and continental domains together with a ≥110 Myr record of magmatism allows the reconstruction of the processes that resulted in this disparate metamorphism. Herein, we first illuminate the pressure-temperature-time (P-T-t) evolution of the Early Paleozoic (U)HP and (U)HT events by refining the petrographic descriptions and P-T estimates, assess published, and employ new U/Th-Pb zircon, monazite, and titanite, and 40Ar-39Ar phengite geochronology to date the magmatic and metamorphic events. Then we explore how the metamorphic and magmatic events are related tectonically and how they elucidate the affinities among the various complexes in the Qinling orogenic collage. We argue that a Meso-Neoproterozoic crustal fragment—the Qinling complex—localized subduction-accretion events that involved subduction, oceanic-arc formation, and back-arc spreading along its northern margin, and mtantle-wedge exhumation and spreading-ridge subduction along its southern margin.

  7. Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe

    Science.gov (United States)

    Casas, Josep M.; Brendan Murphy, J.

    2018-06-01

    We present a pre-orogenic, early Paleozoic, palinspastic reconstruction of the northern Gondwana margin that was subsequently involved in the Late Paleozoic Variscan orogeny in central and Western Europe. Our reconstruction is based on two pre-orogenic data sets, the age and distribution of Cambrian-Ordovician magmatism and the detrital zircon age signature of late Neoproterozoic-early Paleozoic clastic rocks. We obtain this reconstruction by unfolding the Ibero-Armorican arc and by restoring the movement of the large-scale dextral strike-slip faults that transect the different tectono-stratigraphic units. Our results favour an irregular shape for this part of the northern Gondwana margin with a N-S central segment linking two E-W oriented segments. The proposed reconstruction and the structural restoration of the main features of Variscan deformation is in accordance with some aspects of previously proposed structural models, such as the curved geometry of the Gondwanan margin required by the indentor model for continental collision, the role played by the large strike-slip faults in dispersing formerly juxtaposed units, and the regional-scale oroclinal folding of part of this margin during late Carboniferous-Early Permian times. The combined use of the pre-orogenic geological constraints and palinspastic restoration is a useful approach that may provide a foundation for continual refinement of reconstructions as more data become available.

  8. Timing of sediment-hosted Cu-Ag mineralization in the Trans-Hudson orogen at Janice Lake, Wollaston Domain, Saskatchewan, Canada

    Science.gov (United States)

    Perelló, José; Valencia, Víctor A.; Cornejo, Paula; Clifford, John; Wilson, Alan J.; Collins, Greg

    2018-04-01

    The Janice Lake Cu-Ag mineralization in the Wollaston Domain of northern Saskatchewan is hosted by a metasedimentary sequence in the upper part of the Wollaston Supergroup of the Trans-Hudson orogen. The Wollaston Supergroup was deposited between 2070 and 1865 Ma in a foreland basin setting constructed over Archean basement of the Hearne craton. The Trans-Hudson orogen underwent final collision and peak metamorphism at 1810 Ma, during consolidation of Laurentia and its amalgamation with the Columbia supercontinent. Titanite is a common constituent of the post-peak metamorphic assemblages of Trans-Hudson lithotectonic units and accompanied disseminated sediment-hosted Cu sulfide mineralization at Janice Lake. Titanite crystals, intergrown with chalcocite over a strike-length of 2 km of Cu-bearing stratigraphy, were dated by the ID-TIMS and LA-ICP-MS U-Pb methods, returning an age range from 1780 to 1760 Ma and a weighted average age of 1775 ± 10 Ma. The titanite ages effectively date the associated chalcocite-dominated sediment-hosted Cu-Ag mineralization and its formation during initial post-orogenic uplift and cooling, 30 myr after peak metamorphism. The age-range and tectonic setting of the Janice Lake mineralization confirms that sediment-hosted Cu mineralization was an integral part of the metallogenic endowment of Columbia and that its emplacement coincided with the continental-scale Trans-Hudson orogeny rather than with diagenesis and extensional basin development 100 myr earlier.

  9. Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege (north-eastern pyrenees, France): An ion microprobe study

    Energy Technology Data Exchange (ETDEWEB)

    Chaussidon, M. (Centre de Recherches Petrographiques et Geochimiques, Vandoeuvre-les-Nancy (France)); Lorand, J. (Unite associee au CNRS, Paris (France))

    1990-10-01

    The orogenic spinel lherzolite massifs from Ariege, which represent tectonically emplaced fragments of the sub-continental upper mantle, are composed mainly of variously depleted peridotites. These rocks are crosscut by two generations of pyroxenites. The first is made up of layered pyroxenites, which are interpreted either as crystal segregates from Triassic continental tholeiites or as subducted parts of the oceanic crust re-injected within the upper mantle. The second consists of amphibole-rich dikes separated from Cretaceous alkali basalts. Forty sulfide grains, occurring either as inclusions within silicates or as interstitial grains, were investigated by ion microprobe for their sulfur isotopic compositions. Comparison between sulfide inclusions in silicates and interstitial sulfide grains strongly suggests that serpentinization and pyrenean metamorphism had no significant effect don the {delta}{sup 34}S values. Likewise, these values are broadly independent of the degree of partial melting. The negative {delta}{sup 34}S values of the massive peridotites could represent an ancient depletion event in the upper mantle. By contrast, the positive {delta}{sup 34}S values observed in the layered pryoxenites and the amphibole-rich dikes indicate that the two parent magmas had in common a mantle source variously enriched in {sup 34}S. Therefore, the present study reveals two extreme reservoirs characterized by different {delta}{sup 34}S values in the upper mantle. This range of variations can explain most {delta}{sup 34}S values found in MORB, continental tholeiites, and alkali basalts.

  10. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  11. Chemical and spectroscopic characteristics of potassium white micas related to polystage evolution of the Central Western Carpathians orogenic wedge

    Science.gov (United States)

    Sulák, Marián; Kaindl, Reinhard; Putiš, Marián; Sitek, Jozef; Krenn, Kurt; Tóth, Ignác

    2009-12-01

    Potassium white micas in sheared basement and cover rocks from the Central Western Carpathians (CWC) were investigated by PL microscopy, electron microprobe (EMP) analysis, Mössbauer and micro-Raman spectroscopy. We specified chemical and spectroscopic characteristics, which allow distinction between celadonite-poor (muscovitic) and celadonite-rich (phengitic) white mica (Wmca). Wmca generations formed during a polystage evolution in changing P- T conditions ranging from the very low to medium temperatures at medium pressure within the Alpidic CWC orogenic wedge. BSE imaging, EMP analyses and X-ray element maps indicate chemical differences between muscovite and phengite, mainly in Al, Fe and Si contents. Mössbauer spectroscopy revealed their contrasting spectra, related to different hyperfine parameters, mainly of quadrupole splitting (QS of Ms: 2.6-2.7 mm/s, or 2.9-3.0 mm/s for Phg), corresponding to Fe 2+ and Fe 3+ contents. Blastomylonitic samples with a single dominating Wmca generation and finite-strain XZ sections were suitable for micro-Raman study. These data corroborate correlation between the frequencies of two vibrational modes of Wmca and Si content. The investigated Wmca generations indicate an enhanced transformation between Wmca phases in shear zones.

  12. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    Science.gov (United States)

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  13. Greisen deposits associated to carboniferous post-orogenic granites with mineralization potential, Sierra de Fiambala, Catamarca, Argentina

    International Nuclear Information System (INIS)

    Fogliata, A. S.; Rubinstein, N. R.; Avila, J. C.; Baez, M.

    2008-01-01

    The Fiambala range is located in the central south part of the province of Catamarca, Western Sierras Pampeanas, Argentina. It is largely conformed by Precambrian metamorphic rocks, a Cambrian granitic intrusive, Ordovician basic and ultra basic rocks and epi zonal Carboniferous granites (Los Ratones, El Salto and Ayacucho Granites). The Carboniferous granites are sub alkaline, weakly peraluminous, high silica (except for the porphyritic facies of Los Ratones granite) and moderately enriched in K. Contents of trace elements and REE indicate that El S alto and Ayacucho granites and the granular facies of Los Ratones granite have characteristics of evolved and differentiated granite associated with hydrothermal systems. The variations of trace elements, particularly Sn, W, U, Rb, Ba, Zr and Sr suggest that they correspond to granites with mineralization potential. Genetically linked to these granites there are Sn, W, U and minor base metals greisen deposits. The hydrothermal process that yield to these deposits involved two main alteration stages, beginning with alkali metasomatism follow by greissenization. According to the isotopic ages the hydrothermal processes postdate about 1 Ma the magmatic activity. The analyses of the granites and the associated greisen deposits confirm that the post orogenic carboniferous magmatism is the major metallogenetic control of the ore deposits from the studied area. This metallogenetic control could be a useful tool in prospecting similar deposits in the rest of the Western Sierras Pampeanas. (Author)

  14. Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling

    Science.gov (United States)

    Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil

    2017-12-01

    A new kinematic reconstruction that incorporates estimates of post-20 Ma shortening and extension in the Apennines, Alps, Dinarides, and Sicily Channel Rift Zone (SCRZ) reveals that the Adriatic microplate (Adria) rotated counterclockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Minimum and maximum amounts of rotation are derived by using, respectively, estimates of crustal extension along the SCRZ (minimum of 30 km) combined with crustal shortening in the Eastern Alps (minimum of 115 km) and a maximum amount (140 km) of convergence between Adria and Moesia across the southern Dinarides and Carpatho-Balkan orogens. When combined with Neogene convergence in the Western Alps, the best fit of available structural data constrains Adria to have moved 113 km to the NW (azimuth 325°) while rotating 5 ± 3° counterclockwise relative to Europe since 20 Ma. Amounts of plate convergence predicted by our new model exceed Neogene shortening estimates of several tens of kilometers in both the Apennines and Dinarides. We attribute this difference to crust-mantle decoupling (delamination) during rollback in the Apennines and to distributed deformation related to the northward motion of the Dacia Unit between the southern Dinarides and Europe (Moesia). Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenides slab pulling to the northeast, and crustal wedging in the Western Alps, which acted as a pivot and stopped farther northwestward motion of Adria relative to Europe.

  15. Late Archaean-early Proterozoic source ages of zircons in rocks from the Paleozoic orogen of western Galicia, NW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, R P; Priem, H N.A. [Laboratorium voor Isotopen-Geologie, Amsterdam (Netherlands); Den Tex, E [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Aardwetenschappen

    1982-08-01

    U-Pb data are reported for nine suites of zircons and three monazites from the Paleozoic orogen in western Galicia: one paragneiss and six orthogneisses from the early Paleozoic basement, and two Carboniferous (ca. 310 Ma old) intrusions of two-mica granite. New whole-rock Rb-Sr analyses, along with earlier data, indicate an age of ca. 470-440 Ma (Ordovician) for the emplacement of the granitic precursors of the orthogneisses. Monazite from the paragneiss also yields an U-Pb age of ca. 470 Ma. From the high initial /sup 87/Sr//sup 86/Sr ratios an involvement of Precambrian continental crust material is evident in the generation of the early Paleozoic suite of granites, while the zircon U-Pb data give evidence of the presence of about 3.0-2.0 Ga old (late Archaean-early Proterozoic) components in the source material. Zircons from the oldest sedimentary rocks in the area, now present as catazonal paragneisses and a likely source for the granites, likewise reveal a provenance age of 3.0-2.0 Ga.

  16. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  17. Pre- and syn-Ross orogenic granitoids at Drake Head and Kartografov Island, Oates Coast, northern Victoria Land, East Antarctica

    International Nuclear Information System (INIS)

    Adams, C.J.; Roland, N.W.

    2002-01-01

    The majority of the Oates Coast, northern Victoria Land granitoids, typified by those at Drake Head and Kartografov Island (Harald Bay), are monzogranites with lesser granodiorites and minor quartz-monzodiorite and syenogranite. All are plagioclase-K-feldspar-biotite granitoids with additional muscovite, garnet and/or hornblende, and are subalkaline and peraluminous. Berg Granite typifies the early Ordovician, Granite Harbour Instrusive (GHI) suite of the Ross Orogen at the Oates Coast. Granitoids from Kartografov Island have higher amounts of Fe+Mg+Ti and an ambiguous Rb-Sr geochronology: they could be either pre-Ross Orogeny in age, or syn-Ross Orogeny and representing a lower structural level of GHI. The Drake Head granite gneiss has a fractionated leuco-granite composition similar to Berg Granite, and is intruded by granite and granodiorite. Rb-Sr ages indicate that all are Neoproterozoic, although the granite gneiss result is probably an errorchron age, reflecting its less uniform nature (granodiorite:649 ± 30 Ma, initial ratio 0.7065 +/- 6; granite gneiss: 682 ± 140 Ma, initial ratio 0.7107 ± 50). These late Neoproterozoic granitoids provide a source for distinctive detrital zircon age components in extensive early Paleozoic turbidites of Australia-New Zealand-Antarctica. (author). 24 refs., 5 figs., 1 tab

  18. In Search of Insight.

    Science.gov (United States)

    Kaplan, Craig A.; Simon, Herbert A.

    1990-01-01

    Attaining the insight needed to solve the Mutilated Checkerboard problem, which requires discovery of an effective problem representation (EPR), is described. Performance on insight problems can be predicted from the availability of generators and constraints in the search for an EPR. Data for 23 undergraduates were analyzed. (TJH)

  19. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    Science.gov (United States)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  20. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  1. Slipstream: an early Holocene slump and turbidite record from the frontal ridge of the Cascadia accretionary wedge off western Canada and paleoseismic implications

    Science.gov (United States)

    Hamilton, T.S.; Enkin, Randolph J.; Riedel, Michael; Rogers, Gary C.; Pohlman, John W.; Benway, Heather M.

    2015-01-01

    Slipstream Slump, a well-preserved 3 km wide sedimentary failure from the frontal ridge of the Cascadia accretionary wedge 85 km off Vancouver Island, Canada, was sampled during Canadian Coast Guard Ship (CCGS) John P. Tully cruise 2008007PGC along a transect of five piston cores. Shipboard sediment analysis and physical property logging revealed 12 turbidites interbedded with thick hemipelagic sediments overlying the slumped glacial diamict. Despite the different sedimentary setting, atop the abyssal plain fan, this record is similar in number and age to the sequence of turbidites sampled farther to the south from channel systems along the Cascadia Subduction Zone, with no extra turbidites present in this local record. Given the regional physiographic and tectonic setting, megathrust earthquake shaking is the most likely trigger for both the initial slumping and subsequent turbidity currents, with sediments sourced exclusively from the exposed slump face of the frontal ridge. Planktonic foraminifera picked from the resedimented diamict of the underlying main slump have a disordered cluster of 14C ages between 12.8 and 14.5 ka BP. For the post-slump stratigraphy, an event-free depth scale is defined by removing the turbidite sediment intervals and using the hemipelagic sediments. Nine14C dates from the most foraminifera-rich intervals define a nearly constant hemipelagic sedimentation rate of 0.021 cm/year. The combined age model is defined using only planktonic foraminiferal dates and Bayesian analysis with a Poisson-process sedimentation model. The age model of ongoing hemipelagic sedimentation is strengthened by physical property correlations from Slipstream events to the turbidites for the Barkley Canyon site 40 km south. Additional modelling addressed the possibilities of seabed erosion or loss and basal erosion beneath turbidites. Neither of these approaches achieves a modern seabed age when applying the commonly used regional marine 14C reservoir age of

  2. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    Science.gov (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  3. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    Science.gov (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  4. Orogenic plateau growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt

    Science.gov (United States)

    Allen, M. B.; Saville, C.; Blanc, E. J.-P.; Talebian, M.; Nissen, E.

    2013-03-01

    This paper shows how the Turkish-Iranian Plateau grows laterally by incrementally incorporating adjacent parts of the Zagros fold-and-thrust belt. The limit of significant, seismogenic, thrusting in the Zagros (Mw > 5) occurs close to the regional 1250 m elevation contour. The seismicity cutoff is not a significant bedrock geology boundary. Elevations increase northward, toward regional plateau elevations of 2 km, implying that another process produced the extra elevation. Between the seismogenic limit of thrusting and the suture, this process is a plausibly ductile thickening of the basement, suggesting depth-dependent strain during compression. Similar depth-dependant crustal strain may explain why the Tibetan plateau has regional elevations 1500 m greater than the elevation limit of seismogenic thrusting at its margins. We estimate 68 km shortening across the Zagros Simply Folded Belt in the Fars region, and 120 km total shortening of the Arabian plate. The Dezful Embayment is a low strain zone in the western Zagros. Deformation is more intense to its northeast, in the Bakhtyari Culmination. The orogenic taper (across strike topographic gradient) across the Dezful Embayment is 0.0004, and across the Bakhtyari Culmination, 0.022. Lateral plateau growth is more pronounced farther east (Fars), where a more uniform structure has a taper of 0.010 up to elevations of 1750 m. A >100 km wide region of the Zagros further northeast has a taper of 0.002 and is effectively part of the Turkish-Iranian Plateau. Internal drainage enhances plateau development but is not a pre-requisite. Aspects of the seismicity, structure, and geomorphology of the Zagros do not support critical taper models for fold-and-thrust belts.

  5. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust

    Science.gov (United States)

    Shen, Ji; Wang, Ying; Li, Shu-Guang

    2014-10-01

    We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between

  6. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    Science.gov (United States)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  7. An analogue of long-term stability of flow-path structure in crystalline rocks distributed in the orogenic belt, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University, University Museum Material Research Section, 464-8601, Chikusa, Nagoya, 464-8601 (Japan)]. E-mail: dora@num.nagoya-u.ac.jp; Takeuchi, M. E-mail: takeuchi@eps.nagoya-u.ac.jp

    2004-07-01

    In the orogenic belt, in the Japanese islands, crystalline rocks from the youngest to older ages and of different orders have been identified which have formed massive areas. The fracture system observed within these rock masses implies that the groundwater and solute can be conducted through the fracture's network. It is expected that the nuclides can be retarded due to chemical sorption and/or physical retardation by the fracture fillings and fracture open pore geometry. Most of the evaluation framework of the nuclides retardation process in the geological disposal of high level radioactive waste (HLW) is, however, basically taken into account in the present geological state, without changes of structural and mineralogical features, and in its influence on the groundwater flow system over a long period of time. This paper seeks analogous evidence that can provide the confidence of such evaluation methodology and its long-term applicability. Here, we describe the fracture system developed in the crystalline rock with the different ages intruded in the orogenic belt in order to build the long-term fracturing and its 'stability' model. In particular, comparisons with the rock of 1.9-0.8 Ma Takidani Granodiorite (the youngest pluton in the world), ca. 67 Ma of Toki Granite and ca. 117 Ma Kurihashi Granodiorite located in central to northwest Japan suggest a unique characteristic of the fracture forming process and their relatively stable geometrical changing. This analogue enables us to provide a model to build the confidence of a safety context applicable for the geological setting under the orogenic field with a long-term scale. The model may also be useful for other stable tectonic settings as well as for a site characterisation methodology of crystalline rock for HLW geological disposal. (author)

  8. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    Science.gov (United States)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  9. Discovery of Latest Cretaceous OIB-type alkaline gabbros in the Eastern Pontides Orogenic Belt, NE Turkey: Evidence for tectonic emplacement of seamounts

    Science.gov (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Chatterjee, Nilanjan; Liu, Ze; Yılmaz-Değerli, Sedanur

    2018-06-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, a mountain chain extending parallel to the southeastern margin of the Black Sea, has been controversial for the last forty years. Here we present data for a newly discovered alkaline gabbro body and its surrounding basaltic rocks in the northern part of the Eastern Pontides Orogenic Belt. We also provide a comprehensive assessment of the Late Mesozoic-Cenozoic geodynamic evolution of the Eastern Mediterranean region. The gabbroic body is bounded by reverse faults along its northern and southern borders and is surrounded by vesicular, pillow-fragment breccias and pillow basalts. Mineral compositions suggest that crystallization of the gabbros began at about 1170 °C, and the lowest preserved crystallization T is near 1000 °C. Estimated pressure at the beginning of crystallization is 5.7-7.4 kb. The 40Ar/39Ar dating of kaersutite and plagioclase and Usbnd Pb dating of titanite indicated that the Hayrat gabbro crystallized at 67 Ma (Late Maastrichtian). Whole rock major-trace-rare earth element and Sr-Nd-Pb isotope data indicate that the gabbros and basalts have different origins. The gabbros are alkaline and exhibit the geochemical features of OIB, whereas the basalts are tholeiitic and reveal depletions of HFSE that are similar to those of arc rocks. The gabbros are strongly fractionated, and derive from an enriched, lithospheric mantle source, with partial melting occurring in a garnet-stable environment. The basalts are less fractionated, and probably derive from a shallower source in which spinel peridotite was the predominant lithology. Considering all new and old geological, geochemical, geochronological and geophysical data from the Black Sea Basin and the Eastern Pontides-Lesser Caucasus-Alborz Orogenic Belt, we suggest that the alkaline Hayrat gabbro formed in an oceanic intraplate setting, and was accreted to the forearc region of the Eastern Pontides Orogenic Belt during

  10. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    Science.gov (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  11. An interpretation of the aeromagnetic data covering portion of the Damara orogenic belt, with special reference to the occurrence of uraniferous granite

    International Nuclear Information System (INIS)

    Corner, B.

    1982-12-01

    This thesis comprises primarily palaeomagnetic studies within the Damara orogenic belt of South West Africa (Namibia), as well as an interpretation of the regional structure, utilizing published aeromagnetic data. The prime objectives of the study were to aid uranium exploration programmes in this area by establishing any possible magnetic relationships associated with the uraniferous granites in the area, and to interpret regional structure from the aeromagnetic data. Cursory interpretation of the airborne radiometric data is also undertaken. Gravity traverses, conducted across three dome structures with which uranium mineralisation is intimately associated, are interpreted in order to determine the origin of these structures

  12. Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: a setting for reactivation of asymmetric crenulation cleavage

    Science.gov (United States)

    Marshak, Stephen; Alkmim, Fernando F.; Whittington, Alan; Pedrosa-Soares, Antônio Carlos

    2006-01-01

    The Araçuaí orogen of eastern Brazil is one of many Brasiliano/Pan African orogens formed during the Neoproterozoic assembly of Gondwana. Its western edge, bordering the São Francisco craton, is the Serra do Espinhaço fold-thrust belt, in which top-up-to-the-west (reverse-sense) faults, west-verging folds (F 1), and east-dipping spaced to phyllitic cleavage (S 1) developed. We have found that the kinematics of deformation changes markedly at the hinterland margin of this fold-thrust belt. Here, beneath a plateau known as the Chapada Acauã, metadiamictite and fine-grained pelitic schist comprise an east-dipping belt that contains an assemblage of structures indicative of top-down-to-the-east (normal-sense) shear. This assemblage includes a cascade of F 2 folds that refold F 1 folds and verge down the dip of the belt's enveloping surfaces, vertical tension gashes, and top-down-to-the-east rotated clasts. Based on the presence of these structures, we propose that the plateau exposes a regional-scale normal-sense shear zone, here called the Chapada Acauã shear zone (CASZ). Because F 2 folds refold F 1 folds, normal-sense shear in the CASZ occurred subsequent to initial west-verging thrusting. Considering this timing of motion in the CASZ, we suggest that the zone accommodated displacement of the internal zone of the Araçuaí orogen down, relative to its foreland fold-thrust belt, and thus played a role in extensional collapse of the orogen. The CASZ trends parallel to preserved thrusts to the west, and thus may represent an inverted thrust fault. Notably, throughout the CASZ, S 1 schistosity has been overprinted by a pervasive, west-dipping asymmetric crenulation cleavage (S 2). The sigmoid shape of S 1 surfaces in S 2 microlithons require that slip on each S 2 surface was top-down-to-the-west. S 2 cleavage is axial-planar to the down-dip verging F 2 folds. Based on its geometry, we suggest that S 2 cleavage initiated either as an antithetic extensional

  13. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  14. Dreaming and insight

    Science.gov (United States)

    Edwards, Christopher L.; Ruby, Perrine M.; Malinowski, Josie E.; Bennett, Paul D.; Blagrove, Mark T.

    2013-01-01

    This paper addresses claims that dreams can be a source of personal insight. Whereas there has been anecdotal backing for such claims, there is now tangential support from findings of the facilitative effect of sleep on cognitive insight, and of REM sleep in particular on emotional memory consolidation. Furthermore, the presence in dreams of metaphorical representations of waking life indicates the possibility of novel insight as an emergent feature of such metaphorical mappings. In order to assess whether personal insight can occur as a result of the consideration of dream content, 11 dream group discussion sessions were conducted which followed the Ullman Dream Appreciation technique, one session for each of 11 participants (10 females, 1 male; mean age = 19.2 years). Self-ratings of deepened self-perception and personal gains from participation in the group sessions showed that the Ullman technique is an effective procedure for establishing connections between dream content and recent waking life experiences, although wake life sources were found for only 14% of dream report text. The mean Exploration-Insight score on the Gains from Dream Interpretation questionnaire was very high and comparable to outcomes from the well-established Hill (1996) therapist-led dream interpretation method. This score was associated between-subjects with pre-group positive Attitude Toward Dreams (ATD). The need to distinguish “aha” experiences as a result of discovering a waking life source for part of a dream, from “aha” experiences of personal insight as a result of considering dream content, is discussed. Difficulties are described in designing a control condition to which the dream report condition can be compared. PMID:24550849

  15. OpenGL Insights

    CERN Document Server

    Cozzi, Patrick

    2012-01-01

    Get Real-World Insight from Experienced Professionals in the OpenGL Community With OpenGL, OpenGL ES, and WebGL, real-time rendering is becoming available everywhere, from AAA games to mobile phones to web pages. Assembling contributions from experienced developers, vendors, researchers, and educators, OpenGL Insights presents real-world techniques for intermediate and advanced OpenGL, OpenGL ES, and WebGL developers. Go Beyond the Basics The book thoroughly covers a range of topics, including OpenGL 4.2 and recent extensions. It explains how to optimize for mobile devices, explores the design

  16. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  17. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition

    Science.gov (United States)

    Wang, Xinyu; Yuan, Chao; Zhang, Yunying; Long, Xiaoping; Sun, Min; Wang, Lixing; Soldner, Jeremie; Lin, Zhengfan

    2018-03-01

    Voluminous Paleozoic intrusions occur in the Beishan Orogenic Collage (BOC) and their genesis and tectonic background are important to reconstruct the accretion-collision processes in the southernmost Altaids. Paleozoic is an important period for arc development in the BOC, where the Gongpoquan and Huaniushan arcs are located. There are two pulses of magmatism in the Huaniushan and Gongpoquan arcs, i.e., the ca. 470-423 Ma I-type and ca. 424-395 Ma S- and A-type granitoids. In this study, we focus on two peraluminous granitic plutons in the Gongpoquan arc, i.e., the Baitoushan muscovite granite and Haergen two-mica granite, aiming at unraveling their petrogenesis and tectonic background. Zircon LA-ICP-MS U-Pb dating yields emplacement ages of ca. 409-395 Ma and ca. 409 Ma for the Baitoushan and Haergen plutons, respectively. Both the granitic plutons are strongly peraluminous with A/CNK ratios of 1.10-1.20, indicative of S-type affinities. The rocks are characterized by high SiO2 and K2O contents with high CaO/Na2O ratios. Moreover, the rocks possess low MgO contents, Rb/Sr and Rb/Ba ratios, together with their relatively high initial 87Sr/86Sr ratios (0.7139-0.7152) and less radiogenic εNd(t) values (-3.15 to -5.17), implying a clay-poor and plagioclase-rich crustal source. Compared with earlier pulse of arc-related magmatism (ca. 470-423 Ma), the latter pulse of magmatism (ca. 424-395 Ma) consists mainly of "normal granite" characterized by higher SiO2 (>66%) and K2O contents, weaker fractionated REE patterns and lower δEu values, and gabbroic to dioritic intrusions are only sporadic. Moreover, the granitoids of the latter pulse show variable but more crust-like Sr-Nd isotopic compositions ((87Sr/86Sr)0 = 0.7038-0.7327; εNd(t) = -6.70 to +0.33) than the earlier ones ((87Sr/86Sr)0 = 0.7024-0.7080; εNd(t) = -2.56 to +8.86), indicating that the Early Devonian (ca. 424-395 Ma) experienced extensive crustal melting with minor involvement of mantle materials

  18. The Origin of the Chinese Central Tianshan Block in the Southern Central Asian Orogenic Belt: Evidence from Detrital Zircon Study

    Science.gov (United States)

    Huang, Z.; Long, X.; Yuan, C.

    2016-12-01

    The Chinese Central Tianshan Block (CTB) is one of the oldest continental fragments in the southern Central Asian Orogenic Belt (CAOB). Although it is vital for understanding the evolution of the CAOB, its origin has been poorly studied. The CTB was previously suggested to have been originated from the North China, the South China, the Tarim cratons or the East European Craton (Baltica). A total of 165 concordant U-Pb and Hf isotopic analyses of detrital zircon are obtained from three meta-sediments in the CTB, including one meta-sandstone from Xingxingxia formation and one meta-sandstone as well as one quartzite from Kawabulake formation. Detrital zircon grains from the Xingxingxia and Kawabulake formations are dominated by respective youngest age populations at 1002 Ma and 930-960 Ma, providing constraints on the maximum depositional ages for these two formations. Zircon grains from the meta-sediments have very similar age distributions, with two dominant peaks at 0.93-1.0 Ga and 1.0-1.6 Ga and a minor peak at 2.3-2.7 Ga. They have similar Hf isotopic signatures, suggesting that the meta-sediments in the CTB share similar sedimentary provenance. The early Neoproterozoic detrital zircon grains are mainly local-derived, whereas the Paleo-Mesoproterozoic grains are both autochthonous and allochthonous. The occurrence of these Mesoproterozoic and Neoproterozoic zircon grains are coincident with the Nuna breakup and the Rodinia assembly. This suggests that the CTB might experience the tectonic switching of the Nuna to the Rodinia. The distinct Meso-Neoproterozoic age patterns and Hf isotopic compositions of these detrital grains from the CTB and the surrounding blocks indicate that the CTB was not located close to the North China, the South China or the Tarim cratons in Precambrian. Our new data suggest that the CTB was most likely once a part of the East European Craton before the Neoproterozoic. This study was supported by National Basic Research Program of China

  19. Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton

    Directory of Open Access Journals (Sweden)

    Biswajit Mishra

    2018-05-01

    Full Text Available Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include (1 the famous Kolar mine and the world class Hutti deposit; (2 small mines at Hira-Buddini, Uti, Ajjanahalli, and Guddadarangavanahalli; (3 prospects at Jonnagiri; and (4 old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous (H2O + CO2 ± CH4 + NaCl ore fluids, which precipitated gold and altered the host rocks in a narrow P–T window of 0.7–2.5 kbar and 215–320 °C. While the calculated fluid O- and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs. magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite

  20. Changes in dip and frictional properties of the basal detachment controlling orogenic wedge propagation and frontal collapse: The external central Betics case

    Science.gov (United States)

    Jimenez-Bonilla, A.; Torvela, T.; Balanyá, J. C.; Expósito, I.; Díaz-Azpiroz, M.

    2016-12-01

    Thin-skinned fold-and-thrust belts (FTBs) have been extensively studied through both field examples and modeling. The overall dynamics of FTBs are, therefore, well understood. One less understood aspect is the combined influence of across-strike changes in the detachment properties and the basement topography on the behavior of an orogenic wedge. In this paper, we use field data together with reflection seismic interpretation from the external zones of the central Betics FTB, southern Spain, to identify a significant increase in the wedge basal dip (a basement "threshold") coinciding with the pinch-out of a weak substrate. This induced both changes to the wedge geometry and to the basal friction, which in turn influenced the wedge dynamics. The changing dynamics led to a transient "stagnation" of the FTB propagation, topographic buildup, and subsequent collapse of the FTB front. This in turn fed an important Langhian depocenter made up of mass transport deposits. Coevally with the FTB propagation, extension took place both parallel and perpendicular to the orogenic trend. This case study illustrates how across-strike changes in wedge basal properties can control the detailed behavior of a developing FTB front, but questions remain regarding the time-space interaction and relative importance of the basal parameters.

  1. Thermobarometry and electron-microprobe Th-U-Pb monazite dating in garnet metapelites from the Capelinha Formation, Aracuai Orogen, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Queiroga, Glaucia Nascimento; Martins, Maximiliano de Souza; Castro, Marco Paulo de; Jordt-Evangelista, Hanna; Silva, Ana Lucia da, E-mail: glauciaqueiroga@yahoo.com.br, E-mail: maximilianomartins@yahoo.com.br, E-mail: marco_pcastro@yahoo.com, E-mail: hanna@degeo.ufop.br, E-mail: alucia.silva@hotmail.com [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Geologia; Pedrosa-Soares, Antonio Carlos, E-mail: pedrosa@igc.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Instituto de Geociencias. Departamento de Geologia; Schulz, Bernhard, E-mail: bernhard.schulz@mineral.tu-freiberg.de [TU Bergakademie - Institute of Mineralogy, Freiberg - Saxony (Germany)

    2016-01-15

    The Capelinha Formation (Macaubas Group) consists of a lower quartzitic unit with metamafic intercalations and an upper metapelitic sequence. It occurs in a complex tectono-metamorphic sector of the Aracuai orogen, where post-collisional collapse-related structures superimposed collisional structures. The garnet-bearing assemblages started crystallization in the collisional deformation stage that formed the main regional foliation around 570 Ma. Garnet porphyroblasts display a well developed growth zonation of Fe-Mg-Ca-Mn and show, from core to rim, increasing almandine and pyrope contents in contrast with decreasing grossular and spessartine contents. Mineral relations and microstructures provide criteria for local equilibria and a structurally controlled application of geothermobarometry based on cation exchange and net transfer reactions. The P-T values calculated from cores to rims of garnets, aligned along clockwise trends, resulted in increasing temperatures (from 500 deg C up to 620 deg C) under decompression conditions (from 8.0 kbar to 4.5 kbar). The Th-UPb dating of homogeneous monazites by electron microprobe revealed a recrystallization period at around 490 - 480 Ma. These ages can be related to the tectono-thermal event associated with the gravitational collapse, constraining the youngest time limit for metamorphic processes in the Aracuai orogen. (author)

  2. Global China Insights

    NARCIS (Netherlands)

    Segers, Rien; Fischer, Ingrid

    Journal in which the Groningen Confucius Institute (GCI) shares different perspectives on China and provides insights into China from as many different aspects as possible. GCI aims to provide a full view of real China to the readers as well as featuring international and comprehensive perspectives,

  3. Global China Insights

    NARCIS (Netherlands)

    Segers, Rien; Havinga, Marieke; Fischer, Ingrid

    2013-01-01

    Journal in which the Groningen Confucius Institute (GCI) shares different perspectives on China and provides insights into China from as many different aspects as possible. GCI aims to provide a full view of real China to the readers as well as featuring international and comprehensive perspectives,

  4. Africa Insight: Submissions

    African Journals Online (AJOL)

    Author Guidelines. Africa Insight is a quarterly, peer-reviewed journal of the Africa Institute of South Africa (AISA). It is accredited by the Department of Higher ... Abstract: All articles should be accompanied by an abstract of between 100 and 125 words stating the main research problem, major findings and conclusion(s).

  5. [Poor insight and psychosis].

    Science.gov (United States)

    Giotakos, O

    2017-01-01

    A variety of phenomena might be considered as reflecting impaired insight in psychosis, like failure to recognize signs, symptoms or disease, failure to derive appropriate cognitive representations, despite recognition of the disease, and misattribution of the source or cause of the disease. The unawareness of tardive dyskinesia symptoms in schizophrenic patients points that self-awareness deficits in schizophrenia may be domain specific. Poor insight is an independent phenomenological and a prevalent feature in psychotic disorders in general, and in schizophrenia in particular, but we don't know yet if delusions in schizophrenia are the result of an entirely normal attempt to account for abnormal perceptual experiences or a product of abnormal experience but of normal reasoning. The theoretical approaches regarding impaired insight include the disturbed perceptual input, the impaired linkage between thought and emotion and the breakdown of the process of self-monitoring and error checking. The inability to distinguish between internally and externally generated mental events has been described by the metarepresentation theory. This theory includes the awareness of ones' goals, which leads to disorders of willed action, the awareness of intention, which leads to movement disorders, and the awareness of intentions of others, which leads to paranoid delusions. The theory of metarepresentation implies mainly output mechanisms, like the frontal cortex, while the input mechanism implies posterior brain systems, including the parietal lobe. There are many similarities between the disturbances of awareness seen in schizophrenia and those seen as a result of known neurological impairment. Neuropsychological models of impaired insight typically attribute the disturbance to any of a variety of core deficits in the processing of information. In this respect, lack of insight is on conceptual par with alogia, apraxia or aphasia in reflecting disturbed cognitive processing. In

  6. Thrust-wrench interference tectonics in the Gulf of Cadiz (Africa-Iberia plate boundary in the North-East Atlantic): Insights from analog models

    OpenAIRE

    Duarte , João ,; Rosas , Filipe ,; Terrinha , Pedro; Gutscher , Marc-André ,; Malavielle , Jacques; Silva , Sonia; Matias , Luis

    2011-01-01

    International audience; In the Gulf of Cadiz key segment of the Africa-Iberia plate boundary (North-East Atlantic ocean), three main different modes of tectonic interference between a recently identified wrench system (SWIM) and the Gulf of Cadiz Accretionary Wedge (GCAW) were tested through analog sand-box modeling: a) An active accretionary wedge on top of a pre-existent inactive basement fault; b) An active strike-slip fault cutting a previously formed, inactive, accretionary wedge; and c)...

  7. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  8. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids

    Science.gov (United States)

    Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna

    2018-06-01

    Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from

  9. The politics of insight

    OpenAIRE

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insig...

  10. HPC Insights, Fall 2011

    Science.gov (United States)

    2011-01-01

    Power 6 ( Davinci ) systems. We have also made use of the Air Force Research Laboratory DSRC Altix (Hawk) and the Engineer Research and Development...the design and development of high performance gas turbine combustion systems both as a pretest analysis tool to predict static and dynamic...application while gaining insight into MATLAB’s value as an engineering tool . I would like to thank the MHPCC and the Akamai Workforce Initiative

  11. The politics of insight.

    Science.gov (United States)

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs.

  12. The politics of insight

    Science.gov (United States)

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs. PMID:26810954

  13. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism?

    Science.gov (United States)

    Li, Chusi; Zhang, Mingjie; Fu, Piaoer; Qian, Zhuangzhi; Hu, Peiqing; Ripley, Edward M.

    2012-01-01

    The Permian Kalatongke Ni-Cu deposits in the Central Asian Orogenic Belt are among the most important Ni-Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5 mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ˜15% of olivine crystallization from a primary magma, itself produced by 7-8% partial melting of depleted mantle peridotite. Positive ɛ Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6-18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc-arc or arc-continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal

  14. A Comparative Study of the Electrical Structure of Circum Tibetan Plateau Orogenic Belts and its Tectonic Implications

    Science.gov (United States)

    Jin, Sheng; Zhang, Letian; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang; Yin, Yaotian

    2017-04-01

    The Tibetan Plateau, as known as "roof of the world", was created through the on-going continent-continent collision between the Indian and Eurasian plates since 55 Ma. As the process continues, the plateau is growing both vertically and horizontally. The horizontal expansion of the plateau is blocked by the Yangtze block in the east, the Tarim block in the north, and the Ordos block in the northeast, and consequently lead to the formation of the circum Tibetan plateau orogenic belts. To better understand the mechanism behind this process, we conducted a comparative study by collecting 7 magnetotelluric (MT) profiles over the margins of the Tibetan plateau, namely, the INDEPTH 100, 700 and 800 lines in the southern Tibet, the INDEPTH 4000 and 5000 lines across the Altyn Tagh fault on the northern margin of the plateau, as well as other two profiles across the Haiyuan fault and the Longmenshan fault on the northeastern and eastern margins of the plateau deployed under the framework of project SinoProbe. The electrical features of the stable blocks surrounding the Tibetan plateau are generally resistive, while crustal conductive layers are found to be wide spread within the plateau. The southern margin of the Tibetan plateau is characterized by large scale underthrust of the Indian lithosphere beneath the plateau. This intense converging process created the thrust fault system distributed along the southern margin of the Tibetan plateau over 1000 km. Crustal conductive layers discovered in southern Tibet are generally associated with the southward crustal flow that originated from the lower crust within the plateau and exhumed along the thrust belts in the Himalayas. On the eastern margin of the Tibetan plateau, the electrical structures suggest that the Yangtze block wedged into the Tibetan lithosphere and caused decoupling between the crust and upper mantel. Large scale conductors discovered beneath the Songpan-Ganze block reflect that the eastward crustal flow was

  15. Presolar silicates in the matrix and fine-grained rims around chondrules in primitive CO3.0 chondrites: Evidence for pre-accretionary aqueous alteration of the rims in the solar nebula

    Science.gov (United States)

    Haenecour, Pierre; Floss, Christine; Zega, Thomas J.; Croat, Thomas K.; Wang, Alian; Jolliff, Bradley L.; Carpenter, Paul

    2018-01-01

    To investigate the origin of fine-grained rims around chondrules (FGRs), we compared presolar grain abundances, elemental compositions and mineralogies in fine-grained interstitial matrix material and individual FGRs in the primitive CO3.0 chondrites Allan Hills A77307, LaPaz Icefield 031117 and Dominion Range 08006. The observation of similar overall O-anomalous (∼155 ppm) and C-anomalous grain abundances (∼40 ppm) in all three CO3.0 chondrites suggests that they all accreted from a nebular reservoir with similar presolar grain abundances. The presence of presolar silicate grains in FGRs combined with the observation of similar estimated porosity between interstitial matrix regions and FGRs in LAP 031117 and ALHA77307, as well as the identification of a composite FGR (a small rimmed chondrule within a larger chondrule rim) in ALHA77307, all provide evidence for a formation of FGRs by accretion of dust grains onto freely-floating chondrules in the solar nebula before their aggregation into their parent body asteroids. Our study also shows systematically lower abundances of presolar silicate grains in the FGRs than in the matrix regions of CO3 chondrites, while the abundances of SiC grains are the same in all areas, within errors. This trend differs from CR2 chondrites in which the presolar silicate abundances are higher in the FGRs than in the matrix, but similar to each other within 2σ errors. This observation combined with the identification of localized (micrometer-scaled) aqueous alteration in a FGR of LAP 031117 suggests that the lower abundance of presolar silicates in FGRs reflects pre-accretionary aqueous alteration of the fine-grained material in the FGRs. This pre-accretionary alteration could be due to either hydration and heating of freely floating rimmed chondrules in icy regions of the solar nebula or melted water ice associated with 26Al-related heating inside precursor planetesimals, followed by aggregation of FGRs into the CO chondrite parent-body.

  16. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean

    Science.gov (United States)

    Zheng, Zhen; Chen, Yan-Jing; Deng, Xiao-Hua; Yue, Su-Wei; Chen, Hong-Jin; Wang, Qing-Fei

    2018-01-01

    The Qiman Tagh of the East Kunlun Orogen, NW China, lies within the Tethysides and hosts a large W-Sn belt associated with the Bashierxi monzogranite. To constrain the origin of the granitic magmatism and its relationship with W-Sn mineralization and the tectonic evolution of the East Kunlun Orogen and the Tethys, we present zircon U-Pb ages and Hf isotopic data, and whole-rock compositional and Sr-Nd-Pb isotopic data of the Bashierxi monzogranite. The granite comprises quartz, K-feldspar, plagioclase, and minor muscovite, tourmaline, biotite, and garnet. It contains high concentrations of SiO2, K2O, and Al2O3, and low concentrations of TiO2 and MgO, indicating a peraluminous high-K calc-alkaline affinity. The rocks are enriched in Rb, U, Pb, and light rare earth elements, and relatively depleted in Eu, Ba, Nb, Sr, P, and Ti, and are classified as S-type granites. Twenty zircon grains yield a weighted mean 238U/206Pb age of 432 ± 2.6 Ma (mean square weighted deviation = 1.3), indicating the occurrence of a middle Silurian magmatic event in the region. Magmatic zircons yield εHf(t) values of -6.7 to 0.7 and corresponding two-stage Hf model ages of 1663-1250 Ma, suggesting that the granite was derived from Mesoproterozoic crust, as also indicated by 207Pb/206Pb ages of 1621-1609 Ma obtained from inherited zircon cores. The inherited zircon cores yield εHf(t) values of 8.3-9.6, which indicate the generation of juvenile crust in the late Paleoproterozoic. Samples of the Bashierxi granite yield high initial 87Sr/86Sr ratios and radiogenic Pb concentrations, and negative εNd(t) values. Isotopic data from the Bashierxi granite indicate that it was derived from partial melting of ancient (early Paleozoic to Mesoproterozoic) sediments, possibly representing recycled Proterozoic juvenile crust. Middle Silurian granitic magmatism resulted from continental collision following closure of the Proto-Tethys Ocean. The Qiman Tagh represents a Caledonian orogenic belt containing

  17. An evolving tectonic environment of Late Carboniferous to Early Permian granitic plutons in the Chinese Altai and Eastern Junggar terranes, Central Asian Orogenic Belt, NW China

    Science.gov (United States)

    Zhang, Chen; Liu, Dongdong; Luo, Qun; Liu, Luofu; Zhang, Yunzhao; Zhu, Deyu; Wang, Pengfei; Dai, Quanqi

    2018-06-01

    The Central Asian Orogenic Belt (CAOB) represents one of the most important sites of juvenile crustal growth during the Phanerozoic. Located in the central part of the CAOB, the Chinese Altai and Eastern Junggar terranes record the collisional processes between the peri-Siberian and Kazakhstan orogenic systems. However, the precise timing of collision between the two terranes remains controversial. The Wukuli and Kadelat plutons in the Chinese Altai belt are dated at ∼305 and ∼280 Ma respectively, whereas the Aketas pluton in the Eastern Junggar terrane is dated at ∼308 Ma. Granites from the Wukuli and Kadelat plutons are strongly peraluminous (A/CNK > 1.1), and are characterized by low Al2O3, Na2O, MnO, MgO, CaO and heavy rare earth element (HREE) contents, but with high SiO2, K2O and Rb contents as well as high Rb/Sr ratios. Granites from the Wukuli pluton have low εNd(t) and εHf(t) values of -3.7 to -3.4 and -9.7 to +4.9, whereas those from the Kadelat pluton have values of -3.6 to -3.4 and -8.0 to +2.6. These features suggest S-type affinity for the Wukuli and Kadelat plutons with magma derivation through partial melting of Mesoproterozoic metasediments. The Aketas pluton is composed of weakly peraluminous quartz monzonites that have A/CNK values ranging from 0.92 to 1.08, with high Na2O, Sr, and Sr/Y, and low Y, Yb, Nb, and Ta. These rocks display positive εNd(t) (+4.8 to +6.4) and εHf(t) (+9.7 to +14.6) values, and low initial 87Sr/86Sr ratios (0.703357-0.703868), similar to modern adakites, suggesting that the quartz monzonites were derived from the partial melting of lower crustal material. The geochemical characteristics suggest that the Aketas pluton was formed in a subduction-related setting, the Wukuli pluton in a syn-collisional setting, and the Kadelat pluton in the subsequent post-orogenic strike-slip-related setting. In combination with data from other granitoids in these two terranes, the Aketas pluton represents the youngest record of

  18. An analysis of the daily precipitation variability in the Himalayan orogen using a statistical parameterisation and its potential in driving landscape evolution models with stochastic climatic forcing

    Science.gov (United States)

    Deal, Eric; Braun, Jean

    2015-04-01

    A current challenge in landscape evolution modelling is to integrate realistic precipitation patterns and behaviour into longterm fluvial erosion models. The effect of precipitation on fluvial erosion can be subtle as well as nonlinear, implying that changes in climate (e.g. precipitation magnitude or storminess) may have unexpected outcomes in terms of erosion rates. For example Tucker and Bras (2000) show theoretically that changes in the variability of precipitation (storminess) alone can influence erosion rate across a landscape. To complicate the situation further, topography, ultimately driven by tectonic uplift but shaped by erosion, has a major influence on the distribution and style of precipitation. Therefore, in order to untangle the coupling between climate, erosion and tectonics in an actively uplifting orogen where fluvial erosion is dominant it is important to understand how the 'rain dial' used in a landscape evolution model (LEM) corresponds to real precipitation patterns. One issue with the parameterisation of rainfall for use in an LEM is the difference between the timescales for precipitation (≤ 1 year) and landscape evolution (> 103 years). As a result, precipitation patterns must be upscaled before being integrated into a model. The relevant question then becomes: What is the most appropriate measure of precipitation on a millennial timescale? Previous work (Tucker and Bras, 2000; Lague, 2005) has shown that precipitation can be properly upscaled by taking into account its variable nature, along with its average magnitude. This captures the relative size and frequency of extreme events, ensuring a more accurate characterisation of the integrated effects of precipitation on erosion over long periods of time. In light of this work, we present a statistical parameterisation that accurately models the mean and daily variability of ground based (APHRODITE) and remotely sensed (TRMM) precipitation data in the Himalayan orogen with only a few

  19. Is the HP-UHP Hong'an-Dabie-Sulu orogen a piercing point for offset on the Tan-Lu fault?

    Science.gov (United States)

    Leech, Mary L.; Webb, Laura E.

    2013-02-01

    The Tan-Lu fault is a major strike-slip fault in eastern China that appears to offset the high-grade rocks of the Hong'an-Dabie-Sulu orogen left-laterally ˜540 km. We evaluate models for the collision between the South and North China blocks, published radiometric dates recording HP-UHP metamorphism and exhumation in the Hong'an-Dabie and Sulu terranes, and the timing of sinistral motion on the Tan-Lu fault to evaluate whether UHP rocks provide a piercing point for offset on the Tan-Lu fault. UHP metamorphism in Hong'an-Dabie was concurrent with Sulu based on U-Pb dating of coesite-bearing domains of zircon at 244 ± 5-226 ± 2 Ma for Hong'an-Dabie and 243 ± 4-225 ± 2 Ma for Sulu. Retrograde metamorphism began c. 220 Ma for both Hong'an-Dabie and Sulu, but retrograde zircon growth ended c. 214 Ma in Hong'an-Dabie and continued until c. 202 Ma in Sulu based on U-Pb dating of zircon domains external to coesite-bearing domains. Structures in Sulu are rotated 25° counter-clockwise from, but are broadly similar to, Hong'an-Dabie suggesting the two areas have a common Triassic orogenic history that pre-dates motion on the Tan-Lu fault, and that is consistent with paleomagnetic studies. We constructed a pre-Cretaceous restoration of the Hong'an-Dabie-Sulu belt that moves the Sulu terrane south, aligning the suture and the eclogite-facies isograd, and rotates Sulu c. 25° clockwise to re-align structures with Hong'an-Dabie. Our restoration is supported by published data and shows that the Hong'an-Dabie-Sulu orogen is a piercing point for post-collisional offset on the Tan-Lu fault and that these regions shared a common subduction-exhumation history. The Tan-Lu fault did not play a significant role in the Hong'an-Dabie-Sulu collision and likely developed later, in the Early Cretaceous.

  20. Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília orogen (SE Brazil)

    Science.gov (United States)

    Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Pedrosa-Soares, Antônio; Hermann, Jörg; Dussin, Ivo; Pinheiro, Marco Aurélio P.; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2017-12-01

    The identification of markers of subduction zones in orogenic belts requires the estimation of paleo-geothermal gradients through pressure-temperature-time (P-T-t) estimates in mafic rocks that potentially derive from former oceanic units once. However, such markers are rare in supracrustal sequences specially in deeply eroded and weathered Precambrian orogens, and reconstructing their metamorphic history is challenging because they are commonly retrogressed and only preserve a few mineral relicts of high-pressure metamorphism. Metamorphosed mafic rocks from Pouso Alegre region of the Neoproterozoic Southern Brasília Orogen outcrop as rare lenses within continental gneisses. They have previously been classified as retrograde eclogites, based on the presence of garnet and the characteristic symplectitic texture replacing omphacite. These rocks were interpreted to mark the suture zone between the Paranapanema and São Francisco cratons. To test the possible record of eclogitic conditions in the Pouso Alegre mafic rocks, samples including the surrounding felsic rocks have been investigated using quantitative compositional mapping, forward thermodynamic modeling and in-situ dating of accessory minerals to refine their P-T-t history. In the metamorphosed mafic rocks, the peak pressure assemblage of garnet and omphacite (Jd20, reconstructed composition) formed at 690 ± 35 °C and 13.5 ± 3.0 kbar, whereas local retrogression into symplectite or corona occurred at 595 ± 25 °C and 4.8 ± 1.5 kbar. The two reactions were coupled and thus took place at the same time. A zircon U-Pb age of 603 ± 7 Ma was obtained for metamorphic rims and linked to the retrogression stage. Monazite and metamorphic zircon U-Th-Pb ages for the surrounding rocks are at ca. 630 Ma and linked to peak pressure conditions similar to the one recorded by the mafic rocks. The low maximal pressure of 14 kbar and the high geothermal gradient do not necessarily support subduction process

  1. Analogue modeling of rotational orogenic wedges: implications for the Neogene structural evolution of the Southern Central Andes (33°-35°S)

    Science.gov (United States)

    Herrera, S. S.; Farías, M.; Pinto, L.; Yagupsky, D. L.; Guzman, C.; Charrier, R.

    2017-12-01

    Structural evolution of the southernmost Central Andes is a major subject of debate. Overall vergence within the range and how intra-continental subduction prompts Andean orogeny are controversial topics. Between 33°-35° S, strike of the western slope main structures shifts southwards, from N-S to NNE-SSW, defining the Maipo Orocline. Likely, width of the Principal Cordillera increases southwards. Despite, a progressive southward decrease in orogenic volume has been determined for the segment. To understand such latitudinal variations, and to provide explanations for overall vergence, we carry out analogue models of contractional wedges to explore upper-crustal thrust system development with a progressive variation of the convergence vector. The model setup consisted of a fixed plate on which a mobile plate generated a velocity discontinuity. The upper-crust was simulated using low-cohesive quartz sand. The mobile plate was fixed at its northern end to a pivot, thus progressively incrementing shortening and the obliquity of convergence southwards. PIV photogrammetry recorded wedge evolution. A classical doubly-vergent wedge was formed, consisting of a steep 35° dipping, static thrust on the retro-side, an uplifted core, and an incipient forward-breaking, 25° critically tapered imbricated thrust fan on the pro-side, wider (in plan-view) where the imposed shortening reached the maximum. The resulting wedge is reminiscent of: the steep western Andean slope, in which the bordering thrust has maintained its present position during the Neogene; and the east-vergent fold-and-thrust belt of the eastern slope. The asymmetrical doubly vergence of the model suggests west-directed subduction of the South American continent beneath the orogen. The southward width increase is geometrically comparable to the natural analogue, yet we observe a flat contrast with orogenic shortening and volume estimates for the region. This can be attributed to the fact that uplift and erosion

  2. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (Se Brazil): U-Pb and Lu-Hf provenance data

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Gabriel Lamounier de F. [Servico Geologico do Estado do Rio de Janeiro (DRM-RJ), Niteroi, RJ (Brazil); Schmitt, Renata; Bongiolo, Everton M.; Mendes, Julio [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Basei, Miguel S. [Universidade de Sao Paulo (USP), SP (Brazil)

    2015-07-01

    Full text: The Neoproterozoic-Ordovician Central Ribeira Orogen, in SE Brazil, presents two contrasting tectonic domains in its southern portion: (a) The Arc Domain constituted of Neoproterozoic to Paleozoic magmatic rocks and low P-high T metamorphic para (Sao Fidelis Group) - and ortho- derived units (in Oriental Terrane); and (b) The Basement Domain, constituted of a Paleoproterozoic and Neoproterozoic medium P-high T metamorphic para (Palmital-Buzios Succession)- and ortho-derived units (in Cabo Frio Tectonic Domain). Our work focuses on paraderived rocks sequences from both domains. The provenance analysis using U-Pb and Lu-Hf in zircon grains is presented here as an effective tool to unravel the paleogeography and nature of the pre-collisional sedimentary basins. We performed 505 analyses (U-Pb) on detrital zircon grains and some metamorphic overgrowths from six paragneiss samples. Besides, 141 analyses (Lu-Hf) in six samples only on the detrital zircon grains domains. All samples present a main peak from Neoproterozoic sources (750-570 Ma) and the other minor peak in the Stenian/Tonian periods (1200-850Ma), this indicate an orogenic contribution for this basin. Scarce register from the Mesoproterozoic and two peaks in the Archean/Paleoproterozoic (2.6 and 1.9 Ga) are recognized as a contribution from an ancient continent. The Lu-Hf data reveals a juvenile source for the detrital zircon grains from Buzios Succession while Palmital and Sao Fidelis Group units show a main crustal signature for their detrital zircon population. Based on the U-Pb and Lu-Hf data presented here, plus petrological data, geological correlations, and compilation of data from literature, we propose a tectonic model for the origin of para-derived rocks from the eastern part of the Ribeira Orogen. Starting with an extensional environment of ca. 600 Ma in a back-arc basin (Buzios succession deposition) and continuing as an active margin between 570 and 550 Ma in the fore-arc and prism

  3. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: Tectonic implications for the evolution of Southeast Asia

    Science.gov (United States)

    Shellnutt, J. Gregory; Lan, Ching-Ying; Van Long, Trinh; Usuki, Tadashi; Yang, Huai-Jen; Mertzman, Stanley A.; Iizuka, Yoshi; Chung, Sun-Lin; Wang, Kuo-Lung; Hsu, Wen-Yu

    2013-12-01

    Cordilleran-type batholiths are useful in understanding the duration, cyclicity and tectonic evolution of continental margins. The Dalat zone of southern Vietnam preserves evidence of Late Mesozoic convergent zone magmatism superimposed on Precambrian rocks of the Indochina Block. The Dinhquan, Deoca and Ankroet plutons and their enclaves indicate that the Dalat zone transitioned from an active continental margin producing Cordilleran-type batholiths to highly extended crust producing within-plate plutons. The Deoca and Dinhquan plutons are compositionally similar to Cordilleran I-type granitic rocks and yield mean zircon U/Pb ages between 118 ± 1.4 Ma and 115 ± 1.2 Ma. Their Sr-Nd whole rock isotopes (ISr = 0.7044 to 0.7062; εNd(T) = - 2.4 to + 0.2) and zircon Hf isotopes (εHf(T) = + 8.2 ± 1.2 and + 6.4 ± 0.9) indicate that they were derived by mixing between a mantle component and an enriched component (i.e. GLOSS). The Ankroet pluton is chemically similar to post-orogenic/within-plate granitic rocks and has a zircon U/Pb age of 87 ± 1.6 Ma. Geobarometric calculations indicate that amphibole within the Ankroet pluton crystallized at a depth of ~ 6 kbar which is consistent with the somewhat more depleted Sr-Nd isotope (ISr = 0.7017 to 0.7111; εNd(T) = - 2.8 to + 0.6) and variable εHf(T) compositions suggesting a stronger influence of crustal material in the parental magma. The compositional change of the Dalat zone granitic rocks during the middle to late Cretaceous indicates that the tectonic regime evolved from a continental arc environment to one of post-orogenic extension. The appearance of sporadic post-90 Ma magmatism in the Dalat zone and along the eastern margin of Eurasian indicates that there was no subsequent orogenic event and the region was likely one of highly extended crust that facilitated the opening of the South China Sea during the latter half of the Cenozoic.

  4. What are System Dynamics Insights?

    OpenAIRE

    Stave, K.; Zimmermann, N. S.; Kim, H.

    2016-01-01

    This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...

  5. Orogen migration and tectonic setting of the Andrelândia Nappe system: An Ediacaran western Gondwana collage, south of São Francisco craton

    Science.gov (United States)

    Campos Neto, Mario da Costa; Basei, Miguel Angelo Stipp; Assis Janasi, Valdecir de; Moraes, Renato

    2011-12-01

    The southern Brasília Orogen is organized in a pile of nappes that records the Neoproterozoic history of the subduction and collision between passive and active margins, respectively belonging to the São Francisco and Paranapanema Plates. The whole pile of allochthons comprises the rootless Andrelândia Nappe System (the upper kyanite-bearing granulite of Três Pontas-Varginha Nappe, the intermediate high-pressure amphibolite-to eclogite facies of Liberdade Nappe and the lower Andrelândia Nappe) that is located below an Andean-type magmatic arc (Socorro-Guaxupé Nappe) and overrides the Lima Duarte Nappe and the Carrancas Nappe System. The tectonic units of the Andrelândia Nappe System seem to be exotic to the São Francisco Plate. The retroeclogite of the Liberdade Nappe yielded a 670 Ma SHRIMP U-Pb age in zircon, that is interpreted as the age of N-MORB-type basic magmatism. Detrital zircon grains of proximal flysh deposits of wackes in the Andrelândia Nappe present similar ages that reflect the crystallization in its source area. Both, rocks present Nd isotopic juvenile signatures with T DM in the range of 1.4 to 1.1 Ga. Rhyacian orthogneisses occur as slices in the Liberdade Nappe and have Nd isotope signature of juvenile source. The building of the collision pile of the whole system of nappes was diachronic and records a continuous outward migration of the orogen. The main structure is a middle crust-level duplex. The propagation of the structure and the metamorphism advanced progressively from the upper to the lower nappes, as is shown by U-Pb monazite ages in the range of 618-595 Ma for the Andrelândia Nappe System and 590-575 Ma for the Carrancas and Lima Duarte nappes.

  6. Transpressional folding and associated cross-fold jointing controlling the geometry of post-orogenic vein-type W-Sn mineralization: examples from Minas da Panasqueira, Portugal

    Science.gov (United States)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2018-02-01

    The world-class W-Sn Panasqueira deposit consists of an extensive, subhorizontal vein swarm, peripheral to a late-orogenic greisen cupola. The vein swarm consists of hundreds of co-planar quartz veins that are overlapping and connected laterally over large distances. Various segmentation structures, a local zigzag geometry, and the occurrence of straight propagation paths indicate that they exploited a regional joint system. A detailed orientation analysis of the systematic joints reveals a geometrical relationship with the subvertical F2 fold generation, reflecting late-Variscan transpression. The joints are consistently orthogonal to the steeply plunging S0-S2 intersection lineation, both on the regional and the outcrop scale, and are thus defined as cross-fold or ac-joints. The joint system developed during the waning stages of the Variscan orogeny, when already uplifted to an upper-crustal level. Veining reactivated these cross-fold joints under the conditions of hydraulic overpressures and low differential stress. The consistent subperpendicular orientation of the veins relative to the non-cylindrical F2 hinge lines, also when having an inclined attitude, demonstrates that veining did not occur during far-field horizontal compression. Vein orientation is determined by local stress states variable on a meter-scale but with the minimum principal stress consistently subparallel to fold hinge lines. The conspicuous subhorizontal attitude of the Panasqueira vein swarm is thus dictated by the geometry of late-orogenic folds, which developed synchronous with oroclinal buckling of the Ibero-Armorican arc.

  7. Age and kinematics of ductile deformation in the Cerro Durazno area, NW Argentina: Significance for orogenic processes operating at the western margin of Gondwana during Ordovician - Silurian times

    Science.gov (United States)

    Wegmann, Maja I.; Riller, Ulrich; Hongn, Fernando D.; Glodny, Johannes; Oncken, Onno

    2008-07-01

    The Cerro Durazno Pluton belongs to a suite of Paleozoic granitoid intrusions in NW-Argentina, that are central for understanding the tectonic setting of the western margin of Gondwana in Ordovician and Silurian times. The pluton and its host rocks were tectonically overprinted by metamorphic mineral shape fabrics formed under middle greenschist-facies metamorphic conditions and associated with the nearby Agua Rosada Shear Zone. Kinematic analysis of the shear zone based on the geometric relationship between individual segments of the shear plane and principal axes of mineral fabric ellipsoids indicates reverse-sense of shear with a minor component of left-lateral displacement. This is compatible with the kinematics of other ductile deformation zones in this area, collectively forming a network, which accomplished orogen-parallel extension in addition to vertical thickening. Using the Rb-Sr isotopic system, an undeformed pegmatite dike of the Cerro Durazno Pluton was dated at 455.8 ± 3.6 Ma and mineral fabrics of the Agua Rosada Shear Zone formed at middle greenschist-facies metamorphism gave deformation ages of 437.0 ± 3.8 Ma and ⩽428.4 ± 4.5 Ma. Thus, tectonic overprint at low metamorphic grade occurred about 20-30 Ma after terminal magmatism in the Cerro Durazno area. Our data from the Cerro Durazno area and regional considerations suggest that the western margin of Gondwana was characterized by orogen-parallel extension in addition to crustal thickening as well as episodes of magmatism and ductile deformation that varied greatly in time and space.

  8. Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens

    International Nuclear Information System (INIS)

    Haines, P.W.; Hand, M.; Sandiford, M.

    2001-01-01

    The Palaeozoic Alice Springs Orogeny was a major intraplate tectonic event in central and northern Australia. The sedimentological, structural and isotopic effects of the Alice Springs Orogeny have been well documented in the northern Amadeus Basin and adjacent exhumed Arunta lnlier, although the full regional extent of the event, as well as lateral variations in timing and intensity are less well known. Because of the lack of regional isotopic data, we take a sedimentological approach towards constraining these parameters, compiling the location and age constraints of inferred synorogenic sedimentation across a number of central and northern Australian basins. Such deposits are recorded from the Amadeus, Ngalia, Georgina, Wiso, Eastern Officer and, possibly, Warburton Basins. Deposits are commonly located adjacent to areas of significant basement uplift related to north-south shortening. In addition, similar aged orogenic deposits occur in association with strike-slip tectonism in the Ord and southern Bonaparte Basins of northwest Australia. From a combination of sedimentological and isotopic evidence it appears that localised convergent deformation started in the Late Ordovician in the eastern Arunta lnlier and adjacent Amadeus Basin. Synorogenic style sedimentation becomes synchronously widespread in the late Early Devonian and in most areas the record terminates abruptly close to the end of the Devonian. A notable exception is the Ngalia Basin in which such sedimentation continued until the mid-Carboniferous. In the Ord and Bonaparte Basins there is evidence of two discrete pulses of transcurrent activity in the Late Devonian and Carboniferous. The sedimentological story contrasts with the isotopic record from the southern Arunta lnlier, which has generally been interpreted in terms of continuous convergent orogenic activity spanning most of the Devonian and Carboniferous, with a suggestion that rates of deformation increased in the mid-Carboniferous. Either

  9. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains

    Science.gov (United States)

    Xie, W.

    2017-12-01

    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by coexisted felsic volcanics were likely formed in a rear-arc or back-arc environment, probably related to southward subduction of the Paleo-Tianshan Ocean (Xie et al., 2016a, b, c).

  10. Insight in seasonal affective disorder.

    Science.gov (United States)

    Ghaemi, S N; Sachs, G S; Baldassano, C F; Truman, C J

    1997-01-01

    Lack of insight complicates the evaluation and treatment of patients with psychotic and affective disorders. No studies of insight in seasonal affective disorder (SAD) have been reported. Thirty patients with SAD diagnosed by the Structured Clinical Interview for DSM-III-R but no other axis I conditions were treated short-term with light-therapy. Insight was measured with the Scale to Assess Unawareness of Mental Disorder (SUMD) as modified by the authors to assess the self-report of insight into depressive symptoms. Increasing scores (1 to 5) indicated increasing unawareness of illness (i.e., less insight). SAD patients displayed a moderate amount of insight when depressed (mean SUMD score, 2.5). When recovered, they showed no significant change in insight into past depressive symptoms (mean SUMD score, 2.8). Greater insight into current depressive symptoms correlated with more depressive symptoms on the Hamilton Rating Scale for Depression score ([HRSD] r = .35, P depressive symptoms that does not change after recovery, a result in agreement with studies of insight in psychosis and mania. Further, in SAD, increased severity of illness may be associated with increased insight into depressive symptoms, consistent with the hypothesis of depressive realism.

  11. Insights on STEM Careers

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, Joanne Roth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-05

    This presentation will provide career advice for individuals seeking to go beyond just having a job to building a successful career in the areas of Science, Technology, Engineering, and Mathematics. Careful planning can be used to turn a job into a springboard for professional advancement and personal satisfaction. Topics to be addressed include setting priorities, understanding career ladders, making tough choices, overcoming stereotypes and assumptions by others, networking, developing a professional identify, and balancing a career with family and other personal responsibilities. Insights on the transition from individual technical work to leadership will also be provided. The author will draw upon experiences gained in academic, industrial, and government laboratory settings, as well as extensive professional service and community involvement.

  12. Osho - Insights on sex.

    Science.gov (United States)

    Nagaraj, Anil Kumar Mysore

    2013-01-01

    Sex is a mysterious phenomenon, which has puzzled even great sages. Human beings have researched and mastered the biology of sex. But that is not all. Sex needs to be understood from the spiritual perspective too. The vision of Osho is an enlightening experience in this regard. Out of the thousands of lectures, five lectures on sex made Osho most notorious. Born into a Jain family of Madhya Pradesh, Rajneesh, who later wanted himself to be called Osho, is a great master. He has spoken volumes on a wide range of topics ranging from sex to super-consciousness. His contributions in the area of sex are based on the principles of "Tantra" which has its origin from Buddhism. This article focuses on his life and insights on sex, which if understood properly, can be a stepping stone for enlightenment.

  13. Outsourcing/Offshoring Insights

    DEFF Research Database (Denmark)

    Tate, Wendy; Bals, Lydia

    2017-01-01

    Findings: Both the geographical and governance dimensions are part of the rightshoring decision which is an important conceptual foundation for this special issue, as it invited insightful pieces on all of these phenomena (e.g. outsourcing, insourcing, offshoring, reshoring), acknowledging...... for future research out of the six papers are summarized in Table III. There is ample opportunity to further shed light on these suggestions as well as to cover parts of the “rightshoring” framework presented, that remain less covered here (e.g. insourcing and/or reshoring). Practical implications: The array...... of potential “rightshoring” options fosters clarity about the phenomena studied and their implications. The main practical implications of the six papers are summarized in Table II. Originality/value: The overall conceptual framework highlights the positioning of the final papers included into the special...

  14. Insights into business student's book

    CERN Document Server

    Lannon, Michael; Trappe, Tonya

    1993-01-01

    With Challenging reading and listening texts from a range of authentic business sources, New Insights into Business will really engage your students. The thorough language and vocabulary syllabus together with the strong focus on business skills development gives students everything they need to function effectively in the workplace. New Insights into Business is a self-contained course and is also an ideal follow-on to First Insights into Business.

  15. Insight in schizophrenia: a review.

    Science.gov (United States)

    Dam, Jesper

    2006-01-01

    The issue of insight in schizophrenia must be assumed to be one of the most important aspects of the clinical examination. Comprehensive studies have shown that between 50% and 80% of all patients suffering from schizophrenia do not believe that they have a disorder. In recent years, poor insight in schizophrenia has been the subject of increasing interest, as manifested in a number of studies discussed in the present review. Some of these studies focus on insight correlated to various parameters such as psychopathology, neuropsychology, clinical relevance and compliance. Other studies refer to more theoretical implications, among these the issue of defining the concept of insight: whether insight can be seen as a "primary" phenomenon in schizophrenia, and whether insight may be graduated, dimensioned or increased. Several authors have developed rating scales in an attempt to obtain a measure for the degree or dimension of insight. Here, the range of parameters employed gives an excellent impression of the complexity of the concept of insight. In the concluding discussion, a phenomenological aspect is brought in, in an attempt to place the concept of insight in relation to disturbances of the self in schizophrenia and to primary symptoms in schizophrenia, amongst these autism.

  16. Insights into PRA methodologies

    International Nuclear Information System (INIS)

    Gallagher, D.; Lofgren, E.; Atefi, B.; Liner, R.; Blond, R.; Amico, P.

    1984-08-01

    Probabilistic Risk Assessments (PRAs) for six nuclear power plants were examined to gain insight into how the choice of analytical methods can affect the results of PRAs. The PRA sreflectope considered was limited to internally initiated accidents sequences through core melt. For twenty methodological topic areas, a baseline or minimal methodology was specified. The choice of methods for each topic in the six PRAs was characterized in terms of the incremental level of effort above the baseline. A higher level of effort generally reflects a higher level of detail or a higher degree of sophistication in the analytical approach to a particular topic area. The impact on results was measured in terms of how additional effort beyond the baseline level changed the relative importance and ordering of dominant accident sequences compared to what would have been observed had methods corresponding to the baseline level of effort been employed. This measure of impact is a more useful indicator of how methods affect perceptions of plant vulnerabilities than changes in core melt frequency would be. However, the change in core melt frequency was used as a secondary measure of impact for nine topics where availability of information permitted. Results are presented primarily in the form of effort-impact matrices for each of the twenty topic areas. A suggested effort-impact profile for future PRAs is presented

  17. Grigor Narekatsi's astronomical insights

    Science.gov (United States)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  18. O insight em psiquiatria

    Directory of Open Access Journals (Sweden)

    Ana Margarida P. Cardoso

    2008-12-01

    Full Text Available O sinal de que algo está a acontecer contribui para que o paciente reconheça que alguma coisa de estranho se está a passar consigo. Este reconhecimento faz com que o sujeito possa desempenhar uma função activa e seja um elemento colaborante do seu processo de recuperação. Cada doença apresenta, contudo, diferentes sintomas, uma vez que cada doença psiquiátrica consiste em diferentes perturbações com diversos efeitos sobre o funcionamento mental. Desta maneira, o fenómeno do insight que é registado em cada doença é diferente e expressa-se sob diferentes formas, não somente devido às manifestações clínicas da doença mas também devido às características individuais do sujeito.

  19. The Rio Pardo salient, northern Araçuaí orogen: an example of a complex basin-controlled fold-thrust belt curve

    Directory of Open Access Journals (Sweden)

    Eliza Peixoto

    Full Text Available ABSTRACT: The Rio Pardo salient, the large antitaxial curve described by the Araçuaí fold-and-thrust belt along the southeastern edge of the São Francisco craton, is one of the most prominent and one of the least studied features of the Brasiliano Araçuaí-West Congo orogenic system (AWCO. In addition to the Archean/Paleoproterozoic basement, the salient is comprised of metasedimentary rocks mainly from the Neoproterozoic Macaúbas Group and the Salinas Formation. Its western limb occupies a portion of the Espinhaço ridge, where the NS-trending structures of the Araçuaí belt progressively curve NE and E, thereby defining the hinge zone along the Serra Geral on the Minas-Bahia boundary. The eastern limb is NW-trending and marked by a major shear zone. In models postulated to generate the AWCO through the closure of the Neoproterozoic Macaúbas basin, this large curve plays a critical kinematic role. Yet, in spite of this, its development is still not fully understood. How did this curve originate? Which factors controlled its generation? Our field study performed in the northern Araçuaí orogen characterized the kinematic picture of the salient, and led to a model that addresses these questions. The results we obtained indicate that the Rio Pardo salient developed in response to four deformation phases. The contractional D1 and D2 phases are coaxial and responsible for a craton-directed tectonic transport along the salient’s outer arc, which is coupled with an overall southward motion of the inner arc, thereby giving rise to a rather complex kinematic picture. Furthermore, structures of the D1/D2 phases define a zigzag pattern with alternating NE- and NW-trending segments along the salient’s leading edge. Along the NE-trending segments, the metasedimentary rocks are thrust northwestwards on top of the craton basement, while along the NW-trending segments, the supracrustal rocks are displaced along dextral to reverse

  20. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton

    International Nuclear Information System (INIS)

    Silva, Luiz Carlos da; Pimentel, Marcio; Armstrong, Richard; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos; Carneiro, Mauricio Antonio

    2002-01-01

    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  1. Cognitive insight: A systematic review.

    Science.gov (United States)

    Van Camp, L S C; Sabbe, B G C; Oldenburg, J F E

    2017-07-01

    Cognitive insight is the ability to re-evaluate thoughts and beliefs in order to make thoughtful conclusions. It differs from clinical insight, as it focuses on more general metacognitive processes. Therefore, it could be relevant to diverse disorders and non-clinical subjects. There is a growing body of research on cognitive insight in individuals with and without psychosis. This review has summarised the current state of the art regarding this topic. We conclude that while cognitive insight in its current form seems valid for use in individuals with psychosis, it is less so for individuals without psychosis. Additionally, higher cognitive insight not always leads to better psychological functioning. For instance, higher levels of self-reflection are often associated with depressive mood. We therefore recommend the sub-components of cognitive insight to be studied separately. Also, it is unclear what position cognitive insight takes within the spectrum of metacognitive processes and how it relates to other self-related concepts that have been defined previously in literature. Combining future and past research on cognitive insight and its analogue concepts will help in the formation of a uniform definition that fits all subjects discussed here. Copyright © 2017. Published by Elsevier Ltd.

  2. Hyperons: Insights into baryon structures

    International Nuclear Information System (INIS)

    Lach, J.

    1991-08-01

    The baryon octet is composed mainly of hyperons. Modern high energy hyperon beams provide a tool for the study of hyperon static properties and interactions. Experiments with these beams have provided new insights into hyperon rare decays, magnetic moments, and interactions. These experiments provide us with insights into the strong, weak, and electromagnetic structure of the baryons. 65 refs., 45 figs., 5 tabs

  3. Fold superimposition in the Permian groups in the central Beishan orogenic collage (northwestern China): highlights for the late evolution of the Altaids

    Science.gov (United States)

    Zhonghua, Tian; Wenjiao, Xiao; Yehua, Shan

    2013-04-01

    The southernmost part of the Central Asian Orogenic Belt (CAOB) or Altaids (Sengör and Burtman, 1993; Xiao et al., 2009), a rare and magnificent example of mesoscopic fold superimposition, involving the Permian sandstone, slightly to mildly metamorphosed clastic rocks, is well exposed in the central Beishan Orogenic Collage (BOC). We provide a detailed description of the morphological features of this phenomenon, based on an enormous amount of structural data collected during recent twice field mapping in the study area. Two phases of folds are readily distinguishable both in satellite image (Fig.la) and our own field map (Fig.1b). Fold is tight to close, N-S-trending in the first phase (F1), and open and E-W-trending in the second phase (F2). The first phase upright folds were refolded into a smaller number of (F2), whose axial planes and axes are vertical or subvertical. They plunge gentle to moderately in the former and moderately to steeply in the latter. Their interference is in general categorized as Ramsay's (Ramsay, 1967) type 2 or Ghosh's third/fourth mode based on the value of initial tightness. However, from east to west there exists a slight variation of a zigzag to crescent to mushroom interference pattern. This subtle variation corresponds with the westward increases of the F2 interlimb angle and of the percentage of coarse-grain clastic rocks, suggesting its dependence upon the F2 deformation and the lithology. Axial slaty cleavages (S1) and associated dip-slip slickensides are more abundant in the first phase. Cleavages and strike-slip slickensides related to the seconding refolding are also occurred in the area. Finally, according to the petrological, geochemical and geochronological data, we conclude that the deformation history of the superposed folds were associated with the late evolution in the BOC. In the late Permian, the fold superimposition occurred in sedimentary rocks deposited in a Permian back-arc basin. The basin was intensely

  4. Molybdenum mineralization related to the Yangtze's lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit

    Science.gov (United States)

    Liu, Qing-Quan; Li, Bin; Shao, Yong-Jun; Lu, An-Huai; Lai, Jian-Qing; Li, Yong-Feng; Luo, Zheng-Zhuan

    2017-06-01

    The Dabie Orogen is a world-class case for large amounts of Mo mineralization in that it contains at least 10 porphyry Mo deposits with Mo metal reserves over 3 Mt from the time period of 156-110 Ma. However, the principal mechanism for the Mo mineralization remains controversial due to the lack of a precise definition of its source and shallow ore-forming process, which is essential to understand these rare large Mo deposits. Detailed geochronology, geochemistry, and isotopic data for ore-related granites and minerals were analyzed in order to place constraints on the massive Mo mineralization in the Dabie Orogen in eastern China. The Yaochong molybdenum orebodies were hosted in the transition belt and alteration zone between the granitic stocks and the Dabie Complex and were characterized as numerous veinlets with potassic, phyllic and propylitic alterations. The buried Yaochong granitic intrusions and associated molybdenum mineralization yield Early Cretaceous ages of magmatic activities at ca. 138 Ma and extremely similar Re-Os isotope ages for the corresponding Mo metallogenic event at ca. 137 Ma. The Yaochong monzogranite and granite porphyry belong to the highly fractionated I-type granites, which are believed to be derived from the dominantly Yangtze's lower crust mixed with the Northern Dabie Complex due to their geochemical and isotope features. The elemental diversity and isotopic homogeneity suggest that the formation of the Yaochong monzogranite involved the fractionation of biotite, garnet and minor feldspar and accessory minerals combined with a weak crustal assimilation process. In contrast, the granite porphyry was possibly generated by the partial melting of the same mixed lower continental crust via the differentiation process involving the fractionation of feldspar, apatite, and/or titanite. Fractional crystallization processes can significantly elevate the molybdenum concentration in the residual melts. The biotite fractional crystallization

  5. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    Science.gov (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  6. Geochemistry of Gneisses from Dabie Complex and Tongbai Complex in Qinling-Tongbai-Dabie Orogenic Belt: Implications for Location of Yangtze-Sino-Korean Suture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Dabie complex (DC) and the Tongbai complex (TBC) are separately distributed in the middle and eastern parts of the Qinling-Tongbai-Dabie orogenic belt. In this study, the Dabie complex can be divided into two units: one is the complex with no high pressure and ultrahigh pressure metamorphic rocks (DC1), and the other is the complex containing coesite-bearing eclogite lenses or boudins (DC2). Gneisses are predominant in the TBC, DC1 and DC2. Major and trace element data of gneisses in the TBC, DC1 and DC2 show them to be the orthogneisses. The gneisses in the DC1 have higher incompatible element contents and higher ratios of w(K2O)/w(Na2O) and w(La)n/w(Yb)n than those in the DC2. However, no obvious differences arise in other element contents and the ratios of w(La)/w( Nb), w(Nb)/w(Th), w(Nb)/w(Hf), w(Ba)/w(La), w(Sm)/w(Nd) and w(Th)/w(U) between the gneisses in the DC2 and those in the DC1. These observations suggest that the protoliths of the gneisses in the DC2 have affinities to those in the DC1. The difference between the DC1 and DC2 gneisses in incompat- ible element contents could reflect the difference in their partial melting extent. The TBC gneisses are geochemically similar to the DC1 gneisses, suggesting that the TBC and DC1 gneisses are the same lithologic unit in the Qinling-Tongbai-Dabie orogenic belt and that they have experienced similar formations and evolution histories. In the Qinling-Tongbai area, the TBC is part of the northern blocks of the Yangtze craton. Given the similarity of geochemical characteristics, the rock assemblage and the ages between the TBC and DC1 gneisses, we can infer that the Dabie complex also belongs to the northern blocks of the Yangtze craton. In terms of the distribution of eciogites and metamorphic facies, we propose that the collisionai suture in the Dabie area is distributed along the Xiaotian-Mozitan fault, at the contact with the Shang-Dan-Tongbai fault to the west.

  7. Thermochronometry across the Austroalpine-Pennine boundary, Central Alps, Switzerland: Orogen-perpendicular normal fault slip on a major ‘overthrust’ and its implications for orogenesis

    Science.gov (United States)

    Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.

    2018-01-01

    Fifty‐one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top‐north thrust fault, is in fact primarily an Oligocene‐Miocene normal fault that has a minimum of 60 km of displacement with top‐south or top‐southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.

  8. Thermochronometry Across the Austroalpine-Pennine Boundary, Central Alps, Switzerland: Orogen-Perpendicular Normal Fault Slip on a Major "Overthrust" and Its Implications for Orogenesis

    Science.gov (United States)

    Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.

    2018-03-01

    Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from 450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine "orogenic lid") and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous "overthrust" between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine "lid" and the European cratonic margin, with the Helvetic system (European margin) acting as the "floor" of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.

  9. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  10. Teleseismic P-wave tomography and the upper mantle structure of the Sulu orogenic belt (China): implications for Triassic collision and exhumation mechanism

    Science.gov (United States)

    Peng, Miao; Tan, Handong; Jiang, Mei; Xu, Zhiqin; Li, Zhonghai; Xu, Lehong

    2016-12-01

    As the largest ultrahigh-pressure (UHP) metamorphic tectonic unit outcropping in the world, the Dabie-Sulu UHP metamorphic belt is considered to be one of the best areas for studying the continental dynamics. However, their continental collision and exhumation mechanism are still debated. We performed a 3D teleseismic P-wave tomography beneath the Sulu orogen for the purpose of understanding the deep structure. The tomographic results show that there is a prominently near-SN-trending low-velocity zone (LVZ) close to the Tanlu fault (TLF), indicating a slab tear of the subducted Yangtze plate (YZP) during the initial Early Triassic collision. Our results also suggest that both the Yangze crustal slab and the North China lithospheric slab were dragged downwards by the subducted oceanic slab, which constituted a ‘two-sided’ subduction mode. A conceptual geodynamic model is proposed to explain the exhumation of Sulu high- to UHP rocks and imply a polyphase exhumation driven by buoyancy of continental materials at different depth and upward extrusion of crustal partial melting rocks to the surface at the later stage.

  11. The tectono-magmatic evolution of the occidental terrane and the Paraiba do Sul Klippe within the Neoproterozoic Ribeira orogenic Belt, Southeastern Brazil

    International Nuclear Information System (INIS)

    Valladares, Claudia Sayao; Duarte, Beatriz Paschoal; Heilbron, Monica; Ragatky, Diana

    2000-01-01

    The occidental Terrane is envisaged as the eastern/southeastern reworked margin of the Sao Francisco/Rio de la Plata plate associated with and E-trending subduction under the Congo plate. The Paraiba do Sul Klippe is part of the Oriental Terrane, envisaged as a portion of the Congo plate. A collisional-stage resulted in intense westward deformation of the Occidental Terrane under intermediate pressure metamorphism (syn-D1+D2 events). A late-collisional stage resulted in subvertical folding and steep shear zones (D3 event). Both stages were associated with voluminous crustal-derived granites. U-Pb and Sm-Nd geochronology as well as geochemical and structural data point to three magmatic episodes: a syn-collisional stage 1; a syn-collisional stage 2; and a late-collisional stage. This paper presents a magmatic evolutionary model for this crustal segment of the Ribeira orogenic belt based on new geological data of Brasiliano granites and data available in the literature. (author)

  12. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    Science.gov (United States)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  13. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications

    Science.gov (United States)

    Pilitsyna, Anfisa V.; Tretyakov, Andrey A.; Degtyarev, Kirill E.; Cuthbert, Simon J.; Batanova, Valentina G.; Kovalchuk, Elena V.

    2018-03-01

    The Anrakhai Metamorphic Complex (AMC), located in the SE part of the Chu-Ili Mountains of Southern Kazakhstan in the western part of Central Asian Orogenic Belt, exhibits occurrences of HP metamorphic rocks in the form of eclogites and garnet clinopyroxenites with peak metamorphic conditions of 750-850° and 15-19 kbar estimated with both conventional geothermobarometric methods and phase diagram modeling. P-T estimates as well as intimate field relations evidently imply a common metamorphic history for eclogites and garnet clinopyroxenites of the AMC. These high-pressure, medium temperature eclogite facies P-T conditions are indicative of a collision or subduction tectonic setting. Major and trace element geochemistry suggests that they probably had a common magmatic origin as part of a suite of differentiated tholeiitic intrusions. Furthermore, distinctive mineral and chemical compositions of these eclogites and garnet clinopyroxenites correspond to the Fe-Ti type of ultramafic rocks suggesting that they may have been derivatives of intraplate tholeiitic melts, introduced into continental crust before HP metamorphism.

  14. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes

    Science.gov (United States)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang

    2015-05-01

    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  15. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization

    Science.gov (United States)

    Han, Chunming; Xiao, Wenjiao; Zhao, Guochun; Ao, Songjian; Zhang, Jien; Qu, Wenjun; Du, Andao

    2010-12-01

    The timing and genesis of the major Ni-Cu-Co sulfide deposit in the Xiangshan intrusion have been studied based on newly obtained in-situ U-Pb, Hf and Re-Os isotopic analyses. The SIMS U-Pb zircon ages of the gabbro hosting the Ni-Cu-Co sulfide deposit indicate that the Xiangshan intrusion was emplaced at 279.6 ± 1.1 Ma (95% confidence level, MSWD = 1.30, n = 15). On the basis of combined geological and geochronological evidence, we suggest that the Xiangshan and other adjacent Ni-Cu deposits were formed in the same period. Sulphides have low common Os concentrations and high Re/Os ratios, similar to sulphide ores from the Duluth, Sally Malay and Voisey Bay complexes. The Re-Os isotopic data from the disseminated and massive ores from the Xiangshan intrusion do not form a single isochron, as they have different initial Os ratios. The Hf and Os isotopic data suggest that the Xiangshan intrusion and associated Ni-Cu-Co mineralization were derived from crustally contaminated mantle melts. The geochemical data show a tholeiitic affinity and a strong suprasubduction zone signature with negative Nb, Sr, and Ti anomalies similar to N-MORB and E-MORB. We suggest that the mafic-ultramafic rocks and associated Ni-Cu mineralization of the Eastern Tianshan orogen formed in an Alaska-type subduction zone-arc setting. Some diagnostic features of ridge-trench interaction are present in the Chinese East Tianshan orogen (e.g. granites, adakites, high-Mg andesites, near-trench magmatism, Alaskan-type mafic-ultramafic complexes, high-temperature metamorphic belts that prograde rapidly from low-grade belts, and orogenic gold deposits). The above distinctive rock groups are probably related to the same thermal event, ridge subduction, as in the Cenozoic orogen of Alaska. We suggest that ridge subduction is the most plausible mechanism to provide the necessary heat. Ridge subduction provides an important promising model for understanding many aspects of the evolution of the Chinese

  16. Parental insightfulness: retrospect and prospect.

    Science.gov (United States)

    Koren-Karie, Nina; Oppenheim, David

    2018-06-01

    We open this introductory paper to the special issue with the theoretical and clinical roots of the insightfulness concept. Next, the Insightfulness Assessment (IA) is presented, followed by a review of key empirical findings supporting the IA. The central points in the papers in this special issue are reviewed next. These include the use of the IA with parents of children ranging in age from infancy to adolescence, its applicability outside the parent-child relationship (e.g. insightfulness toward a close friend), its use with high-risk mothers, and the usefulness of insightfulness both as a continuous and a categorical measure. The clinical applications of the IA are discussed, and we close with future directions for IA research.

  17. Franchise Business Model: Theoretical Insights

    OpenAIRE

    Levickaitė, Rasa; Reimeris, Ramojus

    2010-01-01

    The article is based on literature review, theoretical insights, and deals with the topic of franchise business model. The objective of the paper is to analyse peculiarities of franchise business model and its developing conditions in Lithuania. The aim of the paper is to make an overview on franchise business model and its environment in Lithuanian business context. The overview is based on international and local theoretical insights. In terms of practical meaning, this article should be re...

  18. Rare earth element and strontium isotopic study of seamount-type limestones in Mesozoic accretionary complex of Southern Chichibu Terrane, central Japan. Implication for incorporation process of seawater REE into limestones

    International Nuclear Information System (INIS)

    Tanaka, Kazuya; Miura, Noriko; Asahara, Yoshihiro; Kawabe, Iwao

    2003-01-01

    Ishimaki and Tahara limestones occur as exotic blocks juxtaposed in the Mesozoic (Jurassic) accretionary complex of Southern Chichibu Terrane in eastern Aichi Prefecture, central Japan. They are supposed to be of the seamount-type limestone, since they have no terrigenous materials and are intimately associated with greenstones. REE (rare earth elements) and Sr isotopic studies for the limestones have been made in order to know their geochemical characteristics, ages and origins. Their 87 Sr/ 86 Sr ratios, when referred to the seawater 87 Sr/ 86 Sr curve and relevant geological data, suggest that Ishimaki and Tahara limestones are the late Permian and the Carboniferous to the Early Permian, respectively. Two greenstone fragments found inside the Ishimaki limestone block and one greenstone sample associated with Tahara limestone block, resemble the Hawaiian alkali basalt in the their REE and Y patterns. This is supporting the idea that the limestone blocks may be parts of reef limestones on ancient volcanic seamounts. All the limestone samples, except three unusual Tahara ones, show seawater REE and Y signatures in their chondrite-normalized patterns. Their REE/Ca ratios, however, are 10 2 -10 4 times as high as those ratios of modern biogenic carbonates like corals and the seawater. Accordingly, seawater REE and Y were incorporated into the limestones, when originally biogenic carbonates transformed into inorganic calcite and its secondary growths occurred in diagenesis in contact with sufficient seawater. This view is favored by the reported REE partition experiment between calcite overgrowths and seawater solution. The seawater Ce anomaly as a function of water depth in the modern ocean is a key to infer the water depth of the REE and Y incorporation. The Ce anomalies given by log (Ce/Ce*) for about a half of Ishimaki samples and most of Tahara ones are between -0.5 and -0.2, which are compatible with the shallow water origin. Another half of Ishimaki samples

  19. Mechanical properties of conjugate faults in the Makran accretionary prism estimated from InSAR observations of coseismic deformation due to the 2013 Baluchistan (Mw 7.7) earthquake

    Science.gov (United States)

    Dutta, R.; Harrington, J.; Wang, T.; Feng, G.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements allow us to study various mechanical and rheological properties around faults. For example, strain localizations along faults induced by nearby earthquakes observed by InSAR have been explained by the elastic response of compliant fault zones (CFZ) where the elastic moduli is reduced with respect to that of the surrounding rock. We observed similar strain localizations (up to 1-3 cm displacements in the line-of-sight direction of InSAR) along several conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake in the accretionary prism of the Makran subduction zone. These conjugate compliant faults, which have strikes of N30°E and N45°W, are located 15-30 km from the mainshock fault rupture in a N-S compressional stress regime. The long-term geologic slip direction of these faults is left-lateral for the N30°E striking faults and right-lateral for the N45°W striking faults. The 2013 Baluchistan earthquake caused WSW-ENE extensional coseismic stress changes across the conjugate fault system and the observed strain localizations shows opposite sense of motion to that of the geologic long-term slip. We use 3D Finite Element modeling (FEM) to study the effects extensional coseismic stresses have on the conjugate CFZs that is otherwise loaded in a compressional regional stress. We use coseismic static displacements due to the earthquake along the FEM domain boundaries to simulate the extensional coseismic stress change acting across the fault system. Around 0.5-2 km wide CFZs with reduction in shear modulus by a factor of 3 to 4 can explain the observed InSAR strain localizations and the opposite sense of motion. The InSAR measurements were also used to constrain the ranges of the length, width and rigidity variations of the CFZs. The FEM solution shows that the N45°W striking faults localize mostly extensional strain and a small amount of left-lateral shear (opposite sense to

  20. Elucidating tectonic events and processes from variably tectonized conglomerate clast detrital geochronology: examples from the Hongliuhe Formation in the southern Central Asian Orogenic Belt, NW China

    Science.gov (United States)

    Cleven, Nathan; Lin, Shoufa; Davis, Donald; Xiao, Wenjiao; Guilmette, Carl

    2017-04-01

    This work expands upon detrital zircon geochronology with a sampling and analysis strategy dating granitoid conglomerate clasts that exhibit differing degrees of internal ductile deformation. As deformation textures within clastic material reflect the variation and history of tectonization in the source region of a deposit, we outline a dating methodology that can provide details of the provenance's tectonomagmatic history from deformation-relative age distributions. The method involves bulk samples of solely granitoid clasts, as they are representative of the magmatic framework within the provenance. The clasts are classified and sorted into three subsets: undeformed, slightly deformed, and deformed. LA-ICPMS U-Pb geochronology is performed on zircon separates of each subset. Our case study, involving the Permian Hongliuhe Formation in the southern Central Asian Orogenic Belt, analyzes each of the three clast subsets, as well as sandstone detrital samples, at three stratigraphic levels to yield a profile of the unroofed provenance. The age spectra of the clast samples exhibit different, wider distributions than sandstone samples, considered an effect of proximity to the respective provenance. Comparisons of clast data to sandstone data, as well as comparisons between stratigraphic levels, yield indications of key tectonic processes, in addition to the typical characteristics provided by detrital geochronology. The clast data indicates a minimal lag time, implying rapid exhumation rates, whereas sandstone data alone would indicate a 90 m.y. lag time. Early Paleozoic arc building episodes appear as Ordovician peaks in sandstone data, and Silurian-Devonian peaks in clast data, indicating a younging of magmatism towards the proximal provenance. A magmatic hiatus starts in the Devonian, correlating with the latest age of deformed clasts, interpreted as timing of collisional tectonics. Provenance interpretation using the correlations seen between the clast and sandstone

  1. Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case of the Emilia-Romagna Apennine (Italy)

    Science.gov (United States)

    Bonini, Marco

    2018-03-01

    The Northern Apennine prowedge exposes two adjacent sectors showing a marked along-strike change in erosion intensity, namely the Emilia Apennine to the northwest and the Romagna Apennine to the southeast. This setting has resulted from Pliocene erosion (≤5 Ma) and exhumation, which have affected the whole Romagna sector and mostly the watershed ridge in Emilia. Such an evolution has conceivably influenced the equilibrium of this fold-and-thrust belt, which can be evaluated in terms of critical Coulomb wedge theory. The present state of the thrust wedge has been assessed by crosschecking wedge tapers measured along transverse profiles with fluid pressure values inferred from deep wellbores. The interpretation of available data suggests that both Emilia and Romagna are currently overcritical. This condition is compatible with the presence in both sectors of active NE-dipping normal faults, which would work to decrease the surface slope of the orogenic wedge. However, the presence of Late Miocene-Pliocene passive-roof and out-of-sequence thrusts in Romagna may reveal a past undercritical wedge state ensuing during the regional erosion phase, thereby implying that the current overcritical condition would be a recent feature. The setting of the Emilia Apennine (i.e., strong axial exhumation and limited erosion of the prowedge) suggests instead a long lasting overcritical wedge, which was probably contemporaneous with the Pliocene undercritical wedge in Romagna. The reasons for this evolution are still unclear, although they may be linked to lithosphere-scale processes that have promoted the uplift of Romagna relative to Emilia. The lessons from the Northern Apennine thus suggest that erosion and exhumation have the ability to produce marked along-strike changes in the equilibrium of a fold-and-thrust belt.

  2. Inferred Early Permian Arc Rifting in Bogda Mountain, Southernmost of the Central Asia Orogenic Belt: Evidence from a Peperite Bearing Volcano-Sedimentary Succession

    Science.gov (United States)

    Memtimin, M.; Guo, Z.

    2017-12-01

    Late Paleozoic tectonic history, especially Carboniferous-Permian periods, of the Central Asia Orogenic Belt (CAOB) is considered to be the turning point for the termination of terrane amalgamation and closure of the Paleoasian Ocean. However, the debate about the paleoenvironment and tectonic setting of the region during the period is still not resolved. In this study, we report a set of volcano-sedimentary sequence in the Bogda Mountain of the southernmost of CAOB, which is associated with contemporaneous subaqueous emplacement of and interaction between mafic lava and carbonate sediments. The succession contains four distinct facies including closely packed pillow basalts, pillow basalts with interstitial materials, hyaloclastites and peperites. We discuss their formation and emplacement mechanism, interaction between hot magma-water/unconsolidated sediments and thermal metamorphism during the interaction. Textural features of the sequence, especially hyaloclastites and peperites, provide clear evidence for in situ autofragmentation of lava flows, synvolcanic sedimentation of carbonates, fuel coolant interaction when hot magma bulldozed into wet unconsolidated sediments, and represent autochthonous origin of the succession. Lateral transition of the lithofacies indicate a progressively deepening subaqueous environment, resembling a stepwise evolution from early stage of volcanic intrusion with lower lava flux in shallower water level to increasingly subsiding basin with more lava flux in greater depth. Previous studies determined that the mafic magma was intruded around the Carboniferous-Permian boundary ( 300Ma), and geochemical studies showed the magma was originated from dry depleted mantle with little crustal contamination. Nevertheless, the succession was thought to be fault related allochthones formation which was transferred in as part of a Carboniferous intraplate arc. Combining our findings with the previous study results, we propose a new model to

  3. Folded Basinal Compartments of the Southern Mongolian Borderland: A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt

    Directory of Open Access Journals (Sweden)

    Dickson Cunningham

    2017-01-01

    Full Text Available The Central Asian Orogenic Belt (CAOB records multiple Phanerozoic tectonic events involving consolidation of disparate terranes and cratonic blocks and subsequent reactivation of Eurasia’s continental interior. The final amalgamation of the CAOB terrane collage involved diachronous closure of the Permian-Triassic Solonker suture in northernmost China and the Jurassic Mongol-Okhotsk suture in northeast Mongolia and eastern Siberia. The distribution, style, and kinematics of deformation associated with these two terminal collision events is poorly documented in southern Mongolia and northernmost China because these regions were later tectonically overprinted by widespread Cretaceous basin and range-style crustal extension and Miocene-recent sinistral transpressional mountain building. These younger events structurally compartmentalized the crust into uplifted crystalline basement blocks and intermontane basins. Consequently, widespread Cretaceous and Late Cenozoic clastic sedimentary deposits overlie older Permian-Jurassic sedimentary rocks in most basinal areas and obscure the deformation record associated with Permian-Triassic Solonker and Jurassic Mongol-Okhotsk collisional suturing. In this report, satellite image mapping of basinal compartments that expose folded Permian-Jurassic sedimentary successions that are unconformably overlapped by Cretaceous-Quaternary clastic sediments is presented for remote and poorly studied regions of southern Mongolia and two areas of the Beishan. The largest folds are tens of kilometers in strike length, east-west trending, and reveal north-south Late Jurassic shortening (present coordinates. Late Jurassic fold vergence is dominantly northerly in the southern Gobi Altai within a regional-scale fold-and-thrust belt. Local refolding of older Permian north-south trending folds is also evident in some areas. The folds identified and mapped in this study provide new evidence for the regional distribution and

  4. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites

  5. Effects of lateral variations of crustal rheology on the occurrence of post-orogenic normal faults: The Alto Tiberina Fault (Northern Apennines, Central Italy)

    Science.gov (United States)

    Pauselli, Cristina; Ranalli, Giorgio

    2017-11-01

    The Northern Apennines (NA) are characterized by formerly compressive structures partly overprinted by subsequent extensional structures. The area of extensional tectonics migrated eastward since the Miocene. The youngest and easternmost major expression of extension is the Alto Tiberina Fault (ATF). We estimate 2D rheological profiles across the NA, and conclude that lateral rheological crustal variations have played an important role in the formation of the ATF and similar previously active faults to the west. Lithospheric delamination and mantle degassing resulted in an easterly-migrating extension-compression boundary, coinciding at present with the ATF, where (i) the thickness of the upper crust brittle layer reaches a maximum; (ii) the critical stress difference required to initiate faulting at the base of the brittle layer is at a minimum; and (iii) the total strengths of both the brittle layer and the whole lithosphere are at a minimum. Although the location of the fault is correlated with lithospheric rheological properties, the rheology by itself does not account for the low dip ( 20°) of the ATF. Two hypotheses are considered: (a) the low dip of the ATF is related to a rotation of the stress tensor at the time of initiation of the fault, caused by a basal shear stress ( 100 MPa) possibly related to corner flow associated with delamination; or (b) the low dip is associated to low values of the friction coefficient (≤ 0.5) coupled with high pore pressures related to mantle degassing. Our results establishing the correlation between crustal rheology and the location of the ATF are relatively robust, as we have examined various possible compositions and rheological parameters. They also provide possible general indications on the mechanisms of localized extension in post-orogenic extensional setting. The hypotheses to account for the low dip of the ATF, on the other hand, are intended simply to suggest possible solutions worthy of further study.

  6. Understanding Insight in the Context of Q

    Science.gov (United States)

    Coghlan, David

    2012-01-01

    In Revans' learning formula, L = P + Q, Q represents "questioning insight", by which Revans means that insight comes out of the process of questioning programmed knowledge (P) in the light of experience. We typically focus on the content of an insight rather than on the act of insight. Drawing primarily on the work of Bernard Lonergan this paper…

  7. Approaching the Distinction between Intuition and Insight.

    Science.gov (United States)

    Zhang, Zhonglu; Lei, Yi; Li, Hong

    2016-01-01

    Intuition and insight share similar cognitive and neural basis. Though, there are still some essential differences between the two. Here in this short review, we discriminated between intuition, and insight in two aspects. First, intuition, and insight are toward different aspects of information processing. Whereas intuition involves judgment about "yes or no," insight is related to "what" is the solution. Second, tacit knowledge play different roles in between intuition and insight. On the one hand, tacit knowledge is conducive to intuitive judgment. On the other hand, tacit knowledge may first impede but later facilitate insight occurrence. Furthermore, we share theoretical, and methodological views on how to access the distinction between intuition and insight.

  8. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting

    Science.gov (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan

    2018-05-01

    The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs

  9. Insight in psychosis: Metacognitive processes and treatment

    OpenAIRE

    de Vos, Annerieke

    2016-01-01

    Insight is impaired in 50- 80% of the patients with schizophrenia. Annerieke de Vos working at GGZ Drenthe and the University Medical Hospital Groningen, aimed to elucidate which processes underlie impaired insight and tried to improve insight in patients by targeting these processes. On September 21st she will defend her thesis entitled: "Insight in psychosis. Metacognitive processes and treatment.". Patients with impaired insight may fail to recognize that things in life are not going well ...

  10. New Insights into Behavioral Finance

    NARCIS (Netherlands)

    G. Baltussen (Guido)

    2008-01-01

    textabstractThis thesis applies insights from psychology and other behavioral sciences to overcome the shortcomings of the traditional finance approach (which assumes that agents and markets are rational) and improves our understanding of financial markets and its participants. More specific, this

  11. Investigating Insight as Sudden Learning

    Science.gov (United States)

    Ash, Ivan K.; Jee, Benjamin D.; Wiley, Jennifer

    2012-01-01

    Gestalt psychologists proposed two distinct learning mechanisms. Associative learning occurs gradually through the repeated co-occurrence of external stimuli or memories. Insight learning occurs suddenly when people discover new relationships within their prior knowledge as a result of reasoning or problem solving processes that re-organize or…

  12. Late Paleozoic onset of subduction and exhumation at the western margin of Gondwana (Chilenia Terrane): Counterclockwise P-T paths and timing of metamorphism of deep-seated garnet-mica schist and amphibolite of Punta Sirena, Coastal Accretionary Complex, central Chile (34° S)

    Science.gov (United States)

    Hyppolito, T.; García-Casco, A.; Juliani, C.; Meira, V. T.; Hall, C.

    2014-10-01

    In this study, the Paleozoic albite-epidote-amphibolite occurring as meter-sized intercalations within garnet-mica schist at Punta Sirena beach (Pichilemu region, central Chile) is characterized for the first time. These rocks constitute an unusual exposure of subduction-related rocks within the Paleozoic Coastal Accretionary Complex of central Chile. Whereas high pressure (HP) greenschist and cofacial metasediments are the predominant rocks forming the regional metamorphic basement, the garnet-mica schist and amphibolite yield higher P-T conditions (albite-epidote amphibolite facies) and an older metamorphic age. Combining detailed mineral chemistry and textural information, P-T calculations and Ar-Ar ages, including previously published material from the Paleozoic Accretionary Complex of central Chile, we show that the garnet-mica schist and associated amphibolite (locally retrograded to greenschist) are vestiges of the earliest subducted material now forming exotic bodies within the younger HP units of the paleo-accretionary wedge. These rocks are interpreted as having been formed during the onset of subduction at the southwestern margin of Gondwana. However, we show that the garnet-mica schist formed at a slightly greater depth (ca. 40 km) than the amphibolite (ca. 30 km) along the same hot-subduction gradient developed during the onset of subduction. Both lithotypes reached their peak-P conditions at ca. 335-330 Ma and underwent near-isobaric cooling followed by cooling and decompression (i.e., counterclockwise P-T paths). The forced return flow of the garnet-mica schist from the subduction channel started at ca. 320 Ma and triggered the exhumation of fragments of shallower accreted oceanic crust (amphibolite). Cores of phengite (garnet-mica schist) and amphibole (amphibolite) grains have similar chemical compositions in both the S1 and S2 domains, indicating rotation of these grains during the transposition of the burial-related (prograde peak-T) foliation S1

  13. Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage

    Science.gov (United States)

    Wang, Shengdong; Zhang, Kexin; Song, Bowen; Li, Shucai; Li, Ming; Zhou, Jie

    2018-01-01

    The Niujuanzi ophiolitic mélange (NOM), located in the Beishan Orogenic Collage, marks the termination between the Huaniushan arc and Mingshui-Hanshan Massifs. The NOM is mainly composed of gabbros, diabases, plagiogranites, basalts, and greywacke. Two gabbros have ages of 433.8 ± 3.1 and 354.0 ± 3.3 Ma, two plagiogranites have ages of 429.8 ± 2 and 448.7 ± 2.0 Ma, and a diabase has an age of 433.4 ± 3.2 Ma. The gabbros and diabases are calc-alkaline and tholeiitic, with high Al2O3, CaO, and TiO2 contents and low FeOT contents. The gabbros have high Mg# values (49-82), while the diabases have relatively low Mg# values (46-61). The plagiogranites are calc-alkaline and metaluminous, with high SiO2 and Na2O contents and low Al2O3 and K2O contents. The gabbros and diabases are enriched in large iron lithophile elements and slightly depleted in high field strength elements relative to N-MORB and their trace element characteristics are similar to E-MORB. With respect to rare earth element (REE), they have slightly enriched LREEs relative to HREEs. The majority of the plagiogranite trace elements approximate those of the volcanic arc granite. The plagiogranites have obviously enriched LREEs relative to HREEs, with a slightly to strongly negative Eu anomaly, which is similar to ORG but distinct from volcanic arc and within plate granite. The NOM was formed from the Ordovician to the Carboniferous, representing the expansion period of the Niujuanzi Ocean. The gabbros, diabases, and plagiogranites were formed in a mid-ocean ridge environment. The gabbros and diabases were generated by different degrees of partial melting of the mantle, and the plagiogranites derived from both the crystallization differentiation of basaltic magma and the partial melting of amphibolites in the crust.

  14. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin

    Science.gov (United States)

    Zhao, Y.; Zheng, J.; Wang, B.

    2017-12-01

    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  15. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China

    Science.gov (United States)

    Hu, Jun; Wang, He; Wang, Min

    2017-10-01

    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  16. Active shortening, intermontane basin formation, and geomorphic evolution in an orogenic plateau: Central Puna Plateau, NW Argentina (24°37'S, 67°03'W)

    Science.gov (United States)

    Strecker, Manfred R.; Alonso, Ricardo N.; Bookhagen, Bodo; Freymark, Jessica; Pingel, Heiko

    2017-04-01

    The high-elevation Andean Plateau (Altiplano-Puna; 4km) is a first-order morphotectonic province of the Central Andes and constitutes the world's second largest orogenic plateau. While there are many unifying basin characteristics in this region, including internal drainage, semi-arid to arid climate and associated deposition of evaporites, there are notable differences between the northern and southern parts of the plateau. In contrast to the vast basins of the Altiplano (north) and incipient establishment of fluvial connectivity and sediment transport to the foreland, the Puna (south) comprises numerous smaller basins, bordered by reverse-fault bounded ranges up to 6 km high. The plateau is internally drained and fluvial connectivity with the foreland does not exist leading to thick sedimentary basin fills that comprise continental evaporites, volcanic and clastic deposits, typically between 3 and 5 km thick. However, repeated impacts of climate change and superposed tectonic activity in the southern plateau have resulted in further basin differentiation, abandonment or re-arrangement of fluvial networks and impacts on sediment transport. Here we report evidence for sustained contractional tectonic activity in the Pocitos Basin in the southern plateau. On the western margin of the basin fanning of dipping strata and regraded, steeply inclined gravel-covered pediment surfaces and wind gaps associated with gravel derived from distant sources in the west document late Tertiary to Pleistocene growth of an approximately N-S oriented and N plunging anticline. The growth of the eastern limb of this anticline has caused the isolation of a formerly more extensive basin. In addition, Late Pleistocene and Holocene lake shorelines and lacustrine deposits are tilted eastward along the same structure and InSAR measurements of deformed lake terraces document that the fold is growing. Despite widely reported extensional faulting in the southern Puna, we conclude (1) that the

  17. On the formation and evolution of the Pannonian basin: constraints derived from the orogenic collapse recorded at the junction between Carpathians and Dinarides

    Science.gov (United States)

    Matenco, L. C.; Radivojevic, D.

    2012-04-01

    -ward prolongation of the large scale extension in an area that is adjacent across Carpathians to the Moesian platform suggests that the roll-back of the Carpathians is not the only mechanism that is responsible for the formation of the Pannonian basin. The correlation with similar extensional structures superposed over the orogenic chain located S-wards strongly points towards a component of Pannonian collapse driven by a Middle Miocene roll-back of a Dinaridic slab. The study provides critical constraints for the pre-Neogene evolution of an area where there major crustal blocks (i.e. Tisza, Dacia and Dinarides) are juxtaposed together with their partly overlying obducted ophiolitic sequences against the major oceanic suture of Dinarides, the Sava zone.

  18. Peeking out of the basins: looking for the Late Devonian Kellwasser Event in the open ocean in the Central Asian Orogenic Belt, southwestern Mongolia

    Science.gov (United States)

    Thomas, R. M., Jr.; Carmichael, S. K.; Waters, J. A.; Batchelor, C. J.

    2017-12-01

    Two of the top five most devastating mass extinctions in Earth's history occurred during the Late Devonian (419.2 Ma - 358.9 Ma), and are commonly associated with the black shale deposits of the Kellwasser and Hangenberg ocean anoxia events. Our understanding of these extinction events is incomplete partly due to sample bias, as 95% of the field sites studying the Late Devonian are limited to continental shelves and continental marine basins, and 77% of these sites are derived from the Euramerican paleocontinent. The Samnuuruul Formation at the Hoshoot Shiveetiin Gol locality (HSG), located in southwestern Mongolia, offers a unique opportunity to better understand global oceanic conditions during the Late Devonian. The HSG locality shows a continuous sequence of terrestrial to marine sediments on the East Junggar arc; an isolated, open-ocean island arc within the Central Asian Orogenic Belt (CAOB). Samples from this near shore locality consist of volcanogenic silts, sands and immature conglomerates as well as calc-alkalic basalt lava flows. Offshore sections contain numerous limestones with Late Devonian fossil assemblages. Preliminary biostratigraphy of the associated marine and terrestrial sequences can only constrain the section to a general Late Devonian age, but TIMS analysis of detrital zircons from volcanogenic sediments from the Samnuuruul Formation in localities 8-50 km from the site suggests a late Frasnian age (375, 376 Ma). To provide a more precise radiometric age of the HSG locality, zircon geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) will be performed at UNC-Chapel Hill. If the HSG section crosses the Frasnian-Famennian boundary, geochemical, mineralogical, and ichnological signatures of the Kellwasser Event are expected to be preserved, if the Kellwasser Event was indeed global in scope (as suggested by Carmichael et al. (2014) for analogous sites on the West Junggar arc in the CAOB). Black shale

  19. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran)

    Science.gov (United States)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad

    2018-04-01

    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher

  20. Geochronology, geochemistry and Hf–Sr–Nd isotopes of the ore-bearing syenite from the Shapinggou porphyry Mo deposit, East Qinling-Dabie orogenic belt

    Directory of Open Access Journals (Sweden)

    Tao He

    2016-12-01

    Full Text Available The Shapinggou Mo deposit is located in the western Dabie mountains, the eastern part of the Qinling-Dabie molybdenum orogenic belt. Shapinggou Mo deposit is a concealed deposit with the ore body mainly hosted by explosive breccia of Gaijing and the granite porphyry as well as the syenite of Shapinggou. Geochemistry study show that the SiO2 contents of Shapinggou syenite range from 61.74 to 69.93%, and the A/CNK from 0.95 to 1.06, classified as metaluminous to weak peraluminous, belonging to alkalic to shoshonitic series. The Mo deposits in Qinling Mo belt formed in two main periods, i.e., the first period occurred in to the Early Cretaceous (145–130 Ma, the second period in the late Early Cretaceous (130–110 Ma. Most of the Mo deposits in Dabie region formed in the second period. The results of zircon U–Pb show that the age of the Shapinggou syenite is 111.3 ± 1.2 Ma, which belongs to the second period. Proterozoic-Archean inherited zircons suggest that it may include some more ancient crustal material like Kongling group. The ɛHf(t values of Shapinggou syenite range from −15.6 to −8.0, TDM2(Hf from 1.7 to 2.16 Ga, respectively. The ɛNd(t values of the Shapinggou syenite range from −12.29 to −11.76, TDM2(Nd from 1.85 to 1.89 Ga, the 87Sr/86Sr from 0.709 to 0.710, respectively. Results of zircon Hf isotope and whole rock Sr–Nd isotope of Shapinggou syenite indicate that the Mo ore-forming materials were mainly generated from old Yangtze craton, e.g., gneiss from Dabie orogeny, mixed with some juvenal mantle materials. The geodynamics of the Shapinggou Mo deposit corresponded to an extension period in Eastern China, which caused by large scale lithospheric thinning. The delamination caused asthenosphere upwelling and crust-mantle interaction, which provided the ore-forming material and heat.

  1. U-Pb SHRIMP and {sup 40}Ar/{sup 39}Ar constraints on the timing of mineralization in the Paleoproterozoic Caxias orogenic gold deposit, Sao Luis cratonic fragment, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Evandro Luiz, E-mail: evandro.klein@cprm.gov.br [Servico Geologico do Brasil (CPRM), Belem, PA (Brazil); Tassinari, Colombo Celso Gaeta, E-mail: ccgtassi@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Geociencias. Centro de Pesquisas Geocronologicas; Vasconcelos, Paulo Marcos, E-mail: paulo@earth.uq.edu.au [University of Queensland, School of Earth Sciences, Brisbane (Australia)

    2014-07-01

    Caxias is an orogenic gold deposit in the Sao Luis cratonic fragment, which is correlated with the Rhyacian terranes of the West-African Craton. The deposit postdates peak metamorphism (estimated at 2100 ± 15 Ma) and is hosted in a shear zone that cuts across schists of the Aurizona Group (2240 ± 5 Ma) and the Caxias Microtonalite. The emplacement age of the microtonalite, as determined in this work by SHRIMP U-Pb zircon dating, is 2009 ± 11 Ma and represents a latest age magmatic event in the Sao Luis cratonic fragment. Older zircon age of 2139 ± 10 Ma is interpreted as due to inheritance from the older granitoid or volcanic suites (magmatic sources?) or to contamination during emplacement. Lead isotope compositions indicate that the Pb incorporated in ore-related pyrite was probably sourced from regional, orogenic calc-alkaline granitoids of ca. 2160 Ma. Hydrothermal sericite from Caxias yielded a {sup 40}Ar/{sup 39}Ar plateau age of 1990 ± 30 Ma, which combined with the emplacement age of the Caxias Microtonalite brackets the age of gold mineralization between 2009 ± 11 and 1990 ± 30 Ma. (author)

  2. A Crustal Cross Section over the Central North Iberian Margin: New Insights into the Bay of Biscay Inverted Hyperextended Rift

    Science.gov (United States)

    Cadenas Martínez, P.; Fernandez Viejo, G.; Pulgar, J. A.; Minshull, T. A.

    2015-12-01

    The Bay of Biscay is a V-shape failed arm of the Atlantic rift which was opened during the Mesozoic and partially closed during the Alpine orogeny in the Cenozoic, when the convergence of the Iberian and European Plates drove to the formation of the Pyrenean-Cantabrian realm in the North Iberian peninsula. A complete crustal cross section through the central part of the North Iberian Margin, representing the southern margin of the Bay of Biscay, is presented here from the interpretation of a high quality deep seismic reflection profile together with boreholes and well logs, acquired for oil and gas exploration purposes. The studied segment of this margin includes a basement high so called Le Danois Bank, and the Asturian basin, one of the sedimentary basins developed during the Mesozoic extensional processes, which was subsequently inverted during the Alpine orogeny. Most of the compression seems to have taken place through uplift of the continental platform and slope and the formation of an accretionary wedge at the bottom of the slope, so it is still possible to elucidate both extensional and compressional features. The basin appears as an asymmetric bowl bounded by synsedimentary normal faults with a maximum thickness of about 6 s TWT, which has been estimated to be equivalent to about 7 km. Depth migration of the seismic profile has revealed the presence of a deeper trough, with a maximum thickness of 13. 5 km at its main depocenter, which closely resembles the sedimentary thickness proposed for other contemporaneous proximal basins. These results support the high degree of extension and the exhumation processes proposed for this margin, deduced from refraction velocities and from the upper crustal and mantle rocks dredged at the slopes of Le Danois High. They will bring new insights to, and further constraints on, geodynamical models for this margin, where the amount of shortening linked with Cenozoic compression and the role of the rift structure during the

  3. Insight in psychosis : Metacognitive processes and treatment

    NARCIS (Netherlands)

    de Vos, Annerieke

    2016-01-01

    Insight is impaired in 50- 80% of the patients with schizophrenia. Annerieke de Vos working at GGZ Drenthe and the University Medical Hospital Groningen, aimed to elucidate which processes underlie impaired insight and tried to improve insight in patients by targeting these processes. On September

  4. Quantifying the Qualitative: Measuring the Insight Experience

    Science.gov (United States)

    Jarman, Matthew S.

    2014-01-01

    No scales currently exist that measure variability in the insight experience. Two scales were created to measure two factors hypothesized to be key drivers of the insight experience: insight radicality (i.e., perceived deviation between previous and new problem representations) and restructuring experience (i.e., the subjective experience of the…

  5. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau

    Science.gov (United States)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han

    2017-08-01

    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  6. The Development of Topography in Ancient and Active Orogens: Case Studies of Landscape Evolution in the Southern Appalachians, USA and Crete, Greece

    Science.gov (United States)

    Gallen, Sean Francis

    Understanding the development of topography is fundamental to the geosciences. Topography represents the sum of all tectonic and geodynamic processes that force the earth's surface upward paired with those that act to bring it down. Spatial and temporal changes in topographic relief can modulate the various feedbacks between atmospheric, earth surface and rock exhumation processes, sediment flux, and the magnitude and style of gravity driven natural hazards. Plate tectonics provides the first-order framework necessary to understand how topography is built through the interaction of lithospheric plates. However, density contrasts in the mantle can also influence the elevation of the earth's surface through dynamic topography, while poorly understood nuances of mountain building at convergent margins complicate drawing direct connections between tectonics and topography. Such linkages are further confounded by non-linearity between rock uplift and erosion, variations in rates of deformation, changes in climate and the properties of bedrock. Great advances in our understanding of the evolution of topography have been achieved, yet numerous questions remain regarding the evolution of topography in ancient and active orogens. This research addresses knowledge gaps in the development of topography through case-studies of landscape evolution in the southern Appalachians Mountains, USA and the forearc overlying the Hellenic subduction zone. Chapter 1 explores the origins of modern topographic relief in the southern Appalachians, where tectonic activity ceased prior to 200 Ma. Conventional theories invoked to explain modern relief in the region are challenged. Quantitative analyses of digital elevation models and numerical modeling are coupled to provide the magnitudes and timing of changes in topographic relief. The results suggest that the southern Appalachians experienced a phase of topographic rejuvenation during the Miocene that increased the distance between the

  7. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden

    Science.gov (United States)

    Clos, Frediano; Gilio, Mattia; van Roermund, Herman L. M.

    2014-04-01

    Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunite with olivine Mg# (100 × Mg/Mg + Fe) of 92.0-93.5 and harzburgite with lower Mg# (91.0-92.5). Dunite is characterized by three contrasting olivine microstructures formed in response to different tectonometamorphic events: Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm long are surrounded by dynamically recrystallized olivine grains (M2) defining a characteristic olivine "foam" microstructure (grain size: 200-2000 μm). An olivine "mortar" (M3) microstructure (10-50 μm) forms a penetrative fabric element only in strongly localized, cm-to-m sized shear zones that crosscut earlier structures/foliations. Olivine fabric analysis in synergy, with mineralogical and chemical analyses, reveals that the KSP body represents old, possibly Archean, sub-continental lithospheric mantle that was crustally emplaced into the Caledonian tectonic edifice from the hanging wall mantle during exhumation of the subducted Seve Nappe Complex (Jämtlandian orogeny ~ 454 Ma). Olivine porphyroclasts (M1) grew at high temperature during dominant isobaric cooling after extensive polybaric melt extraction (> 40%) and subsequent refertilization. The onset of the early Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 650-830 °C/1-2 GPa by dislocation creep processes producing an E-type CPO's by the operation of the [100](001) and subordinate [001](100) slip systems with operating flow stress

  8. 'Extra-regional' strike-slip fault systems in Chile and Alaska: the North Pacific Rim orogenic Stream vs. Beck's Buttress

    Science.gov (United States)

    Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.

    2010-12-01

    The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading

  9. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting

    Science.gov (United States)

    Chen, Ming; Sun, Min

    2016-04-01

    Granitoids are a major component in the upper continental crust and hold key information on how did the continental crust grow and differentiate. This study focuses on the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt (CAOB). The association of granitoids and mafic enclaves can provide important clues on the source nature, petrogenetic processes and geodynamic setting of the Yaloman intrusive complex, which in turn will shed light on the crustal evolution in the northwestern CAOB. Zircon U-Pb dating shows that the granitoids, including quartz diorites and granodiorites, were emplaced in ca. 389-387 Ma. The moderate Na2O + K2O contents and low A/CNK values indicate that these rocks belong to the sub-alkaline series with metaluminous to weakly peraluminous compositions. The granitoids yield two-stage zircon Hf model ages of ca. 0.79-1.07 Ga and whole-rock Nd model ages of ca. 0.90-0.99 Ga, respectively, implying that they were mainly sourced from Neoproterozoic juvenile crustal materials. The mafic enclaves show an almost identical crystallization age of ca. 389 Ma. The identification of coarse-grained xenocrysts and acicular apatites, together with the fine-grained texture, makes us infer that these enclaves are likely to represent magmatic globules commingled with the host magmas. The low SiO2 and high MgO contents of the mafic enclaves further suggest that substantial mantle-derived mafic melts were probably involved in their formation. Importantly, the SiO2 contents of the granitoids and mafic enclaves are well correlated with other major elements and most of the trace elements. Also a broadly negative correlation exists between the SiO2 contents and whole-rock epsilon Nd (390 Ma) values of the granitoids. Given the observation of reversely zoned plagioclases within the granitoids and the common occurrence of igneous mafic enclaves, we propose that magma mixing probably played an important role in the formation

  10. What can the Cretaceous-to-present latitude history of the Lhasa terrane tell us about plate-scale deformation in the Tibetan-Himalayan orogen? (Invited)

    Science.gov (United States)

    Lippert, P. C.; Van Hinsbergen, D. J.; Dupont-Nivet, G.; Huang, W.

    2013-12-01

    Published paleomagnetic data from well-dated sedimentary and volcanic rocks from the Lhasa terrane have been re-evaluated in a statistically consistent framework to assess the latitude history of southern Tibet from ~110 Ma to the present. We apply a methodology similar to the one used by the Time-Averaged geomagnetic Field Initiative to each paleomagnetic data set to establish coherency within and between paleomagnetic data from Tibet (see Session T023 for more details). Moreover, we use only sedimentary data that have been evaluated for and, where necessary, corrected for sedimentary inclination shallowing. The resulting apparent polar wander path (APWP) shows that the southern margin of the Lhasa terrane at the longitudes of Nepal remained at 20×4°N latitude from ~110 to at least 50 Ma and subsequently drifted northward to its present latitude of 29°N. This latitude history provides a paleomagnetically-determined collision age between the Tibetan Himalaya and the southern margin of Asia that is 49.5×4.5 Ma at 21×4° N latitude. The paleomagnetic age and latitude of this collision may be a few millions of years earlier and ~2° lower if estimates for shortening within the suture zone are considered. When compared to the global APWP of Torsvik et al. (2012) in Eurasian coordinates, the Lhasa APWP indicates that at most 1100×560 km of post-50 Ma India-Asia convergence was partitioned into Asian lithosphere. The lower bound of these paleomagnetic estimates is consistent with the magnitude of upper crustal shortening within Asia calculated from orogen-scale geological reconstructions. An implication is that 1700×560 km or more post-50 Ma India-Asia convergence was partitioned into Greater India. Paleomagnetic data from the Tibetan Himalaya are consistent with >2000 km of extension of Greater Indian lithosphere after break-up from Gondwana but prior to collision with the southern margin of Asia. Cenozoic subduction of this Cretaceous extensional basin following

  11. New insights on the petrology of submarine volcanics from the Western Pontine Archipelago (Tyrrhenian Sea, Italy)

    Science.gov (United States)

    Conte, A. M.; Perinelli, C.; Bianchini, G.; Natali, C.; Martorelli, E.; Chiocci, F. L.

    2016-11-01

    The Pontine Islands form a volcanic archipelago in the Tyrrhenian Sea. It consists of two edifices, the islands of Ponza, Palmarola and Zannone and the islands of Ventotene and Santo Stefano, respectively. The Archipelago developed during two main volcanic cycles in the Plio-Pleistocene: 1) the Pliocene episode erupted subalkaline, silica-rich volcanic units, which constitute the dominant products in the western edifice (Ponza and Zannone Islands); 2) the Pleistocene episode erupted more alkaline products, represented by evolved rocks (trachytes to peralkaline rhyolites) in the islands of Ponza and Palmarola and by basic to intermediate rocks in the eastern edifice (Ventotene and Santo Stefano Islands). In this paper we present new geochemical and petrological data from submarine rock samples collected in two oceanographic cruises and a scuba diving survey. The main result is the recovery of relatively undifferentiated lithotypes that provide further insights on the magmatic spectrum existing in the Pontine Archipelago, allowing modelling of the whole suite of rocks by fractional crystallization processes. New major and trace element data and thermodynamic constrains (by the software PELE) indicate the existence of three distinct evolutionary trends corresponding to a HK calcalkaline series in the Pliocene, followed by a transitional and then by a shoshonite series in the Pleistocene. In particular, the transitional series, so far overlooked in the literature, is required in order to explain the genesis of several peralkaline felsic rocks recognized in the Archipelago. On the whole, the new geochemical data i) confirm the orogenic signature of the suites, ii) allow to rule out an anatectic origin for both subalkaline and peralkaline rhyolites and iii) indicate highly heterogeneous mantle sources, due to crustal components variously recycled in the mantle via subduction.

  12. GOES-R: Satellite Insight

    Science.gov (United States)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.

    2012-01-01

    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  13. Theory of mind correlates with clinical insight but not cognitive insight in patients with schizophrenia.

    Science.gov (United States)

    Zhang, Qi; Li, Xu; Parker, Giverny J; Hong, Xiao-Hong; Wang, Yi; Lui, Simon S Y; Neumann, David L; Cheung, Eric F C; Shum, David H K; Chan, Raymond C K

    2016-03-30

    Research on the relationship between insight and social cognition, in particular Theory of Mind (ToM), in schizophrenia has yielded mixed findings to date. Very few studies, however, have assessed both clinical insight and cognitive insight when examining their relationships with ToM in schizophrenia. The current study thus investigated the relationship between clinical insight, cognitive insight, and ToM in a sample of 56 patients with schizophrenia and 30 healthy controls. Twenty-seven patients were classified as low in clinical insight according to their scores on the 'insight' item (G12) of the Positive and Negative Syndrome Scale (PANSS). Moreover, cognitive insight and ToM were assessed with the Beck Cognitive Insight Scale (BCIS) and the Yoni task, respectively. The results indicated that patients with poor clinical insight performed worse on tasks of second-order cognitive and affective ToM, while the ToM performance of patients with high clinical insight was equivalent to that of healthy controls. Furthermore, while clinical insight was correlated with ToM and clinical symptoms, cognitive insight did not correlate with clinical insight, ToM, or clinical symptoms. Clinical insight thus appears to be an important factor related to ToM in schizophrenia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Managing complexity insights, concepts, applications

    CERN Document Server

    Helbing, Dirk

    2007-01-01

    Each chapter in Managing Complexity focuses on analyzing real-world complex systems and transferring knowledge from the complex-systems sciences to applications in business, industry and society. The interdisciplinary contributions range from markets and production through logistics, traffic control, and critical infrastructures, up to network design, information systems, social conflicts and building consensus. They serve to raise readers' awareness concerning the often counter-intuitive behavior of complex systems and to help them integrate insights gained in complexity research into everyday planning, decision making, strategic optimization, and policy. Intended for a broad readership, the contributions have been kept largely non-technical and address a general, scientifically literate audience involved in corporate, academic, and public institutions.

  15. Tracking the multi-stage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating - Implications for the preservation of epithermal deposits in ancient orogenic belt

    Science.gov (United States)

    Wang, Yannan; Cai, Keda

    2017-04-01

    The western Chinese Tianshan, located in the southern domain of the Central Asian Orogenic Belt (CAOB), was originally constructed by multiple accretion-collision processes in the Paleozoic, and was superimposed by complex intracontinental tectonic evolution in the Mesozoic-Cenozoic. Understanding the timing and mechanism of the latter geological processes is critical to unravel the preservation conditions of the epithermal deposits in the western Chinese Tianshan. This work presents new apatite fission track (AFT) data for three mountain ranges of the western Chinese Tianshan to track their exhumation history. Our AFT data gave a wide range of ages from 76.8 ± 5.5 Ma to 182.3 ± 9.9 Ma, and the mean confined fission track lengths are between 9.8 ± 0.5 μm and 12.3 ± 0.2 μm. The new data, in combination with the thermal history modeling,enable us to attribute the exhumation history to three primary stages, including Early Permian (300-280 Ma), Late Triassic-Early Cretaceous (230-130 Ma), and Late Oligocene-Early Miocene (30-20 Ma). The first stage may be caused by the terrane accretion-collision in the late Paleozoic. The second stage was likely related to the closure of the Mongol-Okhotsk Ocean during the Mesozoic. The last one is regarded as the result of the collision between the Indian Plate and the Eurasia Plate in the Cenozoic. The extraordinary exhumation processes of these three major mountain ranges might have been responsible for sediment supply to the corresponding intra-mountain basins in the western Chinese Tianshan, and the particularly mountain-basin coupling evolution is ascribed to an essential condition for the preservation of epithermal deposits in ancient orogenic belt.

  16. Reactivation of inherited structures during the opening of the South Atlantic: a low-temperature thermochronology study on the Araçuaí orogenic belt (east Brazilian margin)

    Science.gov (United States)

    Van Ranst, Gerben; De Grave, Johan; Pedrosa-Soares, Antonio Carlos; Tack, Luc; Baudet, Daniel; Novo, Tiago

    2017-04-01

    A subject that has historically been regarded with increasing interest in geology are the supercontinent-cycles. This still poses questions about tectonic evolution on a regional scale, more precisely on the role of reactivation of older, pre-existing structures (inheritance), in which the same faults or weak zones are reactivated rather than the emergence of new systems. A region that is ideally suited for this research is the Araçuaí-West Congo Orogenic belt (AWCO), which is situated partly in eastern Brazil (Gonçalves et al., 2014) and partly in western Africa (D.R. Congo, Congo Brazza, Gabon and Angola; Frimmel et al., 2006; Tack et al., 2001). This orogenic belt was formed during the Cambrian as a result of a series of extension and compression events, of which the final phase is known as the Braziliano-Pan-African orogenesis (e.g. Pedrosa-Soares & Alkmim, 2011). During the break-up of Gondwana and the opening of the South Atlantic, the AWCO became separated. The main part is situated in east Brazil, known as the Araçuaí orogeny, while on the west African margin, the West Congo Belt is a witness to this event. In order to gain a better understanding, the tectonic movements should be placed in an absolute timeframe. Multi-method low-temperature thermochronology lends itself as an ideal tool for this purpose. In this study samples from N-S and E-W profiles in east Brazil (Caparáo-Vitória-Gov. Valadares) have been acquired. These samples are investigated using the apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) methods. In a later phase the samples which were taken on profiles in the D.R. Congo (Lower Congo) will be analysed by the same methods. Preliminary results for the Brazilian margin indicate cooling ages ranging between 55 Ma and c. 80 Ma.

  17. Do behavioural insights matter for competition policy?

    OpenAIRE

    CIRIOLO Emanuele

    2016-01-01

    Behavioural insights make use of behavioural economics and psychology to analyse how humans behave when adopting economic decisions. The use of behavioural insights to improve policy-making is becoming increasing popular all over the world. Pensions, taxes, unemployment, energy efficiency, adult education, charitable giving and, of course, competition policy have benefitted from the application of behavioural insights. Emanuele Ciriolo, from the European Commission Joint Research Centre, expl...

  18. Genetic correlates of insight in schizophrenia.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison; Keefe, Richard S E; Dungan, Jennifer R

    2018-05-01

    Insight in schizophrenia is clinically important as it is associated with several adverse outcomes. Genetic contributions to insight are unknown. We examined genetic contributions to insight by investigating if polygenic risk scores (PRS) and candidate regions were associated with insight. Schizophrenia case-only analysis of the Clinical Antipsychotics Trials of Intervention Effectiveness trial. Schizophrenia PRS was constructed using Psychiatric Genomics Consortium (PGC) leave-one out GWAS as discovery data set. For candidate regions, we selected 105 schizophrenia-associated autosomal loci and 11 schizophrenia-related oligodendrocyte genes. We used regressions to examine PRS associations and set-based testing for candidate analysis. We examined data from 730 subjects. Best-fit PRS at p-threshold of 1e-07 was associated with total insight (R 2 =0.005, P=0.05, empirical P=0.054) and treatment insight (R 2 =0.005, P=0.048, empirical P=0.048). For models that controlled for neurocognition, PRS significantly predicted treatment insight but at higher p-thresholds (0.1 to 0.5) but did not survive correction. Patients with highest polygenic burden had 5.9 times increased risk for poor insight compared to patients with lowest burden. PRS explained 3.2% (P=0.002, empirical P=0.011) of variance in poor insight. Set-based analyses identified two variants associated with poor insight- rs320703, an intergenic variant (within-set P=6e-04, FDR P=0.046) and rs1479165 in SOX2-OT (within-set P=9e-04, FDR P=0.046). To the best of our knowledge, this is the first study examining genetic basis of insight. We provide evidence for genetic contributions to impaired insight. Relevance of findings and necessity for replication are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Probabilistic safety assessment applications and insights

    International Nuclear Information System (INIS)

    Hitchler, M.J.; Burns, N.L.; Liparulo, N.J.; Mink, F.J.

    1987-01-01

    The insights gained through a comparison of seven PRA studies (Italian PUN, Sizewell B, Ringhals 2, Millstone 3, Zion 1 and 2, Oconee 3, and Seabrook) included insights regarding the adequacy of the PRA technology utilized in the studies and the potential areas for improvement and insights regarding the adequacy of plant designs and how PRA has been utilized to enhance the design and operation of nuclear power plants. (orig.)

  20. Insights gained through probabilistic risk assessments

    International Nuclear Information System (INIS)

    Hitchler, M.J.; Burns, N.L.; Liparulo, N.J.; Mink, F.J.

    1987-01-01

    The insights gained through a comparison of seven probabilistic risk assessments (PRA) studies (Italian PUN, Sizewell B, Ringhals 2, Millstone 3, Zion 1 and 2, Oconee 3, and Seabrook) included insights regarding the adequacy of the PRA technology utilized in the studies and the potential areas for improvement and insights regarding the adequacy of plant designs and how PRA has been utilized to enhance the design and operation of nuclear power plants

  1. Metamorphic rock-hosted orogenic gold deposit style at Bombana (Southeast Sulawesi and Buru Island (Maluku: Their key features and significances for gold exploration in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2017-06-01

    are identified. Early quartz veins are segmented, sigmoidal discontinuous and parallel to the foliation of the host rock. This generation of quartz veins is characterized by crystalline relatively clear quartz, and weakly mineralized with low sulfide and gold contents. The second type of quartz veins occurs within the ‘mineralized zone’ of about 100 m in width and ~1,000 m in length. Gold mineralization is intensely overprinted by argillic alteration. The mineralization-alteration zone is probably parallel to the mica schist foliation and strongly controlled by N-S or NE-SW-trending structures. Gold-bearing quartz veins are characterized by banded texture particularly following host rock foliation and sulphide banding, brecciated and rare bladed-like texture. Alteration types consist of propylitic (chlorite, calcite, sericite, argillic and carbonation represented by graphite banding and carbon flakes. Ore mineral comprises pyrite, native gold, pyrrhotite, and arsenopyrite. Cinnabar and stibnite are present in association with gold. Ore chemistry indicates that 11 out of 15 samples yielded more than 1 g/t Au, in which 6 of them graded in excess of 3 g/t Au. All high-grade samples are composed of limonite or partly contain limonitic material. This suggests the process of supergene enrichment. Interestingly, most of the high-grade samples contain also high concentrations of As (up to 991ppm, Sb (up to 885ppm, and Hg (up to 75ppm. Fluid inclusions in both quartz vein types consist of 4 phases including L-rich, V-rich, L-V-rich and L1-L2-V (CO2-rich phases. The mineralizing hydrothermal fluid typically is CO2-rich, of moderate temperature (300-400 ºC, and low salinity (0.36 to 0.54 wt.% NaCl eq. Based on those key features, gold mineralization in Bombana and Buru Island tends to meet the characteristics of orogenic, mesothermal types of gold deposit. Metamorphic rock-hosted gold deposits could represent the new targets for gold exploration particularly in Eastern

  2. Research Insights About Risk Governance

    Directory of Open Access Journals (Sweden)

    Therese R. Viscelli

    2016-11-01

    Full Text Available In recent years, expectations for increased risk governance have been placed explicitly on boards of directors. In response, boards are being held responsible for not only understanding and approving management’s risk management processes, but they are also being held responsible for assessing the risks identified by those processes as part of overseeing management’s pursuit of value. These increasing responsibilities have led a number of organizations to adopt enterprise risk management (ERM as a holistic approach to risk management that extends beyond traditional silo-based risk management techniques. As boards, often through their audit committee, consider management’s implementation of ERM as part of the board’s risk oversight, a number of questions emerge that can be informed by academic research related to ERM. This article summarizes findings from ERM research to provide insights related to the board’s risk governance responsibilities. We also identify a number of research questions that warrant further analysis by governance scholars. It is our hope that this article will spawn varying types of research about ERM and corporate governance.

  3. Chronic alcoholism: insights from neurophysiology.

    Science.gov (United States)

    Campanella, S; Petit, G; Maurage, P; Kornreich, C; Verbanck, P; Noël, X

    2009-01-01

    Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.

  4. Functional Insights from Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  5. A Microgenetic Study of Insightful Problem Solving

    Science.gov (United States)

    Luwel, Koen; Siegler, Robert S.; Verschaffel, Lieven

    2008-01-01

    An eight-session microgenetic study of acquisition of an insightful problem-solving strategy was conducted. A total of 35 second graders who did not use this insightful strategy initially were assigned to two groups that differed in the frequency of problems likely to facilitate discovery and generalization of the strategy. Children in the…

  6. Mining Login Data for Actionable Student Insight

    Science.gov (United States)

    Agnihotri, Lalitha; Aghababyan, Ani; Mojarad, Shirin; Riedesel, Mark; Essa, Alfred

    2015-01-01

    Student login data is a key resource for gaining insight into their learning experience. However, the scale and the complexity of this data necessitate a thorough exploration to identify potential actionable insights, thus rendering it less valuable compared to student achievement data. To compensate for the underestimation of login data…

  7. Course of insight in manic episode

    Directory of Open Access Journals (Sweden)

    A Kumar

    2013-01-01

    Full Text Available Background: Insight is an important factor associated with non compliance and poor outcome. Poor level of insight has been described as a characteristic in patients with acute bipolar disorder with more unawareness in social consequences with increasing severity in manic episode. Aim: Main aim of study was to see the baseline and longitudinal relationship between dimensions of insight with improvement in psychopathology. Setting and Design: Forty four patients diagnosed with mania, were selected from an inpatient setting at Institute of Mental Health and Hospital, Agra with mean age of 31.07(±9.00 years. They were assessed at base line and were followed up weekly or psychopathology and insight. Materials and Methods: The Young′s mania rating scale for psychopathology and insight was assessed on three dimensions of SUMD. Results: Twenty five patients eventually completed the study. There was a positive correlation with global insight and with psychopathology consistent in longitudinal follow-up (P<0.05, but not correlating for awareness for achieved effect of medication and social consequences. Linear regression showed a positive relationship at the first and second week of assessment of SUMD and YMRS scores (P=0.001; 0.019. Conclusion: Improvement in insight is graded in a manic episode as compared to psychopathology. There is slower improvement in awareness of social consequences of mental disorder. It means that improvement in psychopathology may not necessarily indicate remission and need further supervision to improve insight and hence monitoring.

  8. Newer insights in teledermatology practice

    Directory of Open Access Journals (Sweden)

    Garehatty Rudrappa Kanthraj

    2011-01-01

    Full Text Available The study and practice of dermatology care using interactive audio, visual, and data communications from a distance is called teledermatology. A teledermatology practice (TP provides teleconsultation as well tele-education. Initially, dermatologists used videoconference. Convenience, cost-effectiveness and easy application of the practice made "store and forward" to emerge as a basic teledermatology tool. The advent of newer technologies like third generation (3G and fourth generation (4G mobile teledermatology (MT and dermatologists′ interest to adopt tertiary TP to pool expert (second opinion to address difficult-to-manage cases (DMCs has resulted in a rapid change in TP. Online discussion groups (ODGs, author-based second opinion teledermatology (AST, or a combination of both are the types of tertiary TP. This article analyzes the feasibility studies and provides latest insight into TP with a revised classification to plan and allocate budget and apply appropriate technology. Using the acronym CAP-HAT, which represents five important factors like case, approach, purpose, health care professionals, and technology, one can frame a TP. Store-and-forward teledermatology (SAFT is used to address routine cases (spotters. Chronic cases need frequent follow-up care. Leg ulcer and localized vitiligo need MT while psoriasis and leprosy require SAFT. Pigmented skin lesions require MT for triage and combination of teledermoscopy, telepathology, and teledermatology for diagnosis. A self-practising dermatologist and national health care system dermatologist use SAFT for routine cases and a combination of ASTwith an ODG to address a DMC. A TP alone or in combination with face-to-face consultation delivers quality care.

  9. Superposed orogenic collision and core-complex formation at the present contact between the Dinarides and the Pannonian basin: The Bukulja and Cer Mountains in central and western Serbia

    Science.gov (United States)

    Matenco, Liviu; Toljic, Marinko; Ducea, Mihai; Stojadinovic, Uros

    2010-05-01

    Formation of large extensional detachments during orogenic collapse can follow inherited weakness zones such as major asymmetries given by pre-existing subduction zones active during mountain building processes. This is valid in particular in low-topography foreland coupling orogens of Mediterranean type where large amounts of deformation is concentrated in their lower plates, favoring weakness zones activated during a subsequent phase of extensional collapse. One good place to study the orogenic collapse post-dating major collision is the NE margin of the Dinarides in central and western Serbia, where Cretaceous-Eocene shortening and collision was recorded in the Alpine Tethys Sava zone between the European-derived Dacia and Tisza mega-units and the lower Adriatic plate. This is the same place where the Pannonian basin formed as a Miocene back-arc basin in response to a different subduction and roll-back taking place along the external Carpathians. A lineament of Paleogene and Miocene plutons is observed at the northern and eastern margin of the Dinarides, interpreted to be the product of both syn- to post-orogenic subduction magmatism and of decompressional melting during the Pannonian extension. Two of these plutons, Cer and Bukulja, located in western and respectively central Serbia, are intruded in the Jadar-Kopaonik composite thrust sheet, part of the lower Adriatic plate, near the contact with the main suture formed during the Cretaceous-Eocene subduction of the Sava zone. The Lower Miocene age (19-17Ma) Bukulja intrusion is a S-type granite with rare aplitic veins (Cvetkovic et al., 2007). The Cer intrusive complex is a S type two mica granite of around 16Ma in age with an older I-type quartz monzonite component (Koroneos et al. in press). Both granitoids are intruded into the Jadar-Kopaonik metamorphic series, which are in direct contact along the northern, eastern and southern flank with non-metamorphosed, mainly clastic sediments of Cretaceous-Miocene in

  10. The Lost South Gobi Microcontinent: Protolith Studies of Metamorphic Tectonites and Implications for the Evolution of Continental Crust in Southeastern Mongolia

    Directory of Open Access Journals (Sweden)

    Matthew J. Heumann

    2013-08-01

    Full Text Available The Central Asian Orogenic Belt, or Altaids, is an amalgamation of volcanic arcs and microcontinent blocks that records a complex late Precambrian–Mesozoic accretionary history. Although microcontinents cored by Precambrian basement are proposed to play an integral role in the accretion process, a lack of isotopic data hampers volume estimates of newly produced arc-derived versus old-cratonic crust in southeastern Mongolia. This study investigates metamorphic tectonites in southern Mongolia that have been mapped as Precambrian in age, largely on the basis of their high metamorphic grade and high strain. Here we present results from microstructural analyses and U-Pb zircon geochronology on samples from Tavan Har (44.05° N, 109.55° E and the Yagan-Onch Hayrhan metamorphic core complex (41.89° N, 104.24° E. Our results show no compelling evidence for Precambrian basement in southeastern Mongolia. Rather, the protoliths to all tectonites examined are Paleozoic–Mesozoic age rocks, formed during Devonian–Carboniferous arc magmatism and subsequent Permian–Triassic orogenesis during collision of the South Mongolia arc with the northern margin of China. These results yield important insights into the Paleozoic accretionary history of southern Mongolia, including the genesis of metamorphic and igneous basement during the Paleozoic, as well as implications for subsequent intracontinental reactivation.

  11. CM and CO chondrites: A common parent body or asteroidal neighbors? Insights from chondrule silicates

    Science.gov (United States)

    Schrader, Devin L.; Davidson, Jemma

    2017-10-01

    By investigating the petrology and chemical composition of type II (FeO-rich) chondrules in the Mighei-like carbonaceous (CM) chondrites we constrain their thermal histories and relationship to the Ornans-like carbonaceous (CO) chondrites. We identified FeO-rich relict grains in type II chondrules by their Fe/Mn ratios; their presence indicates chondrule recycling among type II chondrules. The majority of relict grains in type II chondrules are FeO-poor olivine grains. Consistent with previous studies, chemical similarities between CM and CO chondrite chondrules indicate that they had similar formation conditions and that their parent bodies probably formed in a common region within the protoplanetary disk. However, important differences such as mean chondrule size and the lower abundance of FeO-poor relicts in CM chondrite type II chondrules than in CO chondrites suggest CM and CO chondrules did not form together and they likely originate from distinct parent asteroids. Despite being aqueously altered, many CM chondrites contain pre-accretionary anhydrous minerals (i.e., olivine) that are among the least thermally metamorphosed materials in chondrites according to the Cr2O3 content of their ferroan olivine. The presence of these minimally altered pre-accretionary chondrule silicates suggests that samples to be returned from aqueously altered asteroids by the Hayabusa2 and OSIRIS-REx asteroid sample return missions, even highly hydrated, may contain silicates that can provide information about the pre-accretionary histories and conditions of asteroids Ryugu and Bennu, respectively.

  12. Spermatogenesis in mammals: proteomic insights.

    Science.gov (United States)

    Chocu, Sophie; Calvel, Pierre; Rolland, Antoine D; Pineau, Charles

    2012-08-01

    Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling

  13. Blindness and Insight in King Lear

    Institute of Scientific and Technical Information of China (English)

    岳元玉

    2008-01-01

    This paper intends to explore how William Shakespeare illustrates the theme of blindness and insight in his great tragedy "King Lear".Four characters’ deeds and their fate are used as a case study to examine what blindness is,what insight is,and the relationship between the two.The writer finds that by depicting the characters’ deeds and their fate in a double plot,Shakespeare renders the folly of blindness,the transition from blindness to insight,and the use of reason and thought to understand the truth.

  14. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton; Reavaliacao da evolucao geologica em terrenos pre-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte 2: orogeno Aracuai, cinturao mineiro e craton Sao Francisco Meridional

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Carlos da; Pimentel, Marcio [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: luizcarlos@aneel.gov.br; Leite, Carlos Augusto; Vieira, Valter Salino; Silva, Marcio Antonio da; Paes, Vinicius Jose de Castro; Cardoso Filho, Joao Moraes [Companhia de Pesquisas de Recursos Minerais (CPRM), Belo Horizonte, MG (Brazil); Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias. Centro de Pesquisa Manuel Teixeira da Costa; Carneiro, Mauricio Antonio [Ouro Preto Univ., MG (Brazil). Dept. de Geologia

    2002-12-15

    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  15. Insight Is Not in the Problem: Investigating Insight in Problem Solving across Task Types.

    Science.gov (United States)

    Webb, Margaret E; Little, Daniel R; Cropper, Simon J

    2016-01-01

    The feeling of insight in problem solving is typically associated with the sudden realization of a solution that appears obviously correct (Kounios et al., 2006). Salvi et al. (2016) found that a solution accompanied with sudden insight is more likely to be correct than a problem solved through conscious and incremental steps. However, Metcalfe (1986) indicated that participants would often present an inelegant but plausible (wrong) answer as correct with a high feeling of warmth (a subjective measure of closeness to solution). This discrepancy may be due to the use of different tasks or due to different methods in the measurement of insight (i.e., using a binary vs. continuous scale). In three experiments, we investigated both findings, using many different problem tasks (e.g., Compound Remote Associates, so-called classic insight problems, and non-insight problems). Participants rated insight-related affect (feelings of Aha-experience, confidence, surprise, impasse, and pleasure) on continuous scales. As expected we found that, for problems designed to elicit insight, correct solutions elicited higher proportions of reported insight in the solution compared to non-insight solutions; further, correct solutions elicited stronger feelings of insight compared to incorrect solutions.

  16. Impaired insight into illness and cognitive insight in schizophrenia spectrum disorders: Resting state functional connectivity

    Science.gov (United States)

    Gerretsen, Philip; Menon, Mahesh; Mamo, David C.; Fervaha, Gagan; Remington, Gary; Pollock, Bruce G.; Graff-Guerrero, Ariel

    2015-01-01

    Background Impaired insight into illness (clinical insight) in schizophrenia has negative effects on treatment adherence and clinical outcomes. Schizophrenia is described as a disorder of disrupted brain connectivity. In line with this concept, resting state networks (RSNs) appear differentially affected in persons with schizophrenia. Therefore, impaired clinical, or the related construct of cognitive insight (which posits that impaired clinical insight is a function of metacognitive deficits), may reflect alterations in RSN functional connectivity (fc). Based on our previous research, which showed that impaired insight into illness was associated with increased left hemisphere volume relative to right, we hypothesized that impaired clinical insight would be associated with increased connectivity in the DMN with specific left hemisphere brain regions. Methods Resting state MRI scans were acquired for participants with schizophrenia or schizoaffective disorder (n = 20). Seed-to-voxel and ROI-to-ROI fc analyses were performed using the CONN-fMRI fc toolbox v13 for established RSNs. Clinical and cognitive insight were measured with the Schedule for the Assessment of Insight—Expanded Version and Beck Cognitive Insight Scale, respectively, and included as the regressors in fc analyses. Results As hypothesized, impaired clinical insight was associated with increased connectivity in the default mode network (DMN) with the left angular gyrus, and also in the self-referential network (SRN) with the left insula. Cognitive insight was associated with increased connectivity in the dorsal attention network (DAN) with the right inferior frontal cortex (IFC) and left anterior cingulate cortex (ACC). Conclusion Increased connectivity in DMN and SRN with the left angular gyrus and insula, respectively, may represent neural correlates of impaired clinical insight in schizophrenia spectrum disorders, and is consistent with the literature attributing impaired insight to left

  17. Physiological and molecular insights into drought tolerance ...

    African Journals Online (AJOL)

    Physiological and molecular insights into drought tolerance. Sagadevan G Mundree, Bienyameen Baker, Shaheen Mowla, Shaun Peters, Saberi Marais, Clare Vander Willigen, Kershini Govender, Alice Maredza, Samson Muyanga, Jill M Farrant, Jennifer A Thomson ...

  18. Marketing biofortified crops: insights from consumer research ...

    African Journals Online (AJOL)

    Marketing biofortified crops: insights from consumer research. ... To develop a global strategy for consumer marketing of biofortified crops, research is needed to understand consumer ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. Proteus, New Insights for a New Age

    National Research Council Canada - National Science Library

    Waddell, William; Kim, Joanne; Smith, Jack

    2004-01-01

    .... The Proteus concept offers a range of new insights that, when used in the planning process, will assist military, intelligence, and industry leaders in their efforts to prepare for future success...

  20. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 69): Chapter H in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Goldfarb, Richard J.; Marsh, Erin; Anderson, Eric D.; Horton, John D.; Finn, Carol A.; Beaudoin, Georges

    2015-01-01

    The gold resources of Mauritania presently include two important deposits and a series of poorly studied prospects. The Tasiast belt of deposits, which came into production in 2007, is located in the southwestern corner of the Rgueïbat Shield and defines a world-class Paleoproterozoic(?) orogenic gold ore system. The producing Guelb Moghrein deposit occurs along a shear zone in Middle Archean rocks at the bend in the Northern Mauritanides and is most commonly stated to be an iron oxide-copper-gold (IOCG) type of deposit, although it also has some important characteristics of orogenic gold and skarn deposits. Both major deposits are surrounded by numerous prospects that show similar mineralization styles. The Guelb Moghrein deposit, and IOCG deposit types in general are discussed in greater detail in a companion report by Fernette (2015). In addition, many small gold prospects, which are probably orogenic gold occurrences and are suggested to be early Paleozoic in age, occur along the length of Southern Mauritanides. Existing data indicate the gold deposits and prospects in Mauritania have a sulfide assemblage most commonly dominated by pyrrhotite and chalcopyrite, and have ore-related fluids with apparently high salinities.

  1. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China

    Science.gov (United States)

    Zhang, Liqi; Zhang, Hongfei; Zhang, Shasha; Xiong, Ziliang; Luo, Biji; Yang, He; Pan, Fabin; Zhou, Xiaochun; Xu, Wangchun; Guo, Liang

    2017-09-01

    Post-collisional granitoids are widespread in the North Qilian and southern margin of the Alxa block and their petrogenesis can provide important insights into the lithospheric processes in a post-collisional setting. This paper carries out an integrated study of U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions for five early Paleozoic intrusive plutons from the North Qilian to southern margin of the Alxa block. The geochronological and geochemical results show that their magmatism can be divided into three periods with distinct geochemical features. The early-period intrusive rocks ( 440 Ma) include the Lianhuashan (LHS) and Mengjiadawan (MJDW) granodiorites. Both of them display high Sr/Y ratios (52-91), coupled with low Y and HREE contents, implying that they were derived from partial melting of thickened lower crust, with garnet in the residue. The middle-period intrusive rocks ( 430 Ma), including the MJDW quartz diorites and Yangqiandashan (YQDS) granodiorites, are high-K calc-alkaline with low Sr/Y values. The geochemical and isotopic data suggest that they are generated from partial melting of lower crust without garnet in the residue. The late-period intrusive rocks (414-422 Ma), represented by the Shengrongsi (SRS) and Xinkaigou (XKG) plutons, are A-type or alkali-feldspar granites. They are possibly derived from partial melting of felsic crustal material under lower pressure condition. Our data show decreasing magma crystallization ages from MJDW pluton in the north and LHS pluton in the south to the SRS and XKG plutons in the central part of the study area. We suggest that such spatial and temporal variations of magmatic suites were caused by lithospheric delamination after the collision between the Central Qilian and the Alxa block. A more plausible explanation is that the delamination propagated from the margin part of the thickened lithosphere to inward beneath the North Qilian and southern margin of the Alxa block.

  2. Is Insight Always the Same? A Protocol Analysis of Insight in Compound Remote Associate Problems

    Science.gov (United States)

    Cranford, Edward A.; Moss, Jarrod

    2012-01-01

    Compound Remote Associate (CRA) problems have been used to investigate insight problem solving using both behavioral and neuroimaging techniques. However, it is unclear to what extent CRA problems exhibit characteristics of insight such as impasses and restructuring. CRA problem-solving characteristics were examined in a study in which…

  3. IPE data base structure and insights

    International Nuclear Information System (INIS)

    Lehner, J.; Youngblood, R.

    1993-01-01

    A data base (the ''IPE Insights Data Base''), has been developed that stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants are conducting in response to the Nuclear Regulatory Commission's (NRC) Generic Letter GL88-20. The data base, which is a collection of linked dbase files, stores information about individual plant designs, core damage frequency, and containment performance in a uniform, structured way. This data base can be queried and used as a computational tool to derive insights regarding the plants for which data is stored. This paper sets out the objectives of the IPE Insights Data Base, describes its structure and contents, illustrates sample queries, and discusses possible future uses

  4. IPE data base structure and insights

    International Nuclear Information System (INIS)

    Lehner, J.; Youngblood, R.

    1994-01-01

    A data base (the open-quotes IPE Insights Data Baseclose quotes), has been developed that stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants are conducting in response to the Nuclear Regulatory Commission's (NRC) Generic Letter GL88-20. The data base, which is a collection of linked dBase files, stores information about individual plant designs, core damage frequency, and containment performance in a uniform, structured way. This data base can be queried and used as a computational tool to derive insights regarding the plants for which data is stored. This paper sets out the objectives of the IPE Insights Data Base, describes its structure and contents, illustrates sample queries, and discusses possible future uses

  5. Illness Insight and Recovery: How Important is Illness Insight in Peoples’ Recovery Process?

    DEFF Research Database (Denmark)

    Korsbek, Lisa

    2013-01-01

    . Sources Used:The writing is based on research literature related to illness insight and on personal recovery experiences.Conclusions and Implications for Practice: It is helpful to consider the integration of the issue of illness insight when addressing the questions and consequences of diagnosis......Topic: This account reflects on the topic of illness insight and recovery. Purpose: The purpose of the account is to clarify our understanding about the importance of illness insight in peoples’ recovery process, especially when relating the question of illness insight to the question of identity......, and to assist individuals to work through the false analogy between illness and identity while supporting the transformation from patient to person. It is also necessary for clinicians to develop a clear understanding of peoples’ actual needs and gain more knowledge about peoples’ own views and experiences...

  6. Structural overprint of a late Paleozoic accretionary system in north-central Chile (34°-35°S during post-accretional deformation Modificación estructural de un sistema acrecional del Paleozoico tardío en el centro-norte de Chile (34°-35°S, durante deformación posacrecional

    Directory of Open Access Journals (Sweden)

    Arne P Willner

    2009-01-01

    Full Text Available In the Coastal Cordillera of central Chile a coherently preserved architecture of a late Paleozoic accretionary prism is exposed at 36°-35°S in cióse spatial association with a neighbouring área at 34°-35°S, where it is strongly modified by post-accretional processes. Syn- and post-accretional struetures can be distinguished relatively easily in this región studying the deviations from the original architecture. South of 35°S a transitional contact between two major units is observed, which reflects a continuous change of the mode of accretion in the accretionary wedge before -305 Ma: the structurally overlying metagreywacke of the Eastern Series exhibits struetures typical of frontal accretion, Le., subvertical chevron folds of bedding planes with an axial-plane foliation Sr With increasing finite strain structurally downwards, open F2 folds develop associated with a S2-foliation which becomes gradually flattened as it rotates into a subhorizontal orientation. S2 is the penetrative transposition foliation in the structurally underlying Western Series. It affeets the continent-derived metagreywacke series as well as metabasite intercalations of oceanic origin and was formed during basal accretion. This principal evolution of the accretionary system places firm constraints on the original architecture also in regions where it was destructed after accretion. Accretion ceased at -225 Ma, when a major tectonic change from a convergent to an extensional/strike-slip regime oceurred. Although the development of the margin in central Chile is largely characterized by extensión during Mesozoic and Cenozoic times, two pronounced episodes involving shortening of the forearc particularly affected the Western Series north of 35°S: 1. Expressions of strike-slip activity during Jurassic times involve local steepening of the originally flat S2-foliation planes, local rotation of the stretching lineation L2 into the N-S direction, tight upright folding

  7. Human Performance on Insight Problem Solving: A Review

    Science.gov (United States)

    Chu, Yun; MacGregor, James N.

    2011-01-01

    The article provides a review of recent research on insight problem-solving performance. We discuss what insight problems are, the different types of classic and newer insight problems, and how we can classify them. We also explain some of the other aspects that affect insight performance, such as hints, analogs, training, thinking aloud, and…

  8. Insight, Cognitive Insight and Sociodemographic Features in Obsessive Compulsive Disorder Presenting with Reactive and Autogeneus Features

    Directory of Open Access Journals (Sweden)

    Katre ÇAMLI

    2012-03-01

    Full Text Available Objective: The aim of the present study was to test hypothesis that obsessive compulsive disorder (OCD patients who have autogenous obsessions and reactive obsessions show different sociodemographic and clinical characteristics with different insight and cognitive insight levels. Method: Sixty-one patients diagnosed as OCD according to the Structured Clinical Interview for DSM-III-R (SCID-I are recruited. 31 patients had reactive obsessions and 30 had autogenous obsessions. The sociodemographic characteristics of patients and the symptomatology were evaluated using psychiatric scales including SCID-I, Yale Brown Obsessive- Compulsive Scale (YBOCS, Yale Brown Obsessive-Compulsive Scale-Symptom Checklist (YBOCS-SC and Beck Insight Scale. Results: The percentage of women in reactive obsessive group was higher and also this group had significantly less antipsychotic medication prescribed than the autogenous obsessive group. No significant difference was found for the other demographic variables. No significant difference was identified for the Beck Insight Self-Reflectiveness subscale but for the Self-Certainty subscale, reactive obsessives had higher scores. Although there was no significant difference for the composit index points, which is the subtraction of the two subscales, the p value was close to the limit. On the other hand YBOCS item- 11 scores which evaluates insight were higher in autogenous obsessives meaning low levels of insight. Conclusion: For the sociodemographic and clinical characteristics; there was no significant difference between the groups except gender distribution and antipsychotic medication. Our data about insight seems inconsistent but insight and cognitive insight can be different entities which show different levels of insight. Further investigation with different obsession types is needed.

  9. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    Science.gov (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  10. Mineral chemistry and geochemistry of the Late Neoproterozoic Gabal Abu Diab granitoids, Central Eastern Dessert, Egypt: Implications for the origin of rare metal post-orogenic A-type granites

    Science.gov (United States)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Ahmed, Awaad F.; Mohamed, Haroun A.

    2015-04-01

    within A-type granite worldwide. According to Zhang et al., 2012, the garnet crystallized at the expense of biotite from the MnO-rich evolved melt after fractionation of biotite, plagioclase, K-feldspar, zircon, apatite, and ilmenite. The granitoids are alkali feldspar granites showing distinct geochemical features and most likely, belong to the post-orogenic younger Egyptian granitoids. They are peraluminous A-type alkaline rocks but they have lower Fe2O3, MgO, MnO, CaO, TiO2, P2O5, Sr, Ba, V, and higher SiO2, Na2O, K2O, Nb, Ta, U, Zr, Th, Ga/Al and Rb than the typical rocks of this type. The positive correlation between Ba and Sr, and the negative correlation between Rb and K/Rb reveal fractional crystallization of alkali feldspar. The similarity in most geochemical characteristics suggests that Abu Diab granitoids are genetically related to each other and extremely enrichment in incompatible elements such as Nb and Ta, indicating that they crystallized from extremely differentiated magmas. References: Zhang, J., Ma, C. and She, Z., 2012. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geoscience Frontiers 3 (5), 635-646.

  11. Georgetown University Research Psychologist Shares Terrorism Insight

    OpenAIRE

    Center for Homeland Defense and Security

    2013-01-01

    Georgetown University research psychologist Dr. Anne Speckhard has spent the last decade interviewing more than four hundred terrorists, terrorist supporters, family members, close associates and even terrorist's hostages in Western Europe and the Middle East. Speckhard shared her insights with students at the Naval Postgraduate School Center for Homeland Defense and Security in July.

  12. Creativity and Insight in Problem Solving

    Science.gov (United States)

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  13. Some new insights into collimator design

    International Nuclear Information System (INIS)

    Metz, C.E.; Atkins, F.B.; Tsui, B.M.W.; Beck, R.N.

    1978-01-01

    Relationships among collimator design parameters, physical properties of the resulting images, and human observer performance are discussed. The insight provided by these relationships hopefully will prove useful to the individual who must design or select a collimator for a particular imaging task

  14. Gestures and Insight in Advanced Mathematical Thinking

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    What role do gestures play in advanced mathematical thinking? We argue that the role of gestures goes beyond merely communicating thought and supporting understanding--in some cases, gestures can help generate new mathematical insights. Gestures feature prominently in a case study of two participants working on a sequence of calculus activities.…

  15. Scientific Visualization: From Data to Insight

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Scientific Visualization: From Data to Insight. Vijay Natarajan. General Article Volume 18 Issue 7 July 2013 pp 615-629. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/07/0615-0629 ...

  16. Innovative Leadership: Insights from a Learning Technologist

    Science.gov (United States)

    Campbell, Bruce

    2012-01-01

    Professor Ricardo Torres Kompen is a leading proponent for, and researcher in, personal learning environments (PLEs). During his interview, Torres Kompen clarified his research on PLEs, particularly the digital toolbox within PLEs. He elaborated on experiences with implementing PLE initiatives, personal insights on using social media and Web 2.0…

  17. Vitamin B12: advances and insights

    DEFF Research Database (Denmark)

    individuals in critical life phases. This book has been written by experts who documented latest developments in the field. It is written for individuals looking for in depth knowledge of the nutritional, chemistry, biochemistry, health and medical relevance of the vitamin. The book provides insights...

  18. Developmental Social Cognitive Neuroscience: Insights from Deafness

    Science.gov (United States)

    Corina, David; Singleton, Jenny

    2009-01-01

    The condition of deafness presents a developmental context that provides insight into the biological, cultural, and linguistic factors underlying the development of neural systems that impact social cognition. Studies of visual attention, behavioral regulation, language development, and face and human action perception are discussed. Visually…

  19. Innovate or perish: The RSM Insight debate

    OpenAIRE

    Gilbert, Russell

    2014-01-01

    markdownabstract__Abstract__ Although innovation is one the hottest management topics of the 21st century, very few firms excel at it. Here, in the first RSM Insight debate, three of the school’s leading management scholars discuss how firms should approach the subject of innovation and what it takes to be successful at it.

  20. Innovate or perish : The RSM Insight debate

    NARCIS (Netherlands)

    R. Gilbert (Russell)

    2014-01-01

    markdownabstract__Abstract__ Although innovation is one the hottest management topics of the 21st century, very few firms excel at it. Here, in the first RSM Insight debate, three of the school’s leading management scholars discuss how firms should approach the subject of innovation and what

  1. Insight in schizophrenia : Associations with empathy

    NARCIS (Netherlands)

    Pijnenborg, G. H. M.; Spikman, J. M.; Jeronimus, B. F.; Aleman, A.

    Many people with schizophrenia (50-80 %) demonstrate impaired insight, something which has been associated with a poorer outcome. Two types of empathy can be distinguished: affective empathy via shared emotions and cognitive empathy, also referred to as Theory of Mind (ToM). ToM can be subdivided

  2. Tour Guiding Research Insights, Issues and Implications

    DEFF Research Database (Denmark)

    Meged, Jane Widtfeldt

    2017-01-01

    The book Tour guiding research – insights, issues and implications by Betty Weiler and Rosemary Black is a most welcome contribution to the specific research field of guided tours within tourism studies. It sets forth to “give an authoritative state-of-art review of the scholarly literature on tour...

  3. Insights and their emergence in everyday practices

    DEFF Research Database (Denmark)

    Trasmundi, Sarah Bro; Linell, Per

    2017-01-01

    of sense-making, problem-solving and task performance in naturalistic contexts. Second, it presents a promising method for the analysis of cognitive activities, Cognitive Event Analysis (CEA), with which we investigate real-life medical interactions, especially the emergence of insights in procedural task......-cultural patterns of behaviour....

  4. Safeguarding our environment: insight from an African ...

    African Journals Online (AJOL)

    The care and management of the natural environment constitutes an important aspect of environmental philosophy; an area of study that critically scrutinizes and evaluates human activities in his environment. African environmental ethics approaches problematic fundamental issues in deep ecology with a unique insight, ...

  5. Swahili residential architecture reconsidered | Steyn | Africa Insight

    African Journals Online (AJOL)

    Africa Insight. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 32, No 2 (2002) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT ...

  6. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 285–295. Insights on some chiral ... Liquid crystals; smectics; chirality; frustrated phases; twist grain boundary phases. ... molecules are more or less packed in layers and smectic phases can be seen ..... (imaging plate or CCD camera) which was located at about 300 mm from the sample.

  7. Cognitive Psychology--An Educational Insight

    Science.gov (United States)

    Muirhead, Brent

    2007-01-01

    Cognitive psychology offers relevant insights into improving the teaching and learning process. The author has selected ten questions from a graduate class in cognition and learning taken at The Teachers College, Columbia University. The questions will be used to examine the most effective ways to learn and recall information.

  8. Dynamic of an intra-continental orogenic prism: thermo-chronologic (apatite fission tracks) and tectonic evolution of the axial zone and the piedmont of the west-central Pyrenees

    International Nuclear Information System (INIS)

    Meresse, F.

    2013-02-01

    This work illustrates the application of thermo chronology to the study of the following geologic issue: the tectonic evolution of the Pyrenean oncologic prism. Thermo-chronology gives information on the vertical movements at the scale of geological eras. Thermo-chronology is based on the following principle: the decay of a nucleus gives birth to a daughter nucleus. Above a specific temperature named closure temperature, the daughter element can diffuse outside the system while below the closure temperature, diffusion is not possible. Consequently thermo-chronology can be considered to date the moment when a mineral goes below a a specific closure temperature. Minerals have different closure temperatures and so by using a suite of thermo-chronometers on a single sample, its cooling path through the crust can be reconstructed. This work focuses on apatite fission track (AFT)analysis which is a low temperature thermo-chronometer. In apatites the temperature range between 60 and 120 Celsius degrees corresponds to the partial annealing zone. The spontaneous fission of one U 238 nucleus entails the formation of one fission track. The determination of the initial quantity of U 238 is based on the natural steady ratio U 238 /U 235 which equals 137.88. The initial quantity of U 235 is determined through the neutron irradiation of the sample. The knowledge of the initial quantity of U 238 and the number of tracks in the sample allows the dating of the sample. In this work we combine AFT thermo- chronology with a detailed structural analysis to describe vertical movements related to the thrusting system evolution, and to determine the influence of the latter on the sedimentation/burial/exhumation cycle of the syn-orogenic deposits of the southern fore-land basin

  9. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China. Evidence from detrital zircon ages and Nd-Hf isotopic composition

    International Nuclear Information System (INIS)

    Li Xianghui; Chen Fukun; Guo Jinghui; Xie Liewen; Siebel, Wolfgang

    2007-01-01

    The Dabie-Sulu ultrahigh-pressure orogenic belt resulted from the early Mesozoic collision of the North China block and South China block (comprising the Yangtze and the Cathaysia) and subsequent exhumation of the subducted South China continental slabs. This belt consists of tectonically juxtaposed rock units of different metamorphic grade. Provenance of the low-grade metamorphic terranes exposed along the northern part of the belt can offer useful information about the location of the boundary between these two continental blocks. This study reports detrital zircon ages and Nd-Hf isotopic composition of sedimentary rocks of the low-grade Penglai Group, situated north of the Sulu UHP terrane. Results show that detrital zircon grains mostly crystallized during Mesoproterozoic time, clustering at 1.7 Ga to 1.6 Ga and 1.2 Ga. Nd isotopic composition (T DM value) of the Penglai Group suggests that sedimentary sources are similar to average crustal material of the Yangtze block and mostly formed in Paleo- to Mesoproterozoic. Late Mesoproterozoic detrital zircons probably demonstrate the sedimentary material was derived from the boundary of the Yangtze and Cathaysia blocks, which was formed by the late Mesoproterozoic convergence. Absence of Neoproterozoic detrital zircons from the Penglai sediments probably suggests a late Mesoproterozoic to early Neoproterozoic deposition age (about 1.1 Ga to 0.8 Ga). The age and isotopic evidence implies that the Penglai Group originated from the South China block and probably was thrust onto the basement of the North China block during the early Mesozoic continental collision. (author)

  10. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    Mbaguedje, Diondoh

    2015-01-01

    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author) [fr

  11. Pseudo- and real-inverted metamorphism caused by the superposition and extrusion of a stack of nappes: a case study of the Southern Brasília Orogen, Brazil

    Science.gov (United States)

    da Motta, Rafael Gonçalves; Moraes, Renato

    2017-10-01

    The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P-T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.

  12. Applications and limitations of thermobarometry in migmatites and granulites using as an example rocks of the Araçuaí Orogen in southern Bahia, including a discussion on the tectonic meaning of the current results

    Directory of Open Access Journals (Sweden)

    Renato Moraes

    Full Text Available In southern Bahia, there are outcrops of migmatites and granulites in the Jequitinhonha Complex, which is part of the northern portion of the Araçuaí Orogen. Migmatites (garnet-cordierite diatexite dominate the metamorphic rocks and host lenses and layers of felsic garnet granulite. The conditions of temperature and pressure of metamorphism were calculated using conventional thermobarometry and the software THERMOCALC. Values around 850 °C and 7 kbar were obtained with THERMOCALC. The calculations for the garnet-cordierite diatexite were made considering aH2O equal to 1, but the best results of calculations for the granulites are obtained with aH2O values of 0.3. Pressure values obtained with GAPES resulted in consistent values with THERMOCALC, but the pair garnet-orthopyroxene always produces low values for temperature and high ones for pressure. The results are consistent with the presence of the pair garnet and cordierite in diatexite and orthopyroxene in felsic granulite. From the tectonic point of view, the setting in which metamorphism of these rocks occurred requires high heat flow with a thermal anomaly in mid continental crust, as indicated by values of 7 kbar. Recent studies have favored the closure of a back-arc basin for this tectonic setting, but it does not solve the problem that the time span between metamorphic peak and the end of granite intrusions, involving large bodies of charnockite, is more than 80 million years. The model of tectonic switching is suggested here as it can explain the maintenance of high temperatures for a more extended interval of time.

  13. The association of lifetime insight and cognition in psychosis.

    Science.gov (United States)

    Sánchez-Torres, Ana M; Zarzuela, Amalia; Peralta, Victor; Cuesta, Manuel J

    2015-03-01

    Poor insight has been related to poor course in psychosis. However, the role of cognition in insight remains unclear. The aim of this study was to examine the influence of cognition and lifetime psychopathological dimensions on insight in psychosis. We followed up 42 patients with psychotic disorders over 10years. Lifetime psychopathological dimensions and cognitive performance were assessed. Patients were divided into two groups by lifetime patterns of insight and compared with 42 healthy volunteers. Lower IQ and poorer social cognition were associated with higher risks of poorer lifetime insight of feeling ill and global insight respectively. Lifetime negative symptoms were associated with a higher risk of poorer lifetime insight into symptoms. Lifetime lack of insight is independent of cognitive impairment in specific domains, except for social cognition. Higher IQ may contribute to better lifetime awareness of illness, while better ability to manage emotions is involved in lifetime global insight. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Clinical correlates of loss of insight in bipolar depression

    Directory of Open Access Journals (Sweden)

    Rafael de Assis da Silva

    Full Text Available Abstract Introduction Affective state may influence insight, especially regarding mania. Nevertheless, studies have so far suggested that depression seems not to significantly impair insight. To the best of our knowledge, this study pioneers the evaluation of how insight variations in bipolar depression correlate with clinical variables. Method A group of 165 bipolar patients, 52 of whom had depressive episodes according to DSM-5 criteria, were followed during a year. All patients underwent clinical assessment, and insight was evaluated through the Insight Scale for Affective Disorders (ISAD. Repeated-measures ANOVA was calculated comparing scores on the four ISAD factors (insight into symptoms, the condition itself, self-esteem and social relationships in order to investigate differences in insight according to different objects. Correlational analysis explored which clinical symptoms were linked to reduced insight. Results Worse total insight correlated with suicide attempt/ideation and fewer subsyndromal manic symptoms such as mood elevation, increased energy and sexual interest. Worse self-esteem insight was associated with not only suicide ideation/attempt but also with activity reduction and psychomotor retardation. Worse symptom insight also correlated with psychomotor retardation. Better insight into having an affective disorder was associated with more intense hypochondria symptoms. Finally, worse insight into having an illness was associated with psychotic episodes. Conclusion Our study found that symptoms other than psychosis – suicide ideation, psychomotor retardation and reduction of activity and work – correlate with insight impairment in bipolar depression.

  15. The "Insight Paradox" in Schizophrenia: Magnitude, Moderators and Mediators of the Association Between Insight and Depression.

    Science.gov (United States)

    Belvederi Murri, Martino; Amore, Mario; Calcagno, Pietro; Respino, Matteo; Marozzi, Valentina; Masotti, Mattia; Bugliani, Michele; Innamorati, Marco; Pompili, Maurizio; Galderisi, Silvana; Maj, Mario

    2016-09-01

    The so-called "insight paradox" posits that among patients with schizophrenia higher levels of insight are associated with increased levels of depression. Although different studies examined this issue, only few took in account potential confounders or factors that could influence this association. In a sample of clinically stable patients with schizophrenia, insight and depression were evaluated using the Scale to assess Unawareness of Mental Disorder and the Calgary Depression Scale for Schizophrenia. Other rating scales were used to assess the severity of psychotic symptoms, extrapyramidal symptoms, hopelessness, internalized stigma, self-esteem, and service engagement. Regression models were used to estimate the magnitude of the association between insight and depression while accounting for the role of confounders. Putative psychological and sociodemographic factors that could act as mediators and moderators were examined using the PROCESS macro. By accounting for the role of confounding factors, the strength of the association between insight into symptoms and depression increased from 13% to 25% explained covariance. Patients with lower socioeconomic status (F = 8.5, P = .04), more severe illness (F = 4.8, P = .03) and lower levels of service engagement (F = 4.7, P = .03) displayed the strongest association between insight and depression. Lastly, hopelessness, internalized stigma and perceived discrimination acted as significant mediators. The relationship between insight and depression should be considered a well established phenomenon among patients with schizophrenia: it seems stronger than previously reported especially among patients with lower socioeconomic status, severe illness and poor engagement with services. These findings may have relevant implications for the promotion of insight among patients with schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved

  16. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  17. Safety insights from forensics evaluations at Daiichi

    Directory of Open Access Journals (Sweden)

    J. Rempe

    2017-01-01

    Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company (TEPCO to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This paper reports initial results from the US Forensics Effort to utilize examination information obtained by TEPCO to enhance the safety of existing and future nuclear power plant designs. In this paper, three examples are presented in which examination information, such as visual images, dose surveys, sample evaluations, and muon tomography examinations, along with data from plant instrumentation, are used to obtain significant safety insights in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights confirm actions, such as the importance of water addition and containment venting, that are emphasized in updated guidance for severe accident prevention, mitigation, and emergency planning.

  18. Forming a Perceived Franchise Value: Theoretical Insights

    OpenAIRE

    Levickaitė, Rasa; Reimeris, Ramojus

    2011-01-01

    The article is based on literature review, theoretical insights and deals with the topic of perceived franchise value. The objective of the paper is – what elements form the franchisee's perceived value in service business (comparing with alternative of own business model). The aim of the paper is to propose systematic value elements in the process of forming a value of a franchise business model perceived by the franchisee. In terms of practical meaning, this article should be relevant to en...

  19. Biblical Leadership: Insights for Today's Managers

    OpenAIRE

    Friedman, Hershey H.; Friedman, Linda

    2004-01-01

    The scholarly literature in management has paid little attention to the study of Biblical figures as leaders. This paper aims to advance the effort to fill this gap by demonstrating that many insights about successful and unsuccessful leadership may be derived from the Bible. Successful leaders demonstrated a willingness to be different, a passion for justice, humility, and a concern for others. Unsuccessful leaders were sidetracked from their mission by the hunger for power or by lust and envy.

  20. Paris after Trump: An Inconvenient Insight

    OpenAIRE

    Böhringer, Christoph; Rutherford, Thomas F.

    2017-01-01

    With his announcement to pull the US out of the Paris Agreement US President Donald Trump has snubbed the international climate policy community. Key remaining parties to the Agreement such as Europe and China might call for carbon tariffs on US imports as a sanctioning instrument to coerce US compliance. Our analysis, however, reveals an inconvenient insight for advocates of carbon tariffs: given the possibility of retaliatory tariffs across all imported goods, carbon tariffs do not constitu...

  1. Exploring Insight: Focus on Shifts of Attention

    Science.gov (United States)

    Palatnik, Alik; Koichu, Boris

    2015-01-01

    The paper presents and analyses a sequence of events that preceded an insight solution to a challenging problem in the context of numerical sequences. A three­week long solution process by a pair of ninth­-grade students is analysed by means of the theory of shifts of attention. The goal for this article is to reveal the potential of this theory…

  2. Egypt: Pharoahs and Fundamentalists? | Swart | Africa Insight

    African Journals Online (AJOL)

    Gerrie Swart, Hussein Solomon, Anneli Botha. Abstract. Africa Insight Vol.33(4) 2003: 78-81. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/ai.v33i4.22345 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  3. The Association of Insight and Change in Insight with Clinical Symptoms in Depressed Inpatients.

    Science.gov (United States)

    He, Hongbo; Chang, Qing; Ma, Yarong

    2018-04-25

    Lack of insight has been extensively studied and was found to be adversely correlated with impaired treatment compliance and worse long term clinical outcomes among patients with schizophrenia, while not much is known about this phenonmenon in patients with severe depression. To explore the correlates of insight and its relation to symptom changes among the most seriously ill patients with affective disorders, those who require hospitalization. Patients hospitalized in a large psychiatric hospital in south China with either major depressive disorder (MDD)(N=55) or bipolar depression (BD) (N=85) based on ICD-10 diagnostic criteria were assessed with the Insight and Treatment Attitudes Questionnaire (ITAQ) one week after admission and at the time of discharge. Clinical symptoms were measured at the same time with the Hamilton Rating Scale for Depression (HAMD-17) and the Depression subscale of the Symptom Check list-90 (SCL-90). Length of stay (LOS), duration of illness, duration of untreated mood disorder, number of previous episodes of depression and previous admissions for depression were documented during interviews with patients and their families and from a review of medical records. Bivariate correlations and multiple regression analysis were used to examine the relationship of sociodemographic characteristics, clinical symptomatology and clinical history, to insight at the time of admission. The relationships between change in clinical symptoms and change in insight from admission to discharge were also examined. Stepwise multiple regression models suggested that any previous admissions for depression and higher anxiety factor scores on the HAMD-17 are significant independent predictors of insight accounting for 22.9% of the variance. Multiple regression analysis residual change scores (change scores adjusted for baseline values) on the ITAQ showed that improved insight over average stays of 51 days were inversely related to the residual psychomotor

  4. Insightful problem solving in an Asian elephant.

    Directory of Open Access Journals (Sweden)

    Preston Foerder

    Full Text Available The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  5. Risk insights from seismic margin reviews

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1990-01-01

    This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights

  6. 2016 Mars Insight Mission Design and Navigation

    Science.gov (United States)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  7. Insights from an overview of four PRAs

    International Nuclear Information System (INIS)

    Fitzpatrick, R.; Arrieta, L.; Teichmann, T.; Davis, P.

    1987-01-01

    This paper summarizes the findings of an investigation of four probabilistic risk assessments (PRAs), those for Millstone 3 Seabrook, Shoreham, and Oconee 3, performed by Brookhaven National Laboratory (BNL) for the Reliability and Risk Assessment branch of the U.S. Nuclear Regulatory Commission (NRC). This group of four PRAs was subjected to an overview process with the basic goal of ascertaining what insights might be gained (beyond those already documented within the individual PRAs) by an independent evaluation of the group with respect to nuclear plant safety and vulnerability. Specifically, the objectives of the study were 1) to identify and rank initiators, systems, components, and failure modes from dominant accident sequences according to their contribution to core melt probability and public risk; and 2) to derive from this process plant-specific and generic insights. The effort was not intended to verify the specific details and results of each PRA but rather - having accepted the results - to see what they might mean in a more global context. This paper also presents some comments and insights into the amenability of certain features of these PRAs to this type of overview process

  8. Insightful problem solving in an Asian elephant.

    Science.gov (United States)

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  9. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China

    Science.gov (United States)

    Wang, Hao; Wu, Yuan-Bao; Yang, Jin-Hui; Qin, Zheng-Wei; Duan, Rui-Chun; Zhou, Lian; Yang, Sai-Hong

    2017-06-01

    Ascertaining the petrogenesis of granitoid rocks in subduction zones holds the key for understanding the processes of how continental crust is produced. The synchronous Taoyuan and Huanggang plutons occur in two different geological units of the Paleozoic Tongbai orogen of central China. They provide an optimal opportunity for a study to address the role of the crustal basement in generating voluminous granitoid magmatism in subduction zones. The Taoyuan and Huanggang plutons have identical U-Pb zircon crystallization ages of 440-444 Ma, which are temporally related to northward subduction of the Paleotethyan Ocean. The Taoyuan samples show high SiO2 (73.36-79.16%) and low Al2O3 (12.00-13.45%) contents, Mg numbers (20.6-38.2), and Sr/Y (2.04-10.1) and (La/Yb)N (2.34-7.32) ratios with negative Eu anomalies (Eu/Eu* = 0.33-0.93). They yielded positive εNd(t) (+ 3.0 to + 6.7) and εHf(t) (+ 11.8 to + 13.2) values, elevated initial Sr isotopic ratios (0.7040-0.7057) and relatively low zircon δ18O values of 4.62-5.39‰. These suggest that they were produced through partial melting of hydrothermally altered lower crust of the accreted Erlangping oceanic arc. In contrast, the Huanggang samples exhibit variable whole-rock geochemical and isotopic compositions with SiO2 contents of 57.01-64.42 wt.%, initial Sr isotopic ratios of 0.7065-0.7078, and εNd(t) values of - 5.7 to - 9.4. Additionally, they have high zircon δ18O values of 7.57-8.45‰ and strongly negative zircon εHf(t) values of - 14.4 to - 10.5. They were suggested to have been mainly derived from ancient continental crust of the Kuanping crustal unit with the addition of 20-40% juvenile, mantle-derived material. Accordingly, the granitoids in both oceanic and continental arcs are likely to be mainly derived from intracrustal melting of their crustal basement. It is revealed by the Huanggang pluton that little net continental crust growth occurs in continental arcs, and addition of new volume of continental

  10. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China

    Science.gov (United States)

    Yuan, Feng; Liu, Jia-Jun; Carranza, Emmanuel John M.; Zhang, Shuai; Zhai, De-Gao; Liu, Gang; Wang, Gong-Wen; Zhang, Hong-Yuan; Sha, Ya-Zhou; Yang, Shang-Song

    2018-03-01

    Evidence for open-system magmatic processes related to wallrock assimilation accompanied by fractional crystallization (AFC) is present in the Guangshigou biotite pegmatites, North Qinling Orogen. The biotite pegmatite-gneiss contacts generally coincide with the greatest enrichment of U and Th. Zircon Usbnd Pb dating constrains the crystallization ages of the biotite pegmatite (rim zone-415 ± 2.6 Ma; internal zone-413.5 ± 2.5 Ma), in line with a pyrite Pbsbnd Pb isochron age (413 ± 22 Ma). Metamict areas in zircon show generally elevated concentrations of trace elements and expulsion of radioactive Pb. Internal zone samples, representing uncontaminated magma, have negative to positive zircon ( 413 Ma) εHf(t) (- 1.53 - + 3.24), low εNd(t) values (- 2.4), and old Hf and Nd model ages (tDM2 = 1.5-1.19 Ga, T2DM = 1.35 Ga, respectively), indicating a dominantly recycled Mesoproterozoic lower crustal material with involvement of some juvenile materials in the source region. The magmatic oxygen fugacity (fO2) and crystallization temperatures ranges from - 24.81 to - 13.34 of log fO2 and 570 °C to 793 °C, respectively. Compared to the internal zone, pegmatite rim samples display a variable and lower εNd(t) values (- 3.9 to - 2.8) and T2DM (1.47-1.37 Ga), but similar Hf isotopic compositions, favouring a three-component isotopic mixing model (recycled Mesoproterozoic lower crust materials, juvenile materials, and host gneiss). Pronounced variations of Ti, Y, U, Th, Hf, and REE concentrations in zircon from grain to grain in individual samples and from area to area within individual grains suggest a fluctuating crystallization environment in hybridized magma from which the rim-hosted zircons crystallized. Variable and high radiogenic Pb ratios of pyrites forming in the hybridized magma were inherited from the matrix. Zircons from both zones exhibit similar Hf isotope patterns, indicating the rim-hosted zircons crystallized during the early stage of hybridization of

  11. Geological and Geophysical Integration Regarding a Structural Evolution Modelling of a Suture Zone Controlled by a Cratonic Buttress - The Case of Dom Feliciano Orogenic Belt, SSE Brazil, Implications for Western Gondwana Assembly

    Science.gov (United States)

    Bruno, H.; Almeida, J.; Heilbron, M. C. P. L.; Salomão, M.

    2017-12-01

    The matters surrounding the amalgamation of tectonic blocks during the Brasiliano / Pan-African orogeny have been the main subject of study of several works in recent years. The main objective of this work is the hierarchy and discrimination of the boundaries between the known tectonic blocks, integrating geological and geophysical data. The geology of the study area is dominated by Precambrian terranes; Luís Alves Terrane, the vulcanosedimentary sequences of the Itajaí and Campo Alegre Basins, the metasedimentary sequences of the Brusque and Paranaguá Terranes and their granitic suites besides the granitoids of the Florianópolis Terrane. The shear zones and faults that separate these crustal blocks were developed during the Brasiliano / Pan-African orogenic cycle that led to the formation of the supercontinent Gondwana. These tectonic boundaries generally separate blocks of different rheology and crustal thickness. The integration of geological and geophysical data allowed the identification of important structural lineaments and crustal boundaries. The presented geodynamic model suggests that the suture between the block composed of the Brusque, Paranaguá and Florianópolis Terranes and the block composed by the Luís Alves Terrane is the Itajaí Perimbó Shear Zone, and not the Major Gercino Shear Zone as previously suggested. Considering the Itajaí Perimbó Shear Zone as the suture zone, the metassediments of the Brusque Terrane were deposited on the basement of the Florianópolis Terrane, hereby declared as part of the Angola Craton, and are correlated to the metassediments of the Paranaguá Terrane as a passive margin that in approximately ca. 650 My became active margin, functioning as a forearc basin. The oblique collision between the blocks would have occurred with the development of a dextral transpression in the Itajaí Perimbó Shear Zone, separating the Luís Alves Terrane from the Brusque Terrane, a sinistral transcurrence represented by the

  12. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China

    Science.gov (United States)

    Chen, Lei; Wang, Zongqi; Yan, Zhen; Gong, Jianghua; Ma, Shouxian

    2018-01-01

    A number of Sn deposits associated with Neoproterozoic granites are located in the western Jiangnan Orogen of northern Guangxi. The distribution of Sn mineralization is controlled by faults occurring within and around the Neoproterozoic granites. The hydrothermal alteration and mineralization of these Sn deposits exhibit zoning from the granite to the wall rock. The laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb ages of the cassiterite and zircon from ore-bearing granite in the Menggongshan Sn deposit are 829 ± 19 Ma and 822 ± 4 Ma, respectively, indicating that the Sn mineralization and granites formed in the Neoproterozoic and can considered to be products of coeval magmatic and hydrothermal activities. The ore-bearing granite and Neoproterozoic granites in northern Guangxi are high-K, calc-alkaline, peraluminous, S-type granites that are depleted in Nb, Ti, Sr and Ba and highly enriched in Rb, U and Pb. All the granites show steep fractionated light rare earth element (LREE) and flat heavy rare earth element (HREE) patterns, with strongly negative Eu anomalies. The ɛHf(t) values of the ore-bearing granite vary from - 9.0 to - 1.7, with an average value of - 4.1. Additionally, the ore-bearing granite exhibits low oxygen fugacity values. The magmatic source experienced partial melting during their evolution, and the source was dominated by recycled heterogeneous continental crustal materials. Our evidence confirms that the Neoproterozoic granites in northern Guangxi formed in a collisional tectonic setting. The collision between the Cathaysia and Yangtze blocks or between the Sibao arc (Jiangnan arc) and the Yangtze Block caused asthenospheric upwelling, leading to partial melting and recycling of the crust, forming the peraluminous S-type granites in the Neoproterozoic. The Sn mineralization has a close genetic relationship with the Neoproterozoic granite. The highly differentiated, peraluminous, B-enriched, crustally derived

  13. The relationship between insight and psychosis in state patients with ...

    African Journals Online (AJOL)

    Objective. State patients committed under the Mental Health Act must have insight into their illness and the crime they committed before they can be discharged. Patients with schizophrenia are described as having poor insight into the nature and severity of their disorder. Various factors influence insight, and in some studies ...

  14. Hydrogeology of Montserrat review and new insights

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-03-01

    Full Text Available Study region: The tropical, active volcanic arc island of Montserrat, Lesser Antilles, Caribbean. Study focus: New insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat are combined with a review of the current understanding of volcanic island hydrology. The aim is to begin to develop a conceptual model for the hydrology of Montserrat, and to inform and stimulate further investigation into the hydrology of volcanic arc islands, by combining a review of the current understanding of essential components of the hydrological system with fresh analysis of existing data, and new observations, data collection and analysis. This study provides new insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat. New hydrological insights for the region: A new groundwater recharge model predicts whole island recharge of 266 mm/year, between 10% and 20% of annual rainfall. Core scale permeability tests reveal ranges from 10−14 to 10−12 m2 for volcaniclastic rocks with coarse matrix, to a minimum of 10−18 m2 for andesitic lavas and volcaniclastics with fine or altered matrix. Analysis of historical pumping tests on aquifers in reworked, channel and alluvial sediment indicate permeabilities ∼10−10 m2. Springs at elevations between 200 and 400 m above mean sea level on Centre Hills currently discharge over 45 L/s. High discharge require a reasonably laterally continuous low permeability body. Contrasting conceptual models are presented to illustrate two potential hydrogeological scenarios. New field observations also reveal systematic spatial variations in spring water temperature and specific electrical conductivity indicating that meteoric waters supplying the springs are mixed with a deeper groundwater source at some sites. Keywords: Volcanic island

  15. Third-person Diagnostic Interview on the Cognitive Insight Level of Psychotic Patients with an Insight at the Denial Level.

    Science.gov (United States)

    Mehdizadeh, Mahsa; Rezaei, Omid

    2016-01-01

    According to the previous findings, the third-person technique improved the clinical insight of psychotic patients, therefore the present study aims to examine the effect of a third-person interview compared to a first-person interview on the level of cognitive insight of psychotic patients with an insight at the denial level. In this study, using interviews and questionnaires, a total number of 44 patients of Razi Psychiatric Educational and Treatment Center with an insight at the denial level being assessed using diagnostic interviews were divided randomly into two groups. Then, the two groups of patients' cognitive insights were evaluated using Beck Cognitive Insight Scale. The findings indicated that in psychotic patients with an insight at the denial level, the third-person technique of interview compared to the first-person had little effect on the improvement of overall cognitive insight and its components, including self-reflection and self-assurance; however, this effect was not strong enough to make a significant difference between the two groups of patients. According to the study findings, we can conclude that the third-person interview compared to the first-person interview has no effect on the improvement of the cognitive insight of psychotic patients with an insight at the denial level. This finding is consistent with the previous studies indicating that although the theory of mind has some correlations with the clinical insight of patients, it has no effect on their cognitive insight.

  16. Is Humanity Doomed? Insights from Astrobiology

    Directory of Open Access Journals (Sweden)

    Seth D. Baum

    2010-02-01

    Full Text Available Astrobiology, the study of life in the universe, offers profound insights into human sustainability. However, astrobiology is commonly neglected in sustainability research. This paper develops three topics connecting astrobiology to sustainability: constraints on what zones in the universe are habitable, the absence of observations of extraterrestrial civilizations, and the physical fate of the universe. These topics have major implications for our thinking and action on sustainability. While we may not be doomed, we must take certain actions to sustain ourselves in this universe. The topics also suggest that our current sustainability efforts may be of literally galactic importance.

  17. A Storytelling Approach: Insights from the Shambaa.

    Science.gov (United States)

    Lamanna, Camillo

    2018-03-19

    Narrative medicine explores the stories that patients tell; this paper, conversely, looks at some of the stories that patients are told. The paper starts by examining the 'story' told by the Shambaa people of Tanzania to explain the bubonic plague and contrasts this with the stories told by Ghanaian communities to explain lymphatic filariasis. By harnessing insights from memory studies, these stories' memorability is claimed to be due to their use mnemonic devices woven into stories. The paper suggests that stories can be unpatronising, informative, and appropriate vehicles for communicating medical information to all age groups across all cultures.

  18. Stigma as a predictor of insight in schizophrenia.

    Science.gov (United States)

    Pruß, Linda; Wiedl, Karl Heinz; Waldorf, Manuel

    2012-07-30

    Insight in schizophrenia can be seen as a multifactorial phenomenon. Although multifactorial pathways have also been suggested for insight formation, motivational explanations have rarely been tested. The present study explores stigma as one possible determinant of a motivated lack of insight in integrated models of insight formation. It examines the contribution of socio-demographic and clinical variables, neurocognitive functions, symptoms, and stigma to the prediction of insight into illness. Patients diagnosed with schizophrenia spectrum disorders (N=111) participated in a comprehensive battery of instruments to measure insight dimensions, stigma, neurocognitive functions, symptoms, socio-demographic and clinical variables. Blockwise multiple regression analysis indicates significant association of variability in insight dimensions with gender (7%) and stigma (i. e., stereotype agreement: 5%). Our findings demonstrate an incremental validity of stigma, which indicates a motivational pathway of insight formation. This study enables better understanding of the multifactorial nature of insight, which should be considered in therapeutic interventions to improve insight. The roles of gender and neurocognitive functions in insight formation are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Risk Insights Gained from Fire Incidents

    International Nuclear Information System (INIS)

    Kazarians, Mardy; Nowlen, Steven P.

    1999-01-01

    There now exist close to 20 years of history in the application of Probabilistic Risk Assessment (PRA) for the analysis of fire risk at nuclear power plants. The current methods are based on various assumptions regarding fire phenomena, the impact of fire on equipment and operator response, and the overall progression of a fire event from initiation through final resolution. Over this same time period, a number of significant fire incidents have occurred at nuclear power plants around the world. Insights gained from US experience have been used in US studies as the statistical basis for establishing fire initiation frequencies both as a function of the plant area and the initiating fire source.To a lesser extent, the fire experience has also been used to assess the general severity and duration of fires. However, aside from these statistical analyses, the incidents have rarely been scrutinized in detail to verify the underlying assumptions of fire PRAs. This paper discusses an effort, under which a set of fire incidents are being reviewed in order to gain insights directly relevant to the methods, data, and assumptions that form the basis for current fire PRAs. The paper focuses on the objectives of the effort, the specific fire events being reviews methodology, and anticipated follow-on activities

  20. Insights to regenerate materials: learning from nature

    Science.gov (United States)

    García-Aznar, J. M.; Valero, C.; Gómez-Benito, M. J.; Javierre, E.

    2016-08-01

    Self-healing materials, both biological and engineered, integrate the ability to repair themselves and recover their functionality using the resources inherently available to them. Although significant advances have been made, in recent years, for the design of different concepts of self-healing materials, this work aims to provide some insights into how living materials are able to regenerate or heal when a fracture or injury occurs. The main sensors that regulate this adaptive and regenerative behavior are the cells. These are able to sense the mechanical alterations in their surroundings and regulate their activity in order to remove dead tissue and/or create new tissue. Therefore, understanding how cells are able to regenerate tissues under complex and multiphysics conditions can define the biomimetics guidelines to heal through inert or traditional engineering materials. In this work, we present a combination of experiments and different kinds of multiscale and multiphysics models in order to understand how mechanics regulate some mechanisms at cell and tissue level. This combination of results aims to gain insight into the development of novel strategies for self-healing materials, mimicking the behavior induced by cells and biological tissues.

  1. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    Science.gov (United States)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion

  2. New insights into insight: Neurophysiological correlates of the difference between the intrinsic "aha" and the extrinsic "oh yes" moment.

    Science.gov (United States)

    Rothmaler, Katrin; Nigbur, Roland; Ivanova, Galina

    2017-01-27

    Insight refers to a situation in which a problem solver immediately changes his understanding of a problem situation. This representational change can either be triggered by external stimuli, like a hint or the solution itself, or by internal solution attempts. In the present paper, the differences and similarities between these two phenomena, namely "extrinsic" and "intrinsic" insight, are examined. To this end, electroencephalogram (EEG) is recorded while subjects either recognize or generate solutions to German verbal compound remote associate problems (CRA). Based on previous studies, we compare the alpha power prior to insightful solution recognition with the alpha power prior to insightful solution generation. Results show that intrinsic insights are preceded by an increase in alpha power at right parietal electrodes, while extrinsic insights are preceded by a respective decrease. These results can be interpreted in two ways. In consistency with other studies, the increase in alpha power before intrinsic insights can be interpreted as an increased internal focus of attention. Accordingly, the decrease in alpha power before extrinsic insights may be associated with a more externally oriented focus of attention. Alternatively, the increase in alpha power prior to intrinsic insights can be interpreted as an active inhibition of solution-related information, while the alpha power decrease prior to extrinsic insights may reflect its activation. Regardless of the interpretation, the results provide strong evidence that extrinsic and intrinsic insight differ on the behavioral as well as the neurophysiological level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Neurobiological Basis of Insight in Schizophrenia: A Systematic Review.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison

    2016-01-01

    Insight in schizophrenia is defined as awareness into illness, symptoms, and need for treatment and has long been associated with cognition, other psychopathological symptoms, and several adverse clinical and functional outcomes. However, the biological basis of insight is not clearly understood. The aim of this systematic review was to critically evaluate and summarize advances in the study of the biological basis of insight in schizophrenia and to identify gaps in this knowledge. A literature search of PubMed, CINAHL, PsycINFO, and EMBASE databases was conducted using search terms to identify articles relevant to the biology of insight in schizophrenia published in the last 6 years. Articles that focused on etiology of insight in schizophrenia and those that examined the neurobiology of insight in schizophrenia or psychoses were chosen for analysis. Articles on insight in conditions other than schizophrenia or psychoses and which did not investigate the neurobiological underpinnings of insight were excluded from the review. Twenty-six articles met the inclusion criteria for this review. Of the 26 articles, 3 focused on cellular abnormalities and 23 were neuroimaging studies. Preliminary data identify the prefrontal cortex, cingulate cortex, and regions of the temporal and parietal lobe (precuneus, inferior parietal lobule) and hippocampus as the neural correlates of insight. A growing body of literature attests to the neurobiological basis of insight in schizophrenia. Current evidence supports the neurobiological basis of insight in schizophrenia and identifies specific neural correlates for insight types and its dimensions. Further studies that examine the precise biological mechanisms of insight are needed to apply this knowledge to effective clinical intervention development.

  4. Operating experience insights supporting ageing assessments

    International Nuclear Information System (INIS)

    Nitoi, M.

    2013-01-01

    Be effective in ageing management means looking at the right aspects, with the right techniques, and one of the most effective tool which could be used for that purpose is the analysis of operating experience. The paper has as objective to perform a review of available operating experience, with the aim to provide a better picture about the impact of ageing effects. The IAEA International Reporting System and NRC Licensee Event Reports were chosen as reference databases, both databases being internationally recognized as important sources of information about events occurrences in the nuclear power plants. The ageing related events identified in the selected time window were analyzed in detail, and the contributions of each major degradation mechanisms that have induced the ageing related events (specific to each defined group of components) was represented and discussed. The paper demonstrates the possibility to use operating experience insights in highlighting the ageing effects. (authors)

  5. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  6. Phylogeographic insights into cryptic glacial refugia.

    Science.gov (United States)

    Provan, Jim; Bennett, K D

    2008-10-01

    The glacial episodes of the Quaternary (2.6 million years ago-present) were a major factor in shaping the present-day distributions of extant flora and fauna, with expansions and contractions of the ice sheets rendering large areas uninhabitable for most species. Fossil records suggest that many species survived glacial maxima by retreating to refugia, usually at lower latitudes. Recently, phylogeographic studies have given support to the existence of previously unknown, or cryptic, refugia. Here we summarise many of these insights into the glacial histories of species in cryptic refugia gained through phylogeographic approaches. Understanding such refugia might be important as the Earth heads into another period of climate change, in terms of predicting the effects on species distribution and survival.

  7. New insights regarding ATWS for BWRS

    International Nuclear Information System (INIS)

    Drouin, M.T.; Kolaczkowski, A.M.; LaChance, J.L.; Ferrell, W.L.

    1987-01-01

    Anticipated transients without scram (ATWS) accident sequences have been found in past studies to have a relatively high core damage frequency (ranging from 5.4E-6 to 3E-4 per year) that represents a significant contribution to the total core damage frequency (ranging from 7-to-33%). Results of analyses for the two boiling water reactors (BWRs) analyzed as part of NUREG/CR-4550 indicate both a lower core damage frequency (ranging from 2E-7 to 1E-6 per year) and a lower contribution to the total core damage frequency (ranging from <1-to-10%). Based on these updated analyses, newer insights on the effects of reactor power equilibration, recirculation pump trip, high and low pressure injection and high pressure seal failure coupled with a detailed accident sequence analysis have resulted in lowering the significance of ATWS to core damage frequency

  8. Insights into Mechanisms of Chronic Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abigail B. Diack

    2016-01-01

    Full Text Available Chronic neurodegenerative diseases such as Alzheimer’s disease (AD, Parkinson’s disease (PD, and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus development of early intervention strategies is challenging. Unique amongst these diseases are Transmissible Spongiform Encephalopathies (TSEs or prion diseases, which have the ability to transmit between individuals. The infectious nature of these diseases has permitted in vivo and in vitro modelling of the time course of the disease process in a highly reproducible manner, thus early events can be defined. Recent evidence has demonstrated that the cell-to-cell spread of protein aggregates by a “prion-like mechanism” is common among the protein misfolding diseases. Thus, the TSE models may provide insights into disease mechanisms and testable hypotheses for disease intervention, applicable to a number of these chronic neurodegenerative diseases.

  9. Anthelmintic metabolism in parasitic helminths: proteomic insights.

    Science.gov (United States)

    Brophy, Peter M; MacKintosh, Neil; Morphew, Russell M

    2012-08-01

    Anthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.

  10. Insights into software development in Japan

    Science.gov (United States)

    Duvall, Lorraine M.

    1992-01-01

    The interdependence of the U.S.-Japanese economies makes it imperative that we in the United States understand how business and technology developments take place in Japan. We can gain insight into these developments in software engineering by studying the context in which Japanese software is developed, the practices that are used, the problems encountered, the setting surrounding these problems, and the resolution of these problems. Context includes the technological and sociological characteristics of the software development environment, the software processes applied, personnel involved in the development process, and the corporate and social culture surrounding the development. Presented in this paper is a summary of results of a study that addresses these issues. Data for this study was collected during a three month visit to Japan where the author interviewed 20 software managers representing nine companies involved in developing software in Japan. These data are compared to similar data from the United States in which 12 managers from five companies were interviewed.

  11. Imaging morphogenesis: technological advances and biological insights.

    Science.gov (United States)

    Keller, Philipp J

    2013-06-07

    Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.

  12. Insights from simulations of star formation

    International Nuclear Information System (INIS)

    Larson, Richard B

    2007-01-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of