WorldWideScience

Sample records for accretion planet-system

  1. Magnetized accretion

    Science.gov (United States)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  2. Alignment of the stellar spin with the orbits of a three-planet system.

    Science.gov (United States)

    Sanchis-Ojeda, Roberto; Fabrycky, Daniel C; Winn, Joshua N; Barclay, Thomas; Clarke, Bruce D; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Holman, Matthew J; Howard, Andrew W; Jenkins, Jon M; Koch, David; Lissauer, Jack J; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Seader, Shawn E; Still, Martin; Thompson, Susan E

    2012-07-25

    The Sun's equator and the planets' orbital planes are nearly aligned, which is presumably a consequence of their formation from a single spinning gaseous disk. For exoplanetary systems this well-aligned configuration is not guaranteed: dynamical interactions may tilt planetary orbits, or stars may be misaligned with the protoplanetary disk through chaotic accretion , magnetic interactions or torques from neighbouring stars. Indeed, isolated 'hot Jupiters' are often misaligned and even orbiting retrograde. Here we report an analysis of transits of planets over starspots on the Sun-like star Kepler-30 (ref. 8), and show that the orbits of its three planets are aligned with the stellar equator. Furthermore, the orbits are aligned with one another to within a few degrees. This configuration is similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The orderly alignment seen in the Kepler-30 system suggests that high obliquities are confined to systems that experienced disruptive dynamical interactions. Should this be corroborated by observations of other coplanar multi-planet systems, then star-disk misalignments would be ruled out as the explanation for the high obliquities of hot Jupiters, and dynamical interactions would be implicated as the origin of hot Jupiters.

  3. On the Detection of Non-Transiting Hot Jupiters in Multiple-Planet Systems

    CERN Document Server

    Millholland, Sarah; Laughlin, Gregory

    2016-01-01

    We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line-of-sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting h...

  4. Stability analysis of single planet systems and their habitable zones

    CERN Document Server

    Kopparapu, Ravi kumar

    2010-01-01

    We study the dynamical stability of planetary systems consisting of one hypothetical terrestrial mass planet ($1 $ or $10 \\mearth$) and one massive planet ($10 \\mearth - 10 \\mjup$). We consider masses and orbits that cover the range of observed planetary system architectures (including non-zero initial eccentricities), determine the stability limit through N-body simulations, and compare it to the analytic Hill stability boundary. We show that for given masses and orbits of a two planet system, a single parameter, which can be calculated analytically, describes the Lagrange stability boundary (no ejections or exchanges) but which diverges significantly from the Hill stability boundary. However, we do find that the actual boundary is fractal, and therefore we also identify a second parameter which demarcates the transition from stable to unstable evolution. We show the portions of the habitable zones of $\\rho$ CrB, HD 164922, GJ 674, and HD 7924 which can support a terrestrial planet. These analyses clarify th...

  5. A Test of Stellar Cohabitation in Multiple Transiting Planet Systems

    Science.gov (United States)

    Morehead, Robert C.; Ford, E. B.

    2013-01-01

    The Kepler mission has discovered over 2,300 exoplanet candidates, including more than 885 associated with target stars with multiple transiting planet candidates. While these putative multiple planet systems are predicted to have an extremely low false positive rate, it is important to test what fraction are indeed transiting a single star and what fraction are some sort of blend (e.g., one transiting planet and an eclipsing binary, or two planet-hosting stars blended within the photometric aperture). We perform such a test for stellar cohabitation using the observed distribution of ξ, the period-normalized transit duration ratio of pairs of transiting planet candidates. We developed a Bayesian framework to estimate the probability that two candidates orbit the target star based on the observed orbital periods and light curve properties with an emphasis on ξ. For priors distributions, we use empirical planet, binary star, and hierarchical triple star occurrence rates and galactic population synthesis models. Using Monte Carlo simulations, we calculate the implied distributions of ξ for all plausible blend scenarios; i.e., a planet around the target star and a background or physically associated eclipsing binary star, a planet around the the target star and a planet around a background or physically associated secondary star, as well as a single star with two planets and no blend. Finally, we compute the posterior probability that a given pair of transiting planet candidates are indeed a pair of planets in orbit around the target star given the observed values. We present the results of our test for a selection Kepler multiple planet candidates and for systems confirmed through other methods, such as transit timing variations. We demonstrate the utility of this technique for the confirmation and characterization of multiple transiting planet systems.

  6. Are retrograde resonances possible in multi-planet systems?

    CERN Document Server

    Gayon, Julie

    2008-01-01

    Most of multi-planetary systems detected until now are characterized by hot-Jupiters close to their central star and moving on eccentric orbits. Hence, from a dynamical point of view, compact multi-planetary systems form a particular class of the general N-body problem (with N >3). Moreover, extrasolar planets are up to now found in prograde orbital motions about their host star and often in mean motion resonances (MMR). In the present paper, we investigate theoretically in a first step a new stabilizing mechanism particularly suitable for compact two-planet systems. Such a mechanism involves counter-revolving orbits forming a retrograde MMR. In a second step, we study the feasibility of planetary systems to host counter-revolving planets. In order to characterize dynamical behaviors of multi-dimensional planetary systems in the vicinity of observations, we apply our technique of global dynamics analysis based on the MEGNO indicator (Mean Exponential Growth factor of Nearby Orbits) that provides the fine stru...

  7. Secular Orbital Dynamics of Hierarchical Two Planet Systems

    CERN Document Server

    Veras, Dimitri

    2010-01-01

    The discovery of multi-planet extrasolar systems has kindled interest in using their orbital evolution as a probe of planet formation. Accurate descriptions of planetary orbits identify systems which could hide additional planets or be in a special dynamical state, and inform targeted follow-up observations. We combine published radial velocity data with Markov Chain Monte Carlo analyses in order to obtain an ensemble of masses, semimajor axes, eccentricities and orbital angles for each of 5 dynamically active multi-planet systems: HD 11964, HD 38529, HD 108874, HD 168443, and HD 190360. We dynamically evolve these systems using 52,000 long-term N-body integrations that sample the full range of possible line-of-sight and relative inclinations, and we report on the system stability, secular evolution and the extent of the resonant interactions. We find that planetary orbits in hierarchical systems exhibit complex dynamics and can become highly eccentric and maybe significantly inclined. Additionally we incorpo...

  8. K2's First Five-Planet System

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an

  9. Hiding Planets Behind a Big Friend: Mutual Inclinations of Multi-Planet Systems with External Companions

    CERN Document Server

    Lai, Dong

    2016-01-01

    The {\\it Kepler} mission has detected thousands of planetary systems with 1-7 transiting planets packed within 0.7~au from their host stars. There is an apparent excess of single-transit planet systems that cannot be explained by transit geometries alone, when a single planetary mutual inclination dispersion is assumed. This suggests that the observed compact planetary systems have at least two different architectures. We present a scenario where the "Kepler dichotomy" can be explained by the action of an external giant planet (or stellar) companion misaligned with the inner multi-planet system. The external companion excites mutual inclinations of the inner planets, causing such systems to appear as "Kepler singles" in transit surveys. We derive approximate analytic expressions (in various limiting regimes), calibrated with numerical calculations, for the mutual inclination excitations for various planetary systems and perturber properties (mass $m_p$, semi-major axis $a_p$ and inclination $\\theta_p$). In ge...

  10. The Anglo-Australian Planet Search. XXII. Two New Multi-Planet Systems

    CERN Document Server

    Wittenyer, Robert A; Tuomi, M; Salter, G S; Tinney, C G; Butler, R P; Jones, H R A; O'Toole, S J; Bailey, J; Carter, B D; Jenkins, J S; Zhang, Z; Vogt, S S; Rivera, E J

    2012-01-01

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005\\pm427 days, and a minimum mass of 5.3M_Jup. HD142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 \\pm 0.07). The second planet in the HD 159868 system has a period of 352.3\\pm1.3 days, and m sin i=0.73\\pm0.05 M_Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  11. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.; Tinney, C. G.; Bailey, J. [Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Tuomi, Mikko; Zhang, Z. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); O' Toole, S. J. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Carter, B. D. [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Jenkins, J. S. [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Vogt, S. S.; Rivera, Eugenio J., E-mail: rob@phys.unsw.edu.au [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  12. On the Eccentricity Distribution of Short-Period Single-Planet Systems

    CERN Document Server

    Wang, Ji

    2011-01-01

    We apply standard Markov chain Monte Carlo (MCMC) analysis techniques for 50 short- period, single-planet systems discovered with radial velocity technique. We develop a new method for accessing the significance of a non-zero orbital eccentricity, namely {\\Gamma} analysis, which combines frequentist bootstrap approach with Bayesian analysis of each simulated data set. We find the eccentricity estimations from {\\Gamma} analysis are generally consistent with results from both standard MCMC analysis and previous references. The {\\Gamma} method is particular useful for assessing the significance of small eccentricities. Our results suggest that the current sample size is insufficient to draw robust conclusions about the roles of tidal interaction and perturbations in shaping the eccentricity distribution of short-period single-planet systems. We use a Bayesian population analysis to show that a mixture of analytical distributions is a good approximation of the underlying eccentricity distribution. For short-perio...

  13. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Piskunov, Nikolai [Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala (Sweden); Clubb, Kelsey I.; Isaacson, Howard [Pufendorf Institute for Advanced Studies, Lund University, Lund (Sweden); Apps, Kevin [75B Cheyne Walk, Surrey RH6 7LR (United Kingdom); Lepine, Sebastien [American Museum of Natural History, New York, NY 10023 (United States); Mann, Andrew, E-mail: debra.fischer@yale.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2012-01-20

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M{sub Circled-Plus} (0.036 M{sub Jup}), an orbital period of 8.135 {+-} 0.004 days, and slightly eccentric orbit e = 0.19 {+-} 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M{sub Jup} with an orbital period of 32.0 {+-} 0.02 days in a nearly circular orbit (e = 0.05 {+-} 0.03). The third planet has Msin i = 0.53 M{sub Jup} with an orbital period of 432 {+-} 8 days (1.18 years) and an eccentricity e = 0.23 {+-} 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M{sub Circled-Plus} that have been detected with Doppler surveys. We find that 56% {+-} 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% {+-} 8%, that are members of Doppler-detected, multi-planet systems.

  14. First order resonance overlap and the stability of close two planet systems

    CERN Document Server

    Deck, Katherine M; Holman, Matthew J

    2013-01-01

    Motivated by the population of multi-planet systems with orbital period ratios 1planet systems. The Hamiltonian for two massive planets on nearly circular and nearly coplanar orbits near a first order mean motion resonance can be reduced to a one degree of freedom problem (Sessin & Ferraz Mello (1984), Wisdom (1986), Henrard et al. (1986)). Using this analytically tractable Hamiltonian, we apply the resonance overlap criterion to predict the onset of large scale chaotic motion in close two planet systems. The reduced Hamiltonian has only a weak dependence on the planetary mass ratio, and hence the overlap criterion is independent of the planetary mass ratio at lowest order. Numerical integrations confirm that the planetary mass ratio has little effect on the structure of the chaotic phase space for close orbits in the low eccentricity (e <~0.1) regime. We show numerically that orbits in the chaotic web produced primarily by first order reso...

  15. Hiding Planets behind a Big Friend: Mutual Inclinations of Multi-planet Systems with External Companions

    Science.gov (United States)

    Lai, Dong; Pu, Bonan

    2017-01-01

    The Kepler mission has detected thousands of planetary systems with one to seven transiting planets packed within 0.7 au from their host stars. There is an apparent excess of single-transit planet systems that cannot be explained by transit geometries alone, when a single planetary mutual inclination dispersion is assumed. This suggests that the observed compact planetary systems have at least two different architectures. We present a scenario where the “Kepler dichotomy” may be explained by the action of an external giant planet or stellar companion misaligned with the inner multi-planet system. The external companion excites mutual inclinations of the inner planets, causing such systems to appear as “Kepler singles” in transit surveys. We derive approximate analytic expressions (in various limiting regimes), calibrated with numerical calculations, for the mutual inclination excitations for various planetary systems and perturber properties (mass mp, semimajor axis ap, and inclination {θ }p). In general, the excited mutual inclination increases with {m}p/{a}p3 and {θ }p, though secular resonances may lead to large mutual inclinations even for small {θ }p. We discuss the implications of our results for understanding the dynamical history of transiting planet systems with known external perturbers.

  16. Orbital Stability of Multi-Planet Systems: Behavior at High Masses

    CERN Document Server

    Morrison, Sarah J

    2016-01-01

    In the coming years, high contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an order of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at h...

  17. Assessing Magnetic Torques and Energy Fluxes in Close-in Star-Planet Systems

    Science.gov (United States)

    Strugarek, A.

    2016-12-01

    Planets in close-in orbit interact with the magnetized wind of their hosting star. This magnetic interaction was proposed to be a source for enhanced emissions in the chromosphere of the star, and to participate in setting the migration timescale of the close-in planet. The efficiency of the magnetic interaction is known to depend on the magnetic properties of the host star and of the planet, and on the magnetic topology of the interaction. We use a global, three-dimensional numerical model of close-in star-planet systems, based on the magnetohydrodynamics approximation, to compute a grid of simulations for varying properties of the orbiting planet. We propose a simple parametrization of the magnetic torque that applies to the planet, and of the energy flux generated by the interaction. The dependency upon the planet properties and the wind properties is clearly identified in the derived scaling laws, which can be used in secular evolution codes to take into account the effect of magnetic interactions in planet migration. They can also be used to estimate a potential magnetic source of enhanced emissions in observed close-in star-planet systems, in order to constrain observationally possible exoplanetary magnetic fields.

  18. Resonant capture of multiple planet systems under dissipation and stable orbital configurations

    CERN Document Server

    Voyatzis, George

    2016-01-01

    Migration of planetary systems caused by the action of dissipative forces may lead the planets to be trapped in a resonance. In this work we study the conditions and the dynamics of such resonant trapping. Particularly, we are interested in finding out whether resonant capture ends up in a long-term stable planetary configuration. For two planet systems we associate the evolution of migration with the existence of families of periodic orbits in the phase space of the three-body problem. The family of circular periodic orbits exhibits a gap at the 2:1 resonance and an instability and bifurcation at the 3:1 resonance. These properties explain the high probability of 2:1 and 3:1 resonant capture at low eccentricities. Furthermore, we study the resonant capture of three-planet systems. We show that such a resonant capture is possible and can occur under particular conditions. Then, from the migration path of the system, stable three-planet configurations, either symmetric or asymmetric, can be determined.

  19. Black hole accretion discs

    CERN Document Server

    Lasota, Jean-Pierre

    2015-01-01

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.

  20. Observations of Accreting Pulsars

    Science.gov (United States)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; Vaughan, Brian A.; Wilson, Colleen A.; Wilson, Robert B.

    1997-01-01

    We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.

  1. Formation of terrestrial planets in eccentric and inclined giant-planet systems

    Science.gov (United States)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean

    2016-10-01

    The orbits of extrasolar planets are more various than the circular and coplanar ones of the Solar system. We study the impact of inclined and eccentric massive giant planets on the terrestrial planet formation process. The physical and orbital parameters of the giant planets considered in this study arise from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. At the dispersal of the gas disc, the two- and three-planet systems interact then with an inner disc of planetesimals and planetary embryos. We discuss the mass and orbital parameters of the terrestrial planets formed by our simulations, as well as their water content. We also investigate how the disc of planetesimals and planetary embryos modifies the eccentric and inclined orbits of the giant planets.

  2. Scaling laws to quantify tidal dissipation in star-planet systems

    CERN Document Server

    Auclair-Desrotour, Pierre; Poncin-Lafitte, Christophe Le

    2015-01-01

    Planetary systems evolve over secular time scales. One of the key mechanisms that drive this evolution is tidal dissipation. Submitted to tides, stellar and planetary fluid layers do not behave like rocky ones. Indeed, they are the place of resonant gravito-inertial waves. Therefore, tidal dissipation in fluid bodies strongly depends on the excitation frequency while this dependence is smooth in solid ones. Thus, the impact of the internal structure of celestial bodies must be taken into account when studying tidal dynamics. The purpose of this work is to present a local model of tidal gravito-inertial waves allowing us to quantify analytically the internal dissipation due to viscous friction and thermal diffusion, and to study the properties of the resonant frequency spectrum of the dissipated energy. We derive from this model scaling laws characterizing tidal dissipation as a function of fluid parameters (rotation, stratification, diffusivities) and discuss them in the context of star-planet systems.

  3. Subhalo Accretion through Filaments

    Science.gov (United States)

    González, Roberto E.; Padilla, Nelson D.

    2016-09-01

    We track subhalo orbits of galaxy- and group-sized halos in cosmological simulations. We identify filamentary structures around halos and use these to define a sample of subhalos accreted from filaments, as well as a control sample of subhalos accreted from other directions. We use these samples to study differences in satellite orbits produced by filamentary accretion. Our results depend on host halo mass. We find that for low masses, subhalos accreted from filaments show ∼10% shorter lifetimes compared to the control sample, show a tendency toward more radial orbits, reach halo central regions earlier, and are more likely to merge with the host. For higher-mass halos this lifetime difference dissipates and even reverses for cluster-sized halos. This behavior appears to be connected to the fact that more massive hosts are connected to stronger filaments with higher velocity coherence and density, with slightly more radial subhalo orbits. Because subhalos tend to follow the coherent flow of the filament, it is possible that such thick filaments are enough to shield the subhalo from the effect of dynamical friction at least during their first infall. We also identify subhalo pairs/clumps that merge with one another after accretion. They survive as a clump for only a very short time, which is even shorter for higher subhalo masses, suggesting that the Magellanic Clouds and other Local group satellite associations may have entered the Milky Way virial radius very recently and probably are in their first infall.

  4. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  5. Black hole accretion discs

    OpenAIRE

    Lasota, Jean-Pierre

    2015-01-01

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. ou...

  6. The SOPHIE search for northern extrasolar planets. II. A multiple planet system around HD 9446

    Science.gov (United States)

    Hébrard, G.; Bonfils, X.; Ségransan, D.; Moutou, C.; Delfosse, X.; Bouchy, F.; Boisse, I.; Arnold, L.; Desort, M.; Díaz, R. F.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Udry, S.; Vidal-Madjar, A.

    2010-04-01

    We report the discovery of a planetary system around HD 9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory for more than two years. At least two planets orbit this G5V, active star: HD 9446b has a minimum mass of 0.7 MJup and a slightly eccentric orbit with a period of 30 days, whereas HD 9446c has a minimum mass of 1.8 MJup and a circular orbit with a period of 193 days. As for most of the known multiple planet systems, the HD 9446-system presents a hierarchical disposition with a massive outer planet and a lighter inner planet. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (program 07A.PNP.CONS). The full version of Table 1 (SOPHIE measurements of HD 9446) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A69

  7. Stability Analysis of Single-planet Systems and Their Habitable Zones

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Barnes, Rory

    2010-06-01

    We study the dynamical stability of planetary systems consisting of one hypothetical terrestrial-mass planet (1 or 10 M ⊕) and one massive planet (10 M ⊕-10 M jup). We consider masses and orbits that cover the range of observed planetary system architectures (including non-zero initial eccentricities), determine the stability limit through N-body simulations, and compare it to the analytic Hill stability boundary. We show that for given masses and orbits of a two-planet system, a single parameter, which can be calculated analytically, describes the Lagrange stability boundary (no ejections or exchanges) but diverges significantly from the Hill stability boundary. However, we do find that the actual boundary is fractal, and therefore we also identify a second parameter which demarcates the transition from stable to unstable evolution. We show the portions of the habitable zones (HZs) of ρ CrB, HD 164922, GJ 674, and HD 7924 that can support a terrestrial planet. These analyses clarify the stability boundaries in exoplanetary systems and demonstrate that, for most exoplanetary systems, numerical simulations of the stability of potentially habitable planets are only necessary over a narrow region of the parameter space. Finally, we also identify and provide a catalog of known systems that can host terrestrial planets in their HZs.

  8. The Dynamics of the Multi-planet System Orbiting Kepler-56

    CERN Document Server

    Li, Gongjie; Valsecchi, Francesca; Johnson, John Asher; Rasio, Frederic A

    2014-01-01

    Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity of Kepler-56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. (2013) to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital ...

  9. Fast low-energy halo-to-halo transfers between Sun–planet systems

    Directory of Open Access Journals (Sweden)

    Shang Haibin

    2014-04-01

    Full Text Available In this paper, the problem of fast low-energy halo-to-halo transfers between Sun–planet systems is discussed under ephemeris constraints. According to the structure of an invariant manifold, employing an invariant manifold and planetary gravity assist to save fuel consumption is analyzed from the view of orbital energy. Then, a pseudo-manifold is introduced to replace the invariant manifold in such a way that more transfer opportunities are allowed. Fast escape and capture can be achieved along the pseudo-manifold. Furthermore, a global searching method that is based on patched-models is proposed to find an appropriate transfer trajectory. In this searching method, the trajectory is divided into several segments that can be designed under simple dynamical models, and an analytical algorithm is developed for connecting the segments. Earth–Mars and Earth–Venus halo-to-halo transfers are designed to demonstrate the proposed approach. Numerical results show that the transfers that combine the pseudo-manifolds and planetary gravity assist can offer significant fuel consumption and flight time savings over traditional transfer schemes.

  10. Assessing magnetic torques and energy fluxes in close-in star-planet systems

    CERN Document Server

    Strugarek, A

    2016-01-01

    Planets in close-in orbit interact with the magnetized wind of their hosting star. This magnetic interaction was proposed to be a source for enhanced emissions in the chromosphere of the star, and to participate in setting the migration time-scale of the close-in planet. The efficiency of the magnetic interaction is know to depend on the magnetic properties of the host star, of the planet, and on the magnetic topology of the interaction. We use a global, three-dimensional numerical model of close-in star planet systems, based on the magnetohydrodynamics approximation, to compute a grid of simulations for varying properties of the orbiting planet. We propose a simple parametrization of the magnetic torque that applies to the planet, and of the energy flux generated by the interaction. The dependancy upon the planet properties and the wind properties are clearly identified in the derived scaling laws, which can be used in secular evolution codes to take into account the effect of magnetic interactions in planet...

  11. Detection of Laplace-resonant three-planet systems from transit timing variations

    CERN Document Server

    Libert, A -S

    2013-01-01

    Transit timing variations (TTVs) are useful to constrain the existence of perturbing planets, especially in resonant systems where the variations are strongly enhanced. Here we focus on Laplace-resonant three-planet systems, and assume the inner planet transits the star. A dynamical study is performed for different masses of the three bodies, with a special attention to terrestrial planets. We consider a maximal time-span of ~ 100 years and discuss the shape of the inner planet TTVs curve. Using frequency analysis, we highlight the three periods related to the evolution of the system: two periods associated with the Laplace-resonant angle and the third one with the precession of the pericenters. These three periods are clearly detected in the TTVs of an inner giant planet perturbed by two terrestrial companions. Only two periods are detected for a Jupiter-Jupiter-Earth configuration (the ones associated with the giant interactions) or for three terrestrial planets (the Laplace periods). However, the latter sy...

  12. Dynamos in accretion discs

    OpenAIRE

    Brandenburg, A.; von Rekowski, B.

    2007-01-01

    It is argued that accretion discs in young stellar objects may have hot coronae that are heated by magnetic reconnection. This is a consequence of the magneto-rotational instability driving turbulence in the disc. Magnetic reconnection away from the midplane leads to heating of the corona which, in turn, contributes to driving disc winds.

  13. Viscosity in accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J.I.

    1980-01-01

    Both HerX-1 and SS433 may contain accretion disks slaved to a precessing companion star. If so, it is possible to bound the effective viscosity in these disks. The results, in terms of the disk parameter alpha, are lower bounds of 0.01 for HerX-1 and of 0.1 for SS433.

  14. Accretion discs trapped near corotation

    NARCIS (Netherlands)

    D'Angelo, C.R.; Spruit, H.C.

    2012-01-01

    We show that discs accreting on to the magnetosphere of a rotating star can end up in a trapped state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states

  15. Massive star formation by accretion. I. Disc accretion

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  16. Accretion Discs in Blazars

    OpenAIRE

    Jolley, E. J. D.; Kuncic, Z.; Bicknell, G. V.; Wagner, S.(Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany)

    2009-01-01

    The characteristic properties of blazars (rapid variability, strong polarization, high brightness) are widely attributed to a powerful relativistic jet oriented close to our line of sight. Despite the spectral energy distributions (SEDs) being strongly jet-dominated, a "big blue bump" has been recently detected in sources known as flat spectrum radio quasars (FSRQs). These new data provide a unique opportunity to observationally test coupled jet-disc accretion models in these extreme sources....

  17. Photon Bubbles in Accretion Discs

    OpenAIRE

    Gammie, Charles F.

    1998-01-01

    We show that radiation dominated accretion discs are likely to suffer from a ``photon bubble'' instability similar to that described by Arons in the context of accretion onto neutron star polar caps. The instability requires a magnetic field for its existence. In an asymptotic regime appropriate to accretion discs, we find that the overstable modes obey the remarkably simple dispersion relation \\omega^2 = -i g k F(B,k). Here g is the vertical gravitational acceleration, B the magnetic field, ...

  18. Alignment of the stellar spin with the orbits of a three-planet system

    CERN Document Server

    Sanchis-Ojeda, Roberto; Winn, Josh N; Barclay, Thomas; Clarke, Bruce D; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Holman, Matthew J; Howard, Andrew W; Jenkins, Jon M; Koch, David G; Lissauer, Jack J; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Seader, Shawn E; Still, Martin; Thompson, Susan E; 10.1038/nature11301

    2012-01-01

    The Sun's equator and the planets' orbital planes are nearly aligned, which is presumably a consequence of their formation from a single spinning gaseous disk. For exoplanetary systems this well-aligned configuration is not guaranteed: dynamical interactions may tilt planetary orbits, or stars may be misaligned with the protoplanetary disk through chaotic accretion, magnetic interactions or torques from neighbouring stars. Indeed, isolated 'hot Jupiters' are often misaligned and even orbiting retrograde. Here we report an analysis of transits of planets over starspots on the Sun-like star Kepler-30, and show that the orbits of its three planets are aligned with the stellar equator. Furthermore, the orbits are aligned with one another to within a few degrees. This configuration is similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The orderly alignment seen in the Kepler-30 system suggests that high obliquities are confined to systems that experienced disruptive dynamical intera...

  19. Massive star formation by accretion I. Disc accretion

    CERN Document Server

    Haemmerlé, Lionel; Meynet, Georges; Maeder, André; Charbonnel, Corinne

    2016-01-01

    Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the HR diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the Hertzsprung-Russell (HR) diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the acc...

  20. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes K.; Padoan, Paolo;

    2016-01-01

    Context. Understanding how protostars accrete their mass is a centralquestion of star formation. One aspect of this is trying to understandwhether the time evolution of accretion rates in deeply embedded objectsis best characterised by a smooth decline from early to late stages orby intermittent ...

  1. Constraints on Slim Accretion Discs

    Institute of Scientific and Technical Information of China (English)

    CAI Zhen-Yi; GU Wei-Min; LU Ju-Fu

    2008-01-01

    @@ We show that when the gravitational force in the vertical direction is correctly calculated, the well-known Sshaped sequence of thermal equilibrium solutions can be constructed only for small radii of black hole accretion flows, such that slim accretion discs can possibly exist only in the inner regions of these flows.

  2. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  3. Accretion by the Galaxy

    Directory of Open Access Journals (Sweden)

    Binney J.

    2012-02-01

    Full Text Available Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model’s parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies “red and dead.”

  4. Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62

    CERN Document Server

    Bolmont, Emeline; Leconte, Jeremy; Hersant, Franck; Correia, Alexandre C M

    2015-01-01

    A large proportion of observed planetary systems contain several planets in a compact orbital configuration, and often harbor at least one close-in object. These systems are then most likely tidally evolving. We investigate how the effects of planet-planet interactions influence the tidal evolution of planets. We introduce for that purpose a new open-source addition to the Mercury N-body code, Mercury-T, which takes into account tides, general relativity and the effect of rotation-induced flattening in order to simulate the dynamical and tidal evolution of multi-planet systems. It uses a standard equilibrium tidal model, the constant time lag model. Besides, the evolution of the radius of several host bodies has been implemented (brown dwarfs, M-dwarfs of mass $0.1~M_\\odot$, Sun-like stars, Jupiter). We validate the new code by comparing its output for one-planet systems to the secular equations results. We find that this code does respect the conservation of total angular momentum. We applied this new tool t...

  5. Accretion discs trapped near corotation

    OpenAIRE

    D'Angelo, C.R.; Spruit, H.C.

    2012-01-01

    We show that discs accreting on to the magnetosphere of a rotating star can end up in a trapped state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states over a wide range of parameter space. We find two distinct regions of instability: one related to the buildup and release of mass in the disc outside corotation, and the other to mass storage with...

  6. He-Accreting WDs: accretion regimes and final outcomes

    CERN Document Server

    Piersanti, L; Yungelson, L R

    2014-01-01

    The behaviour of carbon-oxygen white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyze the thermal response of the accreting WD to mass deposition at different time scales. The analysis has been performed for initial WDs masses and accretion rates in the range (0.60 - 1.02) Msun and 1.e-9 - 1.e-5 Msun/yr, respectively. Thermal regimes in the parameters space M_{WD} - dot{M}_{He}, leading to formation of red-giant-like structure, steady burning of He, mild, strong and dynamical flashes have been identified and the transition between those regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated in order to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building-up of a He-rich layer via H-burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomi...

  7. Dynamics of continental accretion.

    Science.gov (United States)

    Moresi, L; Betts, P G; Miller, M S; Cayley, R A

    2014-04-10

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon.

  8. The Magnetospheres of (Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    Wilms J.

    2014-01-01

    Full Text Available I give an overview of the most important observational tools to study the magnetospheres of accreting neutron stars, with a focus on accreting neutron stars in high mass X-ray binary systems. Topics covered are the different types of accretion onto neutron stars and the structure of the accretion column, and how models for these can be tested with observations.

  9. Eclipse mapping of accretion discs

    OpenAIRE

    Baptista, Raymundo

    2000-01-01

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature dist...

  10. Self-gravitating accretion discs

    OpenAIRE

    Lodato, G.

    2008-01-01

    I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific differences arising from such diversity in physical extent, all these systems share a common feature whe...

  11. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  12. How do accretion discs break?

    Science.gov (United States)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  13. On the formation of compact planetary systems via concurrent core accretion and migration

    CERN Document Server

    Coleman, Gavin A L

    2016-01-01

    We present the results of planet formation N-body simulations based on a comprehensive physical model that includes planetary mass growth through mutual embryo collisions and planetesimal/boulder accretion, viscous disc evolution, planetary migration and gas accretion onto planetary cores. The main aim of this study is to determine which set of model parameters leads to the formation of planetary systems that are similar to the compact low mass multi-planet systems that have been discovered by radial velocity surveys and the Kepler mission. We vary the initial disc mass, solids-to-gas ratio and the sizes of the boulders/planetesimals, and for a restricted volume of the parameter space we find that compact systems containing terrestrial planets, super-Earths and Neptune-like bodies arise as natural outcomes of the simulations. Disc models with low values of the solids-to-gas ratio can only form short-period super-Earths and Neptunes when small planetesimals/boulders provide the main source of accretion, since ...

  14. The Pan-Pacific Planet Search. II. Confirmation of a two-planet system around HD 121056

    CERN Document Server

    Wittenmyer, Robert A; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Tinney, C G; Carter, B D

    2014-01-01

    Precise radial velocities from the Anglo-Australian Telescope confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P=89.1+/-0.1 days, and m sin i=1.35+/-0.17 Mjup. These data also confirm the planetary nature of the outer companion, with m sin i=3.9+/-0.6 Mjup and a=2.96+/-0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  15. Transit Timing Variation of Near-Resonance Planetary Pairs. II. Confirmation of 30 planets in 15 Multiple Planet Systems

    CERN Document Server

    Xie, Ji-Wei

    2013-01-01

    Following on from Paper I in our series (Xie 2012), we report the confirmation by Transit Timing Variations (TTVs) of a further 30 planets in 15 multiple planet systems, using the publicly available Kepler light curves (Q0-Q16). All of these fifteen pairs are near first-order Mean Motion Resonances (MMR), showing sinusoidal TTVs consistent with theoretically predicted periods, which demonstrate they are orbiting and interacting in the same systems. Although individual masses cannot be accurately extracted based only on TTVs (because of the well known degeneracy between mass and eccentricity), the measured TTV phases and amplitudes can still place relatively tight constraints on their mass ratios and upper limits on their masses, which confirm their planetary nature. Some of these systems (KOI-274, KOI-285, KOI-370 and KOI-2672) are relatively bright and thus suitable for further follow-up observations.

  16. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Tinney, C. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Liang [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Fan [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Horner, Jonathan [Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052 (Australia); Endl, Michael [McDonald Observatory, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Carter, B. D., E-mail: rob@unsw.edu.au [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2015-02-10

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  17. Self consistent modeling of accretion columns in accretion powered pulsars

    Science.gov (United States)

    Falkner, Sebastian; Schwarm, Fritz-Walter; Wolff, Michael Thomas; Becker, Peter A.; Wilms, Joern

    2016-04-01

    We combine three physical models to self-consistently derive the observed flux and pulse profiles of neutron stars' accretion columns. From the thermal and bulk Comptonization model by Becker & Wolff (2006) we obtain seed photon continua produced in the dense inner regions of the accretion column. In a thin outer layer these seed continua are imprinted with cyclotron resonant scattering features calculated using Monte Carlo simulations. The observed phase and energy dependent flux corresponding to these emission profiles is then calculated, taking relativistic light bending into account. We present simulated pulse profiles and the predicted dependency of the observable X-ray spectrum as a function of pulse phase.

  18. Eclipse mapping of accretion discs

    CERN Document Server

    Baptista, R

    2000-01-01

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature distribution and measuring mass accretion rates to showing the evolution of the structure of a dwarf novae disc through its outburst cycle, from isolating the spectrum of a disc wind to revealing the geometry of disc spiral shocks. I end with an outline of the future prospects.

  19. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  20. Externally Fed Accretion onto Protostars

    CERN Document Server

    Dalba, Paul A

    2012-01-01

    The asymmetric molecular emission lines from dense cores reveal slow, inward motion in the clouds' outer regions. This motion is present both before and after the formation of a central star. Motivated by these observations, we revisit the classic problem of steady, spherical accretion of gas onto a gravitating point mass, but now include self-gravity of the gas and impose a finite, subsonic velocity as the outer boundary condition. We find that the accretion rate onto the protostar is lower than values obtained for isolated, collapsing clouds, by a factor that is the Mach number of the outer flow. Moreover, the region of infall surrounding the protostar spreads out more slowly, at a speed close to the subsonic, incoming velocity. Our calculation, while highly idealized, provides insight into two longstanding problems -- the surprisingly low accretion luminosities of even the most deeply embedded stellar sources, and the failure so far to detect spatially extended, supersonic infall within their parent dense ...

  1. Dissecting accretion and outflows in accreting white dwarf binaries

    CERN Document Server

    de Martino, D; Balman, S; Bernardini, F; Bianchini, A; Bode, M; Bonnet-Bidaud, J -M; Falanga, M; Greiner, J; Groot, P; Hernanz, M; Israel, G; Jose, J; Motch, C; Mouchet, M; Norton, A J; Nucita, A; Orio, M; Osborne, J; Ramsay, G; Rodriguez-Gil, P; Scaringi, S; Schwope, A; Traulsen, I; Tamburini, F

    2015-01-01

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of accreting white dwarfs. For a summary, we refer to the paper.

  2. Accretion physics: It's not U, it's B

    Science.gov (United States)

    Miller, Jon

    2017-03-01

    Black holes grow by accreting mass, but the process is messy and redistributes gas and energy into their environments. New evidence shows that magnetic processes mediate both the accretion and ejection of matter.

  3. Slim Discs with Varying Accretion Rates

    Institute of Scientific and Technical Information of China (English)

    JIAO Cheng-Liang; LU Ju-Fu

    2009-01-01

    @@ It was revealed in our previous studies that there exists a maximal possible accretion rate for slim discs with constant accretion rates because the correctly calculated vertical gravitational force can only gather some limited amount of accreted matter. Here we show that when the accretion rate is not constant and instead decreases with decreasing radius because of outflows, such that the amount of accreted matter is adjusted to be within the allowed limit, global slim disc solutions can be constructed even for the case that accretion rates at large radii apparently exceed the maximal possible value. This result further demonstrates that outflows seem to be unavoidable for accretion flows with large accretion rates at large radii.

  4. The Black Hole Accretion Code

    CERN Document Server

    Porth, Oliver; Mizuno, Yosuke; Younsi, Ziri; Rezzolla, Luciano; Moscibrodzka, Monika; Falcke, Heino; Kramer, Michael

    2016-01-01

    We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radi...

  5. Perturbation growth in accreting filaments

    Science.gov (United States)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  6. Outflow from Hot Accretion Flows

    CERN Document Server

    Yuan, Feng; Wu, Maochun

    2012-01-01

    Numerical simulations of hot accretion flows have shown that the mass accretion rate decreases with decreasing radius. Two models have been proposed to explain this result. In the adiabatic inflow-outflow solution (ADIOS), it is thought to be due to the loss of gas in outflows. In the convection-dominated accretion flow (CDAF) model, it is explained as because that the gas is locked in convective eddies. In this paper we use hydrodynamical (HD) and magnetohydrodynamical (MHD) simulations to investigate which one is physical. We calculate and compare various properties of inflow (gas with an inward velocity) and outflow (gas with an outward velocity). Systematic and significant differences are found. For example, for HD flows, the temperature of outflow is higher than inflow; while for MHD flows, the specific angular momentum of outflow is much higher than inflow. We have also analyzed the convective stability of MHD accretion flow and found that they are stable. These results suggest that systematic inward an...

  7. Physical Environment of Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    J. Wang

    2016-01-01

    Full Text Available Neutron stars (NSs powered by accretion, which are known as accretion-powered NSs, always are located in binary systems and manifest themselves as X-ray sources. Physical processes taking place during the accretion of material from their companions form a challenging and appealing topic, because of the strong magnetic field of NSs. In this paper, we review the physical process of accretion onto magnetized NS in X-ray binary systems. We, firstly, give an introduction to accretion-powered NSs and review the accretion mechanism in X-ray binaries. This review is mostly focused on accretion-induced evolution of NSs, which includes scenario of NSs both in high-mass binaries and in low-mass systems.

  8. Poynting Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E; Ustyugova, G V; Romanova, M M; Colgate, S A

    2002-01-01

    The powerful narrow jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, {\\it hydromagnetic outflows}, which have a significant mass flux and have energy and angular momentum carried by both the matter and the electromagnetic field and, Poynting outflows, where the mass flux is negligible and energy and angular momentum are carried predominantly by the electromagnetic field. Here we consider a Keplerian disk initially threaded by a dipole-like magnetic field and we present solutions of the force-free Grad-Shafranov equation for the coronal plasma. We find solutions with Poynting jets where there is a continuous outflow of energy and toroidal magnetic flux from the disk into the external space. This behavior contradicts the commonly accepted ``theorem'' of Solar plasma physics that the motio...

  9. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D

    2015-01-01

    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  10. Perturbation growth in accreting filaments

    CERN Document Server

    Clarke, Seamus D; Hubber, David A

    2016-01-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long, initially sub-critical but accreting filaments. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length scale which is roughly 4 times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multi-wavelength density power spectrum there exists a clear preferred core separation equal to the largest peak in the dispe...

  11. Dynamics of warped accretion discs

    OpenAIRE

    Tremaine, Scott; Davis, Shane W.

    2013-01-01

    Accretion discs are present around both stellar-mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei. A wide variety of circumstantial evidence implies that many of these discs are warped. The standard Bardeen--Petterson model attributes the shape of the warp to the competition between Lense--Thirring torque from the central black hole and viscous angular-momentum transport within the disc. We show that this description is incomplete, and that torques from...

  12. Counter-Rotating Accretion Discs

    CERN Document Server

    Dyda, Sergei; Ustyugova, Galina V; Romanova, Marina M; Koldoba, Alexander V

    2014-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic $\\alpha-$viscosity including all terms in the viscous stress tensor. For the vertically separated components a shear layer forms between them. The middle of this layer free-falls to the disk center. The accretion rates are increased by factors $\\sim 10^2-10^4$ over that of a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dep...

  13. Interpreting MAD within multiple accretion regimes

    CERN Document Server

    Mocz, Philip

    2014-01-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes in the radiatively inefficient regime show that systems with sufficient magnetic poloidal flux become magnetically arrested disc (MAD) systems, with a well-defined relationship between the magnetic flux and the mass accretion rate. Recently, Zamaninasab (2014) report that the jet magnetic flux and accretion disc luminosity are tightly correlated over 7 orders of magnitude for a sample of 76 radio-loud active galaxies, concluding that the data are explained by the MAD mode of accretion. Their analysis assumes radiatively efficient accretion, and their sample consists primarily of radiatively efficient sources, while GRMHD simulations of MAD thus far have been carried out in the radiatively inefficient regime. We propose a model to interpret MAD systems in the context of multiple accretion regimes, and apply it to the sample in Zamaninasab (2014), along with additional radiatively inefficient sources from archival data. We sho...

  14. Black hole feedback from thick accretion discs

    CERN Document Server

    Sadowski, Aleksander; Abramowicz, Marek A; Narayan, Ramesh

    2015-01-01

    We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is $3\\%$ - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.

  15. Theory of Disk Accretion onto Magnetic Stars

    CERN Document Server

    Lai, Dong

    2014-01-01

    Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields), white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron stars and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  16. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  17. Counter-Rotating Accretion Discs

    OpenAIRE

    Dyda, Sergei; Lovelace, Richard V. E.; Ustyugova, Galina V.; Romanova, Marina M.; Koldoba, Alexander V.

    2014-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the tw...

  18. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    Science.gov (United States)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  19. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  20. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  1. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    B Nayak; P Singh

    2011-01-01

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.

  2. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  3. State Transitions of Black Hole Accretion Flows

    Institute of Scientific and Technical Information of China (English)

    卢炬甫; 潘刘彬

    2001-01-01

    We show that the thermal instability-triggered transition from the state of the Shakura-Sunyaev disc to the state of the advection-dominated accretion flow is possible for black hole accretion flows composed of two-temperature plasma with bremsstrahlung and synchrotron radiation and Comptonization.

  4. Late Accretion and the Late Veneer

    CERN Document Server

    Morbidelli, Alessandro

    2014-01-01

    The concept of Late Veneer has been introduced by the geochemical community to explain the abundance of highly siderophile elements in the Earth's mantle and their chondritic proportions relative to each other. However, in the complex scenario of Earth accretion, involving both planetesimal bombardment and giant impacts from chondritic and differentiated projectiles, it is not obvious what the "Late Veneer" actually corresponds to. In fact, the process of differentiation of the Earth was probably intermittent and there was presumably no well-defined transition between an earlier phase where all metal sunk into the core and a later phase in which the core was a closed entity separated from the mantle. In addition, the modellers of Earth accretion have introduced the concept of "Late Accretion", which refers to the material accreted by our planet after the Moon-forming event. Characterising Late Veneer, Late Accretion and the relationship between the two is the major goal of this chapter.

  5. Accretion and Outflow Activity in Brown Dwarfs

    CERN Document Server

    Riaz, B

    2013-01-01

    An investigation of the magnetospheric accretion and outflow signatures in sub-stellar objects is a natural extension of similar studies conducted on classical T Tauri stars (CTTS), and helps understand if brown dwarfs (BDs) follow the same formation mechanism as stars. Over the past decade, evidence for accretion in very low-mass stars (VLMs) and BDs has been accumulated using various techniques, which indicates that the overall accretion characteristics are continuous across the sub-stellar boundary. Outflow activity in VLMs and BDs has been confirmed based on spectro-astrometry of forbidden emission lines observed in the optical, and in millimetre continuum images of CO J=2-1 emission. This review summarizes the past and current state of observational work on accretion and outflow activity in VLMs and BDs, particularly with the advent of new instruments such as VLT/X-Shooter which has allowed the study of several accretion and outflow indicators over a wider wavelength range.

  6. Spiral shocks and accretion in discs

    Energy Technology Data Exchange (ETDEWEB)

    Spruit, H.C.; Matsuda, T.; Inoue, M.; Sawada, K.

    1987-12-01

    Recent numerical and analytical results on disc-like accretion with shock waves as the only dissipation mechanism are compared. The global properties of the process are similar to those of the viscous (..cap alpha..) disc model, but precise values of the effective ..cap alpha.. value as a function of the accretion rate can be calculated. At low values of the ratio of specific heats (..gamma.. < 1.45) accretion is possible without radiative losses. Such adiabatic accretion can occur in practice at high accretion rates on to low mass objects and may be important in the formation of planets. Following previous authors, it is pointed out that non-axisymmetric perturbations in the outer parts of a disc increase in amplitude as they propagate in and cause spiral shocks more easily in a disc than perturbations originating in the inner parts.

  7. Pycnonuclear burning and accreting neutron stars

    CERN Document Server

    Yakovlev, D G

    2002-01-01

    We outline the phenomenon of deep crustal heating in transiently accreting neutron stars. It is produced by nuclear transformations (mostly, by pycnonuclear reactions) in accreted matter while this matter sinks to densities rho > 10^{10} g/cc under the weight of freshly accreted material. We consider then thermal states of transiently accreting neutron stars (with mean mass accretion rates \\dot{M}=(10^{-14}-10^{-9}) M_\\odot/yr) determined by deep crustal heating. In a simplified fashion we study how the thermal flux emergent from such stars depends on the properties of superdense matter in stellar interiors. We analyze the most important regulators of the thermal flux: strong superfluidity in the cores of low-mass stars and fast neutrino emission (in nucleon, pion-condensed, kaon-condensed, or quark phases of dense matter) in the cores of high-mass stars. We compare the results with observations of soft X-ray transients in quiescent states.

  8. Superhumps, resonances and accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Whitehurst, R.; King, A. (Leicester Univ. (UK). Dept. of Astronomy)

    1991-03-01

    The structure of accretion discs within binary systems is shown to be influenced by the excitation of resonances within the disc. Of particular importance is that near the 3:1 commensurability with the stars' orbit. This can be used to explain the superhump phenomenon of SU Ursae Majoris dwarf novae in superoutburst. This resonance can only appear for mass ratios which satisfy M{sub 2}/M{sub 1} < {approx equal} 0.25-0.33: for larger mass ratios the available resonances are weaker and of the wrong form to produce the superhump phenomenon. The mass-transfer stream is shown to be an important contributor to the growth rate of the resonance. (author).

  9. Protoplanetary Accretion by Collisional Fusion

    CERN Document Server

    Wettlaufer, J S

    2009-01-01

    The formation of a solar system is believed to have followed a multi-stage process around a protostar. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag; there is a ``bottleneck'' at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Thus, successful planetary accretion requires rapid planetesimal growth to km scale. A commonly accepted picture is that for collisional velocities $V_c$ above a certain threshold collisional velocity, ${V_{th}} \\sim$ 0.1-10 cm s$^{-1}$, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all collisions the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt explicitly with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter--p...

  10. Pulsed Accretion in a Variable Protostar

    CERN Document Server

    Muzerolle, James; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-01

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some close pre-main sequence binary stars as they grow from circumbinary disks. The phenomenon is known as "pulsed accretion" and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation in the circumbinary environment. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from 0-50 percent from orbit to orbit. Here we report on a young protostar (age ~10^5 yr) that exhibits periodic variability in which the infrared luminosity increases by a factor of 10 in roughly one week every 25.34 days. We attribute this to pulsed accretion asso...

  11. Radiation from optically thin accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Tylenda, R. (Polska Akademia Nauk, Torun. Pracownia Astrofizyki)

    1981-01-01

    Accretion discs in cataclysmic variables with low rates of mass transfer, M < or approx. 10/sup 16/g s/sup -1/, have outer regions optically thin in continuum. A simple approach that allows one to calculate the radiation spectra from such discs is presented. A great number of disc models has been obtained in order to study the influence of various parameters (accretion rate, outer radius of the disc, inclination angle, mass of the accreting degenerate dwarf, viscosity parameter) of discs on the outgoing continuous spectra, emission lines and the UBV colours.

  12. The beaming of subhalo accretion

    Science.gov (United States)

    Libeskind, Noam I.

    2016-10-01

    We examine the infall pattern of subhaloes onto hosts in the context of the large-scale structure. We find that the infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (~ 10 Mpc) scale - a scale accessible by current surveys of peculiar velocities - it follows that findings presented here open a new window into the relation between the observed large scale structure unveiled by current surveys of peculiar velocities and the preferential infall direction of the Local Group. This may shed light on the unexpected alignments of dwarf galaxies seen in the Local Group.

  13. Radiatively inefficient MHD accretion-ejection structures

    CERN Document Server

    Casse, F; Casse, Fabien; Keppens, Rony

    2004-01-01

    We present magnetohydrodynamic simulations of a resistive accretion disk continuously launching transmagnetosonic, collimated jets. We time-evolve the full set of magnetohydrodynamic equations, but neglect radiative losses in the energetics (radiatively inefficient). Our calculations demonstrate that a jet is self-consistently produced by the interaction of an accretion disk with an open, initially bent large-scale magnetic field. A constant fraction of heated disk material is launched in the inner equipartition disk regions, leading to the formation of a hot corona and a bright collimated, super-fastmagnetosonic jet. We illustrate the complete dynamics of the ``hot'' near steady-state outflow (where thermal pressure $\\simeq$ magnetic pressure) by showing force balance, energy budget and current circuits. The evolution to this near stationary state is analyzed in terms of the temporal variation of energy fluxes controlling the energetics of the accretion disk. We find that unlike advection-dominated accretion...

  14. Coronal Neutrino Emission in Hypercritical Accretion Flows

    CERN Document Server

    Kawabata, R; Kawanaka, N

    2007-01-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly considered as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz & Socrates (2005) proposed that high energy neutrinos from hot corona above the accretion disk might enhance the efficiency of energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. Th...

  15. Accretion disks around a mass with quadrupole

    CERN Document Server

    Abishev, Medeu; Quevedo, Hernando; Toktarbay, Saken

    2015-01-01

    We consider the stability properties of test particles moving along circular orbits around a mass with quadrupole. We show that the quadrupole modifies drastically the properties of an accretion disk made of such test particles.

  16. Some Interesting Behaviour of Accreting Particles in the Gap Region of Black Hole Accretion Discs

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong; XIAO Kan; LEI Wei-Hua

    2001-01-01

    Some interesting behaviour of accreting particles in the gap region between the horizon of the Kerr black hole and the inner edge of the surrounding disc is investigated. The following results are obtained. (i) Spacetime coincidence of the maximum of angular velocity of accreting particles and that of the black hole horizon is extended to the more general disc-accretion. (ii) The possibility is discussed of negative energy of accreting particles in prograde orbit inside the ergosphere of the Kerr black hole, which is surrounded by strong enough magnetic field.

  17. Gas dynamics for accretion disk simulations

    Science.gov (United States)

    Whitehurst, R.

    1994-01-01

    The behavior of accretion disks can largely be understood in terms of the basic physical processes of mass, energy, and momentum conservation. Despite this, detailed modeling of these systems using modern computational techniques is challenging and controversial. Disturbing differences exist between methods used widely in astrophysics, namely Eulerian finite-difference techniques and particle codes such as SPH. Therefore neither technique is fully satisfactory for accretion disk simulations. This paper describes a new fully Lagrangian method designed to resolve these difficulties.

  18. Lyman edges in AGN accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, B. (Copernicus Astronomical Center, Warsaw (Poland)); Pojmanski, G. (Warsaw Univ. (Poland). Obserwatorium Astronomiczne)

    1990-07-01

    We show that the basic difference in the two principal approaches to predictions of the Lyman edge in an accretion disc lies in the implicit assumption about the density of the radiating gas. Independent from the details, models predict a broad range of the edge sizes, both in absorption and in emission. Observed spectra do not exhibit any strong feature at 912 A but may still be consistent with an accretion disc mechanism if more advanced theory is developed. (author).

  19. Energy-dependent variability from accretion flows

    OpenAIRE

    Zdziarski, Andrzej A.

    2005-01-01

    We develop a formalism to calculate energy-dependent fractional variability (rms) in accretion flows. We consider rms spectra resulting from radial dependencies of the level of local variability (as expected from propagation of disturbances in accretion flows) assuming the constant shape of the spectrum emitted at a given radius. We consider the cases when the variability of the flow is either coherent or incoherent between different radial zones. As example local emission, we consider blackb...

  20. Moving mesh cosmology: tracing cosmological gas accretion

    CERN Document Server

    Nelson, Dylan; Genel, Shy; Sijacki, Debora; Keres, Dusan; Springel, Volker; Hernquist, Lars; 10.1093/mnras/sts595

    2013-01-01

    We investigate the nature of gas accretion onto haloes and galaxies at z=2 using cosmological hydrodynamic simulations run with the moving mesh code AREPO. Implementing a Monte Carlo tracer particle scheme to determine the origin and thermodynamic history of accreting gas, we make quantitative comparisons to an otherwise identical simulation run with the smoothed particle hydrodynamics (SPH) code GADGET-3. Contrasting these two numerical approaches, we find significant physical differences in the thermodynamic history of accreted gas in haloes above 10^10.5 solar masses. In agreement with previous work, GADGET simulations show a cold fraction near unity for galaxies forming in massive haloes, implying that only a small percentage of accreted gas heats to an appreciable fraction of the virial temperature during accretion. The same galaxies in AREPO show a much lower cold fraction, <20% in haloes above 10^11 solar masses. This results from a hot gas accretion rate which, at this same halo mass, is an order o...

  1. Magnetically controlled accretion onto a black hole

    CERN Document Server

    Ikhsanov, N R; Beskrovnaya, N G; 10.1088/1742-6596/372/1/012062

    2012-01-01

    An accretion scenario in which the material captured by a black hole from its environment is assumed to be magnetized (\\beta ~ 1) is discussed. We show that the accretion picture in this case is strongly affected by the magnetic field of the flow itself. The accretion power within this Magnetically Controlled Accretion (MCA) scenario is converted predominantly into the magnetic energy of the accretion flow. The rapidly amplified field prevents the accretion flow from forming a homogeneous Keplerian disk. Instead, the flow is decelerated by its own magnetic field at a large distance (Shvartsman radius) from the black hole and switches into a non-Keplerian dense magnetized slab. The material in the slab is confined by the magnetic field and moves towards the black hole on the time scale of the magnetic field annihilation. The basic parameters of the slab are evaluated. Interchange instabilities in the slab may lead to a formation of Z-pinch type configuration of the magnetic field over the slab in which the acc...

  2. Coupled orbital and spin evolution of the CoRoT-7 two-planet system using a Maxwell viscoelastic rheology

    CERN Document Server

    Colucci, Adrián Rodríguez; Correia, Alexandre

    2016-01-01

    We investigate the orbital and rotational evolution of the CoRoT-7 two-planet system, assuming that the innermost planet behaves like a Maxwell body. We numerically resolve the coupled differential equations governing the instantaneous deformation of the inner planet together with the orbital motion of the system. We show that, depending on the relaxation time for the deformation of the planet, the orbital evolution has two distinct behaviours: for relaxation times shorter than the orbital period, we reproduce the results from classic tidal theories, for which the eccentricity is always damped. However, for longer relaxation times, the eccentricity of the inner orbit is secularly excited and can grow to high values. This mechanism provides an explanation for the present high eccentricity observed for CoRoT-7 b, as well as for other close-in super-Earths in multiple planetary systems.

  3. Consequences of tidal interaction between disks and orbiting protoplanets for the evolution of multi-planet systems with architecture resembling that of Kepler 444

    CERN Document Server

    Papaloizou, J C B

    2016-01-01

    We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. Migration times for each planet may be estimated once planet masses, circularization times and the migration time for the innermost planet are given. We applied it to a model system with the current architecture of Kepler 444 interacting with a protoplanetary disk, the evolution time for the system as a whole being comparable to current protoplanetary disk lifetimes. In addition we performed numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to estimated migration rates yield systems for which period ratios vary...

  4. Coupled orbital and spin evolution of the CoRoT-7 two-planet system using a Maxwell viscoelastic rheology

    Science.gov (United States)

    Rodríguez, A.; Callegari, N.; Correia, A. C. M.

    2016-12-01

    We investigate the orbital and rotational evolution of the CoRoT-7 two-planet system, assuming that the innermost planet behaves like a Maxwell body. We numerically resolve the coupled differential equations governing the instantaneous deformation of the inner planet together with the orbital motion of the system. We show that, depending on the relaxation time for the deformation of the planet, the orbital evolution has two distinct behaviours: for relaxation times shorter than the orbital period, we reproduce the results from classic tidal theories, for which the eccentricity is always damped. However, for longer relaxation times, the eccentricity of the inner orbit is secularly excited and can grow to high values. This mechanism provides an explanation for the present high eccentricity observed for CoRoT-7 b, as well as for other close-in super-Earths in multiple planetary systems.

  5. 有行星系统恒星的金属丰度研究%ABUNDANCE ANALYSIS OF PARENT STARS WITH EXTRASOLAR PLANET SYSTEM

    Institute of Scientific and Technical Information of China (English)

    唐仕奎; 李宗伟; 赵刚; 陈玉琴; 邱红梅

    2001-01-01

    Atmospheric parameters and abundance of tens of elements forseven stars which have Sunlike spectrum type and planet system are calculated. The mean metallicity of these stars is 0.101, including a star named HD98230(whose value is -0.271, much lower than that of the rest). The metallicity of other six stars is 0.187, which is much higher than the mean value([Fe/H]≈-0.30) of F & G type stars in the Galactic disk. This result shows a certain correlation of the formation of planet system with the rich metallicity of the parent star.%计算了7颗类太阳恒星(带有类似太阳的行星系统)的大气参数和多种金属元素的丰度,所有样本星的金属丰度平均值为0.101,其中HD98230的值为-0.271,相对其余6颗星的值小很多(其余6颗星的平均值为0.184),比银盘附近类太阳星的平均值([Fe/H]≈-0.3)相对较高.计算结果表明行星系统的形成与恒星的富金属丰度存在着一定的联系.

  6. Three Dimensional MHD Simulation of Circumbinary Accretion Disks -2. Net Accretion Rate

    CERN Document Server

    Shi, Ji-Ming

    2015-01-01

    When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas. Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary. To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them.

  7. Chaotic cold accretion on to black holes

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  8. Bondi accretion in early-type galaxies

    CERN Document Server

    Korol, V; Pellegrini, S

    2016-01-01

    Accretion onto central massive black holes in galaxies is often modelled with the Bondi solution. In this paper we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of an Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of low-lumi...

  9. Mixing and Accretion in lambda Bootis Stars

    CERN Document Server

    Turcotte, S

    2002-01-01

    Strong evidence for deep mixing has been uncovered for slowly rotating F, and A stars of the main sequence. As the accretion/diffusion model for the formation of lboo stars is heavily dependent on mixing in superficial regions, such deep mixing may have important repercussions on our understanding of these stars. It is shown that deep mixing at a level similar to that of FmAm stars increases the amount of matter that needs to be accreted by the stars with respect with the standard models by some three orders of magnitude. It is also shown that significantly larger accretion rates have to be maintained, as high as $10^{-11}$~M$_\\sun yr^{-1}$, to prevent meridional circulation from canceling the effect of accretion. The existence of old ($\\approx 1$~Gyr) is not a likely outcome of the present models for accretion/diffusion with or without deep mixing. It is argued that lboo stars are potentially very good diagnostics of mixing mechanisms in moderately fast rotators.

  10. Optically-thick accretion discs with advection

    Institute of Scientific and Technical Information of China (English)

    陈林红; 吴枚; 尚仁成

    2002-01-01

    The structures of optically-thick accretion discs with radial advection have been investigated by the iteration and integration algorithms. The advective cooling term changes mostly the inner part of disc solution, and even results in an optically-thick advection-dominated accretion flow (ADAF). Three distinct branches-the outer Shakura-Sunyaev disc (SSD), the inner ADAF and the middle transition layer-are found for a super-Eddington disc. The SSD-ADAF transition radius can be estimated as 18(M/ME)RG where RG is the Schwarzschild radius, M is the mass accretion rate and ME is the Eddington accretion rate. SSD solutions calculated with the iteration and integration methods are identical, while ADAF solutions obtained by these two methods differ greatly. Detailed algorithms and their differences have been analysed. The iteration algorithm is not self-consistent, since it implies that the dimensionless advection factor ξ is invariant, but in the inner ADAF region the variation of ξ is not negligible. The integration algorithm is always effective for the whole region of an optically-thick disc if the accretion rate is no smaller than 10-4ME. For optically-thin discs, the validity of these two algorithms is different. We suggest that the integration method be employed to calculate the global solution of a disc model without assuming ξ to be a constant. We also discuss its application to the emergent continuum spectrum in order to explain observational facts.

  11. The accretion of migrating giant planets

    CERN Document Server

    Dürmann, Christoph

    2016-01-01

    Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect each other. We modeled a 2-dimensional disk with a steady accretion flow onto the central star and embed a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant $\\alpha$. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas which comes pred...

  12. The Final Fates of Accreting Supermassive Stars

    CERN Document Server

    Umeda, Hideyuki; Omukai, Kazuyuki; Yoshida, Naoki

    2016-01-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $\\gtrsim 10^5~M_\\odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $\\dot M \\lesssim 0.1~M_\\odot~{\\rm yr}^{-1}$. With $\\dot{M} \\simeq 0.3 - 1~M_\\odot~{\\rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage ...

  13. Accretion Rates in Herbig Ae stars

    CERN Document Server

    López, R G; Testi, L; Habart, E

    2006-01-01

    Accretion rates from disks around pre-main sequence stars are of importance for our understanding of planetary formation and disk evolution. We provide in this paper estimates of the mass accretion rates in the disks around a large sample of Herbig Ae stars. We obtained medium resolution 2 micron spectra and used the results to compute values of Macc from the measured luminosity of the Br_gamma emission line, using a well established correlation between L(Br_gamma) and the accretion luminosity Lacc. We find that 80% of the stars, all of which have evidence of an associated circumstellar disk, are accreting matter, with rates 3x10^{-9} 10^{-7} Msun/yr. In most HAe stars the accretion rate is sufficiently low that the gas in the inner disk, inside the dust evaporation radius, is optically thin and does not prevent the formation of a puffed-up rim, where dust is directly exposed to the stellar radiation. When compared to the Macc values found for lower-mass stars in the star forming regions Taurus and Ophiuchus,...

  14. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  15. Magnetohydrodynamic Origin of Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E; Koldoba, A V

    1999-01-01

    A review is made of recent magnetohydrodynamic (MHD) theory and simulations of origin of jets from accretion disks. Many compact astrophysical objects emit powerful, highly-collimated, oppositely directed jets. Included are the extra galactic radio jets of active galaxies and quasars, and old compact stars in binaries, and emission line jets in young stellar objects. It is widely thought that these different jets arise from rotating, conducting accretion disks threaded by an ordered magnetic field. The twisting of the magnetic field by the rotation of the disk drives the jets by magnetically extracting matter, angular momentum, and energy from the accretion disk. Two main regimes have been discussed theoretically, hydromagnetic winds which have a significant mass flux, and Poynting flux jets where the mass flux is negligible. Over the past several years, exciting new developments on models of jets have come from progress in MHD simulations which now allow the study of the origin - the acceleration and collima...

  16. Strongly magnetized accretion discs require poloidal flux

    CERN Document Server

    Salvesen, Greg; Simon, Jacob B; Begelman, Mitchell C

    2016-01-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  17. Global Models for Embedded, Accreting Protostellar Disks

    CERN Document Server

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Most analytic work to date on protostellar disks has focused on disks in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via several mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of...

  18. Earth, Moon, Sun, and CV Accretion Disks

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting Cataclysmic Variable (CV) Dwarf Novae systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar and black hole systems. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our a...

  19. Reverberation Mapping of AGN Accretion Disks

    Science.gov (United States)

    Fausnaugh, Michael; AGN STORM Collaboration

    2017-01-01

    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  20. MHD Turbulence in Accretion Disk Boundary Layers

    CERN Document Server

    Chan, Chi-kwan

    2012-01-01

    The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...

  1. Disks, accretion and outflows of brown dwarfs

    CERN Document Server

    Joergens, V; Liu, Y; Pascucci, I; Whelan, E; Alcala, J; Biazzo, K; Costigan, G; Gully-Santiago, M; Henning, Th; Natta, A; Rigliaco, E; Rodriguez-Ledesma, V; Sicilia-Aguilar, A; Tottle, J; Wolf, S

    2012-01-01

    Characterization of the properties of young brown dwarfs are important to constraining the formation of objects at the extreme low-mass end of the IMF. While young brown dwarfs share many properties with solar-mass T Tauri stars, differences may be used as tests of how the physics of accretion/outflow and disk chemistry/dissipation depend on the mass of the central object. This article summarizes the presentations and discussions during the splinter session on 'Disks, accretion and outflows of brown dwarfs' held at the CoolStars17 conference in Barcelona in June 2012. Recent results in the field of brown dwarf disks and outflows include the determination of brown dwarf disk masses and geometries based on Herschel far-IR photometry (70-160 um), accretion properties based on X-Shooter spectra, and new outflow detections in the very low-mass regime.

  2. Minidisks in Binary Black Hole Accretion

    CERN Document Server

    Ryan, Geoffrey

    2016-01-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole ("minidisks"), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using two-dimensional hydrodynamical simulations performed with a new general relativistic version of the moving mesh code Disco. We introduce a co-moving energy variable which enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the ISCO providing a Reynolds stress which causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov-Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling....

  3. Strongly magnetized accretion discs require poloidal flux

    Science.gov (United States)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  4. Spherical Accretion in Nearby Weakly Active Galaxies

    CERN Document Server

    Moscibrodzka, M A

    2005-01-01

    We consider the sample of weakly active galaxies situated in 'Local Universe' collected in the paper of Pellegrini (2005) with inferred accretion efficiencies from $10^{-2}$ to $10^{-7}$. We apply a model of spherically symmetrical Bondi accretion for given parameters ($M_{BH}$,$T_{\\infty}$,$\\rho_{\\infty}$,) taken from observation. We calculate spectra emitted by the gas accreting onto its central objects using Monte Carlo method including synchrotron and bremsstrahlung photons as seed photons. We compare our results with observed nuclear X-ray luminosities $L_{X,nuc}$ (0.3-10 keV) of the sample. Model is also tested for different external medium parameters ($\\rho_{\\infty}$ and $T_{\\infty}$) and different free parameters of the model. Our model is able to explain most of the observed nuclear luminosities $L_X$ under an assumption that half of the compresion energy is transfered directly to the electrons.

  5. Accretion disks in Algols: progenitors and evolution

    CERN Document Server

    Van Rensbergen, W

    2016-01-01

    There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. We investigate the origin and evolution of 6 Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Initial parameters for 6 Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. When RLOF starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  6. Generalized Similarity for Accretion/Decretion Disks

    Science.gov (United States)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  7. Accretion-powered Compact Binaries

    Science.gov (United States)

    Mauche, Christopher W.

    2003-12-01

    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  8. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent......In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...

  9. Accretion disc flows around FU Orionis stars

    Science.gov (United States)

    Clarke, C. J.; Lin, D. N. C.; Papaloizou, J. C. B.

    1989-01-01

    The accretion disk model of FU Orionis systems in outburst is investigated by examining the time-dependent behavior of a disk around a low-mass protostar that accretes at 0.00001-0.0001 solar masses/yr. It is found that the disk may be stabilized against the thermal ionization instability by the effect of advective heat transport and that it may therefore exist in the quasi-steady-state observed in post-outburst FU Orionis systems. The disk models are used to discuss the cosmochemical consequences of possible FU Ori events during the evolution of the primordial solar nebula.

  10. Planetesimal accretion in binary star systems

    CERN Document Server

    Marzari, Francesco; Scholl, Hans

    2007-01-01

    Numerical simulations of planetesimal accretion in circumprimary and circumbinary orbits are described. The secular perturbations by the com- panion star and gas drag are included in our models. We derive limits on the parameters of the binary system for which accretion and then planetary forma- tion are possible. In the circumbinary case we also outline the radial distance from the baricenter of the stars beyond which accumulation always occurs. Hy- drodynamical simulations are also presented to validate our N-body approach based on the axisymmetric approximation for the gas of the disk.

  11. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  12. Bondi-Hoyle-Lyttleton Accretion onto a Protoplanetary Disk

    CERN Document Server

    Moeckel, Nickolas

    2009-01-01

    Young stellar systems orbiting in the potential of their birth cluster can accrete from the dense molecular interstellar medium during the period between the star's birth and the dispersal of the cluster's gas. Over this time, which may span several Myr, the amount of material accreted can rival the amount in the initial protoplanetary disk; the potential importance of this `tail-end' accretion for planet formation was recently highlighted by Throop & Bally (2008). While accretion onto a point mass is successfully modeled by the classical Bondi-Hoyle-Lyttleton solutions, the more complicated case of accretion onto a star-disk system defies analytic solution. In this paper we investigate via direct hydrodynamic simulations the accretion of dense interstellar material onto a star with an associated gaseous protoplanetary disk. We discuss the changes to the structure of the accretion flow caused by the disk, and vice versa. We find that immersion in a dense accretion flow can redistribute disk material such ...

  13. Spin equilibrium in strongly-magnetized accreting stars

    CERN Document Server

    D'Angelo, Caroline

    2016-01-01

    The spin rate of a strongly-magnetized accreting star is regulated by the interaction between the star's magnetic field and the accreting gas. These systems are often hypothesized to be in `spin equilibrium' with their surrounding accretion flows such that the net spin change of the star as a result of accretion is very small. This condition requires that the accretion rate changes more slowly than it takes the star to reach spin equilibrium. However, this is not true for most magnetically accreting stars, which have strongly variable accretion outbursts (by one to many orders of magnitude) on timescales much shorter than the time it would take to reach spin equilibrium. This paper examines how accretion outbursts affect the time a star takes to reach spin equilibrium and its final equilibrium spin period. I consider several different models for angular momentum loss -- where angular momentum is carried away in an outflow (the standard `propeller', centrifugally-launched outflow), where most angular momentum ...

  14. Oligarchic planetesimal accretion and giant planet formation

    CERN Document Server

    Fortier, A; Brunini, A

    2007-01-01

    Aims. In the context of the core instability model, we present calculations of in situ giant planet formation. The oligarchic growth regime of solid protoplanets is the model adopted for the growth of the core. Methods. The full differential equations of giant planet formation were numerically solved with an adaptation of a Henyey-type code. The planetesimals accretion rate was coupled in a self-consistent way to the envelope's evolution. Results. We performed several simulations for the formation of a Jupiter-like object by assuming various surface densities for the protoplanetary disc and two different sizes for the accreted planetesimals. We find that the atmospheric gas drag gives rise to a major enhancement on the effective capture radius of the protoplanet, thus leading to an average timescale reduction of 30% -- 55% and ultimately to an increase by a factor of 2 of the final mass of solids accreted as compared to the situation in which drag effects are neglected. With regard to the size of accreted pla...

  15. Probing thermonuclear burning on accreting neutron stars

    NARCIS (Netherlands)

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes

  16. Accretion Models for Young Neutron Stars

    OpenAIRE

    Alpar, M. Ali

    2003-01-01

    Interaction with possible fallback material, along with the magnetic fields and rotation rates at birth should determine the fates and categories of young neutron stars. This paper addresses some issues related to pure or hybrid accretion models for explaining the properties of young neutron stars.

  17. Two-dimensional vortices and accretion disks

    NARCIS (Netherlands)

    Nauta, Michiel Doede

    2001-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are tu

  18. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  19. Turbulent Comptonization in Relativistic Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2006-01-01

    Turbulent Comptonization, a potentially important damping and radiation mechanism in relativistic accretion flows, is discussed. Particular emphasis is placed on the physical basis, relative importance, and thermodynamics of turbulent Comptonization. The effects of metal-absorption opacity on the spectral component resulting from turbulent Comptonization is considered as well.

  20. Viscosity in accretion discs. [for binary stars

    Science.gov (United States)

    Katz, J. I.

    1980-01-01

    Both HerX-1 and SS433 may contain accretion disks slaved to a precessing companion star. If so, it is possible to bound the effective viscosity in these disks. The results, in terms of the disk parameter alpha, are lower bounds of 0.01 for HerX-1 and of 0.1 for SS433.

  1. Radiation of accretion discs: the eclipses

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenberg-Czerny, A.

    1984-05-01

    Light curves have been calculated for eclipses of the accretion disc in a cataclysmic binary. The Roche geometry of the cool component was taken into account and the stellar atmospheres were interpolated to provide the local spectrum of the radiation from the disc. The dependence of the light curve on the parameters of the disc is discussed.

  2. Realizability of stationary spherically symmetric transonic accretion

    CERN Document Server

    Ray, A K; Ray, Arnab K.

    2002-01-01

    The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.

  3. Accretion from debris disks onto white dwarfs : Fingering (thermohaline) instability and derived accretion rates

    CERN Document Server

    Deal, M; Vauclair, G; Vauclair, S; Wachlin, F C

    2013-01-01

    Recent observations of a large number of DA and DB white dwarfs show evidence of debris disks, which are the remnants of old planetary systems. The infrared excess detected with \\emph{Spitzer} and the lines of heavy elements observed in their atmospheres with high-resolution spectroscopy converge on the idea that planetary material accretes onto these stars. Accretion rates have been derived by several authors with the assumption of a steady state between accretion and gravitational settling. The results are unrealistically different for DA and DB white dwarfs. When heavy matter is accreted onto stars, it induces an inverse $\\mu$-gradient that leads to fingering (thermohaline) convection. The aim of this letter is to study the impact of this specific process on the derived accretion rates in white dwarfs and on the difference between DA and DB. We solve the diffusion equation for the accreted heavy elements with a time-dependent method. The models we use have been obtained both with the IRAP code, which compu...

  4. Spherical Accretion in a Uniformly Expanding Universe

    Science.gov (United States)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira

    1996-10-01

    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  5. Theory of disk accretion onto supermassive black holes

    CERN Document Server

    Armitage, P J

    2004-01-01

    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.

  6. In-flight photogrammetric measurement of wing ice accretions

    Science.gov (United States)

    Mcknight, R. C.; Palko, R. L.; Humes, R. L.

    1986-01-01

    A photographic instrumentation system was developed for the Lewis icing research aircraft to measure wind ice accretions during flight. The system generates stereo photographs of the accretions which are then photogrammetrically measured by the Air Force Arnold Engineering and Development Center. The measurements yield a survey of spatial coordinates of an accretion's surface to an accuracy of at least + or - 0.08 cm. The accretions can then be matched to corresponding icing cloud and aerodynamic measurements. The system is being used to measure rime, mixed, and clear natural ice accretions.

  7. Thermally Driven Winds from Radiatively Inefficient Accretion Flows

    CERN Document Server

    Kawabata, Ryoji

    2009-01-01

    Radiatively inefficient accretion flows (RIAFs) are common feature of low-luminosity accretion flows, including quiescent states of X-ray binaries and low-lunimosity active galactic nuclei. Thermally driven winds are expected from such hot accretion flows. By assuming that the flow has self-similarity structure in the radial direction, we solve the vertical structure of the wind and accretion flows simultaneously and evaluate the mass loss rates by wind. We find that the ratio of the outflow rate to the accretion rate is approximately unity for a viscosity parameter, alpha lesssim 0.1, despite some uncertainties in the angular momentum and temperature distributions. That is, the accretion rate in the RIAFs is roughly proportional to the radius. Moreover, we elucidate the effect of cooling by wind on the underneath accretion flow, finding that this effect could be important for calculating energy spectrum of the RIAF. Observational implications are briefly discussed in the context of Sgr A*.

  8. The mass accretion rate of galaxy clusters: a measurable quantity

    CERN Document Server

    De Boni, Cristiano; Diaferio, Antonaldo; Giocoli, Carlo; Baldi, Marco

    2015-01-01

    We explore the possibility of measuring the mass accretion rate of galaxy clusters by using dense galaxy redshift surveys of their outer regions. By approximating the accretion with the infall of a spherical shell, the mass accretion rate only depends on the mass profile of the cluster in a thin shell at radii larger than $R_{200}$. This approximation is rather crude in hierarchical clustering scenarios, where both smooth accretion and aggregation of smaller dark matter haloes contribute to the mass accretion of clusters. Nevertheless, in the redshift range $z=[0,1]$, our prescription returns an average mass accretion rate within $20 \\%$ of the average rate derived with the more realistic merger trees of dark matter haloes extracted from $N$-body simulations. The mass accretion rate of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real Universe. Our result suggests that measuring the mass accreti...

  9. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.;

    2015-01-01

    Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of the ice accretions is given in the paper. Only for the bridge hanger case, a short description of the evolution of the ice accretions is given. The aerodynamic force coefficients were then measured with varying yaw angle, angle of attack and wind speed, and are presented and discussed in the paper...

  10. Magnetised accretion discs in Kerr spacetimes

    CERN Document Server

    Ranea-Sandoval, Ignacio F

    2014-01-01

    We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. We show that an external magnetic field produces potentially observable modifications on the thermal energy spectr...

  11. FITDisk: Cataclysmic Variable Accretion Disk Demonstration Tool

    Science.gov (United States)

    Wood, Matthew A.; Dolence, J.

    2013-05-01

    FITDisk models accretion disk phenomena using a fully three-dimensional hydrodynamics calculation, and data can either be visualized as they are computed or stored to hard drive for later playback at a fast frame rate. Simulations are visualized using OpenGL graphics and the viewing angle can be changed interactively. Pseudo light curves of simulated systems can be plotted along with the associated Fourier amplitude spectrum. It provides an easy to use graphical user interface as well as 3-D interactive graphics. The code computes the evolution of a CV accretion disk, visualizes results in real time, records and plays back simulations, and generates and plots pseudo light curves and associated power spectra.

  12. Volatile accretion history of the Earth.

    Science.gov (United States)

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  13. Quasistars: Accreting black holes inside massive envelopes

    CERN Document Server

    Begelman, Mitchell C; Armitage, Philip J

    2007-01-01

    We study the structure and evolution of "quasistars," accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate onto the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass. This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasistars. We derive analytically the scaling of the photospheric temperature with the black hole mass and envelope mass, and show that it decreases with time as the black hole mass increases. Once the photospheric temperature becomes lower than 10000 K, the photospheric opacity drops precipitously and the photospheric temperature hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hy...

  14. Compositional evolution during rocky protoplanet accretion

    CERN Document Server

    Carter, Philip J; Elliott, Tim; Walter, Michael J; Stewart, Sarah T

    2015-01-01

    The Earth appears non-chondritic in its abundances of refractory lithophile elements, posing a significant problem for our understanding of its formation and evolution. It has been suggested that this non-chondritic composition may be explained by collisional erosion of differentiated planetesimals of originally chondritic composition. In this work, we present N-body simulations of terrestrial planet formation that track the growth of planetary embryos from planetesimals. We simulate evolution through the runaway and oligarchic growth phases under the Grand Tack model and in the absence of giant planets. These simulations include a state-of-the-art collision model which allows multiple collision outcomes, such as accretion, erosion, and bouncing events, that enables tracking of the evolving core mass fraction of accreting planetesimals. We show that the embryos grown during this intermediate stage of planet formation exhibit a range of core mass fractions, and that with significant dynamical excitation, enoug...

  15. Relativistic Accretion Mediated by Turbulent Comptonization

    CERN Document Server

    Socrates, Aristotle

    2008-01-01

    Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington Limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.

  16. Turbulent Comptonization in Black Hole Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2004-01-01

    In the inner-most regions of radiation pressure supported accretion disks, the turbulent magnetic pressure may greatly exceed that of the gas. If this is the case, it is possible for bulk Alfvenic motions driven by the magnetorotational instability (MRI) to surpass the electron thermal velocity. Bulk rather than thermal Comptonization may then be the dominant radiative process which mediates gravitational energy release. For sufficiently large turbulent stresses, we show that turbulent Comptonization produces a significant contribution to the far-UV and X-ray emission of black hole accretion disks. The existence of this spectral component provides a means of obtaining direct observational constraints on the nature of the turbulence itself. We describe how this component may affect the spectral energy distributions and variability properties of X-ray binaries and active galactic nuclei.

  17. The properties of external accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, J.E. (Space Telescope Science Inst., Baltimore, MD (USA))

    1991-02-15

    The properties of external accretion discs (discs with a central source of angular momentum) are explored both analytically and numerically. An illustrative example of the effect of a disc of material around a binary star on the stellar separation is considered. We consider a Greens-function-type solution in which an initial ring of matter is put in orbit around the central binary. We find that the solution splits temporally into three parts. First, the disc evolves as a standard accretion disc unaware of the inner boundary condition. Secondly, the disc interacts with the inner boundary and changes its character to become, thirdly, an outflowing disc which is propelled outwards by the source of angular momentum at the centre. (author).

  18. Eclipse Mapping: Astrotomography of Accretion Discs

    CERN Document Server

    Baptista, Raymundo

    2015-01-01

    The Eclipse Mapping Method is an indirect imaging technique that transforms the shape of the eclipse light curve into a map of the surface brightness distribution of the occulted regions. Three decades of application of this technique to the investigation of the structure, the spectrum and the time evolution of accretion discs around white dwarfs in cataclysmic variables have enriched our understanding of these accretion devices with a wealth of details such as (but not limited to) moving heating/cooling waves during outbursts in dwarf novae, tidally-induced spiral shocks of emitting gas with sub-Keplerian velocities, elliptical precessing discs associated to superhumps, and measurements of the radial run of the disc viscosity through the mapping of the disc flickering sources. This chapter reviews the principles of the method, discusses its performance, limitations, useful error propagation procedures, as well as highlights a selection of applications aimed at showing the possible scientific problems that ha...

  19. Energy-dependent variability from accretion flows

    CERN Document Server

    Zdziarski, A A

    2005-01-01

    We develop a formalism to calculate energy-dependent fractional variability (rms) in accretion flows. We consider rms spectra resulting from radial dependencies of the level of local variability (as expected from propagation of disturbances in accretion flows) assuming the constant shape of the spectrum emitted at a given radius. We consider the cases when the variability of the flow is either coherent or incoherent between different radial zones. As example local emission, we consider blackbody, Wien and thermal Comptonization spectra. In addition to numerical results, we present a number of analytical formulae for the resulting rms. We also find an analytical formula for the disc Wien spectrum, which we find to be a very good approximation to the disc blackbody. We compare our results to the rms spectrum observed in an ultrasoft state of GRS 1915+105.

  20. Satellites in discs regulating the accretion luminosity

    CERN Document Server

    Syer, D; Syer, Dave; Clarke, Cathie

    1995-01-01

    We demonstrate, using a simple analytic model, that the presence of a massive satellite can globally modify the structure and emission properties of an accretion disc to which it is tidally coupled. We show, using two levels of numerical approximation, that the analytic model gives reasonable results. The results are applicable to two astrophysical situations. In the case of an active galactic nucleus, we consider the case of a \\sim 10^3\\Msun compact companion to the central black-hole and show that it could modulate the emitted spectrum on a timescale of \\sim10^5 years. In the case of a T Tauri accretion disc, a satellite such as a sub-dwarf or giant planet could modify the disc spectral energy distribution over a substantial fraction of the T Tauri star lifetime.

  1. Probing General Relativity with Accreting Black Holes

    CERN Document Server

    Fabian, A C

    2012-01-01

    Most of the X-ray emission from luminous accreting black holes emerges from within 20 gravitational radii. The effective emission radius is several times smaller if the black hole is rapidly spinning. General Relativistic effects can then be very important. Large spacetime curvature causes strong lightbending and large gravitational redshifts. The hard X-ray, power-law-emitting corona irradiates the accretion disc generating an X-ray reflection component. Atomic features in the reflection spectrum allow gravitational redshifts to be measured. Time delays between observed variations in the power-law and the reflection spectrum (reverberation) enable the physical scale of the reflecting region to be determined. The relative strength of the reflection and power-law continuum depends on light bending. All of these observed effects enable the immediate environment of the black hole where the effects of General Relativity are on display to be probed and explored.

  2. Accretion onto black holes and relativistic jets

    CERN Document Server

    Belloni, Tomaso

    2007-01-01

    Relativistic jets from Active Galactic Nuclei are known since decades, but the study of the connection between accretion and ejection in these systems is hampered by the long time scales associated to these events. The past decade has seen a rapid advancement due to the observation of similar radio jets in galactic X-ray binaries, where the time scales are much shorter. A clear connection between accretion and ejection has been found for these systems, together with a solid characterization of the phenomenological properties of their outbursts. This wealth of new results has led to a detailed comparison between X-ray binaries and AGN, from which a number of correlations and scaling laws has been established. Here I briefly review the current observational status.

  3. On the Stability of Cubic Galileon Accretion

    CERN Document Server

    Bergliaffa, Santiago P E

    2016-01-01

    We examine the stability of steady-state galileon accretion for the case of a Schwarzshild black hole. Considering the galileon action up to the cubic term in a static and spherically symmetric background we obtain the general solution for the equation of motion which is divided in two branches. By perturbing this solution we define an effective metric which determines the propagation of fluctuations. In this general picture we establish the position of the sonic horizon together with the matching condition of the two branches on it. Restricting to the case of a Schwarzschild background, we show, via the analysis of the energy of the perturbations and its time derivative, that the accreting field is linearly stable.

  4. Variable protostellar accretion with episodic bursts

    CERN Document Server

    Vorobyov, Eduard I

    2015-01-01

    We present the latest development of the disk gravitational instability and fragmentation model, originally introduced by us to explain episodic accretion bursts in the early stages of star formation. Using our numerical hydrodynamics model with improved disk thermal balance and star-disk interaction, we computed the evolution of protostellar disks formed from the gravitational collapse of prestellar cores. In agreement with our previous studies, we find that cores of higher initial mass and angular momentum produce disks that are more favorable to gravitational instability and fragmentation, while a higher background irradiation and magnetic fields moderate the disk tendency to fragment. The protostellar accretion in our models is time-variable, thanks to the nonlinear interaction between different spiral modes in the gravitationally unstable disk, and can undergo episodic bursts when fragments migrate onto the star owing to the gravitational interaction with other fragments or spiral arms. Most bursts occur...

  5. Early dust evolution in protostellar accretion disks

    OpenAIRE

    2000-01-01

    We investigate dust dynamics and evolution during the formation of a protostellar accretion disk around intermediate mass stars via 2D numerical simulations. Using three different detailed dust models, compact spherical particles, fractal BPCA grains, and BCCA grains, we find that even during the early collapse and the first 10,000 yr of dynamical disk evolution, the initial dust size distribution is strongly modified. Close to the disk's midplane coagulation produces dust particles of sizes ...

  6. Probing thermonuclear burning on accreting neutron stars

    OpenAIRE

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one seco...

  7. Massive thin accretion discs. Pt. 2; Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Laor, A.; Netzer, H. (Tel Aviv Univ. (Israel)); Piran, T. (Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics)

    1990-02-15

    Thin accretion discs around massive black holes are believed to produce much of the observed optical-UV emission from AGN. Classical calculations predict that this radiation is highly polarized at large inclination angles, in contrast to observations of quasars and Seyfert galaxies. We have calculated the spectrum and polarization of such discs using an improved radiative transfer method with all the relevant opacity sources, and a full general relativistic treatment of the radiation propagation. (author).

  8. Broken discs: warp propagation in accretion discs

    OpenAIRE

    Nixon, Chris; King, Andrew

    2012-01-01

    We simulate the viscous evolution of an accretion disc around a spinning black hole. In general any such disc is misaligned, and warped by the Lense-Thirring effect. Unlike previous studies we use effective viscosities constrained to be consistent with the internal fluid dynamics of the disc. We find that nonlinear fluid effects, which reduce the effective viscosities in warped regions, can promote the breaking of the disc into two distinct planes. This occurs when the Shakura & Sunyaev dimen...

  9. Satellites in Discs: Regulating the Accretion Luminosity

    OpenAIRE

    Syer, Dave; Clarke, Cathie

    1995-01-01

    We demonstrate, using a simple analytic model, that the presence of a massive satellite can globally modify the structure and emission properties of an accretion disc to which it is tidally coupled. We show, using two levels of numerical approximation, that the analytic model gives reasonable results. The results are applicable to two astrophysical situations. In the case of an active galactic nucleus, we consider the case of a $\\sim 10^3\\Msun$ compact companion to the central black-hole and ...

  10. Interaction of Accretion Shocks with Winds

    Indian Academy of Sciences (India)

    Kinsuk Acharya; Sandip K. Chakrabarti; D. Molteni

    2002-03-01

    Accretion shocks are known to oscillate in presence of cooling processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well.We show examples of shock oscillations under the influence of both the effects. When the shocks are absent and the flow is cooler, the wind becomes weaker and the vertical oscillation becomes negligible.

  11. The GAPS programme with HARPS-N at TNG. XI. Pr 0211 in M 44: the first multi-planet system in an open cluster

    Science.gov (United States)

    Malavolta, L.; Nascimbeni, V.; Piotto, G.; Quinn, S. N.; Borsato, L.; Granata, V.; Bonomo, A. S.; Marzari, F.; Bedin, L. R.; Rainer, M.; Desidera, S.; Lanza, A. F.; Poretti, E.; Sozzetti, A.; White, R. J.; Latham, D. W.; Cunial, A.; Libralato, M.; Nardiello, D.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Smareglia, R.; Affer, L.; Andreuzzi, G.; Aparicio, A.; Benatti, S.; Bignamini, A.; Borsa, F.; Damasso, M.; Di Fabrizio, L.; Harutyunyan, A.; Esposito, M.; Fiorenzano, A. F. M.; Gandolfi, D.; Giacobbe, P.; González Hernández, J. I.; Maldonado, J.; Masiero, S.; Molinaro, M.; Pedani, M.; Scandariato, G.

    2016-04-01

    Context. Open cluster (OC) stars share the same age and metallicity, and, in general, their age and mass can be estimated with higher precision than for field stars. For this reason, OCs are considered an importantlaboratory to study the relation between the physical properties of the planets and those of their host stars, and the evolution of planetary systems. However, only a handful of planets have been discovered around OC main-sequence stars so far, all of them in single-planet systems. For this reason we started an observational campaign within the GAPS collaboration to search for and characterize planets in OCs Aims: We monitored the Praesepe member Pr 0211 to improve our knowledge of the eccentricity of the hot Jupiter (HJ) that is already known to orbit this star and search for additional intermediate-mass planets. An eccentric orbit for the HJ would support a planet-planet scattering process rather than a disk-driven migration after its formation. Methods: From 2012 to 2015, we collected 70 radial velocity (RV) measurements with HARPS-N and 36 with TRES of Pr 0211. Simultaneous photometric observations were carried out with the robotic STELLA telescope to characterize the stellar activity. We discovered a long-term trend in the RV residuals that we show as being due to the presence of a second, massive, outer planet. Orbital parameters for the two planets are derived by simultaneously fitting RVs and photometric light curves, with the activity signal modelled as a series of sinusoids at the rotational period of the star and its harmonics. Results: We confirm that Pr 0211b has a nearly circular orbit (e = 0.02 ± 0.01), with an improvement of a factor two with respect to the previous determination of its eccentricity, and estimate that Pr 0211c has a mass Mp sin i = 7.9 ± 0.2 MJ, a period P> 3500 days and a very eccentric orbit (e> 0.60). This kind of peculiar system may be typical of open clusters if the planet-planet scattering phase, which lead to the

  12. Minidisks in Binary Black Hole Accretion

    Science.gov (United States)

    Ryan, Geoffrey; MacFadyen, Andrew

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  13. Modeling the Accretion Structure of AU Mon

    CERN Document Server

    Atwood-Stone, Corwin; Richards, Mercedes T; Budaj, Jan; Peters, Geraldine J

    2012-01-01

    AU Mon is a long-period (11.113 d) Algol-type binary system with a persistent accretion disk that is apparent as double-peaked H-alpha emission. We present previously unpublished optical spectra of AU Mon which were obtained over several years with dense orbital phase coverage. We utilize these data, along with archival UV spectra, to model the temperature and structure of the accretion disk and the gas stream. Synthetic spectral profiles for lines including H-alpha, H-beta, and the Al III and Si IV doublets were computed with the Shellspec program. The best match between the model spectra and the observations is obtained for an accretion disk of inner/outer radius 5.1/23 R_sun, thickness of 5.2 R_sun, density of 1.0e-13 g/cm^3, and maximum temperature of 14000 K, along with a gas stream at a temperature of ~8000 K transferring ~2.4e-9 M_sun/yr. We show H-alpha Doppler tomograms of the velocity structure of the gas, constructed from difference profiles calculated through sequentially subtracting contributions...

  14. Dynamical Masses of Accreting White Dwarfs

    Science.gov (United States)

    Pala, A. F.; Gänsckie, B. T.

    2017-03-01

    The mass retention efficiency is a key question in both the theoretical and observational study of accreting white dwarfs in interacting binaries, with important implications for their potential as progenitors for type Ia supernovae (SNe Ia). Canonical wisdom is that classical nova eruptions erode the white dwarf mass, and consequently, cataclysmic variables (CVs) have been excluded from the SN Ia progenitor discussion. However the average mass of white dwarfs in CVs is substantially higher (≃ 0.83 M⊙) than that of single white dwarfs (≃ 0.64 M ⊙), in stark contrast to expectations based on current classical nova models. This finding is based on a sample of ≃ 30 CV white dwarfs with accurate mass measurements, most of them in eclipsing systems. Given the fundamental importance of the mass evolution of accreting white dwarfs, it is necessary to enlarge this sample and to diversify the methods used for measuring masses. We have begun a systematic study of 27 CVs to almost double the number of CV white dwarfs with an accurate mass measurement. Using VLT/X-shooter phase-resolved observations, we can measure the white dwarf masses to a few percent, and will be able to answer the question whether accreting CV white dwarfs grow in mass.

  15. Generalized Similarity for Accretion/Decretion Disks

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post main sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects - circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc. - feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and non-linear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter $\\lambda$, which is uniquely related to the degree, to which the...

  16. Magnetically driven accretion in protoplanetary discs

    CERN Document Server

    Simon, Jacob B; Kunz, Matthew W; Armitage, Philip J

    2015-01-01

    We characterize magnetically driven accretion at radii between 1 au and 100 au in protoplanetary discs, using a series of local non-ideal magnetohydrodynamic (MHD) simulations. The simulations assume a Minimum Mass Solar Nebula (MMSN) disc that is threaded by a net vertical magnetic field of specified strength. Confirming previous results, we find that the Hall effect has only a modest impact on accretion at 30 au, and essentially none at 100 au. At 1-10 au the Hall effect introduces a pronounced bi-modality in the accretion process, with vertical magnetic fields aligned to the disc rotation supporting a strong laminar Maxwell stress that is absent if the field is anti-aligned. In the anti-aligned case, we instead find evidence for bursts of turbulent stress at 5-10 au, which we tentatively identify with the non-axisymmetric Hall-shear instability. The presence or absence of these bursts depends upon the details of the adopted chemical model, which suggests that appreciable regions of actual protoplanetary di...

  17. Terrane accretion: Insights from numerical modelling

    Science.gov (United States)

    Vogt, Katharina; Gerya, Taras

    2016-04-01

    The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.

  18. Sub-Keplerian accretion onto circumstellar disks

    CERN Document Server

    Visser, R

    2010-01-01

    Models of the formation, evolution and photoevaporation of circumstellar disks are an essential ingredient in many theories of the formation of planetary systems. The ratio of disk mass over stellar mass in the circumstellar phase of a disk is largely determined by the angular momentum of the original cloud core from which the system was formed. While full 3D or 2D axisymmetric hydrodynamical models of accretion onto the disk automatically treat all aspects of angular momentum, this is not so trivial for 1D and semi-2D viscous disk models. Since 1D and semi-2D disk models are still very useful for long-term evolutionary modelling of disks with relatively little numerical effort, we investigate how the 2D nature of accretion affects the formation and evolution of the disk in such models. A proper treatment of this problem requires a correction for the sub-Keplerian velocity at which accretion takes place. We develop an update of our semi-2D time-dependent disk evolution model to properly treat the effects of s...

  19. Consequences of tidal interaction between disks and orbiting protoplanets for the evolution of multi-planet systems with architecture resembling that of Kepler 444

    Science.gov (United States)

    Papaloizou, J. C. B.

    2016-11-01

    We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. This model enables migration times for each planet to be estimated once planet masses, circularization times and the migration time for the innermost planet are specified. We applied it to a system with the current architecture of Kepler 444 adopting a simple protoplanetary disk model and planet masses that yield migration times inversely proportional to the planet mass, as expected if they result from torques due to tidal interaction with the protoplanetary disk. Furthermore the evolution time for the system as a whole is comparable to current protoplanetary disk lifetimes. In addition we have performed a number of numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to the estimated migration rates yield systems for which period ratios vary by a minimal extent. Because of relatively large deviations from exact resonance in the observed system of up to 2 %, the migration times obtained in this way indicate only weak convergent migration such that a system for which the planets did not interact would contract by only {˜ }1 % although undergoing significant inward migration as a whole. We have also performed additional simulations to investigate conditions under which the system could undergo significant convergent migration before reaching its final state. These indicate that migration times have to be significantly shorter and resonances between planet pairs significantly closer during such an evolutionary phase. Relative migration rates would then have to decrease

  20. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, 91191 Gif-sur-Yvette (France); Pinzon, Giovanni [Observatorio Astronomico Nacional, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Greene, Thomas P. [NASA Ames Research Center, M.S. 245-6, Moffett Field, CA 94035-1000 (United States); Pudritz, Ralph E., E-mail: sean.matt@cea.fr, E-mail: thomas.p.greene@nasa.gov, E-mail: gapinzone@unal.edu.co, E-mail: pudritz@physics.mcmaster.ca [Physics and Astronomy Department, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  1. Effect of Gas Accretion Disc Profile on Orbital Parameters of the Accreted Stars

    Science.gov (United States)

    Shukirgaliyev, Bekdaulet T.; Panamarev, Taras P.; Naurzbaeva, Aisha Zh.; Kalambay, Mukhagali T.; Makukov, Maxim A.; Vilkoviskij, Emmanuil Y.; Omarov, Chingis T.; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-10-01

    The results of studies of the effect of the gas disk and its profile on the dynamics of active galactic nuclei are presented. The study was conducted with a numerical model of galactic nucleus based on phiGRAPE+GPU comprising three subsystems - a central supermassive black hole, gaseous accretion disc, and compact stellar cluster. The evolution of the compact stellar cluster is modeled with direct integration (N-body simulation), while the black hole and gaseous disc are represented phenomenologically: the black hole is introduced as an external potential (fixed in space but variable in time due to black hole mass growth), and the gaseous disc is introduced as spatial time-independent density distribution. We examined and compared with each other orbital parameters of accreting stars for model of the galactic nucleus with gas disc of constant and variable thickness, as well as without gas. It was found that in the presence of a gaseous disk almost half of the accreted particles interact strongly with the gas and are captured by the disc before accretion, while more than 85% of particles are affected to some extent by the disc prior to accretion. This suggests that interaction of the stellar cluster with the gas disk in the galactic nucleus might lead to the formation of stellar disk in the central part of the nucleus.

  2. Core Forensics: Earth's Accretion and Differentiation

    Science.gov (United States)

    Badro, J.; Brodholt, J. P.; Siebert, J.; Piet, H.; Ryerson, F. J.

    2013-12-01

    Earth's accretion and its primitive differentiation are intimately interlinked processes. One way to constrain accretionary processes is by looking at the major differentiation event that took place during accretion: core formation. Understanding core formation and core composition can certainly shed a new light on early and late accretionary processes. On the other hand, testing certain accretionary models and hypothesis (fluxes, chemistries, timing) allows -short of validating them- at the very least to unambiguously refute them, through the 'filter'' of core formation and composition. Earth's core formed during accretion as a result of melting, phase-separation, and segregation of accretionary building blocks (from meteorites to planetesimals). The bulk composition of the core and mantle depends on the evolution (pressure, temperature, composition) of core extraction during accretion. The entire process left a compositional imprint on both reservoirs: (1) in the silicate Earth, in terms of siderophile trace-element (Ni, Co, V, Cr, among others) concentrations and isotopic fractionation (Si, Cu, among others), a record that is observed in present-day mantle rocks; and (2) on the core, in terms of major element composition and light elements dissolved in the metal, a record that is observed by seismology through the core density-deficit. This imprint constitutes actually a fairly impressive set of evidence (siderophile element concentration and fractionation, volatile and siderophile element isotopic fractionation), can be used today to trace back the primordial processes that occurred 4.5 billion years ago. We are seeking to provide an overhaul of the standard core formation/composition models, by using a new rationale that bridges geophysics and geochemistry. The new ingredients are (1) new laser-heated diamond anvil cell partitioning data, dramatically extending the previous P-T conditions for experimental work, (2) ab initio molecular dynamics calculations to

  3. Phantom Accretion onto the Schwarzschild de-Sitter Black Hole

    Institute of Scientific and Technical Information of China (English)

    M Sharif; G Abbas

    2011-01-01

    We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass Bux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that the mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking A → 0.%@@ We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole.The energy flux conserva-tion,relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion.We discuss the conditions for critical accretion.It is found that the mass of the black hole decreases due to phantom accretion.There exist two critical points which lie in the exterior of horizons(black hole and cosmological horizons).The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking ∧→0.

  4. Jet Luminosity from Neutrino-Dominated Accretion Flows in GRBs

    CERN Document Server

    Kawanaka, Norita

    2013-01-01

    A hyperaccretion disk around a stellar-mass black hole is a plausible model for the central engine that powers gamma-ray bursts (GRBs). We estimate the luminosity of a jet driven by magnetohydrodynamic processes such as the Blandford-Znajek (BZ) mechanism as a function of mass accretion rate, the black hole mass, and other accretion parameters. We show that the jet is most efficient when the accretion flow is cooled via optically-thin neutrino emission, and that its luminosity is much larger than the energy deposition rate through neutrino annihilation provided that the black hole is spinning rapidly enough. Also, we find a significant jump in the jet luminosity at the transition mass accretion rate between the advection dominated accretion flow (ADAF) regime and the neutrino-dominated accretion flow (NDAF) regime. This may cause the large variability observed in the prompt emission of GRBs.

  5. Spin Period Evolution of Recycled Pulsar in Accreting Binary

    CERN Document Server

    Wang, J; Zhao, Y H; Kojima, Y; Yin, H X; SOng, L M

    2010-01-01

    We investigate the spin-period evolutions of recycled pulsars in binary accreting systems. Taking both the accretion induced field decay and spin-up into consideration, we calculate their spin-period evolutions influenced by the initial magnetic-field strengths, initial spin-periods and accretion rates, respectively. The results indicate that the minimum spin-period (or maximum spin frequency) of millisecond pulsar (MSP) is independent of the initial conditions and accretion rate when the neutron star (NS) accretes $\\sim> 0.2\\ms$. The accretion torque with the fastness parameter and gravitational wave (GW) radiation torque may be responsible for the formation of the minimum spin-period (maximum spin frequency). The fastest spin frequency (716 Hz) of MSP can be inferred to associate with a critical fastness parameter about $\\omega_{c}=0.55$. Furthermore, the comparisons with the observational data are presented in the field-period ($B-P$) diagram.

  6. Volatile loss from accreting icy protoplanets

    Science.gov (United States)

    Stevenson, D. J.

    1993-03-01

    A large self-gravitating body does not easily lose significant mass because the escape velocity is much larger than the sound speed of atmosphere-forming species under ambient thermal conditions. The most significant exceptions to this are giant impacts or impact jetting by fast-moving projectiles. A very small object (e.g. a comet) also does not easily lose significant volatile mass upon formation because the energy release associated with its accretion is so small. (It can however lose a great deal of mass if it is subsequently moved closer to the Sun.) I argue that there is an intermediate mass range (corresponding to bodies with radii of approximately 300-800 km) for which the ambient steady-state mass loss is a maximum. By ambient, I mean those conditions pertaining to the formation region of the body. By steady state, I mean to exclude infrequent traumas (giant impacts). The existence of a preferred intermediate mass arises through the competition of growing gravitational containment and growing energy release by accretion; it corresponds typically to GM/(Rcs2) approximately equals 2 to 4, where M is the protoplanet mass of radius R, and cs is the sound speed. Several factors determine the amount of volatile loss is this vulnerable zone during accretion but in general the loss is a substantial fraction of the volatiles, sometimes approaching 100 percent. The principal implication is that bodies larger than a few hundred kilometers in radius will not have a 'primitive' (i.e. cometary) composition. This is relevant for understanding Triton, Pluto, Charon, and perhaps Chiron.

  7. Accretion-disc model spectra for dwarf-nova stars

    OpenAIRE

    Idan, Irit; Lasota, Jean-Pierre; Hameury, Jean-Marie; Shaviv, Giora

    2008-01-01

    Radiation from accretion discs in cataclysmic variable stars (CVs) provides fundamental information about the properties of these close binary systems and about the physics of accretion in general. The detailed diagnostics of accretion disc structure can be achieved by including in its description all the relevant heating and cooling physical mechanism, in particular the convective energy transport that, although dominant at temperatures less than about 10 000 K, is usually not taken into acc...

  8. Slim accretion discs with different viscosity prescriptions

    Energy Technology Data Exchange (ETDEWEB)

    Szuszkiewicz, E. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Astrophysik)

    1990-05-15

    The variability of X-ray sources powered by accretion may be connected to thermal instabilities in the innermost parts of slim discs. The time-scales of variability predicted by the theory with the standard {alpha}-viscosity prescription agree with those observed in a wide range of sources. The amplitudes (3-4 orders of magnitude in luminosity) are correctly predicted for X-ray transient sources, but in general are too big for quasars, Seyferts, galactic black hole candidates and LMXBs. We show here that a slight modification of the viscosity prescription can offer a much better agreement with observations. (author).

  9. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  10. Waves and Instabilities in Accretion Disks MHD Spectroscopic Analysis

    CERN Document Server

    Keppens, R; Goedbloed, J P

    2002-01-01

    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.

  11. Accretion Onto a Charged Higher-Dimensional Black Hole

    CERN Document Server

    Sharif, M

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstr$\\ddot{o}$m black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding critical radius, critical sound velocity and critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for Schwarzschild black hole are recovered when $q=0$ in four dimensions. We conclude that accretion process in higher dimensions becomes slower in the presence of charge.

  12. Convection-Dominated Accretion Flows with Radiative Cooling

    Institute of Scientific and Technical Information of China (English)

    LI Shuang-Liang; XUE Li; LU Ju-Fu

    2007-01-01

    @@ By numerically solving the set of basic equations describing black hole accretion flows with low accretion rates,we show that although the dynamical structure of these flows is essentially unaffected by radiative processes in comparison with the case in which the radiation is not considered, the radiative cooling can be more important than the advective cooling in the flow's convection-dominated zone, and this result may have implications to distinguish observationally convection-dominated accretion flows from advection-dominated accretion flows.

  13. Do observations reveal accretion discs in intermediate polars

    Energy Technology Data Exchange (ETDEWEB)

    Hellier, C. (University Coll., London (UK). Mullard Space Science Lab.)

    1991-08-15

    It has been proposed that intermediate polars do not accrete through discs and that they may not possess discs. Observations of eclipses and emission lines provide strong evidence that discs are present in many intermediate polars, although it is less clear whether the accretion flows through these discs. An analysis of the EXOSAT database shows that many systems have orbital and beat period modulations which are small compared to the spin-pulses, suggesting disc accretion. There are, though, exceptions, notably TX Col where dominant orbital and beat period modulations indicate discless accretion. (author).

  14. Accretion and evaporation of modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Howrah (India)

    2015-03-01

    We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)

  15. Deceleration Effect of Magnetic Field on Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong

    2000-01-01

    The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.

  16. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-Powered Stellar Winds

    CERN Document Server

    Matt, Sean P; Greene, Thomas P; Pudritz, Ralph E

    2011-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind. For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1--10 days in the age range of 1--3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to s...

  17. A Wind Accretion Model for HLX-1

    CERN Document Server

    Miller, M Coleman; Maccarone, Thomas J

    2014-01-01

    The brightest ultraluminous X-ray source currently known, HLX-1, has been observed to undergo five outburst cycles. The periodicity of these outbursts, and their high inferred maximum accretion rates of $\\sim{\\rm few}\\times 10^{-4} M_\\odot {\\rm yr}^{-1}$, naturally suggest Roche lobe overflow at the pericenter of an eccentric orbit. It is, however, difficult for the Roche lobe overflow model to explain the apparent trend of decreasing decay times over the different outbursts while the integrated luminosity also drops. Thus if the trend is real rather than simply being a reflection of the complex physics of accretion disks, a different scenario may be necessary. We present a speculative model in which, within the last decade, a high-mass giant star had most of its envelope tidally stripped by the $\\sim 10^{4-5} M_\\odot$ black hole in HLX-1, and the remaining core plus low-mass hydrogen envelope now feeds the hole with a strong wind. This model can explain the short decay time of the disk, and could explain the...

  18. Spiral waves in accretion discs - observations

    CERN Document Server

    Steeghs, D

    2000-01-01

    I review the observational evidence for spiral structure in the accretion discs of cataclysmic variables (CVs). Doppler tomography is ideally suited to resolve and map such co-rotating patterns and allows a straightforward comparison with theory. The dwarf nova IP Pegasi presents the best studied case, carrying two spiral arms in a wide range of emission lines throughout its outbursts. Both arms appear at the locations where tidally driven spiral waves are expected, with the arm closest to the gas stream weaker in the lines compared to the arm closest to the companion. Eclipse data indicates sub-Keplerian velocities in the outer disc. The dramatic disc structure changes in dwarf novae on timescales of days to weeks, provide unique opportunities for our understanding of angular momentum transport and the role of density waves on the structure of accretion discs. I present an extension to the Doppler tomography technique that relaxes one of the basic assumptions of tomography, and is able to map modulated emiss...

  19. NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL

    Directory of Open Access Journals (Sweden)

    Nicusor ALEXANDRESCU

    2009-09-01

    Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters

  20. Accretion, Outflows, and Winds of Magnetized Stars

    CERN Document Server

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  1. Magnetic field evolution of accreting neutron stars

    CERN Document Server

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  2. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  3. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  4. Seismology of Rapidly Rotating Accreting White Dwarfs

    CERN Document Server

    Townsley, Dean M; Bildsten, Lars

    2016-01-01

    A number of White Dwarfs (WDs) in cataclysmic binaries have shown brightness variations consistent with non-radial oscillations as observed in isolated WDs. A few objects have been well-characterized with photometric campaigns in the hopes of gleaning information about the mass, spin, and possibly internal structural characteristics. The novel aspect of this work is the possiblity to measure or constrain the interior structure and spin rate of WDs which have spent gigayears accreting material from their companion, undergoing thousands of nova outbursts in the process. In addition, variations in the surface temperature affect the site of mode driving, and provide unique and challenging tests for mode driving theories previously applied to isolated WD's. Having undergone long-term accretion, these WDs are expected to have been spun up. Spin periods in the range 60-100 seconds have been measured by other means for two objects, GW Lib and V455 And. Compared to typical mode frequencies, the spin frequency may be s...

  5. Quantifying Rapid Variability in Accreting Compact Objects

    CERN Document Server

    Van der Klis, M

    1997-01-01

    I discuss some practical aspects of the analysis of millisecond time variability X-ray data obtained from accreting neutron stars and black holes. First I give an account of the statistical methods that are at present commonly applied in this field. These are mostly based on Fourier techniques. To a large extent these methods work well: they give astronomers the answers they need. Then I discuss a number of statistical questions that astronomers don't really know how to solve properly and that statisticians may have ideas about. These questions have to do with the highest and the lowest frequency ranges accessible in the Fourier analysis: how do you determine the shortest time scale present in the variability, how do you measure steep low-frequency noise. The point is stressed that in order for any method that resolves these issues to become popular, it is necessary to retain the capabilities the current methods already have in quantifying the complex, concurrent variability processes characteristic of accret...

  6. Formation of redbacks via accretion induced collapse

    CERN Document Server

    Smedley, Sarah L; Ferrario, Lilia; Wickramasinghe, Dayal T

    2014-01-01

    We examine the growing class of binary millisecond pulsars known as redbacks. In these systems the pulsar's companion has a mass between 0.1 and about 0.5 solar masses in an orbital period of less than 1.5 days. All show extended radio eclipses associated with circumbinary material. They do not lie on the period-companion mass relation expected from the canonical intermediate-mass X-ray binary evolution in which the companion filled its Roche lobe as a red giant and has now lost its envelope and cooled as a white dwarf. The redbacks lie closer to, but usually at higher period than, the period-companion mass relation followed by cataclysmic variables and low-mass X-ray binaries. In order to turn on as a pulsar mass accretion on to a neutron star must be sufficiently weak, considerably weaker than expected in systems with low-mass main-sequence companions driven together by magnetic braking or gravitational radiation. If a neutron star is formed by accretion induced collapse of a white dwarf as it approaches th...

  7. Eclipse Mapping: Astrotomography of Accretion Discs

    Science.gov (United States)

    Baptista, Raymundo

    The Eclipse Mapping Method is an indirect imaging technique that transforms the shape of the eclipse light curve into a map of the surface brightness distribution of the occulted regions. Three decades of application of this technique to the investigation of the structure, the spectrum and the time evolution of accretion discs around white dwarfs in cataclysmic variables have enriched our understanding of these accretion devices with a wealth of details such as (but not limited to) moving heating/cooling waves during outbursts in dwarf novae, tidally-induced spiral shocks of emitting gas with sub-Keplerian velocities, elliptical precessing discs associated to superhumps, and measurements of the radial run of the disc viscosity through the mapping of the disc flickering sources. This chapter reviews the principles of the method, discusses its performance, limitations, useful error propagation procedures, as well as highlights a selection of applications aimed at showing the possible scientific problems that have been and may be addresses with it.

  8. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  9. X-ray Photoevaporation-starved T Tauri Accretion

    CERN Document Server

    Drake, Jeremy J; Flaccomio, Ettore; Micela, Giusi

    2009-01-01

    X-ray luminosities of accreting T Tauri stars are observed to be systematically lower than those of non-accretors. There is as yet no widely accepted physical explanation for this effect, though it has been suggested that accretion somehow suppresses, disrupts or obscures coronal X-ray activity. Here, we suggest that the opposite might be the case: coronal X-rays modulate the accretion flow. We re-examine the X-ray luminosities of T Tauri stars in the Orion Nebula Cluster and find that not only are accreting stars systematically fainter, but that there is a correlation between mass accretion rate and stellar X-ray luminosity. We use the X-ray heated accretion disk models of Ercolano et al. to show that protoplanetary disk photoevaporative mass loss rates are strongly dependent on stellar X-ray luminosity and sufficiently high to be competitive with accretion rates. X-ray disk heating appears to offer a viable mechanism for modulating the gas accretion flow and could be at least partially responsible for the o...

  10. On the high frequency spectrum of a classical accretion disc

    CERN Document Server

    Balbus, Steven A

    2014-01-01

    We derive simple and explicit expressions for the high frequency spectrum of a classical accretion disc. Both stress-free and finite stress inner boundaries are considered. A classical accretion disc spectrum with a stress-free inner boundary departs from a Wien spectrum at large $\

  11. Multi-dimensional structure of accreting young stars

    CERN Document Server

    Geroux, C; Viallet, M; Goffrey, T; Pratt, J; Constantino, T; Folini, D; Popov, M V; Walder, R

    2016-01-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley \\& Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive ...

  12. Accretion Discs Show Their True Colours

    Science.gov (United States)

    2008-07-01

    Quasars are the brilliant cores of remote galaxies, at the hearts of which lie supermassive black holes that can generate enough power to outshine the Sun a trillion times. These mighty power sources are fuelled by interstellar gas, thought to be sucked into the hole from a surrounding 'accretion disc'. A paper in this week's issue of the journal Nature, partly based on observations collected with ESO's Very Large Telescope, verifies a long-standing prediction about the intensely luminous radiation emitted by these accretion discs. Uncovering the disc ESO PR Photo 21/08 Uncovering the inner disc "Astronomers were puzzled by the fact that the best models of these discs couldn't quite be reconciled with some of the observations, in particular, with the fact that these discs did not appear as blue as they should be," explains lead-author Makoto Kishimoto. Such a discrepancy could be the signal that there was something very wrong with the models. With his colleagues, he investigated this discrepancy by studying the polarised light from six quasars. This enabled them to demonstrate that the disc spectrum is as blue as predicted. "The crucial observational difficulty here has been that the disc is surrounded by a much larger torus containing hot dust, whose light partly outshines that of the disc," says Kishimoto. "Because the light coming from the disc is scattered in the disc vicinity and thus polarised, by observing only polarised light from the quasars, one can uncover the buried light from the disc." In a similar way that a fisherman would wear polarised sunglasses to help get rid of the glare from the water surface and allow him to see more clearly under the water, the filter on the telescope allowed the astronomers to see beyond surrounding clouds of dust and gas to the blue colour of the disc in infrared light. The observations were done with the FORS and ISAAC instruments on one of the 8.2-m Unit Telescopes of ESO's Very Large Telescope, located in the Atacama

  13. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    G. B. Long; J. W. Ou; Y. G. Zheng

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  14. On the Eddington limit for relativistic accretion discs

    CERN Document Server

    Abolmasov, Pavel

    2015-01-01

    Standard accretion disc model relies upon several assumptions, the most important of which is geometrical thinness. Whenever this condition is violated, new physical effects become important such as radial energy advection and mass loss from the disc. These effects are important, for instance, for large mass accretion rates when the disc approaches its local Eddington limit. In this work, we study the upper limits for standard accretion disc approximation and find the corrections to the standard model that should be considered in any model aiming on reproducing the transition to super-Eddington accretion regime. First, we find that for thin accretion disc, taking into account relativistic corrections allows to increase the local Eddington limit by about a factor of two due to stronger gravity in General Relativity (GR). However, violation of the local Eddington limit also means large disc thickness. To consider consequently the disc thickness effects, one should make assumptions upon the two-dimensional rotat...

  15. Accreting planets as dust dams in `transition' discs

    CERN Document Server

    Owen, James E

    2014-01-01

    We investigate under what circumstances an embedded planet in a protoplanetary disc may sculpt the dust distribution such that it observationally presents as a `transition' disc. We concern ourselves with `transition' discs that have large holes ($\\gtrsim 10$ AU) and high accretion rates ($\\sim 10^{-9}-10^{-8}$ M$_\\odot$ yr$^{-1}$). Particularly, those discs which photoevaporative models struggle to explain. Assuming the standard picture for how massive planets sculpt their parent discs, along with the observed accretion rates in `transition' discs, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small ($s\\lesssim 1\\mu$m) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disc with an embedded, accreting planet, show that only ...

  16. Rossby Wave Instability in the Accretion Flows around Black Holes

    Science.gov (United States)

    Gholipour, Mahmoud

    2017-01-01

    The roles of the Rossby wave instability (RWI) have been significantly developed in some important processes, such as planet formation and angular momentum transport through thin accretion disks. However, their development on accretion flows with advection is insignificant. In this paper, we investigate the effect of advection in the occurrence of RWI through accretion flows around black holes (BHs). In the absence of advection, the occurrence of RWI is extremely low because of high viscosity in the accretion flows around BHs. The results of this paper show that there is a significant chance for the occurrence of RWI in some wavelengths if we consider advection even in low amounts. Therefore, the RWI can be a suitable candidate for angular momentum transport in the accretion flows around BHs. Also, the results show that the advection parameter and the ratio of heat capacity, which are special characters of advection flows, play important roles in the occurrence of RWI.

  17. Magnetohydrodynamic stability of stochastically driven accretion flows

    CERN Document Server

    Nath, Sujit K; Chattopadhyay, Amit K

    2013-01-01

    We investigate the evolution of magnetohydrodynamic/hydromagnetic perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable, but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations/experiments. The mismatch seems to have been resolved, atleast in certain regimes, in the presence of weak magnetic field revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It ...

  18. Accreting Millisecond Pulsars and Fundamental Physics

    Science.gov (United States)

    Strohmayer, Tod

    2005-01-01

    X-ray emission from the surfaces of rapidly rotating neutron stars encodes information about their global properties as well as physical conditions locally. Detailed modelling of, for example, the energy dependent pulse profiles observed from accreting millisecond pulsars and thermonuclear burst oscillations can be used to derive constraints on the masses and radii of neutron stars. These measurements provide direct information on the properties of the dense matter equation of state of the supranuclear density matter in their interiors. Study of absorption lines created in the surface layers can also provide measurements of masses and radii, and may be able to probe aspects of relativistic gravity, such as frame dragging. I will discuss the results of recent efforts to carry out such measurements and their implications for the properties of dense matter.

  19. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  20. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    LI; xiaoqing(李晓卿); JI; Haisheng(季海生)

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  1. Probing Sagittarius A* accretion with ALMA

    Science.gov (United States)

    Murchikova, Elena

    2017-01-01

    The submm Hydrogen recombination line technique can be used as a probe of the Galactic Center. We present the results of our H30α observations of ionized gas from within 0.015 pc around SgrA*. The observations were obtained on ALMA in cycle 3. The line was not detected, but we were able to set a limit on the mass of the cool gas (T~ 104 K) at 2 × 10-3 M ⊙. This is the unique probe of gas cooler than T ~106 K traced by X-ray emission. The total amount of gas near SgrA* gives us clues to understanding the accretion rate of SgrA*.

  2. Twisted accretion discs: Pt. 5; Viscous evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Astrophysik)

    1990-08-15

    The time-dependence of accretion discs with orbits tilted out of the symmetry plane is studied. The effects of mass inflow modulation, and tilt variation at the disc outer edge, are examined for both circumbinary discs and for discs around compact objects. The appendices extend the numerical work to some analytic examples of tilt diffusion and external forcing effects. It is also shown that the disc must not be treated as a rigid tilted object if global angular momentum is to be conserved. These results are relevant to the problem of long-term periodicities of the light curves in Her X1 and {epsilon} Aur, the S-type symmetry of radio jets, warped gas discs in galaxies and polar rings in Neptune. Twisted discs may also arise in star-forming regions. (author).

  3. Stability of Self-Similar Spherical Accretion

    CERN Document Server

    Gaite, J

    2006-01-01

    Spherical accretion flows are simple enough for analytical study, by solution of the corresponding fluid dynamic equations. The solutions of stationary spherical flow are due to Bondi. The questions of the choice of a physical solution and of stability have been widely discussed. The answer to these questions is very dependent on the problem of boundary conditions, which vary according to whether the accretor is a compact object or a black hole. We introduce a particular, simple form of stationary spherical flow, namely, self-similar Bondi flow, as a case with physical interest in which analytic solutions for perturbations can be found. With suitable no matter-flux-perturbation boundary conditions, we will show that acoustic modes are stable in time and have no spatial instability at r=0. Furthermore, their evolution eventually becomes ergodic-like and shows no trace of instability or of acquiring any remarkable pattern.

  4. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  5. AGN Variability: Probing Black Hole Accretion

    Science.gov (United States)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2017-01-01

    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  6. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    Science.gov (United States)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-01-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disk at the pericenter scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 10^{44} {erg s^{-1}}, implies that we observe only ˜1% of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. (2015) suggested that the observed optical TDE emission is powered by shocks at the apocenter between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature, and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the SMBH before circularization. As a result, the efficiency is only ˜1-10% of a standard accretion disk's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  7. Effect of Radiation Drag on Hoyle-Lyttleton Accretion

    CERN Document Server

    Nio, T; Fukue, J; Nio, Tomomi; Matsuda, Takuya; Fukue, Jun

    1998-01-01

    Hoyle-Lyttleton type accretion is investigated, by taking account of not only the effect of radiation pressure but the effect of radiation drag. We calculate the trajectories of particles for three cases: only the effect of gravity is considered (case A); the effect of radiation pressure is taken into account (case B); the effect of radiation drag as well as radiation pressure is taken into account (case C). The accretion radii for former two cases are $2GM/v_{\\infty}^2$ for case A and $2GM(1-\\Gamma)/v_{\\infty}^2$ for case B, where M is the mass of the accreted object, $v_{\\infty}$ the relative velocity, and Gamma the normalized luminosity of the accreted object. We found that the accretion radius for case C is in between those of cases A and B under the present approximation; i.e., the accretion radius decreases due to radiation pressure while it increases due to radiation drag. In addition, the accretion radius for case C becomes larger as the incident velocity becomes fast. The effect of radiation drag bec...

  8. Twisted accretion curtains in the intermediate polar FO Aquarii

    CERN Document Server

    Evans, P A; Cropper, G R M; Hellier, Coel; Cropper, Gavin Ramsay & Mark

    2004-01-01

    We report on a ~37-ks XMM-Newton observation of the intermediate polar FO Aquarii, presenting X-ray and UV data from the EPIC and OM cameras. We find that the system has changed from its previously reported state of disc-overflow accretion to one of purely disc-fed accretion. We detect the previously reported `notch' feature in the X-ray spin pulse, and explain it as a partial occultation of the upper accretion pole. Maximum flux of the quasi-sinusoidal UV pulse coincides with the notch, in keeping with this idea. However, an absorption dip owing to the outer accretion curtains occurs 0.27 later than the expected phase, which implies that the accretion curtains are twisted, trailing the magnetic poles. This result is the opposite of that reported in PQ Gem, where accreting field lines were found to lead the pole. We discuss how such twists relate to the accretion torques and thus the observed period changes of the white dwarfs, but find no simple connection.

  9. Migration of accreting planets in radiative discs from dynamical torques

    CERN Document Server

    Pierens, Arnaud

    2016-01-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 $M_\\oplus$ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong corotation torque. In the case where gas accretion is neglected, we find evidence for strong dynamical torques in accreting discs with accretion rates ${\\dot M}\\gtrsim 7\\times 10^{-8} \\;M_\\odot/yr$. Their main effect is to increase outward migration rates by a factor of $\\sim 2$ typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter...

  10. Formation of primordial supermassive stars by burst accretion

    CERN Document Server

    Sakurai, Y; Yoshida, N; Yorke, H W

    2015-01-01

    A promising formation channel of SMBHs at redshift 6 is the so-called DC model, which posits that a massive seed BH forms through gravitational collapse of a $\\sim 10^5~M_\\odot$ SMS. We study the evolution of such a SMS growing by rapid mass accretion. In particular, we examine the impact of time-dependent mass accretion of repeating burst and quiescent phases that are expected to occur with a self-gravitating circumstellar disk. We show that the stellar evolution with such episodic accretion differs qualitatively from that expected with a constant accretion rate, even if the mean accretion rate is the same. Unlike the case of constant mass accretion, whereby the star expands roughly following $R_* \\simeq 2.6 \\times 10^3 R_\\odot (M_*/100~M_\\odot)^{1/2}$, the protostar can substantially contract during the quiescent phases between accretion bursts. The stellar effective temperature and ionizing photon emissivity increase accordingly as the star contracts, which can cause strong ionizing feedback and halt the m...

  11. Forced accretion in stochastically fed AGN and quasars

    CERN Document Server

    Nayakshin, Sergei

    2007-01-01

    Steady state accretion discs larger than ~ 0.01-0.1 pc are known to be gravitationally unstable for the accretion rates needed to explain super-massive black hole (SMBH) activity. We propose that SMBH are fed by a succession of mass deposition events with randomly directed angular momenta. Because of incomplete angular momentum cancellation a warped accretion disc forms in the inner few parsec. The orientation of the disc performs a random walk. Deposition of new material promotes SMBH accretion at rates much faster than viscous. Observational implications of this picture include: (i) lighter accretion discs that can fuel AGN and quasars and yet avoid star formation at R >> 0.1 pc; (ii) star formation inside the disc is not a function of mass accretion rate only. It can take place at high or low accretion rates, e.g., when too few clouds arrive in the inner region. An example of this might be the central parsec of our Galaxy. (iii) The discs can form Compton-thick obscuring structures of ~ parsec size as requ...

  12. The geochemical constraints on Earth's accretion and core formation (Invited)

    Science.gov (United States)

    Rudge, J. F.; Kleine, T.; Bourdon, B.

    2010-12-01

    There are now a wide range of geochemical observations that can be used to place constraints on Earth's first hundred million years. During this time the Earth accreted through collisions between numerous planetary embryos, and these collisions are thought to have caused significant melting and segregation of metal, forming the Earth's core. Information on the pressure, temperature, and oxygen fugacity conditions of core formation can be obtained from the abundances of siderophile elements in Earth's mantle and high pressure partitioning experiments. Timing information can be obtained from isotopic measurements, notably Hf-W and U-Pb. Here we present a simple geochemical box model that can be used to provide constraints on Earth's accretion and core formation. A key parameter in the model is the degree of equilibration during metal-silicate segregation. Existing models have shown that the siderophile element abundances are consistent with full equilibration in a deep magma ocean, with an increase in oxygen fugacity during accretion. Here we show that the siderophile element abundances are equally consistent with scenarios involving partial equilibration. The Hf-W isotopic observations constrain the degree of equilibration to be at least 36%. The timing constraints depend strongly on the degree of equilibration, but nevertheless bounds can be placed on the timing of Earth's accretion. With full equilibration, the Hf-W observations imply a rapid early accretion stage (at least 80% of Earth accreting within 35 Myr), but with partial equilibration accretion may be much more protracted. If Pb partitions into Earth’s core, the U-Pb observations can be used to constrain the late stages of accretion, and are consistent with the final 10% of Earth’s accretion occurring during the Moon-forming giant impact at ~4.45Ga.

  13. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  14. LAMBDA BOO ABUNDANCE PATTERNS: ACCRETION FROM ORBITING SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Jura, M., E-mail: jura@astro.ucla.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1562 (United States)

    2015-12-15

    The abundance anomalies in λ Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically inferred bounds for interstellar accretion. Therefore, a λ Boo star’s thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some λ Boo stars accrete from the winds of hot Jupiters.

  15. Quasi-periodic oscillations in luminous accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, T.; Mineshige, S. (Cambridge Univ. (UK). Inst. of Astronomy)

    1991-04-15

    We examine the time-dependent evolution of radial pulsational instabilities in luminous accretion discs around neutron stars, using a one-dimensional hydrodynamic code. In geometrically thin and optically thick accretion discs, radial oscillations are overstable to axisymmetric perturbations. It is due to a mechanism similar to the {epsilon} mechanism in stellar pulsation. We find that this instability induces large amplitude oscillations (more than 100 per cent) in accretion rates and small modulations (a few per cent) in temperature and surface in the inner part of the disc, both with local Keplerian frequencies. (author).

  16. Tearing up a misaligned accretion disc with a binary companion

    CERN Document Server

    Doğan, Suzan; King, Andrew; Price, Daniel J

    2015-01-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X--ray binaries.

  17. Lambda Boo Abundance Patterns: Accretion from Orbiting Sources

    CERN Document Server

    Jura, M

    2015-01-01

    The abundance anomalies in lambda Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically-inferred bounds for interstellar accretion. Therefore, a lambda Boo star's thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt Objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some lambda Boo stars accrete from the winds of hot Jupiters.

  18. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  19. Accretion mode changes in Centaurus X-3

    CERN Document Server

    Paul, B; Mukherjee, U

    2005-01-01

    We report here discovery of the existence of two different accretion modes in the high mass X-ray binary pulsar Cen X-3 during its high states. The multiband X-ray light curves of Cen X-3 lasting for more than 3400 days obtained with the All Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) shows many episodes of high and low X-ray intensities. The high intensity phases last between a few to upto 110 days and the separation between two high intensity phases also varies widely. One remarkable feature deduced from the RXTE-ASM light curves is that during these high intensity phases, Cen X-3 manifests in two very distinct spectral states. When the source makes a transition from the low intensity phase to the high intensity phase, it adopts one of these two spectral states and during the entire high intensity phase remains in that particular spectral state. During December 2000 to April 2004, all the high intensity episodes showed a hardness ratio which is significantly larger than the same during ...

  20. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  1. Lopsided spiral galaxies: evidence for gas accretion

    CERN Document Server

    Bournaud, F; Jog, C J; Puerari, I

    2005-01-01

    We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin for the observed disk lopsidedness. We confirm previous studies, but now for a larger sample, that a large fraction of galaxies show significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m=1 component, normalised to the average or m=0 component, in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m=2 spiral arms and bars is correlated. The m=1 amplitude is found to be uncorrelated with the tidal forces acting on a galaxy via nearby companions. Numerical simulations are carried out to study the generation of m=1 via different processes: galaxy tidal encounters, galaxy mergers, and external gas accretion and subsequent star formation. The simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical ...

  2. Magnetohydrodynamic stability of stochastically driven accretion flows.

    Science.gov (United States)

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  3. The universal nature of subhalo accretion

    CERN Document Server

    Libeskind, Noam I; Hoffman, Yehuda; Gottloeber, Stefan

    2014-01-01

    We examine the angular infall pattern of subhaloes onto host haloes in the context of the large-scale structure. We find that this infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are found to be preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (~10 Mpc) scale -...

  4. Viscous Stability of Relativistic Keplerian Accretion Disks

    CERN Document Server

    Ghosh, P

    1998-01-01

    We investigate the viscous stability of thin, Keplerian accretion disks in regions where general relativistic (GR) effects are essential. For gas pressure dominated (GPD) disks, we show that the Newtonian conclusion that such disks are viscously stable is reversed by GR modifications in the behaviors of viscous stress and surface density over a significantly large annular region not far from the innermost stable orbit at $r=\\rms$. For slowly-rotating central objects, this region spans a range of radii $14\\lo r\\lo 19$ in units of the central object's mass $M$. For radiation pressure dominated (RPD) disks, the Newtonian conclusion that they are viscously unstable remains valid after including the above GR modifications, except in a very small annulus around $r\\approx 14M$, which has a negligible influence. Inclusion of the stabilizing effect of the mass-inflow through the disk's inner edge via a GR analogue of Roche-lobe overflow adds a small, stable region around \\rms~for RPD disks, but leaves GPD disks unchan...

  5. The tidal disruption of protoplanetary accretion discs

    CERN Document Server

    Larwood, J D

    1997-01-01

    In this paper we revisit the problem of the tidal interaction occuring between a protostellar accretion disc and a secondary point mass following a parabolic trajectory. We model the disc response analytically and we compare our results with three-dimensional SPH simulations. Inviscid as well as viscous hydrodynamics is considered. We show that in a viscous system the response derived from inviscid considerations is predominant even for the highest estimates of an anomalous disc shear viscosity. The angular momentum lost from the disc during the encounter is derived from linear theory, for distant fly-bys, as well as the changes to the disc orientation expected in non-coplanar encounters. It is shown that the target discs can become warped and precess by a small amount during non-coplanar encounters. This small precession is shown to give rise to a relative tilt of the disc which is always more important for determining its final orientation than is the change to the orbital inclination. We discuss the implic...

  6. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  7. Viscosity prescription for gravitationally unstable accretion disks

    CERN Document Server

    Rafikov, Roman R

    2015-01-01

    Gravitationally unstable accretion disks emerge in a variety of astrophysical contexts - giant planet formation, FU Orioni outbursts, feeding of AGNs, and the origin of Pop III stars. When a gravitationally unstable disk is unable to cool rapidly it settles into a quasi-stationary, fluctuating gravitoturbulent state, in which its Toomre Q remains close to a constant value Q_0~1. Here we develop an analytical formalism describing the evolution of such a disk, which is based on the assumptions of Q=Q_0 and local thermal equilibrium. Our approach works in the presence of additional sources of angular momentum transport (e.g. MRI), as well as external irradiation. Thermal balance dictates a unique value of the gravitoturbulent stress \\alpha_{gt} driving disk evolution, which is a function of the local surface density and angular frequency. We compare this approach with other commonly used gravitoturbulent viscosity prescriptions, which specify the explicit dependence of stress \\alpha_{gt} on Toomre Q in an ad hoc...

  8. Magnetic flux stabilizing thin accretion discs

    Science.gov (United States)

    Sądowski, Aleksander

    2016-10-01

    We calculate the minimal amount of large-scale poloidal magnetic field that has to thread the inner, radiation-over-gas pressure dominated region of a thin disc for its thermal stability. Such a net field amplifies the magnetization of the saturated turbulent state and makes it locally stable. For a 10 M⊙ black hole the minimal magnetic flux is 10^{24}(dot{M}/dot{M}_Edd)^{20/21} G cm2. This amount is compared with the amount of uniform magnetic flux that can be provided by the companion star - estimated to be in the range 1022-1024 G cm2. If accretion rate is large enough, the companion is not able to provide the required amount and such a system, if still sub-Eddington, must be thermally unstable. The peculiar variability of GRS 1915+105, an X-ray binary with the exceptionally high BH mass and near-Eddington luminosity, may result from the shortage of large-scale poloidal field of uniform polarity.

  9. Disk Accretion Onto High-Mass Planets

    CERN Document Server

    Lubow, S H; Artymowicz, P

    1999-01-01

    We analyze the nonlinear, two-dimensional response of a gaseous, viscous protoplanetary disk to the presence of a planet of one Jupiter mass (1 M_J) and greater that orbits a 1 solar mass star by using the ZEUS hydrodynamics code with high resolution near the planet's Roche lobe. The planet is assumed to be in a circular orbit about the central star and is not allowed to migrate. A gap is formed about the orbit of the planet, but there is a nonaxisymmetric flow through the gap and onto the planet. The gap partitions the disk into an inner (outer) disk that extends inside (outside) the planet's orbit. For a 1 M_J planet and typical disk parameters, the accretion through the gap onto the planet is highly efficient. For typical disk parameters, the mass doubling time scale is less than 10^5 years, considerably shorter than the disk lifetime. Following shocks near the L1 and L2 Lagrange points, disk material enters the Roche lobe in the form of two gas streams. Shocks occur within the Roche lobe as the gas stream...

  10. Accreting Binary Populations in the Earlier Universe

    Science.gov (United States)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  11. Magnetic flux stabilizing thin accretion disks

    CERN Document Server

    Sadowski, Aleksander

    2016-01-01

    We calculate the minimal amount of large-scale poloidal magnetic field that has to thread the inner, radiation-over-gas pressure dominated region of a thin disk for its thermal stability. Such a net field amplifies the magnetization of the saturated turbulent state and makes it locally stable. For a $10 M_\\odot$ black hole the minimal magnetic flux is $10^{24}(\\dot M/\\dot M_{\\rm Edd})^{20/21}\\,\\rm G\\cdot cm^{2}$. This amount is compared with the amount of uniform magnetic flux that can be provided by the companion star -- estimated to be in the range $10^{22}-10^{24}\\,\\rm G\\cdot cm^2$. If accretion rate is large enough, the companion is not able to provide the required amount and such a system, if still sub-Eddington, must be thermally unstable. The peculiar variability of GRS 1915+105, an X-ray binary with the exceptionally high BH mass and near-Eddington luminosity, may result from the shortage of large scale poloidal field of uniform polarity.

  12. Evolution of transonicity in an accretion disc

    CERN Document Server

    Ray, A K; Ray, Arnab K.; Bhattacharjee, Jayanta K.

    2007-01-01

    For inviscid, rotational accretion flows driven by a general pseudo-Newtonian potential on to a Schwarzschild black hole, the only possible fixed points are saddle points and centre-type points. For the specific choice of the Newtonian potential, the flow has only two critical points, of which the outer one is a saddle point while the inner one is a centre-type point. A restrictive upper bound is imposed on the admissible range of values of the angular momentum of sub-Keplerian flows through a saddle point. These flows are very unstable to any deviation from a necessarily precise boundary condition. The difficulties against the physical realisability of a solution passing through the saddle point have been addressed through a temporal evolution of the flow, which gives a non-perturbative mechanism for selecting a transonic solution passing through the saddle point. An equation of motion for a real-time perturbation about the stationary flows reveals a very close correspondence with the metric of an acoustic b...

  13. Accretion Disks around Young Low Mass Stars

    Directory of Open Access Journals (Sweden)

    Paola D´Alessio

    2001-01-01

    Full Text Available In the past decade, it has become clear that almost half of the low mass pre-main sequence stars are surrounded by disks, which are responsible for the observed infrared and optical-UV excess emission. The characterization of the structure of circumstellar disks is a crucial step towards understanding the early stellar evolution and planet formation. The thesis summarized here presents physical models of the detailed structure of accretion disks surrounding T Tauri stars. The disks are assumed to be in steady state, in vertical hydrostatic equilibrium, and with a turbulent viscosity described by the alpha-prescription. We consider different heating mechanisms: viscous dissipation, heating by cosmic rays and radioactive decay, irradiation by the central star or irradiation by an infalling envelope. The energy is transported in the vertical direction by radiation, convection and the turbulent flux. Give n the disk structure, we calculate its emission by integrating the radiative transfer equation for an arbitrary orientation of the disk relative to the line of sight. Spectral energy distributions (SEDs and images are compared with observations, and disk properties can be inferred or constrained.

  14. Cold, clumpy accretion onto an active supermassive black hole

    CERN Document Server

    Tremblay, Grant R; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen L; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael

    2016-01-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the "hot mode" accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of c...

  15. Dynamical structure of magnetized dissipative accretion flow around black holes

    CERN Document Server

    Sarkar, Biplob

    2016-01-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accret...

  16. Variability and Stability in Radiation Hydrodynamic Accretion Flows

    CERN Document Server

    Miller, G S; Miller, Guy S.; Park, Myeong-Gu

    1997-01-01

    In this paper we examine time-dependent and three-dimensional perturbations of spherical accretion flow onto a neutron star close to its Eddington limit. Our treatment assumes a Schwarzschild geometry for the spacetime outside the neutron star and is fully general relativistic. At all the accretion rates studied, the response of the accretion flow to perturbations includes weakly damped oscillatory modes. At sufficiently high luminosities --- but still well below the Eddington limit --- the flows become unstable to aspherical perturbations. These unstable radiation hydrodynamic modes resemble the onset of convection, and allow accretion to occur preferentially through more rapidly descending columns of gas, while the radiation produced escapes through neighboring columns in which the gas descends more slowly.

  17. Magnetically Controlled Accretion Flows onto Young Stellar Objects

    CERN Document Server

    Adams, Fred C

    2011-01-01

    (abridged) Accretion from disks onto young stars is thought to follow magnetic field lines from the inner disk edge to the stellar surface. The accretion flow thus depends on the geometry of the magnetic field. This paper extends previous work by constructing a collection of orthogonal coordinate systems, including the corresponding differential operators, where one coordinate traces the magnetic field lines. This formalism allows for an (essentially) analytic description of the geometry and the conditions required for the flow to pass through sonic points. Using this approach, we revisit the problem of magnetically controlled accretion flow in a dipole geometry, and then generalize the treatment to consider magnetic fields with multiple components, including dipole, octupole, and split monopole contributions. This approach can be generalized further to consider more complex magnetic field configurations. Observations indicate that accreting young stars have substantial dipole and octupole components, and tha...

  18. Photon Bubbles and the Vertical Structure of Accretion Disks

    CERN Document Server

    Begelman, M C

    2006-01-01

    We consider the effects of "photon bubble" shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability. They increase the rate at which radiation escapes from the disk, and may allow disks to exceed the Eddington limit by a substantial factor. We first generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low optical depth tend to fill in the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities of 10 to >100 times the Eddington limit (L_E), depending on the mass of the central ...

  19. Accretion Does Not Drive the Turbulence in Galactic Disks

    CERN Document Server

    Hopkins, Philip F; Murray, Norman

    2013-01-01

    Rapid accretion of cold gas plays a crucial role in getting gas into galaxies. It has been suggested that this accretion proceeds along narrow streams that might also directly drive the turbulence in galactic gas, dynamical disturbances, and bulge formation. In cosmological simulations, however, it is impossible to isolate and hence disentangle the effect of accretion from internal instabilities and mergers. Moreover, in most cosmological simulations, the phase structure and turbulence in the ISM arising from stellar feedback are treated in a sub-grid manner, so that feedback cannot generate ISM turbulence. In this paper we therefore test the effects of cold streams in extremely high-resolution simulations of otherwise isolated galaxy disks using detailed models for star formation and feedback; we then include or exclude mock cold flows falling onto the galaxies with accretion rates, velocities and geometry set to maximize their effect on the disk. We find: (1) Turbulent velocity dispersions in gas disks are ...

  20. The mass accretion rate of galaxy clusters: a measurable quantity

    CERN Document Server

    De Boni, Cristiano

    2016-01-01

    We are interested in investigating the growth of structures at the nonlinear scales of galaxy clusters from an observational perspective: we explore the possibility of measuring the mass accretion rate of galaxy clusters from their mass profile beyond the virial radius. We derive the accretion rate from the mass of a spherical shell whose infall velocity is extracted from $N$-body simulations. In the redshift range $z=[0,2]$, our prescription returns an average mass accretion rate within $20-40 \\%$ of the average rate derived from the merger trees of dark matter haloes extracted from $N$-body simulations. Our result suggests that measuring the mean mass accretion rate of a sample of galaxy clusters is actually feasible, thus providing a new potential observational test of the cosmological and structure formation models.

  1. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  2. Impact-induced melting during accretion of the Earth

    CERN Document Server

    de Vries, Jellie; Melosh, H Jay; Jacobson, Seth A; Morbidelli, Alessandro; Rubie, David C

    2016-01-01

    Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parametrised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth's ac...

  3. Wind-driven Accretion in Transitional Protostellar Disks

    CERN Document Server

    Wang, Lile

    2016-01-01

    Transitional protostellar disks have inner cavities heavily depleted in dust and gas, yet most show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities imply that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside such cavities are estimated for plausible X-ray and FUV radiation fields. The gas is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by K\\"onigl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but not so good that the magnetic flux need be dragged inward by the accreting neutrals.

  4. Stability of accretion disk around rotating black holes

    CERN Document Server

    Mukhopadhyay, B

    2004-01-01

    I discuss the stability of accretion disks when the black hole is considered to be rotating. I show, how the fluid properties get changed for different choices of angular momentum of black holes. I treat the problem in pseudo-Newtonian approach with a suitable potential from Kerr geometry. When the angular momentum of a black hole is considered to be significant, the valid disk parameter region affects and a disk may become unstable. Also the possibility of shock in an accretion disk around rotating black holes is checked. When the black hole is chosen to be rotating, the sonic locations of the accretion disk get shifted or disappear, making the disk unstable by means of loosing entropy. To bring the disk in a stable situation, the angular momentum of the accreting matter has to be reduced/enhanced (for co/counter-rotating disk) by means of some physical process.

  5. Accretion to a Magnetized Neutron Star in the "Propeller" Regime

    CERN Document Server

    Toropina, O D; Lovelace, R V E

    2006-01-01

    We investigate spherical accretion to a rotating magnetized star in the "propeller" regime using axisymmetric resistive magnetohydrodynamic simulations. The regime is predicted to occur if the magnetospheric radius is larger than the corotation radius and smaller than the light cylinder radius. The simulations show that accreting matter is expelled from the equatorial region of the magnetosphere and that it moves away from the star in a supersonic, disk-shaped outflow. At larger radial distances the outflow slows down and becomes subsonic. The equatorial matter outflow is initially driven by the centrifugal force, but at larger distances the pressure gradient force becomes significant. We find the fraction of the Bondi accretion rate which accretes to the surface of the star.

  6. Accretion disks around black holes with account of magnetic fields

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2004-01-01

    Accretion disks are observed in young stars, cataclysmic variables, binary X-ray sources et al. Accretion disk theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disk. Important part of this theory was the phenomenological treatment of the turbulent viscosity, known the `` alpha'' prescription, where the $(r \\phi)$ component of the stress tensor was connected with the pressure as $\\alpha P$. Sources of turbulence in the accretion disk are discussed, including hydrodynamic turbulence, convection and magnetic field role. Optically thin solution and advective disks are considered. Related problems of mass ejection from magnetized accretion disks and jet formation are discussed.

  7. Images of accretion discs. 1. The eclipse mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Horne, K.

    1985-03-01

    A method of mapping the surface brightness distributions of accretion discs in eclipsing cataclysmic binaries is described and tested with synthetic eclipse data. Accurate synthetic light curves are computed by numerical simulation of the accretion disc eclipse, and images of the disc are reconstructed by maximum entropy methods. The conventional definition of entropy leads to a distorted image of the disc. A modified form of entropy, sensitive to the aximuthal structure of the image but not to its radial profile, suppresses azimuthal structure but correctly recovers the radial structure of the accretion disc. This eclipse mapping method permits powerful tests of accretion disc theory by deriving the spatial structure of discs from observational data with a minimum of model-dependent assumptions.

  8. Evolution of Kerr superspinars due to accretion counterrotating thin discs

    Energy Technology Data Exchange (ETDEWEB)

    StuchlIk, Zdenek; HledIk, Stanislav; Truparova, Kamila, E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: stanislav.hledik@fpf.slu.cz [Faculty of Philosophy and Science, Institute of Physics, Silesian University in Opava, Bezrucovo nam. 13, CZ-74601 Opava (Czech Republic)

    2011-08-07

    String theory predicts the existence of extremely compact objects spinning faster than Kerr black holes. The spacetime exterior to such superspinars is described by Kerr naked singularity geometry breaking the black-hole limit on the internal angular momentum. We demonstrate that the conversion of Kerr superspinars into a near-extreme black hole due to an accretion counterrotating Keplerian disc is much more effective in comparison with the case of a corotating one since both the accreted rest mass necessary for conversion and the evolution time of conversion are by orders smaller for counterrotating discs. The conversion time of Kerr superspinars is given for several accretion regimes, and it is shown that the self-regulated accretion flow implies fastest evolution to the black-hole state. In the final stages of the conversion, Kerr superspinars can serve as very efficient particle accelerators in the region where the black-hole horizon forms.

  9. The Burst Mode of Accretion in Primordial Protostars

    CERN Document Server

    Vorobyov, Eduard I; Basu, Shantanu

    2013-01-01

    We study the formation and long-term evolution of primordial protostellar disks harbored by first stars using numerical hydrodynamics simulations in the thin-disk limit. The initial conditions are specified by pre-stellar cores with distinct mass, angular momentum, and temperature. This allows us to probe several tens of thousand years of the disk's initial evolution, during which we observe multiple episodes of fragmentation leading to the formation of gravitationally bound gaseous clumps within spiral arms. These fragments are torqued inward due to gravitational interaction with the spiral arms on timescales of 10^3 - 10^4 yr and accreted onto the growing protostar, giving rise to accretion and luminosity bursts. The burst phenomenon is fueled by continuing accretion of material falling onto the disk from the collapsing parent core, which replenishes the mass lost by the disk due to accretion, and triggers repetitive episodes of disk fragmentation. We show that the burst phenomenon is expected to occur for ...

  10. On the growth of pebble-accreting planetesimals

    CERN Document Server

    Visser, Rico G

    2015-01-01

    Pebble accretion is a new mechanism to quickly grow the cores of planets. In pebble accretion, gravity and gas drag conspire to yield large collisional cross sections for small particles in protoplanetary disks. However, before pebble accretion commences, aerodynamical deflection may act to prevent planetesimals from becoming large, because particles tend to follow gas streamlines. We derive the planetesimal radius where pebble accretion is initiated and determine the growth timescales of planetesimals by sweepup of small particles. We obtain the collision efficiency factor as the ratio of the numerically-obtained collisional cross section to the planetesimal surface area, from which we obtain the growth timescales. Integrations are conducted in the potential flow limit (steady, inviscid) and in the Stokes flow regime (steady, viscid). Only particles of stopping time $t_s \\ll t_X$ where $t_X\\approx10^3$ s experience aerodynamic deflection. Even in that case, the planetesimal's gravity always ensures positive ...

  11. Cross-correlation Aided Transport in Stochastically Driven Accretion Flows

    CERN Document Server

    Nath, Sujit Kumar

    2014-01-01

    Origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for long. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay, {\\it et al} where it was shown that such instabilities, especially for non-magnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a \\enquote{cold} accretion flow at 3000K is too \\enquote{hot} in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross-correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity fl...

  12. Gas accretion from halos to disks: observations, curiosities, and problems

    CERN Document Server

    Elmegreen, Bruce G

    2015-01-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  13. On accretion of dark energy onto black and wormholes

    OpenAIRE

    Jiménez Madrid, J. A.; Martín Moruno, Prado

    2010-01-01

    We review some of the possible models that are able to describe the current Universe which point out the future singularities that could appear. We show that the study of the dark energy accretion onto black- and worm-holes phenomena in these models could lead to unexpected consequences, allowing even the avoidance of the considered singularities. We also review the debate about the approach used to study the accretion phenomenon which has appeared in literature to demonstrate the advantages ...

  14. Standing Shocks in Viscous Accretion Flows around Black Holes

    Institute of Scientific and Technical Information of China (English)

    GU Wei-Min; LU Ju-Fu

    2005-01-01

    @@ We study the problem of standing shocks in viscous accretion flows around black holes.We parameterize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K.By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with shocks of different types, namely Rankine-Hugoniot shocks, isothermal shocks, and more realistically, mixed shocks.

  15. Relativistic sonic geometry for isothermal accretion in the Schwarzschild metric

    OpenAIRE

    Shaikh, Md Arif; Firdousi, Ivleena; Das, Tapas K

    2016-01-01

    The velocity potential, mass accretion rate and the Bernoulli's Constant corresponding to the general relativistic isothermal accretion in the Schwarzschild metric have been linearly perturbed, both for spherical as well as the axially symmetric flow to demonstrate the emergence of the embedded curved sonic manifold. Except the conformal factors, the relativistic acoustic geometry remains invariant irrespective of the physical quantity getting perturbed. The acoustic surface gravity has been ...

  16. A New Approach to Evolution of Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong; LEI Wei-Hua; XIAO Kan

    2000-01-01

    Evolution of black hole (BH) accretion disks is investigated by a new approach, in which the evolution of the central BH can be derived in terms of BH spin directly, and the evolution characteristics of the concerning BH parameters are shown more easily and obviously. As an example, the unusual evolution characteristics of angular velocity of BH horizon and that of accreting particles at the inner edge of the disk are derived by considering the Blandford-Znajek process.

  17. Massive thin accretion discs: Pt. 3; Comparison with the observations

    Energy Technology Data Exchange (ETDEWEB)

    Laor, A. (Tel Aviv Univ. (Israel). Wise Observatory)

    1990-10-01

    This paper presents a detailed comparison of theoretical thin accretion disc models with the spectra of 101 bright AGN. The models have been described previously; they take into account all relativistic effects and use an improved approximation for the local spectrum. The comparison is made by fitting the observation with a two-component model, a thin 'bare' accretion disc and an underlying power law. (author).

  18. Observational constraints on viscosity in AGN accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Siemiginowska, A.; Czerny, B. (N. Copernicus Astronomical Centre, Warsaw (Poland))

    1989-07-15

    The optical/UV/soft X-ray big bump can be modelled as thermal emission from an accretion disc. The observed UV variability in AGN spectra may be caused by accretion-disc instabilities, and can be used to constrain the viscosity. The comparison of thermal time-scales with the observed time-scales of variability in 10 Seyfert galaxies and 16 QSOs indicates values for the parameter {alpha} of the order of 0.01 for most cases. (author).

  19. Black hole accretion discs and screened scalar hair

    CERN Document Server

    Davis, Anne-Christine; Jha, Rahul

    2016-01-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in "Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  20. Black hole accretion discs and screened scalar hair

    Science.gov (United States)

    Davis, Anne-Christine; Gregory, Ruth; Jha, Rahul

    2016-10-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ``Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  1. Magnetic fields and accretion discs around static black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dadhich, N. (Poona Univ. (India). Dept. of Mathematics and Statistics); Wiita, P.J. (Tata Inst. of Fundamental Research, Bombay (India))

    1982-08-01

    Some aspects of accretion onto static black holes immersed in a uniform magnetic field are investigated. The Ernst metric is employed to find the 'Keplerian' angular momentum distribution and the efficiency of mass-to-energy conversion for a plasma and for test particles. Under almost all physically reasonable conditions for hydrodynamic accretion the effect of the magnetic field is small. However, for test particles the effect can be very important and the efficiency can approach unity.

  2. TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

    Science.gov (United States)

    Hubeny, Ivan; Lanz, Thierry

    2011-09-01

    TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

  3. Atmospheric Signatures of Giant Exoplanet Formation by Pebble Accretion

    CERN Document Server

    Madhusudhan, Nikku; Johansen, Anders; Eriksson, Linn

    2016-01-01

    Atmospheric chemical abundances of giant planets lead to important constraints on planetary formation and migration. Recent studies have shown that giant planets that migrate through the protoplanetary disk can accrete substantial amounts of oxygen-rich solids, leading to super-solar metallicities in the envelope and solar or sub-solar C/O ratios. Pebble accretion has been demonstrated recently to play an important role in core accretion and to have growth rates that are consistent with planetary migration. The high pebble accretion rates allow planetary cores to start their growth beyond 10 AU and subsequently migrate to cold (>~ 1 AU) or hot (<~ 0.1 AU) orbits. In this work we investigate how the formation of giant planets via pebble accretion influences their atmospheric chemical compositions. We find that under the standard pebble accretion scenario, where the core is isolated from the envelope, the resulting metallicities (O/H and C/H ratios) are sub-solar, while the C/O ratios are super-solar. Planet...

  4. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    Science.gov (United States)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  5. Close stars and accretion in Low Luminosity Active Galactic Nuclei

    CERN Document Server

    Nayakshin, S

    2004-01-01

    Quasar accretion disks are believed to form stars by self-gravity. Low Luminosity Active Galactic Nuclei (LLAGN) are much dimmer galactic centers, and are often believed to be quasars that ran out of gaseous fuel. LLAGN accretion disks should thus co-exist with thousands to millions of stars or proto-stars left from the previous stronger accretion activity. In principle, these stars may produce several important effects: (i) contribute to the optical/UV spectra of some LLAGN; (ii) reprocessing of the stellar radiation in the dusty disks could dominate the LLAGN infra-red spectra; (iii) deplete the (accretion) gas disk much faster than it can accrete onto the supper-massive black hole (SMBH); (iv) stars, individually or in groups, may slow down and modulate the accretion flow significantly due to their inertia. In this way they may produce the LLAGN cut-off disks; (v) alternatively, frequent enough stellar collisions and resulting stellar disruptions could keep the inner disk empty. Here we explore these ideas...

  6. Observations on the Formation of Massive Stars by Accretion

    CERN Document Server

    Keto, E; Keto, Eric; Wood, Kenneth

    2006-01-01

    Observations of the H66a recombination line from the ionized gas in the cluster of newly formed massive stars, G10.6-0.4, show that most of the continuum emission derives from the dense gas in an ionized accretion flow that forms an ionized disk or torus around a group of stars in the center of the cluster. The inward motion observed in the accretion flow suggests that despite the equivalent luminosity and ionizing radiation of several O stars, neither radiation pressure nor thermal pressure has reversed the accretion flow. The observations indicate why the radiation pressure of the stars and the thermal pressure of the HII region are not effective in reversing the accretion flow. The observed rate of the accretion flow, 0.001 solar masses/yr, is sufficient to form massive stars within the time scale imposed by their short main sequence lifetimes. A simple model of disk accretion relates quenched HII regions, trapped hypercompact HII regions, and photo-evaporating disks in an evolutionary sequence.

  7. The accretion of galaxies into groups and clusters

    CERN Document Server

    McGee, Sean L; Bower, Richard G; Font, Andreea S; McCarthy, Ian G

    2009-01-01

    We use the galaxy stellar mass and halo merger tree information from the semi-analytic model galaxy catalogue of Font et al. (2009) to examine the accretion of galaxies into a large sample of groups and clusters, covering a wide range in halo mass (10E12.9 to 10E15.3 Msun/h), and selected from each of four redshift epochs (z=0, 0.5, 1.0 and 1.5). We find that clusters at all examined redshifts have accreted a significant fraction of their final galaxy populations through galaxy groups. A 10E14.5 Msun/h mass cluster at z=0 has, on average, accreted ~ 40% of its galaxies (Mstellar > 10E9 Msun/h) from halos with masses greater than 10E13 Msun/h. Further, the galaxies which are accreted through groups are more massive, on average, than galaxies accreted through smaller halos or from the field population. We find that at a given epoch, the fraction of galaxies accreted from isolated environments is independent of the final cluster or group mass. In contrast, we find that observing a cluster of the same halo mass a...

  8. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  9. A magnetic accretion switch in pre-cataclysmic binaries?

    CERN Document Server

    Drake, Jeremy J; Takei, Dai; Gaensicke, Boris

    2014-01-01

    We have investigated the mass accretion rate implied by published surface abundances of Si and C in the white dwarf component of the 3.62 hr period pre-cataclysmic binary and planet host candidate QS Vir (DA+M2-4). Diffusion timescales for gravitational settling imply $\\dot{M} \\sim 10^{-16}M_\\odot$ yr$^{-1}$ for the 1999 epoch of the observations, which is three orders of magnitude lower than measured from a 2006 {\\it XMM-Newton} observation. This is the first time that large accretion rate variations have been seen in a detached pre-CV. A third body in a 14 yr eccentric orbit suggested in a recent eclipse timing study is too distant to perturb the central binary sufficiently to influence accretion. A hypothetical coronal mass ejection just prior to the {\\it XMM-Newton} observation might explain the higher accretion rate, but the implied size and frequency of such events appear too great. We suggest accretion is most likely modulated by a magnetic cycle on the secondary acting as a wind "accretion switch", a ...

  10. Phantom Energy Accretion by a Stringy Charged Black Hole

    Institute of Scientific and Technical Information of China (English)

    M.Sharif; G.Abbas

    2012-01-01

    We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric Row of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto a black hole decreases its mass. Further, the location of the critical points of accretion is explored, which yields a mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.%We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole.For this purpose,we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole.It is found that phantom energy accreting onto a black hole decreases its mass.Further,the location of the critical points of accretion is explored,which yields a mass to charge ratio.This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity,hence cosmic censorship hypothesis remains valid here.

  11. Black hole growth and AGN feedback under clumpy accretion

    Science.gov (United States)

    DeGraf, C.; Dekel, A.; Gabor, J.; Bournaud, F.

    2017-04-01

    High-resolution simulations of supermassive black holes in isolated galaxies have suggested the importance of short (∼10 Myr) episodes of rapid accretion caused by interactions between the black hole and massive dense clouds within the host. Accretion of such clouds could potentially provide the dominant source for black hole growth in high-z galaxies, but it remains unresolved in cosmological simulations. Using a stochastic subgrid model calibrated by high-resolution isolated galaxy simulations, we investigate the impact that variability in black hole accretion rates has on black hole growth and the evolution of the host galaxy. We find this clumpy accretion to more efficiently fuel high-redshift black hole growth. This increased mass allows for more rapid accretion even in the absence of high-density clumps, compounding the effect and resulting in substantially faster overall black hole growth. This increased growth allows the black hole to efficiently evacuate gas from the central region of the galaxy, driving strong winds up to ∼2500 km s-1, producing outflows ∼10 × stronger than the smooth accretion case, suppressing the inflow of gas on to the host galaxy, and suppressing the star formation within the galaxy by as much as a factor of 2. This suggests that the proper incorporation of variability is a key factor in the co-evolution between black holes and their hosts.

  12. The accretion rate dependence of burst oscillation amplitude

    CERN Document Server

    Ootes, Laura S; Galloway, Duncan K; Wijnands, Rudy

    2016-01-01

    Neutron stars in low mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analysed previously by Muno et al. (2004), who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ($A_\\text{rms}\\leq0.10$) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes ($0.05\\leq A_\\text{rms}\\leq0.20$). In this paper we present t...

  13. Accretion Rate and the Physical Nature of Unobscured Active Galaxies

    CERN Document Server

    Trump, Jonathan R; Kelly, Brandon C; Civano, Francesca; Gabor, Jared M; Diamond-Stanic, Aleksandar M; Merloni, Andrea; Urry, C Megan; Hao, Heng; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M; Lanzuisi, Giorgio; Liu, Charles; Mainieri, Vincenzo; Salvato, Mara; Scoville, Nick Z

    2011-01-01

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities (L_int) from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L_int/L_Edd > 0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L_int/L_Edd 0.01 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L_int/L_Edd < 0.01 AGNs, although there may be ...

  14. Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    CERN Document Server

    Berardo, David; Marleau, Gabriel-Dominique

    2016-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the Modules for Experiments in Stellar Astrophysics (MESA) code. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature $T_0$ and pressure $P_0$. At low temperatures ($T_0\\lesssim 300$--$1000\\ {\\rm K}$, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a large luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a larger entropy than the interior, giving a radiative zone that stalls cooling. For $T_0\\gtrsim 2000\\ {\\rm K}$, the surface--inter...

  15. High mass accretion disks: ATCA's potential for deep impact II

    Science.gov (United States)

    Walsh, Andrew; Beuther, Henrik; Longmore, Steven; Fallscheer, Cassandra

    2010-10-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk studies of high mass star formation, we now propose to investigate higher J inversion transitions of NH3 at high angular resolution (~1'') to complement our NH3 (4,4) and (5,5) data obtained last year. Last year's data showed a number of regions with clear rotational profiles, but no flattened structures that would indicate an edge-on accretion disk. We interpret our results to show rotating surrounding envelopes of any accretion disks. We were not able to see the accretion disks themselves because the (4,4) and (5,5) lines are optically thick. With observations of NH3 (7,7) and (8,8), which occur under even more extreme conditions than (4,4) or (5,5), we hope to peer through the surrounding envelope to see the accretion disks.

  16. Evolution of Accretion Disks in Tidal Disruption Events

    CERN Document Server

    Shen, Rong-Feng

    2013-01-01

    In a stellar tidal disruption event (TDE), an accretion disk forms as the stellar debris returns and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. An outer spreading disk is a source of matter for re-accretion at rates which can exceed the later stellar fall-back rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history, or, at longer wavelengths, by its own emission. Moreover, as an angular momentum reservoir, it can broadcast its existence by affecting the disk precession rate. Because these features depend on the disk's internal viscosity and the nature of wind produced in its early, advection-dominated phase, they are useful probes of transient disk physics. To model the evolution of TDE disk size and accretion rate, we account for the possibility of thermal instability for accretion rates...

  17. Growth of massive black holes during radiatively inefficient accretion phases

    CERN Document Server

    Cao, X

    2006-01-01

    The massive black holes in most faint active galactic nuclei (AGNs) and even normal galaxies are still accreting gases, though their accretion rates are very low. Radiatively inefficient accretion flows (RIAFs) are supposed in these faint sources, which should radiate mostly in the hard X-ray band. We calculate the contribution to the X-ray background from both the bright AGNs and the RIAFs in faint AGNs/normal galaxies. Our calculations show that both the observed intensity and spectral shape of the XRB with an energy peak at ~30$ keV can be well reproduced without including the emission of Compton-thick AGNs, if the massive black holes in faint AGNs/normal galaxies are spinning rapidly with a~0.9 and accreting at rates ~1.0-3.0\\times 10^{-4}. It indicates that less than ~5 per cent of local massive black hole mass density was accreted during radiatively inefficient accretion phases, which is obviously only an upper limit, because Compton-thick AGNs have not been considered. If the same number of the Compton...

  18. Multiphase, non-spherical gas accretion onto a black hole

    CERN Document Server

    Barai, Paramita; Nagamine, Kentaro

    2011-01-01

    (Abridged) We investigate non-spherical behavior of gas accreting onto a central supermassive black hole performing simulations using the SPH code GADGET-3 including radiative cooling and heating by the central X-ray source. As found in earlier 1D studies, our 3D simulations show that the accretion mode depends on the X-ray luminosity (L_X) for a fixed density at infinity and accretion efficiency. In the low L_X limit, gas accretes in a stable, spherically symmetric fashion. In the high L_X limit, the inner gas is significantly heated up and expands, reducing the central mass inflow rate. The expanding gas can turn into a strong enough outflow capable of expelling most of the gas at larger radii. For some intermediate L_X, the accretion flow becomes unstable developing prominent non-spherical features, the key reason for which is thermal instability (TI) as shown by our analyses. Small perturbations of the initially spherically symmetric accretion flow that is heated by the intermediate L_X quickly grow to fo...

  19. Magnetospheres and Disk Accretion in Herbig Ae/Be Stars

    CERN Document Server

    Muzerolle, J; Calvet, N; Hartmann, L

    2004-01-01

    We present evidence of magnetically-mediated disk accretion in Herbig Ae/Be stars. Magnetospheric accretion models of Balmer and sodium profiles calculated with appropriate stellar and rotational parameters are in qualitative agreement with the observed profiles of the Herbig Ae star UX Ori, and yield a mass accretion rate of ~ 10^{-8} Msun/yr. If more recent indications of an extremely large rotation rate for this object are correct, the magnetic field geometry must deviate from that of a standard dipole in order to produce line emission consistent with observed flux levels. Models of the associated accretion shock qualitatively explain the observed distribution of excess fluxes in the Balmer discontinuity for a large ensemble of Herbig Ae/Be stars, and imply typically small mass accretion rates, < 10^{-7} Msun/yr. In order for accretion to proceed onto the star, significant amounts of gas must exist inside the dust destruction radius, which is potentially problematic for recently advocated scenarios of "...

  20. Impact-induced melting during accretion of the Earth

    Science.gov (United States)

    de Vries, Jellie; Nimmo, Francis; Melosh, H. Jay; Jacobson, Seth A.; Morbidelli, Alessandro; Rubie, David C.

    2016-12-01

    Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parameterised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth's accretion depends strongly on the lifetime of impact-generated magma oceans compared to the time interval between large impacts. In addition, such results depend on starting parameters in the N-body simulations, such as the number and initial mass of embryos. Thus, there is the potential for combining the results, such as those presented here, with multistage core formation models to better constrain the accretional history of the Earth.

  1. Are Radio AGN Powered by Accretion or Black Hole Spin?

    CERN Document Server

    McNamara, B R; Nulsen, P E J

    2010-01-01

    We compare accretion and black hole spin as potential energy sources for outbursts from AGN in brightest cluster galaxies (BCGs). We find that the distribution of AGN power estimated from X-ray cavities is consistent with a broad range of both spin parameter and accretion rate. Sufficient quantities of molecular gas are available in most BCGs to power their AGN by accretion alone. However, we find no correlation between AGN power and molecular gas mass. For a given AGN power, the BCG's gas mass and accretion efficiency vary by more than two orders of magnitude. Most of the molecular gas in BCGs is apparently consumed by star formation or is driven out of the nucleus by the AGN before it reaches the nuclear black hole. Bondi accretion from hot atmospheres is generally unable to fuel powerful AGN, unless their black holes are more massive than their bulge luminosities imply. We identify several powerful AGN that reside in relatively gas-poor galaxies, indicating an unusually efficient mode of accretion, or that...

  2. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  3. Dynamo generated magnetic configurations in accretion discs and the nature of quasi-periodic oscillations in accreting binary systems

    CERN Document Server

    Moss, David; Suleimanov, Valery

    2016-01-01

    Magnetic fields are important for accretion disc structure. Magnetic fields in a disc system may be transported with the accreted matter. They can be associated with either the central body and/or jet, and be fossil or dynamo excited in situ. We consider dynamo excitation of magnetic fields in accretion discs of accreting binary systems in an attempt to clarify possible configurations of dynamo generated magnetic fields. We first model the entire disc with realistic radial extent and thickness using an alpha-quenching non-linearity. We then study the simultaneous effect of feedback from the Lorentz force from the dynamo-generated field. We perform numerical simulations in the framework of a relatively simple mean-field model which allows the generation of global magnetic configurations. We explore a range of possibilities for the dynamo number, and find quadrupolar-type solutions with irregular temporal oscillations that might be compared to observed rapid luminosity fluctuations. The dipolar symmetry models ...

  4. Limits on luminosity and mass accretion rate of a radiation pressure dominated accretion disc

    CERN Document Server

    Cao, Xinwu

    2015-01-01

    There is a maximum for the gravity of a black hole in the vertical direction in the accretion disc. Outflows may probably be driven from the disc if the radiation flux of the disc is greater than a critical value corresponding to the maximal vertical gravity. We find that outflows are driven by the radiation force from the disc if the accretion rate is greater than the Eddington rate. The radiation of the disc is therefore limited by such outflows. The disc luminosity, L=L_Edd\\propto ln mdot, at large-mdot cases. The Eddington ratio of the disc is ~3 for mdot~100, which is significantly lower than that of a conventional slim disc without outflows. This implies that the emission from some ultra-luminous X-ray sources with highly super Eddington luminosity should be Doppler beamed, or intermediate mass black holes are in these sources instead of stellar mass black holes. The spectra of the discs with outflows are saturated in the high frequency end provided mdot>2. We suggest that the saturated emission can be ...

  5. Forming an O Star via Disk Accretion?

    Science.gov (United States)

    Qiu, Keping; Zhang, Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-09-01

    We present a study of outflow, infall, and rotation in a ~105 L ⊙ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ~80 M ⊙ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ~13 M ⊙. The outflow has a gas mass of 54 M ⊙ and a dynamical timescale of 8 × 103 yr. The kinematics of the HMC are probed by high-excitation CH3OH and CH3CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10-3 M ⊙ yr-1, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13CO and C18O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ~10 M ⊙ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  6. FORMING AN O STAR VIA DISK ACCRETION?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: kqiu@mpifr-bonn.mpg.de [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-09-10

    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  7. Pouring 'Cold Water' on Hot Accretion

    Science.gov (United States)

    Rubin, A. E.

    1995-09-01

    The extensive recrystallization of type-6 OC has been interpreted as having resulted either from prograde thermal metamorphism of initially cold, unequilibrated material [1,2] or from autometamorphism due to slow cooling of material that accreted while still hot (1000-1200 K). Although the physical implausibility of hot accretion has been addressed [3], no comprehensive evaluation has been made of arguments in its favor. As shown below, these arguments are based on incomplete data, flawed experiments or improbable interpretations. Correlation between petrologic type and Ca in low-Ca pyroxene. Models of prograde metamorphism assume that, with increasing temperature, opx acquires Ca at the expense of diopside. Analyses of pyroxene in 10 H chondrites showed no correlation between Ca in pyroxene cores and increasing petrologic type [4], but more extensive data sets show such correlations [1,5,6]. A review of data for 51 OC [7] shows a progressive increase in the Wo content of low-Ca pyroxene with petrologic type: Wo 0.4-1.2 in type-3 and -4; Wo 1.2-1.6 in type-5; and Wo 1.6-2.2 in type-6. Striated opx. Undeformed striated opx were interpreted as having formed from inverted protopyroxene during slow cooling [8]; striated opx from H4 Quenggouk were found to convert into normal opx within 1 week during annealing at 1100 K [9]. Because prograde metamorphism probably lasted ~60 Ma [10], there should be no striated opx remaining in type-4 or -5 OC. However, samples of 99% twinned clinopyroxene (analogous to that in chondrules in type-3 OC) annealed for >3 weeks at Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid

  8. Numerical Simulation of Hot Accretion Flows (I): A Large Radial Dynamical Range and the Density Profile of Accretion Flow

    CERN Document Server

    Yuan, Feng; Bu, Defu

    2012-01-01

    Numerical simulations of hot accretion flow have shown that the mass accretion rate decreases with decreasing radius; consequently the density profile of accretion flow becomes flatter compared to the case of a constant accretion rate. This result has important theoretical and observational implications. However, because of technical difficulties, the radial dynamic range in almost all previous simulations usually spans at most two orders of magnitude. This small dynamical range, combined with the effects of boundary conditions, makes the simulation results suspectable. Especially, the radial profiles of density and accretion rate may not be precise enough to be used to compare with observations. In this paper we present a "two-zone" approach to expand the radial dynamical range from two to four orders of magnitude. We confirm previous results and find that from $r_s$ to $ 10^4r_s$ the radial profiles of accretion rate and density can be well described by $\\dot{M}(r)\\propto r^s$ and $\\rho\\propto r^{-p}$. The ...

  9. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  10. Implications of the β Lyrae accretion disk rim Teff

    Science.gov (United States)

    Linnell, A. P.

    2000-12-01

    Photometric evidence indicates that the massive gainer in the β Lyrae system is hidden from the observer by a thick accretion disk (Linnell, Hubeny, & Harmanec, 1998, ApJ, 509, 379). It is believed that the gainer approximates a main sequence star of Teff= 30000K. Spectroscopic analysis by Balachrandan et al. (1986, MNRAS, 219, 479) establishes a Teff of 13,300K for the donor. System synthetic spectra, fitted via the BINSYN suite to spectrophotometric scan data and IUE spectra, establish a mean rim Teff of 9000K. Assuming conservative mass transfer, Harmanec & Scholz (1993, A&A, 279, 131) use the rate of period change to derive a mass transfer rate of 20x10-6M⊙ yr-1. Connecting the rim Teff to the accretion disk face Teff with the Hubeny theory (Hubeny & Plavec 1991, AJ, 102, 1156) and using the standard accretion disk relations (Frank, King & Raine), the adopted mass transfer rate predicts a rim Teff of 4500K. The BINSYN-derived 9000K rim Teff would require a mass transfer rate 30 times larger than the adopted value. The observed rate of period change excludes such a large mass transfer rate. The bolometric luminosity of the rim, from the BINSYN model, is 5.6x1036erg sec-1. The bolometric luminosity of the gainer, on the adopted model, is 9.8x1037erg sec-1. Thus, the luminosity of the rim is 6% of the luminosity of the gainer. On the BINSYN model, the accretion disk covers 26% of the sky, as seen by the gainer. Absorption of radiation from the gainer, and its reradiation by the accretion disk, could explain the derived Teff of the rim. The conclusion is that the β Lyrae accretion disk structure must be strongly affected by radiation from the hot gainer (unseen by the observer) at the center of the accretion disk.

  11. Migration of accreting planets in radiative discs from dynamical torques

    Science.gov (United States)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to

  12. Numerical simulations of accretion discs: Pt. 1. Superhumps: a tidal phenomenon of accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Whitehurst, Robert

    1988-05-01

    Numerical simulations of the SU UMa star ZCha in outburst are presented which demonstrate the role of the secondary's tidal influence upon the accretion flow and provide explanations for the superhumps seen in SU UMa stars. They show that for a system with an extreme mass-ratio q = 0.15, the disc is tidally unstable and can become asymmetric and slowly rotate in the inertial frame of reference. The tidal stresses raised in this disc by the secondary produce a peak in the light curve of order 30 per cent which recurs with a period 3.5 per cent longer than that of the orbit. This is interpreted as the superhump. Analytic considerations show that only for systems with mass-ratios more extreme than approximately 4::1 will such behaviour occur, which is consistent with the known mass-ratio of SU UMa stars and other cataclysmic variables.

  13. Progenitors of the Accretion-Induced Collapse of White Dwarfs

    CERN Document Server

    Kwiatkowski, Damian

    2015-01-01

    Recent calculations of accretion-induced collapse of an oxygen-neon-magnesium white dwarf into a neutron star [Piro & Thompson 2014] allow for a potentially detectable transient electromagnetic signal. Motivated by these results, I present theoretical rates and physical properties of binary stars that can produce accretion-induced collapse. The rates are presented for various types of host galaxies (e.g. old ellipticals versus spirals) and are differentiated by the donor star type (e.g. large giant star versus compact helium-rich donor). Results presented in this thesis may help to guide near-future electromagnetic transient search campaigns to find likely candidates for accretion-induced collapse events. My predictions are based on binary evolution calculations that include the most recent updates on mass accretion and secular mass growth of white dwarfs. I find that the most likely systems that undergo accretion-induced collapse consist of an ONeMg white dwarf with a Hertzsprung gap star or a red giant ...

  14. Bondi-Hoyle Accretion in an Isothermal Magnetized Plasma

    CERN Document Server

    Lee, Aaron T; McKee, Christopher F; Klein, Richard I

    2014-01-01

    In regions of star formation, protostars and newborn stars accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma beta---the ratio of thermal and magnetic pressures. Observations show molecular clouds have beta <= 1, so magnetic fields can play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up M ~ 45, magnetic fields that are either parallel, perpendicular, or oriented 45 degrees to the flow, and beta as low as 0.01. Our simulations utilize AMR to obtain high spatial resolution where needed; this also allows the simulation boundaries to be far from the accreting object. Additionally, we show our results are independent of our exact prescription for accreting mass in the sink particle. We giv...

  15. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Takayuki [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Maruta, Akito; Machida, Masahiro N., E-mail: tanigawa@pop.lowtem.hokudai.ac.jp [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  16. The large scale magnetic fields of thin accretion disks

    CERN Document Server

    Cao, Xinwu

    2013-01-01

    Large scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared to the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number Pm is around unity. In this work, we revisit this problem considering the angular momentum of the disk is removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-bet...

  17. The IMF of stellar clusters: effects of accretion and feedback

    CERN Document Server

    Dib, Sami; Padoan, Paolo; G., Maheswar; Ojha, D K; Khajenabi, Fazeleh

    2009-01-01

    (abridged) We develop a model which describes the coevolution of the mass function of dense cores and of the IMF in a protocluster clump. In the model, cores injected in the clump evolve under the effect of gas accretion. Accretion onto the cores follows a time-dependent accretion rate that describes accretion in a turbulent medium. Once the accretion timescales of cores exceed their contraction timescales, they are turned into stars. We include the effect of feedback by the newly formed massive stars through their stellar winds. A fraction of the wind's energy is assumed to counter gravity and disperse the gas from the protocluster and as a consequence, quench further star formation. The latter effect sets the final IMF of the cluster. We apply our model to a clump that is expected to resemble the progenitor clump of the Orion Nebula Cluster (ONC). Our model is able to reproduce both the shape and normalization of the ONC's IMF and the mass function of dense cores in Orion. The complex features of the ONC's ...

  18. Models of Vortices and Spirals in White Dwarf's Accretion Binaries

    Science.gov (United States)

    Boneva, Daniela

    2010-11-01

    The main aim in the current survey is to suggest models of the development of structures, such as vortices and spirals, in accretion white dwarf's binaries. On the base of hydrodynamical analytical considerations it is applied numerical methods and simulations. It is suggested in the theoretical model the perturbation's parameters of the accretion flow, caused by the influences of the tidal wave over the flux of accretion matter around the secondary star. To examine such disturbed flow, the numerical code has involved in the calculations. The results reveal us an appearing of structure with spiral shape due to the tidal interaction in the close binaries. Our further simulations give the solution, which expresses the formation of vortical configurations in the accretion disc's zone. The evolution of vortices in areas of the flow's interaction is explored using single vortex and composite vortex models. Gas in the disc matter is considered to be compressible and non-ideal. The longevity of all these structures is different and each depends of time period of the rotation, density and velocity of the accretion matter.

  19. Atlas of Tilted Accretion Disks & Source to Negative Superhumps

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Using smoothed particle hydrodynamics, we numerically simulate steady state accretion discs for Cataclysmic Variable Dwarf Novae systems that have a secondary-to-primary mass ratio (0.35 \\le q \\le 0.55). After these accretion discs have come to quasi-equilibrium, we rotate each disc out of the orbital plane by (\\delta = (1, 2, 3, 4, 5,) or (20)^{o}) to induce negative superhumps. For accretion discs tilted $5^{o}$, we generate light curves and associated Fourier transforms for an atlas on negative superhumps and retrograde precession. Our simulation results suggest that accretion discs need to be tilted more than three degrees for negative superhumps to be statistically significant. We also show that if the disc is tilted enough such that the gas stream strikes a disc face, then a dense cooling ring is generated near the radius of impact. In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional lig...

  20. Nucleosynthesis in the accretion disks of Type II collapsars

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star and a mild supernova explosion is driven. However, this supernova ejecta lack momentum and falls back onto the neutron star which gets transformed to a stellar mass black hole. In order to study the hydrodynamics and nucleosynthesis of such an accretion disk formed from the fallback material of the supernova ejecta, we use the well established hydrodynamic models. In such a disk neutrino cooling becomes important in the inner disk where the temperature and density are higher. Higher the accretion rate (dot{M}), higher is the density and temperature in the disks. In this work we deal with accretion disks with relatively low accretion rates: 0.001 M_sun s^{-1} \\lesssim dot{M} \\lesssim 0.01 M_sun s^{-1} and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abu...

  1. Accretion in Radiative Equipartition (AiRE) Disks

    CERN Document Server

    Yazdi, Yasaman K

    2016-01-01

    Standard accretion disk theory (Shakura & Sunyaev 1973) predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability time-scale, our accretion models in the radiation pressure dominated regime (i.e. inner disk) need to be modified. Here, we present a modification to the SS model, where radiation pressure is in equipartition with gas pressure in the inner region. We call these flows Accretion in Radiative Equipartition (AiRE) Disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a fu...

  2. X-Shooter study of accretion in Chamaeleon I

    CERN Document Server

    Manara, C F; Herczeg, G J; Teixeira, P

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to 700 nm. The dependence of accretion with stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter be...

  3. Dynamical structure of magnetized dissipative accretion flow around black holes

    Science.gov (United States)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  4. The hunt for the Milky Way's accreted disc

    CERN Document Server

    Ruchti, Gregory R; Feltzing, Sofia; Pipino, Antonio; Bensby, Thomas

    2014-01-01

    The Milky Way is expected to host an accreted disc of stars and dark matter. This forms as massive >1:10 mergers are preferentially dragged towards the disc plane by dynamical friction and then tidally shredded. The accreted disc likely contributes only a tiny fraction of the Milky Way's thin and thick stellar disc. However, it is interesting because: (i) its associated `dark disc' has important implications for experiments hoping to detect a dark matter particle in the laboratory; and (ii) the presence or absence of such a disc constrains the merger history of our Galaxy. In this work, we develop a chemo-dynamical template to hunt for the accreted disc. We apply our template to the high-resolution spectroscopic sample from Ruchti et al. (2011), finding at present no evidence for accreted stars. Our results are consistent with a quiescent Milky Way with no >1:10 mergers since the disc formed and a correspondingly light `dark disc'. However, we caution that while our method can robustly identify accreted stars...

  5. Cooling of young stars growing by disk accretion

    CERN Document Server

    Rafikov, Roman

    2007-01-01

    In the initial formation stages young stars must acquire a significant fraction of their mass by accretion from a circumstellar disk that forms in the center of a collapsing protostellar cloud. Throughout this period mass accretion rates through the disk can reach 10^{-6}-10^{-5} M_Sun/yr leading to substantial energy release in the vicinity of stellar surface. We study the impact of irradiation of the stellar surface produced by the hot inner disk on properties of accreting fully convective low-mass stars, and also look at objects such as young brown dwarfs and giant planets. At high accretion rates irradiation raises the surface temperature of the equatorial region above the photospheric temperature T_0 that a star would have in the absence of accretion. The high-latitude (polar) parts of the stellar surface, where disk irradiation is weak, preserve their temperature at the level of T_0. In strongly irradiated regions an almost isothermal outer radiative zone forms on top of the fully convective interior, l...

  6. Self-Similar Hot Accretion Flow onto a Neutron Star

    CERN Document Server

    Medvedev, M V; Medvedev, Mikhail V.; Narayan, Ramesh

    2000-01-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling betweenthe protons and electrons, and free-free cooling from the electrons. We show that the accretion flow has an extended settling region which can be described by means of two analytical self-similar solutions: a two-temperature solution which is valid in an inner zone, $r10^{2.5}$. In both zones the density varies as $\\rho\\propto r^{-2}$ and the angular velocity as $\\Omega\\propto r^{-3/2}$. We solve the flow equations numerically and confirm that the analytical solutions are accurate. The self-similar settling solution differs from the advection-dominated accretion flow discussed in the context of black hole accretion. The settling flow radiates the energy dissipated by viscosity; so it is not advection-dominated. Except for the radial velocity, all other gas properties - density, angular velocity, temperature, luminosity, angular momentum flux - are independent of the mass accretion ...

  7. Detecting gravitational wave emission from the known accreting neutron stars

    CERN Document Server

    Watts, Anna; Bildsten, Lars; Schutz, Bernard

    2008-01-01

    Detection of gravitational waves from accreting neutron stars (NSs) in our galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidable challenge. Using the current data available on the properties of the accreting NSs in Low Mass X-Ray Binaries (LMXBs), we quantify the detectability for the known accreting NSs, considering various emission scenarios and taking into account the negative impact of parameter uncertainty on the data analysis process. Only a few of the persistently bright NSs accreting at rates near the Eddington limit are detectable by Advanced LIGO if they are emitting gravitational waves at a rate matching the torque from accretion. A larger fraction of the known population is detectable if the spin and orbital parameters are known in advance, especially with the narrow-band Advanced LIGO. We identify the most promising targets, a...

  8. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Science.gov (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  9. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    CERN Document Server

    Dexter, Jason

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 degrees, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth, and exhibit unique features such as broad "blue wings." Coupled with precession,...

  10. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    Indian Academy of Sciences (India)

    Prasad Subramanian; B. S. Pujari; Peter A. Becker

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  11. Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    CERN Document Server

    Blackman, Eric G

    2012-01-01

    Conversion of gravitational energy into radiation near stars and compact objects in accretion disks the origin of large scale magnetic fields in astrophysical rotators have long been distinct topics of active research in astrophysics. In semi-analytic work on both problems it has been useful to presume large scale symmetries, which necessarily results in mean field theories; magnetohydrodynamic turbulence makes the underlying systems locally asymmetric and highly nonlinear. Synergy between theory and simulations should aim for the development of practical, semi-analytic mean field models that capture the essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory have exemplified such distinct pursuits. Both are presently incomplete, but 21st century MFD theory has nonlinear predictive power compared to 20th century MFD. in contrast, alpha-viscosity accretion theory is still in a 20th century state. In fact, insights from MFD theory ar...

  12. Standing Rankine-Hugoniot Shocks in Black Hole Accretion Discs

    Institute of Scientific and Technical Information of China (English)

    GU Wei-Min; LU Ju-Fu

    2004-01-01

    @@ We study the problem of standing shocks in viscous disc-like accretion flows around black holes. For the first time we parametrize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K. By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with Rankine-Hugoniot shocks; and that the possibilities of shock formation are the largest for inviscid flows, decreasing with increasing viscosity, and ceasing to exist for a strong enough viscosity. Our results support the view that the standing shock is an essential ingredient in black hole accretion discs and is a general phenomenon in astrophysics, and that there should be a continuous change from the properties of inviscid flows to those of viscous ones.

  13. Peculiarities of the Accretion Flow in the System HL CMa

    CERN Document Server

    Semena, Andrey; Buckley, David; Lutovinov, Alexander; Breytenbach, Hannes

    2016-01-01

    The properties of the aperiodic brightness variability for the dwarf nova HL CMa are considered. The variability of the system HL CMa is shown to be suppressed at frequencies above $7\\times10^{-3}$Hz. Different variability suppression mechanisms related to the radiation reprocessing time, partial disk evaporation, and characteristic variability formation time are proposed. It has been found that the variability suppression frequency does not change when the system passes from the quiescent state to the outburst one, suggesting that the accretion flow geometry is invariable. It is concluded from the optical and X-ray luminosities of the system that the boundary layer on the white dwarf surface is optically thick in both quiescent and outburst states. The latter implies that the optically thick part of the accretion flow (disk) reaches the white dwarf surface. The accretion rate in the system, the flow geometry and temperature have been estimated from the variability power spectra and spectral characteristics i...

  14. Gas accretion from the cosmic web in the local Universe

    Science.gov (United States)

    Sánchez Almeida, J.; Elmegreen, B. G.; Muñoz-Tuñón, C.; Elmegreen, D. M.

    2016-10-01

    Numerical simulations predict that gas accretion from the cosmic web drives star formation in disks galaxies. The process is important in low mass haloes (One of the most compelling cases for gas accretion at work in the local universe comes from the extremely metal poor (XMP) galaxies. They show metallicity inhomogeneities associated with star-forming regions, so that large starbursts have lower metallicity than the underlying galaxy. Here we put forward the case for gas accretion from the web posed by XMP galaxies. Two other observational results are discussed too, namely, the fact that the gas consumption time-scale is shorter than most stellar ages, and the systematic morphological distortions of the HI around galaxies.

  15. X-ray emission from hot accretion flows

    CERN Document Server

    Niedzwiecki, Andrzej; Stepnik, Agnieszka

    2014-01-01

    Radiatively inefficient, hot accretion flows are widely considered as a relevant accretion mode in low-luminosity AGNs. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, as well as with an exact treatment of global Comptonization. We find that the X-ray spectral index--Eddington ratio anticorrelation as well as the cut-off energy measured in the best-studied objects favor accretion flows with rather strong magnetic field and with a weak direct heating of electrons. Furthermore, they require a much stronger source of seed photons than considered in previous studies. The nonthermal synchrotron radiation of relativistic electrons seems to be the most likely process capable of providing a sufficient flux of seed photons. Hadronic processes, which should occur due to basic properties of hot flows, provide an attractive explanation for the origin of such electrons.

  16. X-ray emission from hot accretion flows

    Science.gov (United States)

    Niedźwiecki, Andrzej; Xie, Fu-Guo; Stȩpnik, Agnieszka

    2014-07-01

    Radiatively inefficient, hot accretion flows are widely considered as a relevant accretion mode in low-luminosity AGNs. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, as well as with an exact treatment of global Comptonization. We find that the X-ray spectral index-Eddington ratio anticorrelation as well as the cut-off energy measured in the best-studied objects favor accretion flows with rather strong magnetic field and with a weak direct heating of electrons. Furthermore, they require a much stronger source of seed photons than considered in previous studies. The nonthermal synchrotron radiation of relativistic electrons seems to be the most likely process capable of providing a sufficient flux of seed photons. Hadronic processes, which should occur due to basic properties of hot flows, provide an attractive explanation for the origin of such electrons.

  17. The influence of outflow in supercritical accretion flows

    CERN Document Server

    Zeraatgari, Fatemeh Zahra; Mosallanezhad, Amin

    2016-01-01

    We solve the radiation-hydrodynamic (RHD) equations of supercritical accretion flows in the presence of radiation force and outflow by using self similar solutions. Compare with the pioneer works, in this paper we consider power-law function for mass inflow rate as $ \\dot{M} \\propto r^{s} $. We found that $ s = 1 $ when the radiative cooling term is included in the energy equation. Correspondingly, the effective temperature profile with respect to the radius was obtained as $ T_{\\text{eff}} \\varpropto r^{-1/2} $. In addition, we investigated the influence of the outflow on the dynamics of the accretion flow. We also calculated the continuum spectrum emitted from the disk surface as well as the bolometric luminosity of the accretion flow. Furthermore, our results show that the advection parameter, $ f $, strongly depends on mass inflow rate.

  18. Star Formation and Gas Accretion in Nearby Galaxies

    CERN Document Server

    Yim, Kijeong

    2016-01-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 {\\mu}m (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and HI (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and HI in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  19. The Formation of Massive Star Systems by Accretion

    CERN Document Server

    Krumholz, Mark R; McKee, Christopher F; Offner, Stella S R; Cunningham, Andrew J

    2009-01-01

    Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a condition that has long been expected to prevent them from growing by accretion. We present three-dimensional radiation-hydrodynamic simulations of the collapse of a massive prestellar core and find that radiation pressure does not halt accretion. Instead, gravitational and Rayleigh-Taylor instabilities channel gas onto the star system through non-axisymmetric disks and filaments that self-shield against radiation, while allowing radiation to escape through optically-thin bubbles. Gravitational instabilities cause the disk to fragment and form a massive companion to the primary star. Radiation pressure does not limit stellar masses, but the instabilities that allow accretion to continue lead to small multiple systems.

  20. Transport of Large Scale Poloidal Flux in Black Hole Accretion

    CERN Document Server

    Beckwith, Kris; Krolik, Julian H

    2009-01-01

    We perform a global, three-dimensional GRMHD simulation of an accretion torus embedded in a large scale vertical magnetic field orbiting a Schwarzschild black hole. This simulation investigates how a large scale vertical field evolves within a turbulent accretion disk and whether global magnetic field configurations suitable for launching jets and winds can develop. We identify a ``coronal mechanism'' of magnetic flux motion, which dominates the global flux evolution. In this coronal mechanism, magnetic stresses driven by orbital shear create large-scale half-loops of magnetic field that stretch radially inward and then reconnect, leading to discontinuous jumps in the location of magnetic flux. This mechanism is supplemented by a smaller amount of flux advection in the accretion flow proper. Because the black hole in this case does not rotate, the magnetic flux on the horizon determines the mean magnetic field strength in the funnel around the disk axis; this field strength is regulated by a combination of th...

  1. Accretion of jet streams and formation of asteroids

    Science.gov (United States)

    Hu, Zhong-wei; Tong, Yi

    1983-03-01

    Our basic view on the formation of asteroids, stated in [1], is that the initial physical and chemical conditions in the asteroid region led to a slow growth of planetesimals in the region and a transfer of accretable matter to the Jupitor region, resulting in the planetesimals stopping at the "half-finished" stage, eventually forming only asteroids and not major planets. In this paper, using the conditions of the nebular disk obtained in that paper and the formula for gravitational instability and regarding the rings resulting from gravitational instability as "jet streams", we apply the theory of accretion of jet streams to calculate the growth of the planetesimals and discuss the question of the transfer of accretable material, providing further confirmation of our basic view.

  2. Theoretical Models of Superbursts on Accreting Neutron Stars

    CERN Document Server

    Cooper, R L; Cooper, Randall L.; Narayan, Ramesh

    2004-01-01

    We carry out a general-relativistic global linear stability analysis of the amassed carbon fuel on the surface of an accreting neutron star to determine the conditions under which superbursts occur. By comparing our results with observations, we are able to set constraints on neutron star parameters such as the stellar radius and neutrino cooling mechanism in the core, as well as the composition of the ashes where superbursts are triggered. Specifically, we find that accreting neutron stars with ordered crusts and highly efficient neutrino emission in their cores produce extremely energetic superbursts which are inconsistent with observations. Also, because of pycnonuclear burning of carbon, they do not have superbursts in the range of accretion rates at which superbursts are actually observed. Stars with less efficient neutrino emission produce bursts that agree better with observations. Stars with highly inefficient neutrino emission in their cores produce bursts that agree best with observations. Furthermo...

  3. Subduction erosion and accretion in the Solomon Sea region

    Science.gov (United States)

    Honza, Eiichi; Miyazaki, Teruki; Lock, Jo

    1989-03-01

    The Solomon Sea region is an area of intense tectonic activity characterized by structural complexity, a high level of seismicity and volcanism, and rapid evolution of plate boundaries. There is little accretion in the eastern New Britain Trench. Accretion gradually increases westward with thick accretion in the western New Britain Trench and in the Trobriand Subduction System. The thick accretion in the western part of the New Britain Trench may be a result of collision from the north of Finisterre-Huon block with New Guinea mainland. The present boundary of the collision is along the Ram-Markham fault. Deformation structures and present day seismicity suggest that the northern block is under compression. Accretion has occurred in the sediment filled trenches in the Solomon Sea. The scale of the accretionary wedge depends on the amount of trench-fill sediment available. It is unlikely that there is no sediment supply to the eastern part of the New Britain Trench where no accretion is observed and subduction erosion may be occurring. There are two possible mechanisms for subduction erosion of sediment; either a rapid rate of subduction relative to the supply of sediment inhibiting sediment accumulation in the trench; or horizontal tensional force superimposed on both the forearc and backarc regions of the arc. Seafloor spreading in both the Manus and Woodlark basins is fan-like with nearby poles in the western margins of the basins. This may be a reflection of a horizontally compressional field in the western part and a tensional field in the eastern part of the Solomon Sea. Therefore it is possible to conclude that the consumption of sediment in the eastern New Britain Trench is related to the horizontal tensional field superimposed on both the forearc and backarc regions of the subduction system. Imbricated thrust and overthrust faults in the western New Britain Trench and Trobriand Trough are not linear over long distance, but form wavy patterns in blocks with

  4. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    Science.gov (United States)

    Feng, Wanda; Desch, Steven; Turner, Neal; Kalyaan, Anusha

    2016-06-01

    About 1/3 of white dwarfs (WDs) are polluted with heavy elements (e.g., Koester et al., 2014; Zuckerman et al., 2010) that should sediment out of their atmospheres on astronomically short timescales unless replenished by accretion from a reservoir, at rates that for many WDs must exceed ~1010 g/s (Farihi et al., 2010). Direct accretion of planetesimals is too improbable and Poynting-Robertson drag of dust is too slow (due to the low luminosity of WDs) (Jura, 2003), so it is often assumed that WDs accrete from a disk of gas and solid particles, fed by tidal disruption of planeteismals inside the WD Roche limit (e.g. Debes et al., 2012; Rafikov, 2011a, 2011b). A few such gaseous disks have been directly observed, through emission from Ca II atoms in the disk (e.g. Manser et al., 2016; Wilson et al. 2014). Models successfully explain the accretion rates of metals onto the WD, provided the gaseous disk viscously spreads at rates consistent with a partially suppressed magnetorotational instability (Rafikov, 2011a, 2011b). However, these models currently do not explore the likely extent of the magnetorotational instability in disks by calculating the degree of ionization, or suppression by strong magnetic field.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The composition of the disk, the ionization and recombination mechanisms, and the degree of ionization of the disk are explored. Magnetic field strengths consistent with WD dipolar magnetic fields are assumed. Elsasser numbers are calculated as a function of radius in the WD disk. The rate of viscous spreading is calculated, and the model of Rafikov (2011a, 2011b) updated to compute likely accretion rates of metals onto WDs.

  5. The Hikurangi Plateau: Tectonic Ricochet and Accretion

    Science.gov (United States)

    Willis, David; Moresi, Louis; Betts, Peter; Whittaker, Joanne

    2015-04-01

    80 million years between interactions with different subduction systems provided time for the Hikurangi Plateau and Pacific Ocean lithosphere to cool, densify and strengthen. Neogene subduction of the Hikurangi Plateau occurring orthogonal to its Cretaceous predecessor, provides a unique opportunity to explore how changes to the physical properties of oceanic lithosphere affect subduction dynamics. We used Underworld to build mechanically consistent collision models to understand the dynamics of the two Hikurangi collisions. The Hikurangi Plateau is a ~112 Ma, 15km thick oceanic plateau that has been entrained by subduction zones immediately preceding the final break-up of Eastern Gondwana and currently within the active Hikurangi Margin. We explore why attempted subduction of the plateau has resulted in vastly different dynamics on two separate occasions. Slab break-off occured during the collision with Gondwana, currently there is apparent subduction of the plateau underneath New Zealand. At ~100Ma the young, hot Hikurangi Plateau, positively buoyant with respect to the underlying mantle, impacted a Gondwana Margin under rapid extension after the subduction of an mid-ocean ridge 10-15Ma earlier. Modelling of plateaus within young oceanic crust indicates that subduction of the thickened crust was unlikely to occur. Frontal accretion of the plateau and accompanying slab break-off is expected to have occured rapidly after its arrival. The weak, young slab was susceptible to lateral propagation of the ~1500 km window opened by the collision, and break-off would have progressed along the subduction zone inhibiting the "step-back" of the trench seen in older plates. Slab break-off coincided with a world-wide reorganisation of plate velocites, and orogenic collapse along the Gondwana margin characterised by rapid extension and thinning of the over-riding continental plate from ~60 to 30km. Following extension, Zealandia migrated to the NW until the Miocene allowing the

  6. Accretion onto some well-known regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  7. Transonic properties of the accretion disk around compact objects

    CERN Document Server

    Mukhopadhyay, Banibrata

    2008-01-01

    An accretion flow is necessarily transonic around a black hole. However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic points vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.

  8. Accretion processes for general spherically symmetric compact objects

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Jamil, Mubasher [National University of Sciences and Technology (NUST), H-12, Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan)

    2015-10-15

    We investigate the accretion process for different spherically symmetric space-time geometries for a static fluid. We analyze this procedure using the most general black hole metric ansatz. After that, we examine the accretion process for specific spherically symmetric metrics obtaining the velocity of the sound during the process and the critical speed of the flow of the fluid around the black hole. In addition, we study the behavior of the rate of change of the mass for each chosen metric for a barotropic fluid. (orig.)

  9. Self-collimated axial jets from thin accretion disks

    CERN Document Server

    Tirabassi, Giulio; Carlevaro, Nakia; Benini, Riccardo

    2012-01-01

    We show how an appropriate stationary crystalline structure of the magnetic field can induce a partial fragmentation of the accretion disk, generating an axial jet composed of hot rising plasma twisted in a funnel-like structure by the rotation of the system. The most important feature of the obtained jet is its high degree of collimation, naturally arising from the condition for its existence. The presence of non-zero dissipative effects allows the plasma ejection throughout the axial jet and the predicted values of the accretion rate are in agreement with observations.

  10. The evolution of the core mass function by gas accretion

    CERN Document Server

    Dib, Sami

    2012-01-01

    We show how the mass function of dense cores (CMF) which results from the gravoturbulent fragmentation of a molecular cloud evolves in time under the effect of gas accretion. Accretion onto the cores leads to the formation of larger numbers of massive cores and to a flattening of the CMF. This effect should be visible in the CMF of star forming regions that are massive enough to contain high mass cores and when comparing the CMF of cores in and off dense filaments which have different environmental gas densities.

  11. Retrograde binaries of massive black holes in circumbinary accretion discs

    Science.gov (United States)

    Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica

    2016-06-01

    Context. We explore the hardening of a massive black hole binary embedded in a circumbinary gas disc under a specific circumstance: when the binary and the gas are coplanar and the gas is counter-rotating. The binary has unequal mass and the interaction of the gas with the lighter secondary black hole is the main cause of the braking torque on the binary that shrinks with time. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Aims: In this paper, using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole, which in turn affect the binary hardening and eccentricity evolution. Methods: We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Results: When considering gas accretion within the gravitational influence radius of the secondary black hole (which is smaller than the Roche Lobe radius) to better describe gas inflows, the shrinking of the binary is slower. In addition, in this case, a smaller amount of accreted mass is required to reduce the binary separation by the same amount. Different accretion prescriptions result in different discs' surface densities, which alter the black hole's dynamics back. Full 3D Smoothed-particle hydrodynamics realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Conclusions: Initially circular black hole binaries increase their eccentricity only slightly, which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black hole's dynamics under

  12. A Toy Model for Advection Dominated Accretion Flows

    Institute of Scientific and Technical Information of China (English)

    汪定雄; 雷卫华; 肖看

    2003-01-01

    A toy disc model with advection dominated accretion on to a black hole is presented. The advection dominated accretion flows (ADAFs) are assumed to exist in the inner thick disc with rin < r < rout, and the disc is assumed to be geometrically thin for r > rout. Compared with Paczynski's toy model the thick disc is not limited to be 100% advective. It turns out that the inner radius rin depends not only on the outer radius rout but also on the ADAF parameters f and ε. The effects of the inner thick disc on the radiation efficiency and the temperature profile of the outer thin disc are discussed in details.

  13. The diffusion of contaminant through an accretion disc

    Science.gov (United States)

    Clarke, C. J.; Pringle, J. E.

    1988-01-01

    The manner in which a trace contaminant diffuses through an accretion disk is calculated. For a steady disk in which the ratio of diffusivity to viscosity, zeta, is taken to be constant through the disk and for which the surface density distribution is taken to be a power law, analytic solutions to the time-dependent equations governing contaminant evolution are presented. The amount of contaminant which can diffuse its way outwards against the bulk inward accretion flow is calculated, and it is shown that this is a sensitive function of a and zeta.

  14. Accretion Processes for General Spherically Symmetric Compact Objects

    CERN Document Server

    Bahamonde, Sebastian

    2015-01-01

    We investigate the accretion process for different spherically symmetric space-time geometries for a static fluid. We analyse this procedure using the most general black hole metric ansatz. After that, we examine the accretion process for specific spherically symmetric metrics obtaining the velocity of the sound during the process and the critical speed of the flow of the fluid around the black hole. In addition, we study the behaviour of the rate of change of the mass for each chosen metric for a barotropic fluid.

  15. Accretion onto Some Well-Known Regular Black Holes

    CERN Document Server

    Jawad, Abdul

    2016-01-01

    In this work, we discuss the accretion onto static spherical symmetric regular black holes for specific choices of equation of state parameter. The underlying regular black holes are charged regular black hole using Fermi-Dirac Distribution, logistic distribution, nonlinear electrodynamics, respectively and Kehagias-Sftesos asymptotically flat regular black hole. We obtain the critical radius, critical speed and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density and rate of change of mass for each regular black holes.

  16. Molecule sublimation as a tracer of protostellar accretion: Evidence for accretion bursts from high angular resolution C18O images

    CERN Document Server

    Jorgensen, Jes K; Williams, Jonathan P; Bergin, Edwin A

    2015-01-01

    The accretion histories of embedded protostars are an integral part of descriptions of their physical and chemical evolution. In particular, are the accretion rates smoothly declining from the earlier toward later stages or in fact characterized by variations such as intermittent bursts? We aim to characterize the impact of possible accretion variations in a sample of embedded protostars by measuring the size of the inner regions of their envelopes where CO is sublimated and relate those to their temperature profiles dictated by their current luminosities. Using observations from the Submillimeter Array we measure the extents of the emission from the C18O isotopologue toward 16 deeply embedded protostars. We compare these measurements to the predicted extent of the emission given the current luminosities of the sources through dust and line radiative transfer calculations. Eight out of sixteen sources show more extended C18O emission than predicted by the models. The modeling shows that the likely culprit for...

  17. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    CERN Document Server

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  18. ISHIKAWA ITERATIVE PROCESS FOR CONSTRUCTING SOLUTIONS OF m-ACCRETIVE OPERATOR EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    曾六川

    2002-01-01

    The convergence of the Ishikawa iteration sequences with errors for constructing solutions of m-accretive operator equations is characterized. Moreover, the error estimates of approximate solutions for locally Lipschitzian and m-accretive operator equations are established.

  19. MRI-driven Accretion onto Magnetized stars: Axisymmetric MHD Simulations

    CERN Document Server

    Romanova, Marina M; Koldoba, Alexander V; Lovelace, Richard V E

    2011-01-01

    We present the first results of a global axisymmetric simulation of accretion onto rotating magnetized stars from a turbulent, MRI-driven disk. The angular momentum is transported outward by the magnetic stress of the turbulent flow with a rate corresponding to a Shakura-Sunyaev viscosity parameter alpha\\approx 0.01-0.04. The result of the disk-magnetosphere interaction depends on the orientation of the poloidal field in the disk relative to that of the star at the disk-magnetosphere boundary. If fields have the same polarity, then the magnetic flux is accumulated at the boundary and blocks the accretion which leads to the accumulation of matter at the boundary. Subsequently, this matter accretes to the star in outburst before accumulating again. Hence, the cycling, `bursty' accretion is observed. If the disc and stellar fields have opposite polarity, then the field reconnection enhances the penetration of the disk matter towards the deeper field lines of the magnetosphere. However, the magnetic stress at the...

  20. Magnetically Controlled Spasmodic Accretion during Star Formation. II. Results

    Science.gov (United States)

    Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2005-01-01

    The problem of the late accretion phase of the evolution of an axisymmetric, isothermal magnetic disk surrounding a forming star has been formulated in a companion paper. The ``central sink approximation'' is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 1011 cm-3 and radii smaller than a few AU. Only the electrons are assumed to be attached to the magnetic field lines, and the effects of both negatively and positively charged grains are accounted for. After a mass of 0.1 Msolar accumulates in the central cell (forming star), a series of magnetically driven outflows and associated outward-propagating shocks form in a quasi-periodic fashion. As a result, mass accretion onto the protostar occurs in magnetically controlled bursts. We refer to this process as spasmodic accretion. The shocks propagate outward with supermagnetosonic speeds. The period of dissipation and revival of the outflow decreases in time, as the mass accumulated in the central sink increases. We evaluate the contribution of ambipolar diffusion to the resolution of the magnetic flux problem of star formation during the accretion phase, and we find it to be very significant albeit not sufficient to resolve the entire problem yet. Ohmic dissipation is completely negligible in the disk during this phase of the evolution. The protostellar disk is found to be stable against interchange-like instabilities, despite the fact that the mass-to-flux ratio has temporary local maxima.

  1. SMBH Spherically Symmetric Accretion Regulated by Violent Star Formation Feedback

    CERN Document Server

    Silich, S; Tenorio-Tagle, G

    2008-01-01

    The mounting evidence for violent nuclear star formation in Seyfert galaxies has led us to consider the hydrodynamics of the matter reinserted by massive stars through strong stellar winds and supernovae, under the presence of a central massive BH. We show that in all cases there is a bimodal solution strongly weighted by the location of the stagnation radius (Rst), which splits the star cluster into two different zones. Matter reinserted within the stagnation volume is to be accreted by the BH while its outer counterpart would composed a star cluster wind. The mechanical power of the latter, ensures that there is no accretion of the ISM into the BH and thus the BH accretion and its luminosity is regulated by the star formation feedback. The location of the stagnation radius is a function of three parameters: the BH mass, the mechanical power (or mass) of the star formation event and the size of the star forming region. Here we present our self-consistent, stationary solution, discuss the accretion rates and ...

  2. Viscous Instability Triggered by Layered Accretion in Protoplanetary Disks

    CERN Document Server

    Hasegawa, Yasuhiro

    2015-01-01

    Layered accretion is one of the inevitable ingredients in protoplanetary disks when disk turbulence is excited by magnetorotational instabilities (MRIs). In the accretion, disk surfaces where MRIs fully operate have a high value of disk accretion rate ($\\dot{M}$), while the disk midplane where MRIs are generally quenched ends up with a low value of $\\dot{M}$. Significant progress on understanding MRIs has recently been made by a number of dedicated MHD simulations, which requires improvement of the classical treatment of $\\alpha$ in 1D disk models. To this end, we obtain a new expression of $\\alpha$ by utilizing an empirical formula that is derived from recent MHD simulations of stratified disks with Ohmic diffusion. It is interesting that this new formulation can be regarded as a general extension of the classical $\\alpha$. Armed with the new $\\alpha$, we perform a linear stability analysis of protoplanetary disks that undergo layered accretion, and find that a viscous instability can occur around the outer ...

  3. Wind-driven Accretion in Transitional Protostellar Disks

    Science.gov (United States)

    Wang, Lile; Goodman, Jeremy J.

    2017-01-01

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.

  4. Detecting gravitational wave emission from the known accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.; Bildsten, L.; Schutz, B.F.

    2008-01-01

    Detection of gravitational waves from accreting neutron stars (NSs) in our Galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidabl

  5. The physics of accretion-ejection with LOFT

    CERN Document Server

    Casella, P; Coriat, M; Kalemci, E; Motta, S; Neilsen, J; Ponti, G; Begelman, M; Belloni, T; Koerding, E; Maccarone, T J; Petrucci, P -O; Rodriguez, J; Tomsick, J; Bhattacharyya, S; Bianchi, S; Del Santo, M; Donnarumma, I; Gandhi, P; Homan, J; Jonker, P; Kalamkar, M; Malzac, J; Markoff, S; Migliari, S; Miller, J; Miller-Jones, J; Poutanen, J; Remillard, R; Russell, D M; Uttley, P; Zdziarski, A

    2015-01-01

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of the physics of accretion and ejection around compact objects. For a summary, we refer to the paper.

  6. Constraining jet physics in weakly accreting black holes

    NARCIS (Netherlands)

    Markoff, S.

    2007-01-01

    Outflowing jets are observed in a variety of astronomical objects such as accreting compact objects from X-ray binaries (XRBs) to active galactic nuclei (AGN), as well as at stellar birth and death. Yet we still do not know exactly what they are comprised of, why and how they form, or their exact re

  7. Imprints of mass accretion on properties of galaxy clusters

    CERN Document Server

    Faltenbacher, A; Gottlöber, S; Yepes, G; Hoffman, Y; Faltenbacher, Andreas; Allgood, Brandon; Gottloeber, Stefan; Yepes, Gustavo; Hoffman, Yehuda

    2005-01-01

    We use a large scale N-body simulation of the flat LCDM universe, including adiabatic gas dynamics (GADGET), to investigate the impact of mass accretion modes of galaxy clusters on the vector quantities, orientation and angular momentum. Our cluster sample comprises the 3000 most massive friends-of-friends halos found in the 500 Mpc/h simulation box. We use the mass ratios of the two most massive progenitors at z=0.5 m_2/m_1 (m_1 < m_2) to construct two accretion mode sub-samples, a recent major merger sample and a steady accretion mode sample. We find that the mass of current clusters in the merger sample is on average ~43% larger than the mass of the two progenitors (m_1 + m_2), whereas in the steady accretion mode sample a smaller increase of ~25% is found. We show that the separation vector connecting the two most massive progenitor halos at z=0.5 is strongly correlated with the orientation of the current cluster. We also find that the current angular momentum in the recent major merger sample tends to...

  8. Line Emission from Optically Thick RelativisticAccretion Tori

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Steven V.; /KIPAC, Menlo Park /Mullard Space Sci. Lab.; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-09-14

    We calculate line emission from relativistic accretion tori around Kerr black holes and investigate how the line profiles depend on the viewing inclination, spin of the central black hole, parameters describing the shape of the tori, and spatial distribution of line emissivity on the torus surface. We also compare the lines with those from thin accretion disks. Our calculations show that lines from tori and lines from thin disks share several common features. In particular, at low and moderate viewing inclination angles they both have asymmetric double-peaked profiles with a tall, sharp blue peak and a shorter red peak which has an extensive red wing. At high viewing inclination angles they both have very broad, asymmetric lines which can be roughly considered as single-peaked. Torus and disk lines may show very different red and blue line wings, but the differences are due to the models for relativistic tori and disks having differing inner boundary radii. Self-eclipse and lensing play some role in shaping the torus lines, but they are effective only at high inclination angles. If inner and outer radii of an accretion torus are the same as those of an accretion disk, their line profiles show substantial differences only when inclination angles are close to 90{sup o}, and those differences are manifested mostly at the central regions of the lines instead of the wings.

  9. The Radiative Efficiency of Accretion Flows in Individual AGN

    CERN Document Server

    Davis, Shane W

    2010-01-01

    The radiative efficiency of AGN is commonly estimated based on the total mass accreted and the total AGN light emitted per unit volume in the universe integrated over time (the Soltan argument). In individual AGN, thin accretion disk model spectral fits can be used to deduce the absolute accretion rate Mdot, if the black hole mass M is known. The radiative efficiency {\\eta} is then set by the ratio of the bolometric luminosity L_bol to Mdot c^2. We apply this method to determine {\\eta} in a sample of 80 PG quasars with well determined L_bol, where Mdot is set by thin accretion disk model fits to the optical luminosity density, and the M determination based on the bulge stellar velocity dispersion (13 objects) or the broad line region (BLR). For the BLR-based masses, we derive a mean log {\\eta} = -1.05 +/- 0.52 consistent with the Soltan argument based estimates. We find a strong correlation of {\\eta} with M, rising from {\\eta} ~ 0.03 at M = 10^7 M{\\odot} and L/L_Edd ~ 1 to {\\eta} ~ 0.4 at M = 10^9 M{\\odot} an...

  10. Accretion among preplanetary bodies : The many faces of runaway growth

    NARCIS (Netherlands)

    Ormel, C. W.; Dullemond, C. P.; Spaans, M.

    2010-01-01

    When preplanetary bodies reach proportions of similar to 1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitationally-enhanced growth stage. The numerical model is no

  11. Accretion among preplanetary bodies: The many faces of runaway growth

    NARCIS (Netherlands)

    Ormel, C. W.; Dullemond, C. P.; Spaans, M.

    2010-01-01

    When preplanetary bodies reach proportions of ˜1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitationally-enhanced growth stage. The numerical model is novel as it

  12. Gas Accretion in the M32 Nucleus: Past & Present

    CERN Document Server

    Seth, Anil C

    2010-01-01

    Using adaptive optics assisted Gemini/NIFS data, I study the present and past gas accretion in the central 3" of the M32 nucleus. From changes in the spectral slope and CO line depths near the center, I find evidence for unresolved dust emission resulting from BH accretion. With a luminosity of ~2e38 erg/s, this dust emission appears to be the most luminous tracer of current BH accretion, two orders of magnitude more luminous than previously detected X-ray emission. These observations suggest that using high resolution infrared data to search for dust emission may be an effective way to detect other nearby, low luminosity BHs, such as those in globular clusters. I also examine the fossil evidence of gas accretion contained in the kinematics of the stars in the nucleus. The higher-order moments (h3 and h4) of the line-of-sight velocity distribution show patterns that are remarkably similar to those seen on larger scales in elliptical galaxies and in gas-rich merger simulations. The kinematics suggests the pres...

  13. Space manufacturing utilizing the directional electrostatic accretion process

    Science.gov (United States)

    Mortensen, A.

    1986-01-01

    The Directional Electrostatic Accretion Process (DEAP) is described with respect to both the physical process and its application to manufacturing in space. This high precision portable manufacturing method will revolutionize current practices in manufacturing and repair of spacecraft and space structures. The cost effectiveness of this process will be invaluable to future space manufacturing projects.

  14. Accretion and destruction of planetesimals in turbulent disks

    CERN Document Server

    Ida, Shigeru; Morbidelli, Alessandro

    2008-01-01

    We study the conditions for collisions between planetesimals to be accretional or disruptive in turbulent disks, through analytical arguments based on fluid dynamical simulations and orbital integrations. In turbulent disks, the velocity dispersion of planetesimals is pumped up by random gravitational perturbations from density fluctuations of the disk gas. When the velocity dispersion is larger than the planetesimals' surface escape velocity, collisions between planetesimals do not result in accretion, and may even lead to their destruction. In disks with a surface density equal to that of the ``minimum mass solar nebula'' and with nominal MRI turbulence, we find that accretion proceeds only for planetesimals with sizes above $\\sim 300$ km at 1AU and $\\sim 1000$ km at 5AU. We find that accretion is facilitated in disks with smaller masses. However, at 5AU and for nominal turbulence strength, km-sized planetesimals are in a highly erosive regime even for a disk mass as small as a fraction of the mass of Jupit...

  15. Twisted accretion discs. Pt. 3. Application to Epsilon Aurigae

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.

    1987-04-15

    Twisting and alignment in a steady-state circumbinary accretion disc is studied. It is then used to account for observed features in the scenario of Epsilon Aurigae as a triple. The alignment depends on viscosity in the disc, but it is always substantial and leads to a tilted slab-like profile when viewed edge-on.

  16. Numerical Modeling of Tidal Effects in Polytropic Accretion Discs

    Science.gov (United States)

    Godon, P.

    1996-01-01

    A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion discs, under the assumption of a polytropic equation of state and a standard alpha viscosity prescription.

  17. Evolution of an accretion disc in binary black hole systems

    Science.gov (United States)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', i.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ∼105 M⊙.

  18. Small-scale inviscid accretion discs around black holes

    CERN Document Server

    Beloborodov, A M; Beloborodov, Andrei M.; Illarionov, Andrei F.

    2000-01-01

    Gas falling quasi-spherically onto a Schwarzschild black hole can form an inner thin accretion disc if its specific angular momentum, $l$, exceeds $\\lmin\\approx 0.75r_gc$, where $r_g$ is the Schwarzschild radius. The standard disc model assumes $l\\gg\\lmin$. We argue that in many black-hole sources the accretion flows can have $l\\simgt\\lmin$, and assess the mechanism of accretion in this regime. In a range $\\lminaccretion regime to be comparable with the efficiency of the standard disc. The maximum radius of the fast inviscid disc is $r_{\\rm max}\\approx 2\\lcr^2/r_gc^2\\sim 14 r_g$, and the energy release peaks at...

  19. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    CERN Document Server

    Dupree, A K; Cranmer, S R; Luna, G J M; Schneider, E E; Bessell, M S; Bonanos, A; Crause, L A; Lawson, W A; Mallik, S V; Schuler, S C

    2012-01-01

    The nearest accreting T Tauri star, TW Hya was observed with spectroscopic and photometric measurements simultaneous with a long se gmented exposure using the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. Absence of a similar periodicity in the H-alpha flux and the total X-ray flux points to a different source of photometric variations. The H-alpha emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H-alpha and H-beta lines is followed by He I (5876A) broadening. Optical veiling increases with a delay of about 2 hours after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follow...

  20. On the X-ray heated skin of Accretion Disks

    CERN Document Server

    Nayakshin, S

    1999-01-01

    We present a simple analytical formula for the Thomson depth of the X-rayheated skin of accretion disks valid at any radius and for a broad range ofspectral indices of the incident X-rays, accretion rates and black hole masses.We expect that this formula may find useful applications in studies of geometryof the inner part of accretion flows around compact objects, and in severalother astrophysically important problems, such as the recently observed X-ray``Baldwin'' effect (i.e., monotonic decrease of Fe line's equivalent width withthe X-ray luminosity of AGN), the problem of missing Lyman edge in AGN, andline and continuum variability studies in accretion disks around compactobjects. We compute the reflected X-ray spectra for several representativecases and show that for hard X-ray spectra and large ionizing fluxes the skinrepresents a perfect mirror that does not produce any Fe lines or absorptionfeatures. At the same time, for soft X-ray spectra or small ionizing fluxes,the skin produces very strong ionized...

  1. A dark matter gravitational accretion scenario for E galaxy activity

    NARCIS (Netherlands)

    Valentijn, E. A.

    1988-01-01

    The application of gravitational accretion into massive galaxies is reviewed. A strong correlation between central radio activity, optical and X-ray luminosity over five decades in both the radio and the X-ray bands and ranging from ordinary elliptical to D and cD type galaxies is reported and the i

  2. Wind accretion in symbiotic X-ray binaries

    CERN Document Server

    Postnov, K; González-Galán, A; Kuulkers, E; Kretschmar, P; Larsson, S; Finger, M H; Kochetkova, A; Lü, G; Yungelson, L

    2011-01-01

    The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical accretion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from \\sim 40 to 120, and their birthrate is \\sim 5\\times 10^{-5}-10^{-4} per year. According to our mode...

  3. Initial sizes of planetesimals and accretion of the asteroids

    Science.gov (United States)

    Weidenschilling, S. J.

    2011-08-01

    The present size frequency distribution (SFD) of bodies in the asteroid belt appears to have preserved some record of the primordial population, with an excess of bodies of diameter D ˜ 100 km relative to a simple power law. The survival of Vesta's basaltic crust also implies that the early SFD had a shallow slope in the range ˜10-100 km. (Morbidelli, A., Bottke, W.F., Nesvorny, D., Levison, H.F. [2009]. Icarus 204, 558-573) were unable to produce these features by accretion from an initial population of km-sized planetesimals. They concluded that bodies with sizes in the range ˜100-1000 km and a SFD similar to the current population were produced directly from solid particles of sub-meter scale, without experiencing accretion through intermediate sizes. We present results of new accretion simulations in the primordial asteroid region. The requisite SFD can be produced from an initial population of planetesimals of sizes ≲0.1 km, smaller than the usual assumption of km-sized bodies. The bump at D ˜ 100 km is produced by a transition from dispersion-dominated runaway growth to a regime dominated by Keplerian shear, before the formation of large protoplanetary embryos. Thus, accretion of the asteroids from an initial population of small (sub-km) planetesimals cannot be ruled out.

  4. Viscosity Approximation Methods for Two Accretive Operators in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Jun-Min Chen

    2013-01-01

    Full Text Available We introduced a viscosity iterative scheme for approximating the common zero of two accretive operators in a strictly convex Banach space which has a uniformly Gâteaux differentiable norm. Some strong convergence theorems are proved, which improve and extend the results of Ceng et al. (2009 and some others.

  5. The pattern of accretion flow onto Sgr A*

    CERN Document Server

    Czerny, M M T K D B

    2006-01-01

    The material accreting onto Sgr A* most probably comes from the nearby stars. We analyze the pattern of this flow at distances of a fraction of a parsec and we argue that the net angular momentum of this material is low but non-negligible, and the initially supersonic disk accretion changes into subsonic flow with constant angular momentum. Next we estimate the flow parameters at a distance $R_{BHL}$ from the black hole and we argue that for the plausible parameter range the accretion flow is non-stationary. The inflow becomes supersonic at distance of $\\sim 10^4 R_g$ but the solution does not continue below the horizon and the material piles up forming a torus, or a ring, at a distance of a few up to tens of Schwarzchild radii. Such a torus is known to be unstable and may explain strong variability of the flow in Sgr A*. Our considerations show that the temporary formation of such a torus seems to be unavoidable. Our best fitting model predicts a rather large accretion rate of around $4 \\cdot 10^{-6} M_{\\odo...

  6. Hot Radiative Accretion onto a Spinning Neutron Star

    CERN Document Server

    Medvedev, M V

    2004-01-01

    (Abridged) A new type of self-similar hot viscous radiative accretion flow onto a rapidly spinning neutron star has recently been discovered. This ``hot brake'' flow forms in the two-temperature zone (close to a central object), but at a sufficiently low accretion rate and a high spin it may extend in the radial direction beyond ~300 Schwarzchild radii into a one-temperature zone. When the spin of the star is small enough, the flow transforms smoothly to an advection-dominated accretion flow. All gas parameters (density, angular velocity, temperature, luminosity, angular momentum flux) except for the radial velocity are independent of the mass accretion rate. The radiative efficiency may be arbitrarily large as M-dot -> 0. The gas angular momentum is transported outward under most conditions, hence the central star is nearly always spun-down. The flow is convectively stable. We also find that themal conduction in the flow is strong enough to make the flow thermally stable. The very fact that the density, temp...

  7. Accretion Events in Binary Systems: AZ Cas and VV Cep

    CERN Document Server

    Gałan, C; Tomov, T; Wiȩcek, M; Majcher, A; Wychudzki, P; Świerczyński, E; Kolev, D; Brożek, T; Maciejewski, G; Zoła, S; Kurpińska-Winiarska, M; Winiarski, M; Ogłoza, W; Drożdż, M; Krzesiński, J

    2011-01-01

    The sudden lengthening of orbital period of VV Cep eclipsing binary by about 1% was observed in the last epoch. The mass transfer and/or mass loss are most possible explanations of this event. The photometric behaviour of AZ Cas, the cousin of VV Cep, suggests that the accretion can occur and could be important in this system, too.

  8. Chemical tracers of episodic accretion in low-mass protostars

    CERN Document Server

    Visser, Ruud; Jorgensen, Jes K

    2015-01-01

    Aims: Accretion rates in low-mass protostars can be highly variable in time. Each accretion burst is accompanied by a temporary increase in luminosity, heating up the circumstellar envelope and altering the chemical composition of the gas and dust. This paper aims to study such chemical effects and discusses the feasibility of using molecular spectroscopy as a tracer of episodic accretion rates and timescales. Methods: We simulate a strong accretion burst in a diverse sample of 25 spherical envelope models by increasing the luminosity to 100 times the observed value. Using a comprehensive gas-grain network, we follow the chemical evolution during the burst and for up to 10^5 yr after the system returns to quiescence. The resulting abundance profiles are fed into a line radiative transfer code to simulate rotational spectra of C18O, HCO+, H13CO+, and N2H+ at a series of time steps. We compare these spectra to observations taken from the literature and to previously unpublished data of HCO+ and N2H+ 6-5 from th...

  9. Evolution of Thick Accretion Disks Produced by Tidal Disruption Events

    CERN Document Server

    Ulmer, A

    1997-01-01

    Geometrically thick disks may form after tidal disruption events, and rapid accretion may lead to short flares followed by long-term, lower-level emission. Using a novel accretion disk code which relies primarily on global conservation laws and the assumption that viscosity is everywhere positive, a broad range of physically allowed evolutionary sequences of thick disks is investigated. The main result is that accretion in the thick disk phase can consume only a fraction of the initial disk material before the disk cools and becomes thin. This fraction is ~0.5-0.9 for disruptions around 10^6 to 10^7 M_ødot black holes and is sensitive to the mean angular momentum of the disk. The residual material will accrete in some form of thin disk over a longer period of time. The initial thick disk phase may reduce the dimming timescale of the disk by a factor of ~2 from estimates based on thin disks alone. Assuming an 0.5 M_ødot initial thick disk, even if the thin disks become advection dominated, the black hole mas...

  10. Presupernova evolution of accreting white dwarfs with rotation

    CERN Document Server

    Yoon, S C

    2004-01-01

    We discuss the effects of rotation on the evolution of accreting carbon-oxygen white dwarfs, with the emphasis on possible consequences in Type Ia supernova (SN Ia) progenitors. Starting with a slowly rotating white dwarf, we simulate the accretion of matter and angular momentum from a quasi-Keplerian accretion disk. The role of the various rotationally induced hydrodynamic instabilities for the transport of angular momentum inside the white dwarf is investigated. We find that the dynamical shear instability is the most important one in the highly degenerate core. Our results imply that accreting white dwarfs rotate differentially throughout,with a shear rate close to the threshold value for the onset of the dynamical shear instability. As the latter depends on the temperature of the white dwarf, the thermal evolution of the white dwarf core is found to be relevant for the angular momentum redistribution. As found previously, significant rotation is shown to lead to carbon ignition masses well above 1.4 Msun....

  11. Interpreting observations of edge-on gravitationally unstable accretion flows

    CERN Document Server

    Liu, Hauyu Baobab

    2016-01-01

    Gravitational collapse of molecular cloud or cloud core/clump may lead to the formation of geometrically flattened, rotating accretion flow surrounding the new born star or star cluster. Gravitational instability may occur in such accretion flow when the gas to stellar mass ratio is high (e.g. over $\\sim$10\\%). This paper takes the OB cluster-forming region G10.6-0.4 as an example. We introduce the enclosed gas mass around its central ultra compact (UC) H\\textsc{ii} region, addresses the gravitational stability of the accreting gas, and outline the observed potential signatures of gravitational instability. The position-velocity (PV) diagrams of various molecular gas tracers on G10.6-0.4 consistently show asymmetry in the spatial and the velocity domain. We deduce the morphology of the dense gas accretion flow by modeling velocity distribution of the azimuthally asymmetric gas structures, and by directly de-projecting the PV diagrams. We found that within the 0.3 pc radius, an infall velocity of 1-2 km\\,s$^{-...

  12. Some topics in the magnetohydrodynamics of accreting magnetic compact objects

    Science.gov (United States)

    Aly, J. J.

    1986-06-01

    Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.

  13. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    CERN Document Server

    Ghosh, Arindam

    2016-01-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. By the time the flow reaches the inner edge, the variation in X-rays needs not reflect the true variation of the rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale also to spread around a mean value. In HMXBs, the size of the viscous Keplerian disk is smaller & thus such a spread could be lower as compared to the LMXBs. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a full knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales when there is an ellipticity in the orbit. We study a few compact binaries using long term RXTE/ASM(1.5-12 keV) & Swift/BAT(15-50keV) data to look for such effects & to infer what the...

  14. To Cool is to Accrete: Analytic Scalings for Nebular Accretion of Planetary Atmospheres

    CERN Document Server

    Lee, Eve J

    2015-01-01

    Planets acquire atmospheres from their parent circumstellar disks. We derive a general analytic expression for how the atmospheric mass grows with time $t$, as a function of the underlying core mass $M_{\\rm core}$ and nebular conditions, including the gas metallicity $Z$. Planets accrete as much gas as can cool: an atmosphere's doubling time is given by its Kelvin-Helmholtz time. Dusty atmospheres behave differently from atmospheres made dust-free by grain growth and sedimentation. The gas-to-core mass ratio (GCR) of a dusty atmosphere scales as GCR $\\propto t^{0.4} M_{\\rm core}^{1.7} Z^{-0.4} \\mu_{\\rm rcb}^{3.4}$, where $\\mu_{\\rm rcb} \\propto 1/(1-Z)$ (for $Z$ not too close to 1) is the mean molecular weight at the innermost radiative-convective boundary. This scaling applies across all orbital distances and nebular conditions for dusty atmospheres; their radiative-convective boundaries, which regulate cooling, are not set by the external environment, but rather by the internal microphysics of dust sublimati...

  15. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  16. Constraining the Accretion Mode in LINER 1.9s

    Science.gov (United States)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  17. Simulating the emission and outflows from accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Scott C [Department of Physics and Astronomy, 366 Bloomberg Center, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Leung, Po Kin [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Gammie, Charles F [Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory, 1110 West Green Street, Urbana, IL 61801 (United States); Book, Laura G [Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory, 1110 West Green Street, Urbana, IL 61801 (United States)

    2007-06-21

    The radio source Sagittarius A* (Sgr A*) is believed to be a hot, inhomogeneous, magnetized plasma flowing near the event horizon of the 3.6 x 10{sup 6} M{sub o-dot} black hole at the galactic centre. At a distance of 8 kpc ({approx_equal} 2.5 x 10{sup 22} cm) the black hole would be among the largest black holes as judged by angular size. Recent observations are consistent with the idea that the millimetre and sub-millimetre photons are dominated by optically thin, thermal synchrotron emission. Anticipating future Very Long Baseline Interferometry (VLBI) observations of Sgr A* at these wavelengths, we present here the first dynamically self-consistent models of millimetre and sub-millimetre emission from Sgr A* based on general relativistic numerical simulations of the accretion flow. Angle-dependent spectra are calculated assuming a thermal distribution of electrons at the baryonic temperature dictated by the simulation and the accretion rate, which acts as a free parameter in our model. The effects of varying model parameters (black hole spin and inclination of the spin to the line of sight) and source variability on the spectrum are shown. We find that the accretion rate value needed to match our calculated millimetre flux to the observed flux is consistent with constraints on the accretion rate inferred from detections of the rotation measure. We also describe the relativistic jet that is launched along the black hole spin axis by the accretion disc and evolves to scales of {approx}10{sup 3}GMc{sup -2}, where M is the mass of the black hole.

  18. Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes

    CERN Document Server

    Mukhopadhyay, B

    1998-01-01

    We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.

  19. Magnetized Accretion-Ejection Structures 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    CERN Document Server

    Keppens, R

    2002-01-01

    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a q...

  20. Black-hole masses, accretion rates and hot- and cold-mode accretion in radio galaxies at z~1

    CERN Document Server

    Fernandes, Cristina A C; Martínez-Sansigre, Alejo; Rawlings, Steve; Afonso, José; Hardcastle, Martin J; Lacy, Mark; Stevens, Jason A; Vardoulaki, Eleni

    2014-01-01

    Understanding the evolution of accretion activity is fundamental to our understanding of how galaxies form and evolve over the history of the Universe. We analyse a complete sample of 27 radio galaxies which includes both high-excitation (HEGs) and low excitation galaxies (LEGs), spanning a narrow redshift range of 0.9 < z < 1.1 and covering a factor of ~1000 in radio luminosity. Using data from the Spitzer Space Telescope combined with ground-based optical and near-infrared imaging, we show that the host galaxies have masses in the range of 10.7 < log (M /M_sun) < 12.0 with HEGs and LEGs exhibiting no difference in their mass distributions. We also find that HEGs accrete at significantly higher rates than LEGs, with the HEG/LEG division lying at an Eddington ratio of ~0.04, which is in excellent agreement with theoretical predictions of where the accretion rate becomes radiatively inefficient, thus supporting the idea of HEGs and LEGs being powered by different modes of accretion. Our study also ...

  1. Strong Role of Non-stationary Accretion in Spectral Transitions of X-ray Binaries and Implications for Revealing the Accretion Geometry and Broadband Radiation Mechanisms

    Science.gov (United States)

    Yu, Wenfei; Yan, Zhen; Tang, Jing; Wu, Yuxiang

    Observations of spectral transitions from the hard state to the soft state in bright X-ray binaries show strong evidence that the rate-of-change of the mass accretion rate plays a dominant role in determining the luminosity at which the spectral transition occurs. This indicates that in many cases, especially accretion in transients during outbursts, the rate-of-change of the mass accretion rate is the primary parameter driving high energy phenomena. Although this goes beyond the scope of current stationary model of disk and jet, it tells us that it is the rate-of-change of the mass accretion rate that we need to trace observationally. Since state transition is a broadband phenomenon, multi-wavelength observations of spectral transitions of different rate-of-changes of mass accretion rate are expect to reveal the accretion geometry and broadband radiation mechanisms.

  2. Glancing through the accretion column of EXO 2030+375

    Science.gov (United States)

    Ferrigno, Carlo; Pjanka, Patryk; Bozzo, Enrico; Klochkov, Dmitry; Ducci, Lorenzo; Zdziarski, Andrzej A.

    2016-09-01

    Context. The current generation of X-ray instruments progressively reveals more and more details about the complex magnetic field topology and the geometry of the accretion flows in highly magnetized accretion-powered pulsars. Aims: We took advantage of the large collecting area and good timing capabilities of the EPIC cameras onboard XMM-Newton to investigate the accretion geometry onto the magnetized neutron star hosted in the high-mass X-ray binary EXO 2030+375 during the rise of a source type I outburst in 2014. Methods: We carried out a timing and spectral analysis of the XMM-Newton observation as a function of the neutron star spin phase. We used a phenomenological spectral continuum model comprising the required fluorescence emission lines. Two neutral absorption components are present: one covering the source fully, one only partially. The same analysis was also carried out on two Suzaku observations of the source performed during outbursts in 2007 and 2012, to search for possible spectral variations at different luminosities. Results: The XMM-Newton data caught the source at an X-ray luminosity of 2 × 1036 erg s-1 and revealed a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. Based on the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from the Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (≳2 × 1037 erg s-1). Conclusions: This discovery allowed us to derive additional constraints on the physical properties of the accretion flow in this object at relatively small distances from the neutron star surface. The narrow dip-like feature in the

  3. PROBING STELLAR ACCRETION WITH MID-INFRARED HYDROGEN LINES

    Energy Technology Data Exchange (ETDEWEB)

    Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D. [Department of Planetary Science, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85719 (United States); Duchene, G. [Astronomy Department, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Grady, C. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Mendigutía, I. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Montesinos, B. [Departamento de Astrofísica, Centro de Astrobiología, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Carpenter, J. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Gorti, U. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Meijerink, R. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Meyer, M. R., E-mail: rigliaco@lpl.arizona.edu, E-mail: elisabetta.rigliaco@phys.ethz.ch [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2015-03-01

    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.

  4. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  5. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  6. Current required for preventing wet snow accretion on transmission lines. Kaku sodensen no bosetsu denryu

    Energy Technology Data Exchange (ETDEWEB)

    Kawanishi, Seiichi; Sakamoto, Yukichi; Shimada, Yoshihiro; Josho, Misao; Kawaguchi, Mamoru; Mizushima, Kazuo

    1988-07-01

    On the snow accretion due to capillarity which occures by wet snow at a temperature of around 1/sup 0/C caused by the extratropical cyclone, artificial snow accretion tests using wind tunnel facility were performed. Electric current required for preventing wet snow accretion on wires were presented based on an analysis of heat balance. Relationship between melting current of wet snow accretion and its melting ratio were derived from the calculated results using the formula of the current required for melting accreted snow on wires. As a result, it was shown numerically that a live current on the line prior to the initiation of snow accretion is effective to prevent wet snow accretion. When liquid water content of accreted snow arrived over about 30%, snow accreted on wires were spontaneously dropped. The equation to define the current required for preventing wet snow accretion are derived on the basis of heat balance analysis of accreted snow. For preventing wet snow damages on power lines, in the case of wet snow with liquid water contents of 10% and the snowintensity of 5cm/h under the wind velocity of 5-10m/s and a temperature of around 1/sup 0/C, it is required that current exceeding 30-50% of rated permissble current should be applied prior to the beginning of wet snow sleeve developed. (8 figs, 1 tab, 7 refs)

  7. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    CERN Document Server

    Ingleby, Laura; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G; Hillenbrand, Lynne; Brown, Alexander

    2013-01-01

    We analyze the accretion properties of 21 low mass T Tauri stars using a dataset of contemporaneous near ultraviolet (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph (STIS) and the ground based Small and Medium Aperture Research Telescope System (SMARTS), a unique dataset because of the nearly simultaneous broad wavelength coverage. Our dataset includes accreting T Tauri stars (CTTS) in Taurus, Chamaeleon I, $\\eta$ Chamaeleon and the TW Hydra Association. For each source we calculate the accretion rate by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high density, low filling factor accretion spots co-exist with low density, high filling factor spots. By fitting the UV and optical spectra wi...

  8. The environmental dependence of gas accretion onto galaxies: quenching satellites through starvation

    CERN Document Server

    van de Voort, Freeke; Bower, Richard G; Correa, Camila A; Crain, Robert A; Schaye, Joop; Theuns, Tom

    2016-01-01

    Galaxies that have fallen into massive haloes may no longer be able to accrete gas from their surroundings, a process referred to as 'starvation' or 'strangulation' of satellites. We study the environmental dependence of gas accretion onto galaxies using the cosmological, hydrodynamical EAGLE simulation. We quantify the dependence of gas accretion on stellar mass, redshift, and environment, using halo mass and galaxy overdensity as environmental indicators. We find a strong suppression, by many orders of magnitude, of the gas accretion rate in dense environments, primarily for satellite galaxies. This suppression becomes stronger at lower redshift. However, the scatter in accretion rates is very large for satellites. This is (at least in part) due to the variation in halocentric radius, since gas accretion is more suppressed at smaller radii. Central galaxies are influenced less strongly by their environment and exhibit less scatter in their gas accretion rates. The star formation rates of both centrals and s...

  9. Building massive compact planetesimal disks from the accretion of pebbles

    CERN Document Server

    Moriarty, John

    2015-01-01

    We present a model in which planetesimal disks are built from the combination of planetesimal formation and accretion of radially drifting pebbles onto existing planetesimals. In this model, the rate of accretion of pebbles onto planetesimals quickly outpaces the rate of direct planetesimal formation in the inner disk. This allows for the formation of a high mass inner disk without the need for enhanced planetesimal formation or a massive protoplanetary disk. Our proposed mechanism for planetesimal disk growth does not require any special conditions to operate. Consequently, we expect that high mass planetesimal disks form naturally in nearly all systems. The extent of this growth is controlled by the total mass in pebbles that drifts through the inner disk. Anything that reduces the rate or duration of pebble delivery will correspondingly reduce the final mass of the planetesimal disk. Therefore, we expect that low mass stars (with less massive protoplanetary disks), low metallicity stars and stars with gian...

  10. Volatile accretion history of the terrestrial planets and dynamic implications

    Science.gov (United States)

    Albarède, Francis

    2009-10-01

    Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the Moon and the Earth were essentially dry immediately after the formation of the Moon-by a giant impact on the proto-Earth-and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is supported by U-Pb and I-Xe chronologies, which show that water delivery peaked ~100million years after the isolation of the Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars.

  11. Numerical Simulations of Viscous Accretion Flow around Black Holes

    Science.gov (United States)

    Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-06-01

    We present shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The steady state shocked solution in the inviscid, as well as in the viscous regime, matched theoretical predictions well, but increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in microquasars; and strong shock oscillation induces strong episodic jet emission. The periodicity of jets and shock oscillation are similar. Our simulation shows that the jets for higher viscosity parameter are evidently stronger and faster than that for lower viscosity.

  12. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  13. Heating and cooling of magnetars with accreted envelopes

    CERN Document Server

    Kaminker, A D; Yakovlev, D G; Chabrier, G

    2009-01-01

    We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (B > 10^{14} G) non-accreted and accreted outermost envelopes composed of different elements, from iron to hydrogen or helium. We discuss a combined effect of thermal conduction and neutrino emission in the outer neutron star crust and calculate the cooling of magnetars with a dipole magnetic field for various locations of the heat layer, heat rates and magnetic field strengths. Combined effects of strong magnetic fields and light-element composition simplify the interpretation of magnetars in our model: these effects allow one to interpret observations assuming less extreme (therefore, more realistic) heating. Massive magnetars, with fast neutrino cooling in their cores, can have higher thermal surface luminosity.

  14. The outer crust of non-accreting cold neutron stars

    CERN Document Server

    Ruster, S B; Schaffner-Bielich, J; Ruster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jurgen

    2006-01-01

    The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.

  15. Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations

    CERN Document Server

    Li, H; Wendroff, B; Liska, R

    2000-01-01

    (abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...

  16. Black hole accretion in scalar-tensor-vector gravity

    CERN Document Server

    John, Anslyn J

    2016-01-01

    We examine the accretion of matter onto a black hole in scalar--tensor--vector gravity (STVG). The gravitational constant is $G=G_{N} (1 + \\alpha)$ where $\\alpha$ is a parameter taken to be constant for static black holes in the theory. The STVG black hole is spherically symmetric and characterised by two event horizons. The matter falling into the black hole obeys the polytrope equation of state and passes through two critical points before entering the outer horizon. We obtain analytical expressions for the mass accretion rate as well as for the outer critical point, critical velocity and critical sound speed. Our results complement existing strong field tests like lensing and orbital motion and could be used in conjunction to determine observational constraints on STVG.

  17. An analytic toy model for relativistic accretion in Kerr spacetime

    CERN Document Server

    Tejeda, Emilio; Miller, John C

    2013-01-01

    We present a relativistic model for the stationary axisymmetric accretion flow of a rotating cloud of non-interacting particles falling onto a Kerr black hole. Based on a ballistic approximation, streamlines are described analytically in terms of timelike geodesics, while a simple numerical scheme is introduced for calculating the density field. A novel approach is presented for describing all of the possible types of orbit by means of a single analytic expression. This model is a useful tool for highlighting purely relativistic signatures in the accretion flow dynamics coming from a strong gravitational field with frame-dragging. In particular, we explore the coupling due to this between the spin of the black hole and the angular momentum of the infalling matter. Moreover, we demonstrate how this analytic solution may be used for benchmarking general relativistic numerical hydrodynamics codes by comparing it against results of smoothed particle hydrodynamics simulations for a collapsar-like setup. These simu...

  18. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...... with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified...

  19. Stochastic late accretion to Earth, the Moon, and Mars.

    Science.gov (United States)

    Bottke, William F; Walker, Richard J; Day, James M D; Nesvorny, David; Elkins-Tanton, Linda

    2010-12-10

    Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.

  20. Vertical Structure of Magnetized Accretion Disks around Young Stars

    CERN Document Server

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  1. Trainsient Accretion Disk and Energy Mechanism of Gamma Ray Bursts

    Institute of Scientific and Technical Information of China (English)

    LU Ye; ZHENG Guang-Sheng; ZHAO Gang; YANG Lan-Tian

    2000-01-01

    We suggest that a rotating massive black hole (106M ) located at an inactive galaxy may convert its host into a transient active phase by capturing and disrupting a star. During this period, a transient accretion disk is formed and a strong transient magnetic field can be produced in the inner boundary of the accretion disk. A large amount of rotational energy of the black hole is extracted and released in the ultra relativistic jet with a bulk Lorentz factor larger than 103 via Blandford-Znajek process. The relativistic jet energy can be converted into γ-ray radiation in the shock region located at a distance of about 1.4 × 1016 cm via the external shock mechanism.The observed properties of GRB971214 is used to illustrate our model

  2. High redshift supermassive blackholes: accretion through cold flows

    CERN Document Server

    Feng, Yu; Croft, Rupert; Khandai, Nishikanta

    2013-01-01

    We use zoom-in techniques to re-simulate three high-redshift (z > 5.5) halos which host 10^9 solar mass blackholes from the ~ Gpc volume, MassiveBlack cosmological hydrodynamic simulation. We examine a number of factors potentially affecting supermassive blackhole growth at high redshift in cosmological simulations. These include numerical resolution, feedback prescriptions and formulation of smoothed particle hydrodynamics. We find that varying the size of the region over which feedback energy is deposited directly, either for fixed number of neighbours or fixed volume makes very little difference to the accretion history of blackholes. Changing mass resolution by factors of up to 64 also does not change the blackhole growth history significantly. We find that switching from the density-entropy formulation to the pressure-entropy formulation of smoothed particle hydrodynamics slightly increases the accretion rate onto blackholes. In general numerical details appear to have small effects on the main fueling m...

  3. Volatile accretion history of the terrestrial planets and dynamic implications.

    Science.gov (United States)

    Albarède, Francis

    2009-10-29

    Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the Moon and the Earth were essentially dry immediately after the formation of the Moon-by a giant impact on the proto-Earth-and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is supported by U-Pb and I-Xe chronologies, which show that water delivery peaked approximately 100 million years after the isolation of the Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars.

  4. Convection in axially symmetric accretion discs with microscopic transport coefficients

    CERN Document Server

    Malanchev, K L; Shakura, N I

    2016-01-01

    The vertical structure of stationary thin accretion discs is calculated from the energy balance equation with heat generation due to microscopic ion viscosity {\\eta} and electron heat conductivity {\\kappa}, both depending on temperature. In the optically thin discs it is found that for the heat conductivity increasing with temperature, the vertical temperature gradient exceeds the adiabatic value at some height, suggesting convective instability in the upper disc layer. There is a critical Prandtl number, Pr = 4/9, above which a Keplerian disc become fully convective. The vertical density distribution of optically thin laminar accretion discs as found from the hydrostatic equilibrium equation cannot be generally described by a polytrope but in the case of constant viscosity and heat conductivity. In the optically thick discs with radiation heat transfer, the vertical disc structure is found to be convectively stable for both absorption dominated and scattering dominated opacities, unless a very steep dependen...

  5. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  6. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo

    2013-01-01

    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  7. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  8. Ring sequence decomposition of an accretion disk: the viscoresistive approach

    CERN Document Server

    Benini, Riccardo; Petitta, Jacopo

    2011-01-01

    We analyze a two dimensional viscoresistive magnetohydrodynamical (MHD) model for a thin accretion disk which reconciles the crystalline structure outlined in [Coppi(2005), Coppi and Rousseau(2006)] with real microscopic and macroscopic features of astrophysical accreting systems. In particular, we consider small dissipative effects (viscosity and resistivity, characterized by a magnetic Prandtl number of order unity), poloidal matter fluxes and a toroidal component of the magnetic field. These new ingredients allow us to set up the full equilibrium profile including the azimuthal component of the momentum conservation equation and the electron force balance relation. These two additional equations, which were identically satisfied in the original model, permit us to deal with non-zero radial and vertical matter fluxes, and the solution we construct for the global equilibrium system provides a full description of the radial and vertical dependence within the plasma disk. The main issue of our analysis is outl...

  9. Simulations of the magnetospheres of accreting millisecond pulsars

    CERN Document Server

    Parfrey, Kyle; Beloborodov, Andrei M

    2016-01-01

    Accreting pulsars power relativistic jets, and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field. The total torque experienced by the pulsar comprises spin-up and spin-down contributions from different bundles of magnetic field lines; the spin-down `braking' torque is applied both by closed stellar field lines which enter the disc beyond the corotation radius, and those which are open and not loaded with disc material. The rates of energy and angular momentum extraction on these open field lines have lower bounds in the relativistic, magnetically dominated limit, due to the effective inertia of the electromagnetic field itself. Here we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations, with the pseudospectral PHAEDRA code, treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The m...

  10. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    Science.gov (United States)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites

  11. Active states and structure transformations in accreting white dwarfs

    Science.gov (United States)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  12. Physical and radiative properties of the first core accretion shock

    CERN Document Server

    Commerçon, Benoît; Chabrier, Gilles; Chièze, Jean-Pierre

    2011-01-01

    Radiative shocks play a dominant role in star formation. The accretion shocks on the first and second Larson's cores involve radiative processes and are thus characteristic of radiative shocks. In this study, we explore the formation of the first Larson's core and characterize the radiative and dynamical properties of the accretion shock, using both analytical and numerical approaches. We develop both numerical RHD calculations and a semi-analytical model that characterize radiative shocks in various physical conditions, for radiating or barotropic fluids. Then, we perform 1D spherical collapse calculations of the first Larson's core, using a grey approximation for the opacity of the material. We consider three different models for radiative transfer, namely: the barotropic approximation, the FLD approximation and the more complete M1 model. We investigate the characteristic properties of the collapse and of the first core formation. Comparison between the numerical results and our semi-analytical model shows...

  13. Characterizing the mean-field dynamo in turbulent accretion disks

    CERN Document Server

    Gressel, Oliver

    2015-01-01

    The formation and evolution of a wide class of astrophysical objects is governed by turbulent, magnetized accretion disks. Understanding their secular dynamics is of primary importance. Apart from enabling mass accretion via the transport of angular momentum, the turbulence affects the long-term evolution of the embedded magnetic flux, which in turn regulates the efficiency of the transport. In this paper, we take a comprehensive next step towards an effective mean-field model for turbulent astrophysical disks by systematically studying the key properties of magnetorotational turbulence in vertically-stratified, isothermal shearing boxes. This allows us to infer emergent properties of the ensuing chaotic flow as a function of the shear parameter as well as the amount of net-vertical flux. Using the test-field method, we furthermore characterize the mean-field dynamo coefficients that describe the long-term evolution of large-scale fields. We simultaneously infer the vertical shape and the spectral scale depen...

  14. WARPING AND PRECESSION IN EXTRAGALACTIC MASER ACCRETION DISCS

    Directory of Open Access Journals (Sweden)

    A. Caproni

    2009-01-01

    Full Text Available Interferometric maser observations have been used to probe the physical conditions of extragalactic accretion discs at sub-parsec scales. The inferred kinematic of the water maser spots presents small deviations from Keplerian motions, which have been attributed to the warping and twisting of the parsec-scale disc. However, their physical origin is still a matter of debate in the literature. Motivated by this, we analyzed the general relativistic Bardeen-Petterson e ect, driven by a Kerr black hole, as the potential physical mechanism responsible for the disc warping and precession in the nearby Seyfert 2 galaxies NGC 1068 and NGC 4258. Assuming a power-law accretion disc, whose parameters were constrained by the observational data, we derived the basic quantities concerning the Bardeen-Petterson e ect for both sources. Some consequences from this peculiar relativistic mechanism are also presented in this work.

  15. Magnetic fields and accretion discs around Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Wiita, P.J. (Pennsylvania Univ., Philadelphia (USA). Dept. of Astronomy; Raman Research Inst., Bangalore (India)); Vishveshwara, C.V.; Iyer, B.R. (Raman Research Inst., Bangalore (India)); Siah, M.J. (Pennsylvania Univ., Philadelphia (USA). Dept. of Astronomy)

    1983-06-21

    Some aspects are considered of accretion onto a rotating black hole immersed in a uniform magnetic field aligned with the angular momentum axis of the black hole, concentrating on motion in the equatorial plane. The 'Keplerian' angular momentum distribution and the marginally stable orbits are calculated. Using an unorthodox definition of the binding energy made necessary by an unphysical infinity induced by the assumed constancy of the magnetic field, the marginally bound orbits and the efficiency of mass-to-energy conversion are calculated. When hydrodynamic accretion is considered the effects of the magnetic field are invariably quite small. For test particles, the magnetic field can significantly increase the efficiency, but this increase lessens as the specific angular momentum of the black hole rises.

  16. Thin accretion discs are stabilized by a strong magnetic field

    Science.gov (United States)

    Sądowski, Aleksander

    2016-07-01

    By studying three-dimensional, radiative, global simulations of sub-Eddington, geometrically thin (H/R ≈ 0.15) black hole accretion flows we show that thin discs which are dominated by magnetic pressure are stable against thermal instability. Such discs are thicker than predicted by the standard model and show significant amount of dissipation inside the marginally stable orbit. Radiation released in this region, however, does not escape to infinity but is advected into the black hole. We find that the resulting accretion efficiency (5.5 ± 0.5 per cent for the simulated 0.8dot{M}_Edd disc) is very close to the predicted by the standard model (5.7 per cent).

  17. On radial oscillations in viscous accretion discs surrounding neutron stars

    Science.gov (United States)

    Chen, Xingming; Taam, Ronald E.

    1992-01-01

    Radial oscillations resulting from axisymmetric perturbations in viscous accretion disks surrounding neutron stars in X-ray binary systems have been investigated. Within the framework of the alpha-viscosity model a series of hydrodynamic calculations demonstrates that the oscillations are global for alpha of about 1. On the other hand, for alpha of 0.4 or less, the oscillations are local and confined to the disk boundaries. If viscous stresses acting in the radial direction are included, however, it is found that the disk can be stabilized. The application of such instabilities in accretion disks, without reference to the boundary layer region between the neutron star (or magnetosphere) and the inner edge of the disk, to the phenomenology of quasi-periodic oscillations is brought into question.

  18. Vertical shear instability in accretion disc models with radiation transport

    CERN Document Server

    Stoll, Moritz H R

    2014-01-01

    The origin of turbulence in accretion discs is still not fully understood. While the magneto-rotational instability is considered to operate in sufficiently ionized discs, its role in the poorly ionized protoplanetary disc is questionable. Recently, the vertical shear instability (VSI) has been suggested as a possible alternative. Our goal is to study the characteristics of this instability and the efficiency of angular momentum transport, in extended discs, under the influence of radiative transport and irradiation from the central star. We use multi-dimensional hydrodynamic simulations to model a larger section of an accretion disc. First we study inviscid and weakly viscous discs using a fixed radial temperature profile in two and three spatial dimensions. The simulations are then extended to include radiative transport and irradiation from the central star. In agreement with previous studies we find for the isothermal disc a sustained unstable state with a weak positive angular momentum transport of the o...

  19. Accretion disc viscosity: a limit on the anisotropy

    CERN Document Server

    Nixon, Chris

    2015-01-01

    Observations of warped discs can give insight into the nature of angular momentum transport in accretion discs. Only a few objects are known to show strong periodicity on long timescales, but when such periodicity is present it is often attributed to precession of the accretion disc. The X-ray binary Hercules X-1/HZ Herculis (Her X-1) is one of the best examples of such periodicity and has been linked to disc precession since it was first observed. By using the current best-fitting models to Her X-1, which invoke precession driven by radiation warping, I place a constraint on the effective viscosities that act in a warped disc. These effective viscosities almost certainly arise due to turbulence induced by the magneto-rotational instability. The constraints derived here are in agreement with analytical and numerical investigations into the nature of magneto-hydrodynamic disc turbulence, but at odds with some recent global simulations.

  20. Temperature Profile of Black Hole Accretion Disc with Magnetic Coupling

    Institute of Scientific and Technical Information of China (English)

    LEI Wei-Hua; WANG Ding-Xiong; XIAO Kan

    2002-01-01

    Two new mapping relations between the angular coordinate on the black hole (BH) horizon and radialcoordinate on the disc are given according to the requirement of general relativity and Maxwell's equations, and theeffects of magnetic coupling (MC) on temperature of accretion disc are investigated by comparing with pure accretion.It is shown that the MC effects on the temperature profile are related intimately to the BH spin, and the influenceon the peak value of disc temperature based on the modified mapping relations is not as great as that based on thelinear mapping.The peak value and the corresponding radius of peak value ring of disc temperature do not increasemonotonically as the increasing spin of BH, each containing a maximum for the fast-spinning BH. The value ranges ofthe bolometric luminosity and color temperature of the disc are both extended by the MC effects.

  1. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    Science.gov (United States)

    Feng, W.; Desch, S.

    2017-03-01

    The prevailing model for the pollution of white dwarf photospheres invokes accretion from a disk of gas and solid particles, fed by tidal disruption of rocky bodies inside the Roche radius. Current models can successfully explain the accretion rates of metals onto white dwarfs, provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (Metzger et al. 2012); however, these models do not explore the extent of the magnetorotational instability in disks by calculating the degree of ionization. We present ionization fractions for thermal and non-thermal processes to assess the extent of the magnetorotational instability in white dwarf disks. We determine that the disk viscosity parameter α can be as high as 0.1 in white disks, implying that the magnetorotational instability must be carefully modeled.

  2. On the gravitational stability of gravito-turbulent accretion disks

    CERN Document Server

    Lin, Min-Kai

    2016-01-01

    Low mass, self-gravitating accretion disks admit quasi-steady, `gravito-turbulent' states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: 1) cooling, which reduces pressure support; and/or 2) viscosity, which reduces rotational support. We analyze the gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes wi...

  3. Neutrino trapping and accretion models for Gamma-Ray Bursts

    CERN Document Server

    Matteo, T D; Narayan, R; Matteo, Tiziana Di; Perna, Rosalba; Narayan, Ramesh

    2002-01-01

    Many models of Gamma Ray Bursts invoke a central engine consisting of a black hole of a few solar masses accreting matter from a disk at a rate of a fraction to a few solar masses per second. Popham et al. and Narayan et al. have shown that, for Mdot >~ 0.1 Msun/s, accretion proceeds via neutrino cooling and neutrinos can carry away a significant amount of energy from the inner regions of the disks. We improve on these calculations by including a simple prescription for neutrino transfer and neutrino opacities in such regions. We find that the flows become optically thick to neutrinos inside a radius R~6-40R_s for Mdot in the range of 0.1 -10 Msun/s, where R_s is the black hole Schwarzchild radius. Most of the neutrino emission comes from outside this region and, the neutrino luminosity stays roughly constant at a value L_{\

  4. Local Dynamical Instabilities in Magnetized, Radiation Pressure Supported Accretion Disks

    CERN Document Server

    Blaes, Omer M; Blaes, Omer; Socrates, Aristotle

    2000-01-01

    We present a general linear dispersion relation which describes the coupled behavior of magnetorotational, photon bubble, and convective instabilities in weakly magnetized, differentially rotating accretion disks. We presume the accretion disks to be geometrically thin and supported vertically by radiation pressure. We fully incorporate the effects of a nonzero radiative diffusion length on the linear modes. In an equilibrium with purely vertical magnetic field, the vertical magnetorotational modes are completely unaffected by compressibility, stratification, and radiative diffusion. However, in the presence of azimuthal fields, which are expected in differentially rotating flows, the growth rate of all magnetorotational modes can be reduced substantially below the orbital frequency. This occurs if diffusion destroys radiation sound waves on the length scale of the instability, and the magnetic energy density of the azimuthal component exceeds the non-radiative thermal energy density. While sluggish in this c...

  5. Chondrule Formation via Impact Jetting Triggered by Planetary Accretion

    CERN Document Server

    Hasegawa, Yasuhiro; Matsumoto, Yuji; Oshino, Shoichi

    2015-01-01

    Chondrules are one of the most primitive elements that can serve as a fundamental clue as to the origin of our Solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that corresponds to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s$^{-1}$. The previous simulations show that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct $N$-body simulations. As found by the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-p...

  6. Ice Accretion Prediction on Wind Turbines and Consequent Power Losses

    Science.gov (United States)

    Yirtici, Ozcan; Tuncer, Ismail H.; Ozgen, Serkan

    2016-09-01

    Ice accretion on wind turbine blades modifies the sectional profiles and causes alteration in the aerodynamic characteristic of the blades. The objective of this study is to determine performance losses on wind turbines due to the formation of ice in cold climate regions and mountainous areas where wind energy resources are found. In this study, the Blade Element Momentum method is employed together with an ice accretion prediction tool in order to estimate the ice build-up on wind turbine blades and the energy production for iced and clean blades. The predicted ice shapes of the various airfoil profiles are validated with the experimental data and it is shown that the tool developed is promising to be used in the prediction of power production losses of wind turbines.

  7. Molecular Cloud Evolution III. Accretion vs. stellar feedback

    CERN Document Server

    Vazquez-Semadeni, Enrique; Gomez, Gilberto C; Watson, Alan

    2010-01-01

    We numerically investigate the effect of feedback from the ionizing radiation heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE). We find that the star-forming regions within the GMCs are invariably formed by gravitational contraction. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. The competition of accretion against dense gas consumption by star formation (SF) and evaporation by the feedback, regulates the clouds' mass and energy balance, as well as their SFE. We find that, in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable SF rates (SFRs). However, we observe that the dense gas mass is larger in general in the presence of feedback, while the total (dense gas + stars) is nearly insensitive to...

  8. Oscillations of Thick Accretion Discs Around Black Holes - II

    CERN Document Server

    Rubio-Herrera, E; Rubio-Herrera, Eduardo; Lee, William H.

    2005-01-01

    We present a numerical study of the global modes of oscillation of thick accretion discs around black holes. We have previously studied the case of constant distributions of specific angular momentum. In this second paper, we investigate (i) how the size of the disc affects the oscillation eigenfrequencies, and (ii) the effect of power-law distributions of angular momentum on the oscillations. In particular, we compare the oscillations of the disc with the epicyclic eigenfrequencies of a test particle with different angular momentum distributions orbiting around the central object. We find that there is a frequency shift away from the epicyclic eigenfrequency of the test particle to lower values as the size of the tori is increased. We have also studied the response of a thick accretion disc to a localized external perturbation using non constant specific angular momentum distributions within the disc. We find that in this case it is also possible (as reported previously for constant angular momentum distribu...

  9. Wave Propagation in Accretion Disks with Self-Gravity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Ci; YANG Lan-Tian; WU Shao-Ping; DING Shi-Xue

    2001-01-01

    We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self gravity of disks should be considered. We derive and analyse the dispersion relations with the effect of self-gravity. Results show that self-gravity extends the forbidden region of the wave propagation: for high frequency p-modes, self-gravity makes the wavelength shorter and the group velocity larger; for low frequency g-modes, the effect is opposite.

  10. The dynamic of stellar wind accretion and the HMXB zoo

    Science.gov (United States)

    Walter, Roland; Manousakis, Antonios

    2016-07-01

    The dynamic of the accretion of stellar wind on the pulsar in Vela X-1 is dominated by unstable hydrodynamical flows. Off-states, 10^{37} erg/s flares, quasi-periodic oscillations and log normal flux distribution can all be reproduced by hydrodynamical simulations and reveal the complex motion of bow shocks moving either towards or away from the neutron star. These behaviors are enlightening the zoo of HMXB and suggest new phenomenology to be detected.

  11. Linking channel hydrology with riparian wetland accretion in tidal rivers

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.

    2014-01-01

    hydrologic processes by which tide affects river channel and riparian morphology within the tidal freshwater zone are poorly understood yet are fundamental to predicting the fate of coastal rivers and wetlands as sea level rises. We investigated patterns of sediment accretion in riparian wetlands along the nontidal through oligohaline portion of two coastal plain rivers in Maryland, U.S., and how flow velocity, water level, and suspended sediment concentration (SSC) in the channel may have contributed to those patterns. Sediment accretion was measured over a 1 year period using artificial marker horizons, channel hydrology was measured over a 1 month period using acoustic Doppler current profilers, and SSC was predicted from acoustic backscatter. Riparian sediment accretion was lowest at the nontidal sites (mean and standard deviation = 8 ± 8 mm yr-1), highest at the upstream tidal freshwater forested wetlands (TFFW) (33 ± 28 mm yr-1), low at the midstream TFFW (12 ± 9 mm yr-1), and high at the oligohaline (fresh-to-brackish) marshes (19 ± 8 mm yr-1). Channel maximum flood and ebb velocity was twofold faster at the oligohaline than tidal freshwater zone on both tidal rivers, corresponding with the differences in in-channel SSC: The oligohaline zone's SSC was more than double the tidal freshwater zone's and was greater than historical SSC at the nontidal gages. The tidal wave characteristics differed between rivers, leading to significantly greater in-channel SSC during floodplain inundation in the weakly convergent than the strongly convergent tidal river. High sediment accretion at the upstream TFFW was likely due to high river discharge following a hurricane.

  12. Massive thin accretion discs: Pt. 1. Calculated spectra

    Energy Technology Data Exchange (ETDEWEB)

    Laor, Ari; Netzer, Hagai (Tel Aviv Univ. (Israel). Dept. of Physics and Astronomy; Tel Aviv Univ. (Israel). Wise Observatory)

    1989-06-01

    Detailed calculations are presented of the structure and the spectrum of massive, geometrically thin, 'bare' accretion discs. The calculations are for an {alpha}-disc, with various assumptions about the viscosity and full relativistic corrections. The radiative transfer equations are solved using the Eddington approximation for an atmosphere with a vertical temperature gradient. All significant sources of opacity, for T>10/sup 4/ K, are included, and all models are found to be optically thick throughout. (author).

  13. Accretion disc onto a static non-baryonic compact object

    OpenAIRE

    Torres, Diego F.

    2002-01-01

    We study the emissivity properties of a geometrically thin, optically thick, steady accretion disc about a static boson star. Starting from a numerical computation of the metric potentials and the rotational velocities of the particles in the vicinity of the compact object, we obtain the power per unit area, the temperature of the disc, and the spectrum of the emitted radiation. In order to see if different central objects could be actually distinguished, all these results are compared with t...

  14. Constraints on Accretion Disk Physics in Low Luminosity Radio Galaxies

    Science.gov (United States)

    Baum, Stefi; Noel-Storr, Jacob; O'Dea, Christopher

    2008-03-01

    It is currently believed that essentially all galaxies harbor a massive black hole in their nuclei. If this is true, then it becomes hard to understand why we do not see the luminosity released by the inevitable accretion of the galaxy ISM onto the black hole in all galaxies. The differences in AGN output between the two classes of narrow-line radio galaxies (FRI and FRII) may hold the vital clue. High radio luminosity FRIIs generally show strong high-excitation narrow lines and are believed to be the obscured counterparts of radio loud quasars. Low radio luminosity FRIs by contrast have weaker, low-ionization lines and low ratios of optical to radio luminosities. A large difference in accretion rate and radiative efficiency between FRI and FRIIs would explain the difference in the optical properties and also provide a new unification between different classes of active galaxies in which the dominant parameter is accretion rate. Spitzer IRAC and MIPS observations already exist for most of a well defined sample of FRIs. However, the previously observed objects are the 'famous' ones, e.g., M87, M84, NGC315, 3C264, 3C31. Thus, the existing datasets are highly selected. Here we propose a very small request to complete the sample. We propose IRAC observations in all 4 bands, and MIPS photometry at 24 and 70 microns of 8, and 7 sources, respectively, for a total request of 1.7 hrs. These observations will complete the sample at very little cost in observing time. The large amount of existing complmentary data at multiple wavebands will greatly enhance the legacy value of the proposed observations. By completing the sample, the proposed IRAC and MIPS observations will produce a well defined and very well studied sample of nearby low luminosity radio galaxies. We will use the completed sample to investigate the properties of the accretion disk radiation, and the circumnuclear obscuring material.

  15. VERTICAL CONVECTION IN NEUTRINO-DOMINATED ACCRETION FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Gu, Wei-Min; Li, Ang [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Kawanaka, Norita, E-mail: tongliu@xmu.edu.cn, E-mail: norita@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-05-20

    We present the effects of vertical convection on the structure and luminosity of the neutrino-dominated accretion flow (NDAF) around a stellar-mass black hole in spherical coordinates. We find that the convective energy transfer can suppress the radial advection in the NDAF and that the density, temperature, and opening angle are slightly changed. As a result, the neutrino and annihilation luminosities are increased, which allows the energy requirement of gamma-ray bursts to be achieved.

  16. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  17. Diagnosing the Black Hole Accretion Physics of Sgr A*

    Science.gov (United States)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther

    2016-08-01

    The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.

  18. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  19. Are Cosmological Gas Accretion Streams Multiphase and Turbulent?

    CERN Document Server

    Cornuault, Nicolas; Boulanger, François; Guillard, Pierre

    2016-01-01

    Simulations of cosmological filamentary accretion streams into galactic halos reveal that such flows are warm at T$\\sim$10$^4$K, laminar, and provide high gas accretion efficiency onto galaxies. We present a phenomenological scenario which suggests that accretion flows are shocked, become thermally unstable, biphasic, and are, as a result, turbulent. We consider a collimated stream of warm gas over denser than the hot, virialized halo gas. The post-shock streaming gas has a higher pressure than the ambient halo gas, expands, and is thermally unstable and fragments, forming a two phase medium -- a hot phase with an embedded warm cloudy phase. The thermodynamic evolution of the post-shock gas is largely determined by the relative timescales of several processes, namely the cooling, the expansion of the hot phase and turbulent warm clouds, and the amount of turbulence in clouds, and the halo dynamics. The cooling is moderated by mixing with the ambient halo gas and heating due to turbulent dissipation. We consid...

  20. Revealing accretion onto black holes through X-ray reflection

    Science.gov (United States)

    Plant, D.; Fender, R.; Ponti, G.; Munoz-Darias, T.; Coriat, M.

    2014-07-01

    Understanding the dynamics behind black hole state transitions and the changes they reflect in outbursts has become long-standing problem. The X-ray reflection spectrum describes the interaction between the hard X-ray source (the power-law continuum) and the cool accretion disc it illuminates, and thus permits an indirect view of how the two evolve. We present a systematic analysis of the reflection spectrum throughout three outbursts (500+ RXTE observations) of the black hole binary GX 339-4, representing the largest study applying a self-consistent treatment of reflection to date. Particular attention is payed to the coincident evolution of the power-law and reflection, which can be used to determine the accretion geometry. The hard state is found to be distinctly reflection weak, however the ratio of reflection to power-law gradually increases as the source luminosity rises. In contrast the reflection is found dominate the power-law throughout most of the soft state, with increasing supremacy as the source decays. Using results from archival and AO-12 observations of GX 339-4 with XMM-Newton we reveal the dynamics driving this evolution and the nature of accretion onto black holes in outburst.

  1. Magnetically Controlled Spasmodic Accretion During Star Formation. II. Results

    CERN Document Server

    Tassis, K; Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2004-01-01

    The problem of the late accretion phase of the evolution of an axisymmetric, isothermal magnetic disk surrounding a forming star has been formulated in a companion paper. The "central sink approximation" is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 10^11 cm^-3 and radii smaller than a few AUs. Only the electrons are assumed to be attached to the magnetic field lines, and the effects of both negatively and positively charged grains are accounted for. After a mass of 0.1 solar mass accumulates in the central cell (forming star), a series of magnetically driven outflows and associated outward propagating shocks form in a quasi-periodic fashion. As a result, mass accretion onto the protostar occurs in magnetically controlled bursts. We refer to this process as spasmodic accretion. The shocks propagate outward with supermagnetosonic speeds. The period of dissipation and revival of the outflow decreases in time, as the mass accumulated in ...

  2. Comptonization and QPO Origins in Accreting Neutron Star Systems

    CERN Document Server

    Lee, H C; Lee, Hyong C.; Miller, Guy S.

    1997-01-01

    We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft ``seed photons'' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disk. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPO) observed in the X-ray outputs of many accreting neutron star and black hole syste...

  3. Jets and Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  4. Mapping the QCD Phase Transition with Accreting Compact Stars

    CERN Document Server

    Blaschke, David; Grigorian, Hovik

    2008-01-01

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ``phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the Omega-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a change in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond X-ray pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the Omega-M plane, which may be viewed as the AMXP analog of th...

  5. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  6. Hydrodynamical wind in magnetized accretion flows with convection

    Institute of Scientific and Technical Information of China (English)

    Shahram Abbassi; Amin Mosallanezhad

    2012-01-01

    The existence of outflow and magnetic fields in the inner region of hot accretion flows has been confirmed by observations and numerical magnetohydrodynamic (MHD) simulations.We present self-similar solutions for radiatively inefficient accretion flows (RIAFs) around black holes in the presence of outflow and a global magnetic field.The influence of outflow is taken into account by adopting a radius that depends on mass accretion rate M = M0(r/r0)s with s > 0.We also consider convection through a mixing length formula to calculate convection parameter αcon.Moreover we consider the additional magnetic field parameters βr,φ,z [= cr2,φ,z/(2cs2)],where c2r,φ,z are the Alfvén sound speeds in three directions of cylindrical coordinates.Our numerical results show that by increasing all components of the magnetic field,the surface density and rotational velocity increase,but the sound speed and radial infall velocity of the disk decrease.We have also found that the existence of wind will lead to reduction of surface density as well as rotational velocity.Moreover,the radial velocity,sound speed,advection parameter and the vertical thickness of the disk will increase when outflow becomes important in the RIAF.

  7. The small covering factor of cold accretion streams

    Science.gov (United States)

    Faucher-Giguère, Claude-André; Kereš, Dušan

    2011-03-01

    Theoretical models of galaxy formation predict that galaxies acquire most of their baryons via cold mode accretion. Observations of high-redshift galaxies, while showing ubiquitous outflows, have so far not revealed convincing traces of the predicted cold streams, which has been interpreted as a challenge for the current models. Using high-resolution, zoom-in smooth particle hydrodynamics simulations of Lyman break galaxy (LBG) haloes combined with ionizing radiative transfer, we quantify the covering factor of the cold streams at z= 2-4. We focus specifically on Lyman limit systems (LLSs) and damped Lyα absorbers (DLAs), which can be probed by absorption spectroscopy using a background galaxy or quasar sightline, and which are closely related to low-ionization metal absorbers. We show that the covering factor of these systems is relatively small and decreases with time. At z= 2, the covering factor of DLAs within the virial radius of the simulated galaxies is ˜3 per cent (˜1 per cent within twice this projected distance), and arises principally from the galaxy itself. The corresponding values for LLSs are ˜10 and 4 per cent. Because of their small covering factor compared to the order unity covering fraction expected for galactic winds, the cold streams are naturally dominated by outflows in stacked spectra. We conclude that the existing observations are consistent with the predictions of cold mode accretion, and outline promising kinematic and chemical diagnostics to separate out the signatures of galactic accretion and feedback.

  8. Parsec-scale accretion and winds irradiated by a quasar

    CERN Document Server

    Dorodnitsyn, Anton; Proga, Daniel

    2015-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galaxy (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation-hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds $L>0.01\\,L_{\\rm Edd}$, where $L_{\\rm Edd}$ is the Eddingto...

  9. Low radiative efficiency accretion in the nuclei of elliptical galaxies

    CERN Document Server

    Matteo, T D; Allen, S W; Narayan, R; Fabian, A C

    1999-01-01

    The discovery of hard, power-law X-ray emission from a sample of six nearby elliptical galaxies, including the dominant galaxies of the Virgo,Fornax and Centaurus clusters (M87, NGC 1399 and NGC 4696, respectively), and NGC 4472, 4636 and 4649 in the Virgo cluster, has important implications for the study of quiescent supermassive black holes. We describe how the broad band spectral energy distributions of these galaxies, which accrete from their hot gaseous halos at rates comparable to their Bondi rates, can be explained by low-radiative efficiency accretion flows in which a significant fraction of the mass, angular momentum and energy is removed from the flows by winds. The observed suppression of the synchrotron component in the radio band and the systematically hard X-ray spectra, which are interpreted as thermal bremsstrahlung emission, support the conjecture that significant mass outflow is a natural consequence of systems accreting at low-radiative efficiencies. We briefly discuss an alternative model ...

  10. Observational evidence for matter propagation in accretion flows

    CERN Document Server

    Revnivtsev, M; Kniazev, A; Burenin, R; Buckley, D A H; Churazov, E

    2010-01-01

    We study simultaneous X-ray and optical observations of three intermediate polars EX Hya, V1223 Sgr and TV Col with the aim to understand the propagation of matter in their accretion flows. We show that in all cases the power spectra of flux variability of binary systems in X-rays and in optical band are similar to each other and the majority of X-ray and optical fluxes are correlated with time lag <1 sec. These findings support the idea that optical emission of accretion disks, in these binary systems,largely originates as reprocessing of X-ray luminosity of their white dwarfs. In the best obtained dataset of EX Hya we see that the optical lightcurve unambiguously contains some component, which leads the X-ray emission by ~7 sec. We interpret this in the framework of the model of propagating fluctuations and thus deduce the time of travel of the matter from the innermost part of the truncated accretion disk to the white dwarf surface. This value agrees very well with the time expected for matter threaded ...

  11. Evolution of an Accretion Disk in Binary Black Hole Systems

    CERN Document Server

    Kimura, Shigeo S; Toma, Kenji

    2016-01-01

    We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...

  12. Compression of matter in the center of accreting neutron stars

    CERN Document Server

    Bejger, M; Haensel, P; Fortin, M

    2011-01-01

    In order to estimate the feasibility of dense-matter phase transition, we study the evolution of central density and baryon chemical potential of accreting neutron stars. The thin-disk accretion with and without the magnetic field torque is compared with the spin-down scenario for a selection of recent equations of state. We compare the prevalent (in the recycled-pulsar context) Keplerian thin-disk model, in which the matter is accreted from the marginally-stable circular orbit, with the recent magnetic-torque model that takes into account the influence of stellar magnetic field on the effective inner boundary of the disk. Calculations are performed using a multi-domain spectral methods code in the framework of General Relativity. We consider three equations of state consistent with recently measured mass of PSR J1614-2230, 1.97+-0.04 Msun (one of them softened by the appearance of hyperons). In the case of no magnetic torque and efficient angular momentum transfer from the disk to the star, substantial centr...

  13. Gas accretion on spiral galaxies bar formation and renewal

    CERN Document Server

    Bournaud, F

    2002-01-01

    The effects of gas accretion on spiral disk dynamics and stability are studied through N-body simulations, including star formation and gas/stars mass exchange. The detailed processes of bar formation, bar destruction and bar re-formation are followed, while in the same time the disk to bulge ratio is varying. The accreted gas might be first prevented to flow inwards to the center by the bar gravity torques, which maintains it to the outer Lindblad resonance. While the first bar is weakening, the accreted gas replenishes the disk, increasing the disk-to-bulge ratio, and the disk self-gravity. A second bar is then unstable, with a higher pattern speed, due both to the increased mass, and shorter bar length. Three or four bar episodes have been followed over a Hubble time. Their strength is decreasing with time, while their pattern speed is increasing. Detailed balance of the angular momentum transfer and evolution can account for these processes. The gas recycled through star formation, and rejected through st...

  14. Black Hole Accretion Discs on a Moving Mesh

    Science.gov (United States)

    Ryan, Geoffrey

    2017-01-01

    We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.

  15. Accretion of the Moon from non-canonical discs.

    Science.gov (United States)

    Salmon, J; Canup, R M

    2014-09-13

    Impacts that leave the Earth-Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such 'non-canonical' impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth-Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7R⊕, which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance.

  16. Structure and variability of dynamo driven accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Pudritz, R.E. (Cambridge Univ. (UK). Inst. of Astronomy); Fahlman, G.G. (British Columbia Univ., Vancouver (Canada). Dept. of Geophysics and Astronomy)

    1982-02-01

    A turbulent dynamo operating in an accretion disc around a black hole can produce fields strong enough so that the Maxwell stress due to the fluctuations dominates. In this dynamo driven limit, enormous localized fluctuations can be expected because the Kepler flow energy density is efficiently tapped. The detailed radial structure of this model is calculated, which for Cyg X-1, predicts a cool (Tsub(max) approximately < 10/sup 8/ K), dense, thin (z/sub 0//r approximately < 10/sup -2/), and optically thick disc. A mean field B approximately < 10/sup 8/ G can be generated. Fluctuations of order b approximately 10/sup 12/ G at the inner accretion disc radius (rsub(*) approximately 1), falling to b approximately 10/sup 10/ G at rsub(*) approximately 30, provide an explanation for the Cyg X-1 millisecond bursts and shot noise in terms of flares on the disc surface. This is established by means of model independent, scaled reconnection experiments. The optical variability of 3C 273 could be explained as arising from flares on an accretion disc around a 10/sup 9/ solar masses black hole, with flare fields of b approximately 10/sup 7/ G at rsub(*) approximately 1.

  17. Periodic massloss from viscous accretion flows around black holes

    CERN Document Server

    Das, Santabrata; Nandi, Anuj; Molteni, Diego

    2014-01-01

    We investigate the behaviour of low angular momentum viscous accretion flows around black holes using Smooth Particle Hydrodynamics (SPH) method. Earlier, it has been observed that in a significant part of the energy and angular momentum parameter space, rotating transonic accretion flow undergoes shock transition before entering in to the black hole and a part of the post-shock matter is ejected as bipolar outflows, which are supposed to be the precursor of relativistic jets. In this work, we simulate accretion flows having injection parameters from the inviscid shock parameter space, and study the response of viscosity on them. With the increase of viscosity, shock becomes time dependent and starts to oscillate when the viscosity parameter crosses its critical value. As a result, the in falling matter inside the post-shock region exhibits quasi-periodic variations and causes periodic ejection of matter from the inner disc as outflows. In addition, the same hot and dense post-shock matter emits high energy r...

  18. Unification of Radio Galaxies and their Accretion Jet Properties

    Indian Academy of Sciences (India)

    Qingwen Wu; Ya-Di Xu; Xinwu Cao

    2011-03-01

    We investigate the relation between black hole mass, bh, and jet power, jet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in bh-jet plane, which strongly supports the unification scheme of FR I/BL Lac and FR II/radio quasar. The Eddington ratio distribution of BL Lacs and radio quasars exhibits a bimodal nature with a rough division at bol/Edd ∼ 0.01, which imply that they may have different accretion modes. We calculate the jet power extracted from advection-dominated accretion flow (ADAF), and find that it requires dimensionless angular momentum of black hole ≃ 0.9 - 0.99 to reproduce the dividing line between FR I/II or BL Lac/radio quasar if dimensionless accretion rate $\\dot{m} = 0.01$ is adopted, which is required by the above bimodal distribution of Eddington ratios. Our results suggest that black holes in radio galaxies are rapidly spinning.

  19. Massive accretion disks: ATCA's potential for deep impact

    Science.gov (United States)

    Beuther, Henrik; Longmore, Steven; Walsh, Andrew; Fallscheer, Cassandra

    2008-04-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk-pilot study of IRAS18089-1732 (Beuther & Walsh, ApJL in press), we now propose to investigate a larger sample of eleven disk candidates at high angular resolution (<1'') in the highly excited NH3(4,4)/(5,5) lines. These lines trace the densest and warmest regions and are hence well suited to isolate the accretion disks from their envelopes. The observation will reveal the kinematics of the rotating structures and allow us to differentiate whether the expected disks are in Keplerian rotation like their low-mass counterparts or not. Furthermore, the chosen line pair is well suited to investigate the temperature structure of the regions. Combining the kinematic and temperature information, we will derive detailed physical models of the rotation structures in young massive star-forming regions. Investigating a larger sample is the only way to characterize massive disks in a general way important for a comprehensive understanding of massive star formation. The ATCA with its excellent spatial resolution and sensitivity has the potential to make considerable impact in this field.

  20. Extended Lyman-alpha emission from cold accretion streams

    CERN Document Server

    Rosdahl, J

    2011-01-01

    {Abridged} We investigate the observability of cold accretion streams at redshift 3 via Lyman-alpha radiation and the feasibility of cold accretion as the main driver behind giant Lya blobs (LABs). We run cosmological zoom simulations focusing on 3 halos spanning two orders of magnitude in mass, from 10^11 to 10^13 solar masses. We use a version of the AMR code Ramses that includes radiative transfer of UV photons, and we employ a refinement strategy that allows us to resolve accretion streams in their natural environment to an unprecedented level. For the first time, we self-consistently model self-shielding in the cold streams from the cosmological UV background, which enables us to accurately predict their temperatures, ionization states and Lya luminosities. We find the efficiency of gravitational heating in cold streams in a ~10^11 solar mass halo is around 10-20% throughout most of the halo but reaching much higher values close to the center. As a result most of the Lya luminosity comes from the circumg...

  1. AGN jets driven stochastic cold accretion in cluster cores

    CERN Document Server

    Prasad, Deovrat; Babul, Arif

    2016-01-01

    Several arguments suggest that stochastic condensation of cold gas and its accretion onto the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGN) feedback to work in the most massive galaxies that lie at the centers of galaxy clusters. Our 3-D AGN jet-ICM (intracluster medium) simulations show that the angular momentum of the cold gas crossing $\\lesssim 1$ kpc is essentially isotropic. With almost equal mass in clockwise and counter-clockwise orientations, we expect a cancellation of angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centers of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observa...

  2. Hydrodynamical Accretion Onto Sgr A* From Distributed Point Sources

    CERN Document Server

    Coker, R F; Coker, Robert F.

    1997-01-01

    Spectral and kinematic studies suggest that the nonthermal radio source Sgr A*, located at the center of the Milky Way, is a supermassive compact object with a mass 2-3 million solar masses. Winds from nearby stars, located approximately 0.06 pc to the east of Sgr A*, should, in the absence of any outflow from the putative black hole itself, be accreting onto this object. We report the results of the first 3D Bondi-Hoyle hydrodynamical numerical simulations of this process under the assumption that the Galactic center wind is generated by several different point sources (here assumed to be 10 pseudo-randomly placed stars). Our results show that the accretion rate onto the central object can be higher than in the case of a uniform flow since wind-wind shocks dissipate some of the bulk kinetic energy and lead to a higher capture rate for the gas. However, even for this highly non-uniform medium, most of the accreting gas carries with it a relatively low level of specific angular momentum, though large transient...

  3. Magneto centrifugal winds from accretion discs around black hole binaries

    CERN Document Server

    Chakravorty, S; Ferreira, J; Henri, G; Belmont, R; Clavel, M; Corbel, S; Rodriguez, J; Coriat, M; Drappeau, S; Malzac, J

    2016-01-01

    We want to test if self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow, from the accretion disk, is not a free parameter, but is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Different MHD solutions were generated for different values of (a) the disk aspect ratio ($\\varepsilon$) and (b) the ejection efficiency ($p$). We generated two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. The cold MHD solutions are found to be inadequate to account for winds due to their low ejection efficiency. The warm solutions can have sufficiently high values of $p (\\gtrsim 0.1)$ which is required to explain the observed physical quantities in the wind. The heating (required at the disk surface for the warm solutions) could be due to the illumination which would b...

  4. The Li Overabundance of J37: Diffusion or Accretion?

    CERN Document Server

    Ashwell, J F; Smalley, B; Deliyannis, C P; Steinhauer, A; King, J R

    2004-01-01

    In September 2002 the discovery of a super Li-rich F-dwarf (J37) in NGC 6633, an iron poor analogue of the better studied Hyades and Praecepe open clusters, was announced. This unique star was thought to be the smoking gun for the action of diffusion, models of which predict a narrow "Li-peak" at approximately the correct temperature. However, with more detailed studies into J37s abundance pattern this star provides firm evidence for the accretion of planetesimals or other material from the circumstellar environment of new born stars. Thanks to the specific predictions made about the behaviour of Be abundances, (the most striking of which being no Be in super-Li-rich dwarfs subject to diffusion) the opposing diffusion/accretion predictions can be tested. Initial modelling of the Be line indicates that J37 is as Be rich as it is Li rich; log N(Be) = 2.25 +/- 0.25, and so is broadly consistent with an accretion-fuelled enhancement. However, that both Li and Be are enhanced by much more than the iron-peak elemen...

  5. Gravitational Waves from Hyper-Accretion onto Nascent Black Holes

    CERN Document Server

    Araya-Gochez, R A

    2003-01-01

    We examine the possibility that hyper-accretion onto newly born, black holes occurs in highly intermittent, non-asymmetric fashion favorable to gravitational wave emission in a neutrino cooled disk. This picture of near-hole accretion is motivated by magneto-rotationally induced, ultra-relativistic disk dynamics in the region of the flow bounded from below by the marginally bound geodesic radius. For high spin values, a largely coherent magnetic field in this region has the dynamical implication of compact mass segregation at the displacement nodes of the non-axisymmetric, MRI modes. When neutrino stress competes favorably for the disk dynamical structure, the matter clumps may be rather dense and sufficiently long-lived to excite the Quasi-Normal Ringing (a.k.a. QNR) modes of the Kerr geometry upon their in-fall. We find that such accretion flow may drive bar-like, quadrupole (l,m=2,2) modes in nearly resonant fashion for spin parameters $a \\geq .9$. The ensuing build up in strain amplitude of the undamped o...

  6. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  7. Experimental study of snow accretion on overhead transmission lines using a wind tunnel and a high-speed camera

    Science.gov (United States)

    Yasui, Mitsuru; Kagami, Jun; Ando, Hitoshi; Hamada, Yutaka

    1995-05-01

    The experimental study of snow accretion on overhead power transmission lines was carried out to obtain data on accretion rates using the artificial snow accretion test equipment and a high speed camera. We evaluated the accretion rate relative to temperature and wind velocity under simulated conditions of natural snowing and strong winds.

  8. Shallow Cavities in Multiple-Planet Systems

    CERN Document Server

    Duffell, Paul C

    2014-01-01

    Large cavities are often observed in protoplanetary disks, which might suggest the presence of planets opening gaps in the disk. Multiple planets are necessary to produce a wide cavity in the gas. However, multiple planets may also be a burden to the carving out of very deep gaps. When additional planets are added to the system, the time-dependent perturbations from these additional satellites can stir up gas in the gap, suppressing cavity opening. In this study, we perform two-dimensional numerical hydro calculations of gap opening for single and multiple planets, showing the effect that additional planets have on the gap depths. We show that multiple planets produce much shallower cavities than single planets, so that more massive planets are needed in the multiple-planet case to produce an equivalent gap depth as in the single-planet case. To deplete a gap by a factor of 100 for the parameters chosen in this study, one only requires $M_p \\approx 3.5M_J$ in the single-planet case, but much more massive plan...

  9. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, James F.; McClintock, Jeffrey E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Orosz, Jerome A. [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1221 (United States); Buxton, Michelle M.; Bailyn, Charles D. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); Kara, Erin, E-mail: jsteiner@cfa.harvard.edu [Department of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  10. Critical condition for the propeller effect in systems with magnetized neutron stars accreting from geometrically thin accretion disks

    Science.gov (United States)

    Ertan, Unal

    2016-07-01

    The inner disk radius around a magnetized neutron star in the spin-down phase is usually assumed to be close to the radius at which the viscous and magnetic stresses are balanced. With different assumptions, this radius is estimated to be very close the Alfven radius. Furthermore, it is commonly assumed that the propeller mechanism can expel the matter from the system when this radius is found to be greater than the co-rotation radius. In the present work, we have shown with simple analytical calculations from the first principles that a steady-state propeller mechanism cannot be established at the radius where the viscous and the magnetic torques are balanced. We have found that a steady-state propeller phase can be built up with an inner disk radius that is at least ~10 - 30 times smaller than the Alfven radius depending on the current mass-flow rate of the disk, the field strength and the rotational period of the source. This result also indicates that the critical accretion rate for the accretion-propeller transition is orders of magnitude smaller than the rate found by equating the Alfven and the co-rotation radii. Our results are consistent with the properties of recently discovered transitional millisecond pulsars which show transitions between the rotational powered radio pulsar and the accretion powered X-ray pulsar states.

  11. The effect of helium accretion efficiency on rates of Type Ia supernovae: double-detonations in accreting binaries

    CERN Document Server

    Ruiter, Ashley J; Sim, Stuart A; Seitenzahl, Ivo R; Kwiatkowski, Damian

    2014-01-01

    The double-detonation explosion scenario of Type Ia supernovae has gained increased support from the SN Ia community as a viable progenitor model, making it a promising candidate alongside the well-known single degenerate and double degenerate scenarios. We present delay times of double-detonation SNe, in which a sub-Chandrasekhar mass carbon-oxygen white dwarf accretes non-dynamically from a helium-rich companion. One of the main uncertainties in quantifying SN rates from double-detonations is the (assumed) retention efficiency of He-rich matter. Therefore, we implement a new prescription for the treatment of accretion/accumulation of He-rich matter on white dwarfs. In addition, we test how the results change depending on which criteria are assumed to lead to a detonation in the helium shell. In comparing the results to our standard case (Ruiter et al. 2011), we find that regardless of the adopted He accretion prescription, the SN rates are reduced by only 25% if low-mass He shells (< 0.05 Msun) are suffi...

  12. Modeling the Optical-X-ray Accretion Lag in LMC X-3: Insights Into Black-Hole Accretion Physics

    CERN Document Server

    Steiner, James F; Orosz, Jerome A; Buxton, Michelle M; Bailyn, Charles D; Remillard, Ronald A; Kara, Erin

    2014-01-01

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, 10-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the ASM and PCA detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ~2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light; accretion luminosity from the outer disk inferred from the time-lagged X-ray emission; and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mas...

  13. Face-on accretion onto a protoplanetary disc

    Science.gov (United States)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.

    2016-10-01

    Context. Stars are generally born in clustered stellar environments, which can affect their subsequent evolution. An example of this environmental influence can be found in globular clusters (GCs) harbouring multiple stellar populations. An evolutionary scenario in which a second (and possibly higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population has been suggested to explain the multiple stellar populations. The idea, dubbed early disc accretion, is that the low-mass, pre-main-sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster core. The same process could also occur, to a lesser extent, in embedded stellar systems that are less dense. Aims: Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star of 0.4 M⊙ surrounded by a protoplanetary disc can accrete a sufficient amount of enriched material to account for the observed abundances in so-called second generation GC stars. In particular, we focus on the gas-loading rate onto the disc and star, as well as on the lifetime and stability of the disc. Methods: We perform simulations at multiple resolutions with two different smoothed particle hydrodynamics codes and compare the results. Each code uses a different implementation of the artificial viscosity. Results: We find that the gas-loading rate is about a factor of two smaller than the rate based on geometric arguments, because the effective cross-section of the disc is smaller than its surface area. Furthermore, the loading rate is consistent for both codes, irrespective of resolution. Although the disc gains mass in the high-resolution runs, it loses angular momentum on a timescale of 104 yr. Two effects determine the loss of (specific) angular momentum in our simulations: (1) continuous ram pressure stripping and (2

  14. The environmental dependence of gas accretion on to galaxies: quenching satellites through starvation

    Science.gov (United States)

    van de Voort, Freeke; Bahé, Yannick M.; Bower, Richard G.; Correa, Camila A.; Crain, Robert A.; Schaye, Joop; Theuns, Tom

    2017-04-01

    Galaxies that have fallen into massive haloes may no longer be able to accrete gas from their surroundings: a process referred to as 'starvation' or 'strangulation' of satellites. We study the environmental dependence of gas accretion on to galaxies using the cosmological, hydrodynamical EAGLE simulation. We quantify the dependence of gas accretion on stellar mass, redshift, and environment, using halo mass and galaxy overdensity as environmental indicators. We find a strong suppression, of many orders of magnitude, of the gas accretion rate in dense environments, primarily for satellite galaxies. This suppression becomes stronger at lower redshift. However, the scatter in accretion rates is very large for satellites. This is (at least in part) due to the variation in the halocentric radius, since gas accretion is more suppressed at smaller radii. Central galaxies are influenced less strongly by their environment and exhibit less scatter in their gas accretion rates. The star formation rates of both centrals and satellites show similar behaviour to their gas accretion rates. The relatively small differences between gas accretion and star formation rates demonstrate that galaxies generally exhaust their gas reservoir somewhat faster at higher stellar mass, lower redshift, and in denser environments. We conclude that the environmental suppression of gas accretion could directly result in the quenching of star formation.

  15. Geometric figure-ground cues override standard depth from accretion-deletion.

    Science.gov (United States)

    Tanrikulu, Ömer Daglar; Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2016-01-01

    Accretion-deletion is widely considered a decisive cue to surface depth ordering, with the accreting or deleting surface interpreted as behind an adjoining surface. However, Froyen, Feldman, and Singh (2013) have shown that when accretion-deletion occurs on both sides of a contour, accreting-deleting regions can also be perceived as in front and as self-occluding due to rotation in three dimensions. In this study we ask whether geometric figure-ground cues can override the traditional "depth from accretion-deletion" interpretation even when accretion-deletion takes place only on one side of a contour. We used two tasks: a relative-depth task (front/back), and a motion-classification task (translation/rotation). We conducted two experiments, in which texture in only one set of alternating regions was moving; the other set was static. Contrary to the traditional interpretation of accretion-deletion, the moving convex and symmetric regions were perceived as figural and rotating in three dimensions in roughly half of the trials. In the second experiment, giving different motion directions to the moving regions (thereby weakening motion-based grouping) further weakened the traditional accretion-deletion interpretation. Our results show that the standard "depth from accretion-deletion" interpretation is overridden by static geometric cues to figure-ground. Overall, the results demonstrate a rich interaction between accretion-deletion, figure-ground, and structure from motion that is not captured by existing models of depth from motion.

  16. Observational Limits on the Spin-down Torque of Accretion Powered Stellar Winds

    Science.gov (United States)

    Zanni, Claudio; Ferreira, Jonathan

    2011-01-01

    The rotation period of classical T Tauri stars (CTTS) represents a longstanding puzzle. While young low-mass stars show a wide range of rotation periods, many CTTS are slow rotators, spinning at a small fraction of breakup, and their rotation period does not seem to shorten, despite the fact that they are actively accreting and contracting. Matt & Pudritz proposed that the spin-down torque of a stellar wind powered by a fraction of the accretion energy would be strong enough to balance the spin-up torque due to accretion. Since this model establishes a direct relation between accretion and ejection, the observable stellar parameters (mass, radius, rotation period, magnetic field) and the accretion diagnostics (accretion shock luminosity) can be used to constrain the wind characteristics. In particular, since the accretion energy powers both the stellar wind and the shock emission, we show in this Letter how the accretion shock luminosity L UV can provide upper limits to the spin-down efficiency of the stellar wind. It is found that luminous sources with L UV >= 0.1 L sun and typical dipolar field components UV Lt 0.1 L sun) are compatible with a zero-torque condition, but the corresponding stellar winds are still very demanding in terms of mass and energy flux. We therefore conclude that accretion powered stellar winds are unlikely to be the sole mechanism to provide an efficient spin-down torque for accreting CTTS.

  17. General Relativistic Magnetohydrodynamic Simulations of the Hard State as a Magnetically-Dominated Accretion Flow

    CERN Document Server

    Fragile, P Chris

    2008-01-01

    (Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...

  18. Local Black Hole Scaling Relations Imply Compton Thick or Super Eddington Accretion

    CERN Document Server

    Novak, Gregory S

    2013-01-01

    A recent analysis of black hole scaling relations, used to estimate the local mass density in black holes, has indicated that the normalization of the scaling relations should be increased by approximately a factor of five. The local black hole mass density is connected to the mean radiative efficiency of accretion through the time integral of the quasar volume density. The correspondence between this estimate of the radiative efficiency and that expected theoretically from thin-disk accretion has long been used as an argument that most of the growth in black holes occurs via luminous accretion. The increase of the mass density in black holes pushes the mean observed radiative efficiency to values below that expected for thin-disk accretion for any value of the black hole spin, including retrograde accretion disks. This can be accommodated via black hole growth channels that are intrinsically radiatively inefficient, such as super-Eddington accretion, or via growth channels that are intrinsically radiatively ...

  19. Challenges in Forming the Solar System's Giant Planet Cores via Pebble Accretion

    CERN Document Server

    Kretke, K A

    2014-01-01

    Though ~10 Earth mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of "pebbles," objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code which can follow the collisional / accretional / dynamical evolution of a protoplanetary system, to investigate the how pebble accretion manifests itself in the larger ...

  20. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    CERN Document Server

    Kumar, Rajiv

    2014-01-01

    We investigated accretion onto black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multi-species fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 0.001-12 \\% of Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high viscosity parameters, high accretion rates, as well as, for wide range of comp...