WorldWideScience

Sample records for accretion-induced collapse ionization

  1. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    Science.gov (United States)

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  2. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  3. Collapse of accreting carbon-oxygen white dwarfs induced by carbon deflagration at high density

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    A critical condition is obtained for which carbon deflagration induces collapse of an accreting C + O white dwarf, not explosion. If the carbon deflagration is initiated at central density as high as 10 10 g cm -3 and if the propagation of the deflagration wave is slower than ∼ 0.15 υ/sub s/ (υ/sub s/ is the sound speed), electron capture behind the burning front induces collapse to form a neutron star. This is the case for both conductive and convective deflagrations. Such a high central density can be reached if the white dwarf is sufficiently massive and cold at the onset of accretion and if the accretion rate is in the appropriate range. Models for Type Ia and Ib supernovae are also discussed. 66 refs., 8 figs

  4. Conditions for accretion-induced collapse of white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, Kenichi; Kondo, Yoji

    1991-01-01

    Recent discovery of an unexpectedly large number of low-mass binary pulsars (LMBPs) in globular clusters has instigated active discussions on the evolutionary origin of binary pulsars. Prompted by the possibility that at least some of LMBPs originate from accretion-induced collapse (AIC) of white dwarfs, a reexamination is conducted as to whether or not AIC occurs for the new models of O + Ne + Mg white dwarfs and solid C + O white dwarfs that can ignite explosive nuclear burning at significantly lower central densities than in the previous models. Even with low critical densities, AIC is still much more likely than explosion for both types of white dwarfs. Possible regions for AIC are presented in a diagram of mass accretion rate vs initial mass of the white dwarfs. 42 refs

  5. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    International Nuclear Information System (INIS)

    Moriya, Takashi J.

    2016-01-01

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  6. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-10-20

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  7. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  8. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    OpenAIRE

    Tauris, Thomas M.; Sanyal, Debashis; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequ...

  9. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi

    1986-01-01

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  10. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  11. On the Induced Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    M. Becerra Laura

    2018-01-01

    Full Text Available The induced gravitational collapse (IGC paradigm has been applied to explain the long gamma ray burst (GRB associated with type Ic supernova, and recently the Xray flashes (XRFs. The progenitor is a binary systems of a carbon-oxygen core (CO and a neutron star (NS. The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1. For the binary driven hypernova (BdHNe, the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We’re going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  12. Axisymmetric general relativistic simulations of the accretion-induced collapse of white dwarfs

    International Nuclear Information System (INIS)

    Abdikamalov, E. B.; Ott, C. D.; Rezzolla, L.; Dessart, L.; Dimmelmeier, H.; Marek, A.; Janka, H.-T.

    2010-01-01

    The accretion-induced collapse (AIC) of a white dwarf may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting white dwarfs in type Ia supernovae. In the AIC scenario, the supernova explosion energy is expected to be small and the resulting transient short-lived, making it hard to detect by electromagnetic means alone. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in axisymmetric rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, and resulting white dwarf masses, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a 'type III' signal in the literature. Despite this reduction to a single type of waveform, we show that the emitted GWs carry information that can be used to constrain the progenitor and the postbounce rotation. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Furthermore, we contrast the GW signals of AIC and rotating massive star iron core collapse and find that they can be distinguished, but only if the distance to the source is known and a detailed reconstruction of the GW time series from detector data is possible. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. The disk mass is very sensitive to progenitor mass and angular momentum

  13. The formation of stars by gravitational collapse rather than competitive accretion

    Science.gov (United States)

    Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2005-11-01

    There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (Msolar), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (~0.5Msolar), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

  14. RADIO TRANSIENTS FROM THE ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L.; Kulkarni, S. R., E-mail: piro@caltech.edu [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-01-10

    It has long been expected that in some scenarios when a white dwarf (WD) grows to the Chandrasekhar limit, it can undergo an accretion-induced collapse (AIC) to form a rapidly rotating neutron star. Nevertheless, the detection of such events has so far evaded discovery, likely because the optical, supernova-like emission is expected to be dim and short-lived. Here we propose a novel signature of AIC: a transient radio source lasting for a few months. Rapid rotation along with flux freezing and dynamo action can grow the WD's magnetic field to magnetar strengths during collapse. The spin-down of this newly born magnetar generates a pulsar wind nebula (PWN) within the {approx}10{sup -3}-10{sup -1} M{sub Sun} of ejecta surrounding it. Our calculations show that synchrotron emission from the PWN may be detectable in the radio, even if the magnetar has a rather modest magnetic field of {approx}2 Multiplication-Sign 10{sup 14} G and an initial spin period of {approx}10 ms. An all-sky survey with a detection limit of 1 mJy at 1.4 GHz would see {approx}4(f/10{sup -2}) above threshold at any given time, where f is the ratio of the AIC rate to Type Ia supernova rate. A similar scenario may result from binary neutron stars if some mergers produce massive neutron stars rather than black holes. We conclude with a discussion of the detectability of these types of transient radio sources in an era of facilities with high mapping speeds.

  15. SURFACE LAYER ACCRETION IN CONVENTIONAL AND TRANSITIONAL DISKS DRIVEN BY FAR-ULTRAVIOLET IONIZATION

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Chiang, Eugene

    2011-01-01

    Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. Disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by small condensates, ranging from ∼0.01 μm sized grains to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. Here we show that ionization by stellar far-ultraviolet (FUV) radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. The FUV-ionized layer, of thickness 0.01-0.1 g cm -2 , behaves in the ideal magnetohydrodynamic limit and can accrete at observationally significant rates at radii ∼> 1-10 AU. Surface layer accretion driven by FUV ionization can reproduce the trend of increasing accretion rate with increasing hole size seen in transitional disks. At radii ∼<1-10 AU, FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance, and unless turbulent mixing of plasma can thicken the MRI-active layer, an additional means of transport is needed. In the case of transitional disks, it could be provided by planets.

  16. Mass-Accretion effects on white dwarf interiors

    International Nuclear Information System (INIS)

    Canal, R.; Hernanz, M.; Isern, J.; Labay, J.; Mochkovitch, R.

    1986-01-01

    There is observational evidence of the presence of young neutron stars in old binary systems. A likely explanation is that those neutron stars were produced in the collapse of old C+O white dwarfs. Old white dwarfs being cold and at least partially solid, accretion-induced mass growth should finally lead in a number of cases, to their collapse rather than to their explosion. We show in detail how mass accretion on initially solid white dwarfs can leave central solid cores when dynamical instability sets in. We also study the different effects of the existence of such cores on the outcome of the competition between thermonuclear explosion and gravitational collapse

  17. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  18. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  19. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  20. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  1. The effect of extreme ionization rates during the initial collapse of a molecular cloud core

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-05-01

    What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.

  2. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  3. Neutrino Oscillations within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts

    Science.gov (United States)

    Becerra, L.; Guzzo, M. M.; Rossi-Torres, F.; Rueda, J. A.; Ruffini, R.; Uribe, J. D.

    2018-01-01

    The induced gravitational collapse paradigm of long gamma-ray bursts associated with supernovae (SNe) predicts a copious neutrino–antineutrino (ν \\bar{ν }) emission owing to the hypercritical accretion process of SN ejecta onto a neutron star (NS) binary companion. The neutrino emission can reach luminosities of up to 1057 MeV s‑1, mean neutrino energies of 20 MeV, and neutrino densities of 1031 cm‑3. Along their path from the vicinity of the NS surface outward, such neutrinos experience flavor transformations dictated by the neutrino-to-electron-density ratio. We determine the neutrino and electron on the accretion zone and use them to compute the neutrino flavor evolution. For normal and inverted neutrino mass hierarchies and within the two-flavor formalism ({ν }e{ν }x), we estimate the final electronic and nonelectronic neutrino content after two oscillation processes: (1) neutrino collective effects due to neutrino self-interactions where the neutrino density dominates, and (2) the Mikheyev–Smirnov–Wolfenstein effect, where the electron density dominates. We find that the final neutrino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e., {ν }e+{\\bar{ν }}e, for the normal (inverted) neutrino mass hierarchy. The results of this work are the first step toward the characterization of a novel source of astrophysical MeV neutrinos in addition to core-collapse SNe and, as such, deserve further attention.

  4. Accretion-induced quasinormal mode excitation of a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Nagar, Alessandro; Zanotti, Olindo; Font, Jose A.; Rezzolla, Luciano

    2007-01-01

    By combining the numerical solution of the nonlinear hydrodynamics equations with the solution of the linear inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations, we investigate the properties of the gravitational radiation emitted during the axisymmetric accretion of matter onto a Schwarzschild black hole. The matter models considered include quadrupolar dust shells and thick accretion disks, permitting us to simulate situations which may be encountered at the end stages of stellar gravitational collapse or binary neutron star merger. We focus on the interference pattern appearing in the energy spectra of the emitted gravitational waves and on the amount of excitation of the quasinormal modes of the accreting black hole. We show that, quite generically in the presence of accretion, the black-hole ringdown is not a simple superposition of quasinormal modes, although the fundamental mode is usually present and often dominates the gravitational-wave signal. We interpret this as due to backscattering of waves off the nonexponentially decaying part of the black-hole potential and to the finite spatial extension of the accreting matter. Our results suggest that the black-hole QNM contributions to the full gravitational-wave signal should be extremely small and possibly not detectable in generic astrophysical scenarios involving the accretion of extended distributions of matter

  5. The Effects of Admixed Dark Matter on Accretion Induced Collapse

    Science.gov (United States)

    Leung, Shing-Chi; Chu, Ming-Chung; Lin, Lap-Ming; Nomoto, Ken'ichi

    About 90% mass of matter in the universe is dark matter (DM) and most of its properties remain poorly constrained since it does not interact with electromagnetic and strong forces. To constrain the properties of DM, studying its effects on stellar objects is one of the methods. In [Leung et al., Phys. Rev. D 87, 123506 (2013); Leung et al., Astrophys. J. 812, 110 (2015)] we have shown that the dark matter admixture can significantly lower the Chandrasekhar mass of a white dwarf and also its corresponding explosion as a Type Ia supernova (SNe Ia). This type of objects may explain some observed sub-luminous SNe Ia. Depending on their stellar evolution path and interactions with companion stars, such objects can also undergo a direct collapse to form neutron stars (NSs) instead of explosion. Here we present results of one-dimensional hydrodynamics simulations of a NS with admixed DM. The DM is assumed to be asymmetric and in the form of an ideal degenerate Fermi gas. We study how the admixture of DM affects the collapse dynamics, its neutrino signals and the properties of the proto-NS. Possible observational signals are also discussed.

  6. Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068

    Science.gov (United States)

    Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.

    2000-10-01

    We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.

  7. Shock-induced nanobubble collapse and its applications

    Science.gov (United States)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  8. Simulation of pulsed-ionizing-radiation-induced errors in CMOS memory circuits

    International Nuclear Information System (INIS)

    Massengill, L.W.

    1987-01-01

    Effects of transient ionizing radiation on complementary metal-oxide-semiconductor (CMOS) memory circuits was studied by computer simulation. Simulation results have uncovered the dominant mechanism leading to information loss (upset) in dense (CMOS) circuits: rail span collapse. This effect is the catastrophic reduction in the local power supply at a RAM cell location due to the conglomerate radiation-induced photocurrents from all other RAM cells flowing through the power-supply-interconnect distribution. Rail-span collapse leads to reduced RAM cell-noise margins and can predicate upset. Results show that rail-span collapse in the dominant pulsed radiation effect in many memory circuits, preempting local circuit responses to the radiation. Several techniques to model power-supply noise, such as that arising from rail span collapse, are presented in this work. These include an analytical model for design optimization against these effects, a hierarchical computer-analysis technique for efficient power bus noise simulation in arrayed circuits, such as memories, and a complete circuit-simulation tool for noise margin analysis of circuits with arbitrary topologies

  9. Gravity induced wave function collapse

    Science.gov (United States)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  10. Radiation-driven Turbulent Accretion onto Massive Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2017-09-20

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.

  11. Final stages of evolution of cold, mass-accreting white dwarfs

    International Nuclear Information System (INIS)

    Hernanz, M.; Isern, J.; Canal, R.; Labay, J.; Mochkovitch, R.

    1988-01-01

    The evolution of solid C + O white dwarf models upon mass accretion is calculated up to the point of either explosive thermonuclear ignition or gravitational collapse. It is shown that both explosions and quiet collapses to a neutron star are possible for each of two different phase diagrams for high-density C + O mixtures. The ranges of initial masses and temperatures and of accretion rates leading to the different outcomes are determined. Problems concerning the chemical composition of the accreted matter and the effects of tidal dissipation are discussed. 68 references

  12. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    International Nuclear Information System (INIS)

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W.

    2010-01-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ∼10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  13. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  14. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-06-10

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  15. Velocity structure of protostellar envelopes: gravitational collapse and rotation

    International Nuclear Information System (INIS)

    Belloche, Arnaud

    2002-01-01

    Stars form from the gravitational collapse of pre-stellar condensations in molecular clouds. The major aim of this thesis is to compare the predictions of collapse models with observations of both very young (class 0) protostars and starless condensations in millimeter molecular lines. We wish to understand what determines the masses of forming stars and whether the initial conditions have an effect on the dynamical evolution of a condensation. Using a Monte-Carlo radiative transfer code, we analyze rotation and infall spectroscopic signatures to study the velocity structure of a sample of protostellar condensations. We show that the envelope of the class 0 protostar IRAM 04191 in the Taurus molecular cloud is undergoing both extended, subsonic infall and fast, differential rotation. We propose that the inner part of the envelope is a magnetically supercritical core in the process of decoupling from the ambient cloud still supported by the magnetic field. We suggest that the kinematical properties observed for IRAM 04191 are representative of the physical conditions characterizing isolated protostars shortly after point mass formation. On the other hand, a similar study for the pre-stellar condensations of the Rho Ophiuchi proto-cluster yields mass accretion rates that are an order of magnitude higher than in IRAM 04191. This suggests that individual protostellar collapse in clusters is induced by external disturbances. Moreover, we show that the condensations do not have time to orbit significantly through the proto-cluster gas before evolving into protostars and pre-main-sequence stars. This seems inconsistent with models which resort to dynamical interactions and competitive accretion to build up a mass spectrum comparable to the stellar initial mass function. We conclude that protostellar collapse is nearly spontaneous in regions of isolated star formation such as the Taurus cloud but probably strongly induced in proto-clusters. (author) [fr

  16. X-RAY SIGNATURES OF NON-EQUILIBRIUM IONIZATION EFFECTS IN GALAXY CLUSTER ACCRETION SHOCK REGIONS

    International Nuclear Information System (INIS)

    Wong, Ka-Wah; Sarazin, Craig L.; Ji Li

    2011-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the ΛCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass, but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ∼130-380 ks on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.

  17. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  18. Non explosive collapse of white dwarfs

    International Nuclear Information System (INIS)

    Canal, R.; Schatzmann, E.

    1976-01-01

    We show that if a sufficiently cold carbon-oxygen white dwarf, close to the critical mass, accretes matter from a companion in a binary system, the time scale of collapse is long enough to allow neutronization before the onset of pycnonuclear reactions. This can possibly lead to the formation of X-ray sources by a non explosive collapse. (orig.) [de

  19. Inducible Laryngeal Obstruction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal Obstruction

    Science.gov (United States)

    2017-10-20

    REPORT TYPE 10/20/2017 Poster 4. TITLE AND SUBTITLE Inducible Laryngeal Obstrnction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal...REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES 3. DATES COVERED (From - To) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  20. Axisymmetric accretion flows very near black holes and Rosen-collapsed objects

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1979-01-01

    Motivated by the need for stronger observational leverage on the black hole hypothesis and for a more detailed characterization of axisymmetric accretion flows across the marginally stable circular orbit rsub(ms), a general approach for describing the non-Keplerian accretion in the region rsub(H) 0 , where rsub(H) = radius of the event horizon and r 0 > = rsub(ms) is developed. The procedure possesses many advantages, including easily imposed consistency with the Keplerian for r > rsub(o), the avoidance of ad hoc boundary conditions at rsub(ms) and/or at rsub(H) and its application also to accretion in Rosen's bimetric theory, whose spherically symmetric solution has the same qualitative orbital topography as that of general relativity. It becomes apparent, furthermore, that the particular viscosity law chosen in this procedure will have a crucial bearing on the flow in the region rsub(ms) 0 . (author)

  1. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  2. Collapse of white dwarfs in low mass binary systems

    International Nuclear Information System (INIS)

    Isern, J.; Canal, R.; Garcia-Berro, E.; Hernanz, M.; Labay, J.

    1987-01-01

    Low-mass binary X-ray sources and cataclysmic variables are composed of a compact star plus a non-degenerate star with a mass of the order of 1 M sun . In the first case, the degenerate star is a neutron star. In the second case, the star is a white dwarf. The similarities of both systems are so high that it is worthwhile to look for the possibility of obtaining a neutron star from the collapse of a white dwarf that accretes matter. The present work shows that massive, initially cold white dwarfs can collapse non-explosively if they accrete mass at a rate greater than 1.0E-7 M sun per year. (Author)

  3. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  4. Laser-induced ionization of Na vapor

    International Nuclear Information System (INIS)

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na 2 + ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na 2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na 2 D 1 PIμ Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na 2 + ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na 2 + through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na 2 molecules

  5. Universal subhalo accretion in cold and warm dark matter cosmologies

    Science.gov (United States)

    Kubik, Bogna; Libeskind, Noam I.; Knebe, Alexander; Courtois, Hélène; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda

    2017-12-01

    The influence of the large-scale structure on host haloes may be studied by examining the angular infall pattern of subhaloes. In particular, since warm dark matter (WDM) and cold dark matter (CDM) cosmologies predict different abundances and internal properties for haloes at the low-mass end of the mass function, it is interesting to examine if there are differences in how these low-mass haloes are accreted. The accretion events are defined as the moment a halo becomes a substructure, namely when it crosses its host's virial radius. We quantify the cosmic web at each point by the shear tensor and examine where, with respect to its eigenvectors, such accretion events occur in ΛCDM and ΛWDM (1 keV sterile neutrino) cosmological models. We find that the CDM and WDM subhaloes are preferentially accreted along the principal axis of the shear tensor corresponding to the direction of weakest collapse. The beaming strength is modulated by the host and subhalo masses and by the redshift at which the accretion event occurs. Although strongest for the most massive hosts and subhaloes at high redshift, the preferential infall is found to be always aligned with the axis of weakest collapse, thus we say that it has universal nature. We compare the strength of beaming in the ΛWDM cosmology with the one found in the ΛCDM scenario. While the main findings remain the same, the accretion in the ΛWDM model for the most massive host haloes appears more beamed than in ΛCDM cosmology across all the redshifts.

  6. Calculations of three-dimensional collapse and fragmentation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1978-01-01

    Calculations of the fragmentation of an isothermally collapsing cloud have been carried out using a method that follows the motion of individual fluid particles and includes pressure and viscosity forces between neighbouring particles. In a cloud or region whose mass is comparable to the Jeans mass, a highly condensed core forms, surrounded by a diffuse envelope that continues to accrete on to the core; in the presence of rotation, the inner part of the envelope becomes essentially an accretion disc. If the mass exceeds the Jeans mass, several such accreting cores are formed, the number being comparable to the initial number of jeans masses in the cloud. Binary systems and hierarchical multiple systems are frequently obtained. The mass of the largest object formed is independent of the Jeans mass but depends on the angular momentum and viscosity of the cloud, and is essentially the maximum mass accretable by a single object. The resulting mass spectrum may be determined by the development of a hierarchy of accreting objects of different sizes, such that each object has several smaller ones associated with it. The hypothesis of a self-similar accretion hierarchy predicts a power-law mass spectrum, which in the limit of inefficient accretion has an exponent x = 1, in reasonable agreement with observations. (author)

  7. Fire-induced collapse mechanisms of steel buildings

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Aiuti, Riccardo; Bontempi, Franco

    2013-01-01

    This paper presents a study on the failure modes of steel building in fire, with the aim of identify basic collapse mechanisms and design characteristics that play a role in the development and propagation of failures through the structural system. In particular, the effect of deformations...... and eigen-stresses induced by a restrained thermal expansion are not considered by current design methods and regulations, but are known to have driven the collapse of several steel and composite structures. In this study, the effect of restrained thermal expansions of steel beams exposed to fire...... is investigated with respect to two different structural typologies, i.e. single- and multi-story frames. In single-story buildings, such as car parks or industrial halls, the presence of stiff beams, typically required by large spans and higher service loads due to the different occupancy of the premises, may...

  8. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome

    Science.gov (United States)

    McCarthy, Cameron G.; Szasz, Theodora; Goulopoulou, Styliani; Webb, R. Clinton

    2015-01-01

    Fifty percent of trauma patients who present sepsis-like syndrome do not have bacterial infections. This condition is known as systemic inflammatory response syndrome (SIRS). A unifying factor of SIRS and sepsis is cardiovascular collapse. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns. Mitochondrial N-formyl peptides (F-MIT) are damage-associated molecular patterns that share similarities with bacterial N-formylated peptides and are potent immune system activators. The goal of this study was to investigate whether F-MIT trigger SIRS, including hypotension and vascular collapse via formyl peptide receptor (FPR) activation. We evaluated cardiovascular parameters in Wistar rats treated with FPR or histamine receptor antagonists and inhibitors of the nitric oxide pathway before and after F-MIT infusion. F-MIT, but not nonformylated peptides or mitochondrial DNA, induced severe hypotension via FPR activation and nitric oxide and histamine release. Moreover, F-MIT infusion induced hyperthermia, blood clotting, and increased vascular permeability. To evaluate the role of leukocytes in F-MIT-induced hypotension, neutrophil, basophil, or mast cells were depleted. Depletion of basophils, but not neutrophils or mast cells, abolished F-MIT-induced hypotension. Rats that underwent hemorrhagic shock increased plasma levels of mitochondrial formylated proteins associated with lung damage and antagonism of FPR ameliorated hemorrhagic shock-induced lung injury. Finally, F-MIT induced vasodilatation in isolated resistance arteries via FPR activation; however, F-MIT impaired endothelium-dependent relaxation in the presence of blood. These data suggest that F-MIT may be the link among trauma, SIRS, and cardiovascular collapse. PMID:25637548

  9. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  10. MAGNETOROTATIONAL-INSTABILITY-DRIVEN ACCRETION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Bai Xuening

    2011-01-01

    Non-ideal MHD effects play an important role in the gas dynamics in protoplanetary disks (PPDs). This paper addresses the influence of non-ideal MHD effects on the magnetorotational instability (MRI) and angular momentum transport in PPDs using the most up-to-date results from numerical simulations. We perform chemistry calculations using a complex reaction network with standard prescriptions for X-ray and cosmic-ray ionizations. We first show that whether or not grains are included, the recombination time is at least one order of magnitude less than the orbital time within five disk scale heights, justifying the validity of local ionization equilibrium and strong coupling limit in PPDs. The full conductivity tensor at different disk radii and heights is evaluated, with the MRI active region determined by requiring that (1) the Ohmic Elsasser number Λ be greater than 1 and (2) the ratio of gas to magnetic pressure β be greater than β min (Am) as identified in the recent study by Bai and Stone, where Am is the Elsasser number for ambipolar diffusion. With full flexibility as to the magnetic field strength, we provide a general framework for estimating the MRI-driven accretion rate M-dot and the magnetic field strength in the MRI active layer. We find that the MRI active layer always exists at any disk radius as long as the magnetic field in PPDs is sufficiently weak. However, the optimistically predicted M-dot in the inner disk (r = 1-10 AU) appears insufficient to account for the observed range of accretion rates in PPDs (around 10 -8 M sun yr -1 ) even in the grain-free calculation, and the presence of solar abundance sub-micron grains further reduces M-dot by one to two orders of magnitude. Moreover, we find that the predicted M-dot increases with radius in the inner disk where accretion is layered, which would lead to runaway mass accumulation if disk accretion is solely driven by the MRI. Our results suggest that stronger sources of ionization and

  11. Ngc7538 Irs1 - A Highly Collimated Ionized Wind Source Powered By Accretion

    Science.gov (United States)

    Sandell, Goran H. L.; Wright, M.; Goss, W.; Corder, S.

    2009-01-01

    Recent images show that NGC7538 IRS1 is not a conventional Ultracompact or Hypercompact HII region, but is completely wind-excited (other broad recombination line hypercompact HII regions may be similar to IRS1). NGC 7538 IRS1 is a well studied young high-mass star (L 2 10^5 L_Sun).VLA images at 6 and 2 cm (Cambell 1984; ApJ, 282, L27) showed a compact bipolar core (lobe separation 0.2") with more extended faint lobes. Recombination line observations (Gaume et al. 1995, ApJ, 438, 776) show extremely wide line profiles indicating substantial mass motion of the ionized gas. We re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured the flux from the compact core and the extended (1.5 - 2") bipolar lobes. We find that the compact core has a spectral index, alpha 0.6, which could be explained by an optically thick hypercompact core with a density gradient. However, the size of the core shrinks with increasing frequency; from 0.24" at 6 cm to 0.1" at 7 mm, consistent with that expected for a collimated jet (Reynolds 1986, ApJ, 304, 713). If we do a crude size correction so that we compare emission from the optically thick inner part of the jet for a set of 2 cm and 7 mm observations we get alpha 1.6, i.e. close to the optically thick value. BIMA and CARMA continuum observations at 3 mm show some dust excess, while. HCO+ J=1-0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate 2 10^-4 M_Sun/year, sufficient to quench the formation of an HII region.

  12. From the advective-acoustic instability to the asymmetric explosions of Core Collapse Supernovae

    International Nuclear Information System (INIS)

    Galletti, Pascal

    2005-01-01

    The advective-acoustic cycle is a hydrodynamical mechanism fed by the coupling between advected waves (entropy, vorticity) and an acoustic feedback. Already studied in physics (rumble instability in ramjet, whistling tea kettle), it was introduced in astrophysics in the frame of the instability of the Bondi-Hoyle-Lyttleton accretion flow. In this thesis, we propose this cycle as an explanation for the asymmetry of the explosion of Core Collapse Supernovae. The evaluation of Eigenmodes for the classical accretion above a solid surface (white dwarfs, neutron stars) and the use of a toy-model reveal the importance of the advective-acoustic cycle in such an instable accretion flow. Following these results and the comparison with numerical simulations, a modelization of the flow when the shock stalls during a Core Collapse Supernova, shows that the advective-acoustic cycle is a natural mechanism to explain the non-spherical instability of the shock. The domination of l = 1 modes may be responsible for the observed pulsar kicks. (author) [fr

  13. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  14. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  15. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    Science.gov (United States)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  16. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    Science.gov (United States)

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  17. Cataracts induced by microwave and ionizing radiation

    International Nuclear Information System (INIS)

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-01-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references

  18. Highly Accreting Quasars at High Redshift

    Science.gov (United States)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  19. Intense electromagnetic outbursts from collapsing hypermassive neutron stars

    Science.gov (United States)

    Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad

    2012-11-01

    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is

  20. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  2. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  3. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  4. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  5. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah; Schnetter, Erik

    2015-01-01

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M ⊙ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ −1 in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ −5/3 . We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade

  6. Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.

    Science.gov (United States)

    Shibata, Masaru; Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Stephens, Branson C

    2006-01-27

    A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outcome is a BH surrounded by a massive, hot torus with a collimated magnetic field. The torus accretes onto the BH at a quasisteady accretion rate [FORMULA: SEE TEXT]; the lifetime of the torus is approximately 10 ms. The torus has a temperature [FORMULA: SEE TEXT], leading to copious ([FORMULA: SEE TEXT]) thermal radiation that could trigger a fireball. Therefore, the collapse of a HMNS is a promising scenario for generating short-duration gamma-ray bursts and an accompanying burst of gravitational waves and neutrinos.

  7. SDSS-IV MaNGA: A Serendipitous Observation of a Potential Gas Accretion Event

    Science.gov (United States)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Malanushenko, Olena; Masters, Karen L.; Merrifield, Michael R.; Pace, Zach; Pan, Kaike; Riffel, Rogemar A.; Roman-Lopes, Alexandre; Rujopakarn, Wiphu; Schneider, Donald P.; Stott, John P.; Thomas, Daniel; Weijmans, Anne-Marie

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric Hα complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This Hα extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this Hα extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  8. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    International Nuclear Information System (INIS)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Malanushenko, Olena; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Masters, Karen L.

    2016-01-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  9. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Edmond; Stark, David V.; Huang, Song [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Rubin, Kate H. R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lin, Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Tremonti, Christy [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Zhang, Kai; Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Bizyaev, Dmitry; Malanushenko, Olena [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Boquien, Médéric [Unidad de Astronomía, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300 (Chile); Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S. 1400 E., Salt Lake City, UT 84112 (United States); Drory, Niv [McDonald Observatory, Department of Astronomy, University of Texas at Austin, 1 University Station, Austin, TX 78712-0259 (United States); Gelfand, Joseph D. [NYU Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Knapen, Johan H. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Masters, Karen L., E-mail: ec2250@gmail.com [Institute for Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); and others

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  10. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    Science.gov (United States)

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  11. βp-collapse-induced vertical displacement event in high βp tokamak disruption

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yoshino, R.; Pomphrey, N.; Jardin, S.C.

    1996-01-01

    Extremely fast vertical displacement events (VDEs) induced by a strong β p collapse were found in a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell through computer simulations using the tokamak simulation code. Although the plasma current quench which has been shown to be the prime cause of VDEs in a relatively low β p tokamak (β p ∼ 0.2) (Nakamura Y et al 1996 Nucl. Fusion 36 643), was not observed during the VDE evolution, the observed growth rate of VDEs was almost five times (γ ∼ 655 s -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 s -1 ). The essential mechanism of the β p -collapse-induced VDE was clarified to be the intense enhancement of positional instability due to a large and sudden degradation of the magnetic field decay n-index in addition to the significant destabilization due to a reduction in the stability index n s . The radial shift of the magnetic axis caused by the β p collapse induces eddy currents on the resistive shell, and these eddy currents produce a large degradation of the n-index. (author)

  12. THE ACCRETION OF DARK MATTER SUBHALOS WITHIN THE COSMIC WEB: PRIMORDIAL ANISOTROPIC DISTRIBUTION AND ITS UNIVERSALITY

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xi; Wang, Peng, E-mail: kangxi@pmo.ac.cn [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China)

    2015-11-01

    The distribution of galaxies displays anisotropy on different scales and it is often referred to as galaxy alignment. To understand the origin of galaxy alignments on small scales, one must investigate how galaxies were accreted in the early universe and quantify their primordial anisotropy at the time of accretion. In this paper we use N-body simulations to investigate the accretion of subhalos, focusing on their alignment with halo shape and the orientation of mass distribution on the large scale, defined using the Hessian matrix of the density field. The large/small (e1/e3) eigenvalues of the Hessian matrix define the fast/slow collapse direction of matter on the large scale. We find that: (1) the halo major axis is well aligned with the e3 (slow collapse) direction, and it is stronger for massive halos; (2) subhalos are predominantly accreted along the major axis of the host halo, and the alignment increases with the host halo mass. Most importantly, this alignment is universal; (3) accretion of subhalos with respect to the e3 direction is not universal. In massive halos, subhalos are accreted along the e3 (even more strongly than the alignment with the halo major axis), but in low-mass halos subhalos are accreted perpendicular to e3. The transitional mass is lower at high redshift. The last result well explains the puzzling correlation (both in recent observations and simulations) that massive galaxies/halos have their spin perpendicular to the filament, and the spin of low-mass galaxies/halos is slightly aligned with the filament, under the assumption that the orbital angular momentum of subhalos is converted to halo spin.

  13. Gravitational collapse of conventional polytropic cylinder

    Science.gov (United States)

    Lou, Yu-Qing; Hu, Xu-Yao

    2017-07-01

    In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.

  14. Inelastic accretion of inertial particles by a towed sphere

    Science.gov (United States)

    Vallée, Robin; Henry, Christophe; Hachem, Elie; Bec, Jérémie

    2018-02-01

    The problem of accretion of small particles by a sphere embedded in a mean flow is studied in the case where the particles undergo inelastic collisions with the solid object. The collision efficiency, which gives the flux of particles experiencing at least one bounce on the sphere, is found to depend upon the sphere Reynolds number only through the value of the critical Stokes number below which no collision occurs. In the absence of molecular diffusion, it is demonstrated that multiple bounces do not provide enough energy dissipation for the particles to stick to the surface within a finite time. This excludes the possibility of any kind of inelastic collapse, so that determining an accretion efficiency requires modeling more precisely particle-surface microphysical interactions. A straightforward choice is to assume that the particles stick when their kinetic energy at impact is below a threshold. In this view, numerical simulations are performed to describe the statistics of impact velocities at various values of the Reynolds number. Successive bounces are shown to enhance accretion. These results are put together to provide a general qualitative picture on how the accretion efficiency depends upon the nondimensional parameters of the problem.

  15. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles

    2013-01-01

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the d ead zone ) . We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R ∼< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  16. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Gammie, Charles, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu, E-mail: gammie@illinois.edu [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States)

    2013-02-20

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the {sup d}ead zone{sup )}. We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R {approx}< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  17. X-ray pulsars: accretion flow deceleration

    International Nuclear Information System (INIS)

    Miller, G.S.

    1987-01-01

    X-ray pulsars are thought to be neutron stars that derive the energy for their x-ray emission by accreting material onto their magnetic polar caps. The accreting material and the x-ray pulsar atmospheres were idealized as fully ionized plasmas consisting only of electrons and protons. A high magnetic field (∼ 5 x 10 12 Gauss) permeates the atmospheric plasma, and causes the motion of atmospheric electrons perpendicular to the field to be quantized into discrete Landau levels. All atmospheric electrons initially lie in the Landau ground state, but in the author's calculations of Coulomb collisions between atmospheric electrons and accreting protons, he allows for processes that leave the electrons in the first excited Landau level. He also considers interactions between accreting protons and the collective modes of the atmospheric plasma. Division of the electromagnetic interaction of a fast proton with a magnetized plasma into single particle and collective effects is described in detail in Chapter 2. Deceleration of the accretion flow due to Coulomb collisions with atmospheric electrons and collective plasma effects was studied in a number of computer simulations. These simulations, along with a discussion of the physical state of the atmospheric plasma and its interactions with a past proton, are presented in Chapter 3. Details of the atmospheric model and a description of the results of the simulations are given in Chapter 4. Chapter 5 contains some brief concluding remarks, and some thoughts on future research

  18. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  19. TEMPERATURE STRUCTURE OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

    International Nuclear Information System (INIS)

    Lesniak, M. V.; Desch, S. J.

    2011-01-01

    We calculate the temperature structures of protoplanetary disks (PPDs) around T Tauri stars heated by both incident starlight and viscous dissipation. We present a new algorithm for calculating the temperatures in disks in hydrostatic and radiative equilibrium, based on Rybicki's method for iteratively calculating the vertical temperature structure within an annulus. At each iteration, the method solves for the temperature at all locations simultaneously, and converges rapidly even at high (>>10 4 ) optical depth. The method retains the full frequency dependence of the radiation field. We use this algorithm to study for the first time disks evolving via the magnetorotational instability. Because PPD midplanes are weakly ionized, this instability operates preferentially in their surface layers, and disks will undergo layered accretion. We find that the midplane temperatures T mid are strongly affected by the column density Σ a of the active layers, even for fixed mass accretion rate M-dot . Models assuming uniform accretion predict midplane temperatures in the terrestrial planet forming region several x 10 2 K higher than our layered accretion models do. For M-dot -7 M sun yr -1 and the column densities Σ a -2 associated with layered accretion, disk temperatures are indistinguishable from those of a passively heated disk. We find emergent spectra are insensitive to Σ a , making it difficult to observationally identify disks undergoing layered versus uniform accretion.

  20. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Schnetter, Erik, E-mail: cott@tapir.caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.

  1. Multidimensional simulations of core-collapse supernovae with CHIMERA

    Science.gov (United States)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  2. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  3. HIERARCHICAL GRAVITATIONAL FRAGMENTATION. I. COLLAPSING CORES WITHIN COLLAPSING CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo-Romero, Raúl; Vázquez-Semadeni, Enrique; Loughnane, Robert M. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán, 58089, México (Mexico)

    2015-11-20

    We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor–Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like r{sup −2} density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of M/M{sub BE} versus M, where M is the core's mass and M{sub BE} is the critical BE mass, spanning the range from the “stable” to the “unstable” regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.

  4. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  5. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  6. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  7. The Hall-induced stability of gravitating fluids

    Science.gov (United States)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  8. The Growth of Central Black Hole and the Ionization Instability of Quasar Disk

    Science.gov (United States)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.

  9. Protostellar formation in rotation interstellar clouds. III. Nonaxisymmetric collapse

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A full three spatial-dimension gravitational hydrodynamics code has been used to follow the collapse of isothermal rotating clouds subjected to various nonaxialy symmetric perturbations (NAP). An initially axially symmetric cloud collapsed to form a ring which then fragmented into a binary protostellar system. A low thermal energy cloud with a large bar-shaped NAP collapsed and fragmented directly into a binary; higher thermal energy clouds damp out such NAPs while higher rotational rotational energy clouds produce binaries with wider separations. Fragmentation into single and binary systems has been seen. The tidal effects of other nearby protostellar clouds are shown to have an important effect upon the collapse and should not be neglected. The three-dimensional calculations indicate that isothermal interstellar clouds may fragment (with or without passing through a transitory ring phase) into protostellar objects while still in the isothermal regime. The fragments obtained have masses and specific spin angular momenta roughly a 10th that of the original cloud. Interstellar clouds and their fragments may pass through successive collapse phases with fragmentation and reduction of spin angular momentum (by conversion to orbital angular momentum and preferential accretion of low angular momentum matter) terminating in the formation of pre--main-sequence stars with the observed pre--main-sequence rotation rates

  10. Correlated random walks induced by dynamical wavefunction collapse

    Science.gov (United States)

    Bedingham, Daniel

    2015-03-01

    Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.

  11. Demonstration of soft x-ray amplification by optical-field-induced ionization

    International Nuclear Information System (INIS)

    Midorikawa, Katsumi; Nagata, Yutaka; Kubodera, Shoichi; Obara, Minoru; Tashiro, Hideo; Toyoda, Koichi

    1995-01-01

    We have demonstrated the amplification of the 13.5-nm Lyman-α transition in hydrogen-like Li + ions, using a novel optical-field-induced ionization. A small-signal gain coefficient of 20 cm -1 was obtained. The use of preformed Li + plasma as an initial laser medium plays important roles for the production of suitable plasma conditions for an optical-field-induced ionization x-ray laser. (author)

  12. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  13. Towards gravitational-wave astronomy of core-collapse supernova explosion

    International Nuclear Information System (INIS)

    Kotake, Kei

    2010-01-01

    We study properties of gravitational waves based on the three-dimensional (3D) simulations, which demonstrate the neutrino-driven explosions aided by the standing accretion shock instability (SASI). Pushed by evidence supporting slow rotation prior to core-collapse, we focus on the asphericities in neutrino emissions and matter motions outside the protoneutron star. By performing a ray-tracing calculation in 3D, we estimate accurately the gravitational waveforms from anisotropic neutrino emissions. In contrast to the previous work assuming axisymmetry, we find that the gravitational waveforms vary much more stochastically because the explosion anisotropies depend sensitively on the growth of the SASI which develops chaotically in all directions. Our results show that the gravitational-wave spectrum has its peak near ∼ 100 Hz, reflecting the SASI-induced matter overturns of ∼ O(10) ms. We point out that the detection of such signals, possibly visible to the LIGO-class detectors for a Galactic supernova, could be an important probe into the long-veiled explosion mechanism.

  14. STELLAR TIDAL DISRUPTION EVENTS BY DIRECT-COLLAPSE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Theoretical Astrophysics Center, Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Inayoshi, Kohei, E-mail: kashiyama@berkeley.edu, E-mail: inayoshi@astro.columbia.edu [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2016-07-20

    We analyze the early growth stage of direct-collapse black holes (DCBHs) with ∼10{sup 5} M {sub ⊙}, which are formed by collapse of supermassive stars in atomic-cooling halos at z ≳ 10. A nuclear accretion disk around a newborn DCBH is gravitationally unstable and fragments into clumps with a few × 10 M {sub ⊙} at ∼0.01–0.1 pc from the center. Such clumps evolve into massive Population III stars with a few × 10–10{sup 2} M {sub ⊙} via successive gas accretion, and a nuclear star cluster is formed. Radiative and mechanical feedback from an inner slim disk and the star cluster will significantly reduce the gas accretion rate onto the DCBH within ∼10{sup 6} yr. Some of the nuclear stars can be scattered onto the loss cone orbits also within ≲10{sup 6} yr and tidally disrupted by the central DCBH. The jet luminosity powered by such tidal disruption events can be L {sub j} ≳ 10{sup 50} erg s{sup 1}. The prompt emission will be observed in X-ray bands with a peak duration of δt {sub obs} ∼ 10{sup 5–6}(1 + z ) s followed by a tail ∝ t {sub obs} {sup 5/3}, which can be detectable by Swift BAT and eROSITA even from z ∼ 20. Follow-up observations of the radio afterglows with, e.g., eVLA and the host halos with James Webb Space Telescope could probe the earliest active galactic nucleus feedback from DCBHs.

  15. Pregnancy-Induced Hypertensive Disorders before and after a National Economic Collapse: A Population Based Cohort Study.

    Directory of Open Access Journals (Sweden)

    Védís Helga Eiríksdóttir

    Full Text Available Data on the potential influence of macroeconomic recessions on maternal diseases during pregnancy are scarce. We aimed to assess potential change in prevalence of pregnancy-induced hypertensive disorders (preeclampsia and gestational hypertension during the first years of the major national economic recession in Iceland, which started abruptly in October 2008.Women whose pregnancies resulted in live singleton births in Iceland in 2005-2012 constituted the study population (N = 35,211. Data on pregnancy-induced hypertensive disorders were obtained from the Icelandic Medical Birth Register and use of antihypertensive drugs during pregnancy, including β-blockers and calcium channel blockers, from the Icelandic Medicines Register. With the pre-collapse period as reference, we used logistic regression analysis to assess change in pregnancy-induced hypertensive disorders and use of antihypertensives during the first four years after the economic collapse, adjusting for demographic and pregnancy characteristics, taking aggregate economic indicators into account. Compared with the pre-collapse period, we observed an increased prevalence of gestational hypertension in the first year following the economic collapse (2.4% vs. 3.9%; adjusted odds ratio [aOR] 1.47; 95 percent confidence interval [95%CI] 1.13-1.91 but not in the subsequent years. The association disappeared completely when we adjusted for aggregate unemployment rate (aOR 1.04; 95% CI 0.74-1.47. Similarly, there was an increase in prescription fills of β-blockers in the first year following the collapse (1.9% vs.3.1%; aOR 1.43; 95% CI 1.07-1.90, which disappeared after adjusting for aggregate unemployment rate (aOR 1.05; 95% CI 0.72-1.54. No changes were observed for preeclampsia or use of calcium channel blockers between the pre- and post-collapse periods.Our data suggest a transient increased risk of gestational hypertension and use of β-blockers among pregnant women in Iceland in the

  16. SIMULATING THE FORMATION OF MASSIVE PROTOSTARS. I. RADIATIVE FEEDBACK AND ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany); Peters, Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Banerjee, Robi, E-mail: klassm@mcmaster.ca [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2016-05-20

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M {sub ⊙}. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M {sub ⊙} simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M {sub ⊙} simulation shows a star with a mass of 5.48 M {sub ⊙} and a disk of mass 3.3 M {sub ⊙}, while our 100 M {sub ⊙} simulation forms a 28.8 M {sub ⊙} mass star with a 15.8 M {sub ⊙} disk over the course of 41.6 kyr, and our 200 M {sub ⊙} simulation forms a 43.7 M {sub ⊙} star with an 18 M {sub ⊙} disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  17. Accretion outbursts in self-gravitating protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Nelson, Richard P., E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu, E-mail: r.p.nelson@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-01

    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α{sub rd}) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α{sub rd} triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α{sub rd} = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot {sub acc}∼10{sup −8}--10{sup −7} M{sub ⊙} yr{sup −1} over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the

  18. Accretion outbursts in self-gravitating protoplanetary disks

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Nelson, Richard P.

    2014-01-01

    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α rd ) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α rd triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α rd = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot acc ∼10 −8 --10 −7 M ⊙ yr −1 over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the initial core angular momentum, which

  19. POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS

    Energy Technology Data Exchange (ETDEWEB)

    Nagakura, Hiroki; Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ioka, Kunihito, E-mail: hiroki@heap.phys.waseda.ac.jp [KEK Theory Center, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2012-08-01

    We investigate the propagation of accretion-powered jets in various types of massive stars such as Wolf-Rayet stars, light Population III (Pop III) stars, and massive Pop III stars, all of which are the progenitor candidates of gamma-ray bursts (GRBs). We perform two-dimensional axisymmetric simulations of relativistic hydrodynamics, taking into account both the envelope collapse and the jet propagation (i.e., the negative feedback of the jet on the accretion). Based on our hydrodynamic simulations, we show for the first time that the accretion-powered jet can potentially break out relativistically from the outer layers of Pop III progenitors. In our simulations, the accretion rate is estimated by the mass flux going through the inner boundary, and the jet is injected with a fixed accretion-to-jet conversion efficiency {eta}. By varying the efficiency {eta} and opening angle {theta}{sub op} for more than 40 models, we find that the jet can make a relativistic breakout from all types of progenitors for GRBs if a simple condition {eta} {approx}> 10{sup -4}({theta}{sub op}/8 Degree-Sign ){sup 2} is satisfied, which is consistent with analytical estimates. Otherwise no explosion or some failed spherical explosions occur.

  20. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    Science.gov (United States)

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  1. Function and regulation of ATF 3 expression induced by ionizing radiation

    International Nuclear Information System (INIS)

    Fan, Feiyue; Wang, Yong; Du, Liqin; Zhan, Qimin

    2008-01-01

    Full text: Ionizing radiation results in a series of damages of mammalian cells as a genotoxic stress. There are some genes expressed after cells damaged, in which ATF 3, a member of ATF/CREB family of transcription factors, is one of them. In this report, we demonstrate that ATF 3 can be induced by ionizing radiation. The induction of ATF 3 protein requires normal status of p53 function in cells. There are some quantitative relationships between ATF 3 induction and dosages of radiation or time post-irradiation. In another word, ATF 3 expression induced by ionizing radiation present dose- and time-dependent. The regulation of ATF 3 expression refers to program of promoter and transcription. Radiation induces ATF 3 expression by activating the promoter and RNA transcription. In method of tetracycline-inducible system (tet-off), we have found that over-expression of ATF 3 protein brings caspase/PARP proteins into cleavage, which induces cell programmed death, and suppresses cell growth. Meanwhile, it was found that ATF 3 expression could slow down progression of cell from G 1 to S phase. It indicates ATF 3 protein might play a negative role in the control of cell cycle progression. It is very excited that expression of ATF 3 protein did not only suppress cell growth, but also demonstrated protecting effect of cell growth suppression resulting from ionizing radiation. It is suggested that ATF 3 protein might take part in the damage repair process of cells. (author)

  2. Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku 169-8555 (Japan)

    2014-10-20

    We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.

  3. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  4. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  5. SURFACE LAYER ACCRETION IN TRANSITIONAL AND CONVENTIONAL DISKS: FROM POLYCYCLIC AROMATIC HYDROCARBONS TO PLANETS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Chiang, Eugene

    2011-01-01

    'Transitional' T Tauri disks have optically thin holes with radii ∼>10 AU, yet accrete up to the median T Tauri rate. Multiple planets inside the hole can torque the gas to high radial speeds over large distances, reducing the local surface density while maintaining accretion. Thus multi-planet systems, together with reductions in disk opacity due to grain growth, can explain how holes can be simultaneously transparent and accreting. There remains the problem of how outer disk gas diffuses into the hole. Here it has been proposed that the magnetorotational instability (MRI) erodes disk surface layers ionized by stellar X-rays. In contrast to previous work, we find that the extent to which surface layers are MRI-active is limited not by ohmic dissipation but by ambipolar diffusion, the latter measured by Am: the number of times a neutral hydrogen molecule collides with ions in a dynamical time. Simulations by Hawley and Stone showed that Am ∼ 100 is necessary for ions to drive MRI turbulence in neutral gas. We calculate that in X-ray-irradiated surface layers, Am typically varies from ∼10 -3 to 1, depending on the abundance of charge-adsorbing polycyclic aromatic hydrocarbons, whose properties we infer from Spitzer observations. We conclude that ionization of H 2 by X-rays and cosmic rays can sustain, at most, only weak MRI turbulence in surface layers 1-10 g cm -2 thick, and that accretion rates in such layers are too small compared to observed accretion rates for the majority of disks.

  6. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy; Gaspar, Laurie; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Garg, Kavita [Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20 lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.

  7. The evolution of supermassive Population III stars

    Science.gov (United States)

    Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J.

    2018-02-01

    Supermassive primordial stars forming in atomically cooled haloes at z ˜ 15-20 are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of 0.1-1 M⊙ yr-1 until the general relativistic instability triggers its collapse to a black hole at masses of ˜105 M⊙. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionizing radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates 0.001-10 M⊙ yr-1, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We compute for the first time evolutionary tracks in the mass range M > 105 M⊙. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than 0.01 M⊙ yr-1, the stars evolve as red, cool supergiants with surface temperatures below 104 K towards masses >105 M⊙. Moreover, even with the lower rates 0.001 M_{⊙} yr{^{-1}}feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars. We provide numerical tables for the surface properties of our models.

  8. Ionizing radiation induces tumor cell lysyl oxidase secretion

    DEFF Research Database (Denmark)

    Shen, Colette J; Sharma, Ashish; Vuong, Dinh-Van

    2014-01-01

    BACKGROUND: Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor beta and matrix...

  9. DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration.

    Science.gov (United States)

    Kaselis, Andrius; Treinys, Rimantas; Vosyliūtė, Rūta; Šatkauskas, Saulius

    2014-03-01

    Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon's regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.

  10. DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION

    International Nuclear Information System (INIS)

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian

    2009-01-01

    We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.

  11. Spherical Collapse in Chameleon Models

    CERN Document Server

    Brax, Ph; Steer, D A

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.

  12. Spherical collapse in chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Ph. [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Rosenfeld, R. [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, 01140-070, São Paulo (Brazil); Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr [APC, UMR 7164, CNRS, Université Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.

  13. Spherical collapse in chameleon models

    International Nuclear Information System (INIS)

    Brax, Ph.; Rosenfeld, R.; Steer, D.A.

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity

  14. He stars and He-accreting CO white dwarfs

    International Nuclear Information System (INIS)

    Limongi, M.; Tornambe, A.

    1991-01-01

    He star models in the mass range 0.4-1.0 solar mass have been evolved until the red giant phase or, depending on their mass, until crystallization on the white-dwarf cooling sequence. Some of the degenerate structures obtained in these computations have been successively accreted at various He accretion rates in order to better define the fate of the accreting dwarf versus its mass and accretion rate for a fixed degeneracy level of the accreting dwarf. He stars have been further induced to transfer mass to a degenerate companion through Roche lobe overflow, in conditions of large gravitational wave radiation by the system. CO dwarfs in binary systems with He stars are found to experience a thermal behavior whose effects are such to locate the structure on the verge of obtaining a strong SN-like explosive event. 22 refs

  15. Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp

    CERN Document Server

    Hansson, M.; Ekerfelt, H.; Aurand, B.; Gallardo Ganzalez, I.; Desforges, F. G.; Davoine, X.; Maitrallain, A.; Reymond, S.; Monot, P.; Persson, A.; Dobosz Dufrénoy S.; Wahlström C-G.; Cros, B.; Lundh, O.

    2016-01-01

    We report on a study on controlled trapping of electrons, by field ionization of nitrogen ions, in laser wakefield accelerators in variable length gas cells. In addition to ionization-induced trapping in the density plateau inside the cells, which results in wide, but stable, electron energy spectra, a regime of ionization-induced trapping localized in the density down-ramp at the exit of the gas cells, is found. The resulting electron energy spectra are peaked, with 10% shot-to-shot fluctuations in peak energy. Ionization-induced trapping of electrons in the density down-ramp is a way to trap and accelerate a large number of electrons, thus improving the efficiency of the laser-driven wakefield acceleration.

  16. Brown dwarf accretion: Nonconventional star formation over very long timescales

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available We investigate the process of accretion of interstellar gas by the Galactic population of brown dwarfs over very long timescales typical for physical eschatology. In particular, we use the classical Hoyle-Lyttleton-Bondi accretion model to investigate the rate at which brown dwarfs collect enough additional mass to become red dwarfs, accretion-induced changes in the mass function of the low- mass objects, and the corresponding accretion heating of brown dwarfs. In addition, we show how we can make the definition of the final mass function for stellar objects more precise.

  17. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  18. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    International Nuclear Information System (INIS)

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  19. Identification of novel senescence-associated genes in ionizing radiation-induced senescent carcinoma cells

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Bong Cho; Han, Na Kyung; Hong, Mi Na; Park, Su Min; Yoo, Hee Jung; Chu, In Sun; Lee, Sun Hee

    2009-01-01

    Cellular senescence is considered as a defense mechanism to prevent tumorigenesis. Ionizing radiation (IR) induces stress-induced premature senescence as well as apoptosis in various cancer cells. Senescent cells undergo functional and morphological changes including large and flattened cell shape, senescence-associated β-galactosidase (SA-βGal) activity, and altered gene expressions. Even with the recent findings of several gene expression profiles and supporting functional data, it is obscure that mechanism of IR-induced premature senescence in cancer cells. We performed microarray analysis to identify the common regulated genes in ionizing radiation-induced prematurely senescent human carcinoma cell lines

  20. Suppression of Self-Induced Flavor Conversion in the Supernova Accretion Phase

    Science.gov (United States)

    Sarikas, Srdjan; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas

    2012-02-01

    Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M⊙ spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.

  1. Collapse models with non-white noises

    International Nuclear Information System (INIS)

    Adler, Stephen L; Bassi, Angelo

    2007-01-01

    We set up a general formalism for models of spontaneous wavefunction collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schroedinger terms of the equation induce the collapse of the wavefunction to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading-order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the 'imaginary noise' trick can be used for non-white Gaussian noise

  2. Radio outburst from a massive (proto)star. When accretion turns into ejection

    Science.gov (United States)

    Cesaroni, R.; Moscadelli, L.; Neri, R.; Sanna, A.; Caratti o Garatti, A.; Eisloffel, J.; Stecklum, B.; Ray, T.; Walmsley, C. M.

    2018-05-01

    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims: As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods: We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/Submillimeter Array. Results: We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Conclusions: Our model fits indicate a significant increase in the jet opening angle and ionized mass loss rate with time. For the first time, we can estimate the ionization fraction in the jet and conclude that this must be low (memory of MalcolmWalmsley, who passed away before the present study could be completed. Without his insights and enlightened advice this work would have been impossible

  3. Extremely fast vertical displacement event induced by a plasma βp collapse in high βp tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-05-01

    In a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell, extremely fast vertical displacement events (VDE's) induced by a model of strong β p collapse were found through computer simulations using the Tokamak Simulation Code. Although the plasma current quench, which had been shown to be the prime cause of VDE's in a relatively low β p tokamak (β p ∼ 0.2), was not observed during the VDE evolution, the observed growth rate of VDE's was almost five times (γ ∼ 655 sec -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 sec -1 ). The essential mechanism of the β p collapse-induced VDE was clarified to be the significant destabilization of positional instability due to a large and sudden degradation of the decay n-index in addition to a reduction of the stability index n s . It is pointed out that the shell-geometry characterizes the VDE dynamics, and that the VDE rate depends strongly both on the magnitude of the β p collapse and the n-index of the equilibria just before the β p collapse occurs. A new guide line for designing the fusion reactor is proposed with considering the impact of disruptions. (author)

  4. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    Science.gov (United States)

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  5. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse

    International Nuclear Information System (INIS)

    Favata, Marc

    2006-01-01

    Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions cause an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars

  6. Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment

    International Nuclear Information System (INIS)

    Janka, H.-T.; Buras, R.; Kitaura Joyanes, F.S.; Marek, A.; Rampp, M.; Scheck, L.

    2005-01-01

    New simulations demonstrate that low-mode, nonradial hydrodynamic instabilities of the accretion shock help starting hot-bubble convection in supernovae and thus support explosions by the neutrino-heating mechanism. The prevailing conditions depend on the high-density equation of state which governs stellar core collapse, core bounce, and neutron star formation. Tests of this sensitivity to nuclear physics variations are shown for spherically symmetric models. Implications of current explosion models for r-process nucleosynthesis are addressed

  7. MAGNETICALLY DRIVEN ACCRETION DISK WINDS AND ULTRA-FAST OUTFLOWS IN PG 1211+143

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξ c [erg cm s −1 ]) ≃ 5–6 and a column density on the order of N H ≃ 10 23 cm −2 outflowing at a characteristic velocity of v c /c ≃ 0.1–0.2 (where c is the speed of light). The best-fit model favors its radial location at r c ≃ 200 R o (R o is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at R t ≃ 30 R o . The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143

  8. Formation of solar-type stars in spherical symmetry. II. Effects of detailed constitutive relations

    International Nuclear Information System (INIS)

    Winkler, K.A.; Newman, M.J.

    1980-01-01

    A time-dependent hydrodynamical calculation of the spherically symmetric self-gravitational collapse and accretion of a homogeneous Jeans unstable 1 M/sub sun/ protostellar cloud has been performed using the detailed equation-of-state tables of Fontaine, Graboske, and Van Horn. It is found that the inner 0.03 M/sub sun/ of the core enters a partially degenerate region during the main accretion phase. A well-pronounced off-center temperature maximum develops under the combined influences of electron degeneracy and pressure ionization. A hydrogen ionization zone within the quasi-hydrostatic core drives core oscillations with typical periods of a few months in the transition phase from the second (final) collpase to the accretion stage. A third collapse does not occur, because of the gradual (''soft'') ionization of hydrogen at high density (rhoapprox. =1 g cm -3 ). Gas opacities were taken from the King IVa tables of Cox and Tabor, and dust opacities from Bertout and Yorke. Energy transport by radiation was treated by solution of the time-dependent moment equations with an Eddington factor f derived from the static transport equation. The diffusion approximation with f=1/3 would offer an adequate description of the protostellar core, but the intensity of the constant luminosity radiation field becomes highly anisotropic in local optically thin regions of the envelope. The degree of anisotropy in optically thick regions is determined by the temperature dependence of the dust opacity and the depletion of matter from the envelope. Near the end of the accretion phase the entire envelope is characterized by complete anisotropy f=1

  9. STOCHASTIC NATURE OF GRAVITATIONAL WAVES FROM SUPERNOVA EXPLOSIONS WITH STANDING ACCRETION SHOCK INSTABILITY

    International Nuclear Information System (INIS)

    Kotake, Kei; Iwakami, Wakana; Ohnishi, Naofumi; Yamada, Shoichi

    2009-01-01

    We study the properties of gravitational waves (GWs) based on three-dimensional (3D) simulations, which demonstrate neutrino-driven explosions aided by standing accretion shock instability (SASI). Pushed by evidence supporting slow rotation prior to core collapse, we focus on the asphericities in neutrino emissions and matter motions outside the protoneutron star. By performing a ray-tracing calculation in 3D, we estimate accurately the gravitational waveforms from anisotropic neutrino emissions. In contrast to the previous work assuming axisymmetry, we find that the gravitational waveforms vary much more stochastically because the explosion anisotropies depend sensitively on the growth of SASI which develops chaotically in all directions. Our results show that the GW spectrum has its peak near ∼100 Hz, reflecting SASI-induced matter overturns of ∼O(10) ms. We point out that the detection of such signals, possibly visible to the LIGO-class detectors for a Galactic supernova, could be an important probe into the long-veiled explosion mechanism.

  10. Asymmetric explosion of core-collapse supernovae

    International Nuclear Information System (INIS)

    Kazeroni, Remi

    2016-01-01

    A core-collapse supernova represents the ultimate stage of the evolution of massive stars.The iron core contraction may be followed by a gigantic explosion which gives birth to a neutron star.The multidimensional dynamics of the innermost region, during the first hundreds milliseconds, plays a decisive role on the explosion success because hydrodynamical instabilities are able to break the spherical symmetry of the collapse. Large scale transverse motions generated by two instabilities, the neutrino-driven convection and the Standing Accretion Shock Instability (SASI),increase the heating efficiency up to the point of launching an asymmetric explosion and influencing the birth properties of the neutron star. In this thesis, hydrodynamical instabilities are studied using numerical simulations of simplified models. These models enable a wide exploration of the parameter space and a better physical understanding of the instabilities, generally inaccessible to realistic models.The non-linear regime of SASI is analysed to characterize the conditions under which a spiral mode prevails and to assess its ability to redistribute angular momentum radially.The influence of rotation on the shock dynamics is also addressed. For fast enough rotation rates, a corotation instability overlaps with SASI and greatly impacts the dynamics. The simulations enable to better constrain the effect of non-axisymmetric modes on the angular momentum budget of the iron core collapsing into a neutron star. SASI may under specific conditions spin up or down the pulsar born during the explosion. Finally, an idealised model of the heating region is studied to characterize the non-linear onset of convection by perturbations such as those produced by SASI or pre-collapse combustion inhomogeneities. The dimensionality issue is examined to stress the beneficial consequences of the three-dimensional dynamics on the onset of the explosion. (author) [fr

  11. Progress in research on ionizing radiation-induced microRNA

    International Nuclear Information System (INIS)

    Hu Zheng; Tie Yi; Sun Zhixian; Zheng Xiaofei

    2011-01-01

    MicroRNAs (miRNAs) are small single-stranded noncoding RNAs consisting of 21-23 nucleotides that play important gene-regulatory roles in eukaryotes by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. A growing body of evidence indicates that alterations in miRNA expression may occur following exposure to several oxidative stress including ionizing radiation. So miRNAs may serve as potential new targets for co-therapies aiming to improve the effects of radiation disease therapy in cancer patients. The progress in research on ionizing radiation-induced miRNAs is reviewed in this paper. (authors)

  12. Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling approximation

    Science.gov (United States)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.

    2018-03-01

    Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.

  13. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC.

    Science.gov (United States)

    Tedaldi, Elisabetta; Montanari, Chiara; Aycock, Kenneth I; Sturla, Francesco; Redaelli, Alberto; Manning, Keefe B

    2018-04-01

    Inferior vena cava (IVC) filters have been used for over five decades as an alternative to anticoagulation therapy in the treatment of venous thromboembolic disease. However, complications associated with IVC filters remain common. Though many studies have investigated blood flow in the IVC, the effects of respiration-induced IVC collapse have not been evaluated. Our hypothesis is that IVC collapse may have an influence on IVC filter performance. Therefore, we herein investigate the hemodynamics in uncollapsed and collapsed IVC configurations using in vitro flow experiments and computational simulations. Particle image velocimetry (PIV) is used to measure the hemodynamics in an idealized, compliant model of the human IVC made of silicone rubber. Flow is studied under uncollapsed and collapsed scenarios, with the minor diameter of the IVC reduced by 30% in the collapsed state. Both rest and exercise flow conditions are investigated, corresponding to suprarenal flow rates of 2 lpm and 5.5 lpm, respectively. Finite element analysis simulations are carried out in a computational model of the undeformed, idealized IVC to reproduce the 30% collapse configuration and an additional 50% collapse configuration. Computational fluid dynamics (CFD) simulations are then performed to predict the flow in the uncollapsed and collapsed scenarios, and CFD results are compared to the experimental data. The results show that the collapsed states generate a higher velocity jet at the iliac junction that propagates farther into the lumen of the vena cava in comparison to the jet generated in the uncollapsed state. Moreover, 50% collapse of the IVC causes a shift of the jet away from the IVC wall and towards the center of the vena cava lumen. The area of maximum wall shear stress occurs where the jet impacts the wall and is larger in the collapsed scenarios. Secondary flow is also more complex in the collapsed scenarios. Interestingly, this study demonstrates that a small variation in

  14. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  15. Investigation of the current collapse induced in InGaN back barrier AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wan Xiaojia; Wang Xiaoliang; Xiao Hongling; Feng Chun; Jiang Lijuan; Qu Shenqi; Wang Zhanguo; Hou Xun

    2013-01-01

    Current collapses were studied, which were observed in AlGaN/GaN high electron mobility transistors (HEMTs) with and without InGaN back barrier (BB) as a result of short-term bias stress. More serious drain current collapses were observed in InGaN BB AlGaN/GaN HEMTs compared with the traditional HEMTs. The results indicate that the defects and surface states induced by the InGaN BB layer may enhance the current collapse. The surface states may be the primary mechanism of the origination of current collapse in AlGaN/GaN HEMTs for short-term direct current stress. (semiconductor devices)

  16. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve

    Science.gov (United States)

    Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding

    2018-01-01

    Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.

  17. Outflow and Accretion Physics in Active Galactic Nuclei

    Science.gov (United States)

    McGraw, Sean Michael

    2016-09-01

    This dissertation focuses on placing observational constraints on outflows and accretion disks in active galactic nuclei (AGN) for the purpose of better understanding the physics of super-massive black holes (SMBHs) and their evolution with the host galaxy over cosmic time. Quasar outflows and their importance in SMBH-host galaxy co-evolution can be further understood by analyzing broad absorption lines (BALs) in rest-frame UV spectra that trace a range of wind conditions. We quantify the properties of the flows by conducting BAL variability studies using multiple-epoch spectra acquired primarily from MDM Observatory and from the Sloan Digital Sky Survey. Iron low-ionization BALs (FeLoBALs) are a rare type of outflow that may represent a transient phase in galaxy evolution, and we analyze the variations in 12 FeLoBAL quasars with redshifts between 0.7 ≤ z ≤ 1.9 and rest frame timescales between ˜10 d to 7.6 yr. We investigate BAL variability in 71 quasar outflows that exhibit P V absorption, a tracer of high column density gas (i.e. NH ≥ 1022 cm -2), in order to quantify the energies and momenta of the flows. We also characterize the variability patterns of 26 quasars with mini-BALs, an interesting class of absorbers that may represent a distinct phase in the evolution of outflows. Low-luminosity AGN (LLAGN) are important objects to study since their prominence in the local Universe suggest a possible evolution from the quasar era, and their low radiative outputs likely indicate a distinct mode of accretion onto the SMBH. We probe the accretion conditions in the LLAGN NGC 4203 by estimating the SMBH mass, which is obtained by modeling the 2-dimensional velocity field of the nebular gas using spectra from the Hubble Space Telescope. We detect significant BAL and mini-BAL variability in a subset of quasars from each of our samples, with measured rest-frame variability time-scales from days to years and over multiple years on average. Variable wavelength

  18. Subshell resolved L shell ionization of Bi and U induced by 16 - 45 keV electrons

    International Nuclear Information System (INIS)

    Rahangdale, Hitesh; Das, Pradipta K.; Saha, S.; Mitra, D.

    2015-01-01

    Electron induced inner-shell ionization is important for both fundamental and applied research. Ionization of outer atomic energy levels has been studied extensively than for inner levels. Knowledge of inner shell ionization cross sections is important in X-ray and Auger electron spectroscopy and in the fields of astrophysics, plasma physics, surface science and many more. At electron impact energies near the atomic binding energies the distortion of the wave functions from plane wave towards a spherical wave, due to the electrostatic field of the atoms, needs to be considered. The distorted wave Born approximation (DWBA) calculations, taking relativistic effects and exchange interaction into account, is used to estimate the K, L and M-shell ionization cross-section for the atoms. Earlier experiments on electron impact ionization studies focused mainly on K-shell ionization cross-section, while L and M-shell ionization data were hardly reported. A review of the existing L-shell ionization cross-section data shows that, while the X-ray production cross-sections by electron impact were reported quite a few times, the reporting of subshell resolved ionization cross-sections were rarely found near the ionization threshold region. In the present work, we have measured the X ray production cross-sections of different L lines of Bi and U induced by 16-45 keV electrons and converted the obtained values to the subshell specific ionization cross-sections. The experimental data are compared with the theoretical calculations based on the (DWBA) obtained from PENELOPE. To the best of our knowledge, the subshell resolved electron induced ionization cross-sections for the L-shell of Bi and U are reported here for the first time at the energy values near the corresponding ionization threshold. (author)

  19. Progress of research on cytoskeleton and neural cell migration obstacle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Qiu Jun; Wu Cuiping; Wang Mingming

    2012-01-01

    The dynamic changes of the microtubules and microfilaments provide the main force that drives the normal migration. Biological effects in tissues and cells induced by ionizing radiation are closely correlated with the changes happening to the cytoskeleton. It is that the ionizing radiation can induce the depolymeration of microfilaments and the assembly obstacles of microtubules, and make neural cell incapable of entering the model of migration or abnormally migrate. The effects of relevant changes of the cytoskeleton induced by irradiation on neural cell migration were discussed in this paper. (authors)

  20. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  1. The Physics of Wind-Fed Accretion

    International Nuclear Information System (INIS)

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  2. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  3. Secondary ionization processes in laser induced breakdown of electronegative gases

    International Nuclear Information System (INIS)

    Gamal Yosr, E.E.D.; Shafik, M.S.; Abdel-Moneim, H.M.

    1990-08-01

    This paper presents an investigation of the stepwise ionization processes which occur during the interaction of laser radiation with electronegative gases. Calculations are carried out adopting a modified version of the electron cascade model previously developed by Evans and Gamal. The modifications of the model are performed for the case of molecular oxygen to account for electron attachment losses. Particular attention is devoted to molecular oxygen at a pressure of 2.8 x 10 4 Torr irradiated by 10 ns pulse of Nd:YAG laser (λ=1.064 μm) at a peak intensity of 1.7x10 11 Wcm -2 . The calculations consider the effect of the secondary ionization processes on the electron energy distribution function and its parameters (evolution of the density of the excited molecules, electrons density as well as the electron mean energy during the laser flash). This analysis shows how the removal of slow electrons by attachment to oxygen molecules creates a strong competition between the stepwise ionization processes. These processes namely photoionization and collisional ionization deplete the electronic excited states and contribute eventually to the ionization growth rate in laser induced breakdown of electronegative gases. (author). 7 refs, 6 figs, 1 tab

  4. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  5. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done

  6. Constraining quantum collapse inflationary models with CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Alcaniz, Jailson S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil); Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, PabI, Buenos Aires 1428 (Argentina)

    2016-12-01

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.

  7. Inflationary gravitational waves in collapse scheme models

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)

    2016-01-10

    The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.

  8. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  9. Fast Radio Bursts from the Collapse of Strange Star Crusts

    Science.gov (United States)

    Zhang, Yue; Geng, Jin-Jun; Huang, Yong-Feng

    2018-05-01

    Fast radio bursts (FRBs) are transient radio sources at cosmological distances. No counterparts in other bands have been observed for non-repeating FRBs. Here we suggest the collapse of strange star (SS) crusts as a possible origin for FRBs. SSs, which are composed of almost equal numbers of u, d, and s quarks, may be encapsulated by a thin crust of normal hadronic matter. When a SS accretes matter from its environment, the crust becomes heavier and heavier. It may finally collapse, leading to the release of a large amount of magnetic energy and plenty of electron/positron pairs on a very short timescale. Electron/positron pairs in the polar cap region of the SS can be accelerated to relativistic velocities, streaming along the magnetic field lines to form a thin shell. FRBs are produced by coherent emission from these electrons when the shell is expanding. Basic characteristics of observed FRBs can be explained in our model.

  10. SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions

    Science.gov (United States)

    Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.

    2017-09-01

    The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.

  11. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  12. Terrane accumulation and collapse in central Europe: seismic and rheological constraints

    Science.gov (United States)

    Meissner, R.

    1999-05-01

    An attempt is made to compare the tectonic units and their evolution in central Europe with the deep seismic velocity structure and patterns of reflectivity. Caledonian and Variscan terrane accretion and orogenic collapse dominate the tectonic development in central and western Europe and have left their marks in a distinct velocity structure and crustal thickness as well as in the various reflectivity patterns. Whereas the memory of old collisional structures is still preserved in the rigid upper crust, collapse processes have formed and modified the lower crust. They have generally created rejuvenated, thin crusts with shallow Mohos. In the Variscan internides, the center of collision and post-orogenic heat pulses, the lower crust developed strong and thick seismic lamellae, the (cooler) externides show a thrust and shear pattern in the whole crust, and the North German Basin experienced large mafic intrusions in the lower crust and developed a high-velocity structure with only very thin lamellae on top of the Moho. The various kinds of reflectivity patterns in the lithosphere can be explained by a thermo-rheological model from terrane collision, with crustal thickening to collapse in a hot, post-orogenic setting.

  13. Formation of massive seed black holes via collisions and accretion

    Science.gov (United States)

    Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.

    2018-05-01

    Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.

  14. Minidisks in Binary Black Hole Accretion

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  15. NPP planning based on analysis of ground vibration caused by collapse of large-scale cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng; Ji, Hongkui [Department of Structural Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Gu, Xianglin, E-mail: gxl@tongji.edu.cn [Department of Structural Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Li, Yi [Department of Structural Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Wang, Mingreng; Lin, Tao [East China Electric Power Design Institute Co., Ltd, No. 409 Wuning Road, Shanghai 200063 (China)

    2015-12-15

    Highlights: • New recommendations for NPP planning were addressed taking into account collapse-induced ground vibration. • Critical factors influencing the collapse-induced ground vibration were investigated. • Comprehensive approach was presented to describe the initiation and propagation of collapse-induced disaster. - Abstract: Ground vibration induced by collapse of large-scale cooling towers can detrimentally influence the safe operation of adjacent nuclear-related facilities. To prevent and mitigate these hazards, new planning methods for nuclear power plants (NPPs) were studied considering the influence of these hazards. First, a “cooling tower-soil” model was developed, verified, and used as a numerical means to investigate ground vibration. Afterwards, five critical factors influencing collapse-induced ground vibration were analyzed in-depth. These influencing factors included the height and weight of the towers, accidental loads, soil properties, overlying soil, and isolation trench. Finally, recommendations relating to the control and mitigation of collapse-induced ground vibration in NPP planning were proposed, which addressed five issues, i.e., appropriate spacing between a cooling tower and the nuclear island, control of collapse modes, sitting of a cooling tower and the nuclear island, application of vibration reduction techniques, and the influence of tower collapse on surroundings.

  16. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Science.gov (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  17. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  18. Relationship between autophagy and apoptosis of MCF-7 cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Qi Yali; Zhang Zhenyu; Wang Hongyan; Li Jinhua; Gong Shouliang

    2009-01-01

    Objective: To detect the inhibitory effects of ionizing radiation combined with autophagy and apoptosis inhibitors and inducers on the proliferation of human breast cancer cell line. Methods: MTT and flow cytometry (FCM) were used to detect the surviving and proliferation of MCF-7 cells, which were under 0, 2, 4, 8 and 10 Gy X-ray radiation and different dealing methods 4 Gy, 4 Gy + 3-MA, 4 Gy + rapamycin, 4 Gy + z-VAD-fmk, and the relationship of dose-effects and time-effects was analyzed. Results: With the increase of irradiation doses (4, 8 and 10 Gy) and the elongation of irradiation time (48 and 72 h), the inhibitory rates of the proliferation of breast cancer cells were increased, there were significant differences between various groups (P<0.05 or P<0.01). The inhibitory rates of the proliferation of breast cancer cells in 4 Gy+3-MA or 4 Gy+ z-VAD-fmk groups were significantly different from those in 4Gy+rapamycin group (P<0.05 or P<0.01), and there were significant differences after treated for 24, 48 and 72 h between various groups (P<0.05 or P<0.01). Conclusion: Ionizing radiation in combination with autophagy inducer could induced the autophagy in human breast cancer cells and promote the apoptosis; the ionizing radiation in combination with autophagy inhibitor or apoptosis inhibitor could inhibit the apoptosis. Thus, ionizing radiation can induce the autophagy in human breast cancer cells, and promote the apoptosis. (authors)

  19. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-01-01

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the 13 CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  20. Proteomic analysis of PC12 cell differentiation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Zhang Junquan; Gao Ronglian; Chen Xiaohua; Wang Zhidong; Dong Bo; Rao Yalan; Hou Lili; Zhang Hao; Mao Bingzhi

    2005-01-01

    Objective: To explore the molecular mechanism of PC12 cell differentiation induced by ionizing radiation and screen the molecular target of nervous system injured by irradiation. Methods: PC12 cells were irradiated with 16 Gy 60 Co γ ray. Total proteins of normal and irradiated cells were prepared 48 hours after irradiation and separated with two dimensional gel electrophoresis. Some differential expressed proteins were characterized with mass spectrometry. Results: 876 differential expressed proteins were observed. Up-regulated expression of ubiquitin carboxyl-terminal hydratase L1 was found. Down-regulated expression of new protein similar to HP1α was found. Conclusion: The characterization of some differential expressed proteins through proteomic analysis would benefit the research of molecular mechanism of PC12 cell differentiation induced by ionizing radiation. (authors)

  1. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  2. PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Marek, Andreas [Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, D-85748 Garching (Germany); Müller, Bernhard, E-mail: asumma@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  3. ON THE ACCRETION-FED GROWTH OF NEUTRON STARS DURING COMMON ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-01-01

    This paper models the orbital inspiral of a neutron star (NS) through the envelope of its giant-branch companion during a common envelope (CE) episode. These CE episodes are necessary to produce close pairs of NSs that can inspiral and merge due to gravitational wave losses in less than a Hubble time. Because cooling by neutrinos can be very efficient, NSs have been predicted to accumulate significant mass during CE events, perhaps enough to lead them to collapse to black holes. We revisit this conclusion with the additional consideration of CE structure, particularly density gradients across the embedded NS's accretion radius. This work is informed by our recent numerical simulations that find that the presence of a density gradient strongly limits accretion by imposing a net angular momentum to the flow around the NS. Our calculations suggest that NSs should survive CE encounters. They accrete only modest amounts of envelope material, ≲ 0.1 M {sub ☉}, which is broadly consistent with mass determinations of double NS binaries. With less mass gain, NSs must spiral deeper to eject their CE, leading to a potential increase in mergers. The survival of NSs in CE events has implications for the formation mechanism of observed double NS binaries, as well as for predicted rates of NS binary gravitational wave inspirals and their electromagnetic counterparts.

  4. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  5. Laser-enhanced ionization spectroscopy around the ionization limit

    International Nuclear Information System (INIS)

    Axner, O.; Berglind, T.; Sjoestroem, S.

    1986-01-01

    Laser-induced photoionization and Laser-Enhanced collision Ionization (LEI) of Na, Tl, and Li in flames are detected by measuring the production of charges following a laser excitation. The ionization signal is investigated for excitations of the atoms from lower lying states both to Rydberg states close to the ionization limit, as well as to continuum states, i.e. the process of collision ionization is compared with that of photoionization. The qualitative behaviour of the ionization signal when scanning across the ionization limit is studied. It is shown that the ionization signal has a smooth behaviour when passing from bound states into continuum states. The laser-induced photoionization signal strength of atoms in flames is both calculated and measured and a good agreement is obtained. A calculation of wavelength dependent photoionization signal strengths for a number of elements is also presented. Photoionization is used to determine flame- and geometry-dependent parameters. An implication of photoionization in connection with LEI spectrometry for trace element analysis is that there will be a significant increase in background noise if the sample contains high concentrations of easily photoionizing elements and short wavelength light is used. (orig.)

  6. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    Science.gov (United States)

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  7. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    International Nuclear Information System (INIS)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  8. Platinum-induced structural collapse in layered oxide polycrystalline films

    International Nuclear Information System (INIS)

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2015-01-01

    Effect of a platinum bottom electrode on the SrBi 5 Fe 1−x Co x Ti 4 O 18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO 2 , which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO 2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO 2 , the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties

  9. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  10. Hot accreting white dwarfs in the quasi-static approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1982-01-01

    Properties of white dwarfs which are accreting hydrogen-rich matter at rates in the range 1.5 x 10 -9 to 2.5 x 10 -7 M/sub sun/ yr -1 are investigated in several approximations. Steady-burning models, in which matter is processed through nuclear-burning shells as rapidly as it is accreted, provide a framework for understanding the properties of models in which thermal pulses induced by hydrogen burning and helium burning are allowed to occur. In these latter models, the underlying carbon-oxygen core is chosen to be in a cycle-averaged steady state with regard to compressional heating and neutrino losses. Several of these models are evolved in the quasi-static approximation. Combining results obtained in the steady-burning approximation with those obtained in the quasi-static approximation, expressions are obtained for estimating, as functions of accretion rate and white dwarf mass, the thermal pulse recurrence period and the duration of hydrogen-burning phases. The time spent by an accreting model burning hydrogen as a large star of giant dimensions versus time spent burning hydrogen as a hot dwarf is also estimated as a function of model mass and accretion rate. Finally, suggestions for detecting observational counterparts of the theoretical models and suggestions for further theoretical investigations are offered. Subject headings: stars: accretion: stars: interiors: stars: novae: stars: symbiotic: stars: white dwarfs

  11. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND

    International Nuclear Information System (INIS)

    Bai Xuening; Stone, James M.

    2013-01-01

    We perform local, vertically stratified shearing-box MHD simulations of protoplanetary disks (PPDs) at a fiducial radius of 1 AU that take into account the effects of both Ohmic resistivity and ambipolar diffusion (AD). The magnetic diffusion coefficients are evaluated self-consistently from a look-up table based on equilibrium chemistry. We first show that the inclusion of AD dramatically changes the conventional picture of layered accretion. Without net vertical magnetic field, the system evolves into a toroidal field dominated configuration with extremely weak turbulence in the far-UV ionization layer that is far too inefficient to drive rapid accretion. In the presence of a weak net vertical field (plasma β ∼ 10 5 at midplane), we find that the magnetorotational instability (MRI) is completely suppressed, resulting in a fully laminar flow throughout the vertical extent of the disk. A strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum and easily accounts for the observed accretion rate in PPDs. Moreover, under a physical disk wind geometry, all the accretion flow proceeds through a strong current layer with a thickness of ∼0.3H that is offset from disk midplane with radial velocity of up to 0.4 times the sound speed. Both Ohmic resistivity and AD are essential for the suppression of the MRI and wind launching. The efficiency of wind transport increases with increasing net vertical magnetic flux and the penetration depth of the FUV ionization. Our laminar wind solution has important implications on planet formation and global evolution of PPDs.

  12. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  13. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES

    International Nuclear Information System (INIS)

    Garcia, J.; Kallman, T. R.

    2010-01-01

    We present new models for illuminated accretion disks, their structure, and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by simultaneously solving the equations of radiative transfer, energy balance, and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Kα line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  14. Cooling of Accretion-Heated Neutron Stars

    Indian Academy of Sciences (India)

    Rudy Wijnands

    2017-09-12

    Sep 12, 2017 ... the magnetic field might play an important role in the heating and cooling of the neutron stars. .... Source near Sgr A ..... marked the start of the research field that uses the cool- ... This curve is just to guide the eye for the individual sources and it is clear ..... Not all accretion-induced nuclear reactions might.

  15. Non-targeted bystander effects induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, William F.; Sowa, Marianne B.

    2007-01-01

    Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said 'well what are the critical questions that should be addressed, and so what?', we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure

  16. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Abdikamalov, Ernazar [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Couch, Sean M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Haas, Roland [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14476 Golm (Germany); Schnetter, Erik, E-mail: dradice@caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  17. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-01-01

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased

  18. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Bruenn, Stephen W., E-mail: elentz@utk.edu [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  19. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  20. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  1. THE BIMODALITY OF ACCRETION IN T TAURI STARS AND BROWN DWARFS

    International Nuclear Information System (INIS)

    Vorobyov, E. I.; Basu, Shantanu

    2009-01-01

    We present numerical solutions of the collapse of prestellar cores that lead to the formation and evolution of circumstellar disks. The disk evolution is then followed for up to three million years. A variety of models of different initial masses and rotation rates allow us to study disk accretion around brown dwarfs and low-mass T Tauri stars (TTSs), with central object mass M * sun , as well as intermediate- and upper-mass TTSs (0.2 M sun * sun ). Our models include self-gravity and allow for nonaxisymmetric motions. In addition to the self-consistently generated gravitational torques, we introduce an effective turbulent α-viscosity with α = 0.01, which allows us particularly to model accretion in the low-mass regime where disk self-gravity is diminishing. A range of models with observationally motivated values of the initial ratio of rotational-to-gravitational energy yield a correlation between mass accretion rate M-dot and M * that is relatively steep, as observed. Additionally, our modeling reveals evidence for a bimodality in the M-dot - M * correlation, with a steeper slope at lower masses and a shallower slope at intermediate and upper masses, as also implied by observations. Furthermore, we show that the neglect of disk self-gravity leads to a much steeper M-dot - M * relation for intermediate- and upper-mass TTSs. This demonstrates that an accurate treatment of global self-gravity is essential to understanding observations of circumstellar disks.

  2. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei

    Science.gov (United States)

    Baskin, Alexei; Laor, Ari

    2018-02-01

    The broad line region (BLR) in active galactic nuclei (AGNs) is composed of dense gas (˜1011 cm-3) on sub-pc scale, which absorbs about 30 per cent of the ionizing continuum. The outer size of the BLR is likely set by dust sublimation, and its density by the incident radiation pressure compression (RPC). But, what is the origin of this gas, and what sets its covering factor (CF)? Czerny & Hryniewicz (2011) suggested that the BLR is a failed dusty wind from the outer accretion disc. We explore the expected dust properties, and the implied BLR structure. We find that graphite grains sublimate only at T ≃ 2000 K at the predicted density of ˜1011 cm-3, and therefore large graphite grains (≥0.3 μm) survive down to the observed size of the BLR, RBLR. The dust opacity in the accretion disc atmosphere is ˜50 times larger than previously assumed, and leads to an inflated torus-like structure, with a predicted peak height at RBLR. The illuminated surface of this torus-like structure is a natural place for the BLR. The BLR CF is mostly set by the gas metallicity, the radiative accretion efficiency, a dynamic configuration and ablation by the incident optical-UV continuum. This model predicts that the BLR should extend inwards of RBLR to the disc radius where the surface temperature is ≃2000 K, which occurs at Rin ≃ 0.18RBLR. The value of Rin can be tested by reverberation mapping of the higher ionization lines, predicted by RPC to peak well inside RBLR. The dust inflated disc scenario can also be tested based on the predicted response of RBLR and the CF to changes in the AGN luminosity and accretion rate.

  3. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage.

    Science.gov (United States)

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-03-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.

  4. Specific patient verification of IMRT plans using two-dimensional array of ionization chambers.)

    International Nuclear Information System (INIS)

    Rodriguez Zayas, Michael; Perez Guevara, Adrian; Reyes Gonzalez, Tommy; Gonzalez Perez, Yelina; Sola Rodriguez, Yeline; Caballero, Roberto; Lopez Lopez, Alberto; Castro Crespo, Diosdado

    2009-01-01

    The most common procedures to validate treatments with IMRT combine planning and administration which introduces the specific patient approach. IMRT is being introduced in Cuba, so it is a study to use as verification for each IMRT treatment plan with the collapsed beam method (Collapsed beams). We present three case studies to look at different situations and presentation of data. The treatment beam and collapsed obtained with an Elekta Precise linear accelerator and TPS PrecisePLAN respectively. The system used to measure a two-dimensional array of ionization chambers and VeriSoft system, both of the firm PTW. Dummy is used as solid sheets of water. The dose difference is evaluated using the gamma index applied to dose map resulting of the comparison between measured and simulated projections. Also the dose absolute is measured using a cylindrical chamber with United electrometer, which is compare with the results of the TPS. In the cases studied are shown along two perpendicular profiles. Tolerance is taken as the gamma index (5%, 5 mm). The method of collapsed beams under two- dimensional beam ionization chambers has been accepted for verification of IMRT treatments at the Radiotherapy Service of the Hospital Hermanos Ameijeiras. (Author)

  5. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS—NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    International Nuclear Information System (INIS)

    Gudipati, Murthy S.; Yang Rui

    2012-01-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Lyα radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K—close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies—the first glimpses into interstellar ice chemistry through analog studies—show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  6. Accretion and ejection in resistive GR-MHD

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qian

    2017-05-10

    . The small ratios of the poloidal field strengths to the toroidal field strengths suggest the interpretation of the outflows as ''tower jet,'' rather than centrifugally driven winds (Blandford-Payne effect). Furthermore, I find direct evidence of the growths of magnetorotational instabilities inside the accretion disks, which are suppressed by the increasing levels of magnetic diffusivity. This suppression leads to inefficient accretion and ejection processes of the accretion system. Finally, the influences of rotating black holes on the accretion systems are explored. The results show an suppression effect on the black hole spin on the accretion and ejection processes in the system. The tangled field lines within the ergosphere induced by the black hole rotation produce magnetic pressure that pushes against the accreting matter from the disk. In the simulations with large spin parameters, energy extraction from the black hole (Blandford-Znajek effect) is observed, which is, nevertheless, ∝10{sup 2} times smaller than the energy production from the disk outflow.

  7. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  8. Numerical study of laser-induced blast wave coupled with unsteady ionization processes

    International Nuclear Information System (INIS)

    Ogino, Y; Ohnishi, N; Sawada, K

    2008-01-01

    We present the results of the numerical simulation of laser-induced blast wave coupled with rate equations to clarify the unsteady property of ionization processes during pulse heating. From comparison with quasi-steady computations, the plasma region expands more widely, which is sustained by the inverse-bremsstrahlung since an ionization equilibrium does not establish at the front of the plasma region. The delayed relaxation leads to the rapid expansion of the driving plasma and enhances the energy conversion efficiency from a pulse heating laser to the blast wave

  9. Accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.

    1986-01-01

    The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)

  10. Evolution of an electron-positron plasma produced by induced gravitational collapse in binary-driven hypernovae

    Directory of Open Access Journals (Sweden)

    Melon Fuksman J. D.

    2018-01-01

    Full Text Available The binary-driven hypernova (BdHN model has been introduced in the past years, to explain a subfamily of gamma-ray bursts (GRBs with energies Eiso ≥ 1052 erg associated with type Ic supernovae. Such BdHNe have as progenitor a tight binary system composed of a carbon-oxigen (CO core and a neutron star undergoing an induced gravitational collapse to a black hole, triggered by the CO core explosion as a supernova (SN. This collapse produces an optically-thick e+e- plasma, which expands and impacts onto the SN ejecta. This process is here considered as a candidate for the production of X-ray flares, which are frequently observed following the prompt emission of GRBs. In this work we follow the evolution of the e+e- plasma as it interacts with the SN ejecta, by solving the equations of relativistic hydrodynamics numerically. Our results are compatible with the Lorentz factors estimated for the sources that produce the flares, of typically Γ ≲ 4.

  11. Steroid-associated hip joint collapse in bipedal emus.

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    Full Text Available In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON induction protocol using combination of pulsed lipopolysaccharide (LPS and methylprednisolone (MPS. Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut % and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of

  12. G2 phase arrest of cell cycle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Gong Shouliang

    2002-01-01

    The exposure of mammalian cells to X rays results in the prolongation of the cell cycle, including the delay or the arrest in G 1 , S and G 2 phase. The major function of G 1 arrest may be to eliminate the cells containing DNA damage and only occurs in the cells with wild type p53 function whereas G 2 arrest following ionizing radiation has been shown to be important in protecting the cells from death and occurs in all cells regardless of p53 status. So the study on G 2 phase arrest of the cell cycle induced by ionizing radiation has currently become a focus at radiobiological fields

  13. Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data

    Science.gov (United States)

    Couvillion, Brady R.; Beck, Holly

    2013-01-01

    Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of

  14. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling.

    Science.gov (United States)

    Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan

    2017-01-01

    The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior.

    Science.gov (United States)

    Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen

    2016-02-28

    The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley

  16. Adaptive response induced by occupational exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Barquinero, J.F.; Caballin, M.R.; Barrios, L.; Egozcue, J.; Miro, R.; Ribas, M.

    1997-01-01

    We have found a significant decreased sensitivity to the cytogenetic effects of both ionizing radiation (IR) (2 Gy of γ rays) and bleomycin (BLM, 0,03 U/ml), in lymphocytes from individuals occupationally exposed to IR when compared with controls. These results suggest that occupational exposures to IR can induce adaptive response that can be detected by a subsequent treatment either by IR or by BLM. When a comparison is made between the cytogenetic effects of both treatments, no correlation was observed at the individual level. On the other hand, the individual frequencies of chromosome aberrations induced by a challenge dose of IR were negatively correlated with the occupationally received doses during the last three years. This correlation was not observed after the challenge treatment of BLM. Moreover, the individual frequencies of chromosome aberrations induced by IR treatment were homogeneous. This is not the case of the individual frequencies of chromatid aberrations induced by BLM, where a great heterogeneity was observed. (authors)

  17. Collapse above the world's largest potash mine (Ural, Russia.

    Directory of Open Access Journals (Sweden)

    Andrejchuk Vjacheslav

    2002-01-01

    Full Text Available This paper reports the results of the study of a huge collapse that occurred in June 1986 within the area of the 3rd Berezniki potash mine (the Verkhnekamsky potash deposit, Ural. Processes that took place between the first appearance of a water inflow through the mine roof and the eventual collapse are reconstructed in detail. The origin and development of a cavity that induced the collapse are revealed. Two factors played a major role in the formation of the collapse: the presence of a tectonic fold/rupture zone with in both the salt sequence and the overburden (the zone of crush and enhanced permeability, and the ductile pillars mining system.

  18. Are lesions induced by ionizing radiation direct blocks to DNA chain elongation

    International Nuclear Information System (INIS)

    Painter, R.B.

    1983-01-01

    Ionizing radiation blocks DNA chain elongation in normal diploid fibroblasts but not in fibroblasts from patients with ataxia-telangiectasia, even though there are no differences in the damage induced between the two cell types. This difference suggests that radiation-induced lesions in DNA are not themselves blocks to chain elongation in ataxia cells and raises the possibility that in normal cells a mediator exists between DNA damage and chain termination

  19. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-01

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of ∼2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of ∼0.2 β 1/2 compared to the Bondi value, where β is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  20. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: ajcunn@gmail.com [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  1. The Emerging Paradigm of Pebble Accretion

    NARCIS (Netherlands)

    Ormel, C.W.; Pessah, M.; Gressel, O.

    2017-01-01

    Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies big (planetesimals or planetary embryos) in gas-rich environments. In pebble accretion accretion , accretion occurs by settling and depends only on the mass of the gravitating body gravitating , not its

  2. Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets

    International Nuclear Information System (INIS)

    Mackinnon, A.J.; Borghesi, M.; Iwase, A.; Jones, M.W.; Pert, G.J.; Rae, S.; Burnett, K.; Willi, O.

    1996-01-01

    A quantitative study of refractive whole beam defocusing and small scale breakup induced by optical ionization of subpicosecond and picosecond, 0.25 and 1 μm, laser pulses in gas-jet targets at densities above 1x10 19 cm -3 has been carried out. A significant reduction of the incident laser intensity was observed due to refraction from ionization-induced density gradients. The level of refraction measured with optical probing correlated well with the fraction of energy transmitted through the plasma. The numerical and analytical models were found to agree well with experimental observations. copyright 1996 The American Physical Society

  3. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components

    International Nuclear Information System (INIS)

    Champion, Christophe

    2013-01-01

    Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.

  4. Base substitutions, frameshifts, and small deletions constitute ionizing radiation-induced point mutations in mammalian cells

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; de Boer, J.G.; de Jong, P.J.; Drobetsky, E.A.; Glickman, B.W.

    1988-01-01

    The relative role of point mutations and large genomic rearrangements in ionizing radiation-induced mutagenesis has been an issue of long-standing interest. Recent studies using Southern blotting analysis permit the partitioning of ionizing radiation-induced mutagenesis in mammalian cells into detectable deletions and major genomic rearrangements and into point mutations. The molecular nature of these point mutations has been left unresolved; they may include base substitutions as well as small deletions, insertions, and frame-shifts below the level of resolution of Southern blotting analysis. In this investigation, we have characterized a collection of ionizing radiation-induced point mutations at the endogenous adenine phosphoribosyltransferase (aprt) locus of Chinese hamster ovary cells at the DNA sequence level. Base substitutions represented approximately equal to 2/3 of the point mutations analyzed. Although the collection of mutants is relatively small, every possible type of base substitution event has been recovered. These mutations are well distributed throughout the coding sequence with only one multiple occurrence. Small deletions represented the remainder of characterized mutants; no insertions have been observed. Sequence-directed mechanisms mediated by direct repeats could account for some of the observed deletions, while others appear to be directly attributable to radiation-induced strand breakage

  5. Asymmetric explosions of core collapse supernovae

    International Nuclear Information System (INIS)

    Guilet, Jerome

    2010-01-01

    This thesis is devoted to the study of several hydrodynamic and magnetohydrodynamic phenomena that could create an asymmetry in core collapse supernovae. In the first part giving the general context, we first describe the theoretical and observational indications suggesting an important asymmetry. We then present several instabilities that could break the initial spherical symmetry, insisting particularly on the role of the Stationary Accretion Shock Instability (SASI). The second part is dedicated to an hydrodynamic study of the Standing Accretion shock instability. We first give an argument using the frequency of unstable modes that enables us to distinguish between the two mechanisms proposed to explain the linear growth of SASI. As a second step, we study the non-linear dynamics of SASI and propose for the first time a mechanism responsible for its saturation. In this scenario, the saturation occurs when parasitic instabilities are able to grow fast enough on a SASI mode. The semi-analytical prediction of the saturation amplitude is successfully compared with published numerical simulations. The third part studies the effect of a moderate magnetic field. We find that such a magnetic field can have either a stabilizing or a destabilizing effect on SASI depending on its geometry. We then concentrate on the dynamics of the Alfven surface, where the Alfven and the advection speed coincide. We show that the amplification of Alfven waves near this surface creates a pressure feedback, which could affect significantly the dynamics of the shock if the magnetic energy is comparable to the kinetic energy. (author) [fr

  6. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  7. Shock waves from non-spherically collapsing cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  8. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1986-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of both an equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model is the basis of the former. We are refining it to include both curvature corrections to the surface energy nuclear force parameters which are in better agreement with recently determined experimental quantities. Our study of the equation of state has the added bonus that our results can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes a fast, but accurate, approximation to the complete LLPR equation of state. We model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures. Complementary studies include modelling both mass accretion in the nuclei of galaxies and investigating both galaxy clustering and the large scale structure of the universe. These studies are intended to shed light on the early history of the universe, in which both nuclear and elementary particle physics play a crucial role

  9. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  10. Accretion-induced luminosity spreads in young clusters: evidence from stellar rotation

    Science.gov (United States)

    Littlefair, S. P.; Naylor, Tim; Mayne, N. J.; Saunders, Eric; Jeffries, R. D.

    2011-05-01

    We present an analysis of the rotation of young stars in the associations Cepheus OB3b, NGC 2264, 2362 and the Orion Nebula Cluster (ONC). We discover a correlation between rotation rate and position in a colour-magnitude diagram (CMD) such that stars which lie above an empirically determined median pre-main sequence rotate more rapidly than stars which lie below this sequence. The same correlation is seen, with a high degree of statistical significance, in each association studied here. If position within the CMD is interpreted as being due to genuine age spreads within a cluster, then the stars above the median pre-main sequence would be the youngest stars. This would in turn imply that the most rapidly rotating stars in an association are the youngest, and hence those with the largest moments of inertia and highest likelihood of ongoing accretion. Such a result does not fit naturally into the existing picture of angular momentum evolution in young stars, where the stars are braked effectively by their accretion discs until the disc disperses. Instead, we argue that, for a given association of young stars, position within the CMD is not primarily a function of age, but of accretion history. We show that this hypothesis could explain the correlation we observe between rotation rate and position within the CMD.

  11. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young [Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2017-04-15

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  12. Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos

    Science.gov (United States)

    Ardaneh, Kazem; Luo, Yang; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-06-01

    We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ˜10 M⊙ and a highly variable luminosity of 1038 - 1039 erg s-1, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ˜10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10-3 pc, which is ˜100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.

  13. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Kobayashi, Yasuhiko; Matsumoto, Hideki

    2007-01-01

    A rapidly growing body of experimental evidence indicates that ionizing radiation induces biological effects in non-irradiated bystander cells that have received signals from adjacent or distant irradiated cells. This phenomenon, which has been termed the ionizing radiation-induced bystander effect, challenges the long-standing paradigm that radiation traversal through the nucleus of a cell is a prerequisite to elicit genetic damage or a biological response. Bystander effects have been observed in a number of experimental systems, and cells whose nucleus or cytoplasm is irradiated exert bystander responses. Bystander cells manifest a multitude of biological consequences, such as genetic and epigenetic changes, alterations in gene expression, activation of signal transduction pathways, and delayed effects in their progeny. Several mediating mechanisms have been proposed. These involve gap junction-mediated intercellular communication, secreted soluble factors, oxidative metabolism, plasma membrane-bound lipid rafts, and calcium fluxes. This paper reviews briefly the current knowledge of the bystander effect with a focus on proposed mechanisms. The potential benefit of bystander effects to cancer radiotherapy will also be discussed. (author)

  14. Gravitational radiation and gamma-ray bursts from accreting neutron stars

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Araujo, J.C.N. de; Aguiar, O.D.; Horvath, J.E.

    2000-01-01

    It is well known that hydrodynamic instabilities can be induced in rapidly rotating low magnetic field neutron stars, which accrete mass from a companion in both high and low mass X-ray binaries. (author)

  15. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  16. ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2016-07-20

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  17. Wind accretion: Theory and observations

    Science.gov (United States)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  18. Terahertz field-induced ionization and perturbed free induction decay of excitons in bulk GaAs

    Science.gov (United States)

    Murotani, Yuta; Takayama, Masayuki; Sekiguchi, Fumiya; Kim, Changsu; Akiyama, Hidefumi; Shimano, Ryo

    2018-03-01

    We investigated the interaction between an intense terahertz (THz) pulse and excitons in bulk GaAs by using THz pump near-infrared (NIR) optical probe spectroscopy. We observed a clear spectral oscillation in the NIR transient absorption spectra at low temperature, which is interpreted as the THz pump-induced perturbed free induction decay (PFID) of the excitonic interband polarization. We performed a numerical simulation based on a microscopic theory and identified that the observed PFID signal originates from the THz field-induced ionization of excitons. Using a real-space representation of the excitonic wave function, we visualized how the ionization of an exciton proceeds under the intense single-cycle THz electric field. We also calculated the nonlinear susceptibility with the lowest-order perturbation theory assuming a weak THz pump, which showed a similar spectral feature with that obtained by the full treatment to field-induced ionization process. This coincidence is attributed to the fact that 1s-excitonic interband polarization is modified predominantly through interactions with the p-wave component of the excitonic wave function. A simple phenomenological expression of the PFID signal is presented to discuss effects of the THz pump pulse duration on the spectral oscillation.

  19. Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos

    Science.gov (United States)

    Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-05-01

    Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.

  20. Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules

    DEFF Research Database (Denmark)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2010-01-01

    A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved....... The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined....

  1. Adaptive response induced by occupational exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Barquinero, J.F.; Caballin, M.R.; Barrios, L.; Murtra, P.; Egozcue, J.; Miro, R.; Ribas, M.

    1997-01-01

    We have found a significant decreased sensitivity to the cytogenetic effects of ionizing radiation (IR) and bleomycin (BLM) in lymphocytes from individuals occupationally exposed to IR when compared with a control population. These results suggest that occupational exposures to IR can induce adaptive response that can be detected by a subsequent treatment by IR or by BLM. However, no correlation between the results obtained with both treatments was observed. A great heterogeneity in the frequencies of chromatid aberrations induced by BLM was observed. The study of the influence of different harvesting times showed that there was no correlation with the frequencies of chromatid breaks. Our results indicate that the use of BLM to detect adaptive response has several difficulties at the individual level. (author)

  2. Identification and behavior of collapsible soils.

    Science.gov (United States)

    2011-01-01

    Loess is a soil that can exhibit large deformations upon wetting. Cases of wetting induced collapse in loess have : been documented for natural deposits and man-made fills. These issues are of concern to the Indiana DOT due to the growth : of the sta...

  3. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    International Nuclear Information System (INIS)

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  4. Observation of terahertz-radiation-induced ionization in a single nano island.

    Science.gov (United States)

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q-Han; Kim, Chulki

    2015-05-22

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

  5. On accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Davies, R.E.; Pringle, J.E.

    1980-01-01

    Hypersonic accretion flow in two dimensions from an infinite medium which contains a small density and/or velocity gradient is considered. To first order in rsub(a)/h, where rsub(a) is the accretion radius and h the scale of the gradient, the accretion rate is unaffected and the accreted angular momentum is zero. Thus previous estimates of the amount of angular momentum accreted may severely overestimate the actual value. (author)

  6. Topographic stress and catastrophic collapse of volcanic islands

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.

    2017-12-01

    Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.

  7. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    Science.gov (United States)

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  8. Comet assay as a procedure for detecting possible genotoxicity induced by non-ionizing radiation

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Nemeth

    2015-05-01

    In our laboratory we use comet assay for testing genotoxicity of non-ionizing radiation for more than ten years. In the experiments we use whole blood samples (human or dog, cell lines (e.g. H295R cell line or 3 dimensional in vitro skin tissue (epidermis models. In our protocol a slightly modified alkaline Comet assay method of Singh et al. (1988 is used. On our poster there will be presented a brief summary of our experiments with exposure to different types of radiation (ELF, RF, and intermediate frequency. In our protocols the non-ionizing radiation was often combined with ionizing radiation to see whether the non-ionizing radiation can influence the repair of the DNA damage induced by ionizing radiation. For the evaluation of the slides mainly Komet 4.0 image analysis system software (Kinetic Imaging, Liverpool, UK was used, but as we got familiarized with other methods for slide evaluation like grading the comets by visual scoring into 5 categories or the CaspLab software, the comparison of these three methods will be also presented.

  9. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  10. Changes induced in spice paprika powder by treatment with ionizing radiation and saturated steam

    International Nuclear Information System (INIS)

    Kispeter, J.; Bajusz-Kabok, K.; Fekete, M.; Szabo, G.; Fodor, E.; Pali, T.

    2003-01-01

    The changes in spice paprika powder induced by ionizing radiation, saturated steam (SS) and their combination were studied as a function of the absorbed radiation dose and the storage time. The SS treatment lead to a decrease in color content (lightening) after 12 weeks of storage, together with the persistence of free radicals and viscosity changes for a longer period. The results suggest that ionizing radiation is a more advantageous method as concerns preservation of the quality of spice paprika

  11. CT of lobar collapse

    International Nuclear Information System (INIS)

    Suh, D. C.; Im, J. G.; Park, J. H.; Han, M. C.

    1987-01-01

    The computed tomographic (CT) findings of labor collapse are analysed in an attempt to evaluate the patterns of labor collapse and to get the helpful signs in differentiation between benign and malignant causes of collapse. 43 cases of labor collapse with or without endobronchial obstruction were reviewed. In 29 of 43 cases the collapses were caused by lung cancer. Benign causes of labor collapse included tuberculosis(10), broncholith(2), organizing pneumonia(1) and hamartoma(1). The helpful signs favoring malignant cause of the labor collapse were proximal bulging of the collapsed lobe, low density mass within the collapsed lung, and endobronchial lesion. Above described differential findings were especially applicable in cases of upper lobe collapse

  12. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motie, Iman [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com [Department of Engineering, University of Applied Science and Technology (UAST)-Mohandesan Center, Mashhad (Iran, Islamic Republic of)

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.

  13. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Banerjee Projjwal

    2016-01-01

    Full Text Available We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10−3 Z⊙. We find that for progenitors of ∼ 11–15 M⊙, the neutrons released by 4He(ν¯ee, e+n3H in He shells can be captured to produce nuclei with mass numbers up to A ∼ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ8Li(n,γ9Li(e− ν¯ee9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ∼ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n09Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  14. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  15. Neutrino-induced nucleosynthesis in core-collapse supernovae

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Haxton, W.C.; Hoffman, R.D.; Woosley, S.E.; California Univ., Santa Cruz, CA

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. The resulting spallation reactions are an important nuleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and number of other nuclei. 10 refs., 1 fig., 1 tab

  16. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  17. Nearly collisionless spherical accretion

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1977-01-01

    A fluid-like gas accretes much more efficiently than a collisionless gas. The ability of an accreting gas to behave like a fluid depends on the relationship of the mean free path of a gas particle at r → infinity lambdasub(infinity), to the typical length scales associated with the star-gas system. This relationship is examined in detail. For constant collision cross-section evidence is found for a rapid changeover from collisionless to fluid-like accretion flow when lambdasub(infinity) drops below a certain value, but for hard Coulomb collisions, the transition is more gradual, and is sensitive to the adiabatic index of the gas at r→ infinity. To these results must be added the effects of the substantial cusp of bound particles, which always develops in a system with arbitrarily small but non-zero cross-section. The density run in such a cusp depends on the collision properties of the particles. 'Loss-cone' accretion from the cusp may in some cases exceed the predicted accretion rate. (author)

  18. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  19. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D.

    2013-01-01

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M ☉ . Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness (∼M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  20. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D., E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125 (United States)

    2013-01-10

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M {sub Sun }. Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness ({approx}M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  1. Current study on ionizing radiation-induced mitochondial DNA damage and mutations

    International Nuclear Information System (INIS)

    Zhou Xin; Wang Zhenhua; Zhang Hong

    2012-01-01

    Current advance in ionizing radiation-induced mitochondrial DNA damage and mutations is reviewed, in addition with the essential differences between mtDNA and nDNA damage and mutations. To extent the knowledge about radiation induced mitochondrial alterations, the researchers in Institute of Modern Physics, Chinese Academy of Sciences developed some technics such as real-time PCR, long-PCR for accurate quantification of radiation induced damage and mutations, and in-depth investigation about the functional changes of mitochondria based on mtDNA damage and mutations were also carried out. In conclusion, the important role of mitochondrial study in radiation biology is underlined, and further study on mitochondrial study associated with late effect and metabolism changes in radiation biology is pointed out. (authors)

  2. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    International Nuclear Information System (INIS)

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-01-01

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m P ∼ + ) and/or close orbits (r ∼< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P ∼ 4 days. Planets with shorter periods, P ∼ 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  3. The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-04-01

    We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.

  4. Bose-Einstein condensate collapse: A comparison between theory and experiment

    International Nuclear Information System (INIS)

    Savage, C.M.; Robins, N.P.; Hope, J.J.

    2003-01-01

    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed with Bose-Einstein condensates of 85 Rb, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. In addition to the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally

  5. Accretion onto CO White Dwarfs using MESA

    Science.gov (United States)

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  6. Computational models of stellar collapse and core-collapse supernovae

    International Nuclear Information System (INIS)

    Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  7. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  8. Mass spectrometry with ionization induced by 252Cf fission fragments

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Artaev, V.B.

    1991-01-01

    The review deals with mass-spectrometry with ionization induced by 252 Cf fission fragments. Equipment and technique of the analysis, analytic possibilities of the method are considered. The method permits to determine molecular masses of large nonvolatile biological molecules. The method is practically nondestructive, it possesses a high resolution over the depth and surface, which permits to use it for the analysis of surface of semiconductors, dielectrics, catalysts, for the study of formation kinetics of complex unstable molecules on the surface

  9. On Academician Behounek's paper ''Lung cancer induced by ionizing radiation''

    International Nuclear Information System (INIS)

    Thomas, J.

    1979-01-01

    The significance and scientific contribution are discussed of the paper ''Lung Cancer Induced by Ionizing Radiation'' submitted by Academician Frantisek Behounek to the nation-wide workshop of the Czechoslovak Society of Pneumology and Oncology in Prague, October 3 and 4, 1952 and published in the Proceedings in 1953. The paper discussed the problem which still remains topical, ie., lung exposure to radon daughters, which Academician Behounek considered to be the true cause of lung cancer in Jachymov miners. (B.S.)

  10. Properties of two-temperature dissipative accretion flow around black holes

    Science.gov (United States)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  11. Localized microjetting in the collapse of surface macrocavities

    Science.gov (United States)

    Olney, K. L.; Chiu, P.-H.; Benson, D. J.; Higgins, A.; Serge, M.; Nesterenko, V. F.

    2015-02-01

    This paper focuses on the multiscale mechanism of collapse of hemicylindrical annular surface macrocavities in steel caused by high-strain, high-strain rate plastic flow of copper. Experiments and simulations revealed that a two-stage process is responsible for the observed microjetting phenomena: the formation of lateral copper microjets from the localized shear flow in copper at the interface during the filling of the cavity, and their subsequent collision at the apex of the macrocavity generating two additional horizontal microjets. The lengths of these microjets were an order of magnitude smaller than the cavity size but linearly scaled with the cavity radius. This process of microjet development is sensitive to the cavity geometry and is unlike the previously observed jetting phenomena in cavitation, impact crater collapse, or shock-induced cavity collapse.

  12. The collapse of stacking-fault tetrahedra by interaction with gliding dislocations

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Osetsky, Yu.N.; Stoller, R.E.; Zinkle, S.J.

    2005-01-01

    The collapse of stacking-fault tetrahedra (SFT) by gliding dislocations was observed in in situ straining experiments in a transmission electron microscope (TEM). A stacking-fault tetrahedron was collapsed by intersection with a gliding perfect dislocation: only the base portion divided by the gliding plane of the dislocation annihilated, while the apex portion remained intact. As a result of analysis on evolution of atom configuration induced by intersection with perfect dislocation in SFT, it was found that an unusual atom configuration inevitably appeared in one of the ledges formed on stacking-fault planes, which is traditionally called I-ledge: the atoms on adjacent (1 1 1) planes were overlapping each other. The overlapping configuration provides a strong repulsive force, being a conceivable driving force to induce a chain reaction of atom displacements that collapses the SFT base portion

  13. GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE

    Energy Technology Data Exchange (ETDEWEB)

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin, E-mail: pablo.cerda@uv.es [Departamento de Astronomia y Astrofísica, Universidad de Valencia, c/Dr. Moliner 50, E-46100-Burjassot (Spain)

    2013-12-20

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ≲ 0.1 yr{sup –1}.

  14. Accretion onto a Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lei [Hebei University, College of Physical Science and Technology, Baoding (China); Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Hebei University, Hebei Key Lab of Optic-Electronic Information and Materials, Baoding (China)

    2017-05-15

    We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfill. The case of a polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process. (orig.)

  15. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  16. Bystander effect induced by ionizing radiation and its application

    International Nuclear Information System (INIS)

    Chen Feng; Tu Yu

    2009-01-01

    An indirect effect induced by ionizing radiation called bystander effect is being highly concentrated. Many domestic and foreign researchers have verified the existence of bystander effect and have got more understanding of the mechanism with advanced detection techniques and methods. So far, the research about it has expanded from a single cell to multiple cells, from the in vitro to the whole, and has extended to in vivo from in vitro, which provides powerful evidence to explain how bystander effects happen and the regulation mechanism and especially gives scientific evidence to clinical radiation oncology application in the future. (authors)

  17. Multi-shocks generation and collapsing instabilities induced by competing nonlinearities

    KAUST Repository

    Crosta, Matteo; Trillo, Stefano; Fratalocchi, Andrea

    2012-01-01

    We investigate dispersive shock dynamics in materials with competing cubic-quintic nonlinearities. Whitham theory of modulation, hydrodynamic analysis and numerics demonstrate a rich physical scenario, ranging from multi-shock generation to collapse.

  18. Computational models of stellar collapse and core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2009-07-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  19. Ionization impact on molecular clouds and star formation: Numerical simulations and observations

    International Nuclear Information System (INIS)

    Tremblin, Pascal

    2012-01-01

    At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H II regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of

  20. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    Science.gov (United States)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  1. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  2. Relativistic, accreting disks

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  3. Shock Revival in Core-collapse Supernovae: A Phase-diagram Analysis

    Science.gov (United States)

    Gabay, Daniel; Balberg, Shmuel; Keshet, Uri

    2015-12-01

    We examine the conditions for the revival of the stalled accretion shock in core-collapse supernovae, in the context of the neutrino heating mechanism. We combine one-dimensional simulations of the shock revival process with a derivation of a quasi-stationary approximation, which is both accurate and efficient in predicting the flow. In particular, this approach is used to explore how the evolution of the accretion shock depends on the shock radius, RS, and velocity, VS (in addition to other global properties of the system). We do so through a phase-space analysis of the shock acceleration, aS, in the {R}S{--}{V}S plane, shown to provide quantitative insights into the initiation and nature of runaway expansion. In the particular case of an initially stationary ({V}S=0, {a}S=0) profile, the prospects for an explosion can be assessed by the initial signs of the partial derivatives of the shock acceleration, in analogy to a linear damped/anti-damped oscillator. If \\partial {a}S/\\partial {R}S\\lt 0 and \\partial {a}S/\\partial {V}S\\gt 0, runaway will likely occur after several oscillations, while if \\partial {a}S/\\partial {R}S\\gt 0, runaway expansion will commence in a non-oscillatory fashion. These two modes of runaway correspond to low and high mass accretion rates, respectively. We also use the quasi-stationary approximation to assess the advection-to-heating timescale ratio in the gain region, often used as an explosion proxy. Indeed, this ratio does tend to ∼1 in conjunction with runaway conditions, but neither this unit value nor the specific choice of the gain region as a point of reference appear to be unique in this regard.

  4. Ion-induced ionization and capture cross sections for DNA nucleobases impacted by light ions

    International Nuclear Information System (INIS)

    Champion, Christophe; Hanssen, Jocelyn; Galassi, Mariel E; Fojón, Omar; Rivarola, Roberto D; Weck, Philippe F

    2012-01-01

    Two quantum mechanical models (CB1 and CDW-EIS) are here presented for describing electron ionization and electron capture induced by heavy charged particles in DNA bases. Multiple differential and total cross sections are determined and compared with the scarce existing experimental data.

  5. Innate immune genes including a mucin-like gene, mul-1, induced by ionizing radiation in Caenorhabditis elegans.

    Science.gov (United States)

    Kimura, Takafumi; Takanami, Takako; Sakashita, Tetsuya; Wada, Seiichi; Kobayashi, Yasuhiko; Higashitani, Atsushi

    2012-10-01

    The effect of radiation on the intestine has been studied for more than one hundred years. It remains unclear, however, whether this organ uses specific defensive mechanisms against ionizing radiation. The infection with Pseudomonas aeruginosa (PA14) in Caenorhabditis elegans induces up-regulation of innate immune response genes. Here, we found that exposure to ionizing radiation also induces certain innate immune response genes such as F49F1.6 (termed mul-1), clec-4, clec-67, lys-1 and lys-2 in the intestine. Moreover, pre-treatment with ionizing radiation before seeding on PA14 lawn plate significantly increased survival rate in the nematode. We also studied transcription pathway of the mul-1 in response to ionizing radiation. Induction of mul-1 gene was highly dependent on the ELT-2 transcription factor and p38 MAPK. Moreover, the insulin/IGF-1 signal pathway works to enhance induction of this gene. The mul-1 gene showed a different induction pattern from the DNA damage response gene, ced-13, which implies that the expression of this gene might be triggered as an indirect effect of radiation. Silencing of the mul-1 gene led to growth retardation after treatment with ionizing radiation. We describe the cross-tolerance between the response to radiation exposure and the innate immune system.

  6. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    International Nuclear Information System (INIS)

    Katsuno, Takashi; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu; Manaka, Takaaki; Iwamoto, Mitsumasa

    2014-01-01

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 μs) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 μm from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  7. Histamine protects bone marrow against cellular damage induced by Ionizing radiation

    International Nuclear Information System (INIS)

    Medina, Vanina; Sambuco, Lorena; Massari, Noelia; Cricco, Graciela; Martin, Gabriela; Bergoc, Rosa; Rivera, Elena S.

    2008-01-01

    After surgery, radiotherapy is arguably one of the most important treatments for cancer, especially for localized disease that has not spread. However, ionizing radiation is toxic not only to tumor cells but also to healthy tissues causing serious adverse effects to patients. We have recently reported that histamine prevents ionizing radiation-induced toxicity on mouse small intestine. The aim of the present work was to determine whether histamine is able to protect bone marrow cells against ionizing radiation damage. For that purpose 56 mice were divided into 4 groups. Histamine and Histamine-10Gy groups received a daily subcutaneous histamine injection (0.1 mg/kg) starting 20 hours before irradiation and continued till the end of experimental period; untreated group received saline. Histamine-10Gy and untreated-10Gy groups were irradiated with a single dose on whole-body using Cesium-137 source (7 Gy/min) and were sacrificed 3 days after irradiation. Bone marrow was removed, fixed and stained with hematoxylin and eosin. The number of megacariocytes per 40x field, bone marrow tropism, edema, vascular damage, and other histological characteristics of bone marrow cells were evaluated. We further determined by immunohistochemistry the expression of proliferating cell nuclear antigen (PCNA) and cells in the S phase of the cell cycle were identified by immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) incorporation. Results indicate that histamine treatment substantially reduced the grade of aplasia, the edema and the vascular damage induced by ionizing radiation on bone marrow. Additionally, histamine preserved medullar components increasing significantly the number of megacariocytes per field (5.4 ± 0.4 vs. 2.8 ± 0.4 in Control-10 Gy, P<0.01). This effect was associated with an increased proliferation rate determined by the augmented PCNA expression and BrdU incorporation of bone marrow cells. On the basis of these results, we conclude that histamine

  8. Molecular characterization of thymidine kinase mutants of human cells induced by densely ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A; Little, J B

    1989-04-01

    In order to characterize the nature of mutants induced by densely ionizing radiations at an autosomal locus, the authors have isolated a series of 99 thymidine kinase (tk) mutants of human TK6 lymphoblastoid cells iraadiated with either fast neutrons or accelerated argon ions. Individual muant clones were examined for alterations in their restriction fragment pattern after hybridization with a human cDNA probe for tk. A restriction fragment length polymorphism (RFLP) allowed identification of the active tk allele. Among the neutron-induced mutants, 34/52 exhibited loss of the previously active allele while 6/52 exhibited intragenic rearrangements. Among the argon-induced mutants 27/46 exhibited allele loses and 10/46 showed rearrangements within the tk locus. The remaining mutants had restriction patterns indistinguishable from the TK6 parent. Each of the mutant clones was further examined for structural alterations within the c-erbAl locus which has been localized to chromosome 17q11-q22, at some unknown distance from the human tk locus at chromosome 17q21-q22. A substantial proportion (54%) of tk mutants induced by densely ionizing radiation showed loss of the c-erb locus on the homologous chromosome, suggesting that the mutations involve large-scale genetic changes. (author). 51 refs.; 2 figs.; 6 tabs.

  9. Electron thermal capacity in plasma generated at cavitation bubble collapse in D-acetone

    International Nuclear Information System (INIS)

    Kostenko, B.F.; Pribis, J.

    2004-01-01

    The latest experimental data on nuclear reaction product registration at cavitation bubble collapse in deuterated acetone (C 3 D 6 O) still argue in favour of existence of a new possibility to realize the thermonuclear synthesis. Theoretical description based on numerical solution of simultaneous conservation equations for gaseous and liquid phases also confirms this possibility, although it requires further more precise definitions. In particular, description of electron degrees of freedom in dense nonequilibrium plasma generated at the final stage of bubble collapse need specification. Calculations of electron thermal capacity in the deuterated acetone multiple ionization region at electron temperatures T e ≅ 10 4 K and above and compression range ρ/ρ 0 ≅ 1 - 100 have been fulfilled on the basis of direct numerical solution of equation for chemical potential. (author)

  10. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  11. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  12. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  13. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals.

    Science.gov (United States)

    Yunes, Nicolás; Kocsis, Bence; Loeb, Abraham; Haiman, Zoltán

    2011-10-21

    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters. © 2011 American Physical Society

  14. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  15. Review of collapse triggering mechanism of collapsible soils due to wetting

    Directory of Open Access Journals (Sweden)

    Ping Li

    2016-04-01

    Full Text Available Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world. These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting. Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils. For this reason, collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world. This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits. The collapse mechanism studies are summarized under three different categories, i.e. traditional approaches, microstructure approach, and soil mechanics-based approaches. The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature. The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior. Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils. Such studies would be more valuable for use in conventional geotechnical engineering practice applications.

  16. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    Science.gov (United States)

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  17. The gravitational microlens influence on X-ray spectral line generated by an AGN accretion disc

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2001-01-01

    Full Text Available The influence of gravitational microlensing on the X-ray spectral line profiles originated from a relativistic accretion disc has been studied. Using a disc model, we show that microlensing can induce noticeable changes in the line shapes when the Einstein ring radius associated with the microlens is of a size comparable to that of the accretion disc. Taking into account the relatively small size of the X-ray accretion disc, we found that compact objects (of about a Solar mass which belong to the bulge of the host galaxy can produce significant changes in the X-ray line profile of AGN.

  18. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  19. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  20. Types of collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre-Diaz, Gerardo J [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico)], E-mail: ger@geociencias.unam.mx

    2008-10-01

    Three main types of collapse calderas can be defined, 1) summit caldera: those formed at the top of large volcanoes, 2) classic caldera: semi-circular to irregular-shaped large structures, several km in diameter and related to relatively large-volume pyroclastic products, and 3) graben caldera: explosive volcano-tectonic collapse structures from which large-volume, ignimbrite-forming eruptions occurred through several fissural vents along the graben master faults and the intra-graben block faults. These in turn can collapse at least with three styles: 1) Piston: when the collapse occurs as a single crustal block; 2) Trap-door: when collapse occurs unevenly along one side while the opposite side remains with no collapse; 3) Piece-meal: when collapse occurs as broken pieces of the crust on top of the magma chamber.

  1. Pebble Accretion in Turbulent Protoplanetary Disks

    Science.gov (United States)

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  2. Super-Eddington Accretion in the Ultraluminous X-Ray Source NGC 1313 X-2: An Ephemeral Feast

    Science.gov (United States)

    Weng, Shan-Shan; Zhang, Shuang-Nan; Zhao, Hai-Hui

    2014-01-01

    We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (~50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ~104-105 yr. The expansion of the surrounding bubble nebula with a velocity of ~100 km s-1 might indicate that it has existed over ~106 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ~ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.

  3. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    International Nuclear Information System (INIS)

    Matsumoto, R.; Tajima, T.

    1995-01-01

    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at ω d = ± ω A , where ω d is the Doppler-shifted wave frequency, and ω A = k parallel v A is the Alfven frequency. The radial width of the unstable eigenfunction is Δx ∼ ω A /(Ak y ), where A is the Oort's constant, and k y is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k y /k z . The maximum growth rate when k y /k z ∼ 0.1 is ∼ 0.2Ω for the Keplerian disk with local angular velocity Ω. It is found that the purely growing mode disappears when k y /k z > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity η depends on the instability-induced turbulent magnetic fields δB as η([δB 2 ]), the marginal stability condition self-consistently determines the α parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter α B is between 0.001 and 1. The authors' three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the α parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller α in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop

  4. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  5. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  6. Multi-phase outflows as probes of AGN accretion history

    Science.gov (United States)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  7. Research in astrophysics: Stellar collapse and supernovae: Termination report, August 1, 1980-November 30, 1986

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Mazurek, T.J.; Yahil, A.

    1987-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. The chief emphasis of the program was on stellar collapse, Type II supernovae and neutron star formation. Central to these topics are the development of an equation of state of hot, dense matter and numerical simulations of gravitational collapse and neutron star birth. The LLPR compressible liquid drop model is the basis of the former. It has been refined to include curvature corrections to the surface energy and nuclear force parameters which are in better agreement with experimental quantities. Numerically optimized versions were used in supernova simulations. Such studies of the equation of state can also be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. A novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity was developed. We modeled not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling of the nascent neutron star. For the latter evolution we also used a hydrostatic code with detailed neutrino transport. Our studies of neutrinos in stellar collapse and neutron star formation concentrated on their detectability and signatures, as neutrinos are the only direct probe of collapse and early supernova dynamics. The neutrino signatures seen from SN1987a are in complete accord with the predictions our group has been making since 1982. Complementary studies included modeling nucleosynthesis and the accretion process in quasars, and investigating the influence of galaxy clustering on the large scale structure of the universe. The last study might impose constraints on high energy theories, such as those of inflation and GUT, which can now only be tested astrophysically. 38 refs

  8. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    Energy Technology Data Exchange (ETDEWEB)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  9. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    Science.gov (United States)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  10. Hot Accretion onto Black Holes with Outflow

    Directory of Open Access Journals (Sweden)

    Park Myeong-Gu

    2018-01-01

    Full Text Available Classic Bondi accretion flow can be generalized to rotating viscous accretion flow. Study of hot accretion flow onto black holes show that its physical charateristics change from Bondi-like for small gas angular momentum to disk-like for Keperian gas angular momentum. Especially, the mass accretion rate divided by the Bondi accretion rate is proportional to the viscosity parameter alpha and inversely proportional to the gas angular momentum divided by the Keplerian angular momentum at the Bondi radius for gas angular momentum comparable to the Keplerian value. The possible presence of outflow will increase the mass inflow rate at the Bondi radius but decrease the mass accretion rate across the black hole horizon by many orders of magnitude. This implies that the growth history of supermassive black holes and their coevolution with host galaxies will be dramatically changed when the accreted gas has angular momentum or develops an outflow.

  11. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  12. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  13. A novel animal model for hyperdynamic airway collapse.

    Science.gov (United States)

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  14. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  15. Induced Matter Theory of gravity from a Weitzenboeck 5D vacuum and pre-big bang collapse of the universe

    International Nuclear Information System (INIS)

    Romero, Jesus Martin; Bellini, Mauricio

    2013-01-01

    We extend the Induced Matter Theory of gravity (IMT) to 5D curved spacetimes by using the Weitzenboeck representation of connections on a 5D curved spacetime. In this representation the 5D curvature tensor becomes null, so that we can make a static foliation on the extra non-compact coordinate to induce in the Weitzenboeck representation the Einstein equations. Once we have done it, we can rewrite the effective 4D Einstein equations in the Levi-Civita representation. This generalization of IMT opens a huge window of possible applications for this theory. A pre-big bang collapsing scenario is explored as an example. (orig.)

  16. Induced Matter Theory of gravity from a Weitzenboeck 5D vacuum and pre-big bang collapse of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Jesus Martin [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Funes 3350, C.P. 7600, Mar del Plata (Argentina)

    2013-02-15

    We extend the Induced Matter Theory of gravity (IMT) to 5D curved spacetimes by using the Weitzenboeck representation of connections on a 5D curved spacetime. In this representation the 5D curvature tensor becomes null, so that we can make a static foliation on the extra non-compact coordinate to induce in the Weitzenboeck representation the Einstein equations. Once we have done it, we can rewrite the effective 4D Einstein equations in the Levi-Civita representation. This generalization of IMT opens a huge window of possible applications for this theory. A pre-big bang collapsing scenario is explored as an example. (orig.)

  17. Computational investigation of the limits to Pease-Braginskii collapse of a Z-pinch

    International Nuclear Information System (INIS)

    Nielsen, P.D.

    1981-06-01

    This dissertation investigates the one-dimensional limits to such a radiation enhanced collapse through the use of a Lagrangian simulation code, LASNEX. The code includes the effects of a wide range of phenomena - opacity, ionization, experimentally determined equations of state, magnetic effects on transport coefficients, and external electrical circuits. Special attention was given to the magnetic field subroutines. They were revised to include ion acoustic and lower hybrid drift induced resistivity and to increase accuracy and efficiency. The magnetic pressure term was differenced in a manner that eliminates any influence of zone size, allowing large, low density zones outside the plasma column. In these large zones, magnetic flux and energy were determined by direct integration instead of summation to increase overall conservation. With these changes, the computational timesteps were determined by phenomena in the plasma instead of the Alfven velocity in the low density region. These modifications improved the accuracy of the code on Z-pinch problems by a factor of 10-100 depending on the minimum pinch radius reached

  18. Electron Thermal Capacity in Plasma Generated at Cavitation Bubble Collapse in D-acetone

    CERN Document Server

    Kostenko, B F

    2004-01-01

    The latest experimental data on nuclear reaction product registration at cavitation bubble collapse in deuterated acetone (C$_3$D$_6$O) still argue in favour of existence of a new possibility to realize the thermonuclear synthesis. Theoretical description based on numerical solution of simultaneous conservation equations for gaseous and liquid phases also confirms this possibility, although it requires further more precise definitions. In particular, description of electron degrees of freedom in very dense nonequilibrium plasma generated at the final stage of bubble collapse needs specification. In the present paper, calculations of electron thermal capacity in the deuterated acetone multiple ionization region at electron temperatures $T_e \\simeq 10^4 $ K and above and compression range $\\rho/\\rho_0 \\simeq 1 \\div 100$ have been fulfilled on the basis of direct numerical solution of equation for chemical potential.

  19. Experimental comparison of models for ultrafast impact ionization is silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2016-01-01

    We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses.......We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses....

  20. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  1. Ionizing radiation induced genomic instability and its relation to radiation carcinogenesis

    International Nuclear Information System (INIS)

    Wang Zhongwen

    2000-01-01

    There are widespread testimonies that the genomic instability induced by ionizing irradiation exits in mammal and its vitro cells. Genomic instability can enhance the frequency of genetic changes among the progeny of the original irradiated cells. In the radiation-leukemogenesis, there is no significant difference between controls and CBA/H mouses of PPI (preconception patent irradiation), but the offsprings of the PPI recipients show a different character (shorter latent period and higher incidence) after an extra γ-radiation. The radiation-induced genomic instability may get the genome on the verge of mutation and lead to carcinogens following mutation of some critical genes. The genomic instability, as the early event of initiation of carcinomas, may be play a specific or unique role

  2. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  3. Inflation including collapse of the wave function: the quasi-de Sitter case

    International Nuclear Information System (INIS)

    Leon, Gabriel; Landau, Susana J.; Piccirilli, Maria Pia

    2015-01-01

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)

  4. Inflation including collapse of the wave function: the quasi-de Sitter case

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Landau, Susana J. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Piccirilli, Maria Pia [Universidad Nacional de La Plata, Grupo de Astrofisica, Relatividad y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, Pcia de Buenos Aires (Argentina)

    2015-08-15

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)

  5. Ionizing radiation-induced bystander mutagenesis and adaptation: Quantitative and temporal aspects

    International Nuclear Information System (INIS)

    Zhang Ying; Zhou Junqing; Baldwin, Joseph; Held, Kathryn D.; Prise, Kevin M.; Redmond, Robert W.; Liber, Howard L.

    2009-01-01

    This work explores several quantitative aspects of radiation-induced bystander mutagenesis in WTK1 human lymphoblast cells. Gamma-irradiation of cells was used to generate conditioned medium containing bystander signals, and that medium was transferred onto naive recipient cells. Kinetic studies revealed that it required up to 1 h to generate sufficient signal to induce the maximal level of mutations at the thymidine kinase locus in the bystander cells receiving the conditioned medium. Furthermore, it required at least 1 h of exposure to the signal in the bystander cells to induce mutations. Bystander signal was fairly stable in the medium, requiring 12-24 h to diminish. Medium that contained bystander signal was rendered ineffective by a 4-fold dilution; in contrast a greater than 20-fold decrease in the cell number irradiated to generate a bystander signal was needed to eliminate bystander-induced mutagenesis. This suggested some sort of feedback inhibition by bystander signal that prevented the signaling cells from releasing more signal. Finally, an ionizing radiation-induced adaptive response was shown to be effective in reducing bystander mutagenesis; in addition, low levels of exposure to bystander signal in the transferred medium induced adaptation that was effective in reducing mutations induced by subsequent γ-ray exposures.

  6. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    Science.gov (United States)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  7. Hematological Changes Induced by Mercury Ions and Ionizing Radiation in Experimental Animals

    International Nuclear Information System (INIS)

    Kim, Jin-Kyu; Lee, Yun-Jong; Choi, Dae-Seong; Kim, Ji-Hyang; Cebulska-Wasilewska, Antonina

    2006-01-01

    Toxic metals such as lead, chromium, cadmium, mercury and arsenic are widely found in our environment. Humans are exposed to these metals from numerous sources, including contaminated air, water, soil and food. Mercury, one of the most diffused and hazardous organ specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which has unique characteristics for a target organ specificity. Although reports indicate that mercury induces deleterious damage, little is known about its effects on living organisms. Ionizing radiation, an extensively used therapeutic modality in oncology, not only eradicates neoplastic cells but also generates inevitable side effects for normal tissues. Such biological effects are made through the production of reactive oxygen species which include a superoxide anion, a hydroxyl radical and a hydrogen peroxide. These reactive species may contribute to the radiation-induced cytotoxicity (e.g., chromosome aberrations, protein oxidation, and muscle injury) and to the metabolic and morphologic changes (e.g., increased muscle proteolysis and changes in the central nervous system) in animals and humans. In the present study, radioimmunoassay of the cortisol in the serum and the analysis of the hematological components and enzymes related to a tissue injury were carried out to evaluate the effects of mercury chloride in comparison with those of ionizing radiation

  8. Hematological Changes Induced by Mercury Ions and Ionizing Radiation in Experimental Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Kyu; Lee, Yun-Jong; Choi, Dae-Seong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Ji-Hyang [Biotechnology Research Institute, Seoul (Korea, Republic of); Cebulska-Wasilewska, Antonina [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland)

    2006-07-01

    Toxic metals such as lead, chromium, cadmium, mercury and arsenic are widely found in our environment. Humans are exposed to these metals from numerous sources, including contaminated air, water, soil and food. Mercury, one of the most diffused and hazardous organ specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which has unique characteristics for a target organ specificity. Although reports indicate that mercury induces deleterious damage, little is known about its effects on living organisms. Ionizing radiation, an extensively used therapeutic modality in oncology, not only eradicates neoplastic cells but also generates inevitable side effects for normal tissues. Such biological effects are made through the production of reactive oxygen species which include a superoxide anion, a hydroxyl radical and a hydrogen peroxide. These reactive species may contribute to the radiation-induced cytotoxicity (e.g., chromosome aberrations, protein oxidation, and muscle injury) and to the metabolic and morphologic changes (e.g., increased muscle proteolysis and changes in the central nervous system) in animals and humans. In the present study, radioimmunoassay of the cortisol in the serum and the analysis of the hematological components and enzymes related to a tissue injury were carried out to evaluate the effects of mercury chloride in comparison with those of ionizing radiation.

  9. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  10. Tumours of the head and neck induced by ionizing radiation

    International Nuclear Information System (INIS)

    Daal, W.A.J. van.

    1979-01-01

    Reference is made to the cases of two patients who between 20 and 45 years after irradiation for tuberculous lymphomas in the neck developed malignant and benign tumours in the skin, the thyroid and the larynx-hypopharynx. The literature on induction of tumours by ionizing radiation is reviewed. So far, only one patient has been described in whome tumours in three organs may have been induced by irradiation. In the course of the examination of patients who have been irradiated for benign conditions, the possibility of tumours developing in several organs should be kept in mind. (Auth.)

  11. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    Science.gov (United States)

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  12. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  13. Electron induced atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Quarles, C.A.

    1974-01-01

    The current status of cross section measurements for atomic inner-shell ionization by electron bombardment is reviewed. Inner shell ionization studies using electrons as projectiles compliment the similar studies being done with heavy particles, and in addition can provide tests of the theory in those cases when relativistic effects and exchange effects are expected to be important. Both total cross sections and recently measured differential cross sections will be discussed and compared with existing theories where possible. Prospects for further experimental and theoretical work in this area of atomic physics using small electron accelerators will also be discussed

  14. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    Science.gov (United States)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  15. Super-eddington accretion in the ultraluminous x-ray source NGC 1313 X-2: An ephemeral feast

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Shan-Shan [Department of Physics, Xiangtan University, Xiangtan 411105 (China); Zhang, Shuang-Nan; Zhao, Hai-Hui, E-mail: wengss@ihep.ac.cn, E-mail: zhangsn@ihep.ac.cn, E-mail: zhaohh@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-01-10

    We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (∼50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ∼10{sup 4}-10{sup 5} yr. The expansion of the surrounding bubble nebula with a velocity of ∼100 km s{sup –1} might indicate that it has existed over ∼10{sup 6} yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ∼ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.

  16. Super-eddington accretion in the ultraluminous x-ray source NGC 1313 X-2: An ephemeral feast

    International Nuclear Information System (INIS)

    Weng, Shan-Shan; Zhang, Shuang-Nan; Zhao, Hai-Hui

    2014-01-01

    We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (∼50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ∼10 4 -10 5 yr. The expansion of the surrounding bubble nebula with a velocity of ∼100 km s –1 might indicate that it has existed over ∼10 6 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ∼ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.

  17. Bias-induced migration of ionized donors in amorphous oxide semiconductor thin-film transistors with full bottom-gate and partial top-gate structures

    Directory of Open Access Journals (Sweden)

    Mallory Mativenga

    2012-09-01

    Full Text Available Bias-induced charge migration in amorphous oxide semiconductor thin-film transistors (TFTs confirmed by overshoots of mobility after bias stressing dual gated TFTs is presented. The overshoots in mobility are reversible and only occur in TFTs with a full bottom-gate (covers the whole channel and partial top-gate (covers only a portion of the channel, indicating a bias-induced uneven distribution of ionized donors: Ionized donors migrate towards the region of the channel that is located underneath the partial top-gate and the decrease in the density of ionized donors in the uncovered portion results in the reversible increase in mobility.

  18. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  19. MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud; Contopoulos, Ioannis

    2010-01-01

    We present the two-dimensional ionization structure of self-similar magnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r) ∝ 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter ξ (or equivalently r) and the angle θ. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic ξ interval, dN H /dlog ξ, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) ∝ 1/r, the AMD is found to be independent of ξ, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, v ∼ 100-300 km s -1 (at log ξ ∼ 2-3) for Fe XVII and v ∼ 1000-4000 km s -1 (at log ξ ∼ 4-5) for Fe XXV, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate m-dot and the LOS angle θ. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing m-dot and increases steeply with the LOS inclination angle θ. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite properties of the parsec scale 'torii' invoked in AGN unification schemes. We indicate that a

  20. The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M ⊙

    Science.gov (United States)

    Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik

    2018-03-01

    We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.

  1. Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator

    Directory of Open Access Journals (Sweden)

    W. An

    2013-10-01

    Full Text Available Strategies for mitigating ionization-induced beam head erosion in an electron-beam-driven plasma wakefield accelerator (PWFA are explored when the plasma and the wake are both formed by the transverse electric field of the beam itself. Beam head erosion can occur in a preformed plasma because of a lack of focusing force from the wake at the rising edge (head of the beam due to the finite inertia of the electrons. When the plasma is produced by field ionization from the space charge field of the beam, the head erosion is significantly exacerbated due to the gradual recession (in the beam frame of the 100% ionization contour. Beam particles in front of the ionization front cannot be focused (guided causing them to expand as in vacuum. When they expand, the location of the ionization front recedes such that even more beam particles are completely unguided. Eventually this process terminates the wake formation prematurely, i.e., well before the beam is depleted of its energy. Ionization-induced head erosion can be mitigated by controlling the beam parameters (emittance, charge, and energy and/or the plasma conditions. In this paper we explore how the latter can be optimized so as to extend the beam propagation distance and thereby increase the energy gain. In particular we show that, by using a combination of the alkali atoms of the lowest practical ionization potential (Cs for plasma formation and a precursor laser pulse to generate a narrow plasma filament in front of the beam, the head erosion rate can be dramatically reduced. Simulation results show that in the upcoming “two-bunch PWFA experiments” on the FACET facility at SLAC national accelerator laboratory the energy gain of the trailing beam can be up to 10 times larger for the given parameters when employing these techniques. Comparison of the effect of beam head erosion in preformed and ionization produced plasmas is also presented.

  2. IRON OPACITY BUMP CHANGES THE STABILITY AND STRUCTURE OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davis, Shane W. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-08-10

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 10{sup 8} solar mass black hole with ∼3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  3. Persistent Fe moments in the normal-state collapsed-tetragonal phase of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2

    Science.gov (United States)

    Jeffries, J. R.; Butch, N. P.; Lipp, M. J.; Bradley, J. A.; Kirshenbaum, K.; Saha, S. R.; Paglione, J.; Kenney-Benson, C.; Xiao, Y.; Chow, P.; Evans, W. J.

    2014-10-01

    Using nonresonant Fe Kβ x-ray emission spectroscopy, we reveal that Sr substitution into CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of Tc with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.

  4. Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering

    Science.gov (United States)

    Kappus, B.; Bataller, A.; Putterman, S. J.

    2013-12-01

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  5. Key variables influencing patterns of lava dome growth and collapse

    Science.gov (United States)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  6. Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea; Macias, Phillip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); MacLeod, Morgan, E-mail: armurgui@ucsc.edu [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-08-20

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.

  7. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    International Nuclear Information System (INIS)

    Reynolds, Christopher S.

    2012-01-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v ∼ 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds—such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron Kα line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/λ, where λ is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  8. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    Science.gov (United States)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  9. p21 is Responsible for Ionizing Radiation-induced Bypass of Mitosis.

    Science.gov (United States)

    Zhang, Xu Rui; Liu, Yong Ai; Sun, Fang; Li, He; Lei, Su Wen; Wang, Ju Fang

    2016-07-01

    To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest. Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation. Depletion of p21 was carried out by employing the siRNA technique. Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28, an M-phase marker. Senescence was assessed by senescence- associated-β-galactosidase (SA-β-gal) staining combined with Ki67 staining, a cell proliferation marker. Accompanying increased p21, the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays. Furthermore, these irradiated cells were blocked at the G2 phase followed by cellular senescence. Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases, as well as the high expression of histone H3 phosphorylated at Ser28. Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells. However, cells with serious DNA damage failed to undergo cytokinesis, leading to the accumulation of multinucleated cells. Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation. Downregulation of p21 by siRNA resulted in G2-arrested cells entering into mitosis with serious DNA damage. This is the first report on elucidating the role of p21 in the bypass of mitosis. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  11. Nustar Reveals the Extreme Properties of the Super-Eddington Accreting Supermassive Black Hole in PG 1247+267

    Science.gov (United States)

    Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.; hide

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z approximately 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (gamma = 2.3 +/- 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of approximately 100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.

  12. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.

    Science.gov (United States)

    Kocsis, Bence; Loeb, Abraham

    2008-07-25

    Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

  13. Planet population synthesis driven by pebble accretion in cluster environments

    Science.gov (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  14. Cold gas accretion in galaxies

    NARCIS (Netherlands)

    Sancisi, Renzo; Fraternali, Filippo; Oosterloo, Tom; van der Hulst, Thijs

    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by

  15. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xuening, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  16. Supernovae Ia in 2017: a long time delay from merger/accretion to explosion

    Science.gov (United States)

    Soker, Noam

    2018-04-01

    I use recent observational and theoretical studies of type Ia supernovae (SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger of the white dwarf (WD) with a companion or the end of mass accretion on to the WD and its terminal explosion. This merger/accretion to explosion delay (MED) is required to allow the binary system to lead to a more or less spherical explosion and to prevent a pre-explosion ionizing radiation. Considering these recent results and the required MED, I conclude that the core degenerate scenario is somewhat more favorable over the other scenarios, followed by the double degenerate scenario. Although the single degenerate scenario is viable as well, it is less likely to account for common (normal) SN Ia. As all scenarios require substantial MED, the MED has turned from a disadvantage of the core degenerate scenario to a challenge that theory should overcome. I hope that the requirement for a MED will stimulate the discussion of the different SN Ia scenarios and the comparison of the scenarios to each other.

  17. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    Science.gov (United States)

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  18. Topics in the physics of accretion onto black holes

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1977-06-01

    The subject is covered in chapters, entitled: introduction and overview; boundary-condition modification of accretion-disk models; standard assumptions and nonkeplerian inner-disk models; the 'inner edge' of accretion disks and spiral orbits; a review of comptonization in accretion disks and a criterion for Lightman-Eardley stability; the thickening of accretion disks and flows; radial pressure gradients and low-angular-momentum accretion; accretion-disk scenarios for X-ray transient and burst sources; photon pair-creation processes in transrelativistic plasmas; and the astrophysical consequences of Rosen's bi-metric theory of gravity. (U.K.)

  19. Texture collapse

    International Nuclear Information System (INIS)

    Prokopec, T.; Sornborger, A.; Brandenberger, R.H.

    1992-01-01

    We study single-texture collapse using a leapfrog discretization method on a 30x30x30 spatial lattice. We investigate the influence of boundary conditions, physical size of the lattice, type of space-time background (flat, i.e., nonexpanding, vs radiation-dominated and matter-dominated universes), and spatial distribution of the initial texture configuration on collapse time and critical winding. For a spherically symmetric initial configuration of size equal to the horizon size on a lattice containing 12 (30) horizon volumes, the critical winding is found to be 0.621±0.001 (0.602±0.003) (flat case), 0.624±0.002 (0.604±0.005) (radiation era), 0.628±0.002 (0.612±0.003) (matter era). The larger the physical size of the lattice (in units of the horizon size), the smaller is the critical winding, and in the limit of an infinite lattice, we argue that the critical winding approaches 0.5. For radially asymmetric cases, contraction of one axis ( /Ipancake case) slightly reduces collapse time and critical winding, and contraction of two axes (d/Icigar case) reduces collapse time and critical winding significantly

  20. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  1. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  2. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  3. Development of evaluation methods for impact of earthquake-induced slope failure on nearby critical structures. Analysis of behavior of collapsed rock masses using 3-D distinct element method

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Tochigi, Hitoshi; Nakajima, Masato; Shirai, Koji

    2012-01-01

    Recently, importance of evaluation for impact of earthquake-induced slope failure on nearby critical structures is increasing in order to evaluate seismic stability of the slope, in addition to evaluating the possibilities of slope failure. In this study, we presented an examination flow chart to evaluate the impact on structures after slope failure. In the examination flow chart, we assumed the following four considerations; (1) evaluation of the collapse region of the slope, (2) evaluation of behavior of the collapsed rock masses, (3) evaluation of the impact on the structures, (4) examination of the countermeasures. And, for the purpose of using three dimensional distinct element method (DEM) for evaluation of behavior of the collapsed rock masses, we firstly confirmed applicability of DEM to behavior of a mass hurtling down the slope by means of comparing with the model test results. Moreover, we clarified influence of initial position or restitution coefficient of rock masses on final traveling distance of collapsed rock masses. (author)

  4. Specific primary ionization induced by minimum ionizing electrons in CH4, C2H6, C3H8, i-C4H10, Ar, DME,TEA and TMAE

    International Nuclear Information System (INIS)

    Melamud, G.; Breskin, A.; Chechik, R.; Pansky, A.

    1992-10-01

    Specific primary ionization induced by minimum ionizing electrons has been measured in several gases and vapors. Charges deposited by β-electrons in a low pressure gas, were collected, amplified by a multistep gaseous electron multiplier and counted. The high counting efficiency of the multiplier provided results of systematically higher values as compared to existing data. The respective values of the specific primary ionization in CH 4 C 2 H 6 , C 3 H 8 ,i-C 4 H 10 , Argon, Dimethylether, Triethylamine and Tetrakis(dimethylamino) ethylene are: 0.034, 0.065, 0.095, 0.12, 0.03, 0.082, 0.0195 and 0.370 clusters/cm*Torr. We present the experimental method and discuss the results and their accuracy. (authors)

  5. Structures formation through self-organized accretion on cosmic strings

    International Nuclear Information System (INIS)

    Murdzek, R.

    2009-01-01

    In this paper, we shall show that the formation of structures through accretion by a cosmic string is driven by a natural feed-back mechanism: a part of the energy radiated by accretions creates a pressure on the accretion disk itself. This phenomenon leads to a nonlinear evolution of the accretion process. Thus, the formation of structures results as a consequence of a self-organized growth of the accreting central object.

  6. X-ray-ing the Low Luminosity Supermassive Black Hole Accretion: the Crucial Role of Public Serendipitous Catalogs.

    Science.gov (United States)

    Constantin, Anca; Green, Paul; Haggard, Daryl

    2018-01-01

    For most of the nearby active galaxies, a mix of processes including emission from star-forming regions, other ionization sources (shocks, turbulence, etc.), nuclear obscuration, as well as host galaxy starlight obfuscate the true nature of their dominant ionization mechanism. X-ray emission is one of the most reliable primary signatures of accretion activity, and with the advent of the public catalogs, it became one of the most effective diagnostics as well. Working with large and significantly less biased samples that only serendipitous X-ray catalogs are able to provide, we were able to: 1) provide the most accurate estimates of the AGN fraction as a function of a diverse set of parameters; 2) confirm with X-rays a sequence from star-forming to active to passive galaxies that matches trends in both optical host galaxy characteristics and in the large scale environment; 3) discover intriguing similarities between accretion onto supermassive and stellar size black holes, with direct consequences for the physical significance of the Gamma-L/Ledd relation for AGN of both type I and II in the local universe. This presentation will summarize these exciting results, and will also report on novel extended efforts to decipher the link between the water megamaser emission and galactic nuclear activity, which are made possible only by the availability of the large sample statistics of carefully curated X-ray measurements uniquely offered by the combined Chandra and XMM catalogs.

  7. Ionizing radiation induces PI3K-dependent JNK activation for amplifying mitochondrial dysfunction in human cervical cancer cells

    International Nuclear Information System (INIS)

    Kim, Min Jung; Choi, Soon Young; Bae, Sang Woo; Kang, Chang Mo; Lee, Yun Sil; Lee, Su Jae

    2005-01-01

    Ionizing radiation is one of the most commonly used treatments for a wide variety of tumors. Exposure of cells to ionizing radiation results in the simultaneous activation or down regulation of multiple signaling pathways, which play critical role in controlling cell death and cell survival after irradiation in a cell type specific manner. The molecular mechanism by which apoptotic cell death occurs in response to ionizing radiation has been widely explored but not precisely deciphered. Therefore an improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. The aim of our investigation was to elucidate molecular mechanisms of the mitochondrial dysfunction mediated apoptotic cell death triggered by ionizing radiation in human cervical cancer cells. We demonstrated that ionizing radiation utilizes PI3K-JNK signaling pathway for amplifying mitochondrial dysfunction and susequent apoptotic cell death: We showed that PI3K-dependent JNK activation leads to transcriptional upregulation of Fas and the phosphorylation/inactivation of Bcl-2, resulting in mitochondrial dysfunction-mediated apoptotic cell death in response to ionizing radiation

  8. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2009-01-01

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  9. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  10. The role of bank collapse on tidal creek ontogeny: A novel process-based model for bank retreat

    Science.gov (United States)

    Gong, Zheng; Zhao, Kun; Zhang, Changkuan; Dai, Weiqi; Coco, Giovanni; Zhou, Zeng

    2018-06-01

    Bank retreat in coastal tidal flats plays a primary role on the planimetric shape of tidal creeks and is commonly driven by both flow-induced bank erosion and gravity-induced bank collapse. However, existing modelling studies largely focus on bank erosion and overlook bank collapse. We build a bank retreat model coupling hydrodynamics, bank erosion and bank collapse. To simulate the process of bank collapse, a stress-deformation model is utilized to calculate the stress variation of bank soil after bank erosion, and the Mohr-Coulomb failure criterion is then applied to evaluate the stability of the tidal creek bank. Results show that the bank failure process can be categorized into three stages, i.e., shear failure at the bank toe (stage I), tensile failure on the bank top (stage II), and sectional cracking from the bank top to the toe (stage III). With only bank erosion, the planimetric shapes of tidal creeks are funneled due to the gradually seaward increasing discharge. In contrast to bank erosion, bank collapse is discontinuous, and the contribution of bank collapse to bank retreat can reach 85%, highlighting that the expansion of tidal creeks can be dominated by bank collapse process. The planimetric shapes of tidal creeks are funneled with a much faster expansion rate when bank collapse is considered. Overall, this study makes a further step toward more physical and realistic simulation of bank retreat in estuarine and coastal settings and the developed bank collapse module can be readily included in other morphodynamic models.

  11. An integral condition for core-collapse supernova explosions

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.

    2017-01-01

    Here, we derive an integral condition for core-collapse supernova (CCSN) explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in CCSN theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that the shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for spherically symmetric shock expansion, v_s > 0. One of the most useful one-dimensional explosion conditions is the neutrino luminosity and mass-accretion rate (L_ν-- M-dot ) critical curve. Below this curve, steady-state stalled solutions exist, but above this curve, there are no stalled solutions. Burrows & Goshy suggested that the solutions above this curve are dynamic and explosive. In this manuscript, we take one step closer to proving this supposition; we show that all steady solutions above this curve have v_s > 0. Assuming that these steady v_s > 0 solutions correspond to explosion, we present a new dimensionless integral condition for explosion, Ψ > 0. Ψ roughly describes the balance between pressure and gravity, and we show that this parameter is equivalent to the τ condition used to infer the L_ν-- M-dot critical curve. The illuminating difference is that there is a direct relationship between Ψ and v_s. Below the critical curve, Ψ may be negative, positive, and zero, which corresponds to receding, expanding, and stalled-shock solutions. At the critical curve, the minimum Ψ solution is zero; above the critical curve, Ψ_m_i_n > 0, and all steady solutions have v_s > 0. Using one-dimensional simulations, we confirm our primary assumptions and verify that Ψ_m_i_n > 0 is a reliable and accurate explosion diagnostic.

  12. MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence

    International Nuclear Information System (INIS)

    Wang Yong; Scheiber, Melissa N.; Neumann, Carola; Calin, George A.; Zhou Daohong

    2011-01-01

    Purpose: MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. Methods and Materials: In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. Results: We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. Conclusion: Our

  13. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  14. Inner shell ionization accompanying nuclear collisions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-01-01

    Selected phenomena leading to inner shell ionization and being of relevance for nuclear physics are discussed. The selection emphasizes the K-shell ionization induced in head-on collisions by fast light and medium-heavy ions. Cross-sections are reviewed. Effects of multiple inner shell ionization on the K X-ray spectra are illustrated with recent results. Implications for nuclear experiments are noted. Use of atomic observables as clocks for proton induced nuclear reactions is reviewed. Prospects for H.I. reactions are discussed. Preliminary experimental results on the direct K-shell ionization accompanying H.I. fusion reactions are presented. The post-collisional K-shell ionization due to internal conversion of γ-rays is discussed as the dominating contribution to the ionization for residues of dissipative nuclear reactions with Z > 40. Systematics of the corresponding K X-ray multiplicities are presented for rotational nuclei. These multiplicity values can be used for determining cross-sections for e.g. incomplete fusion reactions. Examples of such applications are given. Also discussed is the use of target K X-rays for normalization purposes and of the post-collisional, residue K X-rays in the studies of high spin phenomena. 96 references, 35 figures, 3 tables

  15. CHEMISTRY IN A FORMING PROTOPLANETARY DISK: MAIN ACCRETION PHASE

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Haruaki [Department of Planetology, Kobe University, Kobe 657-8501 (Japan); Tsukamoto, Yusuke [Riken, 2-1 Hirosawa, Wako, Saitama (Japan); Furuya, Kenji; Aikawa, Yuri, E-mail: aikawa@ccs.tsukuba.ac.jp [Center for Computational Sciences, University of Tsukuba (Japan)

    2016-12-10

    We investigate the chemistry in a radiation-hydrodynamics model of a star-forming core that evolves from a cold (∼10 K) prestellar core to the main accretion phase in ∼10{sup 5} years. A rotationally supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in ∼1.5 × 10{sup 3} SPH particles that end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk, but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H{sub 2}O, CH{sub 4}, NH{sub 3}, and CH{sub 3}OH are already abundant at the onset of gravitational collapse and are simply sublimated as the fluid parcels migrate inside the water snow line. On the other hand, various molecules such as carbon chains and complex organic molecules (COMs) are formed in the disk. The COMs abundance sensitively depends on the outcomes of photodissociation and diffusion rates of photofragments in bulk ice mantle. As for S-bearing species, H{sub 2}S ice is abundant in the collapse phase. In the warm regions in the disk, H{sub 2}S is sublimated to be destroyed, while SO, H{sub 2}CS, OCS, and SO{sub 2} become abundant.

  16. CHEMISTRY IN A FORMING PROTOPLANETARY DISK: MAIN ACCRETION PHASE

    International Nuclear Information System (INIS)

    Yoneda, Haruaki; Tsukamoto, Yusuke; Furuya, Kenji; Aikawa, Yuri

    2016-01-01

    We investigate the chemistry in a radiation-hydrodynamics model of a star-forming core that evolves from a cold (∼10 K) prestellar core to the main accretion phase in ∼10 5 years. A rotationally supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in ∼1.5 × 10 3 SPH particles that end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk, but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H 2 O, CH 4 , NH 3 , and CH 3 OH are already abundant at the onset of gravitational collapse and are simply sublimated as the fluid parcels migrate inside the water snow line. On the other hand, various molecules such as carbon chains and complex organic molecules (COMs) are formed in the disk. The COMs abundance sensitively depends on the outcomes of photodissociation and diffusion rates of photofragments in bulk ice mantle. As for S-bearing species, H 2 S ice is abundant in the collapse phase. In the warm regions in the disk, H 2 S is sublimated to be destroyed, while SO, H 2 CS, OCS, and SO 2 become abundant.

  17. Trans-generational effects induced by alpha and gamma ionizing radiations at Daphnia magna

    International Nuclear Information System (INIS)

    Parisot, Florian

    2015-01-01

    Anthropogenic activities related to the nuclear industry contribute to continuous discharges of radionuclides into terrestrial and aquatic ecosystems. Over the past decades, the ecological risk of ionizing radiation has become a growing public, regulatory and scientific concern for ecosystems protection. Until recently, only few studies focus on exposure situations at low doses of irradiation, although these situations are representative of realistic environmental conditions. Understanding how ionizing radiation affects species over several generations and at various levels of biological organization is a major research goal in radioecology. The aim of this PhD was to bring new knowledge on the effects of ionizing radiation during a multi-generational expose of the aquatic invertebrate, Daphnia magna. A two-step strategy was implemented. First, an external gamma radiation at environmentally relevant dose rates was performed on D. magna over three successive generations (F0, F1 and F2). The objective of this experiment was to examine whether low dose rates of radiation induced increasing effects on survival, growth and reproduction of daphnids over generations and to test a possible accumulation and transmission of DNA alterations from adults to offspring. Results showed an accumulation and a transmission of DNA alterations over generations, together with an increase in effect severity on growth and reproduction from generation F0 to generation F2. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in generation F1. Second, data from the external gamma irradiation and those from an earlier study of internal alpha contamination were analyzed with DEBtox models (Dynamic Energy Budget applied to toxicology), to identify and compare the causes of the trans-generational increase in effect severity between the two types of radiation. In each case, two distinct metabolic modes of action were necessary to explain effects on

  18. Gamma-burst emission from neutron-star accretion

    Science.gov (United States)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  19. Probing the accretion flow and emission-line regions of M81, the nearest broad-lined low-luminosity AGN

    Science.gov (United States)

    Barth, Aaron

    2017-08-01

    The nucleus of M81 is an object of singular importance as a template for low-luminosity accretion flows onto supermassive black holes. We propose to obtain a complete, small-aperture, high S/N STIS UV/optical spectrum of the M81 nucleus and multi-filter WFC3 imaging covering the UV through near-IR. Such data have never previously been obtained with HST; the only prior archival UV/optical spectra of M81 have low S/N, incomplete wavelength coverage, and are strongly contaminated by starlight. Combined with new Chandra X-ray data, our proposed observations will comprise the definitive reference dataset on the spectral energy distribution of this benchmark low-luminosity AGN. These data will provide unique new constraints on the possible contribution of a truncated thin accretion disk to the AGN emission spectrum, clarifying a fundamental property of low-luminosity accretion flows. The data will additionally provide new insights into broad-line region structure and black hole mass scaling relationships at the lowest AGN luminosities, and spatially resolved diagnostics of narrow-line region excitation conditions at unprecedented spatial resolution to assess the impact of the AGN on the ionization state of the gas in the host galaxy bulge.

  20. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  1. A chip-level modeling approach for rail span collapse and survivability analyses

    International Nuclear Information System (INIS)

    Marvis, D.G.; Alexander, D.R.; Dinger, G.L.

    1989-01-01

    A general semiautomated analysis technique has been developed for analyzing rail span collapse and survivability of VLSI microcircuits in high ionizing dose rate radiation environments. Hierarchical macrocell modeling permits analyses at the chip level and interactive graphical postprocessing provides a rapid visualization of voltage, current and power distributions over an entire VLSIC. The technique is demonstrated for a 16k C MOS/SOI SRAM and a CMOS/SOS 8-bit multiplier. The authors also present an efficient method to treat memory arrays as well as a three-dimensional integration technique to compute sapphire photoconduction from the design layout

  2. Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: A numerical study

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    The mode profile evolution of small-core photonic crystal fibers (PCFs) during a gradual collapse of the cladding airholes is investigated. The mode overlap with standard step-index fibers having a small index contrast is calculated, and it is found that overlaps around 90% can be achieved in all...... cases studied, with the proper degree of hole collapse. Thus, hole collapse induced by, e.g. laser irradiation could prove an efficient and practical way of reducing splice losses when coupling small-core PCFs to other fiber types....

  3. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  4. Sediment-induced amplification and the collapse of the Nimitz Freeway

    Science.gov (United States)

    Hough, S.E.; Friberg, P.A.; Busby, R.; Field, E.F.; Jacob, K.H.; Borcherdt, R.D.

    1990-01-01

    THE amplification of ground motion by low-seismic-velocity surface sediments is an important factor in determining the seismic hazard specific to a given site. The Ms = 7.1 Loma Prieta earthquake of 17 October 1989 was the largest event in the contiguous United States in 37 years, and yielded an unparalleled volume of seismic data from the main shock and aftershock sequence1. These data can be used to image the seismic source, to study detailed Earth structure, and to study the propagation of seismic waves both through bedrock at depth and through sediment layers near the surface. Near the edge of San Francisco Bay, site conditions vary considerably on scales of hundreds of metres. The collapsed section of the two-tiered Nimitz Freeway in Oakland was built on San Francisco Bay mud, whereas stiffer alluvial sediments underlie a southern section that was damaged but did not collapse. Here we analyse high-quality, digital aftershock recordings from several sites near the Nimitz Freeway, and conclude that soil conditions and resulting ground-motion amplification may have contributed significantly to the failure of the structure.

  5. Dynamic processes during accretion into a black hole

    Directory of Open Access Journals (Sweden)

    G. S. Bisonvatyi-kogan

    2001-01-01

    Full Text Available Accretion disc theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disc. One of the most important new invention of this theory was a phenomenological treatment of the turbulent viscosity, known as “alpha” prescription, when the (rϕ component of the stress tensor was approximated by (αP with a unknown constant α This prescription played the role in the accretion disc theory as well important as the mixing-length theory of convection for stellar evolution. Sources of turbulence in the accretion disc are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic filed role. In parallel to the optically thick geometrically thin accretion disc models, a new branch of the optically thin accretion disc models was discovered, with a larger thickness for the same total luminosity. The choice between these solutions should be done of the base of stability analysis. The ideas underlying the necessity to include advection into the accretion disc theory are presented and first models with advection are reviewed. The present status of the solution for a low-luminous optically thin accretion disc model with advection is discussed and the limits for an advection dominated accretion flows (ADAF imposed by the presence of magnetic field are analyzed.

  6. The f electron collapse revisited

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1987-03-01

    A reexamination of the collapse of 4f and 5f electrons in the lanthanide and actinide series is presented. The calculations show the well-known collapse of the f electron density at the thresholds of these series along with an f 2 collapse between thorium and protactinium. The collapse is sensitive to the choice of model for the exchange-correlation potential and the behavior of the potential at large radius

  7. Ionizing radiation sensitivity of DNA polymerase lambda-deficient cells.

    NARCIS (Netherlands)

    Vermeulen, C.; Bertocci, B.; Begg, A.C.; Vens, C.

    2007-01-01

    Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement

  8. Gas ionization by focused laser beams

    International Nuclear Information System (INIS)

    Brito, A.L. de.

    1984-01-01

    It is shown that the effect of line broadening by focusing may considerably contribute to the observed laser-induced ionization of gases when the ionization energy of the gas molecules is well above the mean photon energy of the laser radiation. (Author) [pt

  9. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  10. Collapse models and perceptual processes

    International Nuclear Information System (INIS)

    Ghirardi, Gian Carlo; Romano, Raffaele

    2014-01-01

    Theories including a collapse mechanism have been presented various years ago. They are based on a modification of standard quantum mechanics in which nonlinear and stochastic terms are added to the evolution equation. Their principal merits derive from the fact that they are mathematically precise schemes accounting, on the basis of a unique universal dynamical principle, both for the quantum behavior of microscopic systems as well as for the reduction associated to measurement processes and for the classical behavior of macroscopic objects. Since such theories qualify themselves not as new interpretations but as modifications of the standard theory they can be, in principle, tested against quantum mechanics. Recently, various investigations identifying possible crucial test have been discussed. In spite of the extreme difficulty to perform such tests it seems that recent technological developments allow at least to put precise limits on the parameters characterizing the modifications of the evolution equation. Here we will simply mention some of the recent investigations in this direction, while we will mainly concentrate our attention to the way in which collapse theories account for definite perceptual process. The differences between the case of reductions induced by perceptions and those related to measurement procedures by means of standard macroscopic devices will be discussed. On this basis, we suggest a precise experimental test of collapse theories involving conscious observers. We make plausible, by discussing in detail a toy model, that the modified dynamics can give rise to quite small but systematic errors in the visual perceptual process.

  11. Gravitomagnetic acceleration from black hole accretion disks

    International Nuclear Information System (INIS)

    Poirier, J; Mathews, G J

    2016-01-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet. (note)

  12. Gravitomagnetic acceleration from black hole accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  13. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  14. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  15. Comparative experimental study of cancer induced by ionizing radiations or by chemical carcinogens

    International Nuclear Information System (INIS)

    Lafuma, J.

    1983-01-01

    Animal experiments have contributed to specify a number of parameters used in setting human safety limits for ionizing radiation. In the same way, comparisons have been made between cancers induced in man and in animals in well-defined conditions. In order to use the same experimental data for chemical carcinogens, the mechanisms of carcinogenesis should be the same, i.e. additivity of responses instead of synergy of effects, which requires the development of a new experimental method [fr

  16. Early Results from NICER Observations of Accreting Neutron Stars

    Science.gov (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  17. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    Science.gov (United States)

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  18. Simulation of the earthquake-induced collapse of a school building in Turkey in 2011 Van Earthquake

    NARCIS (Netherlands)

    Bal, Ihsan Engin; Smyrou, Eleni

    2016-01-01

    Collapses of school or dormitory buildings experienced in recent earthquakes raise the issue of safety as a major challenge for decision makers. A school building is ‘just another structure’ technically speaking, however, the consequences of a collapse in an earthquake could lead to social reactions

  19. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  20. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  1. Geotechnical properties of Egyptian collapsible soils

    Directory of Open Access Journals (Sweden)

    Khaled E. Gaaver

    2012-09-01

    Full Text Available The risk of constructing structures on collapsible soils presents significant challenges to geotechnical engineers due to sudden reduction in volume upon wetting. Identifying collapsible soils when encountered in the field and taking the needed precautions should substantially reduce the risk of such problems usually reported in buildings and highways. Collapsible soils are those unsaturated soils that can withstand relatively high pressure without showing significant change in volume, however upon wetting; they are susceptible to a large and sudden reduction in volume. Collapsible soils cover significant areas around the world. In Egypt, collapsible soils were observed within the northern portion of the western desert including Borg El-Arab region, and around the city of Cairo in Six-of-October plateau, and Tenth-of-Ramadan city. Settlements associated with development on untreated collapsible soils usually lead to expensive repairs. One method for treating collapsible soils is to densify their structure by compaction. The ongoing study presents the effect of compaction on the geotechnical properties of the collapsible soils. Undisturbed block samples were recovered from test pits at four sites in Borg El-Arab district, located at about 20 km west of the city of Alexandria, Egypt. The samples were tested in both unsoaked and soaked conditions. Influence of water inundation on the geotechnical properties of collapsible soils was demonstrated. A comparative study between natural undisturbed and compacted samples of collapsible soils was performed. An attempt was made to relate the collapse potential to the initial moisture content. An empirical correlation between California Bearing Ratio of the compacted collapsible soils and liquid limit was adopted. The presented simple relationships should enable the geotechnical engineers to estimate the complex parameters of collapsible soils using simple laboratory tests with a reasonable accuracy.

  2. Accretion of Ghost Condensate by Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  3. Review of gravitomagnetic acceleration from accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  4. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  5. A Solution to the Protostellar Accretion Problem

    OpenAIRE

    Padoan, Paolo; Kritsuk, Alexei; Norman, Michael L.; Nordlund, Ake

    2004-01-01

    Accretion rates of order 10^-8 M_\\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \\dot{M}_accr\\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. Ho...

  6. Mechanisms of cascade collapse

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.

    1988-12-01

    The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab

  7. A new Technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescence (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton Ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (author)

  8. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs

  9. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F.L.

    1992-07-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs.

  10. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  11. Focused Wind Mass Accretion in Mira AB

    Science.gov (United States)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  12. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    Energy Technology Data Exchange (ETDEWEB)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.; Barcellos-Hoff, Mary Helen; Jakob, Burkhard

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histone H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.

  13. Bare AGN: an Unobscured View of the Innermost Accretion Geometry

    Science.gov (United States)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; Garcia, J.; Walton, D.

    2017-10-01

    In a systematic study of the relativistic reflection spectra and coronal properties for a sample of bare AGN we analyze high signal-to-noise spectra obtained with the XMM-Newton and NuSTAR observatories utilizing state-of-the-art reflection codes. Features of blurred reflection off an ionized accretion disk are modelled using different flavors of the relativistic ray-tracing code Relxill. We show that the more physically motivated and self-consistent lamp-post geometry is largely consistent with fits of broken power-law emissivity profiles. We provide good constraints on parameters describing the compact reprocessing corona, i.e., the reflection fraction and the lamp-post height. The latter are found to be prevalent within 1-10 r_{g}, while our models generally find close-to-maximal black hole spins. These results are discussed and compared with previous studies by Walton et al. (2013).

  14. Misaligned Accretion and Jet Production

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  15. Ionization-induced rearrangement of defects in silicon

    International Nuclear Information System (INIS)

    Vinetskij, V.L.; Manojlo, M.A.; Matvijchuk, A.S.; Strikha, V.I.; Kholodar', G.A.

    1988-01-01

    Ionizing factor effect on defect rearrangement in silicon including centers with deep local electron levels in the p-n-transition region is considered. Deep center parameters were determined using non-steady-state capacity spectroscopy of deep levels (NCDLS) method. NCDLS spectrum measurement was performed using source p + -n - diodes and after their irradiation with 15 keV energy electrons or laser pulses. It is ascertained that in silicon samples containing point defect clusters defect rearrangement under ionizing factor effect takes place, i.e. deep level spectra are changed. This mechanism is efficient in case of silicon irradiation with subthreshold energy photons and electrons and can cause degradation of silicon semiconducting structures

  16. Accretion and evaporation of modified Hayward black hole

    International Nuclear Information System (INIS)

    Debnath, Ujjal

    2015-01-01

    We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)

  17. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  18. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  19. Energy transport in radially accreting white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.M.

    1986-10-01

    Some of the non-thermal energy transport processes which may be present in a white dwarf accretion column are examined and it is determined whether these could in any way contribute to a resolution of the soft X-ray puzzle. The first two Chapters of this Thesis constitute a review of the observations and proposed models for white dwarf accretion columns. In Chapter 3 we show that in Kuijpers and Pringle's original bombardment model of white dwarf accretion columns, in which the energy of the accreting material is deposited uniformly into a static atmosphere which then radiates the energy away as optically thin bremsstrahlung/line radiation, an incorrect Coulomb collisional timescale was used. In Chapter 4 we extend the calculations of Chapter 3 to include the effect of cyclotron radiation. It is concluded that a cyclotron cooled bombardment solution for a white dwarf accretion column may exist. We extend this calculation to derive a simple piecewise uniform temperature structure for such an accretion column, incorporating the effect of thermal conduction. In Chaper 5 we examine two of the non thermal emission mechanisms that might be present in white dwarf accretion columns:- non thermal Lyman-{alpha} emission and non thermal inverse bremsstrahlung emission. It is shown that neither would actually be sufficiently large to be detectable. In Chapter 6 some possible extensions to the work presented are suggested. (author).

  20. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    Science.gov (United States)

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  1. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.

    2008-01-01

    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  2. State and trends of ionization gas analysis. 1

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.

    1980-01-01

    The ionization gas analysis makes use of the fact that the ionization-induced conductivity of gases and gas mixtures changes with the composition of such mixtures. A general description is given of ionization detectors based on this principle and theory, properties, and main fields of application of electron capture detectors are discussed

  3. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    Directory of Open Access Journals (Sweden)

    Joel Greenberger

    2015-01-01

    Full Text Available Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1 radiation counter measures against total or partial body irradiation; (2 normal tissue protection against acute organ specific ionizing irradiation injury; and (3 prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.

  4. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

    Energy Technology Data Exchange (ETDEWEB)

    Gressel, O. [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Nelson, R. P. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ziegler, U., E-mail: oliver.gressel@nordita.org, E-mail: r.p.nelson@qmul.ac.uk, E-mail: neal.j.turner@jpl.nasa.gov, E-mail: uziegler@aip.de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany)

    2013-12-10

    We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couples and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.

  5. Spherical dust collapse in higher dimensions

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We consider here whether it is possible to recover cosmic censorship when a transition is made to higher-dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as the end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear, that, in a generic higher-dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher-dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes on the nature of the initial data from which the collapse develops is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse

  6. Spherically symmetric radiation in gravitational collapse

    International Nuclear Information System (INIS)

    Bridy, D.J.

    1983-01-01

    This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases

  7. Progress on untargeted effects of ionizing irradiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Li Wenjian

    2010-01-01

    The side effect of ionizing irradiation has been paid more attention with its widely using in tumor treating and mutation breeding. In recent years, untargeted effects induced by ionizing irradiation have become a hotspot of radiobiology. Here, according to reported results, we reviewed the types (genomic instability, bystander effect and adaptive response) and mechanisms of untargeted effects of ionizing irradiation in this paper. (authors)

  8. Discriminating the effects of collapse models from environmental diffusion with levitated nanospheres

    Science.gov (United States)

    Li, Jie; Zippilli, Stefano; Zhang, Jing; Vitali, David

    2016-05-01

    Collapse models postulate the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality. Assessing the validity of these models is extremely challenging because it is nontrivial to discriminate unambiguously their presence in experiments where other hardly controllable sources of noise compete to the overall decoherence. Here we provide a simple procedure that is able to probe the hypothetical presence of the collapse noise with a levitated nanosphere in a Fabry-Pérot cavity. We show that the stationary state of the system is particularly sensitive, under specific experimental conditions, to the interplay between the trapping frequency, the cavity size, and the momentum diffusion induced by the collapse models, allowing one to detect them even in the presence of standard environmental noises.

  9. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P. [Russian Academy of Sciences, High Energy Density Research Center, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3}, the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.

  10. The accretion of migrating giant planets

    Science.gov (United States)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  11. Relativistic jets from accreting black holes

    International Nuclear Information System (INIS)

    Coriat, Mickael

    2010-01-01

    Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr

  12. Protection of vanillin derivative VND3207 on plasmid DNA damage induced by different LET ionizing radiation

    International Nuclear Information System (INIS)

    Xu Huihui; Wang Li; Sui Li; Guan Hua; Wang Yu; Liu Xiaodan; Zhang Shimeng; Xu Qinzhi; Wang Xiao; Zhou Pingkun

    2011-01-01

    Objective: To evaluate the radioprotective effect of vanillin derivative VND3207 on DNA damage induced by different LET ionizing radiation. Methods: The plasmid DNA in liquid was irradiated by 60 Co γ-rays, proton or 7 Li heavy ion with or without VND3207. The conformation changes of plasmid DNA were assessed by agarose gel electrophoresis and the quantification was done using gel imaging system. Results: The DNA damage induced by proton and 7 Li heavy ion was much more serious as compared with that by 60 Co γ-rays, and the vanillin derivative VND3207 could efficiently decrease the DNA damage induced by all three types of irradiation sources, which was expressed as a significantly reduced ratio of open circular form (OC) of plasmid DNA. The radioprotective effect of VND3207 increased with the increasing of drug concentration. The protective efficiencies of 200 μmol/L VND3207 were 85.3% (t =3.70, P=0.033), 73.3% (t=10.58, P=0.017) and 80.4% (t=8.57, P=0.008) on DNA damage induction by 50 Gy of γ-rays, proton and 7 Li heavy ion, respectively. It seemed that the radioprotection of VND3207 was more effective on DNA damage induced by high LET heavy ion than that by proton. Conclusions: VND3207 has a protective effect against the genotoxicity of different LET ionizing radiation, especially for γ-rays and 7 Li heavy ion. (authors)

  13. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  14. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  15. Modeling of radiation-induced charge trapping in MOS devices under ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, M. A., E-mail: m.a.petukhov@gmail.com; Ryazanov, A. I. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The numerical model of the radiation-induced charge trapping process in the oxide layer of a MOS device under ionizing irradiation is developed; the model includes carrier transport, hole capture by traps in different states, recombination of free electrons and trapped holes, kinetics of hydrogen ions which can be accumulated in the material during transistor manufacture, and accumulation and charging of interface states. Modeling of n-channel MOSFET behavior under 1 MeV photon irradiation is performed. The obtained dose dependences of the threshold voltage shift and its contributions from trapped holes and interface states are in good agreement with experimental data.

  16. Ionization-induced solvent migration in acetanilide-methanol clusters inferred from isomer-selective infrared spectroscopy.

    Science.gov (United States)

    Weiler, Martin; Nakamura, Takashi; Sekiya, Hiroshi; Dopfer, Otto; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2012-12-07

    We present the resonance-enhanced multiphoton ionization, infrared-ultraviolet hole burning (IR-UV HB), and IR dip spectra of the trans-acetanilide-methanol (AA-MeOH) cluster in the S(0), S(1), and cationic ground state (D(0)) in a supersonic jet. The IR-UV HB spectra demonstrate the co-existence of two isomers in S(0,1), in which MeOH binds either to the NH or the CO site of the peptide linkage in AA, denoted as AA(NH)-MeOH and AA(CO)-MeOH. When AA(CO)-MeOH is selectively ionized, its IR spectrum in D(0) is the same as that measured for AA(+) (NH)-MeOH. Thus, photoionization of AA(CO)-MeOH induces migration of MeOH from the CO to the NH site with 100% yield. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  18. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  19. Tracheal collapse in two cats

    International Nuclear Information System (INIS)

    Hendricks, J.C.; O'Brien, J.A.

    1985-01-01

    Two cats examined bronchoscopically to discover the cause of tracheal collapse were found to have tracheal obstruction cranial to the collapse. Cats with this unusual sign should be examined bronchoscopically to ascertain whether there is an obstruction, as the cause in these 2 cats was distinct from the diffuse airway abnormality that causes tracheal collapse in dogs

  20. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Wang, Zhikuan [State Key Laboratory of Analog Integrated Circuit, Chongqing 400060 (China)

    2016-09-21

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation. - Highlights: • A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to facilitate the analysis of ionizing/displacement synergistic effects induced by the mixed irradiation of gamma and neutron. • The difference between ionizing/displacement synergistic effects and the simple sum of TID and displacement effects is analyzed. • The physical mechanisms of synergistic effects are explained.

  1. Pre-main-sequence disk accretion in Z Canis Majoris

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.; Hewett, R.; Edwards, S.; Strom, K.M.; Strom, S.E.; Stauffer, J.R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion. 41 references

  2. Pre-main-sequence disk accretion in Z Canis Majoris

    Science.gov (United States)

    Hartmann, L.; Kenyon, S. J.; Hewett, R.; Edwards, S.; Strom, K. M.; Strom, S. E.; Stauffer, J. R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion.

  3. Accretion in Radiative Equipartition (AiRE) Disks

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada)

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  4. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  5. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    International Nuclear Information System (INIS)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  6. CHALLENGES IN FORMING PLANETS BY GRAVITATIONAL INSTABILITY: DISK IRRADIATION AND CLUMP MIGRATION, ACCRETION, AND TIDAL DESTRUCTION

    International Nuclear Information System (INIS)

    Zhu Zhaohuan; Hartmann, Lee; Nelson, Richard P.; Gammie, Charles F.

    2012-01-01

    We present two-dimensional hydrodynamic simulations of self-gravitating protostellar disks subject to axisymmetric, continuing mass loading from an infalling envelope and irradiation from the central star to explore the growth of gravitational instability (GI) and disk fragmentation. We assume that the disk is built gradually and smoothly by the infall, resulting in good numerical convergence. We confirm that for disks around solar-mass stars, infall at high rates at radii beyond ∼50 AU leads to disk fragmentation. At lower infall rates, however, irradiation suppresses fragmentation. We find that, once formed, the fragments or clumps migrate inward on typical type I timescales of ∼2 × 10 3 yr initially, but with a stochastic component superimposed due to their interaction with the GI-induced spiral arms. Migration begins to deviate from the type I timescale when the clump becomes more massive than the local disk mass, and/or when the clump begins to form a gap in the disk. As they migrate, clumps accrete from the disk at a rate between 10 –3 and 10 –1 M J yr –1 , consistent with analytic estimates that assume a 1-2 Hill radii cross section. The eventual fates of these clumps, however, diverge depending on the migration speed: 3 out of 13 clumps in our simulations become massive enough (brown dwarf mass range) to open gaps in the disk and essentially stop migrating; 4 out of 13 are tidally destroyed during inward migration; and 6 out of 13 migrate across the inner boundary of the simulated disks. A simple analytic model for clump evolution explains the different fates of the clumps and reveals some limitations of two-dimensional simulations. Overall, our results indicate that fast migration, accretion, and tidal destruction of the clumps pose challenges to the scenario of giant planet formation by GI in situ, although we cannot address whether or not remnant solid cores can survive after tidal stripping. The models where the massive clumps are not

  7. The Evaluation of Melatonin Effect Against The Early Effect of Ionizing Radiation Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    raziyeh tahamtan

    2014-06-01

    Results: the results indicated that radiation increases the collapse and fibrosis and cause the abundance of macrophage compared to control group (p<0.05. Oral administration of melatonin before radiation therapy significantly increased the lymphocyte and macrophage frequency (p<0.001 and decreased the RBC (p<0.05 frequency compared to the radiation group. Conclusion: According to the results, melatonin can prevent early damages in irradiated lungs. Free radicals cause cytotoxicity and melatonin can directly decrease the radiation induced cell damages by converting the free radicals to non- toxic compounds and also through the activation of the major antioxidant enzymes.

  8. Autophagic cell death induced by reactive oxygen species is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Yuan, Guang-Jin; Deng, Jun-Jian; Cao, De-Dong; Shi, Lei; Chen, Xin; Lei, Jin-Ju; Xu, Xi-Ming

    2017-08-14

    To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.

  9. MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene; Ormel, Chris W., E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu, E-mail: ormel@berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2014-12-20

    Close-in super-Earths having radii 1-4 R {sub ⊕} may possess hydrogen atmospheres comprising a few percent by mass of their rocky cores. We determine the conditions under which such atmospheres can be accreted by cores from their parent circumstellar disks. Accretion from the nebula is problematic because it is too efficient: we find that 10 M {sub ⊕} cores embedded in solar metallicity disks tend to undergo runaway gas accretion and explode into Jupiters, irrespective of orbital location. The threat of runaway is especially dire at ∼0.1 AU, where solids may coagulate on timescales orders of magnitude shorter than gas clearing times; thus nascent atmospheres on close-in orbits are unlikely to be supported against collapse by planetesimal accretion. The time to runaway accretion is well approximated by the cooling time of the atmosphere's innermost convective zone, whose extent is controlled by where H{sub 2} dissociates. Insofar as the temperatures characterizing H{sub 2} dissociation are universal, timescales for core instability tend not to vary with orbital distance—and to be alarmingly short for 10 M {sub ⊕} cores. Nevertheless, in the thicket of parameter space, we identify two scenarios, not mutually exclusive, that can reproduce the preponderance of percent-by-mass atmospheres for super-Earths at ∼0.1 AU, while still ensuring the formation of Jupiters at ≳ 1 AU. Scenario (a): planets form in disks with dust-to-gas ratios that range from ∼20× solar at 0.1 AU to ∼2× solar at 5 AU. Scenario (b): the final assembly of super-Earth cores from mergers of proto-cores—a process that completes quickly at ∼0.1 AU once begun—is delayed by gas dynamical friction until just before disk gas dissipates completely. Both scenarios predict that the occurrence rate for super-Earths versus orbital distance, and the corresponding rate for Jupiters, should trend in opposite directions, as the former population is transformed into the latter: as

  10. Regimes of mini black hole abandoned to accretion

    Science.gov (United States)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  11. Collapse instability of solitons in the nonpolynomial Schroedinger equation with dipole-dipole interactions

    International Nuclear Information System (INIS)

    Gligoric, G; Hadzievski, Lj; Maluckov, A; Malomed, B A

    2009-01-01

    A model of the Bose-Einstein condensate (BEC) of dipolar atoms, confined in a combination of a cigar-shaped trap and optical lattice acting in the axial direction, is studied in the framework of the one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) with additional terms describing long-range dipole-dipole (DD) interactions. The NPSE makes it possible to describe the collapse of localized modes, which was experimentally observed in the self-attractive BEC confined in tight traps, in the framework of the 1D description. We study the influence of the DD interactions on the dynamics of bright solitons, especially concerning their collapse-induced instability. Both attractive and repulsive contact and DD interactions are considered. The results are summarized in the form of stability/collapse diagrams in a respective parametric space. In particular, it is shown that the attractive DD interactions may prevent the collapse instability in the condensate with attractive contact interactions.

  12. Thermal structure of accreting neutron stars and strange stars

    International Nuclear Information System (INIS)

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  13. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  14. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  15. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  16. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  17. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  18. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS

    International Nuclear Information System (INIS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2013-01-01

    We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.

  19. RINGED ACCRETION DISKS: INSTABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  20. Protection from ionizing radiation induced damages by phytoceuticals and nutraceuticals

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2012-01-01

    Exposure of living systems to ionizing radiation cause a variety of damages to DNA and membranes due to generation of free radicals and reactive oxygen species. The radiation induced lesions in the cellular DNA are mainly strand breaks, damage to sugar moiety, alterations and elimination of bases, cross links of the intra and inter strand type and cross links to proteins while peroxidation of the lipids and oxidation of proteins constitute the major lesions in the membranes. The radioprotectors elicit their action by various mechanisms such as i) by suppressing the formation of reactive species, ii) detoxification of radiation induced species, iii) target stabilization and iv) enhancing the repair and recovery processes. The radioprotective compounds are of importance in medical, industrial, environmental, military and space science applications. Radiation protection might offer a tactical advantage on the battlefield in the event of a nuclear warfare. Radioprotectors might reduce the cancer risk to populations exposed to radiations directly or indirectly through industrial and military applications. The antioxidant and radioprotective properties a few of these agents under in vitro and in vivo conditions in animal models will be discussed

  1. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  2. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    Science.gov (United States)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  3. State-of-the-Art-Review of Collapsible Soils

    Directory of Open Access Journals (Sweden)

    A. A. AL-Rawas

    2000-12-01

    Full Text Available Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.

  4. Collapse of large extra dimensions

    International Nuclear Information System (INIS)

    Geddes, James

    2002-01-01

    In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided

  5. Cylindrical collapse and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)

    2005-06-21

    We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.

  6. Escape of ionizing radiation from high redshift dwarf galaxies: role of AGN feedback

    Science.gov (United States)

    Trebitsch, Maxime; Volonteri, Marta; Dubois, Yohan; Madau, Piero

    2018-05-01

    While low mass, star forming galaxies are often considered as the primary driver of reionization, their actual contribution to the cosmic ultraviolet background is still uncertain, mostly because the escape fraction of ionizing photons is only poorly constrained. Theoretical studies have shown that efficient supernova feedback is a necessary condition to create paths through which ionizing radiation can escape into the intergalactic medium. We investigate the possibility that accreting supermassive black holes in early dwarf galaxies may provide additional feedback and enhance the leakage of ionizing radiation. We use a series of high resolution cosmological radiation hydrodynamics simulations where we isolate the different sources of feedback. We find that supernova feedback prevents the growth of the black hole, thus quenching its associated feedback. Even in cases where the black hole can grow, the structure of the interstellar medium is strongly dominated by supernova feedback. We conclude that, in the dwarf galaxy regime, supermassive black holes do not appear to play a significant role in enhancing the escape fraction and in contributing to the early UV background.

  7. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  8. Protective effects of melatonin on damage of thymocytes in mice induced by ionizing radiation

    International Nuclear Information System (INIS)

    Zhang Xuan; Wang Zhenqi; Liu Yang; Gong Shouliang; Zhang Ming; Liu Shuzheng

    2004-01-01

    Objective: To explore the effects of melatonin (MLT) on the damage of mouse thymocytes in vivo induced by ionizing radiation and its mechanism. Methods: The exogenous MLT was given to Kunming mice to establish the animal models of single and successive administration of MLT through intraperitoneal injection before whole-body irradiation with 1 Gy X-rays. For single administration of MLT, the apoptotic body percentage (ABP) and DNA lytic rate (DLR) in the thymocytes were determined with flow cytometry and fluorospectrophotometry, respectively, 12 h after irradiation. For successive administration of MLT, 3 H-TdR incorporative rate (HTIR ) was determined 24 h after irradiation. Results: The number of thymocytes in single administration group was significantly lower than that in the sham-irradiation group 12 h after irradiation with 1 Gy X-rays (P -1 MLT group was significantly higher, while the ABP and DLR were significantly lower than those in 0 mg·kg -1 MLT group (simple irradiation, P -1 MLT were significantly higher than that in 0 mg·kg -1 MLT group (P -1 MLT group was also significantly higher (P<0.05). Conclusion: The administration of exogenous MLT before irradiation can decrease the damage of mouse thymocytes induced by ionizing radiation, and has the protective effect on immune functions in mice. (authors)

  9. Star formation: study of the collapse of pre-stellar dense cores

    International Nuclear Information System (INIS)

    Commercon, Benoit

    2009-01-01

    One of the priorities of contemporary astrophysics remains to understand the mechanisms which lead to star formation. In the dense cores where star formation occurs, temperature, pressure, etc... are such that it is impossible to reproduce them in the laboratory. Numerical calculations remain the only mean to study physical phenomena that are involved in the star formation process. The focus of this thesis has been on the numerical methods that are used in the star formation context to describe highly non-linear and multi-scale phenomena. In particular, I have concentrated my work on the first stages of the pre-stellar dense cores collapse. This work is divided in 4 linked part. In a first study, I use a 1D Lagrangian code in spherical symmetry (Audit et al. 2002) to compare three models that incorporate radiative transfer and matter-radiation interactions. This comparison was based on simple gravitational collapse calculations which lead to the first Larson core formation. It was found that the Flux Limited Diffusion model is appropriate for star formation calculations. I also took benefit from this first work to study the properties of the accretion shock on the first Larson core. We developed a semi-analytic model based on well-known assumptions, which reproduces the jump properties at the shock. The second study consisted in implementing the Flux Limited Diffusion model with the radiation-hydrodynamics equations in the RAMSES code (Teyssier 2002). After a first step of numerical tests that validate the scheme, we used RAMSES to perform the first multidimensional collapse calculations that combine magnetic field and radiative transfer effects at small scales with a high numerical resolution. Our results show that the radiative transfer has a significant impact on the fragmentation in the collapse of pre-stellar dense cores. I also present a comparison we made between the RAMSES code (Eulerian approach) and the SPH code DRAGON (Goodwin 2004, Lagrangian approach

  10. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Science.gov (United States)

    Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.

    2017-06-01

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  11. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Wen; Zahedy, Fakhri S. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Johnson, Sean D. [Department of Astrophysics, Princeton University, Princeton, NJ (United States); Rauch, Michael; Mulchaey, John S., E-mail: hchen@oddjob.uchicago.edu [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-06-20

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  12. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.

    2015-01-01

    and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of temperature, wind speed and yaw angle of accretion, were reproduced in a climatic wind tunnel, giving rise to different types of accretion. These were chosen such to generate the most common natural ice formations expected to produce bridge cable vibrations. A description of the geometric characteristics...

  13. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  14. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    International Nuclear Information System (INIS)

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-01-01

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to ∼10 -13 M sun yr -1 for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of ∼3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10 -12 M sun yr -1 onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the Hα flux.

  15. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  16. Accretion Disks and Coronae in the X-Ray Flashlight

    Science.gov (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  17. Accretion of a ghost condensate by black holes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.

    2004-01-01

    The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as a tenth of a solar mass per second for 10 MeV scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model

  18. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  19. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    Science.gov (United States)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He I absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg II, Fe II, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He I* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  20. WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lile; Goodman, Jeremy J. [Princeton University Observatory, Princeton, NJ 08544 (United States)

    2017-01-20

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.

  1. Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors

    Science.gov (United States)

    Jiang, Xiang; Liu, Hanlong; Main, Ian G.; Salje, Ekhard K. H.

    2017-08-01

    The quest for predictive indicators for the collapse of coal mines has led to a robust criterion from scale-model tests in the laboratory. Mechanical collapse under uniaxial stress forms avalanches with a power-law probability distribution function of radiated energy P ˜E-ɛ , with exponent ɛ =1.5 . Impending major collapse is preceded by a reduction of the energy exponent to the mean-field value ɛ =1.32 . Concurrently, the crackling noise increases in intensity and the waiting time between avalanches is reduced when the major collapse is approaching. These latter criteria were so-far deemed too unreliable for safety assessments in coal mines. We report a reassessment of previously collected extensive collapse data sets using "record-breaking analysis," based on the statistical appearance of "superjerks" within a smaller spectrum of collapse events. Superjerks are defined as avalanche signals with energies that surpass those of all previous events. The final major collapse is one such superjerk but other "near collapse" events equally qualify. In this way a very large data set of events is reduced to a sparse sequence of superjerks (21 in our coal sample). The main collapse can be anticipated from the sequence of energies and waiting times of superjerks, ignoring all weaker events. Superjerks are excellent indicators for the temporal evolution, and reveal clear nonstationarity of the crackling noise at constant loading rate, as well as self-similarity in the energy distribution of superjerks as a function of the number of events so far in the sequence Es j˜nδ with δ =1.79 . They are less robust in identifying the precise time of the final collapse, however, than the shift of the energy exponents in the whole data set which occurs only over a short time interval just before the major event. Nevertheless, they provide additional diagnostics that may increase the reliability of such forecasts.

  2. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  3. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  4. Stress evolution during caldera collapse

    Science.gov (United States)

    Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.

    2015-07-01

    The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.

  5. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  6. Ionization detection system for aerosols

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber. 8 claims, 7 figures

  7. Accretion disk emission from a BL Lacertae object

    International Nuclear Information System (INIS)

    Wandel, A.; Urry, C.M.

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability. 37 refs

  8. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  10. The binary progenitors of short and long GRBs and their gravitational-wave emission

    Science.gov (United States)

    Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.

    2018-01-01

    We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  11. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    International Nuclear Information System (INIS)

    Tateishi, Yoshihisa; Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-01-01

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment

  12. First Patagonian Course on 'Diagnosis and Therapy of Injuries Induced by Ionizing Radiation'

    International Nuclear Information System (INIS)

    Bellotti, Mariela I.

    2013-01-01

    In Patagonia there are academic centers, health and industrial facilities that use ionizing radiations in its usual practices. However, they do not have protocols that respond to local needs. For this reason was held from October 5 to November 10, 2012 in Bariloche Atomic Center, a training course for health personnel. The range of topics covered ranged from the definition of dosimetry quantities, types of radiation and biological dosimetry, biological effects, radiation acute syndrome, radiation-induced cutaneous syndrome, internal contamination, screening in radiological emergencies, etc.The course provided a theoretical and practical guide about how to recognize and treat people exposed to radiations, guidelines for acting in radiological emergencies and a perception of the psychosocial impact of the radiation accidents.The result was a pocket book for health personnel that will be used in case of having a patient with radiation induced injury

  13. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  14. SURPRISINGLY WEAK MAGNETISM ON YOUNG ACCRETING BROWN DWARFS

    International Nuclear Information System (INIS)

    Reiners, A.; Basri, G.; Christensen, U. R.

    2009-01-01

    We have measured the surface magnetic flux on four accreting young brown dwarfs and one nonaccreting young very low mass (VLM) star utilizing high-resolution spectra of absorption lines of the FeH molecule. A magnetic field of 1-2 kG had been proposed for one of the brown dwarfs, Two Micron All Sky Survey (2MASS) J1207334-393254, because of its similarities to higher mass T Tauri stars as manifested in accretion and the presence of a jet. We do not find clear evidence for a kilogauss field in any of our young brown dwarfs but do find a 2 kG field on the young VLM star. Our 3σ upper limit for the magnetic flux in 2MASS J1207334-393254 just reaches 1 kG. We estimate the magnetic field required for accretion in young brown dwarfs given the observed rotations, and find that fields of only a few hundred gauss are sufficient for magnetospheric accretion. This predicted value is less than our observed upper limit. We conclude that magnetic fields in young brown dwarfs are a factor of 5 or more lower than in young stars of about one solar mass, and in older stars with spectral types similar to our young brown dwarfs. It is interesting that, during the first few million years, the fields scale down with mass in line with what is needed for magnetospheric accretion, yet no such scaling is observed at later ages within the same effective temperature range. This scaling is opposite to the trend in rotation, with shorter rotation periods for very young accreting brown dwarfs compared with accreting solar-mass objects (and very low Rossby numbers in all cases). We speculate that in young objects a deeper intrinsic connection may exist between magnetospheric accretion and magnetic field strength, or that magnetic field generation in brown dwarfs may be less efficient than in stars. Neither of these currently has an easy physical explanation.

  15. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  16. Thin accretion disk around regular black hole

    Directory of Open Access Journals (Sweden)

    QIU Tianqi

    2014-08-01

    Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.

  17. Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.

    Science.gov (United States)

    Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree

    2015-10-22

    Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.

  18. Comparative analysis of chromosome aberrations induced in human lymphocytes in vitro by various types of ionizing radiations

    International Nuclear Information System (INIS)

    Todorov, S.L.

    1979-01-01

    Certain problems of comparative analyses of radiation-induced dicentrics in human lymphocytes following various types of ionizing radiations are considered as follows: 1. Equations best fitting for dose-response kinetics; 2. Use of dicentrics for analysing the RBE of various types of radiations; 3. The relationship between RBE and LET as seen by the analysis of dicentrics. (author)

  19. Does the mass of a black hole decrease due to the accretion of phantom energy?

    International Nuclear Information System (INIS)

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-01-01

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  20. Granular Silo collapse: an experimental study

    Science.gov (United States)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  1. Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs

    Science.gov (United States)

    Curran, R. L.; Argiroffi, C.; Sacco, G. G.; Orlando, S.; Peres, G.; Reale, F.; Maggio, A.

    2011-02-01

    Context. High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in classical T Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consistently lower than those derived from UV/optical/NIR studies. Aims: We aim to test the hypothesis that the high density soft X-ray emission originates from accretion by analysing, in a homogeneous manner, optical accretion indicators for an X-ray selected sample of CTTSs. Methods: We analyse optical spectra of the X-ray selected sample of CTTSs and calculate the accretion rates based on measuring the Hα, Hβ, Hγ, He ii 4686 Å, He i 5016 Å, He i 5876 Å, O i 6300 Å, and He i 6678 Å equivalent widths. In addition, we also calculate the accretion rates based on the full width at 10% maximum of the Hα line. The different optical tracers of accretion are compared and discussed. The derived accretion rates are then compared to the accretion rates derived from the X-ray spectroscopy. Results: We find that, for each CTTS in our sample, the different optical tracers predict mass-accretion rates that agree within the errors, albeit with a spread of ≈ 1 order of magnitude. Typically, mass-accretion rates derived from Hα and He i 5876 Å are larger than those derived from Hβ, Hγ, and O i. In addition, the Hα full width at 10%, whilst a good indicator of accretion, may not accurately measure the mass-accretion rate. When the optical mass-accretion rates are compared to the X-ray derived mass-accretion rates, we find that: a) the latter are always lower (but by varying amounts); b) the latter range within a factor of ≈ 2 around 2 × 10-10 M⊙ yr-1, despite the former spanning a range of ≈ 3 orders of magnitude. We suggest that the systematic underestimate of the X-ray derived mass-accretion rates could depend on the density distribution inside the accretion streams, where the densest part of the stream is

  2. Temperature- and pH-sensitive nanohydrogels of poly(N-Isopropylacrylamide for food packaging applications: modelling the swelling-collapse behaviour.

    Directory of Open Access Journals (Sweden)

    Clara Fuciños

    Full Text Available Temperature-sensitive poly(N-isopropylacrylamide (PNIPA nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging. The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed. A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration. Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis to the specific heat capacity (obtained from calorimetric measurements.

  3. m-Accretive extensions of a sectorial operator

    Energy Technology Data Exchange (ETDEWEB)

    Arlinskii, Yu M; Popov, A B [East-Ukrainian National University, Lugansk (Ukraine)

    2013-08-31

    A description of all the maximal accretive extensions and their resolvents is given for a densely defined closed sectorial operator in terms of abstract boundary conditions. These results are applied to parametrize all the m-accretive extensions of a symmetric operator in a planar model of one-centre point interaction. Bibliography: 40 titles.

  4. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  5. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  6. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  7. Observational diagnostics of accretion on young stars and brown dwarfs

    Science.gov (United States)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  8. Comparison of damage induced by mercury chloride and ionizing radiation in the susceptible rat model

    International Nuclear Information System (INIS)

    Kim, Ji Hyang; Yoon, Yong Dal; Kim, Jin Kyu

    2003-01-01

    Mercury (Hg), one of the most diffused and hazardous organ-specific environmental contaminants, exists in a wide variety of physical and chemical states. Although the reports indicate that mercury induces a deleterious damage, little has been reported from the investigations of mercury effects in living things. The purpose of this study is to evaluate the effects of mercury chloride and ionizing radiation. Prepubertal male F-344 rats were administered mercury chloride in drinking water throughout the experimental period. Two weeks after whole body irradiation, organs were collected for measuring the induced injury. Serum levels of GOT, GPT, ALP, and LDH were checked in the experimental groups and the hematological analysis was accomplished in plasma. In conclusion, the target organ of mercury chloride seems to be urinary organs and the pattern of damage induced by mercury differs from that of the irradiated group

  9. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  10. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  11. Hydrodynamic simulations of accretion disks in cataclysmic variables

    International Nuclear Information System (INIS)

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  12. THE ROLE OF TINY GRAINS ON THE ACCRETION PROCESS IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Bai Xuening

    2011-01-01

    Tiny grains such as polycyclic aromatic hydrocarbons (PAHs) have been thought to dramatically reduce the coupling between the gas and magnetic fields in weakly ionized gas such as in protoplanetary disks (PPDs) because they provide a tremendous surface area to recombine free electrons. The presence of tiny grains in PPDs thus raises the question of whether the magnetorotational instability (MRI) is able to drive rapid accretion consistent with observations. Charged tiny grains have similar conduction properties as ions, whose presence leads to qualitatively new behaviors in the conductivity tensor, characterized by n-bar /n e >1, where n e and n-bar denote the number densities of free electrons and all other charged species, respectively. In particular, Ohmic conductivity becomes dominated by charged grains rather than by electrons when n-bar /n e exceeds about 10 3 , and Hall and ambipolar diffusion (AD) coefficients are reduced by a factor of ( n-bar /n e ) 2 in the AD-dominated regime relative to that in the Ohmic regime. Applying the methodology of Bai, we find that in PPDs, when PAHs are sufficiently abundant (∼> 10 -9 per H 2 molecule), there exists a transition radius r trans of about 10-20 AU, beyond which the MRI active layer extends to the disk midplane. At r trans , the optimistically predicted MRI-driven accretion rate M-dot is one to two orders of magnitude smaller than that in the grain-free case, which is too small compared with the observed rates, but is in general no smaller than the predicted M-dot with solar-abundance 0.1 μm grains. At r > r trans , we find that, remarkably, the predicted M-dot exceeds the grain-free case due to a net reduction of AD by charged tiny grains and reaches a few times 10 -8 M sun yr -1 . This is sufficient to account for the observed M-dot in transitional disks. Larger grains (∼> 0.1 μm) are too massive to reach such high abundance as tiny grains and to facilitate the accretion process.

  13. Solar neutrinos and solar accretion of interstellar matter

    International Nuclear Information System (INIS)

    Newman, M.J.; Talbot, R.J. Jr.

    1976-01-01

    It is argued that if the Hoyle-Lyttleton mass accretion rate applies (Proc. Camb. Phil. Soc., Math. Phys. Sci. 35: 405 (1939)) the accretion of interstellar matter by the Sun is sufficient to enhance the surface heavy element abundances. This will also apply to other solar-type stars. The enhancement may be sufficient to allow the construction of consistent solar models with an interior heavy element abundance significantly lower than the observed surface abundance. This state of affairs lowers the predicted solar neutrino flux. It has been suggested that a similar enhancement of surface abundances might occur due to accretion of 'planetesimals' left over after formation of the solar system, and both processes may occur, thereby increasing the effect. The simple accretion model of Hoyle and Lyttleton is discussed mathematically. A crucial question to be answered by future research, however, is whether or not accretion on to the solar surface actually occurs. One of the most obvious obstacles is the outward flowing solar wind, and this is discussed. It appears that the outward flow can be reversed to an inward flow for certain interstellar cloud densities. (U.K.)

  14. Microwave ionization of hydrogen atoms below the classical chaos border

    Energy Technology Data Exchange (ETDEWEB)

    Bluemel, R; Smilansky, U

    1987-01-01

    We present and discuss theoretical predictions for the occurrence of radiation induced ionization of hydrogen atoms in fields which are well below the classical ionization threshold. Strong ionization occurs due to enhanced population of a band of high n states which ionize easily. This enhancement happens only at rather narrowly defined field values, and is explained in terms of avoided crossings of Floquet levels.

  15. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    that the models need to be extended with a new heat source. Another rare phenomenon is the occurrence of bursts with recurrence times of less than 30 minutes. In a long set of observations of the source EXO 0748-676 we find for the first time triple bursts, where three bursts occur within 30 minutes. This time is too short to accrete new fuel for the next burst, which suggests that not all hydrogen and helium is burned during the first burst. Finally, using a hydrodynamic stellar evolution code we create a multi-zone numerical model of the neutron star envelope. For the first time we include mixing due to rotation and a rotationally induced magnetic field. We find that thermonuclear burning proceeds in a stable manner at a lower heat flux of the crust for models including mixing. This may explain the observed transition of stable to unstable burning at a lower mass accretion rate than models previously predicted.

  16. The Ionization Fraction in the Obscuring ``Torus'' of an Active Galactic Nucleus

    Science.gov (United States)

    Wilson, A. S.; Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Weaver, K. A.; Braatz, J. A.; Henkel, C.; Matsuoka, M.; Xue, S.; Iyomoto, N.; Okada, K.

    1998-10-01

    The LINER galaxy NGC 2639 contains a water vapor megamaser, suggesting the presence of a nuclear accretion disk or torus viewed close to edge-on. This galaxy is thus a good candidate for revealing absorption by the torus of any compact nuclear continuum emission. In this paper, we report VLBA radio maps at three frequencies and an ASCA X-ray spectrum obtained to search for free-free and photoelectric absorptions, respectively. The radio observations reveal a compact (~1.3 × 10-5, which is comparable to the theoretical upper limit derived by Neufeld, Maloney, and Conger for X-ray heated molecular gas. The two values may be reconciled if the molecular gas is very dense: nH2>~109 cm-3. The measured ionization fraction is also consistent with the idea that both absorptions occur in a hot (~6000 K), weakly ionized (ionization fraction a few times 10-2) atomic region that may coexist with the warm molecular gas. If this is the case, the absorbing gas is ~1 pc from the nucleus. We rule out the possibility that both absorptions occur in a fully ionized gas near 104 K. If our line of sight passes through more than one phase, the atomic gas probably dominates the free-free absorption, while the molecular gas may dominate the photoelectric absorption.

  17. Analogue Hawking radiation from astrophysical black-hole accretion

    International Nuclear Information System (INIS)

    Das, Tapas K

    2004-01-01

    We show that spherical accretion onto astrophysical black holes can be considered as a natural example of an analogue system. We provide, for the first time, an exact analytical scheme for calculating the analogue Hawking temperature and surface gravity for general relativistic accretion onto astrophysical black holes. Our calculation may bridge the gap between the theory of transonic astrophysical accretion and the theory of analogue Hawking radiation. We show that the domination of the analogue Hawking temperature over the actual Hawking temperature may be a real astrophysical phenomenon, though observational tests of this fact will at best be difficult and at worst might prove to be impossible. We also discuss the possibilities of the emergence of analogue white holes around astrophysical black holes. Our calculation is general enough to accommodate accreting black holes with any mass

  18. Premature Senescence Induced by Ionizing Radiation Requires AKT Activity and Reactive Oxygen Species in Glioma

    International Nuclear Information System (INIS)

    Lee, Je Jung; Kim, Bong Cho; Yoo, Hee Jung; Lee, Jae Seon

    2010-01-01

    Loss of PTEN, a tumor suppressor gene has frequently observed in human gliomas, which conferred AKT activation and resistance to ionizing radiation (IR) and anti-cancer drugs. Recent reports have shown that AKT activation induces premature senescence through increase of oxygen consumption and inhibition of expression of ROS scavenging enzymes. In this study, we compared cellular response to IR in the PTEN-deficient U87, U251, U373 or PTEN-proficient LN18, LN428 glioma cells

  19. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  20. GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Hou Shujin [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lei Weihua, E-mail: xfwu@pmo.ac.cn, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-04-20

    A particularly interesting discovery in observations of GRB 121027A is that of a giant X-ray bump detected by the Swift/X-Ray Telescope. The X-ray afterglow re-brightens sharply at {approx}10{sup 3} s after the trigger by more than two orders of magnitude in less than 200 s. This X-ray bump lasts for more than 10{sup 4} s. It is quite different from typical X-ray flares. In this Letter we propose a fall-back accretion model to interpret this X-ray bump within the context of the collapse of a massive star for a long-duration gamma-ray burst. The required fall-back radius of {approx}3.5 Multiplication-Sign 10{sup 10} cm and mass of {approx}0.9-2.6 M{sub Sun} imply that a significant part of the helium envelope should survive through the mass loss during the last stage of the massive progenitor of GRB 121027A.