WorldWideScience

Sample records for accretion disk winds

  1. Wind-driven Accretion in Transitional Protostellar Disks

    CERN Document Server

    Wang, Lile

    2016-01-01

    Transitional protostellar disks have inner cavities heavily depleted in dust and gas, yet most show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities imply that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside such cavities are estimated for plausible X-ray and FUV radiation fields. The gas is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by K\\"onigl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but not so good that the magnetic flux need be dragged inward by the accreting neutrals.

  2. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  3. Wind-driven Accretion in Transitional Protostellar Disks

    Science.gov (United States)

    Wang, Lile; Goodman, Jeremy J.

    2017-01-01

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.

  4. Hydrodynamic Models of Line-Driven Accretion Disk Winds II Adiabatic Winds from Nonisothermal Disks

    CERN Document Server

    Pereyra, N A; Blondin, J M; Pereyra, Nicolas Antonio; Kallman, Timothy R.; Blondin, John M.

    2000-01-01

    We present here numerical hydrodynamic simulations of line-driven accretion disk winds in cataclysmic variable systems. We calculate wind mass-loss rate, terminal velocities, and line profiles for CIV (1550 A) for various viewing angles. The models are 2.5-dimensional, include an energy balance condition, and calculate the radiation field as a function of position near an optically thick accretion disk. The model results show that centrifugal forces produce collisions of streamlines in the disk wind which in turn generate an enhanced density region, underlining the necessity of two dimensional calculations where these forces may be represented. For disk luminosity Ldisk = Lsun, white dwarf mass Mwd = 0.6 Msun, and white dwarf radii Rwd = 0.01 Rsun, we obtain a wind mass-loss rate of dMwind/dt = 8.0E-12 Msun/yr, and a terminal velocity of ~3000 km/s. The line profiles we obtain are consistent with observations in their general form, in particular in the maximum absorption at roughly half the terminal velocity ...

  5. Chemical evolution of protoplanetary disks - the effects of viscous accretion, turbulent mixing and disk winds

    CERN Document Server

    Heinzeller, Dominikus; Walsh, Catherine; Millar, Tom J

    2011-01-01

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line ...

  6. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    Science.gov (United States)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  7. Brackett γ radiation from the inner gaseous accretion disk, magnetosphere, and disk wind region of Herbig AeBe stars

    Science.gov (United States)

    Tambovtseva, L. V.; Grinin, V. P.; Weigelt, G.

    2016-05-01

    Various disk and outflow components such as the magnetosphere, the disk wind, the gaseous accretion disk, and other regions may contribute to the hydrogen line emission of young Herbig AeBe stars. Non-LTE modeling was performed to show the influence of the model parameters of each emitting region on the intensity and shape of the Brγ line profile, to present the spatial brightness distribution of each component, and to compare the contribution of each component to the total line emission. The modeling shows that the disk wind is the dominant contributor to the Brγ line rather than the magnetosphere and inner gaseous accretion disk. The contribution of the disk wind region to the Hα line is also considered.

  8. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    OpenAIRE

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow type...

  9. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    CERN Document Server

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  10. Wind from black hole accretion disk as the driver of a molecular outflow in a galaxy

    CERN Document Server

    Tombesi, F; Veilleux, S; Reeves, J N; Gonzalez-Alfonso, E; Reynolds, C S

    2015-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. Recent observations of large-scale molecular outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the evidence to support these studies, as they directly trace the gas out of which stars form. Theoretical models suggest an origin of these outflows as energy-conserving flows driven by fast AGN accretion disk winds. Previous claims of a connection between large-scale molecular outflows and AGN activity in ULIRGs were incomplete because they were lacking the detection of the putative inner wind. Conversely, studies of powerful AGN accretion disk winds to date have focused only on X-ray observations of local Seyferts and a few higher redshift quasars. Here we show the clear detection of a powerful AGN accretion disk wind with a mildly relativistic ...

  11. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    Science.gov (United States)

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.

  12. New insights on the accretion disk-winds connection in radio-loud AGNs from Suzaku

    CERN Document Server

    Tombesi, F; Reeves, J N; Braito, V; Cappi, M; Reynolds, C S; Mushotzky, R F

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ~0.1c in three of them, namely 3C 111, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C 111 to monitor its outflow on ~7days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disk-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/...

  13. Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*

    CERN Document Server

    Christie, I M; Mimica, P; Giannios, D

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in $\\sim10^{8}$ cm s$^{-1}$ range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericenter passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly ...

  14. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  15. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  16. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  17. The Accretion Disk Wind in the Black Hole GRS 1915+105

    CERN Document Server

    Miller, J M; Fabian, A C; Gallo, E; Kaastra, J; Kallman, T; King, A L; Proga, D; Reynolds, C S; Zoghbi, A

    2016-01-01

    We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss ...

  18. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  19. MAGNETICALLY DRIVEN ACCRETION DISK WINDS AND ULTRA-FAST OUTFLOWS IN PG 1211+143

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Keigo [James Madison University, Harrisonburg, VA 22807 (United States); Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Behar, Ehud [Department of Physics, Technion, Haifa 32000 (Israel); Contopoulos, Ioannis, E-mail: fukumukx@jmu.edu [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece)

    2015-05-20

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξ{sub c}[erg cm s{sup −1}]) ≃ 5–6 and a column density on the order of N{sub H} ≃ 10{sup 23} cm{sup −2} outflowing at a characteristic velocity of v{sub c}/c ≃ 0.1–0.2 (where c is the speed of light). The best-fit model favors its radial location at r{sub c} ≃ 200 R{sub o} (R{sub o} is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at R{sub t} ≃ 30 R{sub o}. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  20. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    CERN Document Server

    Feldmeier, A; Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow types result, depending on the location of perturbations. First, if the shallow solution is perturbed sufficiently far downstream, a single critical point forms in the flow, which is a barrier for Abbott waves, and the solution tends to the critical one. Second, if the shallow solution is perturbed upstream from this critical point, mass overloading results, and the critical point is shifted inwards. This wind exhibits a broad, stationary region of decelerating flow and its velocity law has kinks. Third, for perturbations eve...

  1. Evidence for the Magnetic Origin of Black Hole Accretion Disk Winds

    Science.gov (United States)

    Shrader, Chris R.; Fukumura, Keigo; Kazanas, Demos; Tombesi, Francesco; Behar, Ehud

    2017-06-01

    Black hole accretion disks seem to produce plasma outflows that result in blue-shifted absorption features in their spectra1. The literature of the past decade or so has demonstrated that the X-ray absorption-line properties of these outflows are often diverse. They can range in velocity from non-relativistic (~300 km s^-1) to sub-relativistic (~0.1c) over broad range in ionization of the wind plasma. We report here that semi-analytical, self-similar magneto-hydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black can also be applied to the high-resolution X-ray spectrum of the accreting stellar-mass black holes, in particular to the 2005 outburst of GRO J1655-40. This supports the argument of their MHD origin and is consistent with aligned with earlier observational claims. It further hints at the notion of a universal magnetic structure of the observed winds across the known black hole mass range.

  2. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    Science.gov (United States)

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  3. Non-linear variability in microquasars in relation with the winds from their accretion disks

    CERN Document Server

    Janiuk, Agnieszka; Sukova, Petra; Capitanio, Fiamma; Bianchi, Stefano; Kowalski, Wojtek

    2016-01-01

    The microquasar IGR J17091, which is the recently discovered analogue of the well known source GRS 1915+105, exhibits quasi-periodic outbursts, with a period of 5-70 seconds, and regular amplitudes, referred to as "heartbeat state". We argue that these states are plausibly explained by accretion disk instability, driven by the dominant radiation pressure. Using our GLobal Accretion DIsk Simulation hydrodynamical code, we model these outbursts quantitatively. We also find a correlation between the presence of massive outflows launched from the accretion disk and the stabilization of its oscillations. We verify the theoretical predictions with the available timing and spectral observations. Furthermore, we postulate that the underlying non-linear differential equations that govern the evolution of an accretion disk are responsible for the variability pattern of several other microquasars, including XTE J1550-564, GX 339-4, and GRO J1655-40. This is based on the signatures of deterministic chaos in the observed ...

  4. Self-Similar Force-Free Wind From an Accretion Disk

    CERN Document Server

    Narayan, R; Farmer, A J; Narayan, Ramesh; Kinney, Jonathan C. Mc; Farmer, Alison J.

    2006-01-01

    We consider a self-similar force-free wind flowing out of an infinitely thin disk located in the equatorial plane. On the disk plane, we assume that the magnetic stream function $P$ scales as $P\\propto R^\

  5. Accretion Disk Evolution with Wind Infall; 2, Results of 3D Hydrodynamical Simulations with an Illustrative Application to Sgr $A^{*}$

    CERN Document Server

    Coker, R F; Falcke, H; Coker, Robert F.; Melia, Fulvio; Falcke, Heino

    1999-01-01

    In the first paper of this series, using analytic tools, we examined how the evolution and structure of a massive accretion disk may be influenced by the deposition of mass and angular momentum by an infalling Bondi-Hoyle wind. Such a mass influx impacts the long-term behavior of the disk by providing additional sources of viscosity and heating. Here, we make improvements over this earlier work by incorporating the results of 3D hydrodynamical simulations of the large scale accretion from an ambient medium into the disk evolution equations developed previously. We discuss two models, one with the axis of the disk parallel to, and the second with the axis oriented perpendicular to the large scale Bondi-Hoyle flow. We find that the mass inflow rate onto the disk within logarithmic annuli is roughly constant with radius and that the impacting wind carries much less specific angular momentum than Keplerian. We also find, in general, that the infrared spectrum of a wind-fed disk system is steeper than that of a Sh...

  6. Migration of Extrasolar Planets: Effects from X-Wind Accretion Disks

    CERN Document Server

    Adams, Fred C; Lizano, Susana

    2009-01-01

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics (MHD) in these disks shows that magnetic effects produce subkeplerian rotation curves and truncate the inner disk. This letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Subkeplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap opening processes for larger planets. This subkeplerian migration mechanism dominates over Type I migration for sufficiently small planets (m_P < 1 M_\\earth) and/or close orbits (r < 1 AU). Although the inclusion of subkeplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P=4 days. Pla...

  7. Quasar Rain: The Broad Emission Line Region as Condensations in the Warm Accretion Disk Wind

    Science.gov (United States)

    Elvis, Martin

    2017-09-01

    The origin of the broad emission line region (BELR) in quasars and active galactic nuclei is still unclear. I propose that condensations form in the warm, radiation-pressure-driven, accretion disk wind of quasars creating the BEL clouds and uniting them with the other two manifestations of cool (∼104 K) gas in quasars, the low ionization phase of the warm absorbers (WAs) and the clouds causing X-ray eclipses. The cool clouds will condense quickly (days to years), before the WA outflows reach escape velocity (which takes months to centuries). Cool clouds form in equilibrium with the warm phase of the wind because the rapidly varying X-ray quasar continuum changes the force multiplier, causing pressure waves to move gas into stable locations in pressure–temperature space. The narrow range of two-phase equilibrium densities may explain the (luminosity){}1/2 scaling of the BELR size, while the scaling of cloud formation timescales could produce the Baldwin effect. These dense clouds have force multipliers of order unity and so cannot be accelerated to escape velocity. They fall back on a dynamical timescale (months to centuries), producing an inflow that rains down toward the central black hole. As they soon move at Mach ∼10–100 with respect to the WA outflow, these “raindrops” will be rapidly destroyed within months. This rain of clouds may produce the elliptical BELR orbits implied by velocity-resolved reverberation mapping in some objects and can explain the opening angle and destruction timescale of the narrow “cometary” tails of the clouds seen in X-ray eclipse observations. Some consequences and challenges of this “quasar rain” model are presented, along with several avenues for theoretical investigation.

  8. The structure and appearance of winds from supercritical accretion disks. II - Dynamical theory of supercritical winds

    Science.gov (United States)

    Meier, D. L.

    1982-01-01

    A general analytic theory is presented of winds driven by super-Eddington luminosities. The relevant parameters are the mass of the central object, the radius at which the luminosity and matter are injected, the ratio of the free-fall time to the heating time at this radius, and the total luminosity injected at the radius. Several different regimes of dynamical wind structure are identified, and the analytic expressions are shown to agree with the numerical results in Meier (1979) in the appropriate case. It is noted that, in its general form, the theory is the optically thick (to electron scattering) counterpart to optically thin radiation pressure-driven stellar winds.

  9. On the gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    CERN Document Server

    Manara, C F; Natta, A; Rosotti, G; Benisty, M; Ercolano, B; Ricci, L

    2014-01-01

    Transitional disks (TDs) are thought to be a late evolutionary stage of protoplanetary disks with dust depleted inner regions. The mechanism responsible for this depletion is still under debate. To constrain the models it is mandatory to have a good understanding of the properties of the gas content of the inner disk. Using X-Shooter broad band -UV to NIR- medium resolution spectroscopy we derive the stellar, accretion, and wind properties of a sample of 22 TDs. The analysis of these properties allows us to put strong constraints on the gas content in a region very close to the star (<0.2 AU) which is not accessible with any other observational technique. We fit the spectra with a self-consistent procedure to derive simultaneously SpT,Av,and mass accretion rates (Macc) of the targets. From forbidden emission lines we derive the wind properties of the targets. Comparing our findings to values for cTTs, we find that Macc and wind properties of 80% of the TDs in our sample, which is strongly biased towards st...

  10. Magnetically-Driven Accretion-Disk Winds and Ultra-Fast Outflows in PG1211+143

    CERN Document Server

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an {\\it XMM-Newton}/EPIC spectrum of the narrow-line Seyfert, \\pg. We find, through identifying the detected features with Fe K$\\alpha$ transitions, that the absorber has a characteristic ionization parameter of $\\log (\\xi_c [erg~cm~s$^{-1}...

  11. Numerical simulations of dissipationless disk accretion

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2017-09-01

    Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/ r ≫ 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.

  12. Disk wind and magnetospheric accretion in emission from the Herbig Ae star MWC 480

    Science.gov (United States)

    Tambovtseva, L. V.; Grinin, V. P.; Potravnov, I. S.; Mkrtichian, D. E.

    2016-09-01

    The young Herbig Ae star MWC 480 (HD 31648) is one of the comprehensively spectroscopically studied stars in the ultraviolet, optical, and infrared spectral ranges. Using non-LTE modeling of its hydrogen spectrum, we have calculated the contribution to the hydrogen emission from such important regions of the circumstellar environment as the disk wind and the magnetosphere. We have used our own observations of the stellar spectrum performed with the 2.4-m telescope at the Thai National Observatory to quantitatively check our theoretical calculations. In addition, all of the visible and infrared spectra available in the literature have been used for a qualitative comparison. The modeling results have revealed a significant role of the magneto-centrifugal disk wind in the formation of atomic hydrogen emission. The cause of the emission line variability in the spectrum ofMWC 480 is discussed.

  13. Stratified Magnetically Driven Accretion-disk Winds and Their Relations to Jets

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2014-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  14. Stratified magnetically driven accretion-disk winds and their relations to jets

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Keigo [University of Maryland, Baltimore County (UMBC/CRESST), Baltimore, MD 21250 (United States); Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Behar, Ehud [Department of Physics, Technion, Haifa 32000 (Israel); Contopoulos, Ioannis, E-mail: fukumukx@jmu.edu [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece)

    2014-01-10

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  15. Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  16. The impact of accretion disk winds on the X-ray spectrum of AGN: Part 2 - XSCORT + Hydrodynamic Simulations

    CERN Document Server

    Schurch, N J; Proga, D

    2008-01-01

    abridged: We use XSCORT, together with the hydrodynamic accretion disc wind simulation from Proga & Kallman (2004), to calculate the impact that the accretion disk wind has on the X-ray spectrum from a 1E8 solar mass black hole Active Galactic Nuclei (AGN) accreting at 0.5 L/L_Edd. The properties of the resulting spectra depend on viewing angle and clearly reflect the distinct regions apparent in the original hydrodynamic simulation. Very equatorial lines-of-sight (l.o.s) are dominated by Compton scattering and nearly-neutral absorption. Polar l.o.s result in largely featureless spectra. Finally, l.o.s that intersect the transition region between these extremes have a wide range of absorption features imprinted on the spectrum. Both polar and transition region l.o.s produce spectra that show highly-ionized, blue-shifted, Fe absorption features that are qualitatively similar to features observed in the X-ray spectra of a growing number of AGN. The spectra presented here clearly demonstrate that current sim...

  17. Magnetohydrodynamic Origin of Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E; Koldoba, A V

    1999-01-01

    A review is made of recent magnetohydrodynamic (MHD) theory and simulations of origin of jets from accretion disks. Many compact astrophysical objects emit powerful, highly-collimated, oppositely directed jets. Included are the extra galactic radio jets of active galaxies and quasars, and old compact stars in binaries, and emission line jets in young stellar objects. It is widely thought that these different jets arise from rotating, conducting accretion disks threaded by an ordered magnetic field. The twisting of the magnetic field by the rotation of the disk drives the jets by magnetically extracting matter, angular momentum, and energy from the accretion disk. Two main regimes have been discussed theoretically, hydromagnetic winds which have a significant mass flux, and Poynting flux jets where the mass flux is negligible. Over the past several years, exciting new developments on models of jets have come from progress in MHD simulations which now allow the study of the origin - the acceleration and collima...

  18. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D

    2015-01-01

    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  19. Poynting Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E; Ustyugova, G V; Romanova, M M; Colgate, S A

    2002-01-01

    The powerful narrow jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, {\\it hydromagnetic outflows}, which have a significant mass flux and have energy and angular momentum carried by both the matter and the electromagnetic field and, Poynting outflows, where the mass flux is negligible and energy and angular momentum are carried predominantly by the electromagnetic field. Here we consider a Keplerian disk initially threaded by a dipole-like magnetic field and we present solutions of the force-free Grad-Shafranov equation for the coronal plasma. We find solutions with Poynting jets where there is a continuous outflow of energy and toroidal magnetic flux from the disk into the external space. This behavior contradicts the commonly accepted ``theorem'' of Solar plasma physics that the motio...

  20. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  1. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  2. Stratified Magnetically-Driven Accretion-Disk Winds and Their Relations to Jets

    CERN Document Server

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the density $n(r,\\theta)$, ionization parameter $\\xi(r,\\theta)$, and velocity structure $v(r,\\theta)$ of such ionized winds for typical values of their fluid-to-magnetic flux ratio, $F$, and specific angular momentum, $H$, for which wind solutions become super-\\Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller $H$ show a poloidal geometry of narrower opening angles with their \\Alfven\\ surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes ...

  3. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    CERN Document Server

    Muñoz-Darias, T; Sánchez, D Mata; Fender, R P; Padilla, M Armas; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-01-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black hole transients show outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disc encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient black hole transient V404 Cyg, and interpreted as disrupted mass flow into the inner regions of its large accretion disc. Here, we report on the discovery of a sustained outer accretion disc wind in V404 Cyg, which is unlike any seen previously. We find that the outflowing wind is neutral, has a large covering factor, expands at 1% of the speed of light and triggers a nebular phase once accretion sharply drops and the ejecta become optically thin. The large expelled mass (> 10^-8 Msun) indicates that the outburst was prematurely ended when a sizeable fracti...

  4. Heating of protostellar accretion disks

    Science.gov (United States)

    de Campos, R. R.; Jatenco-Pereira, V.

    2017-07-01

    The magneto-rotational instability (MRI) is believed to be the mechanism responsible for a magneto-hydrodynamic turbulence that could lead to the accretion observed in protoplanetary disks. The need of a minimum amount of ionization in protostellar accretion disks is necessary for the MRI to take place. There are in the literature several studies that include the damping of Alfvén waves as an additional heating source besides the viscous heating mechanism in a geometrically thin and optically thick disk. The damping of the waves transfers energy to the disk increasing the temperature and consequently its ionization fraction, making possible the presence of the MRI in a large part of the disk. We analyzed the contribution of non-ideal effects such as Ohmic and ambipolar diffusion for the disk heating and compare these heating rates with those obtained by damping of Alfvén waves. In order to study these non-ideal effects, we have estimated the radiation emission of each effect through the energy conservation equation, and associated each emission with a black body radiation, which enabled us to assign a temperature contribution of each effect. Using the ATHENA code we were able to simulate the disk at different radial distances, and estimate the electric current density needed to calculate the radiation emission associated with each effect. Once we have those data, we were able to compare the results with other heating sources, like viscosity and Alfvén waves damping, and we concluded that the Ohmic and ambipolar diffusions do not heat the disk in any significant way.

  5. Evolution of Accretion Disks in Tidal Disruption Events

    CERN Document Server

    Shen, Rong-Feng

    2013-01-01

    In a stellar tidal disruption event (TDE), an accretion disk forms as the stellar debris returns and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. An outer spreading disk is a source of matter for re-accretion at rates which can exceed the later stellar fall-back rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history, or, at longer wavelengths, by its own emission. Moreover, as an angular momentum reservoir, it can broadcast its existence by affecting the disk precession rate. Because these features depend on the disk's internal viscosity and the nature of wind produced in its early, advection-dominated phase, they are useful probes of transient disk physics. To model the evolution of TDE disk size and accretion rate, we account for the possibility of thermal instability for accretion rates...

  6. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  7. Theory of Disk Accretion onto Magnetic Stars

    CERN Document Server

    Lai, Dong

    2014-01-01

    Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields), white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron stars and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  8. Winds from disks in compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  9. Global Models for Embedded, Accreting Protostellar Disks

    CERN Document Server

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Most analytic work to date on protostellar disks has focused on disks in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via several mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of...

  10. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  11. Two-dimensional vortices and accretion disks

    NARCIS (Netherlands)

    Nauta, Michiel Doede

    2001-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are tu

  12. Discovery of very high velocity outflow in V Hydra - Wind from an accretion disk in a binary?

    Science.gov (United States)

    Sahai, R.; Wannier, P. G.

    1988-01-01

    High-resolution observations of lines from the CO v = 1-0 vibration-rotation band at 4.6 microns, taken with the FTS/KPNO 4-m telescope, are reported for the carbon-rich red giant V Hydra, which is surrounded by an extended expanding molecular envelope resulting from extensive mass loss. The spectrum shows, in addition to the expected absorption at the outflow velocity of the envelope, absorption extending up to 120 km/s bluewards of the stellar velocity. A comparison of the spectrum observed at two epochs shows that the high-velocity absorption features change with time. It is suggested that the observed high-velocity features in V Hydra arise in a high-velocity polar outflow from an accretion disk in a binary system, as proposed in the mass-loss model for bipolar envelopes by Morris (1988).

  13. Interaction of Accretion Shocks with Winds

    Indian Academy of Sciences (India)

    Kinsuk Acharya; Sandip K. Chakrabarti; D. Molteni

    2002-03-01

    Accretion shocks are known to oscillate in presence of cooling processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well.We show examples of shock oscillations under the influence of both the effects. When the shocks are absent and the flow is cooler, the wind becomes weaker and the vertical oscillation becomes negligible.

  14. Accretion disks in Algols: progenitors and evolution

    CERN Document Server

    Van Rensbergen, W

    2016-01-01

    There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. We investigate the origin and evolution of 6 Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Initial parameters for 6 Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. When RLOF starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  15. Magneto-thermal Disk Winds from Protoplanetary Disks

    Science.gov (United States)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  16. Phase transitions and He-synthesis driven winds in neutrino cooled accretion disks: prospects for late flares in short gamma-ray bursts

    CERN Document Server

    Lee, William H; Diego-Lopez-Camara,

    2009-01-01

    We consider the long term evolution of debris following the tidal disruption of compact stars in the context of short gamma ray bursts (SGRBs). The initial encounter impulsively creates a hot, dense, neutrino-cooled disk capable of powering the prompt emission. After a long delay, we find that powerful winds are launched from the surface of the disk, driven by the recombination of free nucleons into alpha-particles. The associated energy release depletes the mass supply and eventually shuts off activity of the central engine. As a result, the luminosity and mass accretion rate deviate from the earlier self-similar behavior expected for an isolated ring with efficient cooling. This then enables a secondary episode of delayed activity to become prominent as an observable signature, when material in the tidal tails produced by the initial encounter returns to the vicinity of the central object. The time scale of the new accretion event can reach tens of seconds to minutes, depending on the details of the system....

  17. Generalized Similarity for Accretion/Decretion Disks

    Science.gov (United States)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  18. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  19. Accretion disks around a mass with quadrupole

    CERN Document Server

    Abishev, Medeu; Quevedo, Hernando; Toktarbay, Saken

    2015-01-01

    We consider the stability properties of test particles moving along circular orbits around a mass with quadrupole. We show that the quadrupole modifies drastically the properties of an accretion disk made of such test particles.

  20. Foundations of Black Hole Accretion Disk Theory

    National Research Council Canada - National Science Library

    Abramowicz, Marek A; Fragile, P. Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves...

  1. Accretion disks around a mass with quadrupole

    Science.gov (United States)

    Abishev, M.; Boshkayev, K.; Quevedo, H.; Toktarbay, S.

    We consider the stability properties of circular orbits of test particles moving around a mass with quadrupole. We show that the quadrupole modifies drastically the properties of an accretion disk made of such test particles.

  2. The large scale magnetic fields of thin accretion disks

    CERN Document Server

    Cao, Xinwu

    2013-01-01

    Large scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared to the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number Pm is around unity. In this work, we revisit this problem considering the angular momentum of the disk is removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-bet...

  3. Gas dynamics for accretion disk simulations

    Science.gov (United States)

    Whitehurst, R.

    1994-01-01

    The behavior of accretion disks can largely be understood in terms of the basic physical processes of mass, energy, and momentum conservation. Despite this, detailed modeling of these systems using modern computational techniques is challenging and controversial. Disturbing differences exist between methods used widely in astrophysics, namely Eulerian finite-difference techniques and particle codes such as SPH. Therefore neither technique is fully satisfactory for accretion disk simulations. This paper describes a new fully Lagrangian method designed to resolve these difficulties.

  4. MHD Turbulence in Accretion Disk Boundary Layers

    CERN Document Server

    Chan, Chi-kwan

    2012-01-01

    The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...

  5. Reverberation Mapping of AGN Accretion Disks

    Science.gov (United States)

    Fausnaugh, Michael; AGN STORM Collaboration

    2017-01-01

    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  6. Accretion, Outflows, and Winds of Magnetized Stars

    CERN Document Server

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  7. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Takayuki [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Maruta, Akito; Machida, Masahiro N., E-mail: tanigawa@pop.lowtem.hokudai.ac.jp [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  8. Early dust evolution in protostellar accretion disks

    OpenAIRE

    2000-01-01

    We investigate dust dynamics and evolution during the formation of a protostellar accretion disk around intermediate mass stars via 2D numerical simulations. Using three different detailed dust models, compact spherical particles, fractal BPCA grains, and BCCA grains, we find that even during the early collapse and the first 10,000 yr of dynamical disk evolution, the initial dust size distribution is strongly modified. Close to the disk's midplane coagulation produces dust particles of sizes ...

  9. Disks, accretion and outflows of brown dwarfs

    CERN Document Server

    Joergens, V; Liu, Y; Pascucci, I; Whelan, E; Alcala, J; Biazzo, K; Costigan, G; Gully-Santiago, M; Henning, Th; Natta, A; Rigliaco, E; Rodriguez-Ledesma, V; Sicilia-Aguilar, A; Tottle, J; Wolf, S

    2012-01-01

    Characterization of the properties of young brown dwarfs are important to constraining the formation of objects at the extreme low-mass end of the IMF. While young brown dwarfs share many properties with solar-mass T Tauri stars, differences may be used as tests of how the physics of accretion/outflow and disk chemistry/dissipation depend on the mass of the central object. This article summarizes the presentations and discussions during the splinter session on 'Disks, accretion and outflows of brown dwarfs' held at the CoolStars17 conference in Barcelona in June 2012. Recent results in the field of brown dwarf disks and outflows include the determination of brown dwarf disk masses and geometries based on Herschel far-IR photometry (70-160 um), accretion properties based on X-Shooter spectra, and new outflow detections in the very low-mass regime.

  10. Generalized Similarity for Accretion/Decretion Disks

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post main sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects - circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc. - feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and non-linear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter $\\lambda$, which is uniquely related to the degree, to which the...

  11. Sub-Keplerian accretion onto circumstellar disks

    CERN Document Server

    Visser, R

    2010-01-01

    Models of the formation, evolution and photoevaporation of circumstellar disks are an essential ingredient in many theories of the formation of planetary systems. The ratio of disk mass over stellar mass in the circumstellar phase of a disk is largely determined by the angular momentum of the original cloud core from which the system was formed. While full 3D or 2D axisymmetric hydrodynamical models of accretion onto the disk automatically treat all aspects of angular momentum, this is not so trivial for 1D and semi-2D viscous disk models. Since 1D and semi-2D disk models are still very useful for long-term evolutionary modelling of disks with relatively little numerical effort, we investigate how the 2D nature of accretion affects the formation and evolution of the disk in such models. A proper treatment of this problem requires a correction for the sub-Keplerian velocity at which accretion takes place. We develop an update of our semi-2D time-dependent disk evolution model to properly treat the effects of s...

  12. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  13. Earth, Moon, Sun, and CV Accretion Disks

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting Cataclysmic Variable (CV) Dwarf Novae systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar and black hole systems. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our a...

  14. Simulating a Thin Accretion Disk Using PLUTO

    Science.gov (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.

    2017-08-01

    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  15. MHD of accretion-disk flows

    Science.gov (United States)

    Yankova, Krasimira

    2015-01-01

    Accretion is one of the most important problems of astrophysics concerning the transfer of matter and the transformation of energy into space. Process represents a falling of the substance on a cosmic object from the surrounding area and is a powerful gravitational mechanism for the production of radiation. Accretion disc effectively converts the mass of the substance by viscous friction and released potential energy transformed into radiation by particle collisions. Accretion onto compact object shows high energy efficiency and temporal variability in a broad class of observational data in all ranges. In the disks of these objects are developed a series instabilities and structures that govern the distribution of the energy. They are expressed in many variety non-stationary phenomena that we observe. That is why we propose generalized model of magnetized accretion disk with advection, which preserves the nonlinearity of the problem. We study interaction of the plasmas flow with the magnetic field, and how this affects the self-organizing disk. The aim of the work is to describe the accretion flow in detail, in his quality of the open astrophysical system, to investigate the evolution and to reveal the mechanisms of the structuring the disk-corona system for to interpret correctly the high energy behavior of such sources.

  16. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  17. On the Flaring of Jet-sustaining Accretion Disks

    CERN Document Server

    Namouni, Fathi

    2009-01-01

    Jet systems with two unequal components interact with their parent accretion disks through the asymmetric removal of linear momentum from the star-disk system. We show that as a result of this interaction, the disk's state of least energy is not made up of orbits that lie in a plane containing the star's equator as in a disk without a jet. The disk's profile has the shape of a sombrero curved in the direction of acceleration. For this novel state of minimum energy, we derive the temperature profile of thin disks. The flaring geometry caused by the sombrero profile increases the disk temperature especially in its outer regions. The jet-induced acceleration disturbs the vertical equilibrium of the disk leading to mass loss in the form of a secondary wind emanating from the upper face of the disk. Jet time variability causes the disk to radially expand or contract depending on whether the induced acceleration increases or decreases. Jet time variability also excites vertical motion and eccentric distortions in t...

  18. Water Masers in AGN Accretion Disks

    Science.gov (United States)

    Braatz, J. A.; Reid, M. J.; Greenhill, L. J.; Kuo, C.-Y.; Condon, J. J.; Lo, K.-Y.; Henkel, C.

    2009-08-01

    Water vapor masers at 22 GHz have been detected in over 100 galaxies, most of them AGNs. High resolution VLBI observations of these masers provide the only opportunity for direct imaging of sub-parsec structure in AGN accretion disks. The key science goals associated with such observations are concentrated in two areas. First, observations of nearby, bright sources, exemplified by NGC 4258, enable unique investigations of accretion disk geometry, substructure, thickness, and rotation properties. Second, when combined with spectral line monitoring, VLBI imaging and subsequent disk modeling enables the estimation of a distance to the host galaxy independent of standard candle arguments. In this contribution we present VLBI observations of two maser disk systems in galaxies well into the Hubble flow, UGC 3789 and NGC 6323. A long term goal in these studies is to measure the Hubble constant with high precision and, as a complement to CMB observations, constrain several key cosmological parameters, including the equation of state for dark energy. Observations with VSOP-2 at 22 GHz will have the resolution critical for mapping substructure in these accretion disks and will contribute to reducing systematic errors in the measurement of distances to galaxies.

  19. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    LI; xiaoqing(李晓卿); JI; Haisheng(季海生)

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  20. Magnetic Field Transport in Accretion Disks

    Science.gov (United States)

    Jafari, Amir; Vishniac, Ethan

    2017-06-01

    The most plausible theories for launching astrophysical jets rely on strong magnetic fields at the inner parts of some accretion disks. An internal dynamo can in principle generate small scale magnetic fields in situ but generating a large scale field in a disk seems a difficult task in the dynamo theories. In fact, as far as numerous numerical experiments indicate, a dynamo-generated field in general would not be coherent enough over the large length scales of order the disk's radius. Instead, a large scale poloidal field dragged in from the environment, and compressed by the accretion, provides a more promising possibility. The difficulty in the latter picture, however, arises from the reconnection of the radial field component across the mid-plane which annihilates the field faster than it is dragged inward by the accretion. We suggest that a combination of different effects, including magnetic buoyancy and turbulent pumping, is responsible for the vertical transport of the field lines toward the surface of the disk. The radial component of the poloidal field vanishes at the mid-plane, which efficiently impedes reconnection, and grows exponentially toward the surface where it can become much larger than the vertical field component. This allows the poloidal field to be efficiently advected to small radii until the allowed bending angle drops to of order unity, and the field can drive a strong outflow.

  1. Turbulent Comptonization in Black Hole Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2004-01-01

    In the inner-most regions of radiation pressure supported accretion disks, the turbulent magnetic pressure may greatly exceed that of the gas. If this is the case, it is possible for bulk Alfvenic motions driven by the magnetorotational instability (MRI) to surpass the electron thermal velocity. Bulk rather than thermal Comptonization may then be the dominant radiative process which mediates gravitational energy release. For sufficiently large turbulent stresses, we show that turbulent Comptonization produces a significant contribution to the far-UV and X-ray emission of black hole accretion disks. The existence of this spectral component provides a means of obtaining direct observational constraints on the nature of the turbulence itself. We describe how this component may affect the spectral energy distributions and variability properties of X-ray binaries and active galactic nuclei.

  2. FITDisk: Cataclysmic Variable Accretion Disk Demonstration Tool

    Science.gov (United States)

    Wood, Matthew A.; Dolence, J.

    2013-05-01

    FITDisk models accretion disk phenomena using a fully three-dimensional hydrodynamics calculation, and data can either be visualized as they are computed or stored to hard drive for later playback at a fast frame rate. Simulations are visualized using OpenGL graphics and the viewing angle can be changed interactively. Pseudo light curves of simulated systems can be plotted along with the associated Fourier amplitude spectrum. It provides an easy to use graphical user interface as well as 3-D interactive graphics. The code computes the evolution of a CV accretion disk, visualizes results in real time, records and plays back simulations, and generates and plots pseudo light curves and associated power spectra.

  3. Disk Accretion Onto High-Mass Planets

    CERN Document Server

    Lubow, S H; Artymowicz, P

    1999-01-01

    We analyze the nonlinear, two-dimensional response of a gaseous, viscous protoplanetary disk to the presence of a planet of one Jupiter mass (1 M_J) and greater that orbits a 1 solar mass star by using the ZEUS hydrodynamics code with high resolution near the planet's Roche lobe. The planet is assumed to be in a circular orbit about the central star and is not allowed to migrate. A gap is formed about the orbit of the planet, but there is a nonaxisymmetric flow through the gap and onto the planet. The gap partitions the disk into an inner (outer) disk that extends inside (outside) the planet's orbit. For a 1 M_J planet and typical disk parameters, the accretion through the gap onto the planet is highly efficient. For typical disk parameters, the mass doubling time scale is less than 10^5 years, considerably shorter than the disk lifetime. Following shocks near the L1 and L2 Lagrange points, disk material enters the Roche lobe in the form of two gas streams. Shocks occur within the Roche lobe as the gas stream...

  4. Viscous Stability of Relativistic Keplerian Accretion Disks

    CERN Document Server

    Ghosh, P

    1998-01-01

    We investigate the viscous stability of thin, Keplerian accretion disks in regions where general relativistic (GR) effects are essential. For gas pressure dominated (GPD) disks, we show that the Newtonian conclusion that such disks are viscously stable is reversed by GR modifications in the behaviors of viscous stress and surface density over a significantly large annular region not far from the innermost stable orbit at $r=\\rms$. For slowly-rotating central objects, this region spans a range of radii $14\\lo r\\lo 19$ in units of the central object's mass $M$. For radiation pressure dominated (RPD) disks, the Newtonian conclusion that they are viscously unstable remains valid after including the above GR modifications, except in a very small annulus around $r\\approx 14M$, which has a negligible influence. Inclusion of the stabilizing effect of the mass-inflow through the disk's inner edge via a GR analogue of Roche-lobe overflow adds a small, stable region around \\rms~for RPD disks, but leaves GPD disks unchan...

  5. Accretion Disks around Young Low Mass Stars

    Directory of Open Access Journals (Sweden)

    Paola D´Alessio

    2001-01-01

    Full Text Available In the past decade, it has become clear that almost half of the low mass pre-main sequence stars are surrounded by disks, which are responsible for the observed infrared and optical-UV excess emission. The characterization of the structure of circumstellar disks is a crucial step towards understanding the early stellar evolution and planet formation. The thesis summarized here presents physical models of the detailed structure of accretion disks surrounding T Tauri stars. The disks are assumed to be in steady state, in vertical hydrostatic equilibrium, and with a turbulent viscosity described by the alpha-prescription. We consider different heating mechanisms: viscous dissipation, heating by cosmic rays and radioactive decay, irradiation by the central star or irradiation by an infalling envelope. The energy is transported in the vertical direction by radiation, convection and the turbulent flux. Give n the disk structure, we calculate its emission by integrating the radiative transfer equation for an arbitrary orientation of the disk relative to the line of sight. Spectral energy distributions (SEDs and images are compared with observations, and disk properties can be inferred or constrained.

  6. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  7. GRS 1915+105 in "Soft State": Nature of Accretion Disk Wind and Origin of X-Ray Emission

    CERN Document Server

    Ueda, Yoshihiro; Remillard, Ronald

    2009-01-01

    We present the results from simultaneous Chandra HETGS and RXTE observations of the microquasar GRS 1915+105 in its quasi-stable "soft state" (or State A) performed on 2007 August 14, several days after the state transition from "hard state" (State C). The X-ray flux increased with spectral hardening around the middle of the Chandra observation, after which the 67 Hz QPO became significant. The HETGS spectra reveal at least 32 narrow absorption lines from highly ionized ions including Ne, Mg, Si, S, Ar, Ca, Cr, Mn, Fe, whose features are the deepest among those ever observed with Chandra from this source. We find that the absorber has outflow velocities of ~150 and ~500 km s^{-1} with a line-of-sight velocity dispersion of ~70 and ~200 km s^{-1} for the Si XIV and Fe XXVI ions, respectively. The larger velocity and its dispersion in heavier ions indicate that the wind has a non-uniform dynamical structure along the line-of-sight. The location of the absorber is estimated at ~(1-3)x10^5 r_g (r_g is the gravita...

  8. Bondi-Hoyle-Lyttleton Accretion onto a Protoplanetary Disk

    CERN Document Server

    Moeckel, Nickolas

    2009-01-01

    Young stellar systems orbiting in the potential of their birth cluster can accrete from the dense molecular interstellar medium during the period between the star's birth and the dispersal of the cluster's gas. Over this time, which may span several Myr, the amount of material accreted can rival the amount in the initial protoplanetary disk; the potential importance of this `tail-end' accretion for planet formation was recently highlighted by Throop & Bally (2008). While accretion onto a point mass is successfully modeled by the classical Bondi-Hoyle-Lyttleton solutions, the more complicated case of accretion onto a star-disk system defies analytic solution. In this paper we investigate via direct hydrodynamic simulations the accretion of dense interstellar material onto a star with an associated gaseous protoplanetary disk. We discuss the changes to the structure of the accretion flow caused by the disk, and vice versa. We find that immersion in a dense accretion flow can redistribute disk material such ...

  9. A Wind Accretion Model for HLX-1

    CERN Document Server

    Miller, M Coleman; Maccarone, Thomas J

    2014-01-01

    The brightest ultraluminous X-ray source currently known, HLX-1, has been observed to undergo five outburst cycles. The periodicity of these outbursts, and their high inferred maximum accretion rates of $\\sim{\\rm few}\\times 10^{-4} M_\\odot {\\rm yr}^{-1}$, naturally suggest Roche lobe overflow at the pericenter of an eccentric orbit. It is, however, difficult for the Roche lobe overflow model to explain the apparent trend of decreasing decay times over the different outbursts while the integrated luminosity also drops. Thus if the trend is real rather than simply being a reflection of the complex physics of accretion disks, a different scenario may be necessary. We present a speculative model in which, within the last decade, a high-mass giant star had most of its envelope tidally stripped by the $\\sim 10^{4-5} M_\\odot$ black hole in HLX-1, and the remaining core plus low-mass hydrogen envelope now feeds the hole with a strong wind. This model can explain the short decay time of the disk, and could explain the...

  10. Waves and Instabilities in Accretion Disks MHD Spectroscopic Analysis

    CERN Document Server

    Keppens, R; Goedbloed, J P

    2002-01-01

    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.

  11. Viscosity prescription for gravitationally unstable accretion disks

    CERN Document Server

    Rafikov, Roman R

    2015-01-01

    Gravitationally unstable accretion disks emerge in a variety of astrophysical contexts - giant planet formation, FU Orioni outbursts, feeding of AGNs, and the origin of Pop III stars. When a gravitationally unstable disk is unable to cool rapidly it settles into a quasi-stationary, fluctuating gravitoturbulent state, in which its Toomre Q remains close to a constant value Q_0~1. Here we develop an analytical formalism describing the evolution of such a disk, which is based on the assumptions of Q=Q_0 and local thermal equilibrium. Our approach works in the presence of additional sources of angular momentum transport (e.g. MRI), as well as external irradiation. Thermal balance dictates a unique value of the gravitoturbulent stress \\alpha_{gt} driving disk evolution, which is a function of the local surface density and angular frequency. We compare this approach with other commonly used gravitoturbulent viscosity prescriptions, which specify the explicit dependence of stress \\alpha_{gt} on Toomre Q in an ad hoc...

  12. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, 91191 Gif-sur-Yvette (France); Pinzon, Giovanni [Observatorio Astronomico Nacional, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Greene, Thomas P. [NASA Ames Research Center, M.S. 245-6, Moffett Field, CA 94035-1000 (United States); Pudritz, Ralph E., E-mail: sean.matt@cea.fr, E-mail: thomas.p.greene@nasa.gov, E-mail: gapinzone@unal.edu.co, E-mail: pudritz@physics.mcmaster.ca [Physics and Astronomy Department, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  13. Stability of accretion disk around rotating black holes

    CERN Document Server

    Mukhopadhyay, B

    2004-01-01

    I discuss the stability of accretion disks when the black hole is considered to be rotating. I show, how the fluid properties get changed for different choices of angular momentum of black holes. I treat the problem in pseudo-Newtonian approach with a suitable potential from Kerr geometry. When the angular momentum of a black hole is considered to be significant, the valid disk parameter region affects and a disk may become unstable. Also the possibility of shock in an accretion disk around rotating black holes is checked. When the black hole is chosen to be rotating, the sonic locations of the accretion disk get shifted or disappear, making the disk unstable by means of loosing entropy. To bring the disk in a stable situation, the angular momentum of the accreting matter has to be reduced/enhanced (for co/counter-rotating disk) by means of some physical process.

  14. MHD Disk Winds and Planetary Nebulae I. Existence and Applicability

    CERN Document Server

    Frank, A; Blackman, E G

    2002-01-01

    Winds from accretion disks have been proposed as the driving source for precessing jets and extreme bipolar morphologies in Planetary Nebulae (PNe) and proto-PNe (pPNe). In this paper we address the applicability of self-consistent MHD disk wind models to PNe and pPNe. We first review the basic features of magneto-centrifugal launching disk wind models adapting results from previously published non-self similar calculations of Peltier & Pudritz (1992). We then estimate the relevant conditions whichshould occur in PNe and pPNe accretion disks that form via binary interactions. Finally, examining conditions on dimensionless parameters needed for magneto-centrifugal disk wind models we show that such winds can recover the observed momentum and energy input rates for PNe and pPNe. High accretion rates are required in thelatter case (M_a approx 10^{-4} \\mdot) and we find that the observed total energy and momentum in pPNe can be recovered with disk wind models using existing disk formation scenarios

  15. Magneto centrifugal winds from accretion discs around black hole binaries

    CERN Document Server

    Chakravorty, S; Ferreira, J; Henri, G; Belmont, R; Clavel, M; Corbel, S; Rodriguez, J; Coriat, M; Drappeau, S; Malzac, J

    2016-01-01

    We want to test if self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow, from the accretion disk, is not a free parameter, but is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Different MHD solutions were generated for different values of (a) the disk aspect ratio ($\\varepsilon$) and (b) the ejection efficiency ($p$). We generated two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. The cold MHD solutions are found to be inadequate to account for winds due to their low ejection efficiency. The warm solutions can have sufficiently high values of $p (\\gtrsim 0.1)$ which is required to explain the observed physical quantities in the wind. The heating (required at the disk surface for the warm solutions) could be due to the illumination which would b...

  16. Deceleration Effect of Magnetic Field on Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong

    2000-01-01

    The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.

  17. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    G. B. Long; J. W. Ou; Y. G. Zheng

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  18. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios

    2007-01-01

    We present a scaling law that predicts the values of the stresses obtained in numerical simulations of saturated MRI-driven turbulence in non-stratified shearing boxes. It relates the turbulent stresses to the strength of the vertical magnetic field, the sound speed, the vertical size of the box...... vertical magnetic field and the turbulent magnetic energy must be in near equipartition with the thermal energy. This result has important implications for the spectra of accretion disks and their stability......., and the numerical resolution and predicts accurately the results of 35 numerical simulations performed for a wide variety of physical conditions. We use our result to show that the saturated stresses in simulations with zero net magnetic flux depend linearly on the numerical resolution and would become negligible...

  19. Vertical Structure of Magnetized Accretion Disks around Young Stars

    CERN Document Server

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  20. Disk Winds Driven by Magnetorotational Instability and Dispersal of Proto-Planetary Disks

    CERN Document Server

    Suzuki, T K

    2008-01-01

    By performing local three-dimensional MHD simulations of stratified accretion disks, we investigate disk winds driven by MHD turbulence. Initially given weak vertical magnetic fields are effectively amplified by magnetorotational instability and winding due to differential rotation. Large scale channel flows develop most effectively at 1.5 - 2 times the scale heights where the magnetic pressure is comparable to but slightly smaller than the gas pressure. The breakup of these channel flows drives structured disk winds by transporting the Poynting flux to the gas. These features are universally observed in the simulations of various initial fields. This disk wind process should play an essential role in the dynamical evaporation of proto-planetary disks. The breakup of channel flows also excites the momentum fluxes associated with Alfvenic and (magneto-)sonic waves toward the mid-plane, which possibly contribute to the sedimentation of small dust grains in protoplanetary disks.

  1. Accretion disks around black holes with account of magnetic fields

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2004-01-01

    Accretion disks are observed in young stars, cataclysmic variables, binary X-ray sources et al. Accretion disk theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disk. Important part of this theory was the phenomenological treatment of the turbulent viscosity, known the `` alpha'' prescription, where the $(r \\phi)$ component of the stress tensor was connected with the pressure as $\\alpha P$. Sources of turbulence in the accretion disk are discussed, including hydrodynamic turbulence, convection and magnetic field role. Optically thin solution and advective disks are considered. Related problems of mass ejection from magnetized accretion disks and jet formation are discussed.

  2. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  3. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  4. Evolution of Thick Accretion Disks Produced by Tidal Disruption Events

    CERN Document Server

    Ulmer, A

    1997-01-01

    Geometrically thick disks may form after tidal disruption events, and rapid accretion may lead to short flares followed by long-term, lower-level emission. Using a novel accretion disk code which relies primarily on global conservation laws and the assumption that viscosity is everywhere positive, a broad range of physically allowed evolutionary sequences of thick disks is investigated. The main result is that accretion in the thick disk phase can consume only a fraction of the initial disk material before the disk cools and becomes thin. This fraction is ~0.5-0.9 for disruptions around 10^6 to 10^7 M_ødot black holes and is sensitive to the mean angular momentum of the disk. The residual material will accrete in some form of thin disk over a longer period of time. The initial thick disk phase may reduce the dimming timescale of the disk by a factor of ~2 from estimates based on thin disks alone. Assuming an 0.5 M_ødot initial thick disk, even if the thin disks become advection dominated, the black hole mas...

  5. Building massive compact planetesimal disks from the accretion of pebbles

    CERN Document Server

    Moriarty, John

    2015-01-01

    We present a model in which planetesimal disks are built from the combination of planetesimal formation and accretion of radially drifting pebbles onto existing planetesimals. In this model, the rate of accretion of pebbles onto planetesimals quickly outpaces the rate of direct planetesimal formation in the inner disk. This allows for the formation of a high mass inner disk without the need for enhanced planetesimal formation or a massive protoplanetary disk. Our proposed mechanism for planetesimal disk growth does not require any special conditions to operate. Consequently, we expect that high mass planetesimal disks form naturally in nearly all systems. The extent of this growth is controlled by the total mass in pebbles that drifts through the inner disk. Anything that reduces the rate or duration of pebble delivery will correspondingly reduce the final mass of the planetesimal disk. Therefore, we expect that low mass stars (with less massive protoplanetary disks), low metallicity stars and stars with gian...

  6. Photon Bubbles and the Vertical Structure of Accretion Disks

    CERN Document Server

    Begelman, M C

    2006-01-01

    We consider the effects of "photon bubble" shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability. They increase the rate at which radiation escapes from the disk, and may allow disks to exceed the Eddington limit by a substantial factor. We first generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low optical depth tend to fill in the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities of 10 to >100 times the Eddington limit (L_E), depending on the mass of the central ...

  7. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    Science.gov (United States)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  8. Circumplanetary disks around young giant planets: a comparison between core-accretion and disk instability

    CERN Document Server

    Szulágyi, J; Quinn, T

    2016-01-01

    Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks a...

  9. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Danilo Morales [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Zhuravlev, Viacheslav V. [Sternberg Astronomical Institute, Moscow M. V. Lomonosov State University, Universitetskij pr. 13, 119992 Moscow (Russian Federation); Ivanov, Pavel B., E-mail: danilo.morales@iag.usp.br [Astro Space Centre, P. N. Lebedev Physical Institute, 84/32 Profsoyuznaya Street, 117810 Moscow (Russian Federation)

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.

  10. Accretion in Radiative Equipartition (AiRE) Disks

    CERN Document Server

    Yazdi, Yasaman K

    2016-01-01

    Standard accretion disk theory (Shakura & Sunyaev 1973) predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability time-scale, our accretion models in the radiation pressure dominated regime (i.e. inner disk) need to be modified. Here, we present a modification to the SS model, where radiation pressure is in equipartition with gas pressure in the inner region. We call these flows Accretion in Radiative Equipartition (AiRE) Disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a fu...

  11. Dynamo magnetic-field generation in turbulent accretion disks

    Science.gov (United States)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  12. ACCRETION DISKS IN TWO-DIMENSIONAL HOYLE-LYTTLETON FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M., E-mail: John_Blondin@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2013-04-20

    We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.

  13. Transonic properties of the accretion disk around compact objects

    CERN Document Server

    Mukhopadhyay, Banibrata

    2008-01-01

    An accretion flow is necessarily transonic around a black hole. However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic points vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.

  14. Magnetic flux stabilizing thin accretion disks

    CERN Document Server

    Sadowski, Aleksander

    2016-01-01

    We calculate the minimal amount of large-scale poloidal magnetic field that has to thread the inner, radiation-over-gas pressure dominated region of a thin disk for its thermal stability. Such a net field amplifies the magnetization of the saturated turbulent state and makes it locally stable. For a $10 M_\\odot$ black hole the minimal magnetic flux is $10^{24}(\\dot M/\\dot M_{\\rm Edd})^{20/21}\\,\\rm G\\cdot cm^{2}$. This amount is compared with the amount of uniform magnetic flux that can be provided by the companion star -- estimated to be in the range $10^{22}-10^{24}\\,\\rm G\\cdot cm^2$. If accretion rate is large enough, the companion is not able to provide the required amount and such a system, if still sub-Eddington, must be thermally unstable. The peculiar variability of GRS 1915+105, an X-ray binary with the exceptionally high BH mass and near-Eddington luminosity, may result from the shortage of large scale poloidal field of uniform polarity.

  15. Filling a SMBH accretion disk atmosphere at small and intermediate radii

    Science.gov (United States)

    Karas, Vladimir; Czerny, Bozena; Kunneriath, Devaky

    2017-08-01

    The medium above an accretion disk is highly diluted and hot. An efficient mechanism to deliver particles and dust grains is an open question; apparently, different processes must be in operation. We discuss an interplay of two different scenarios, where the material is elevated from the plane of an equatorial accretion disk into a corona near a supermassive black hole: (i) an electromagnetically induced transport, which can be driven by magnetic field of stars passing across an accretion disk (Karas et al., 2017); and (ii) radiatively driven acceleration by radiation emerging from the disk (Czerny et al 2015), which can launch a dusty wind near above the dust sublimation radius. The former process can operate in the vicinity of a supermassive black hole (SMBH) surrounded by a dense nuclear star-cluster. The latter process involves the effect of radiation pressure from various sources - stars, accretion disc, and the central accreting SMBH; it can help filling the Broad-Line Region against the vertical component of the black hole gravitational attraction and the accretion disk self-gravity at radius about a few $\\times 10^3 R_g$.

  16. Theory of disk accretion onto supermassive black holes

    CERN Document Server

    Armitage, P J

    2004-01-01

    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.

  17. Three Dimensional MHD Simulation of Circumbinary Accretion Disks -2. Net Accretion Rate

    CERN Document Server

    Shi, Ji-Ming

    2015-01-01

    When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas. Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary. To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them.

  18. The S2 star as a probe of the accretion disk of Sgr A*

    CERN Document Server

    Giannios, Dimitrios

    2013-01-01

    How accretion proceeds around the massive black hole in the Galactic center and other highly sub-Eddington accretors remains poorly understood. The orbit of the S2 star in the Galactic center passes through the accretion disk of the massive black hole and any observational signature from such interaction may be used as an accretion probe. Because of its early stellar type, S2 is expected to possess a fairly powerful wind. We show here that the ram pressure of the accretion disk shocks the stellar wind fairly close to the star. The shocked fluid reaches a temperature of ~ 1 keV and cools efficiently through optically thin, thermal bremsstrahlung emission. The radiation from the shocked wind peaks around the epoch of the pericenter passage of the star at a luminosity potentially comparable to the quiescent emission detected from Sgr A*. Detection of shocked wind radiation can constrain the density of the accretion disk at a distance of several thousands of gravitational radii from the black hole.

  19. TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

    Science.gov (United States)

    Hubeny, Ivan; Lanz, Thierry

    2011-09-01

    TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

  20. A New Approach to Evolution of Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong; LEI Wei-Hua; XIAO Kan

    2000-01-01

    Evolution of black hole (BH) accretion disks is investigated by a new approach, in which the evolution of the central BH can be derived in terms of BH spin directly, and the evolution characteristics of the concerning BH parameters are shown more easily and obviously. As an example, the unusual evolution characteristics of angular velocity of BH horizon and that of accreting particles at the inner edge of the disk are derived by considering the Blandford-Znajek process.

  1. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    Indian Academy of Sciences (India)

    Prasad Subramanian; B. S. Pujari; Peter A. Becker

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  2. Direct detection of a magnetic field in the innermost regions of an accretion disk.

    Science.gov (United States)

    Donati, Jean-François; Paletou, Fréderic; Bouvier, Jérome; Ferreira, Jonathan

    2005-11-24

    Models predict that magnetic fields play a crucial role in the physics of astrophysical accretion disks and their associated winds and jets. For example, the rotation of the disk twists around the rotation axis the initially vertical magnetic field, which responds by slowing down the plasma in the disk and by causing it to fall towards the central star. The magnetic energy flux produced in this process points away from the disk, pushing the surface plasma outwards, leading to a wind from the disk and sometimes a collimated jet. But these predictions have hitherto not been supported by observations. Here we report the direct detection of the magnetic field in the core of the protostellar accretion disk FU Orionis. The surface field reaches strengths of about 1 kG close to the centre of the disk, and it includes a significant azimuthal component, in good agreement with recent models. But we find that the field is very filamentary and slows down the disk plasma much more than models predict, which may explain why FU Ori fails to collimate its wind into a jet.

  3. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    Science.gov (United States)

    Feng, Wanda; Desch, Steven; Turner, Neal; Kalyaan, Anusha

    2016-06-01

    About 1/3 of white dwarfs (WDs) are polluted with heavy elements (e.g., Koester et al., 2014; Zuckerman et al., 2010) that should sediment out of their atmospheres on astronomically short timescales unless replenished by accretion from a reservoir, at rates that for many WDs must exceed ~1010 g/s (Farihi et al., 2010). Direct accretion of planetesimals is too improbable and Poynting-Robertson drag of dust is too slow (due to the low luminosity of WDs) (Jura, 2003), so it is often assumed that WDs accrete from a disk of gas and solid particles, fed by tidal disruption of planeteismals inside the WD Roche limit (e.g. Debes et al., 2012; Rafikov, 2011a, 2011b). A few such gaseous disks have been directly observed, through emission from Ca II atoms in the disk (e.g. Manser et al., 2016; Wilson et al. 2014). Models successfully explain the accretion rates of metals onto the WD, provided the gaseous disk viscously spreads at rates consistent with a partially suppressed magnetorotational instability (Rafikov, 2011a, 2011b). However, these models currently do not explore the likely extent of the magnetorotational instability in disks by calculating the degree of ionization, or suppression by strong magnetic field.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The composition of the disk, the ionization and recombination mechanisms, and the degree of ionization of the disk are explored. Magnetic field strengths consistent with WD dipolar magnetic fields are assumed. Elsasser numbers are calculated as a function of radius in the WD disk. The rate of viscous spreading is calculated, and the model of Rafikov (2011a, 2011b) updated to compute likely accretion rates of metals onto WDs.

  4. Nucleosynthesis in the accretion disks of Type II collapsars

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star and a mild supernova explosion is driven. However, this supernova ejecta lack momentum and falls back onto the neutron star which gets transformed to a stellar mass black hole. In order to study the hydrodynamics and nucleosynthesis of such an accretion disk formed from the fallback material of the supernova ejecta, we use the well established hydrodynamic models. In such a disk neutrino cooling becomes important in the inner disk where the temperature and density are higher. Higher the accretion rate (dot{M}), higher is the density and temperature in the disks. In this work we deal with accretion disks with relatively low accretion rates: 0.001 M_sun s^{-1} \\lesssim dot{M} \\lesssim 0.01 M_sun s^{-1} and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abu...

  5. Viscous Instability Triggered by Layered Accretion in Protoplanetary Disks

    CERN Document Server

    Hasegawa, Yasuhiro

    2015-01-01

    Layered accretion is one of the inevitable ingredients in protoplanetary disks when disk turbulence is excited by magnetorotational instabilities (MRIs). In the accretion, disk surfaces where MRIs fully operate have a high value of disk accretion rate ($\\dot{M}$), while the disk midplane where MRIs are generally quenched ends up with a low value of $\\dot{M}$. Significant progress on understanding MRIs has recently been made by a number of dedicated MHD simulations, which requires improvement of the classical treatment of $\\alpha$ in 1D disk models. To this end, we obtain a new expression of $\\alpha$ by utilizing an empirical formula that is derived from recent MHD simulations of stratified disks with Ohmic diffusion. It is interesting that this new formulation can be regarded as a general extension of the classical $\\alpha$. Armed with the new $\\alpha$, we perform a linear stability analysis of protoplanetary disks that undergo layered accretion, and find that a viscous instability can occur around the outer ...

  6. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    Science.gov (United States)

    Feng, W.; Desch, S.

    2017-03-01

    The prevailing model for the pollution of white dwarf photospheres invokes accretion from a disk of gas and solid particles, fed by tidal disruption of rocky bodies inside the Roche radius. Current models can successfully explain the accretion rates of metals onto white dwarfs, provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (Metzger et al. 2012); however, these models do not explore the extent of the magnetorotational instability in disks by calculating the degree of ionization. We present ionization fractions for thermal and non-thermal processes to assess the extent of the magnetorotational instability in white dwarf disks. We determine that the disk viscosity parameter α can be as high as 0.1 in white disks, implying that the magnetorotational instability must be carefully modeled.

  7. On the gravitational stability of gravito-turbulent accretion disks

    CERN Document Server

    Lin, Min-Kai

    2016-01-01

    Low mass, self-gravitating accretion disks admit quasi-steady, `gravito-turbulent' states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: 1) cooling, which reduces pressure support; and/or 2) viscosity, which reduces rotational support. We analyze the gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes wi...

  8. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  9. Accretion Does Not Drive the Turbulence in Galactic Disks

    CERN Document Server

    Hopkins, Philip F; Murray, Norman

    2013-01-01

    Rapid accretion of cold gas plays a crucial role in getting gas into galaxies. It has been suggested that this accretion proceeds along narrow streams that might also directly drive the turbulence in galactic gas, dynamical disturbances, and bulge formation. In cosmological simulations, however, it is impossible to isolate and hence disentangle the effect of accretion from internal instabilities and mergers. Moreover, in most cosmological simulations, the phase structure and turbulence in the ISM arising from stellar feedback are treated in a sub-grid manner, so that feedback cannot generate ISM turbulence. In this paper we therefore test the effects of cold streams in extremely high-resolution simulations of otherwise isolated galaxy disks using detailed models for star formation and feedback; we then include or exclude mock cold flows falling onto the galaxies with accretion rates, velocities and geometry set to maximize their effect on the disk. We find: (1) Turbulent velocity dispersions in gas disks are ...

  10. Implications of the β Lyrae accretion disk rim Teff

    Science.gov (United States)

    Linnell, A. P.

    2000-12-01

    Photometric evidence indicates that the massive gainer in the β Lyrae system is hidden from the observer by a thick accretion disk (Linnell, Hubeny, & Harmanec, 1998, ApJ, 509, 379). It is believed that the gainer approximates a main sequence star of Teff= 30000K. Spectroscopic analysis by Balachrandan et al. (1986, MNRAS, 219, 479) establishes a Teff of 13,300K for the donor. System synthetic spectra, fitted via the BINSYN suite to spectrophotometric scan data and IUE spectra, establish a mean rim Teff of 9000K. Assuming conservative mass transfer, Harmanec & Scholz (1993, A&A, 279, 131) use the rate of period change to derive a mass transfer rate of 20x10-6M⊙ yr-1. Connecting the rim Teff to the accretion disk face Teff with the Hubeny theory (Hubeny & Plavec 1991, AJ, 102, 1156) and using the standard accretion disk relations (Frank, King & Raine), the adopted mass transfer rate predicts a rim Teff of 4500K. The BINSYN-derived 9000K rim Teff would require a mass transfer rate 30 times larger than the adopted value. The observed rate of period change excludes such a large mass transfer rate. The bolometric luminosity of the rim, from the BINSYN model, is 5.6x1036erg sec-1. The bolometric luminosity of the gainer, on the adopted model, is 9.8x1037erg sec-1. Thus, the luminosity of the rim is 6% of the luminosity of the gainer. On the BINSYN model, the accretion disk covers 26% of the sky, as seen by the gainer. Absorption of radiation from the gainer, and its reradiation by the accretion disk, could explain the derived Teff of the rim. The conclusion is that the β Lyrae accretion disk structure must be strongly affected by radiation from the hot gainer (unseen by the observer) at the center of the accretion disk.

  11. Magnetic interchange instability of accretion disks

    Science.gov (United States)

    Kaisig, M.; Tajima, T.; Lovelace, R. V. E.

    1992-01-01

    The nonlinear evolution of the magnetic interchange or buoyancy instability of a differentially rotating disk threaded by an ordered vertical magnetic field is investigated. A 2D ideal fluid in the equatorial plane of a central mass in the corotating frame of reference is considered as a model for the disk. If the rotation rate of the disk is Keplerian, the disk is found to be stable. If the vertical magnetic field is sufficiently strong, and the field strength decreases with distance from the central object, and thus the rotation of the disk deviates from Keplerian, if is found that an instability develops. The magnetic flux and disk matter expand outward in certain ranges of azimuth, while disk matter with less magnetic flux moves inward over the remaining range of azimuth, showing a characteristic development of an interchange instability.

  12. Accretion and destruction of planetesimals in turbulent disks

    CERN Document Server

    Ida, Shigeru; Morbidelli, Alessandro

    2008-01-01

    We study the conditions for collisions between planetesimals to be accretional or disruptive in turbulent disks, through analytical arguments based on fluid dynamical simulations and orbital integrations. In turbulent disks, the velocity dispersion of planetesimals is pumped up by random gravitational perturbations from density fluctuations of the disk gas. When the velocity dispersion is larger than the planetesimals' surface escape velocity, collisions between planetesimals do not result in accretion, and may even lead to their destruction. In disks with a surface density equal to that of the ``minimum mass solar nebula'' and with nominal MRI turbulence, we find that accretion proceeds only for planetesimals with sizes above $\\sim 300$ km at 1AU and $\\sim 1000$ km at 5AU. We find that accretion is facilitated in disks with smaller masses. However, at 5AU and for nominal turbulence strength, km-sized planetesimals are in a highly erosive regime even for a disk mass as small as a fraction of the mass of Jupit...

  13. Evidence of the Link between Broad Emission Line Regions and Accretion Disks in Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    Yun Xu; Xin-Wu Cao

    2007-01-01

    There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from the hot coronae of the disks, and the winds are suppressed when the black hole is accreting at low rates. This model predicts a relation between (m) ((m) = (M)/(M)Edd) and the FWHM of broad emission lines. We estimate the central black hole masses for a sample of bright AGNs by using their broad Hβ line-widths and optical luminosities. The dimensionless accretion rates (m) = (M)/(M)Edd are derived from the optical continuum luminosities by using two different models: using an empirical relation between the bolometric luminosity Lbol and the optical luminosity ((m) = Lbol/LEdd, a fixed radiative efficiency is adopted); and calculating the optical spectra of accretion disks as a function of (m). We find a significant correlation between the derived (m) and the observed line width of Hβ,FWHM∝ (m)-0.37, which almost overlaps the disk-corona model calculations, if the viscosity α≈ 0.1 - 0.2 is adopted. Our results provide strong evidence for the physical link between the BLRs and accretion disks in AGNs.

  14. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...... forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...... of the rime iced ice profile follows the streamlines quite well, disturbing the flow the least. The TURBICE analysis agrees fairly with the profiles produced during the wind tunnel testing....

  15. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-Powered Stellar Winds

    CERN Document Server

    Matt, Sean P; Greene, Thomas P; Pudritz, Ralph E

    2011-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind. For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1--10 days in the age range of 1--3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to s...

  16. Accretion Disks Around Binary Black Holes: A Quasistationary Model

    CERN Document Server

    Liu, Yuk Tung

    2010-01-01

    Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...

  17. Evolution of an Accretion Disk in Binary Black Hole Systems

    CERN Document Server

    Kimura, Shigeo S; Toma, Kenji

    2016-01-01

    We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...

  18. Cooling of young stars growing by disk accretion

    CERN Document Server

    Rafikov, Roman

    2007-01-01

    In the initial formation stages young stars must acquire a significant fraction of their mass by accretion from a circumstellar disk that forms in the center of a collapsing protostellar cloud. Throughout this period mass accretion rates through the disk can reach 10^{-6}-10^{-5} M_Sun/yr leading to substantial energy release in the vicinity of stellar surface. We study the impact of irradiation of the stellar surface produced by the hot inner disk on properties of accreting fully convective low-mass stars, and also look at objects such as young brown dwarfs and giant planets. At high accretion rates irradiation raises the surface temperature of the equatorial region above the photospheric temperature T_0 that a star would have in the absence of accretion. The high-latitude (polar) parts of the stellar surface, where disk irradiation is weak, preserve their temperature at the level of T_0. In strongly irradiated regions an almost isothermal outer radiative zone forms on top of the fully convective interior, l...

  19. Thermal Stability and Vertical Structure of Radiation Dominated Accretion Disks

    Science.gov (United States)

    Jiang, Yanfei; Stone, J. M.; Davis, S.

    2013-01-01

    Standard thin disk model predicts that radiation dominated accretion disk is thermally unstable. However, using a radiation MHD code based on flux-limited diffusion (FLD) approximation, Hirose et al. (2009) finds that when the accretion stress provided by Magneto-rotational instability (MRI) is calculated self-consistently, the disk is actually stable. We check this surprising result with our recently developed radiation transfer module in Athena. We modify the Godunov method to include the radiation source terms and close the radiation momentum equations with variable Eddington tensor. In this way, it works in both optically thin and thick regimes, and works for both radiation or gas pressure dominated flows. As a general purpose radiation MHD code, it can also be used to study other systems, where radiation field plays an important role, such as feedback effects of stars on the interstellar medium. I will show a set of tests to demonstrate that the code is working accurately as expected for different regimes. I will describe in detail our results on the thermal stability of accretion disks in both the gas pressure dominated regime and radiation pressure dominated regime. Detailed studies of the vertical structures of the accretion disk will also be presented. I will also comment on the differences between our results and the results from FLD calculations.

  20. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...... with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified...

  1. Wave Propagation in Accretion Disks with Self-Gravity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Ci; YANG Lan-Tian; WU Shao-Ping; DING Shi-Xue

    2001-01-01

    We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self gravity of disks should be considered. We derive and analyse the dispersion relations with the effect of self-gravity. Results show that self-gravity extends the forbidden region of the wave propagation: for high frequency p-modes, self-gravity makes the wavelength shorter and the group velocity larger; for low frequency g-modes, the effect is opposite.

  2. Turbulent Comptonization in Relativistic Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2006-01-01

    Turbulent Comptonization, a potentially important damping and radiation mechanism in relativistic accretion flows, is discussed. Particular emphasis is placed on the physical basis, relative importance, and thermodynamics of turbulent Comptonization. The effects of metal-absorption opacity on the spectral component resulting from turbulent Comptonization is considered as well.

  3. On the Gravitational Stability of Gravito-turbulent Accretion Disks

    Science.gov (United States)

    Lin, Min-Kai; Kratter, Kaitlin M.

    2016-06-01

    Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ˜60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.

  4. Axisymmetric Two-Dimensional Computation of Magnetic Field Dragging in Accretion Disks

    Science.gov (United States)

    Reyes-Ruiz, Mauricio; Stepinski, Tomasz F.

    1996-01-01

    In this paper we model a geometrically thin accretion disk interacting with an externally imposed, uniform, vertical magnetic field. The accretion flow in the disk drags and distorts field lines, amplifying the magnetic field in the process. Inside the disk the radial component of the field is sheared into a toroidal component. The aim of this work is to establish the character of the resultant magnetic field and its dependence on the disk's parameters. We concentrate on alpha-disks driven by turbulent viscosity. Axisymmetric, two-dimensional solutions are obtained without taking into account the back-reaction of the magnetic field on the structure of the disk. The character of the magnetic field depends strongly on the magnitude of the magnetic Prandtl number, P . We present two illustrative examples of viscous disks: a so-called 'standard' steady state model of a disk around a compact star (e.g., cataclysmic variable), and a steady state model of a proto-planetary disk. In both cases, P = 1, P = 10(sup -1), and P = 10(sup -2) scenarios are calculated. Significant bending and magnification of the magnetic field is possible only for disks characterized by P of the order of 10(sup -2). In such a case, the field lines are bent sufficiently to allow the development of a centrifugally driven wind. Inside the disk the field is dominated by its toroidal component. We also investigate the dragging of the magnetic field by a nonviscous protoplanetary disk described by a phenomenological model. This scenario leads to large distortion and magnification of the magnetic field.

  5. Magneto-thermal Disk Wind from Protoplanetary Disks

    CERN Document Server

    Bai, Xue-Ning; Goodman, Jeremy; Yuan, Feng

    2015-01-01

    Global evolution and dispersal of protoplanetary disks (PPDs) is governed by disk angular momentum transport and mass-loss processes. Recent numerical studies suggest that angular momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a 1D model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on 1) the magnetic field strength at the wind base, characterized by the poloidal Alfv\\'en speed $v_{Ap}$, 2) the sound speed $c_s$ near the wind base, and 3) how rapidly poloidal field lines diverge (achieve $R^{-2}$ scaling). When $v_{Ap}\\gg c_s$, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accel...

  6. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    CERN Document Server

    Dexter, Jason

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 degrees, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth, and exhibit unique features such as broad "blue wings." Coupled with precession,...

  7. Rossby Wave Instability of Keplerian Accretion Disks

    CERN Document Server

    Lovelace, R V E; Colgate, S A; Nelson, A F

    1999-01-01

    We find a linear instability of non-axisymmetric Rossby waves in a thin non-magnetized Keplerian disk when there is a local maximum in the radial profile of a key function ${\\cal L}(r) \\equiv {\\cal F}(r) S^{2/\\Gamma}(r)$, where ${\\cal F}^{-1} = \\hat {\\bf z}\\cdot ({\\bf \

  8. Radial Transport and Meridional Circulation in Accretion Disks

    Science.gov (United States)

    Philippov, Alexander A.; Rafikov, Roman R.

    2017-03-01

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflow higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.

  9. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  10. Jets and Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  11. Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations

    CERN Document Server

    Li, H; Wendroff, B; Liska, R

    2000-01-01

    (abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...

  12. Hydrodynamical wind in magnetized accretion flows with convection

    Institute of Scientific and Technical Information of China (English)

    Shahram Abbassi; Amin Mosallanezhad

    2012-01-01

    The existence of outflow and magnetic fields in the inner region of hot accretion flows has been confirmed by observations and numerical magnetohydrodynamic (MHD) simulations.We present self-similar solutions for radiatively inefficient accretion flows (RIAFs) around black holes in the presence of outflow and a global magnetic field.The influence of outflow is taken into account by adopting a radius that depends on mass accretion rate M = M0(r/r0)s with s > 0.We also consider convection through a mixing length formula to calculate convection parameter αcon.Moreover we consider the additional magnetic field parameters βr,φ,z [= cr2,φ,z/(2cs2)],where c2r,φ,z are the Alfvén sound speeds in three directions of cylindrical coordinates.Our numerical results show that by increasing all components of the magnetic field,the surface density and rotational velocity increase,but the sound speed and radial infall velocity of the disk decrease.We have also found that the existence of wind will lead to reduction of surface density as well as rotational velocity.Moreover,the radial velocity,sound speed,advection parameter and the vertical thickness of the disk will increase when outflow becomes important in the RIAF.

  13. Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes

    CERN Document Server

    Mukhopadhyay, B

    1998-01-01

    We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.

  14. Advection/diffusion of large scale magnetic field in accretion disks

    Directory of Open Access Journals (Sweden)

    R. V. E. Lovelace

    2009-02-01

    Full Text Available Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1 a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI which gives a large viscosity enhancing accretion, and (2 a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z profiles of the stationary accretion flows (with radial and azimuthal components, and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P=viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1 large-scale field does not diffuse away as suggested by earlier work.

  15. Gas accretion from halos to disks: observations, curiosities, and problems

    CERN Document Server

    Elmegreen, Bruce G

    2015-01-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  16. The growth of supermassive black holes fed by accretion disks

    CERN Document Server

    Armijo, M A Montesinos

    2010-01-01

    Supermassive black holes are probably present in the centre of the majority of the galaxies. There is a consensus that these exotic objects are formed by the growth of seeds either by accreting mass from a circumnuclear disk and/or by coalescences during merger episodes. The mass fraction of the disk captured by the central object and the related timescale are still open questions, as well as how these quantities depend on parameters like the initial mass of the disk or the seed or on the angular momentum transport mechanism. This paper is addressed to these particular aspects of the accretion disk evolution and of the growth of seeds. The time-dependent hydrodynamic equations were solved numerically for an axi-symmetric disk in which the gravitational potential includes contributions both from the central object and from the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. The pr...

  17. Properties and Distribution of Current Sheets in Accretion Disk Coronae

    Science.gov (United States)

    Salvesen, Greg; Begelman, M. C.; Simon, J. B.; Beckwith, K.

    2013-04-01

    Theoretical models involving the interplay of a geometrically thin, optically thick accretion disk embedded in an extended coronal atmosphere may describe black hole X-ray binaries across all spectral states. Buoyant magnetic field generated in the accretion disk is continuously supplied to the corona by a dynamo process driven by the magnetorotational instability. This rising field leads to the formation of a magnetic pressure-dominated, low-density, geometrically thick corona where substantial accretion energy is dissipated, likely by collisionless magnetic reconnection, perhaps even generating outflows. Despite the potential importance of magnetic reconnection in shaping the energetics and kinematics of the corona, studies of multiple reconnection sites in a large volume are currently prohibited by the computational expense required to properly treat the microphysical nature of reconnection. Under the assumption that coronal structure is determined by ideal magnetohydrodynamics, we analyze local simulations of accretion disks (i.e., shearing boxes) performed with the ATHENA code, where the spatial domains are extended to capture 'mesoscale' structures that are dynamically important in accretion disk evolution. We employ a location routine to identify zones of enhanced current density, which trace likely sites of magnetic reconnection. We describe the positions, orientations, sizes, shapes, strengths, and kinematics of these regions and correlate them with the spatial distribution of numerical dissipation. Statistical distributions of these various properties of current density zones are presented to determine the heights within the corona that contribute most to the dissipation rate, the flow properties associated with reconnection sites, and representative parameters for future large volume reconnection simulations.

  18. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  19. Self-collimated axial jets from thin accretion disks

    CERN Document Server

    Tirabassi, Giulio; Carlevaro, Nakia; Benini, Riccardo

    2012-01-01

    We show how an appropriate stationary crystalline structure of the magnetic field can induce a partial fragmentation of the accretion disk, generating an axial jet composed of hot rising plasma twisted in a funnel-like structure by the rotation of the system. The most important feature of the obtained jet is its high degree of collimation, naturally arising from the condition for its existence. The presence of non-zero dissipative effects allows the plasma ejection throughout the axial jet and the predicted values of the accretion rate are in agreement with observations.

  20. AGN accretion disks as spatially resolved by polarimetry

    CERN Document Server

    Kishimoto, Makoto; Blaes, Omer; Lawrence, Andy; Boisson, Catherine; Albrecht, Marcus; Leipski, Christian

    2008-01-01

    A crucial difficulty in understanding the nature of the putative accretion disk in AGNs is that some of its key intrinsic spectral signatures cannot be observed directly. The strong emissions from the broad-line region (BLR) and the obscuring torus, which are generally yet to be spatially resolved, essentially 'bury' such signatures. Here we argue that we can actually isolate the disk emission spectrum by using optical and near-infrared polarization of quasars and uncover the important spectral signatures. In these quasars, the polarization is considered to originate from electron scattering interior to the BLR, so that the polarized flux shows the disk spectrum with all the emissions from the BLR and torus eliminated. The polarized flux observations have now revealed a Balmer edge feature in absorption and a blue near-infrared spectral shape consistent with a specific and robust theoretical prediction. These results critically verify the long-standing picture of an optically thick and locally heated disk in ...

  1. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  2. The response of relativistic outflowing gas to the inner accretion disk of a black hole

    Science.gov (United States)

    Parker, Michael L.; Pinto, Ciro; Fabian, Andrew C.; Lohfink, Anne; Buisson, Douglas J. K.; Alston, William N.; Kara, Erin; Cackett, Edward M.; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C.; Garcia, Javier; Harrison, Fiona A.; King, Ashley L.; Middleton, Matthew J.; Miller, Jon M.; Miniutti, Giovanni; Reynolds, Christopher S.; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J.; Wilkins, Daniel R.; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these—the ultrafast outflows—are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224‑3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very

  3. Accretion Outbursts in Self-gravitating Protoplanetary Disks

    CERN Document Server

    Bae, Jaehan; Zhu, Zhaohuan; Nelson, Richard P

    2014-01-01

    We improve on our previous treatments of long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e. $P\\rm{d}V$ work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead-zone. The GI-induced spiral waves propagate well inside of gravitationally unstable region before they trigger outbursts at $R \\lesssim 1$ AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local $\\alpha$ treatments for GI. In our standard model where zero dead-zone residual viscosity ($\\alpha_{\\rm rd}$) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as $0.01$ in terms of the generic $\\alpha$ parameter. However,...

  4. Magnetospheres and Disk Accretion in Herbig Ae/Be Stars

    CERN Document Server

    Muzerolle, J; Calvet, N; Hartmann, L

    2004-01-01

    We present evidence of magnetically-mediated disk accretion in Herbig Ae/Be stars. Magnetospheric accretion models of Balmer and sodium profiles calculated with appropriate stellar and rotational parameters are in qualitative agreement with the observed profiles of the Herbig Ae star UX Ori, and yield a mass accretion rate of ~ 10^{-8} Msun/yr. If more recent indications of an extremely large rotation rate for this object are correct, the magnetic field geometry must deviate from that of a standard dipole in order to produce line emission consistent with observed flux levels. Models of the associated accretion shock qualitatively explain the observed distribution of excess fluxes in the Balmer discontinuity for a large ensemble of Herbig Ae/Be stars, and imply typically small mass accretion rates, < 10^{-7} Msun/yr. In order for accretion to proceed onto the star, significant amounts of gas must exist inside the dust destruction radius, which is potentially problematic for recently advocated scenarios of "...

  5. Accretion Disk Line Emission in AGN a Devil's Advocacy

    CERN Document Server

    Sulentic, J W; Dultzin-Hacyan, D

    1998-01-01

    We review the evidence for AGN optical and X-ray broad line emission from an accretion disk. We argue that there is little, if any, statistical evidence to support this assertion. The inconsistency is strongest for the rare class of Balmer profiles that show double peaks. The line profiles predicted by a simple illuminated disk model are often incompatible with the observations. We suggest that the Fe Kalpha line in Seyfert 1 galaxies, where a broad line is most often and most strongly detected, is actually a composite of two lines both with Gaussian profiles; one narrow/unshifted and the other broad/redshifted.

  6. Local Dynamical Instabilities in Magnetized, Radiation Pressure Supported Accretion Disks

    CERN Document Server

    Blaes, Omer M; Blaes, Omer; Socrates, Aristotle

    2000-01-01

    We present a general linear dispersion relation which describes the coupled behavior of magnetorotational, photon bubble, and convective instabilities in weakly magnetized, differentially rotating accretion disks. We presume the accretion disks to be geometrically thin and supported vertically by radiation pressure. We fully incorporate the effects of a nonzero radiative diffusion length on the linear modes. In an equilibrium with purely vertical magnetic field, the vertical magnetorotational modes are completely unaffected by compressibility, stratification, and radiative diffusion. However, in the presence of azimuthal fields, which are expected in differentially rotating flows, the growth rate of all magnetorotational modes can be reduced substantially below the orbital frequency. This occurs if diffusion destroys radiation sound waves on the length scale of the instability, and the magnetic energy density of the azimuthal component exceeds the non-radiative thermal energy density. While sluggish in this c...

  7. Ring sequence decomposition of an accretion disk: the viscoresistive approach

    CERN Document Server

    Benini, Riccardo; Petitta, Jacopo

    2011-01-01

    We analyze a two dimensional viscoresistive magnetohydrodynamical (MHD) model for a thin accretion disk which reconciles the crystalline structure outlined in [Coppi(2005), Coppi and Rousseau(2006)] with real microscopic and macroscopic features of astrophysical accreting systems. In particular, we consider small dissipative effects (viscosity and resistivity, characterized by a magnetic Prandtl number of order unity), poloidal matter fluxes and a toroidal component of the magnetic field. These new ingredients allow us to set up the full equilibrium profile including the azimuthal component of the momentum conservation equation and the electron force balance relation. These two additional equations, which were identically satisfied in the original model, permit us to deal with non-zero radial and vertical matter fluxes, and the solution we construct for the global equilibrium system provides a full description of the radial and vertical dependence within the plasma disk. The main issue of our analysis is outl...

  8. Trainsient Accretion Disk and Energy Mechanism of Gamma Ray Bursts

    Institute of Scientific and Technical Information of China (English)

    LU Ye; ZHENG Guang-Sheng; ZHAO Gang; YANG Lan-Tian

    2000-01-01

    We suggest that a rotating massive black hole (106M ) located at an inactive galaxy may convert its host into a transient active phase by capturing and disrupting a star. During this period, a transient accretion disk is formed and a strong transient magnetic field can be produced in the inner boundary of the accretion disk. A large amount of rotational energy of the black hole is extracted and released in the ultra relativistic jet with a bulk Lorentz factor larger than 103 via Blandford-Znajek process. The relativistic jet energy can be converted into γ-ray radiation in the shock region located at a distance of about 1.4 × 1016 cm via the external shock mechanism.The observed properties of GRB971214 is used to illustrate our model

  9. Characterizing the mean-field dynamo in turbulent accretion disks

    CERN Document Server

    Gressel, Oliver

    2015-01-01

    The formation and evolution of a wide class of astrophysical objects is governed by turbulent, magnetized accretion disks. Understanding their secular dynamics is of primary importance. Apart from enabling mass accretion via the transport of angular momentum, the turbulence affects the long-term evolution of the embedded magnetic flux, which in turn regulates the efficiency of the transport. In this paper, we take a comprehensive next step towards an effective mean-field model for turbulent astrophysical disks by systematically studying the key properties of magnetorotational turbulence in vertically-stratified, isothermal shearing boxes. This allows us to infer emergent properties of the ensuing chaotic flow as a function of the shear parameter as well as the amount of net-vertical flux. Using the test-field method, we furthermore characterize the mean-field dynamo coefficients that describe the long-term evolution of large-scale fields. We simultaneously infer the vertical shape and the spectral scale depen...

  10. Acceleration and Collimation of Relativistic Magnetohydrodynamic Disk Winds

    Science.gov (United States)

    Porth, Oliver; Fendt, Christian

    2010-02-01

    We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 × 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied—an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically—implying three relativistically distinct regimes in the flow—an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface—similar to the spine-sheath structure

  11. Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    CERN Document Server

    Blackman, Eric G

    2012-01-01

    Conversion of gravitational energy into radiation near stars and compact objects in accretion disks the origin of large scale magnetic fields in astrophysical rotators have long been distinct topics of active research in astrophysics. In semi-analytic work on both problems it has been useful to presume large scale symmetries, which necessarily results in mean field theories; magnetohydrodynamic turbulence makes the underlying systems locally asymmetric and highly nonlinear. Synergy between theory and simulations should aim for the development of practical, semi-analytic mean field models that capture the essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory have exemplified such distinct pursuits. Both are presently incomplete, but 21st century MFD theory has nonlinear predictive power compared to 20th century MFD. in contrast, alpha-viscosity accretion theory is still in a 20th century state. In fact, insights from MFD theory ar...

  12. Ultraluminous X-ray sources as super-Eddington accretion disks

    CERN Document Server

    Fabrika, Sergei; Atapin, Kirill

    2016-01-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times is mysterious. The most popular models for the ULXs involve either intermediate mass black holes (IMBHs) or stellar-mass black holes accreting at super-Eddington rates. Here we review the ULX properties, their X-ray spectra indicate a presence of hot winds in their accretion disks supposing the supercritical accretion. However, the strongest evidences come from optical spectroscopy. The spectra of the ULX counterparts are very similar to that of SS 433, the only known supercritical accretor in our Galaxy.

  13. On the X-ray heated skin of Accretion Disks

    CERN Document Server

    Nayakshin, S

    1999-01-01

    We present a simple analytical formula for the Thomson depth of the X-rayheated skin of accretion disks valid at any radius and for a broad range ofspectral indices of the incident X-rays, accretion rates and black hole masses.We expect that this formula may find useful applications in studies of geometryof the inner part of accretion flows around compact objects, and in severalother astrophysically important problems, such as the recently observed X-ray``Baldwin'' effect (i.e., monotonic decrease of Fe line's equivalent width withthe X-ray luminosity of AGN), the problem of missing Lyman edge in AGN, andline and continuum variability studies in accretion disks around compactobjects. We compute the reflected X-ray spectra for several representativecases and show that for hard X-ray spectra and large ionizing fluxes the skinrepresents a perfect mirror that does not produce any Fe lines or absorptionfeatures. At the same time, for soft X-ray spectra or small ionizing fluxes,the skin produces very strong ionized...

  14. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Science.gov (United States)

    Samadi, Maryam; Abbassi, Shahram

    2017-08-01

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  15. On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars

    Science.gov (United States)

    Stepinski, T. F.

    1993-01-01

    A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.

  16. Thermally Driven Winds from Radiatively Inefficient Accretion Flows

    CERN Document Server

    Kawabata, Ryoji

    2009-01-01

    Radiatively inefficient accretion flows (RIAFs) are common feature of low-luminosity accretion flows, including quiescent states of X-ray binaries and low-lunimosity active galactic nuclei. Thermally driven winds are expected from such hot accretion flows. By assuming that the flow has self-similarity structure in the radial direction, we solve the vertical structure of the wind and accretion flows simultaneously and evaluate the mass loss rates by wind. We find that the ratio of the outflow rate to the accretion rate is approximately unity for a viscosity parameter, alpha lesssim 0.1, despite some uncertainties in the angular momentum and temperature distributions. That is, the accretion rate in the RIAFs is roughly proportional to the radius. Moreover, we elucidate the effect of cooling by wind on the underneath accretion flow, finding that this effect could be important for calculating energy spectrum of the RIAF. Observational implications are briefly discussed in the context of Sgr A*.

  17. On the Role of the Accretion Disk in Black Hole Disk-Jet Connections

    CERN Document Server

    Miller, J M; Fabian, A C; Nowak, M A; Reis, R C; Cackett, E M; Pottschmidt, K; Wilms, J

    2012-01-01

    Models of jet production in black hole systems suggest that the properties of the accretion disk - such as its mass accretion rate, inner radius, and emergent magnetic field - should drive and modulate the production of relativistic jets. Stellar-mass black holes in the "low/hard" state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk; and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive c...

  18. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  19. Luminosities of Disk--accreting Non--magnetic Neutron Stars

    CERN Document Server

    Thampan, A V

    2002-01-01

    Disk accretion onto a neutron star possessing a weak surface magnetic field ($B \\le 10^8$ G) provides interesting X-ray emission scenarios, and is relevant for understanding X-ray bursters and low-mass X-ray binaries (LMXBs). The standard (Newtonian) theory of disk-accretion predicts that the matter spiralling in from infinity loses one-half of its total gravitational energy in the extended disk, and the remainder in a narrow boundary layer girdling the neutron star. The ratio of the boundary layer luminosity to that from the disk ($E_{\\rm BL}/E_{\\rm D}$) is, therefore, unity. On incorporation of general relativity without rotation (Schwarzschild solution), $E_{\\rm BL}/E_{\\rm D}$ is seen to be as high as 6. We construct rotating sequences of neutron stars for three representative equations of state. We show here that for a neutron star rotating at a limit where centrifugal force balances the inward gravitational force, $E_{\\rm BL}/E_{\\rm D}\\sim 0$.

  20. Stability of Accretion Disks in Presence of Nucleosynthesis

    CERN Document Server

    Mukhopadhyay, B; Mukhopadhyay, Banibrata; Chakrabarti, Sandip K.

    2001-01-01

    We study the effect of nuclear reaction on a thin, axisymmetric, differentially rotating, inviscid, steady accretion flow around a black hole from an analytical point of view. We find that for most of the reasonable disk parameters, when $p-p$-reaction, dissociation of deuterium and helium are taken into account, the transonic region of the disk continues to have the inner sonic point and if the temperature of the flow at the injection sonic point could be raised (by say, some heating processes) the flow would to pass through this inner sonic point. Otherwise, the flow may be unstable. We use the sonic point analysis to study the solution. In the rest of the disk parameters the inner sonic point is absent altogether and the flow will definitely be unstable.

  1. Irradiation Instability at the Inner Edges of Accretion Disks

    CERN Document Server

    Fung, Jeffrey

    2014-01-01

    An instability can potentially operate in highly irradiated disks where the disk sharply transitions from being radially transparent to opaque (the 'transition region'). Such conditions may exist at the inner edges of transitional disks around T Tauri stars and accretion disks around AGNs. We derive the criterion for this instability, which we term the 'irradiation instability', or IRI. We also present the linear growth rate as a function of beta, the ratio between radiation force and gravity, and c_s, the sound speed of the disk, obtained using two methods: a semi-analytic analysis of the linearized equations and a numerical simulation using the GPU-accelerated hydrodynamical code PEnGUIn. In particular, we find that IRI occurs at beta~0.1 if the transition region extends as wide as ~0.05r, and at higher beta values if it is wider. Furthermore, in the nonlinear evolution of the instability, disks with a large beta and small c_s exhibit 'clumping': extreme local surface density enhancements, reaching a few te...

  2. Accretion from debris disks onto white dwarfs : Fingering (thermohaline) instability and derived accretion rates

    CERN Document Server

    Deal, M; Vauclair, G; Vauclair, S; Wachlin, F C

    2013-01-01

    Recent observations of a large number of DA and DB white dwarfs show evidence of debris disks, which are the remnants of old planetary systems. The infrared excess detected with \\emph{Spitzer} and the lines of heavy elements observed in their atmospheres with high-resolution spectroscopy converge on the idea that planetary material accretes onto these stars. Accretion rates have been derived by several authors with the assumption of a steady state between accretion and gravitational settling. The results are unrealistically different for DA and DB white dwarfs. When heavy matter is accreted onto stars, it induces an inverse $\\mu$-gradient that leads to fingering (thermohaline) convection. The aim of this letter is to study the impact of this specific process on the derived accretion rates in white dwarfs and on the difference between DA and DB. We solve the diffusion equation for the accreted heavy elements with a time-dependent method. The models we use have been obtained both with the IRAP code, which compu...

  3. Constraining MHD Disk-Winds with X-ray Absorbers

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  4. A Simple Disk Wind Model for Broad Absorption Line Quasars

    CERN Document Server

    Higginbottom, N; Long, K S; Sim, S A; Matthews, J H

    2013-01-01

    Approximately 20% of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disk winds. These winds may represent the "quasar" mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disk wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, an...

  5. Acceleration and collimation of relativistic MHD disk winds

    CERN Document Server

    Porth, O

    2009-01-01

    We perform axisymmetric relativistic magnetohydrodynamic (MHD) simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100x200 inner disk radii. In general, we obtain collimated beams of mildly relativistic speed and mass-weighted half-opening angles of 3-7 degrees. When we increase the outflow Poynting flux by injecting an additional disk toroidal field into the inlet, Lorentz factors up to 6 are reached. These flows gain super-magnetosonic speed and remain Poynting flux dominated. The light surface of...

  6. On the Vertical Structure of Radiation-Dominated Accretion Disks

    CERN Document Server

    Turner, N J

    2004-01-01

    The vertical structure of black hole accretion disks in which radiation dominates the total pressure is investigated using a three-dimensional radiation-MHD calculation. The domain is a small patch of disk centered 100 Schwarzschild radii from a black hole of 10^8 Solar masses, and the stratified shearing-box approximation is used. Magneto-rotational instability converts gravitational energy to turbulent magnetic and kinetic energy. The gas is heated by magnetic dissipation and by radiation damping of the turbulence, and cooled by diffusion and advection of radiation through the vertical boundaries. The resulting structure differs in several fundamental ways from the standard Shakura-Sunyaev picture. The disk consists of three layers. At the midplane, the density is large, and the magnetic pressure and total accretion stress are less than the gas pressure. In lower-density surface layers that are optically thick, the magnetic pressure and stress are greater than the gas pressure but less than the radiation pr...

  7. Thin accretion disks around cold Bose–Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Dănilă, Bogdan, E-mail: bogdan.danila22@gmail.com [Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca (Romania); Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Kovács, Zoltán, E-mail: kovacsz2013@yahoo.com [Max-Fiedler-Str. 7, 45128, Essen (Germany)

    2015-05-09

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars.

  8. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  9. Circumstellar Disks of the Most Vigorously Accreting Young Stars

    CERN Document Server

    Liu, Hauyu Baobab; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Young stellar objects (YSOs) may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. We report our high angular resolution, coronagraphic near-infrared polarization imaging observations using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) of the Subaru 8.2 m Telescope, towards four YSOs which are undergoing luminous accretion outbursts. The obtained infrared images have verified the presence of several hundred AUs scale arms and arcs surrounding these YSOs. In addition, our hydrodynamics simulations and radiative transfer models further demonstrate that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation p...

  10. General relativistic spectra of accretion disks around rotating neutron stars

    CERN Document Server

    Bhattacharya, S; Thampan, A V

    2000-01-01

    General relativistic spectra from accretion disks around rotating neutron stars in the appropriate space-time geometry for several different equation of state, spin rates and mass of the compact object have been computed. The analysis involves the computation of the relativistically corrected radial temperature profiles and the effect of Doppler and gravitational red-shifts on the spectra. Light bending effects have been omitted for simplicity. The relativistic spectrum is compared with the Newtonian one and it is shown that the difference between the two is primarily due to the different radial temperature profile for the relativistic and Newtonian disk solutions. To facilitate direct comparison with observations, a simple empirical function has been presented which describes the numerically computed relativistic spectra well. This empirical function (which has three parameters including normalization) also describes the Newtonian spectrum adequately. Thus the function can in principle be used to distinguish...

  11. Effects of Fluid Instabilities on Accretion Disk Spectra

    CERN Document Server

    Davis, S W; Turner, N J; Socrates, A

    2003-01-01

    Numerical calculations and linear theory of radiation magnetohydrodynamic flows indicate that the photon bubble and magnetorotational instability (MRI) may produce large density inhomogeneities in radiation pressure supported media. We study the effects of the photon bubble instability on accretion disk spectra using 2-D Monte Carlo (MC) and 1-D Feautrier radiative transfer calculations on a snapshot of a 2-D numerical simulation domain. We find an enhancement in the thermalization of the MC spectra over that of the Feautrier calculation. In the inner-most regions of these disks, the turbulent magnetic pressure may greatly exceed that of the gas. It is then possible for bulk turbulent Alfvenic motions driven by the MRI to exceed the thermal velocity making turbulent Comptonization the dominant radiative process. We estimate the spectral distortion due to turbulent Comptonization utilizing a 1-D MC calculation.

  12. Accretion Disks around Young Stars: An Observational Perspective

    Science.gov (United States)

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  13. Bypass to Turbulence in Hydrodynamic Accretion Disks: An Eigenvalue Analysis

    CERN Document Server

    Mukhopadhyay, B; Narayan, R; Mukhopadhyay, Banibrata; Afshordi, Niayesh; Narayan, Ramesh

    2004-01-01

    Cold accretion disks such as those in star-forming systems, quiescent cataclysmic variables, and some active galactic nuclei, are expected to have neutral gas which does not couple well to magnetic fields. The turbulent viscosity in such disks must be hydrodynamic in origin, not magnetohydrodynamic. We investigate the growth of hydrodynamic perturbations in a linear shear flow sandwiched between two parallel walls. The unperturbed flow is similar to plane Couette flow but with a Coriolis force included. Although there are no exponentially growing eigenmodes in this system, nevertheless, because of the non-normal nature of the eigenmodes, it is possible to have a large transient growth in the energy of perturbations. For a constant angular momentum disk, we find that the perturbation with maximum growth has a wave-vector in the vertical direction. The energy grows by more than a factor of 100 for a Reynolds number R=300 and more than a factor of 1000 for R=1000. Turbulence can be easily excited in such a disk,...

  14. Chemistry in a forming protoplanetary disk: main accretion phase

    CERN Document Server

    Yoneda, Haruaki; Furuya, Kenji; Aikawa, Yuri

    2016-01-01

    We investigate the chemistry in a radiation-hydrodynamics model of star-forming core which evolves from a cold ($\\sim 10$ K) prestellar core to the main accretion phase in $\\sim 10^5$ yr. A rotationally-supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in $\\sim 1.5 \\times 10^3$ SPH particles which end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H$_2$O, CH$_4$, NH$_3$ and CH$_3$OH are already abundant at the onset of gravitational collapse and simply sublimated as ...

  15. Magnetized Accretion and Dead Zones in Protostellar Disks

    CERN Document Server

    Dzyurkevich, Natalia; Henning, Thomas; Kley, Wilhelm

    2013-01-01

    The edges of magnetically-dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically-active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically-active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 $M_\\odot$, with corresponding adjustments in the disk mass and temperature. The dead zone's size and shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by S. Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, inclu...

  16. Silicate Dust in Evolved Protoplanetary Disks: Growth, Sedimentation, and Accretion

    CERN Document Server

    Sicilia-Aguilar, Aurora; Watson, Dan; Bohac, Chris; Henning, Thomas; Bouwman, Jeroen; 10.1086/512121

    2009-01-01

    We present the Spitzer IRS spectra for 33 young stars in Tr 37 and NGC 7160. The sample includes the high- and intermediate-mass stars with MIPS 24 microns excess, the only known active accretor in the 12 Myr-old cluster NGC 7160, and 19 low-mass stars with disks in the 4 Myr-old cluster Tr 37. We examine the 10 microns silicate feature, present in the whole sample of low-mass star and in 3 of the high- and intermediate-mass targets, and we find that PAH emission is detectable only in the Herbig Be star. We analyze the composition and size of the warm photospheric silicate grains by fitting the 10 microns silicate feature, and study the possible correlations between the silicate characteristics and the stellar and disk properties (age, SED slope, accretion rate, spectral type). We find indications of dust settling with age and of the effect of turbulent enrichment of the disk atmosphere with large grains. Crystalline grains are only small contributors to the total silicate mass in all disks, and do not seem t...

  17. The collimation of magnetic jets by disk winds

    CERN Document Server

    Globus, Noemie

    2016-01-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disk wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disk wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about ten percents of the jet power. For moderate wind powers we find gradual collimation. For strong winds we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfv\\'en crossing times before becoming conical. We estimate that in the later case the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced ...

  18. Crystalline structure of accretion disks: features of a global model.

    Science.gov (United States)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. Plasmas 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J. 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  19. Chemistry in a Forming Protoplanetary Disk: Main Accretion Phase

    Science.gov (United States)

    Yoneda, Haruaki; Tsukamoto, Yusuke; Furuya, Kenji; Aikawa, Yuri

    2016-12-01

    We investigate the chemistry in a radiation-hydrodynamics model of a star-forming core that evolves from a cold (˜10 K) prestellar core to the main accretion phase in ˜105 years. A rotationally supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in ˜1.5 × 103 SPH particles that end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk, but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H2O, CH4, NH3, and CH3OH are already abundant at the onset of gravitational collapse and are simply sublimated as the fluid parcels migrate inside the water snow line. On the other hand, various molecules such as carbon chains and complex organic molecules (COMs) are formed in the disk. The COMs abundance sensitively depends on the outcomes of photodissociation and diffusion rates of photofragments in bulk ice mantle. As for S-bearing species, H2S ice is abundant in the collapse phase. In the warm regions in the disk, H2S is sublimated to be destroyed, while SO, H2CS, OCS, and SO2 become abundant.

  20. ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES

    Directory of Open Access Journals (Sweden)

    Gennady Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.

  1. The vertical structure of T Tauri accretion disks II physical conditions in the disk

    CERN Document Server

    Malbet, F; Monin, J L

    2001-01-01

    We present a self-consistent analytical model for the computation of the physical conditions in a steady quasi-Keplerian accretion disk. The method, based on the thin disk approximation, considers the disk as concentric cylinders in which we treat the vertical transfer as in a plane-parallel medium. The formalism generalizes a work by Hubeny (1990), linking the disk temperature distribution to the local energy dissipation and leads to analytical formulae for the temperature distribution which help to understand the behaviour of the radiation propagated inside the disks. One of the main features of our new model is that it can take into account many heating sources. We apply the method first to two sources: viscous dissipation and stellar irradiation. We show that other heating sources like horizontal transfer or irradiation from the ambiant medium can also be taken into account. Using the analytical formulation in the case of a modified Shakura & Sunyaev radial distribution that allow the accretion rate t...

  2. Inner edge of accretion disks in low mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    李向东; 汪珍如

    1995-01-01

    The magnitude of the inner edge of accretion disks in low mass X-ray binaries is controversial in theoretical considerations and observations. Using the inner boundary conditions of accretion disks the inner disk radius has been calculated by taking into account the effect of feedback radiation and the deviation of disk rotation from Keplerian. Results have been applied to the observations and possible interpretations have been proposed for the X-ray spectra and quasiperiodic oscillations.

  3. On rapid migration and accretion within disks around supermassive black holes

    CERN Document Server

    McKernan, B; Lyra, W; Perets, H B; Winter, L M; Yaqoob, T

    2011-01-01

    Galactic nuclei should contain a cluster of stars and compact objects in the vicinity of the central supermassive black hole due to stellar evolution, minor mergers and gravitational dynamical friction. By analogy with protoplanetary migration, nuclear cluster objects (NCOs) can migrate in the accretion disks that power active galactic nuclei by exchanging angular momentum with disk gas. Here we show that an individual NCO undergoing runaway outward migration comparable to Type III protoplanetary migration can generate an accretion rate corresponding to Seyfert AGN or quasar luminosities. Multiple migrating NCOs in an AGN disk can dominate traditional viscous disk accretion and at large disk radii, ensemble NCO migration and accretion could provide sufficient heating to prevent the gravitational instability from consuming disk gas in star formation. The magnitude and energy of the X-ray soft excess observed at ~0.1-1keV in Seyfert AGN could be explained by a small population of ~10^{2}-10^{3} accreting stella...

  4. Constraints on Accretion Disk Physics in Low Luminosity Radio Galaxies

    Science.gov (United States)

    Baum, Stefi; Noel-Storr, Jacob; O'Dea, Christopher

    2008-03-01

    It is currently believed that essentially all galaxies harbor a massive black hole in their nuclei. If this is true, then it becomes hard to understand why we do not see the luminosity released by the inevitable accretion of the galaxy ISM onto the black hole in all galaxies. The differences in AGN output between the two classes of narrow-line radio galaxies (FRI and FRII) may hold the vital clue. High radio luminosity FRIIs generally show strong high-excitation narrow lines and are believed to be the obscured counterparts of radio loud quasars. Low radio luminosity FRIs by contrast have weaker, low-ionization lines and low ratios of optical to radio luminosities. A large difference in accretion rate and radiative efficiency between FRI and FRIIs would explain the difference in the optical properties and also provide a new unification between different classes of active galaxies in which the dominant parameter is accretion rate. Spitzer IRAC and MIPS observations already exist for most of a well defined sample of FRIs. However, the previously observed objects are the 'famous' ones, e.g., M87, M84, NGC315, 3C264, 3C31. Thus, the existing datasets are highly selected. Here we propose a very small request to complete the sample. We propose IRAC observations in all 4 bands, and MIPS photometry at 24 and 70 microns of 8, and 7 sources, respectively, for a total request of 1.7 hrs. These observations will complete the sample at very little cost in observing time. The large amount of existing complmentary data at multiple wavebands will greatly enhance the legacy value of the proposed observations. By completing the sample, the proposed IRAC and MIPS observations will produce a well defined and very well studied sample of nearby low luminosity radio galaxies. We will use the completed sample to investigate the properties of the accretion disk radiation, and the circumnuclear obscuring material.

  5. Accretion of Terrestrial Planets from Oligarchs in a Turbulent Disk

    CERN Document Server

    Ogihara, M; Morbidelli, A; Ogihara, Masahiro; Ida, Shigeru; Morbidelli, Alessandro

    2006-01-01

    We have investigated the final accretion stage of terrestrial planets from Mars-mass protoplanets that formed through oligarchic growth in a disk comparable to the minimum mass solar nebula (MMSN), through N-body simulation including random torques exerted by disk turbulence due to Magneto-Rotational-Instability. For the torques, we used the semi-analytical formula developed by Laughlin et al.(2004). The damping of orbital eccentricities (in all runs) and type-I migration (in some runs) due to the tidal interactions with disk gas are also included. We found that the orbital eccentricities pumped up by the turbulent torques and associated random walks in semimajor axes tend to delay isolation of planets, resulting in more coagulation of planets than in the case without turbulence. The eccentricities are still damped after planets become isolated. As a result, the number of final planets decreases with increase in strength of the turbulence, while Earth-mass planets with small eccentricities are still formed. I...

  6. Crystalline Structure of Accretion Disks: Features of the Global Model

    CERN Document Server

    Montani, Giovanni

    2012-01-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipole like magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in [1, 2]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ring-like decomposition of the disk, according to the same modulation of the magnetic f...

  7. Effects of local dissipation profiles on magnetized accretion disk spectra

    CERN Document Server

    Tao, Ted

    2013-01-01

    We present spectral calculations of non-LTE accretion disk models appropriate for high luminosity stellar mass black hole X-ray binary systems. We first use a dissipation profile based on scaling the results of shearing box simulations of Hirose et al. (2009) to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency and surface density with luminosity and radius according to the standard \\alpha-model (Shakura & Sunyaev, 1973). This naturally brings increased dissipation to the disk surface layers (around the photospheres) at small radii and high luminosities. We find that the local spectrum transitions directly from a modified black body to a saturated Compton scattering spectrum as we increase the effective temperature and orbital frequency while decreasing midplane surface density. Next, we construct annuli models based on the parameters of a L/L_Edd=0.8 disk orbiting a 6.62 solar mass black hole using two modified dissipation profiles that explicitly put more...

  8. Numerical Simulation of Interaction between an L1 Stream and an Accretion Disk in a Close Binary System

    CERN Document Server

    Fujiwara, H; Nagae, T; Matsuda, T; Fujiwara, Hidekazu; Makita, Makoto; Nagae, Takizo; Matsuda, Takuya

    2001-01-01

    The hydrodynamic behavior of an accretion disk in a close binary system is numerically simulated. Calculation is made for a region including the compact star and the gas-supplying companion. The equation of state is that of an ideal gas characterized by the specific heat ratio $\\gamma$. Two cases with $\\gamma$ of 1.01 and 1.2 are studied. Our calculations show that the gas, flowing from the companion via a Lagrangian L1 point towards the accretion disk, forms a fine gas beam (L1 stream), which penetrates into the disk. No hot spot therefore forms in these calculations. Another fact discovered is that the gas rotating with the disk forms, on collision with the L1 stream, a bow shock wave, which may be called an L1 shock. The disk becomes hot because the L1 shock heats the disk gas in the outer parts of the disk, so that the spiral shocks wind loosely even with $\\gamma=1.01$. The L1 shock enhances the non-axisymmetry of the density distribution in the disk, and therefore the angular momentum transfer by the tid...

  9. Generation of a dynamo magnetic field in a protoplanetary accretion disk

    Science.gov (United States)

    Stepinski, T.; Levy, E. H.

    1987-01-01

    A new computational technique is developed that allows realistic calculations of dynamo magnetic field generation in disk geometries corresponding to protoplanetary and protostellar accretion disks. The approach is of sufficient generality to allow, in the future, a wide class of accretion disk problems to be solved. Here, basic modes of a disk dynamo are calculated. Spatially localized oscillatory states are found to occur in Keplerain disks. A physical interpretation is given that argues that spatially localized fields of the type found in these calculations constitute the basic modes of a Keplerian disk dynamo.

  10. Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion Disks

    Indian Academy of Sciences (India)

    Li Xue; Ju-Fu Lu

    2011-03-01

    We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence radius.

  11. Magnetocentrifugally Driven Flows from Young Stars and Disks. VI. Accretion with a Multipole Stellar Field

    CERN Document Server

    Mohanty, Subhanjoy

    2008-01-01

    Previous analyses of magnetospheric accretion and outflow in classical T Tauri stars (CTTSs), within the context of both the X-wind model and other theoretical scenarios, have assumed a dipolar geometry for the stellar magnetic field if it were not perturbed by the presence of an accreting, electrically conducting disk. However, CTTS surveys reveal that accretion hot spots cover a small fraction of the stellar surface, and that the net field polarization on the stellar surface is small. Both facts imply that the magnetic field generated by the star has a complex non-dipolar structure. To address this discrepancy between theory and observations, we re-examine X-wind theory without the dipole constraint. Using simple physical arguments based on the concept of trapped flux, we show that a dipole configuration is in fact not essential. Independent of the precise geometry of the stellar magnetosphere, the requirement for a certain level of trapped flux predicts a definite relationship among various CTTS observable...

  12. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    CERN Document Server

    Begelman, Mitchell C

    2016-01-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal ($\\phi-$direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at $R$ to large heights $z > 0.1 R$ and low densities, while leaving a thin dense layer containing most of the mass --- but contributing very little accretion --- around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: th...

  13. Alignments Of Black Holes With Their Warped Accretion Disks And Episodic Lifetimes Of Active Galactic Nuclei

    CERN Document Server

    Li, Yan-Rong; Cheng, Cheng; Qiu, Jie

    2015-01-01

    Warped accretion disks have attracted intensive attention because of their critical role on shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of AGNs that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing to determine the gravitomagnetic torque that drives the alignments in a quite simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to...

  14. Using High Speed Rotating Gas to Study Angular Momentum in Accretion Disks

    Science.gov (United States)

    Berrios, William; Greess, Samuel; Merino, Enrique; Ji, Hantao

    2013-10-01

    Accretion disks are a sheet of gas and dust which surrounds black holes and quasars. The angular momentum in accretion disks is one of the biggest mysteries in astrophysics. A machine was recently built to create accretion disks in a closed chamber. In order to study this, there are several important instruments that are used: a fog machine to see the accretion disks form within the chamber, a high speed camera to observe and record the formation of the accretion disks, and Particle Image Velocimetry (PIV) to analyze velocity profile of the rotating gas and better understand this phenomenon. By collecting relevant data and subsequent computational analysis, results from a previous experiment are reproduced, expanded and the new properties observed with this experiment are characterized. A discussion of any modifications done to the machine, technical challenges and preliminary results will be presented.

  15. Spectrally resolved eclipse maps of the accretion disk in UX Ursae Majoris

    Science.gov (United States)

    Rutten, Rene G. M.; Dhillon, V. S.; Horne, Keith; Kuulkers, E.; Van Paradijs, J.

    1993-01-01

    An effort is made to observationally constrain accretion disks on the basis of light curves from the eclipsing cataclysmic variable UX Ursae Majoris, reconstructing the spectral energy distribution across the face of an accretion disk. The spectral resolution obtained suffices to reveal not only the radial dependence of absorption and emission line features within the disk, but also the spectral details of the bright spot that is formed where the accretion stream from the secondary star collides with the disk. The importance of such constraints for theoretical models is noted.

  16. You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-01-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.

  17. Global aspects of elliptical instability in tidally distorted accretion disks

    CERN Document Server

    Ryu, D; Vishniac, E T; Ryu, Dongsu; Goodman, Jeremy; Vishniac, Ethan T

    1995-01-01

    Tidally distorted accretion disks in binary star systems are subject to a local hydrodynamic instability which excites m=1 internal waves. This instability is three dimensional and approximately incompressible. We study the global aspects of this local instability using equations derived under the shearing sheet approximation, where the effects of the azimuthal variation along distorted orbital trajectories are included in source terms which oscillate with local orbital phase. Linear analyses show that the excitation of the instability is essentially local, i.e. insensitive to radial boundary conditions. The region of rapid growth feeds waves into the region of slow or negligible growth, allowing the instability to become global. The global growth rate depends the maximum local growth rate, the size of the rapid growth region, and the local group velocity. We present an empirical expression for the global growth rate. We note that the local nature of the instability allows the excitation of waves with m\

  18. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    Science.gov (United States)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal

  19. 3D Relativistic MHD Simulation of a Tilted Accretion Disk Around a Rapidly Rotating Black Hole

    CERN Document Server

    Fragile, P Chris; Blaes, Omer M; Salmonson, Jay D

    2016-01-01

    We posit that accreting compact objects, including stellar mass black holes and neutron stars as well as supermassive black holes, may undergo extended periods of accretion during which the angular momentum of the disk at large scales is misaligned with that of the compact object. In such a scenario, Lense-Thirring precession caused by the rotating compact object can dramatically affect the disk. In this presentation we describe results from a three-dimensional relativistic magnetohydrodynamic simulation of an MRI turbulent disk accreting onto a tilted rapidly rotating black hole. For this case, the disk does not achieve the commonly described Bardeen-Petterson configuration; rather, it remains nearly planar, undergoing a slow global precession. Accretion from the disk onto the hole occurs predominantly through two opposing plunging streams that start from high latitudes with respect to both the black-hole and disk midplanes. This is a consequence of the non-sphericity of the gravitational spacetime of the bl...

  20. Relativistic Effects on Neutrino Pair Annihilation above a Kerr Black Hole with the Accretion Disk

    CERN Document Server

    Asano, K; Asano, Katsuaki; Fukuyama, Takeshi

    2001-01-01

    Using idealized models of the accretion disk we investigate the relativistic effects on the energy deposition rate via neutrino pair annihilation near the rotation axis of a Kerr black hole. Neutrinos are emitted from the accretion disk. The bending of neutrino trajectories and the redshift due to the disk rotation and gravitation are taken into consideration. The Kerr parameter, $a$, affects not only neutrinos' behavior but also the inner radius of the accretion disk. When the deposition energy is mainly contributed by the neutrinos coming from the central part, the redshift effect becomes dominant as $a$ becomes large and the energy deposition rate is reduced compared with that neglecting the relativistic effects. On the other hand, for small $a$ the bending effect gets dominant and makes energy increase by factor 2 compared with that neglecting the relativistic effects. For the disk with temperature gradient, the energy deposition rate for a small inner radius of the accretion disk is smaller than that est...

  1. Modeling MHD accretion-ejection: episodic ejections of jets triggered by a mean-field disk dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Stepanovs, Deniss; Fendt, Christian; Sheikhnezami, Somayeh, E-mail: deniss@stepanovs.org, E-mail: fendt@mpia.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-11-20

    We present MHD simulations exploring the launching, acceleration, and collimation of jets and disk winds. The evolution of the disk structure is consistently taken into account. Extending our earlier studies, we now consider the self-generation of the magnetic field by an α{sup 2}Ω mean-field dynamo. The disk magnetization remains on a rather low level, which helps to evolve the simulations for T > 10, 000 dynamical time steps on a domain extending 1500 inner disk radii. We find the magnetic field of the inner disk to be similar to the commonly found open field structure, favoring magneto-centrifugal launching. The outer disk field is highly inclined and predominantly radial. Here, differential rotation induces a strong toroidal component, which plays a key role in outflow launching. These outflows from the outer disk are slower, denser, and less collimated. If the dynamo action is not quenched, magnetic flux is continuously generated, diffuses outward through the disk, and fills the entire disk. We have invented a toy model triggering a time-dependent mean-field dynamo. The duty cycles of this dynamo lead to episodic ejections on similar timescales. When the dynamo is suppressed as the magnetization falls below a critical value, the generation of the outflows and also accretion is inhibited. The general result is that we can steer episodic ejection and large-scale jet knots by a disk-intrinsic dynamo that is time-dependent and regenerates the jet-launching magnetic field.

  2. A strongly truncated inner accretion disk in the Rapid Burster

    CERN Document Server

    Eijnden, J van den; Degenaar, N; Lohfink, A M; Parker, M L; Zand, J J M in 't; Fabian, A C

    2016-01-01

    The neutron star (NS) low-mass X-ray binary (LMXB) the Rapid Burster (RB; MXB 1730-335) uniquely shows both Type-I and Type-II X-ray bursts. The origin of the latter is ill-understood but has been linked to magnetospheric gating of the accretion flow. We present a spectral analysis of simultaneous Swift, NuSTAR and XMM-Newton observations of the RB during its 2015 outburst. Although a broad Fe-K line has been observed before, the high quality of our observations allows us to model this line using relativistic reflection models for the first time. We find that the disk is strongly truncated at $41.8^{+6.7}_{-5.3}$ gravitational radii ($\\sim 87$ km), which supports magnetospheric Type-II burst models and strongly disfavors models involving instabilities at the innermost stable circular orbit. Assuming that the RB magnetic field indeed truncates the disk, we find $B = (6.2 \\pm 1.5) \\times 10^8$ G, larger than typically inferred for NS LMXBs. In addition, we find a low inclination ($i = 29\\pm2^{\\rm o}$). Finally,...

  3. Modeling the Formation and Evolution of Wind-Capture Disks In Binary Systems

    Science.gov (United States)

    Huarte-Espinosa, M.; Carroll-Nellenback, J.; Nordhaus, J.; Frank, A.; Blackman, E.

    2014-04-01

    In this talk I will present results of recent models of the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. A resolution criteria, based on considerations of Bondi-Hoyle flows, must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbits. We do not observe the presence of any large scale, violent instabilities (such as the flip-flop mode). For the first time it is observed that the wind component that is accreted towards the secondary has a vortex tube-like structure. In the context of AGB binary systems that might be precursors to Pre-Planetary and Planetary Nebula, we find that the wind accretion rates at the chosen orbital separations are generally too small to produce the most powerful outflows observed in these systems if the companions are main sequence stars but marginally capable if the companions are white dwarfs. It is likely that many of the more powerful PPN and PN involve closer binaries than the ones considered here.

  4. Growth of a Protostar and a Young Circumstellar Disk with High Mass Accretion Rate onto the Disk

    CERN Document Server

    Ohtani, Takuya

    2013-01-01

    The growing process of both a young protostar and a circumstellar disk is investigated. Viscous evolution of a disk around a single star is considered with a model where a disk increases its mass by dynamically accreting envelope and simultaneously loses its mass via viscous accretion onto the central star. We focus on the circumstellar disk with high mass accretion rate onto the disk $\\dot{M}=8.512c_{\\rm s}^3/G$ as a result of dynamical collapse of rotating molecular cloud core. We study the origin of the surface density distribution and the origin of the disk-to-star mass ratio by means of numerical calculations of unsteady viscous accretion disk in one-dimensional axisymmetric model. It is shown that the radial profiles of the surface density $\\Sigma$, azimuthal velocity $v_{\\phi}$, and mass accretion rate $\\dot{M}$ in the inner region approach to the quasi-steady state. Profile of the surface density distribution in the quasi-steady state is determined as a result of angular momentum transport rather than...

  5. Dust in the disk winds from young stars as a source of the circumstellar extinction

    CERN Document Server

    Tambovtseva, L V

    2008-01-01

    We examine a problem of the dust grains survival in the disk wind in T Tauri stars (TTSs). For consideration we choose the disk wind model described by Garcia et al. (2001), where a gas component of the wind is heated by an ambipolar diffusion up to the temperature of the order of 10$^4$ K. It is shown that the dust grains heating due to collisions with the gas atoms and electrons is inefficient in comparison with heating by the stellar radiation, and thus, dust survives even in the hot wind component. Owing to this, the disk wind may be opaque for the ultraviolet and optical radiation of the star and is capable to absorb its noticeable fraction. Calculations show that at the accretion rate $\\dot{M_a} = 10^{-8}-10^{-6} M_\\odot$ per year this fraction for TTSs may range from 20% to 40% of a total luminosity of the star correspondingly. This means that the disk wind in TTSs can play the same role as the puffed inner rim considered in the modern models of accretion disks. In Herbig Ae stars (HAEs) inner regions ...

  6. Effects of Toroidal Magnetic Fields on the Thermal Instability of Thin Accretion Disks

    Indian Academy of Sciences (India)

    Sheng-Ming Zheng; Feng Yuan; Wei-Min Gu; Ju-Fu Lu

    2011-03-01

    The standard thin disk model predicts that when the accretion rate is moderately high, the disk is radiation–pressure-dominated and thermally unstable. However, observations indicate the opposite, namely the disk is quite stable. We present an explanation in this work by taking into account the role of the magnetic field which was ignored in the previous analysis.

  7. Equilibrium disks, MRI mode excitation, and steady state turbulence in global accretion disk simulations

    CERN Document Server

    Parkin, E R

    2012-01-01

    Global three dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when non-linear motions - perhaps triggered by the onset of turbulence - upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with...

  8. Magnetized Accretion-Ejection Structures 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    CERN Document Server

    Keppens, R

    2002-01-01

    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a q...

  9. Non-axisymmetric Structure of Accretion Disks in Be/X-ray Binaries

    CERN Document Server

    Hayasaki, K; Hayasaki, Kimitake; Okazaki, Atsuo T.

    2004-01-01

    The non-axisymmetric structure of accretion disks around the neutron star in Be/X-ray binaries is studied by analyzing the results from three dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations. It is found that ram pressure due to the phase-dependent mass transfer from the Be-star disk excites a one-armed, trailing spiral structure in the accretion disk around the neutron star. The spiral wave has a transient nature; it is excited around the periastron, when the material is transferred from the Be disk, and is gradually damped afterwards. It is also found that the orbital phase-dependence of the mass-accretion rate is mainly caused by the inward propagation of the spiral wave excited in the accretion disk.

  10. The effect of gaseous accretion disk on dynamics of the stellar cluster in AGN

    CERN Document Server

    Shukirgaliyev, Bekdaulet

    2016-01-01

    There is a supermassive black hole, a gaseous accretion disk and compact star cluster in the center of active galactic nuclei, as known today. So the activity of AGN can be represented as the result of interaction of these three subsystems. In this work we investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole and a central accretion disk. The dissipative force acting on stars in the disk leads to an asymmetry in the phase space distribution of the central star cluster due to the rotating accretion disk. In our work we present some results of Stardisk model, where we see some changes in density and phase space of central star cluster due to influence of rotating gaseous accretion disk.

  11. Mass accretion rates in self-regulated disks of T Tauri stars

    CERN Document Server

    Vorobyov, E I

    2008-01-01

    We have studied numerically the evolution of protostellar disks around intermediate and upper mass T Tauri stars (0.25 M_sun < M_st < 3.0 M_sun) that have formed self-consistently from the collapse of molecular cloud cores. In the T Tauri phase, disks settle into a self-regulated state, with low-amplitude nonaxisymmetric density perturbations persisting for at least several million years. Our main finding is that the global effect of gravitational torques due to these perturbations is to produce disk accretion rates that are of the correct magnitude to explain observed accretion onto T Tauri stars. Our models yield a correlation between accretion rate M_dot and stellar mass M_st that has a best fit M_dot \\propto M_st^{1.7}, in good agreement with recent observations. We also predict a near-linear correlation between the disk accretion rate and the disk mass.

  12. Numerical Simulation of Rotating Accretion Disk Around the Schwarzschild Black Hole Using GRH Code

    CERN Document Server

    Donmez, O

    2006-01-01

    The 2D time dependent solution of thin accretion disk in a close binary system have been presented on the equatorial plane around the Schwarzschild black hole. To do that, the special part of the General Relativistic Hydrodynamical(GRH) equations are solved using High Resolution Shock Capturing (HRSC) schemes. The spiral shock waves on the accretion disk are modeled using perfect fluid equation of state with adiabatic indices $\\gamma = 1.05, 1.2$ and 5/3. The results show that the spiral shock waves are created for gammas except the case $\\gamma=5/3$. These results consistent with results from Newtonian hydrodynamic code except close to black hole. Newtonian approximation does not give good solution while matter closes to black hole. Our simulations illustrate that the spiral shock waves are created close to black hole and the location of inner radius of spiral shock wave is around $10M$ and it depends on the specific heat rates. We also find that the smaller $\\gamma$ is the more tightly the spiral winds.

  13. Modeling of Disk-Star Interaction: Different Regimes of Accretion and Variability

    CERN Document Server

    Romanova, Marina M; Long, Min; Lovelace, Richard V E

    2008-01-01

    The appearance and time variability of accreting millisecond X-ray pulsars (hereafter AMXPs, e.g. Wijnands & van der Klis 1998) depends strongly on the accretion rate, the effective viscosity and the effective magnetic diffusivity of the disk-magnetosphere boundary. The accretion rate is the main parameter which determines the location of the magnetospheric radius of the star for a given stellar magnetic field. We introduce a classification of accreting neutron stars as a function of the accretion rate and show the corresponding stages obtained from our global 3D magnetohydrodynamic (MHD) simulations and from our axisymmetric MHD simulations. We discuss the expected variability features in each stage of accretion, both periodic and quasi-periodic (QPOs). We conclude that the periodicity may be suppressed at both very high and very low accretion rates. In addition the periodicity may disappear when ordered funnel flow accretion is replaced by disordered accretion through the interchange instability.

  14. Preliminary modelling study of ice accretion on wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Yin, Chungen

    2014-01-01

    One of the main challenges associated with cold-climate wind energy is icing on wind turbines and a series of icing-induced problems such as production loss, blade fatigue and safety issues. Because of the difficulties with on-site measurements, simulations are often used to understand and predict...... icing events. In this paper, a new methodology for prediction of icing-induced production loss is proposed, from which the fundamentals of ice accretion on wind turbines can be better understood and the operational production losses can be more reliably predicted. Computational fluid dynamics (CFD......) modelling of ice accretion on wind turbines is also performed for different ice events, resulting in a reliable framework for CFD-based ice accretion modelling which is one of the key elements in the new methodology....

  15. Correlations among Jet, Accretion Disk, and Broad Line Region of Flat Spectrum Radio Quasars

    CERN Document Server

    Zhang, Jin; He, Jian-Jian; Liang, En-Wei; Zhang, Shuang-Nan

    2015-01-01

    The SEDs of 18 GeV FSRQs are collected and compiled from literature, in which both the jet emission and the accretion disk radiation can be observed, in order to investigate the correlations among their jet power (P_jet), accretion disk luminosity (L_disk), and luminosity of broad line region (BLR, L_BLR). On the basis of the SED fits with the jet radiation and accretion disk radiation models, we calculate P_jet and L_disk. No correlation between P_jet with either L_disk or L_BLR is found. With a sub-sample of L_BLR for 13 GeV FSRQs, it is observed that L_BLR is strongly correlated with their L_disk. We also study the BLR covering factors of the GeV FSRQs in our sample, averagely which are smaller than that of the large samples of radio-loud and radio-quiet quasars. P_jet of some GeV FSRQs is higher than L_disk, but P_jet of all the GeV FSRQs is lower than the accretion power of black hole (BH), which is estimated by \\dot{M}c^2=L_disk/0.1, indicating that the total accretion power of BH is sufficient to drive...

  16. Nucleosynthesis in the gamma-ray burst accretion disks and associated outflows

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars and outflows launched from these disks. We deal with accretion disks having relatively low accretion rates: 0.001 M_sun s^{-1} <~ Mdot <~ 0.01 M_sun s^{-1} and hence they are predominantly advection dominated. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper in the disk. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk and survive in the outflows. Indeed, emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs.

  17. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    Science.gov (United States)

    Begelman, Mitchell C.; Silk, Joseph

    2016-10-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal (φ -direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ˜ 0.1 R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disk of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ˜0.1 of the Eddington limit.

  18. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    CERN Document Server

    Ghosh, Arindam

    2016-01-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. By the time the flow reaches the inner edge, the variation in X-rays needs not reflect the true variation of the rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale also to spread around a mean value. In HMXBs, the size of the viscous Keplerian disk is smaller & thus such a spread could be lower as compared to the LMXBs. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a full knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales when there is an ellipticity in the orbit. We study a few compact binaries using long term RXTE/ASM(1.5-12 keV) & Swift/BAT(15-50keV) data to look for such effects & to infer what the...

  19. The Formation and Evolution of Wind-Capture Disks In Binary Systems

    CERN Document Server

    Huarte-Espinosa, Martin; Nordhaus, Jason; Frank, Adam; Blackman, Eric G

    2012-01-01

    We study the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. We first derive a resolution criteria, based on considerations of Bondi-Hoyle flows, that must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbit...

  20. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-07-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  1. On the Virialization of Disk Winds: Implications for the Black Hole Mass Estimates in AGN

    CERN Document Server

    Kashi, Amit; Nagamine, Kentaro; Greene, Jenny; Barth, Aaron J

    2013-01-01

    [abbreviated] Estimating the mass of a supermassive black hole (SMBH) in an active galactic nucleus (AGN) usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems invalid in BLR models that consists of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, the wind material must, beyond a certain point, be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we check whether gravity governs the flow properties, by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies, We find that in the first two models, the winds are non-virialized whereas the two line-driven disk winds are virialized up to a...

  2. Evidence for Magnetically Driven Protoplanetary Disk Winds

    Science.gov (United States)

    Simon, Molly; Pascucci, Ilaria; Edwards, Suzan; Feng, Wanda; Rigliaco, Elisabetta; Gorti, Uma; Hollenbach, David J.; Tuttle Keane, James

    2017-01-01

    We present Keck high resolution (~7km/s) optical spectra from a sample of 32 pre-main sequence T-Tauri stars in Taurus-Auriga plus TW Hya. We focus on low-excitation forbidden emission lines like the [O I] 6300 Å and 5577 Å lines, whose high-velocity component, with blueshifts between ~30 - 150 km/s, is known to trace fast outflowing material in the form of jets (e.g. Hartigan et al. 1995). The origin of the low-velocity component (LVC), with blueshifts on the order of ~5 km/s, has been long debated. We demonstrate that the LVC can be described by a combination of a broad and a narrow line emitting region. We show that the broad line emitting region is very common, arises within ~0.5 AU from the star, and shows the expected disk wind signature, i.e. larger blueshifts associated with narrower lines and lower disc inclinations. Such winds must be magnetically driven given that the emitting region is well inside the gravitational potential well of the central star. The origin of the narrow line emitting region remains difficult to assess, in particular we cannot exclude that it traces a thermally driven (photoevaporative) wind. Disk winds, both thermally and magnetically driven, might play a major role in the evolution and eventual dispersal of protoplanetary material, which has implications for solar system architectures and planet formation more generally. Hence, it is critical to determine the rate at which mass is lost via disk winds.

  3. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    Science.gov (United States)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  4. Numerical simulation of the Hall effect in magnetized accretion disks with the Pluto code

    Science.gov (United States)

    Nakhaei, Mohammad; Safaei, Ghasem; Abbassi, Shahram

    2014-01-01

    We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By considering an initial magnetic field, using the PLUTO code, we perform a numerical magnetohydrodynamic simulation in order to study the effect of Hall diffusion on the physical structure of the disk. Current density and temperature of the disk are significantly modified by Hall diffusion, but the global structure of the disk is not substantially affected. The changes in the current densities and temperature of the disk lead to a modification in the disk luminosity and radiation.

  5. Ice Accretion Prediction on Wind Turbines and Consequent Power Losses

    Science.gov (United States)

    Yirtici, Ozcan; Tuncer, Ismail H.; Ozgen, Serkan

    2016-09-01

    Ice accretion on wind turbine blades modifies the sectional profiles and causes alteration in the aerodynamic characteristic of the blades. The objective of this study is to determine performance losses on wind turbines due to the formation of ice in cold climate regions and mountainous areas where wind energy resources are found. In this study, the Blade Element Momentum method is employed together with an ice accretion prediction tool in order to estimate the ice build-up on wind turbine blades and the energy production for iced and clean blades. The predicted ice shapes of the various airfoil profiles are validated with the experimental data and it is shown that the tool developed is promising to be used in the prediction of power production losses of wind turbines.

  6. A truncated accretion disk in the galactic black hole candidate source H1743-322

    Institute of Scientific and Technical Information of China (English)

    Kandulapati Sriram; Vivek Kumar Agrawal; Arikkala Raghurama Rao

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carded out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO fre-quency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..

  7. A truncated accretion disk in the galactic black hole source H1743-322

    CERN Document Server

    Sriram, K; Rao, A R

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carried out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO frequency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations from other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..

  8. Alignment of magnetized accretion disks and relativistic jets with spinning black holes.

    Science.gov (United States)

    McKinney, Jonathan C; Tchekhovskoy, Alexander; Blandford, Roger D

    2013-01-04

    Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a "magneto-spin alignment" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.

  9. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards......, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI......) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...

  10. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  11. Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars

    Science.gov (United States)

    Stepinski, Tomasz F.

    1994-01-01

    Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial

  12. Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A

    Science.gov (United States)

    Zhang, Qizhou; Claus, Brian; Watson, Linda; Moran, James

    2017-03-01

    Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26α and H30α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30α line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26α line reveal differences in spatial distribution from that of the H30α line. H26α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R ‑4. In addition, the H30α and H26α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.

  13. Does an Average White Dwarf Have Enough Mass to Prevent an Accretion Disk Tilt?

    CERN Document Server

    Montgomery, M M

    2010-01-01

    In a recent publication, we introduce the lift force as a common source to accretion disk tilt that is likely relevant to accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether the average white dwarf has enough mass to prevent a disk tilt in non-magnetic Cataclysmic Variables (CVs) with accretion disks. Assuming a white dwarf mass of 0.6M$_{\\odot}$ and a disk mass of 10$^{-11}$M$_{\\odot}$, we vary the secondary mass to establish theoretical minimum mass transfer rates needed to induce and maintain a disk tilt of four degrees around the line of nodes. For mass ratios in the range \\( (0.13 \\le q=M_{2}M^{-1} \\le 0.45) \\), we confirm that the secondary mass does not contribute significantly to disk tilt. We also confirm that the average white dwarf does not have enough mass to prevent a disk tilt. We find that disk tilt may be likely in low mass transfer rate systems such a...

  14. Toward realistic simulations of magneto-thermal winds from weakly-ionized protoplanetary disks

    CERN Document Server

    Gressel, Oliver

    2016-01-01

    Protoplanetary disks (PPDs) accrete onto their central T Tauri star via magnetic stresses. When the effect of ambipolar diffusion (AD) is included, and in the presence of a vertical magnetic field, the disk remains laminar between 1-5 au, and a magnetocentrifugal disk wind forms that provides an important mechanism for removing angular momentum. We present global MHD simulations of PPDs that include Ohmic resistivity and AD, where the time-dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization with a simplified recombination chemistry. To investigate whether the mass loading of the wind is potentially affected by the limited vertical extent of our existing simulations, we attempt to develop a model of a realistic disk atmosphere. To this end, by accounting for stellar irradiation and diffuse reprocessing of radiation, we aim at improving our models towards more realistic thermodynamic properties.

  15. A search for the lasts gasps of disk accretion in Orion T Tauri stars

    Science.gov (United States)

    Clark, Catherine; Briceno, Cesar; Calvet, Nuria; Hernandez, Jesus

    2017-01-01

    Using the echelle mode of the Michigan/Magellan Fiber System (M2FS) on the Magellan/Clay telescope at Las Campanas Observatory, we obtained high resolution spectra (R~35000) of a sample of ~4 - 10 Myr old T Tauri stars distributed in ten 0.5 deg diameter fields in the Orion OB1 association.We present here a search for accretion signatures among a sample of weak-line T Tauri stars (WTTS). These are young stars that on the basis of their classification in low-resolution spectra, are assumed to lack a primordial disk and therefore should not be actively accreting. We look for signatures of disk accretion at modest or low levels by measuring the width at 10% height of the H-alpha profile, and looking for a redshifted absorption feature. In parallel, we determine which WTTS among the M2FS sample have infrared excesses indicating a circumstellar disk, to see which disk-bearing WTTS also show indications of accretion. We propose that such WTTS accreting at low levels are T Tauri stars at or nearing the end of their accretion phase. Our goal is to build a large sample of these objects so that we can place statistical contraints on how long the accretion phase lasts in solar-like and low-mass stars.

  16. Blocking Metal Accretion onto Population III Stars by Stellar Wind

    Science.gov (United States)

    Tanaka, Shuta J.; Chiaki, Gen; Tominaga, Nozomu; Susa, Hajime

    2017-08-01

    Low-mass population III (PopIII) stars of ≲ 0.8 {M}⊙ could survive up until the present. The nondetection of low-mass PopIII stars in our Galaxy has already put a stringent constraint on the initial mass function (IMF) of PopIII stars, suggesting that PopIII stars have a top-heavy IMF. On the other hand, some claim that the lack of such stars stems from metal enrichment of their surfaces by the accretion of heavy elements from the interstellar medium (ISM). We investigate the effects of the stellar wind on metal accretion onto low-mass PopIII stars because accretion of the local ISM onto the Sun is prevented by the solar wind, even for neutrals. The stellar wind and radiation of low-mass PopIII stars are modeled based on knowledge of nearby low-mass stellar systems, including our Sun. We find that low-mass PopIII stars traveling across the Galaxy form a stellar magnetosphere in most of their life. Once the magnetosphere is formed, most of the neutral interstellar particles are photoionized before reaching the stellar surface and are blown away by the wind. Especially, the accretion abundance of iron will be reduced by a factor of constraining the IMF of PopIII stars.

  17. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    CERN Document Server

    Hogg, J Drew

    2015-01-01

    The broad-band variability of many accreting systems displays characteristic structure; log-normal flux distributions, RMS-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically-thin ($h/r\\approx0.1$) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially-coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear RMS-flux relations, and radial coher...

  18. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Science.gov (United States)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  19. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    CERN Document Server

    Montgomery, M M

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generates these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic Cataclysmic Variables (CVs) using 3D Smoothed Particle Hydrodynamics (SPH). Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths...

  20. Appearance of Jet-Driving Poynting Flux in Hot, Tenuous Accretion Disks Threaded by an Ordered Magnetic Field

    Science.gov (United States)

    Kaburaki, Osamu

    2012-04-01

    In a series of our previous studies, a model of radiatively inefficient accretion flows (RIAFs) in a global magnetic field (so-called resistive RIAF model) has proved its ability to account for many physical processes taking place in such accretion flows, as realized in the nuclei of galaxies believed to be accreting at a very small fraction of each Eddington accretion rate. Within the present status of this model, however, the model cannot describe the launch of a self-confined bipolar jet from the vicinity of the disk's inner edge, although it allows the existence of a thermal wind widely distributed over the disk surfaces. This is because the electric field (and hence the Poynting flux) vanishes everywhere in the disk, whereas such a jet in a globally ordered magnetic field is most likely to be accelerated electrodynamically. We show in the present paper that this defect can be overcome naturally if we reformulate the problem so as to admit a quasi-stationary change of the magnetic field (and hence the appearance of a non-irrotational electric field), and also restore all of the terms of order ɛ ≡ (vr/vφ)2 ≲ 1 (where vr and vφ denote the radial and azimuthal components, respectively, of the fluid velocity), which have been neglected altogether in our previous scheme. The restored effects are the inertial and magnetic draggings on the infalling matter. As an illustrative example, a model solution that is correct up to {\\cal O} (ɛ) is derived under a set of plausible restrictions. The new solution predicts the appearance of a localized Poynting flux in a region near the disk inner edge, strongly suggesting that a jet is launched from this region. Another interesting prediction is the appearance of a rapid change of the magnetic field, also localized to this region.

  1. Disk Winds as an Explanation for Slowly Evolving Temperatures in Tidal Disruption Events

    CERN Document Server

    Miller, M Coleman

    2015-01-01

    Among the many intriguing aspects of optically discovered tidal disruption events is that their temperatures are lower than expected and that the temperature does not evolve as rapidly with decreasing fallback rate as would be expected in standard disk theory. We show that this can be explained qualitatively using an idea proposed by Laor & Davis in the context of normal active galactic nuclei: that larger accretion rates imply stronger winds and thus that the accretion rate through the inner disk only depends weakly on the inflow rate at the outer edge of the disk. We also show that reasonable quantitative agreement with data requires that, as has been suggested in recent papers, the circularization radius of the tidal stream is approximately equal to the semimajor axis of the most bound orbit of the debris rather than twice the pericenter distance as would be expected without rapid angular momentum redistribution. If this explanation is correct, it suggests that the evolution of tidal disruption events ...

  2. Complex organic molecules along the accretion flow in isolated and externally irradiated protoplanetary disks

    CERN Document Server

    Walsh, Catherine; Nomura, Hideko; Millar, T J; Weaver, Susanna Widicus

    2014-01-01

    (Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ice...

  3. Inner Accretion Disk Regions of Black Hole X-ray Binaries

    Science.gov (United States)

    Salvesen, Greg

    2015-01-01

    The innermost regions of accretion disks in black hole X-ray binaries dominate the observed X-ray emission, which is the main diagnostic that one uses to gain insights into the physics of black holes and accretion. The standard spectrum predicted from a geometrically thin, optically thick disk experiences non-trivial modification due to conspiring physical effects operating within the vertical disk structure such as Comptonization, free-free emission/absorption, bound-free opacities, and energy dissipation by magnetic processes. The complicated interplay of these effects cause the seed accretion disk spectrum to become hardened and it is this hardened emergent spectrum that we observe. To zeroth order, this hardening can be described by a phenomenological parameter called the spectral hardening factor.In practice, the adopted degree of spectral hardening is confined to lie within a rather restrictive range. I will discuss the following consequences of relaxing this criterion, while still requiring the spectral hardening factor to take on physically plausible values. Examining multiple state transitions of the black hole X-ray binary GX 339-4 with archival data from the Rossi X-ray Timing Explorer, I will show that appealing to a spectral hardening factor that varies during state transitions provides a viable alternative to a truncated disk model for the evolution of the inner accretion disk. Having demonstrated that moderate degrees of accretion disk spectral hardening cannot be ruled out by observations, I will explore this possibility from a theoretical standpoint. Extending previous work on radiative transfer modeling coupled to the vertical disk structure, I present the impacts on the emergent accretion disk spectrum caused by disk inclination and by allowing accretion power to be dissipated in the corona. Using magnetohydrodynamic simulations of a localized patch of the accretion disk (i.e., shearing box) performed with the Athena code, I will present the

  4. Molecule survival in magnetized protostellar disk winds. I. Chemical model and first results

    CERN Document Server

    Panoglou, D; Forets, G Pineau des; Garcia, P J V; Ferreira, J; Casse, F

    2011-01-01

    Molecular counterparts to atomic jets have been detected within 1000 AU of young stars. Reproducing them is a challenge for proposed ejection models. We explore whether molecules may survive in an MHD disk wind invoked to reproduce the kinematics and tentative rotation signatures of atomic jets in T Tauri stars. The coupled ionization, chemical and thermal evolution along dusty flow streamlines is computed for a prescribed MHD disk wind solution, using a method developed for magnetized shocks in the interstellar medium. Irradiation by wind-attenuated coronal X-rays and FUV photons from accretion hot spots is included, with self-shielding of H2 and CO. Disk accretion rates of 5e-6, 1e-6 and 1e-7 solar masses per year are considered, representative of low-mass young protostars (Class 0), evolved protostars (Class I) and very active T Tauri stars (Class II). The disk wind has an onion-like thermo-chemical structure, with streamlines launched from larger radii having lower temperature and ionisation, and higher H...

  5. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    Science.gov (United States)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ˜600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10-5 M ⊙ yr-1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  6. Enhanced MHD transport in astrophysical accretion flows: turbulence, winds and jets

    CERN Document Server

    Dobbie, Peter B; Bicknell, Geoffrey V; Salmeron, Raquel

    2009-01-01

    Astrophysical accretion is arguably the most prevalent physical process in the Universe; it occurs during the birth and death of individual stars and plays a pivotal role in the evolution of entire galaxies. Accretion onto a black hole, in particular, is also the most efficient mechanism known in nature, converting up to 40% of accreting rest mass energy into spectacular forms such as high-energy (X-ray and gamma-ray) emission and relativistic jets. Whilst magnetic fields are thought to be ultimately responsible for these phenomena, our understanding of the microphysics of MHD turbulence in accretion flows as well as large-scale MHD outflows remains far from complete. We present a new theoretical model for astrophysical disk accretion which considers enhanced vertical transport of momentum and energy by MHD winds and jets, as well as transport resulting from MHD turbulence. We also describe new global, 3D simulations that we are currently developing to investigate the extent to which non-ideal MHD effects may...

  7. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    Science.gov (United States)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  8. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-07-01

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin (h/r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.

  9. FUV Irradiation and the Heat Signature of Accretion in Protoplanetary Disk Atmospheres

    Science.gov (United States)

    Najita, Joan R.; Ádámkovics, Máté

    2017-09-01

    Although stars accrete mass throughout the first few million years of their lives, the physical mechanism that drives disk accretion in the T Tauri phase is uncertain, and diagnostics that probe the nature of disk accretion have been elusive, particularly in the planet formation region of the disk. Here we explore whether an accretion process such as the magnetorotational instability (MRI) could be detected through its “heat signature,” the energy it deposits in the disk atmosphere. To examine this possibility, we investigate the impact of accretion-related mechanical heating and energetic stellar irradiation (FUV and X-rays) on the thermal-chemical properties of disk atmospheres at planet formation distances. We find that stellar FUV irradiation ({Ly}α and continuum), through its role in heating and photodissociation, affects much of the upper warm (400–2000 K) molecular layer of the atmosphere, and the properties of the layer are generally in good agreement with the observed molecular emission features of disks at UV, near-infrared, and mid-infrared wavelengths. At the same time, the effect of FUV irradiation is restricted to the upper molecular layer of the disk, even when irradiation by {Ly}α is included. The region immediately below the FUV-heated layer is potentially dominated by accretion-related mechanical heating. As cooler (90–400 K) CO, water, and other molecules are potential diagnostics of the mechanically heated layer, emission line studies of these diagnostics might be used to search for evidence of the MRI in action.

  10. ANISOTROPY OF X-RAY BURSTS FROM NEUTRON STARS WITH CONCAVE ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    He, C.-C. [College of Physics, Jilin University, Changchun 130012 (China); Keek, L., E-mail: jordanhe1994@gmail.com [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-03-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is anisotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk make the observed flux dependent on the inclination angle of the disk with respect to the line of sight. This is of importance for the interpretation of thermonuclear X-ray bursts from neutron stars. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star’s equation of state. Previous predictions of the anisotropy factors assumed a geometrically flat disk. Detailed observations of two so-called superbursts allowed for the direct and the reflected burst fluxes to each be measured separately. The reflection fraction was much higher than what the anisotropies of a flat disk can account for. We create numerical models to calculate the anisotropy factors for different disk shapes, including concave disks. We present the anisotropy factors of the direct and reflected burst fluxes separately, as well as the anisotropy of the persistent flux. Reflection fractions substantially larger than unity are produced in the case where the inner accretion disk increases steeply in height, such that part of the star is blocked from view. Such a geometry could possibly be induced by the X-ray burst if X-ray heating causes the inner disk to puff up.

  11. Crossing the Eddington limit: examining disk spectra at high accretion rates

    CERN Document Server

    Sutton, Andrew D; Roberts, Timothy P; Middleton, Matthew J; Soria, Roberto; Done, Chris

    2016-01-01

    The faintest ultraluminous X-ray sources (ULXs), those with 0.3-10 keV luminosities 1 < L_X/10^39 < 3 erg s^-1, tend to have X-ray spectra that are disk-like but broader than expected for thin accretion disks. These `broadened disk' spectra are thought to indicate near- or mildly super-Eddington accretion onto stellar remnant black holes. Here we report that a sample of bright thermal-dominant black hole binaries, which have Eddington ratios constrained to moderate values, also show broadened disk spectra in the 0.3-10 keV band at an order of magnitude lower luminosities. This broadening would be missed in studies that only look above ~2 keV. While this may suggest that broadened disk ULXs could be powered by accretion onto massive stellar remnant black holes with close to maximal spin, we argue in favor of a scenario where they are at close to the Eddington luminosity, such that radiation pressure would be expected to result in geometrically slim, advective accretion disks. However, this implies that a...

  12. Diffusive Particle Acceleration in Shocked, Viscous Accretion Disks: Green's Function Energy Distribution

    Science.gov (United States)

    Becker, Peter A.; Das, Santabrata; Le, Truong

    2011-12-01

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classical method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {\\sim}0.01\\,\\dot{M} c^2, and the outflowing relativistic particles have a mean energy ~300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.

  13. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    Science.gov (United States)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  14. Accretion disks before (?) the main planet formation phase

    NARCIS (Netherlands)

    Dominik, C.

    2009-01-01

    Protoplanetary disks are the sites of planet formation and therefore one of the foremost targets of future facilities in astronomy. In this review, I will discuss the main options for using JWST and concurrent facilities to study the early, gas-rich, massive phases of protoplanetary disks. We discus

  15. Critical condition for the propeller effect in systems with magnetized neutron stars accreting from geometrically thin accretion disks

    Science.gov (United States)

    Ertan, Unal

    2016-07-01

    The inner disk radius around a magnetized neutron star in the spin-down phase is usually assumed to be close to the radius at which the viscous and magnetic stresses are balanced. With different assumptions, this radius is estimated to be very close the Alfven radius. Furthermore, it is commonly assumed that the propeller mechanism can expel the matter from the system when this radius is found to be greater than the co-rotation radius. In the present work, we have shown with simple analytical calculations from the first principles that a steady-state propeller mechanism cannot be established at the radius where the viscous and the magnetic torques are balanced. We have found that a steady-state propeller phase can be built up with an inner disk radius that is at least ~10 - 30 times smaller than the Alfven radius depending on the current mass-flow rate of the disk, the field strength and the rotational period of the source. This result also indicates that the critical accretion rate for the accretion-propeller transition is orders of magnitude smaller than the rate found by equating the Alfven and the co-rotation radii. Our results are consistent with the properties of recently discovered transitional millisecond pulsars which show transitions between the rotational powered radio pulsar and the accretion powered X-ray pulsar states.

  16. Suppression of type I migration by disk winds

    CERN Document Server

    Ogihara, Masahiro; Guillot, Tristan

    2015-01-01

    Planets less massive than Saturn tend to rapidly migrate inward in protoplanetary disks. This is the so-called type I migration. Simulations attempting to reproduce the observed properties of exoplanets show that type I migration needs to be significantly reduced over a wide region of the disk for a long time. However, the mechanism capable of suppressing type I migration over a wide region has remained elusive. The recently found turbulence-driven disk winds offer new possibilities. We investigate the effects of disk winds on the disk profile and type I migration for a range of parameters that describe the strength of disk winds. We also examine the in situ formation of close-in super-Earths in disks that evolve through disk winds. The disk profile, which is regulated by viscous diffusion and disk winds, was derived by solving the diffusion equation. We carried out a number of simulations and plot here migration maps that indicate the type I migration rate. We also performed N-body simulations of the formati...

  17. Tidally-Driven Transport in Accretion Disks in Close Binary Systems

    CERN Document Server

    Blondin, J M

    1999-01-01

    The effects of binary tidal forces on transport within an accretion disk are studied with a time-dependent hydrodynamical model of a two-dimensional isothermal accretion disk. Tidal forces quickly truncate the accretion disk to radii of order half the average radius of the Roche lobe, and excite a two-armed spiral wave that remains stationary in the rotating reference frame of the binary system. We measure an effective alpha of order 0.1 near the outer edge of the disk in all of our models, independent of the mass ratio, Mach number, and radial density profile. However, in cold disks with high Mach number, the effective alpha drops rapidly with decreasing radius such that it falls below our threshold of measurement (roughly .001) at a radius of only one third the tidal radius. In warmer disks where the Mach numbers remain below 20, we can measure an effective alpha down to radii 10 times smaller than the maximum size of the disk.

  18. Connections Between Tilted Accretion Disks Around White Dwarfs and Substellar Companions

    CERN Document Server

    Montgomery, M M

    2010-01-01

    Accretion disks in white dwarf systems are believed to be tilted. In a recent publication, the lift force has been suggested to be a source to disk tilt, a source that is likely relevant to all accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether a brown dwarf donor star accreting onto a white dwarf primary has enough mass to contribute to disk tilt. We also would like to obtain whether a white dwarf - brown dwarf close binary system has enough mass to induce and maintain a disk tilt of four degrees. We adopt SDSS 103533.03+055158.4 as our model system which has a mass transfer rate of \\( (10\\pm2) \\times 10^{-12} \\) M$_{\\odot}$ yr$^{-1}$. We find that the brown dwarf in SDSS 1035 does not have enough mass to contribute to disk tilt. We find a gross magnitude of the minimum mass transfer rate to be $\\sim10^{-10}$M$_{\\odot}$yr$^{-1}$. We conclude that SDSS 1035 does not ...

  19. Connections between Tilted Accretion Disks around White Dwarfs and Substellar Companions

    CERN Document Server

    Montgomery, M M

    2011-01-01

    Accretion disks in white dwarf systems are believed to be tilted. In a recent publication, the lift force has been suggested to be a source to disk tilt, a source that is likely relevant to all accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether a brown dwarf donor star accreting onto a white dwarf primary has enough mass to contribute to disk tilt. We also would like to obtain whether a white dwarf - brown dwarf close binary system has enough mass to induce and maintain a disk tilt of four degrees. We adopt SDSS 103533.03+055158.4 as our model system which has a mass transfer rate of (10 \\pm 2) x 10-12 M* yr-1. We find that the brown dwarf in SDSS 1035 does not have enough mass to contribute to disk tilt. We find a gross magnitude of the minimum mass transfer rate to be - 10-10 M* yr-1 . We conclude that SDSS 1035 does not seem to have a high enough mass transfer rat...

  20. Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Lindner, C C; Anninos, P; Salmonson, J D

    2008-09-24

    In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.

  1. Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Lindner, C C; Anninos, P; Salmonson, J D

    2008-09-24

    In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.

  2. Atlas of Tilted Accretion Disks & Source to Negative Superhumps

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Using smoothed particle hydrodynamics, we numerically simulate steady state accretion discs for Cataclysmic Variable Dwarf Novae systems that have a secondary-to-primary mass ratio (0.35 \\le q \\le 0.55). After these accretion discs have come to quasi-equilibrium, we rotate each disc out of the orbital plane by (\\delta = (1, 2, 3, 4, 5,) or (20)^{o}) to induce negative superhumps. For accretion discs tilted $5^{o}$, we generate light curves and associated Fourier transforms for an atlas on negative superhumps and retrograde precession. Our simulation results suggest that accretion discs need to be tilted more than three degrees for negative superhumps to be statistically significant. We also show that if the disc is tilted enough such that the gas stream strikes a disc face, then a dense cooling ring is generated near the radius of impact. In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional lig...

  3. Occurrence of instability through the protostellar accretion disks by landing of low-mass condensations

    CERN Document Server

    Elyasi, Mahjubeh

    2016-01-01

    Low-mass condensations (LMCs) are observed inside the envelope of the collapsing molecular cloud cores. In this research, we investigate the effects of landing LMCs for occurrence of instability through the protostellar accretion disks. We consider some regions of the disk where duration of infalling and landing of the LMCs are shorter than the orbital period. In this way, we can consider the landing LMCs as density bumps and grooves in the azimuthal direction of an initial thin axisymmetric steady state self-gravitating protostellar accretion disk (nearly Keplerian). Using the linear effects of the bump quantities, we obtain a characteristic equation for growth/decay rate of bumps; we numerically solve it to find occurrence of instability. We also evaluate the minimum-growth-time-scale (MGTS) and the enhanced mass accretion rate. The results show that infalling and landing of the LMCs in the inner regions of the protostellar accretion disks can cause faster unstable modes and less enhanced accretion rates re...

  4. What Kinds of Accretion Disks Are There in the Nuclei of Radio Galaxies?

    CERN Document Server

    Kaburaki, Osamu; Tamura, Naoya; Wajima, Kiyoaki

    2010-01-01

    It seems to be a widely accepted opinion that the types of accretion disks (or flows) generally realized in the nuclei of radio galaxies and in further lower mass-accretion rate nuclei are inner, hot, optically thin, radiatively inefficient accretion flows (RIAFs) surrounded by outer, cool, optically thick, standard type accretion disks. However, observational evidence for the existence of such outer cool disks in these nuclei is rather poor. Instead, recent observations sometimes suggest the existence of inner cool disks of non-standard type, which develop in the region very close to their central black holes. Taking NGC 4261 as a typical example of such light eating nuclei, for which both flux data ranging from radio to X-ray and data for the counterjet occultation are available, we examine the plausibility of such a picture for the accretion states as mentioned above, based on model predictions. It is shown that the explanation of the gap seen in the counterjet emission in terms of the free-free absorption...

  5. The dynamic of stellar wind accretion and the HMXB zoo

    Science.gov (United States)

    Walter, Roland; Manousakis, Antonios

    2016-07-01

    The dynamic of the accretion of stellar wind on the pulsar in Vela X-1 is dominated by unstable hydrodynamical flows. Off-states, 10^{37} erg/s flares, quasi-periodic oscillations and log normal flux distribution can all be reproduced by hydrodynamical simulations and reveal the complex motion of bow shocks moving either towards or away from the neutron star. These behaviors are enlightening the zoo of HMXB and suggest new phenomenology to be detected.

  6. Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes

    OpenAIRE

    Takahashi, Rohta

    2004-01-01

    Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...

  7. Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes

    OpenAIRE

    Takahashi, Rohta

    2004-01-01

    Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...

  8. Annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; LIU Tong; LU JuFu

    2009-01-01

    We discuss how the annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst,LW-, is determined by the disk's fundamental parameters, namely, the mass of the central black hole M,the mass accretion rate M, and the viscosity parameter α.It is shown that LW- depends mainly on M in evidence, and decreases with increasing M, but is almost independent of α. This result argues additionally that the central black hole in a gamma-ray burst must be with a stellar mass.

  9. Suppression of type I migration by disk winds

    Science.gov (United States)

    Ogihara, Masahiro; Morbidelli, Alessandro; Guillot, Tristan

    2015-12-01

    Context. Planets less massive than Saturn tend to rapidly migrate inward in protoplanetary disks. This is the so-called type I migration. Simulations attempting to reproduce the observed properties of exoplanets show that type I migration needs to be significantly reduced over a wide region of the disk for a long time. However, the mechanism capable of suppressing type I migration over a wide region has remained elusive. The recently found turbulence-driven disk winds offer new possibilities. Aims: We investigate the effects of disk winds on the disk profile and type I migration for a range of parameters that describe the strength of disk winds. We also examine the in situ formation of close-in super-Earths in disks that evolve through disk winds. Methods: The disk profile, which is regulated by viscous diffusion and disk winds, was derived by solving the diffusion equation. We carried out a number of simulations and plot here migration maps that indicate the type I migration rate. We also performed N-body simulations of the formation of close-in super-Earths from a population of planetesimals and planetary embryos. Results: We define a key parameter, Kw, which determines the ratio of strengths between the viscous diffusion and disk winds. For a wide range of Kw, the type I migration rate is presented in migration maps. These maps show that type I migration is suppressed over the whole close-in region when the effects of disk winds are relatively strong (Kw ≲ 100). From the results of N-body simulations, we see that type I migration is significantly slowed down assuming Kw = 40. We also show that the results of N-body simulations match statistical orbital distributions of close-in super-Earths.

  10. From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets

    Science.gov (United States)

    Perez-Becker, Daniel Alonso

    2013-12-01

    This dissertation is composed of three independent projects in astrophysics concerning phenomena that are concurrent with the birth, life, and death of planets. In Chapters 1 & 2, we study surface layer accretion in protoplanetary disks driven stellar X-ray and far-ultraviolet (FUV) radiation. In Chapter 3, we identify the dynamical mechanisms that control atmospheric heat redistribution on hot Jupiters. Finally, in Chapter 4, we characterize the death of low-mass, short-period rocky planets by their evaporation into a dusty wind. Chapters 1 & 2: Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. We find that disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by condensates---ranging from mum-sized dust to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. In contrast, ionization by stellar FUV radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. Even though the FUV-ionized layer is ˜10--100 times more turbulent than the X-ray-ionized layer, mass accretion rates of both layers are comparable because FUV photons penetrate to lower surface densities than do X-rays. We conclude that surface layer accretion occurs at observationally significant rates at radii ≳ 1--10 AU. At smaller radii, both X-ray- and FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance and an additional means of transport is needed. In the case of transitional disks, it could be provided by planets. Chapter 3: Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy

  11. The effect of magnetic resistivity in advection dominated accretion disk with poloidal magnetic

    Directory of Open Access Journals (Sweden)

    J Ghanbari

    2009-12-01

    Full Text Available In this work, we carry out self –similar solutions of viscous-resistive accretion flows around a magnetized compact object. We consider an axi-symmetric, rotating, isothermal steady accretion flow, which contains a poloidal magnetic field of the central star. The dominant mechanism of energy dissipation is assumed to be the turbulence viscosity and magnetic diffusivity due to the magnetic field of the central star. We explore the effect of viscosity, magnetic diffusivity and advection on a rotating disk. We show that dynamical quantities of advection dominated accretion flows (ADAFs are sensitive to the advection, viscosity and magnetic diffusivity parameters.

  12. The Evolution of Gas and Dust in Protoplanetary Accretion Disks

    CERN Document Server

    Birnstiel, T

    2011-01-01

    Dust constitutes only about one percent of the mass of circumstellar disks, yet it is of crucial importance for the modeling of planet formation, disk chemistry, radiative transfer and observations. The initial growth of dust from sub-micron sized grains to planetesimals and also the radial transport of dust in disks around young stars is the topic of this thesis. Circumstellar dust is subject to radial drift, vertical settling, turbulent mixing, collisional growth, fragmentation and erosion. We approach this subject from three directions: analytical calculations, numerical simulations, and comparison to observations. We describe the physical and numerical concepts that go into a model which is able to simulate the radial and size evolution of dust in a gas disk which is viscously evolving over several million years. The resulting dust size distributions are compared to our analytical predictions and a simple recipe for obtaining steady-state dust size distributions is derived. With the numerical model at han...

  13. White Dwarf Pollution by Disk Accretion of Tidally Disrupted Rocky Bodies

    Science.gov (United States)

    Feng, Wanda; Desch, Steven

    2017-01-01

    Approximately 30% of cool white dwarfs (WDs) show heavy elements which should otherwise sediment out of their atmospheres (Koester et al. 2014; Zuckerman et al. 2010). The prevailing model for the pollution of white dwarf photospheres invokes the formation of a solid disk upon a rocky body falling within the WD Roche radius, which is then transported inward by Poynting-Robertson drag (e.g., Metzger et al. 2012, Rafikov 2011). At high temperatures close to the WD, solid particles sublimate to gas that accretes onto the WD and viscously spreads outward. This concept is supported by observations of Ca II emission from WD disks (e.g., Manser et al. 2016). The model by Metzger et al. (2012) successfully explains the range in inferred mass accretion rates (10^10 g/s, Farihi et al. 2010), provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (MRI). However, Metzger et al. (2012) do not consider disk chemistry or dust-to-gas mixing in their model, and do not calculate the degree of ionization to explore the extent of MRI in WD disks.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The disk composition is considered with changes in sublimation rate by pressure. The degree of ionization is determined by considering UV, X-ray, and high-temperature ionization. We calculate the rate of viscous spreading and accretion rates of metals onto WDs.

  14. Magnetic Activity in Thick Accretion Disks and Associated Observable Phenomena I. Flux Expulsion

    OpenAIRE

    Chakrabarti, Sandip K.; D'Silva, Sydney

    1993-01-01

    We study the dynamics of toroidal magnetic flux tubes, symmetric about the rotation axis, inside non-magnetic thick accretion disks around black holes. We present model equations which include effects of gravity, centrifugal force, pressure gradient force, Coriolis force, drag, magnetic tension and magnetic buoyancy. We solve them assuming the disk to be adiabatic. We show that under a wide range of parameters describing the size and the field strength, as well as angular momentum distributio...

  15. Accretion disk reverberation with Hubble Space Telescope observations of NGC 4593

    Science.gov (United States)

    Cackett, Edward; McHardy, Ian; Horne, Keith D.; Goad, Michael; Edelson, Rick; Korista, Kirk T.; Chiang, Chia-Ying

    2017-08-01

    Irradiation of the accretion disk by X-ray/EUV photons should lead to wavelength-dependent UV/optical continuum time lags as the hotter, inner parts of the disk will see the variable irradiating flux before the cooler, outer parts of the disk. Recently, there has been a significant improvement in wavelength-dependent lag measurements from high-cadence monitoring and a picture is emerging that the accretion disk sizes are a factor of 2 - 3 larger than predicted by the standard disk model. We obtained Hubble Space Telescope spectroscopy of NGC 4593 as part of a larger multi-wavelength reverberation mapping campaign including monitoring by Swift and Kepler. From 2016 July 12 to 2016 August 6 we performed 26 observations with an approximately daily cadence using the Space Telescope Imaging Spectrograph. The spectra cover a nearly continuous wavelength range from approximately 1150 - 10000Å. The continuum is significantly variable at all wavelengths, with variations at 1150Å leading variations at 8950Å by approximately 1.2 days. In the scenario where X-rays or EUV photons drive variability in the accretion disk the time lags should follow λ4/3. Here, we see a significant deviation from this around the Balmer jump, indicating a large contribution to the lags from diffuse continuum emission in the broad line region. However, even when taking this diffuse continuum lag into account, we still find that the accretion disk lags are a factor of about 3 larger than expected from the standard disk model.

  16. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    CERN Document Server

    Harko, Tiberiu; Mocanu, Gabriela

    2014-01-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise, which accounts for the general memory and retarded effects of the frictional force, and on the fluctuation-dissipation theorem. The presence of the memory effects influences the response of the disk to external random interactions, and modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The Power Spectral Distribution (PSD) of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the Intra...

  17. Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical SatelliteAccretion

    Energy Technology Data Exchange (ETDEWEB)

    Kazantzidis, Stelios; Bullock, James S.; Zentner, Andrew R.; Kravtsov, Andrey V.; Moustakas, Leonidas A.

    2007-12-03

    We conduct a series of high-resolution, fully self-consistent dissipation less N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the {Lambda}CDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach combining cosmological simulations and controlled numerical experiments. Substructure mass functions, orbital distributions, internal structures, and accretion times are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. We demonstrate that accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z {approx} 1 should be common occurrences. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. This is due to the fact that massive subhalos with small orbital pericenters that are most capable of strongly perturbing the disk become either tidally disrupted or suffer substantial mass loss prior to z = 0. One host halo merger history is subsequently used to seed controlled N-body experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. These simulations track the effects of six dark matter substructures, with initial masses in the range {approx} (0.7-2) x 10{sup 10} M{sub {circle_dot}} ({approx} 20-60% of the disk mass), crossing the disk in the past {approx} 8 Gyr. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a long-lived, low-surface brightness, ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams in configuration space. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard 'thin-thick' disk decomposition, where the 'thick' disk

  18. Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical SatelliteAccretion

    Energy Technology Data Exchange (ETDEWEB)

    Kazantzidis, Stelios; Bullock, James S.; Zentner, Andrew R.; Kravtsov, Andrey V.; Moustakas, Leonidas A.

    2007-12-03

    We conduct a series of high-resolution, fully self-consistent dissipation less N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the {Lambda}CDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach combining cosmological simulations and controlled numerical experiments. Substructure mass functions, orbital distributions, internal structures, and accretion times are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. We demonstrate that accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z {approx} 1 should be common occurrences. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. This is due to the fact that massive subhalos with small orbital pericenters that are most capable of strongly perturbing the disk become either tidally disrupted or suffer substantial mass loss prior to z = 0. One host halo merger history is subsequently used to seed controlled N-body experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. These simulations track the effects of six dark matter substructures, with initial masses in the range {approx} (0.7-2) x 10{sup 10} M{sub {circle_dot}} ({approx} 20-60% of the disk mass), crossing the disk in the past {approx} 8 Gyr. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a long-lived, low-surface brightness, ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams in configuration space. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard 'thin-thick' disk decomposition, where the 'thick' disk

  19. Spin Evolution of Accreting Young Stars. I. Effect of Magnetic Star-Disk Coupling

    CERN Document Server

    Matt, Sean P; de la Reza, Ramiro; Greene, Thomas P

    2010-01-01

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, we neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3~Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For...

  20. A Hot and Massive Accretion Disk around the High-Mass Protostar IRAS 20126+4104

    CERN Document Server

    Chen, Huei-Ru Vivien; Zhang, Qizhou; Sridharan, T K; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-01-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array that for the first time measure the disk density, temperature, and rotational velocity with sufficient resolution (0.37", equivalent to ~600 AU) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 AU region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3x10^4 Lsun, the optimized model gives a disk mass of ...

  1. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Pino, Jesse [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  2. Radiation Pressure-supported Accretion Disks: Vertical Structure, Energy Advection, and Convective Stability

    CERN Document Server

    Gu, Wei-Min

    2012-01-01

    By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the profile of density implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help to understand why the standard thin disk model is likely to be inaccurate above \\sim 0.3 Eddington luminosity, which was found by some works on the black hole spi...

  3. Circumbinary ring, circumstellar disks, and accretion in the binary system UY Aurigae

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Dutrey, Anne; Guilloteau, Stéphane; Di Folco, Emmanuel [Université de Bordeaux, Observatoire Aquitain des Sciences de l' Univers, CNRS, UMR 5804, Laboratoire d' Astrophysique de Bordeaux, 2 rue de l' Observatoire, BP 89, F-33271 Floirac Cedex (France); Piétu, Vincent; Gueth, Fréderic [IRAM, 300 rue de la piscine, F-38406 Saint Martin d' Hères Cedex (France); Beck, Tracy [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boehler, Yann [Centro de Radioastronomìa y Astrofìsica, UNAM, Apartado Postal 3-72, 58089 Morelia, Michoacàn (Mexico); Bary, Jeff [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Simon, Michal, E-mail: ywtang@asiaa.sinica.edu.tw [Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2014-09-20

    Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary (CB) disks may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe {sup 13}CO 2-1, C{sup 18}O 2-1, SO 5(6)-4(5) and {sup 12}CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.''26 based on our 1.4 mm continuum data. This is 0.''07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in R band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.

  4. Shock-driven Accretion in Circumplanetary Disks: Observables and Satellite Formation

    Science.gov (United States)

    Zhu, Zhaohuan; Ju, Wenhua; Stone, James M.

    2016-12-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α coefficient characterizing angular momentum transport is ˜0.001-0.02. The disk surface density ranges from 10 to 1000 g cm-2 in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.

  5. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    Science.gov (United States)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  6. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes and AGN

    CERN Document Server

    Grzędzielski, Mikołaj; Czerny, Bożena; Wu, Qingwen

    2016-01-01

    Black holes surrounded by accretion disks are present in the Universe in different scales of masses, from microquasars up to the Active Galactic Nuclei. The current picture of the accretion disk theory remains still ad hoc, due the complexity of the magnetic field action. In addition, the accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed the light on both the role of radiation pressure and magnetic field in the accretion process. We compute the structure and time evolution of an accretion disk. We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetization of the disk. We study the results for a large grid of models and derive conclusions separately for different scales of black hole masses. We show the dependences between the flare, or outburst, duration, its amplitude and period...

  7. Disk Wind in the Radiation of Two Herbig Ae/Be Stars: MWC 480 and IL Cep

    Science.gov (United States)

    Grinin, V.; Tambovtseva, L.; Potravnov, I.; Mkrtichian, D.

    2017-02-01

    Using non-LTE modeling for different components of the curcumstellar environment in Herbig AeBe stars, we reproduced hydrogen emission lines, such as Hα and Hβ, and determined geometrical and physical parameters of the line emitting regions. Two Herbig stars (MWC 480 and IL Cep) have been considered. The modeling shows that the disk wind or X-wind are the main contributors to the radiation of the lines of the Balmer series compared to the magnetospheric accreting region.

  8. Circumstellar disks of the most vigorously accreting young stars.

    Science.gov (United States)

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.

  9. Magnetically Driven Accretion Flows in the Kerr Metric IV: Dynamical Properties of the Inner Disk

    CERN Document Server

    Krolik, J H; Hirose, S; Krolik, Julian H.; Hawley, John F.; Hirose, Shigenobu

    2004-01-01

    This paper continues the analysis of a set of general relativistic 3D MHD simulations of accreting tori in the Kerr metric with different black hole spins. We focus on bound matter inside the initial pressure maximum, where the time-averaged motion of gas is inward and an accretion disk forms. We use the flows of mass, angular momentum, and energy in order to understand dynamics in this region. The sharp reduction in accretion rate with increasing black hole spin reported in Paper I of this series is explained by a strongly spin-dependent outward flux of angular momentum conveyed electromagnetically; when a/M > 0.9, this flux can be comparable to the inward angular momentum flux carried by the matter. In all cases, there is outward electromagnetic angular momentum flux throughout the flow; in other words, contrary to the assertions of traditional accretion disk theory, there is in general no "stress edge", no surface within which the stress is zero. The retardation of accretion in the inner disk by electromag...

  10. Wind accretion in symbiotic X-ray binaries

    CERN Document Server

    Postnov, K; González-Galán, A; Kuulkers, E; Kretschmar, P; Larsson, S; Finger, M H; Kochetkova, A; Lü, G; Yungelson, L

    2011-01-01

    The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical accretion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from \\sim 40 to 120, and their birthrate is \\sim 5\\times 10^{-5}-10^{-4} per year. According to our mode...

  11. Shock-driven Accretion in Circumplanetary Disks: Observables and Satellite Formation

    CERN Document Server

    Zhu, Zhaohuan; Stone, James M

    2016-01-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two dimensional hydrodynamical simulations with radiative cooling to study CPDs, and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock driven accretion is, on the other hand, unsteady on a timescale of months/years due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet's Hill radius all the way to th...

  12. Structure analysis of solution to equations of quasi 3-D accretion disk model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper we discuss the problems contained in the solution to the equations of quasi 3-D accretion disk model, and point out that the angular momentum equation should not be integrated directly. Finally, we develop a criterion of the existence of a disconnected solution to this model.

  13. Relativistic lines and reflection from the inner accretion disks around neutron stars

    NARCIS (Netherlands)

    Cackett, E.M.; Miller, J.M.; Ballantyne, D.R.; Barret, D.; Bhattacharyya, S.; Boutelier, M.; Miller, M.C.; Strohmayer, T.E.; Wijnands, R.

    2010-01-01

    A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk w

  14. Simulating the Formation of Massive Protostars: I. Radiative Feedback and Accretion Disks

    CERN Document Server

    Klassen, Mikhail; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-01-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M$_{\\odot}$. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2-10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M$_{\\odot}$ simulation, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively-driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the dis...

  15. Parsec-scale accretion and winds irradiated by a quasar

    CERN Document Server

    Dorodnitsyn, Anton; Proga, Daniel

    2015-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galaxy (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation-hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds $L>0.01\\,L_{\\rm Edd}$, where $L_{\\rm Edd}$ is the Eddingto...

  16. Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations

    CERN Document Server

    Yvart, W; Forets, G Pineau des; Ferreira, J

    2016-01-01

    We investigate whether the broad wings of H2O emission identified with Herschel towards low-mass Class 0 and Class 1 protostars may be consistent with an origin in a dusty MHD disk wind, and the constraints it would set on the underlying disk properties. We present synthetic H2O line profiles predictions for a typical MHD disk wind solution with various values of disk accretion rate, stellar mass, extension of the launching area, and view angle. We compare them in terms of line shapes and intensities with the HIFI profiles observed by the WISH Key Program. We find that a dusty MHD disk wind launched from 0.2--0.6 AU AU to 3--25 AU can reproduce to a remarkable degree the observed shapes and intensities of the broad H2O component, both in the fundamental 557 GHz line and in more excited lines. Such a model also readily reproduces the observed correlation of 557 GHz line luminosity with envelope density, if the infall rate at 1000 AU is 1--3 times the disk accretion rate in the wind ejection region. It is also ...

  17. Accretion disk dynamics. α-viscosity in self-similar self-gravitating models

    Science.gov (United States)

    Kubsch, Marcus; Illenseer, Tobias F.; Duschl, Wolfgang J.

    2016-04-01

    Aims: We investigate the suitability of α-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating α-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary α-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: α-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, considering the involved scales it seems suitable for modelling protoplanetary disks.

  18. An extensive numerical survey of the correlation between outflow dynamics and accretion disk magnetization

    CERN Document Server

    Stepanovs, Deniss

    2016-01-01

    We investigate the accretion-ejection process of jets from magnetized accretion disks. We apply a novel approach to the jet-launching problem in order to obtain correlations between the physical properties of the jet and the underlying disk. We extend and confirm the previous works of \\citet{2009MNRAS.400..820T} and \\citet{2010A&A...512A..82M} by scanning a large parameter range for the disk magnetization, $\\mu_{\\rm D} = 10^{-3.5} ... 10^{-0.7}$. We disentangle the disk magnetization at the foot point of the outflow as the main parameter that governs the properties of the outflow. We show how the four jet integrals known from steady-state MHD are correlated to the disk magnetization at the jet foot point. This agrees with the usual findings of the steady-state theory, however, here we obtain these correlations from time-dependent simulations that include the dynamical evolution of the disk in the treatment. In particular, we obtain robust correlations between the local disk magnetization and (i)the outflo...

  19. Reverberation Mapping of the Broad Line Region: application to a hydrodynamical line-driven disk wind solution

    CERN Document Server

    Waters, Tim; Proga, Daniel; Eracleous, Michael; Barth, Aaron J; Greene, Jenny

    2016-01-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized ...

  20. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  1. Star formation and accretion in the circumnuclear disks of active galaxies

    CERN Document Server

    Wutschik, Stephanie; Palmer, Thomas S

    2013-01-01

    We explore the evolution of supermassive black holes (SMBH) centered in a circumnuclear disk (CND) as a function of the mass supply from the host galaxy and considering different star formation laws, which may give rise to a self-regulation via the injection of supernova-driven turbulence. A system of equations describing star formation, black hole accretion and angular momentum transport was solved for an axisymmetric disk in which the gravitational potential includes contributions from the black hole, the disk and the hosting galaxy. Our model extends the framework provided by Kawakatu et al. (2008) by separately considering the inner and outer part of the disk, and by introducing a potentially non-linear dependence of the star formation rate on the gas surface density and the turbulent velocity. The star formation recipes are calibrated using observational data for NGC 1097, while the accretion model is based on turbulent viscosity as a source of angular momentum transport in a thin viscous accretion disk....

  2. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  3. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    Science.gov (United States)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  4. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  5. Excitation of turbulence in accretion disks of binary stars by non-linear perturbations

    Science.gov (United States)

    Kurbatov, E. P.; Bisikalo, D. V.

    2017-06-01

    Accretion disks in binary systems can experience hydrodynamical influences at both their inner and outer edges. The former is typical for protoplanetary disks around young T Tauri stars, while the latter is typical for circumstellar disks in close binaries. This influence excites perturbations with various scales and amplitudes in the disk. The nonlinear evolution of perturbations with a finite, but small amplitude against the background of a sub-Keplerian flow is investigated. Nonlinear effects at the fronts of perturbation waves lead to the formation of discontinuities in the density and radial velocity; i.e., to formation of shocks. The tangential flow in the neighborhood of the shock becomes equivalent to a flow in a boundary layer. Due to an instability of the tangential flow, the disk becomes turbulent. The characteristics of the turbulence depend on the parameters of the perturbations, but the Shakura-Syunyaev α parameter does not exceed 0.1.

  6. Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra

    CERN Document Server

    Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.

    2004-01-01

    We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...

  7. Coronae as Consequence of Large Scale Magnetic Fields in Turbulent Accretion Disks

    DEFF Research Database (Denmark)

    G. Blackman, Eric; Pessah, Martin Elias

    2009-01-01

    Non-thermal X-ray emission in compact accretion engines can be interpreted to result from magnetic dissipation in an optically thin magnetized corona above an optically thick accretion disk. If coronal magnetic field originates in the disk and the disk is turbulent, then only magnetic structures...... large enough for their turbulent shredding time to exceed their buoyant rise time survive the journey to the corona. We use this concept and a physical model to constrain the minimum fraction of magnetic energy above the critical scale for buoyancy as a function of the observed coronal to bolometric...... AGN, for which of order 30 per cent of the bolometric flux is in the X-ray band, we find that more than 20 per cent of the magnetic energy must be of large enough scale to rise and dissipate in the corona....

  8. Coronae and Winds from Irradiated Disks in X-ray binaries

    CERN Document Server

    Higginbottom, Nick

    2015-01-01

    X-ray and UV line emission in X-ray binaries can be accounted for by a hot corona. Such a corona forms through irradiation of the outer disk by radiation produced in the inner accretion flow. The same irradiation can produce a strong outflow from the disk at sufficiently large radii. Outflowing gas has been recently detected in several X-ray binaries via blue-shifted absorption lines. However, the causal connection between winds produced by irradiation and the blue-shifted absorption lines is problematic, particularly in the case of GRO J1655-40. Observations of this source imply wind densities about two orders of magnitude higher than theoretically predicted. This discrepancy does not mean that these `thermal disk-winds' cannot explain blue-shifted absorption in other systems, nor that they are unimportant as a sink of matter. Motivated by the inevitability of thermal disk-winds and wealth of data taken with current observatories such as Chandra, XMM-Newton and Suzaku, as well as the future AstroH mission, w...

  9. Unstable Disk Accretion to Magnetized Stars: First Global 3D MHD Simulations

    CERN Document Server

    Romanova, Marina M; Lovelace, Richard V E

    2007-01-01

    We report the first global three-dimensional (3D) MHD simulations of disk accretion onto a rotating magnetized star through the Rayleigh-Taylor instability. In this regime, the accreting matter typically forms 2 to 7 vertically elongated "tongues" which penetrate deep into the magnetosphere, until they are stopped by the strong field. Subsequently, the matter is channeled along the field lines to the surface of the star, forming hot spots. The number, position and shape of the hot spots vary with time, so that the light-curves associated with the hot spots are stochastic. A magnetized star may be in the stable (with funnel streams) or unstable (with random tongues) regime of accretion, and consequently have significantly different observational properties. A star may switch between these two regimes depending on the accretion rate.

  10. Patchy Accretion Disks in Ultraluminous X-ray Sources

    CERN Document Server

    Miller, J M; Barret, D; Harrison, F A; Fabian, A C; Webb, N A; Walton, D J; Rana, V

    2014-01-01

    The X-ray spectra of the most extreme ultra-luminous X-ray sources -- those with L > 1 E+40 erg/s -- remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT_e ~ 2 keV) and high optical depths (tau ~ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the p...

  11. Accretion of the Moon from non-canonical disks

    CERN Document Server

    Salmon, Julien

    2014-01-01

    Impacts that leave the Earth-Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such "non-canonical" impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth-M...

  12. BIPOLAR JETS LAUNCHED FROM MAGNETICALLY DIFFUSIVE ACCRETION DISKS. I. EJECTION EFFICIENCY VERSUS FIELD STRENGTH AND DIFFUSIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnezami, Somayeh; Fendt, Christian; Porth, Oliver; Vaidya, Bhargav [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Ghanbari, Jamshid, E-mail: nezami@mpia.de, E-mail: fendt@mpia.de [Department of Physics, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2012-09-20

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code, we solve the time-dependent resistive magnetohydrodynamic equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We apply a turbulent magnetic diffusivity based on {alpha}-prescription, but also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical timescales corresponding to 900 orbital periods of the inner disk. As a general result, we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of superfast-magnetosonic speed. For long timescales, the disk's internal dynamics change, as due to outflow ejection and disk accretion the disk mass decreases. For magnetocentrifugally driven jets, we find that for (1) less diffusive disks, (2) a stronger magnetic field, (3) a low poloidal diffusivity, or (4) a lower numerical diffusivity (resolution), the mass loading of the outflow is increased-resulting in more powerful jets with high-mass flux. For weak magnetization, the (weak) outflow is driven by the magnetic pressure gradient. We consider in detail the advection and diffusion of magnetic flux within the disk and we find that the disk and outflow magnetization may substantially change in time. This may have severe impact on the launching and formation process-an initially highly magnetized disk may evolve into a disk of weak magnetization which cannot drive strong outflows. We further investigate the jet asymptotic velocity and the jet rotational

  13. Accretion disk dynamics: {\\alpha}-viscosity in self-similar self-gravitating models

    CERN Document Server

    Kubsch, Marcus; Duschl, W J

    2016-01-01

    Aims: We investigate the suitability of {\\alpha}-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating {\\alpha}-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary {\\alpha}-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: {\\alpha}-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, conside...

  14. Radiation Hydrodynamic Simulations of Line-Driven Disk Winds for Ultra Fast Outflows

    CERN Document Server

    Nomura, Mariko; Takahashi, Hiroyuki R; Wada, Keiichi; Yoshida, Tessei

    2015-01-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate origin of the ultra fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (~30 Schwarzschild radii). A wide range of black hole masses ($M_{\\rm BH}$) and Eddington ratios ($\\varepsilon$) was investigated to study conditions for causing the line-driven winds. For $M_{\\rm BH} = 10^6-10^9 M_\\odot$ and $\\varepsilon = 0.1-0.7$, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70-80 deg and with 10% of the light speed. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as the obscuration by the torus does not affect the observations of X-ray bands, the UFOs could be statistically observe...

  15. The evolution of a binary in a retrograde circular orbit embedded in an accretion disk

    CERN Document Server

    Ivanov, P B; Paardekooper, S -J; Polnarev, A G

    2014-01-01

    Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary of a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate time scales for inward migration leading to coalescence and the accretion rate to the secondary component. We employ both semi-analytic methods and two dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. We develop the theory of type I migration for this case and determine conditions for gap formation finding that then inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed disk, with accretion onto the secondary playing only a minor role. The semi-analytic and fully numerical approaches are in good agreement, the former being applicable over long time scales. ...

  16. Resonance oscillation of radiative shock waves in accretion disks around compact objects

    CERN Document Server

    Molteni, D; Chakrabarti, S K; Molteni, Diego M; Chakrabarti, Sandip K

    1995-01-01

    We extend our previous numerical simulation of accretion disks with shock waves when cooling effects are also included. We consider bremsstrahlung and other power law processes: \\Lambda \\propto T^{\\alpha} \\rho^2 to mimic cooling in our simulation. We employ {\\it Smoothed Particle Hydrodynamics} technique as in the past. We observe that for a given angular momentum of the flow, the shock wave undergoes a steady, radial oscillation with the period is roughly equal to the cooling time. Oscillations seem to take place when the disk and cooling parameters (i.e., accretion rate, cooling process) are such that the infall time from shock is of the same order as the post-shock cooling time. The amplitude of oscillation could be up to ten percent of the distance of the shock wave from the black hole when the black hole is accreting. When the accretion is impossible due to the centrifugal barrier, the amplitude variation could be much larger. Due to the oscillation, the energy output from the disk is also seen to vary q...

  17. Supersonic turbulence, filamentary accretion,and the rapid assembly of massive stars and disks

    CERN Document Server

    Banerjee, R; Anderson, D W; Banerjee, Robi; Pudritz, Ralph E.; Anderson, Dave W.

    2006-01-01

    We present a detailed computational study of the assembly of protostellar disks and massive stars in molecular clouds with supersonic turbulence. We follow the evolution of large scale filamentary structures in a cluster-forming clump down to protostellar length scales by means of very highly resolved, 3D adaptive mesh refined (AMR) simulations, and show how accretion disks and massive stars form in such environments. We find that an initially elongated cloud core which has a slight spin from oblique shocks collapses first to a filament and later develops a turbulent disk close to the center of the filament. The continued large scale flow that shocks with the filament maintains the high density and pressure within it. Material within the cooling filament undergoes gravitational collapse and an outside-in assembly of a massive protostar. Our simulations show that very high mass accretion rates of up to 10^-2 Msol/yr and high, supersonic, infall velocities result from such filamentary accretion. Accretion at th...

  18. Vertical Convection in Turbulent Accretion Disks and Light Curves of the A0620-00 1975 Outburst

    CERN Document Server

    Malanchev, Konstantin

    2015-01-01

    We present a model of the non-stationary $\\alpha$-disk with account for the irradiation and the vertical convection in the outer accretion disk where hydrogen is partially ionized. We include the viscous energy generation in the mix-length convection equations in accretion disks. The optical and X-ray light curves of X-ray nova A0620-00 are investigated in terms of this model. The turbulent viscosity parameter of the accretion disk is estimated, $\\alpha = 0.5 \\div 0.6$, which is necessary to explain the luminosity decay rate on the descending branch of the X-ray light curve for the A0620-00 1975 outburst. The secondary luminosity maximum on the light curves is explained by assuming an additional injection of matter into the accretion disk from the optical companion.

  19. Kilonova Light Curves from the Disk Wind Outflows of Compact Object Mergers

    CERN Document Server

    Kasen, Daniel; Metzger, Brian

    2014-01-01

    We study the radioactively-powered transients produced by accretion disk winds following a compact object merger. Starting with the outflows generated in two-dimensional hydrodynamical disk models, we use wavelength-dependent radiative transfer calculations to generate synthetic light curves and spectra. We show that the brightness and color of the resulting kilonova transients carry information about the merger physics. In the regions of the wind where neutrino irradiation raises the electron fraction to Ye > 0.25, r-process nucleosynthesis halts before producing high-opacity, complex ions (the lanthanides). The kilonova light curves thus show two distinct components: a brief (~2 day) blue optical transient produced in the outer lanthanide-free ejecta, and a longer (~10 day) infrared transient produced in the inner, lanthanide line-blanketed region. Mergers producing a longer-lived neutron star, or a more rapidly spinning black hole, have stronger neutrino irradiation, generate more lanthanide-free ejecta, a...

  20. On the virialization of disk winds: Implications for the black hole mass estimates in active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kashi, Amit; Proga, Daniel; Nagamine, Kentaro [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Greene, Jenny [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Barth, Aaron J., E-mail: kashia@physics.unlv.edu [Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 (United States)

    2013-11-20

    Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin {sup 2} i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

  1. The impact of non-thermal electrons on resolved black hole accretion disk images

    Science.gov (United States)

    Mao, Shengkai; Dexter, Jason; Quataert, Eliot

    2015-01-01

    Recent developments in radio astronomy (in particular, the Event Horizon Telescope) allow us for the first time to resolve length scales around the Milky Way's Sgr A* comparable to the event horizon radius. These observations are opening up new opportunities to study strong gravity and accretion physics in the vicinity of a supermassive black hole. However, the processes governing black hole accretion are not well understood. In particular, the electron thermodynamics in black hole accretion disks remain mysterious, and current models vary significantly from each other. The impact of these differences between current electron thermodynamics models on results obtained from EHT images is not well understood. Thus, in this work, we explore the effects of non-thermal electrons on black hole images and radio spectra in the context of both semi-analytic and numerical models of accretion flows. Using general relativistic ray-tracing and radiative transfer code, we simulate images of the accretion disk around Sgr A* and compare our simulations to observed radio data. We estimate the range of electron energy distribution functions permissible by the data. In so doing, we also explore the range and variety of black hole images obtained by varying the distribution function.

  2. Light Curves from an MHD Simulation of a Black Hole Accretion Disk

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.

    2006-11-01

    We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the ``thermal dominant'' state. The simulated power spectrum is characterized by a power law of index Γ~3 and total rms fractional variance of ~1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These ``hot-spot'' structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size δφ=25deg and δr/r=0.3, and typical lifetimes Tl~0.3Torb.

  3. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    Science.gov (United States)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  4. Shrinking Galaxy Disks with Fountain-Driven Accretion from the Halo

    CERN Document Server

    Elmegreen, Bruce G; Hunter, Deidre A

    2014-01-01

    Star formation in most galaxies requires cosmic gas accretion because the gas consumption time is short compared to the Hubble time. This accretion presumably comes from a combination of infalling satellite debris, cold flows, and condensation of hot halo gas at the cool disk interface, perhaps aided by a galactic fountain. In general, the accretion will have a different specific angular momentum than the part of the disk that receives it, even if the gas comes from the nearby halo. Then the gas disk expands or shrinks over time. Here we show that condensation of halo gas at a rate proportional to the star formation rate in the fountain model will preserve an initial shape, such as an exponential, with a shrinking scale length, leaving behind a stellar disk with a slightly steeper profile of younger stars near the center. This process is slow for most galaxies, producing imperceptible radial speeds, and it may be dominated by other torques, but it could be important for Blue Compact Dwarfs, which tend to have...

  5. Outflows from accretion disks formed in neutron star mergers: effect of black hole spin

    CERN Document Server

    Fernández, Rodrigo; Metzger, Brian D; Quataert, Eliot

    2014-01-01

    The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. To this end, we carry out two-dimensional, time-dependent hydrodynamic simulations of merger remnant accretion disks including viscous angular momentum transport and approximate neutrino self-irradiation. The gravity of the spinning black hole is included via a pseudo-Newtonian potential. We find that a disk around a spinning black hole ejects more mass, up to a factor of several, relative to the non-spinning case. The enhanced mass loss is due to energy release by accretion occurring deeper in the gravitational potential, raising the disk temperature and hence the rate of viscous heating in regions where neutrino cooling is ineffective....

  6. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  7. Annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We discuss how the annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst, Lνν, is determined by the disk’s fundamental parameters, namely, the mass of the central black hole M, the mass accretion rate M, and the viscosity parameter α. It is shown that Lνν depends mainly on M in evidence, and decreases with increasing M, but is almost independent of α. This result argues additionally that the central black hole in a gamma-ray burst must be with a stellar mass.

  8. Time-Variable Accretion in the TW Hya Star/Disk System

    CERN Document Server

    Eisner, J A; Najita, J R; McCarthy, D; Kulesa, C; Swift, B J; Teske, J

    2010-01-01

    We present two epochs of observations of TW Hya from the high-dispersion near-IR spectrograph ARIES at the MMT. We detect strong emission from the Brackett gamma transition of hydrogen, indicating an accretion rate substantially larger than previously estimated using hydrogen line emission. The Brackett gamma line-strength varies across our two observed epochs. We also measure circumstellar-to-stellar flux ratios (i.e., veilings) that appear close to zero in both epochs. These findings suggest that TW Hya experiences episodes of enhanced accretion while the inner disk remains largely devoid of dust. We discuss several physical mechanisms that may explain these observations.

  9. Perspectives for the study of gas in protoplanetary disks and accretion/ejection phenomena in young stars with the near-IR spectrograph SPIROU at the CFHT

    Science.gov (United States)

    Carmona, A.; Bouvier, J.; Delfosse, X.

    2013-11-01

    Near-IR atomic and molecular transitions are powerful tools to trace the warm and hot gas in the circumstellar environment of young stars. Ro-vibrational transitions of H_2 and H_2O, and overtone transitions of CO at 2 μm centered at the stellar velocity trace hot (T˜ 1500 K) gas in the inner few AU of protoplanetary disks. H_2 near-IR lines displaying a blueshift of a few km/s probe molecular disk winds. H_2 lines presenting blueshifts of hundreds of km/s reveal hot shocked gas in jets. Atomic lines such as the HeI line at 10830 Å and the Hydrogen Paschen β and Brakett γ lines trace emission from accretion funnel flows and atomic disk winds. Bright forbidden atomic lines in the near-IR of species such as [Fe II], [N I], [S I], [S II], and [C I] trace atomic and ionized material in jets. The new near-IR high resolution spectrograph SPIROU planned for the Canada France Hawaii Telescope will offer the unique capability of combining high-spectral resolution (R˜75000) with a large wavelength coverage (0.98 to 2.35 μm) in one single exposure. This will provide us with the means of probing accretion funnel flows, winds, jets, and hot gas in the inner disk simultaneously. This opens the exiting possibility of investigating their combined behavior in time by the means of monitoring observations and systematic surveys. SPIROU will be a powerful tool to progress our understanding of the connexion between the accretion/ejection process, disk evolution, and planet formation.

  10. The Origin of Warped, Precessing Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Maloney, Philip R.; Begelman, Mitchell C.

    1997-01-01

    The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up on earlier work to study the linear behavior of the instability in the specific context of a binary system. We treat the influence of the companion as an orbit-averaged quadrupole torque on the disk. The presence of this external torque allows the existence of solutions in which the direction of precession of the warp is retrograde with respect to disk rotation, in addition to the prograde solutions that exist in the absence of external torques.

  11. Accretion Disks around Black Holes: Dynamical Evolution, Meridional Circulations, and Gamma-Ray Bursts

    Science.gov (United States)

    Lee, William H.; Ramirez-Ruiz, Enrico

    2002-10-01

    We study the hydrodynamic evolution of massive accretion disks around black holes, formed when a neutron star is disrupted by a black hole in a binary system. The initial conditions are taken from three-dimensional calculations of coalescing binaries. By assuming azimuthal symmetry we are able to follow the time dependence of the disk structure for 0.2 s in cylindrical coordinates (r,z). We use an ideal gas equation of state and assume that all the dissipated energy is radiated away. The disks evolve because of viscous stresses, modeled with an α law. We study the disk structure and, in particular, the strong meridional circulations that are established and persist throughout our calculations. These consist of strong outflows along the equatorial plane that reverse direction close to the surface of the disk and converge on the accretor. In the context of gamma-ray bursts (GRBs), we estimate the energy released from the system in neutrinos and through magnetic-dominated mechanisms and find it can be as high as Eν~1052 ergs and EBZ~1051 ergs, respectively, during an estimated accretion timescale of 0.1-0.2 s. The νν annihilation is likely to produce bursts from only a short, impulsive energy input Lνν~t-5/2 and so would be unable to account for a large fraction of bursts that show complicated light curves. On the other hand, a gas mass ~0.1-0.25 Msolar survives in the orbiting debris, which enables strong magnetic fields ~1016 G to be anchored in the dense matter long enough to power short duration GRBs. We highlight the effects that the initial disk and black holes masses, viscosity, and binary mass ratio have on the evolution of the disk structure. Finally, we investigate the continuous energy injection that arises as the black hole slowly swallows the rest of the disk and discuss its consequences on the GRB afterglow emission.

  12. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    CERN Document Server

    Manara, C F; Testi, L; Natta, A; Alcalá, J M; Williams, J P; Ansdell, M; Miotello, A; van der Marel, N; Tazzari, M; Carpenter, J; Guidi, G; Mathews, G S; Oliveira, I; Prusti, T; van Dishoeck, E F

    2016-01-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, the mass accretion rate, and the disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an ISM gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rate...

  13. Observational Limits on the Spin-down Torque of Accretion Powered Stellar Winds

    Science.gov (United States)

    Zanni, Claudio; Ferreira, Jonathan

    2011-01-01

    The rotation period of classical T Tauri stars (CTTS) represents a longstanding puzzle. While young low-mass stars show a wide range of rotation periods, many CTTS are slow rotators, spinning at a small fraction of breakup, and their rotation period does not seem to shorten, despite the fact that they are actively accreting and contracting. Matt & Pudritz proposed that the spin-down torque of a stellar wind powered by a fraction of the accretion energy would be strong enough to balance the spin-up torque due to accretion. Since this model establishes a direct relation between accretion and ejection, the observable stellar parameters (mass, radius, rotation period, magnetic field) and the accretion diagnostics (accretion shock luminosity) can be used to constrain the wind characteristics. In particular, since the accretion energy powers both the stellar wind and the shock emission, we show in this Letter how the accretion shock luminosity L UV can provide upper limits to the spin-down efficiency of the stellar wind. It is found that luminous sources with L UV >= 0.1 L sun and typical dipolar field components UV Lt 0.1 L sun) are compatible with a zero-torque condition, but the corresponding stellar winds are still very demanding in terms of mass and energy flux. We therefore conclude that accretion powered stellar winds are unlikely to be the sole mechanism to provide an efficient spin-down torque for accreting CTTS.

  14. Spectral properties of accretion disks around galactic and extragalactic black holes

    CERN Document Server

    Chakrabarti, S K; Chakrabarti, Sandip K

    1995-01-01

    We study the spectral properties of a very general class of accretion disks which can be decomposed into three distinct components apart from a shock at r=r_s: (1) An optically thick Keplerian disk on the equatorial plane (r>r_s), (2) A sub-Keplerian optically thin halo above and below this Keplerian disk r>r_s and (3) A hot, optically slim, \\tau\\sim 1 postshock region rdisk. We produce radiated spectra from both the disk components as functions of the accretion rates and compare them with the spectra of galactic ...

  15. Vertical dissipation profiles and the photosphere location in thin and slim accretion disks

    CERN Document Server

    Sadovskii, A; Bursa, M; Kluzniak, W; Rozanska, A

    2009-01-01

    We calculate optically thick but geometrically thin (and slim) accretion disk models and perform a ray-tracing of photons (in the Kerr geometry) to calculate the observed disk spectra. Previously, it was a common practice to ray-trace photons assuming that they are emitted from the Kerr geometry equatorial plane, z = 0. We show that the spectra calculated with this assumption differ from these calculated under the assumption that photons are emitted from the actual surface of the disc, z = H(r). This implies that a knowledge of the location of the thin disks effective photosphere is relevant for calculating the spectra. In this paper we investigate, in terms of a simple toy model, a possible influence of the (unknown, and therefore ad hoc assumed) vertical dissipation profiles on the vertical structure of the disk and thus on the location of the effective photosphere, and on the observed spectra. For disks with moderate and high mass accretion rates (\\dot m>0.01\\dot m_C) we find that the photosphere location ...

  16. Line-driven Disk Winds in Active Galactic Nuclei: The Critical Importance of Ionization and Radiative Transfer

    CERN Document Server

    Higginbottom, Nick; Knigge, Christian; Long, Knox S; Matthews, James H; Sim, Stuart A

    2014-01-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGN) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman (2004). To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the wind no longer produ...

  17. 2.5-dimensional solution of the advective accretion disk:a self-similar approach

    Institute of Scientific and Technical Information of China (English)

    Shubhrangshu Ghosh; Banibrata Mukhopadhyay

    2009-01-01

    We provide a 2.5-dimensional solution to a complete set of viscous hydrodynamical equations describing accretion-induced outflows and plausible jets around black holes/compact objects. We prescribe a self-consistent advective disk-outflow coupling model, which explicitly includes the information of vertical flux. Inter-connecting dynamics of an inflow-outflow system essentially upholds the conservation laws. We provide a set of analytical family of solutions through a self-similar approach. The flow parameters of the disk-outflow system depend strongly on the viscosity parameter α and the cooling factor f.

  18. Accretion disk assembly and survival during the disruption of a neutron star by a black hole

    CERN Document Server

    Ramirez-Ruiz, E; Ramirez-Ruiz, Enrico; Lee, William H.

    2003-01-01

    We study the formation of accretion disks resulting from dynamical three dimensional binary coalescence calculations, where a neutron star is tidally disrupted before being swallowed by its black hole companion. By subsequently assuming azimuthal symmetry we are able to follow the time dependence of the disk structure for a few tenths of a second. Although the disruption of a neutron star leads to a situation where violent instabilities redistribute mass and angular momentum within a few dynamical timescales, enough gas mass remains in the orbiting debris to catalyse the extraction of energy from the hole at a rate adequate to power a short-lived gamma ray burst.

  19. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    CERN Document Server

    Riols, A; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y

    2016-01-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organization of MRI dynamo turbulence into large-scale cyclic dynamics. Understanding the physical origin of these structures, and whether they can be sustained and transport angular momentum efficiently in astrophysical conditions, represents a significant theoretical challenge. The discovery of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has notably served to highlight the role of turbulent magnetic diffusion in the seeming decay of the dynamics at low magnetic Prandtl number Pm (magnetic diffusivity larger than viscosity), a common regime in accretion disks. The connection between these simple structures and the statistical organization reported in turbulent simulations remained elusive, though. Here, we report the n...

  20. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    CERN Document Server

    Jiang, Yan-Fei; Stone, James

    2016-01-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be much larger than the electron scattering opacity primarily due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity "bump" on the thermal stability and vertical structure of radiation pressure dominated accretion disks, utilizing three dimensional radiation magneto-hydrodynamic simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a $5\\times 10^8$ solar mass black hole with $\\sim 3\\%$ of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than $10$ thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as ...

  1. Large-scale dynamo of accretion disks around supermassive nonrotating black holes

    Directory of Open Access Journals (Sweden)

    Poplavsky A.L.

    2006-01-01

    Full Text Available In this paper one presents an analytical model of accretion disk magnetosphere dynamics around supermassive nonrotating black holes in the centers of active galactic nuclei. Based on general relativistic equations of magneto hydrodynamics, the nonstationary solutions for time-dependent dynamo action in the accretion disks, spatial and temporal distribution of magnetic field are found. It is shown that there are two distinct stages of dynamo process: the transient and the steady-state regimes, the induction of magnetic field at t > 6:6665 x 1011GM/c3 s becomes stationary, magnetic field is located near the innermost stable circular orbit, and its value rises up to ~ 105 G. Applications of such systems with nonrotating black holes in real active galactic nuclei are discussed.

  2. Optical polarimetry of PKS 2155 - 304 and constraints on accretion disk models for BL Lacertae objects

    Science.gov (United States)

    Smith, Paul S.; Sitko, Michael L.

    1991-01-01

    Optical broad-band polarimetry and photometry of the BL Lacertae object PKS 2155 - 304 during late 1990 are presented. Variability in both flux and linear polarization was moderate during this period. The optical polarization ranged from 2 to 7 percent while photometric variations were within 0.2 mag (V = 13.2-13.4). Accurate multicolor measurements were made to study any wavelength dependence of the polarization with an eye to using these data to test the model of Wandel and Urry (1991) which proposes that the UV to soft X-ray continuum of this object arises from an accretion disk. Wavelength-dependent polarization (WDP) is observed in PKS 2155 - 304. However, the polarization is always seen to decrease with wavelength when WDP is observed. This is opposite to the expected sense of WDP if the UV continuum is dominated by an accretion disk.

  3. Quasi-periodic variability and the inner radii of thin accretion disks in galactic black-hole systems

    CERN Document Server

    Matteo, T D; Matteo, Tiziana Di; Psaltis, Dimitrios

    1999-01-01

    We calculate upper bounds on the inner radii of geometrically thin accretion disks in galactic black-hole systems by relating their rapid variability properties to those of neutron stars. We infer that the inner disk radii do not exhibit large excursions between different spectral states, in contrast with the concept that the disk retreats significantly during the soft-to-hard state transition. We find that, in the hard state, the accretion disks extend down to radii less than 6-25 GM/c^2 and discuss the implications of our results for models of black-hole X-ray spectra.

  4. Numerical Simulations of Accretion Flows, Jets, and Winds Around Black Holes

    Science.gov (United States)

    Narayan, Ramesh

    Accretion flows around black holes in X-ray binaries, active galactic nuclei and gamma- ray bursts are highly relativistic. This is especially true of the inner regions of these flows where the accreting gas comes close to the black hole and from where relativistic jets are launched. Understanding the properties of black holes and the effects of their associated relativistic ejections on their environment is a central goal of NASA's Astrophysics Theory program. We propose to carry out three-dimensional time-dependent numerical simulations, as well as analytical studies, focusing on two main problems: quantitatively studying the feedback effects of winds and jets ejected from AGN accretion flows on their environment, and pinning down the validity of the standard model of thin black-hole accretion disks by Novikov & Thorne (1973, NT). The PI and his team possess general relativistic magnetohydrodynamics (GRMHD) codes which are uniquely suited for simulating fully relativistic highly magnetized flows. These codes will be used to perform the following tasks: (1) To study the validity of the NT model in the region inside the innermost stable circular orbit (ISCO). On the one hand, simulations for a range of black hole spin values will be performed, in order to find the errors in spin estimates, obtained using the NT model, of black holes in X-ray binaries. On the other hand, we will look for an improved disk model using our simulation results. (2) Large-dynamic-range simulations of advection-dominated accretion flows (ADAFs) for a range of black hole spin values, to understand (i) the mass, energy and momentum output of winds and jets, which is important for understanding feedback effects on galaxy formation, and cooling flows; (ii) the relative importance of feedback through a relativistic jet versus a non-relativistic wind; and (iii) the effect of ADAF disk winds on jet collimation. The proposed research will be done by postdoctoral fellow Dr. Akshay Kulkarni and

  5. Accretion disc atmospheres and winds in low-mass X-ray binaries

    CERN Document Server

    Trigo, M Díaz

    2015-01-01

    In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible feedback mechanisms to the environment. In this work, we review the current observational state and theoretical understanding of accretion disc atmospheres and winds in low-mass X-ray binaries, focusing on the wind launching mechanisms and on the dependence on accretion state. We conclude with issues that deserve particular attention.

  6. Bipolar jets launched from magnetically diffusive accretion disks. I. Ejection efficiency vs field strength and diffusivity

    CERN Document Server

    Sheikhnezami, Somayeh; Porth, Oliver; Vaidya, Bhargav; Ghanbari, Jamshid

    2012-01-01

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code we solve the time-dependent resistive MHD equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks do launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We have applied a turbulent magnetic diffusivity based on \\alpha-prescription, but have also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical time scales corresponding to 900 orbital periods of the inner disk. As a general result we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of super ...

  7. On the stream-accretion disk interaction - Response to increased mass transfer rate

    Science.gov (United States)

    Dgani, Ruth; Livio, Mario; Soker, Noam

    1989-01-01

    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  8. NuSTAR AND SUZAKU OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M. L.; Lohfink, A.; Fabian, A. C.; Alston, W. N.; Kara, E. [Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Tomsick, J. A.; Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Miller, J. M. [Department of Astronomy, University of Michigan, 1085 South University Avenue, West Hall 311, Ann Arbor, MI 48109-1042 (United States); Yamaoka, K. [Solar-Terrestrial Environment Laboratory, Department of Particles and Astronomy, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Nowak, M.; Grinberg, V. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Christensen, F. E. [Danish Technical University, DK-2800 Lyngby (Denmark); Fürst, F.; Grefenstette, B. W.; Harrison, F. A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gandhi, P. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Hailey, C. J. [Columbia University, New York, NY 10027 (United States); King, A. L. [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); and others

    2015-07-20

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broadband spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, instead requiring a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of García et al. to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height and rule out truncation to greater than three gravitational radii at the 3σ confidence level. In addition, we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that the blurring parameters are consistent when fitting either just the iron line or the entire broadband spectrum, which is well modeled with a Comptonized continuum plus reflection model.

  9. NuSTAR and Suzaku observations of the hard state in Cygnus X-1: locating the inner accretion disk

    CERN Document Server

    Parker, M L; Miller, J M; Yamaoka, K; Lohfink, A; Nowak, M; Fabian, A C; Alston, W N; Boggs, S E; Christensen, F E; Craig, W W; Fuerst, F; Gandhi, P; Grefenstette, B W; Grinberg, V; Hailey, C J; Harrison, F A; Kara, E; King, A L; Stern, D; Walton, D J; Wilms, J; Zhang, W W

    2015-01-01

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broad-band spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, and instead requires a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of Garcia et al. (2014) to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height, and rule out truncation to greater than three gravitational radii at the 3{\\sigma} confidence le...

  10. Nucleosynthesis from neutrino-dominated accretion disks in gamma-ray bursts and its application

    Directory of Open Access Journals (Sweden)

    Liu Tong

    2014-03-01

    Full Text Available We investigate the element distribution in neutrino-dominated accretion flows around black holes with the proton-rich nuclear statistical equilibrium. According to our calculations, the radial nuclei distribution (around equatorial plane is dominated by free nucleons, 4He, and 56Fe in the inner, middle, and outer region, respectively. For the vertical distribution, the heavy nuclei tend to be produced in a thin region near the disk surface, in which we find that 56Ni is dominant for the flow with low accretion rate but it would switch to 56Fe for high accretion rate. Our results imply that 56Ni produced by central engine would tend to outflow and subsequently decay to drive the bumps observed in the light curves of the core collapse supernovae.

  11. HST/COS Observations of Ionized Gas Accretion at the Disk-halo Interface of M33

    CERN Document Server

    Zheng, Y; Werk, J K; Putman, M E

    2016-01-01

    We report the detection of accreting ionized gas at the disk-halo interface of the nearby galaxy M33. We analyze HST/COS absorption-line spectra of seven ultraviolet-bright stars evenly distributed across the disk of M33. We find Si IV absorption components consistently redshifted relative to the bulk M33's ISM absorption along all the sightlines. The Si IV detection indicates an enriched, disk-wide, ionized gas inflow toward the disk. This inflow is most likely multi-phase as the redshifted components can also be observed in ions with lower ionization states (e.g., S II, P II, Fe II, Si II). Kinematic modeling of the inflow is consistent with an accreting layer at the disk-halo interface of M33, which has an accretion velocity of 110$^{+15}_{-20}$ km s$^{-1}$ at a distance of 1.5$^{+1.0}_{-1.0}$ kiloparsec above the disk. The modeling indicates a total mass of $\\sim3.9\\times10^7$ M$_{\\odot}$ for the accreting material at the disk-halo interface on the near side of the M33 disk , with an accretion rate of $\\s...

  12. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    Science.gov (United States)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  13. Anisotropic illumination of AGN's accretion disk by a non thermal source; 1, General theory and application to the Newtonian geometry

    CERN Document Server

    Henri, G

    1997-01-01

    We present a model of accretion disk where the disk luminosity is entirely due to the reprocessing of hard radiation impinging on the disk. The hard radiation itself is emitted by a hot point source above the disk, that could be physically realized by a strong shock terminating an aborted jet. This hot source contains ultrarelativistic leptons scattering the disk soft photons by Inverse Compton (IC) process. Using a simple formula to describe the IC process in an anisotropic photon field, we derive a self-consistent angular distribution of soft and hard radiation in the Newtonian geometry. The radial profile of the disk effective temperature is also univoquely determined. The high energy spectrum can be calculated for a given lepton distribution. This offers an alternative picture to the standard accretion disk emission law. We discuss the application of this model to Active Galactic Nuclei, either for reproducing individual spectra, or for predicting new scaling laws that fit better the observed statistical ...

  14. Accretion-Powered Stellar Winds II: Numerical Solutions for Stellar Wind Torques

    CERN Document Server

    Matt, Sean

    2008-01-01

    [Abridged] In order to explain the slow rotation observed in a large fraction of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar winds in torquing down the stars. For this mechanism to be effective, the stellar winds need to have relatively high outflow rates, and thus would likely be powered by the accretion process itself. Here, we use numerical magnetohydrodynamical simulations to compute detailed 2-dimensional (axisymmetric) stellar wind solutions, in order to determine the spin down torque on the star. We explore a range of parameters relevant for CTTSs, including variations in the stellar mass, radius, spin rate, surface magnetic field strength, the mass loss rate, and wind acceleration rate. We also consider both dipole and quadrupole magnetic field geometries. Our simulations indicate that the stellar wind torque is of sufficient magnitude to be important for spinning down a ``typical'' CTTS, for a mass loss rate of $\\sim 10^{-9} M_\\odot$ yr$^{-1}$. The winds are wide-angle, ...

  15. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    CERN Document Server

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  16. Spectral eclipse mapping of the accretion disk in the nova-like variable UX Ursae Majoris

    Science.gov (United States)

    Rutten, R. G. M.; Dhillon, V. S.; Horne, K.; Kuulkers, E.

    1994-01-01

    We analyze narrow-band eclipse light curves of the nova-like cataclysmic variable UX UMa, obtained from low-resolution spectra spanning lambda lambda 3600-9800 A . The light curves for narrow bands in the continuum as well as those for individual spectral lines are treated independently, and are used to construct images of the accretion disk's brightness distribution using the maximum-entropy eclipse-mapping technique. Particular attention is paid to the propagation of statistical uncertainties in the data and to how the analysis may introduce systematic errors in the final result. From the many narrrow band images we have reconstructed the spectra from isolated parts of the accretion disk. These spectra reveal that the inner disk radiates a continuum spectrum which peaks in the near UV and has the hydrogen Balmer lines in absorption (with the exception of H-alpha), whereas the outer disk is much fainter, has a much redder spectrum, and has Balmer emission lines. Our analysis reveals the presence of an uneclipsed component of the total light, whose spectrum is very red and has Balmer lines in emission. This unexpected feature of the eclipse mapping technique offers a new tool for an independent assessment of the secondary star's spectrum in eclipsing cataclysmic variables.

  17. Generation of magnetic field on the accretion disk around a proto-first-star

    Energy Technology Data Exchange (ETDEWEB)

    Shiromoto, Yuki; Susa, Hajime [Department of Physics, Konan University, Kobe 658-8501 (Japan); Hosokawa, Takashi, E-mail: susa@konan-u.ac.jp [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-02-20

    The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ∼10{sup –9} G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ∼10{sup –14}-10{sup –13} G at n {sub H} = 10{sup 3} cm{sup –3}, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.

  18. Generation of Magnetic Field on the Accretion Disk around a Proto-First-Star

    CERN Document Server

    Shiromoto, Yuki; Hosokawa, Takashi

    2014-01-01

    The generation process of magnetic field around a proto-first-star is studied. Utilizing the recent numerical result of proto-first-star formation based upon the radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that magnetic field of \\sim 10^{-9} G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low density regions ...

  19. Ion Viscosity Mediated by Tangled Magnetic Fields: An Application to Black Hole Accretion Disks

    Science.gov (United States)

    Subramanian, Prasad; Becker, Peter A.; Kafatos, Menas

    1996-01-01

    We examine the viscosity associated with the shear stress exerted by ions in the presence of a tangled magnetic field. As an application, we consider the effect of this mechanism on the structure of black hole accretion disks. We do not attempt to include a self-consistent description of the magnetic field. Instead, we assume the existence of a tangled field with coherence length lambda(sub coh), which is the average distance between the magnetic 'kinks' that scatter the particles. For simplicity, we assume that the field is self-similar, and take lambda(sub coh) to be a fixed fraction zeta of the local disk height H. Ion viscosity in the presence of magnetic fields is generally taken to be the cross-field viscosity, wherein the effective mean free path is the ion Larmor radius lambda(sub L), which is much less than the ion-ion Coulomb mean free path A(sub ii) in hot accretion disks. However, we arrive at a formulation for a 'hybrid' viscosity in which the tangled magnetic field acts as an intermediary in the transfer of momentum between different layers in the shear flow. The hybrid viscosity greatly exceeds the standard cross-field viscosity when (lambda/lambda(sub L)) much greater than (lambda(sub L)/lambda(sub ii)), where lambda = ((lambda(sub ii)(sup -1) + lambda(sub (coh)(sup -1))(sup -1) is the effective mean free path for the ions. This inequality is well satisfied in hot accretion disks, which suggests that the ions may play a much larger role in the momentum transfer process in the presence of magnetic fields than was previously thought. The effect of the hybrid viscosity on the structure of a steady-state, two-temperature, quasi-Keplerian accretion disk is analyzed. The hybrid viscosity is influenced by the degree to which the magnetic field is tangled (represented by zeta = lambda(sub coh)), and also by the relative accretion rate M/M(sub E), where M(sub E) = L(sub E)/c(sup 2) and L(sub E) is the Eddington luminosity. We find that ion viscosity in the

  20. The Structure of the Accretion Disk in the ADC X-Ray Binary 4U 1822-371 at Optical and Ultraviolet Wavelengths

    CERN Document Server

    Bayless, Amanda J; Hynes, Robert I; Ashcraft, Teresa A; Cornell, Mark E

    2009-01-01

    The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope (HST) and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We use the new data to construct its UV/optical spectral energy distribution and its orbital light curve in the UV, V, and J bands. We derive an improved ephemeris for the optical eclipses and confirm that the orbital period is changing rapidly, indicating extremely high rates of mass flow in the system; and we show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s. We show that the disk has a vertically-extended, optically-thick component at optical wavelengths.This component extends almost to the edge of the disk and has a height equal to ~0.5 of the disk radius. As it has a low brightness temperature, we identify it as...

  1. Relativistic X-ray Lines from the Inner Accretion Disks Around Black Holes

    CERN Document Server

    Miller, J M

    2007-01-01

    Relativistic X-ray emission lines from the inner accretion disk around black holes are reviewed. Recent observations with the Chandra X-ray Observatory, X-ray Multi-Mirror Mission-Newton, and Suzaku are revealing these lines to be good probes of strong gravitational effects. A number of important observational and theoretical developments are highlighted, including evidence of black hole spin and effects such as gravitational light bending, the detection of relativistic lines in stellar-mass black holes, and evidence of orbital-timescale line flux variability. In addition, the robustness of the relativistic disk lines against absorption, scattering, and continuum effects is discussed. Finally, prospects for improved measures of black hole spin and understanding the spin history of supermassive black holes in the context of black hole-galaxy co-evolution are presented. The best data and most rigorous results strongly suggest that relativistic X-ray disk lines can drive future explorations of General Relativiti...

  2. Probing the connection between the accretion disk, outflows and the jet in 3C111

    Science.gov (United States)

    Tombesi, Francesco

    2011-10-01

    Recent XMM-Newton and Suzaku observations of 3C111 demonstrated the presence of ultra-fast outflows (UFOs) with v~0.1c and their relation with the accretion disk. Independent studies found that X-ray dips are followed by ejection of superluminal radio knots, therefore providing a proof of the disk-jet connection. We acquired evidence that UFOs are preferentially present between X-ray dips and new knots, possibly indicating also a link between disk outflows and the jet. The goal of this XMM-Newton proposal is to confirm this evidence. Given the strong correlation with X-rays, we will use an ongoing optical monitoring campaign to trigger a 90ks observation within two days of a dip to detect a UFO and we request a possible additional 60ks >15 days after to compare with the non-dipped state.

  3. The Black-Hole Accretion Disk in NGC 4258: One of Nature's Most Beautiful Dynamical Systems

    Science.gov (United States)

    Moran, J. M.

    2008-08-01

    In this talk I will summarize some of the work that the CfA group has done to study the structure of the water masers in the accretion disk of NGC 4258. A series of 18 epochs of VLBA data taken from 1997.3 to 2000.8 were used for this study. The vertical distribution of maser features in the systemic group was found to be Gaussian, as expected for hydrostatic equilibrium, with a σ-width of 5.1 microarcsec (μas). If the disk is in hydrostatic equilibrium, its temperature is about 600 K. The systemic features exhibit a small, but persistent, gradient in acceleration versus impact parameter. This characteristic may indicate the presence of a spiral density wave rotating at sub-Keplerian speed. A more precise understanding of the dynamical properties of the disk is expected to lead to a more refined estimate of the distance to the galaxy.

  4. The Black Hole Accretion Disk in NGC 4258: One of Nature's Most Beautiful Dynamical Systems

    CERN Document Server

    Moran, James M

    2008-01-01

    In this talk I will summarize some of the work that the CfA group has done to study the structure of the water masers in the accretion disk of NGC 4258. A series of 18 epochs of VLBA data taken from 1997.3 to 2000.8 were used for this study. The vertical distribution of maser features in the systemic group was found to have a Gaussian distribution, as expected for hydrostatic equilibrium, with a $\\sigma$-width of 5.1 $\\mu$as. If the disk is in hydrostatic equilibrium, its temperature is about 600K. The systemic features exhibit a small, but persistent, gradient in acceleration versus impact parameter. This characteristic may indicate the presence of a spiral density wave rotating at sub-Keplerian speed. A more precise understanding of the dynamical properties of the disk is expected to lead to a more refined estimate of the distance to the galaxy.

  5. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    CERN Document Server

    Mewes, Vassilios; Galeazzi, Filippo; Montero, Pedro J; Stergioulas, Nikolaos

    2015-01-01

    In this work we present 3D numerical relativity simulations of thick accretion disks around {\\it tilted} Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered ($0.044-0.16$) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of ...

  6. The low-mass stellar population in the young cluster Tr37: Disk evolution, accretion, and environment

    CERN Document Server

    Sicilia-Aguilar, Aurora; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min

    2013-01-01

    We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr37. With a well-studied solar-type population, Tr37 is a benchmark for disk evolution. We used low-resolution spectroscopy to identify 141 members (78 new) and 64 probable members, mostly M-type stars. H\\alpha\\ emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the SEDs. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Including the new and previously known members, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or un...

  7. 1H 1752 + 081: an eclipsing cataclysmic variable with a small accretion disk

    Science.gov (United States)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-04-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average mv of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M1 = 0.80 +/- 0.06 solar masses and M2 = 0.32 +/- 0.06 solar masses. The disk is faint and small (RD = 0.25 +/- 0.05 rL1, where rL1 is the distance from the primary to the L1 point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m1 = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  8. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akihiro; Higuchi, Arika [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  9. Accretion in Evolved and Transitional Disks in Cep OB2: Looking for the Origin of the Inner Holes

    CERN Document Server

    Sicilia-Aguilar, Aurora; Hartmann, Lee

    2010-01-01

    We present accretion rates for a large number of solar-type stars in the Cep OB2 region, based on U band observations. Our study comprises 95 members of the ~4 Myr-old cluster Tr 37 (including 20 "transition" objects; TO), as well as the only CTTS in the ~12 Myr-old cluster NGC 7160. The stars show different disk morphologies, with the majority of them having evolved and flattened disks. The typical accretion rates are about one order of magnitude lower than in regions aged 1-2 Myr, and we find no strong correlation between disk morphology and accretion rates. Although half of the TO are not accreting, the median accretion rates of normal CTTS and accreting "transition" disks are similar (~3 10^{-9} and 2 10^{-9} Msun/yr, respectively). Comparison with other regions suggests that the TO observed at different ages do not necessarily represent the same type of objects, which is consistent with the fact that the different processes that can lead to reduced IR excess/inner disk clearing (e.g., binarity, dust coag...

  10. Constraining Accretion Signatures of Exoplanets in the TW Hya Transitional Disk

    Science.gov (United States)

    Uyama, Taichi; Tanigawa, Takayuki; Hashimoto, Jun; Tamura, Motohide; Aoyama, Yuhiko; Brandt, Timothy D.; Ishizuka, Masato

    2017-09-01

    We present a near-infrared direct imaging search for accretion signatures of possible protoplanets around the young stellar object (YSO) TW Hya, a multi-ring disk exhibiting evidence of planet formation. The Paβ line (1.282 μm) is an indication of accretion onto a protoplanet, and its intensity is much higher than that of blackbody radiation from the protoplanet. We focused on the Paβ line and performed Keck/OSIRIS spectroscopic observations. Although spectral differential imaging (SDI) reduction detected no accretion signatures, the results of the present study allowed us to set 5σ detection limits for Paβ emission of 5.8 × 10-18 and 1.5 × 10-18 erg-1 s-1 cm-2 at 0.″4 and 1.″6, respectively. We considered the mass of potential planets using theoretical simulations of circumplanetary disks and hydrogen emission. The resulting masses were 1.45 ± 0.04 M J and {2.29}-0.04+0.03 {M}{{J}} at 25 and 95 au, respectively, which agree with the detection limits obtained from previous broadband imaging. The detection limits should allow for the identification of protoplanets as small as ˜1 M J, which may assist in direct imaging searches around faint YSOs for which extreme adaptive optics instruments are unavailable.

  11. High-Resolution Spectroscopy in Tr37: Gas Accretion Evolution in Evolved Dusty Disks

    CERN Document Server

    Sicilia-Aguilar, A; Furezs, G; Henning, T; Dullemond, C; Brandner, W; Sicilia-Aguilar, Aurora; Hartmann, Lee; Furezs, Gabor; Henning, Thomas; Dullemond, Cornelis; Brandner, Wolfgang

    2006-01-01

    Using the Hectochelle multifiber spectrograph, we have obtained high-resolution (R~34,000) spectra in the Halpha region for a large number of stars in the 4 Myr-old cluster Tr 37, containing 146 previously known members and 26 newly identified ones. We present the Halpha line profiles of all members, compare them to our IR observations of dusty disks (2MASS/JHK + IRAC + MIPS 24 micron), use the radial velocities as a membership criterion, and calculate the rotational velocities. We find a good correlation between the accretion-broadened profiles and the presence of protoplanetary disks, noting that a small fraction of the accreting stars presents broad profiles with Halpha equivalent widths smaller than the canonical limit separating CTTS and WTTS. The number of strong accretors appears to be lower than in younger regions, and a large number of CTTS have very small accretion rates (dM/dt<10^{-9} Msun/yr). Taking into account that the spectral energy distributions are consistent with dust evolution (grain g...

  12. VSOP-2 Observations of Accretion Disks in Active Galactic Nuclei: A Proposal for a Key Science Program

    Science.gov (United States)

    Doi, A.; VSOP-2 Science Working Group

    2009-08-01

    We report the advantages and potentials of VSOP-2 observations for research on accretion disks, and a polished plan based on this studies may be proposed as one of the Key Science Programs of VSOP-2 mission in the category of Active Galactic Nuclei (AGN). A radiative inefficient accretion flow, a possible model of accretion disks on low-luminosity AGNs, predicts electron temperatures of about 10^9 K at radii within several tens of Schwarzschild radius. The region should be optically thick at the observing frequencies of VSOP-2. Hence, the shape of accretion disks could be imaged with the sensitivity and angular resolutions of VSOP-2 for some nearby low-luminosity AGNs. We show a list of target candidates in terms of their apparent Schwarzschild radius and radio properties. A pre-launch ground-based survey would be needed in order to determine the priority order, which will be useful for preparing an effective VSOP-2 observation plan.

  13. High energy neutrinos produced in the accretion disks by neutrons from nuclei disintegrated in the AGN jets

    CERN Document Server

    Bednarek, W

    2016-01-01

    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed towards the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such hadronic cascade within the accretion disk. We propose that the neutrinos produced in such scenario from the whole population of super-massive black holes in active galaxies can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that $5\\%$ fraction of galaxies is AGN and a few percent of neutrons reach the accretion disk. It is predicted t...

  14. High-Frequency QPOs and Overstable Oscillations of Black-Hole Accretion Disks

    CERN Document Server

    Lai, Dong; Tsang, David; Horak, Jiri; Yu, Cong

    2012-01-01

    The physical origin of high-frequency QPOs (HFQPOs) in black-hole X-ray binaries remains an enigma despite many years of detailed observational studies. Although there exists a number of models for HFQPOs, many of these are simply "notions" or "concepts" without actual calculation derived from fluid or disk physics. Future progress requires a combination of numerical simulations and semi-analytic studies to extract physical insights. We review recent works on global oscillation modes in black-hole accretion disks, and explain how, with the help of general relativistic effects, the energy stored in the disk differential rotation can be pumped into global spiral density modes in the disk, making these modes grow to large amplitudes under certain conditions ("corotational instability"). These modes are robust in the presence of disk magnetic fields and turbulence. The computed oscillation mode frequencies are largely consistent with the observed values for HFQPOs in BH X-ray binaries. The approximate 2:3 frequen...

  15. Simulations of the Poynting--Robertson Cosmic Battery in Resistive Accretion Disks

    CERN Document Server

    Christodoulou, Dimitris M; Kazanas, Demosthenes

    2007-01-01

    We describe the results of numerical "2.5--dimensional" MHD simulations of an initially unmagnetized disk model orbiting a central point--mass and responding to the continual generation of poloidal magnetic field due to a secular source that emulates the Poynting--Robertson (PR) drag on electrons in the vicinity of a luminous stellar or compact accreting object. The fluid in the disk and in the surrounding hotter atmosphere has finite electrical conductivity and allows for the magnetic field to diffuse freely out of the areas where it is generated, while at the same time, the differential rotation of the disk twists the poloidal field and quickly induces a substantial toroidal--field component. The secular PR term has dual purpose in these simulations as the source of the magnetic field and the trigger of a magnetorotational instability (MRI) in the disk. The MRI is especially mild and does not destroy the disk because a small amount of resistivity dampens the instability efficiently. In simulations with mode...

  16. Correlation analysis of radio properties and accretion-disk luminosity for low luminosity AGNs

    CERN Document Server

    Su, Renzhi; Zhang, Zhen

    2016-01-01

    The correlation between the jet power and accretion disk luminosity is investigated and analyzed with our model for 7 samples of low luminosity active galactic nuclei (LLAGNs). The main results are: (1) the power-law correlation index ($P_{jet} \\propto L_{disk}^{\\mu}$) typically ranges $\\mu=0.4-0.7$ for the LLAGN samples, and there is a hint of steep index for the LLAGN sample which hosted by a high fraction of elliptical galaxies, and there are no significant correlation between the $\\mu$ and the LLAGN types (Seyfert, LINER); (2) for $\\mu \\approx$1, as noted in Liu et al., the accretion disk dominates the jet power and the black hole (BH) spin is not important, for the LLAGN samples studied in this paper we find that the $\\mu$ is significantly less than unity, implying that BH spin may play a significant role in the jet power of LLAGNs; (3) the BH spin-jet power is negatively correlated with the BH mass in our model, which means a high spin-jet efficiency in the `low' BH-mass LLAGNs; (4) an anti-correlation ...

  17. The existence of warm and optically thick dissipative coronae above accretion disks

    CERN Document Server

    Rozanska, A; Belmont, R; Czerny, B; Petrucci, P -O

    2015-01-01

    In the past years, several observations of AGN and X-ray binaries have suggested the existence of a warm T around 0.5-1 keV and optically thick, \\tau ~ 10-20, corona covering the inner parts of the accretion disk. These properties are directly derived from spectral fitting in UV to soft-X-rays using Comptonization models. However, whether such a medium can be both in radiative and hydrostatic equilibrium with an accretion disk is still uncertain. We investigate the properties of such warm, optically thick coronae and put constraints on their existence. We solve the radiative transfer equation for grey atmosphere analytically in a pure scattering medium, including local dissipation as an additional heating term in the warm corona. The temperature profile of the warm corona is calculated assuming it is cooled by Compton scattering, with the underlying dissipative disk providing photons to the corona. Our analytic calculations show that a dissipative thick, (\\tau_{cor} ~ 10-12) corona on the top of a standard ac...

  18. Depletion of molecular gas by an accretion outburst in a protoplanetary disk

    CERN Document Server

    Banzatti, A; Bruderer, S; Muzerolle, J; Meyer, M R

    2014-01-01

    We investigate new and archival 3-5 $\\mu$m high resolution ($\\sim3$ km s$^{-1}$) spectroscopy of molecular gas in the inner disk of the young solar-mass star EX Lupi, taken during and after the strong accretion outburst of 2008. The data were obtained using the CRIRES spectrometer at the ESO Very Large Telescope in 2008 and 2014. In 2008, emission lines from CO, H$_{2}$O, and OH were detected with broad profiles tracing gas near and within the corotation radius (0.02-0.3 AU). In 2014, the spectra display marked differences. The CO lines, while still detected, are much weaker, and the H$_{2}$O and OH lines have disappeared altogether. At 3 $\\mu$m a veiled stellar photospheric spectrum is observed. Our analysis finds that the molecular gas mass in the inner disk has decreased by an order of magnitude since the outburst, matching a similar decrease in the accretion rate onto the star. We discuss these findings in the context of a rapid depletion of material accumulated beyond the disk corotation radius during qu...

  19. Hybrid accretion disks in active galactic nuclei. I - Structure and spectra

    Science.gov (United States)

    Wandel, Amri; Liang, Edison P.

    1991-01-01

    A unified treatment is presented of the two distinct states of vertically thin AGN accretion disks: a cool (about 10 to the 6th K) optically thick solution, and a hot (about 10 to the 9th K) optically thin solution. A generalized formalism and a new radiative cooling equation valid in both regimes are introduced. A new luminosity limit is found at which the hot and cool alpha solutions merge into a single solution of intermediate optical depth. Analytic solutions for the disk structure are given, and output spectra are computed numerically. This is used to demonstrate the prospect of fitting AGN broadband spectra containing both the UV bump as well as the hard X-ray and gamma-ray tail, using a single accretion disk model. Such models are found to make definite predictions about the observed spectrum, such as the relation between the hard X-ray spectral index, the UV-to-X-ray luminosity ratio, and a feature of about 1 MeV.

  20. A model for the jet-disk connection in BH accreting systems

    CERN Document Server

    Hujeirat, A

    2003-01-01

    Based on theoretical arguments and quasi-stationary radiative MHD calculations, a model for accretion-induced jet is presented. It is argued that accretion disks around BHs consist of 1) a cold, Keplerian-rotating and weakly magnetized medium in the outer part, 2) highly advective and turbulent-free plasma inside $r_\\mm{tr} = 10-20$ Schwarzschild radii, where magnetic fields (-MFs) are pre-dominantly of large scale topology, and in excess of thermal equipartition, and 3) an ion-dominated torus in the vicinity of the hole, where MFs undergo a topological change into amonopole like-topology. The action of MFs interior to $r_\\mm{tr}$ is to initiate torsional Alfven waves (-TAWs) that extract angular momentum from disk-plasma and deposit it into the transition layer (-TL) above the between the disk, where the plasma is dissipative and tenuous. A significant fraction of the toroidal magnetic field (-TMF) reconnect in the TL, thereby virial-heating the ions and forming a two-temperature, super-Keplerian rotating, c...

  1. Can self-organized critical accretion disks generate a log-normal emission variability in AGN?

    Science.gov (United States)

    Kunjaya, C.; Mahasena, P.; Vierdayanti, K.; Herlie, S.

    2011-12-01

    Active Galactic Nuclei (AGN), such as Seyfert galaxies, quasars, etc., show light variations in all wavelength bands, with various amplitude and in many time scales. The variations usually look erratic, not periodic nor purely random. Many of these objects also show lognormal flux distribution and RMS-flux relation and power law frequency distribution. So far, the lognormal flux distribution of black hole objects is only observational facts without satisfactory explanation about the physical mechanism producing such distribution in the accretion disk. One of the most promising models based on cellular automaton mechanism has been successful in reproducing PSD (Power Spectral Density) of the observed objects but could not reproduce lognormal flux distribution. Such distribution requires the existence of underlying multiplicative process while the existing SOC models are based on additive processes. A modified SOC model based on cellular automaton mechanism for producing lognormal flux distribution is presented in this paper. The idea is that the energy released in the avalanche and diffusion in the accretion disk is not entirely emitted instantaneously as in the original cellular automaton model. Some part of the energy is kept in the disk and thus increase its energy content so that the next avalanche will be in higher energy condition and will release more energy. The later an avalanche occurs, the more amount of energy is emitted to the observers. This can provide multiplicative effects to the flux and produces lognormal flux distribution.

  2. Long-term evolution of accretion disks around the neutron star in Be/X-ray binaries

    CERN Document Server

    Hayasaki, K; Hayasaki, Kimitake; Okazaki, Atsuo T.

    2005-01-01

    we study the long-term evolution of the accretion disk around the neutron star in Be/X-ray binaries. We confirm the earlier result by Hayasaki & Okazaki (2004) that the disk evolves via a two-stage process, which consists of the initial developing stage and the later developed stage. The peak mass-accretion rate is distributed around apastron after the disk is fully developed. This indicates that the modulation of the mass accretion rate is essentially caused by an inward propagation of the one-armed spiral wave. The X-ray luminosity peak around the apastron could provide circumstatial evidence for an persistent disk around the neutron star in Be/X-ray binaries.

  3. The Role for the Inner Disk in Mass Accretion to the Star in the Early Phase of Star Formation

    CERN Document Server

    Ohtani, Takuya; Tsuribe, Toru; Vorobyov, Eduard I

    2014-01-01

    A physical mechanism that drives FU Orionis-type outbursts is reconsidered. We study the effect of inner part of a circumstellar disk covering a region from near the central star to the radius of approximately $5$ AU (hereafter, the inner disk). Using the fluctuated mass accretion rate onto the inner disk $\\dot{M}_{\\rm out}$, we consider the viscous evolution of the inner disk and the time variability of the mass accretion rate onto the central star $\\dot{M}_{\\rm in}$ by means of numerical calculation of an unsteady viscous accretion disk in a one-dimensional axisymmetric model. First, we calculate the evolution of the inner disk assuming an oscillating $\\dot{M}_{\\rm out}$. It is shown that the time variability of $\\dot{M}_{\\rm in}$ does not coincide with $\\dot{M}_{\\rm out}$ due to viscous diffusion. Second, we investigate the properties of spontaneous outbursts with temporally constant $\\dot{M}_{\\rm out}$. Outburst occur only in a limited range of mass accretion rates onto the inner disk $10^{-10}<\\dot{M}...

  4. Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    CERN Document Server

    Johnson, Michael D; Shiokawa, Hotaka; Chael, Andrew A; Doeleman, Sheperd S

    2015-01-01

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. We demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the flow. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy using three-dimensional, general relativistic magnetohydrodynamic (GRMHD) simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT is capable of determining the direction and angular velocity of the emitting material near Sgr A*, even for highly-inclined flows, and they suggest that...

  5. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    CERN Document Server

    Lin, Da-Bin; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lv, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-01-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  6. Linear Two-Dimensional MHD of Accretion Disks: Crystalline structure and Nernst coefficient

    CERN Document Server

    Montani, Giovanni

    2009-01-01

    We analyse the two-dimensional MHD configurations characterising the steady state of the accretion disk on a highly magnetised neutron star. The model we describe has a local character and represents the extension of the crystalline structure outlined in Coppi (2005), dealing with a local model too, when a specific accretion rate is taken into account. We limit our attention to the linearised MHD formulation of the electromagnetic back-reaction characterising the equilibrium, by fixing the structure of the radial, vertical and azimuthal profiles. Since we deal with toroidal currents only, the consistency of the model is ensured by the presence of a small collisional effect, phenomenologically described by a non-zero constant Nernst coefficient (thermal power of the plasma). Such an effect provides a proper balance of the electron force equation via non zero temperature gradients, related directly to the radial and vertical velocity components. We show that the obtained profile has the typical oscillating feat...

  7. Crossing the Eddington Limit: Examining Disk Spectra at High Accretion Rates

    Science.gov (United States)

    Sutton, Andrew D.; Swartz, Douglas A.; Roberts, Timothy P.; Middleton, Matthew J.; Soria, Roberto; Done, Chris

    2017-02-01

    The faintest ultraluminous X-ray sources (ULXs), those with 0.3–10 keV luminosities 1thermal-dominant black hole binaries, which have Eddington ratios constrained to moderate values, also show BD spectra in the 0.3–10 keV band at an order of magnitude lower luminosities. This broadening would be missed in studies that only look above ∼ 2 {keV}. While this may suggest that BD ULXs could be powered by accretion onto massive stellar remnant black holes with close to maximal spin, we argue in favor of a scenario where they are at close to the Eddington luminosity, such that radiation pressure would be expected to result in geometrically slim, advective accretion disks. However, this implies that an additional physical mechanism is required to produce the observed broad spectra at low Eddington ratios.

  8. Accretion Disk Model of Short-Timescale Intermittent Activity in Young Radio Sources

    CERN Document Server

    Czerny, Bozena; Janiuk, Agnieszka; Nikiel-Wroczynski, Blazej; Stawarz, Lukasz

    2009-01-01

    We associate the existence of short-lived compact radio sources with the intermittent activity of the central engine caused by a radiation pressure instability within an accretion disk. Such objects may constitute a numerous sub-class of Giga-Hertz Peaked Spectrum sources, in accordance with the population studies of radio-loud active galaxies, as well as detailed investigations of their radio morphologies. We perform the model computations assuming the viscosity parametrization as proportional to a geometrical mean of the total and gas pressure. The implied timescales are consistent with the observed ages of the sources. The duration of an active phase for a moderate accretion rate is short enough (< 10^3-10^4 years) that the ejecta are confined within the host galaxy and thus these sources cannot evolve into large size radio galaxies unless they are close to the Eddington limit.

  9. Mhd waves in stellar winds and accretion disks

    Directory of Open Access Journals (Sweden)

    M. J. Vasconcelos

    2000-01-01

    Full Text Available Las ondas de Alfv en han sido usadas para explicar el calentamiento de las coronas estelares y de la producci on de vientos estelares en varias zonas del diagrama Hertzsprung-Russell (HR. Las ondas fueron usadas como un mecanismo importante en la aceleraci on del viento de protoestrellas, de estrellas de tipos tempranos y tard os y del viento solar. Tambi en son importantes en la creaci on de inhomogeneidades, v a las inestabilidades t ermicas, en vientos de estrellas de tipo temprano. Por otro lado, el calentamiento generado por la disipaci on no lineal y turbulenta de las ondas puede ser una fuente importante de energ a para ionizar discos protoestelares, permitiendo el transporte de momento angular mediante la inestabilidad de Balbus-Hawly (BHI. Analizamos el papel de la disipaci on de ondas de Alfv en en las regiones medias e internas de los discos protoestelares (0:1 < R(AU < 1:4. Demostramos que cuando la disipaci on viscosa es insu ciente para mantener la ionizaci on requerida por la BHI, el amortiguamiento de las ondas de Alfv en puede ser una fuente alternativa de energ a para la ionizaci on.

  10. Photometry of long-period algol binaries. III - The accretion disk and mass transfer in RZ Ophiuchi

    Science.gov (United States)

    Olson, Edward C.

    1987-11-01

    Five-color photometric observations of RZ Oph have been obtained from 1981 through 1986, in an effort to deduce the properties of the accretion disk in this long-period Algol. The partial eclipse of the disk by the cool star, and the partial occultation of the cool star by the disk, have both been observed in some detail. A simple gravitationally stratified model of the disk accounts very well for the emitted flux. The disk is viewed nearly edge-on, and is of moderate optical thickness. The principal extinction source in the disk is Rayleigh scattering from neutral hydrogen, and H(-) contributes to the thermal absorption. Disk temperatures run from about 5600 K to about 4400 K at the edge of the disk, and the disk appears to overflow the Roche lobe of the hot star. Most of the disk's luminosity is supplied by gravitational accretion, implying a mass-transfer rate of less than about 10 to the -6th solar mass/yr. Brightness fluctuations of the disk seem to account for small intrinsic scatter that is present in the observations at most phases.

  11. Wind interactions above accretion discs: a model for broad-line regions and collimated outflow

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.; Raine, D.J. (Leicester Univ. (UK). Dept. of Astronomy)

    1985-01-15

    The interaction of a wind from an active galactic nucleus with a Compton-heating-induced wind from an accretion disc is studied. The nuclear wind is taken as initially supersonic and spherically symmetric. The disc wind arises when the disc surface is exposed to a hard and powerful X-ray source. Three classes of interaction are identified in terms of the relation between the pressure on the disc surface and the corresponding thermal and ram pressures in the nuclear wind.

  12. A Global Three-dimensional Radiation Magneto-hydrodynamic Simulation of Super-Eddington Accretion Disks

    Science.gov (United States)

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ~220 L Edd/c 2 and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ~20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ~10 L Edd. This yields a radiative efficiency ~4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  13. 原太阳吸积盘结构%THE STRUCTURE OF PROTOSOLAR ACCRETION DISK

    Institute of Scientific and Technical Information of China (English)

    刘文洁; 黄克谅; 周洪楠

    2001-01-01

    计算了粘滞演化阶段原太阳吸积盘结构.采用稳态标准吸积盘模型来描述盘中湍动粘滞;忽略其径向能量传输,将垂直结构作为一维问题处理.假设盘作Keplerian较差旋转,处于流体力学平衡和局域热平衡,盘由粘滞耗散加热,能量通过对流和辐射向外传输.结果表明,对温度敏感的不透明度是决定盘结构的重要因素;原太阳吸积盘为冷的薄盘,盘中热对流不稳定性由外而内,由上而下地终结;行星的形成应首先开始于对流终结的区域.%The structure of protosolar accretion disk during viscous diffusion stage is calculated. The standard α model is used to describe the viscosity in the optically thick protosolar accretion disc. The energy transport associated with radial motions is neglected and the vertical structure is constructed by assuming a Keplerian rotation and local hydrostatic and thermal equilibrium. The disk is heated by viscous dissipation and energy is transported by convection or radiation. It is found that the dependence of opacity on temperature is important to the disk structure. For the cold protosolar accretion disc,convective instability will gradually end from the outer region to the center and from the surface to central plane. So the formation of planets should first take place in the region where convection ends.

  14. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  15. MODELING THE Fe K LINE PROFILES IN TYPE I ACTIVE GALACTIC NUCLEI WITH A COMPTON-THICK DISK WIND

    Energy Technology Data Exchange (ETDEWEB)

    Tatum, M. M.; Turner, T. J. [Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Sim, S. A. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Miller, L. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Reeves, J. N.; Patrick, A. R. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Long, K. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-06-20

    We have modeled a small sample of Seyfert galaxies that were previously identified as having simple X-ray spectra with little intrinsic absorption. The sources in this sample all contain moderately broad components of Fe K-shell emission and are ideal candidates for testing the applicability of a Compton-thick accretion disk wind model to active galactic nucleus (AGN) emission components. Viewing angles through the wind allow the observer to see the absorption signature of the gas, whereas face-on viewing angles allow the observer to see the scattered light from the wind. We find that the Fe K emission line profiles are well described with a model of a Compton-thick accretion disk wind of solar abundances, arising tens to hundreds of gravitational radii from the central black hole. Further, the fits require a neutral component of Fe K{alpha} emission that is too narrow to arise from the inner part of the wind, and likely comes from a more distant reprocessing region. Our study demonstrates that a Compton-thick wind can have a profound effect on the observed X-ray spectrum of an AGN, even when the system is not viewed through the flow.

  16. Accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity

    CERN Document Server

    Staykov, Kalin V; Yazadjiev, Stoytcho S

    2016-01-01

    We study the electromagnetic spectrum of accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity. Both static and rapidly rotating models are investigated. The results are compared with the General Relativistic results. We found difference between the results in both theories of about 50\\% for the electromagnetic flux and about 20\\% in the luminosity for models with equal mass and angular velocity in both theories. The observed differences are much lower for models rotating with Kelperian velocity and with equal masses.

  17. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes, and active galactic nuclei

    Science.gov (United States)

    Grzędzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena; Wu, Qingwen

    2017-07-01

    Aims: Black holes (BHs) surrounded by accretion disks are present in the Universe at different scales of masses, from microquasars up to the active galactic nuclei (AGNs). Since the work of Shakura & Sunyaev (1973, A&A, 24, 337) and their α-disk model, various prescriptions for the heat-production rate are used to describe the accretion process. The current picture remains ad hoc due the complexity of the magnetic field action. In addition, accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed light on both the role of radiation pressure and magnetic fields in the accretion process. Methods: We compute the structure and time evolution of an accretion disk, using the code GLADIS (which models the global accretion disk instability). We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetisation of the disk. We study the results for a large grid of models, to cover the whole parameter space, and we derive conclusions separately for different scales of black hole masses, which are characteristic for various types of cosmic sources. We show the dependencies between the flare or outburst duration, its amplitude, and period, on the accretion rate and viscosity scaling. Results: We present the results for the three grids of models, designed for different black hole systems (X-ray binaries, intermediate mass black holes, and galaxy centres). We show that if the heating rate in the accretion disk grows more rapidly with the total pressure and temperature, the instability results in longer and sharper flares. In general, we confirm that the disks around the supermassive black holes are more radiation-pressure dominated and present relatively brighter bursts. Our method can also be used as an independent tool for the black hole mass determination

  18. Global MHD Simulations of Accretion Disks in Cataclysmic Variables (CVs): I. The Importance of Spiral Shocks

    CERN Document Server

    Ju, Wenhua; Zhu, Zhaohuan

    2016-01-01

    We present results from the first global 3D MHD simulations of accretion disks in Cataclysmic Variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared to that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component to the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states and both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. 1) Linear wave dispersion relation fits the pitch angles of spiral density waves very well. 2) We demonstrate explicitly that mass accreti...

  19. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    Science.gov (United States)

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  20. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Mathiesen, B F; Jimenez-Garate, M A; Raymond, J C

    2003-10-17

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.

  1. Are broad optical balmer lines from central accretion disk in PG 1613+658?

    CERN Document Server

    Zhang, XueGuang

    2014-01-01

    In this letter, we report positive correlations between broad line width and broad line flux for the broad balmer lines of the long-term observed AGN PG 1613+658. Rather than the expected negative correlations under the widely accepted virialization assumption for AGN BLRs, the positive correlations indicate much different BLR structures of PG 1613+658 from the commonly considered BLR structures which are dominated by the equilibrium between radiation pressure and gas pressure. Therefore, accretion disk origin is preferred for the observed broad single-peaked optical balmer lines of PG 1613+658, because of the mainly gravity dominated disk-like BLRs with radial structures having few effects from radiation pressure.

  2. Beltrami state in black-hole accretion disk: A magnetofluid approach

    CERN Document Server

    Bhattacharjee, Chinmoy; Stark, David J; Mahajan, S M

    2015-01-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a blackhole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall MHD system, we find that the space-time curvature can significantly alter the magnetic/velocity decay rate as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce a new oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  3. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    Science.gov (United States)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (i.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  4. Dust in the wind II: Polarization imaging from disk-born outflows

    CERN Document Server

    Marin, F

    2013-01-01

    In this second research note of a series of two, we aim to map the polarized flux emerging from a disk-born, dusty outflow as it was prescribed by Elvis (2000). His structure for quasars was achieved to unify the emission and absorption features observed in active galactic nuclei (AGN) and can be used as an alternative scenario to the typical dusty torus that is extensively used to account for AGN circumnuclear obscuration. Using Monte Carlo radiative transfer simulations, we model an obscuring outflow arising from an emitting accretion disk and examine the resulting polarization degree, polarization angle and polarized flux. Polarization cartography reveals that a disk-born outflow has a similar torus morphology in polar viewing angles, with bright polarized fluxes reprocessed onto the wind funnel. At intermediate and edge-on inclinations, the model is rather close to a double-conical wind, with higher fluxes in the cone bases. It indicates that the optically thick outflow is not efficient enough to avoid ra...

  5. Angular Momentum Transport and Variability in Boundary Layers of Accretion Disks Driven by Global Acoustic Modes

    CERN Document Server

    Belyaev, Mikhail A; Stone, James M

    2012-01-01

    Disk accretion onto a weakly magnetized central object, e.g. a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high resolution 2D hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of order the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation...

  6. On the difficulty of launching an outflow from an accretion disk

    CERN Document Server

    Ogilvie, G I; Ogilvie, Gordon I.; Livio, Mario

    1997-01-01

    We solve for the local vertical structure of a thin accretion disk threaded by a poloidal magnetic field. The angular velocity deviates from the Keplerian value as a result of the radial Lorentz force, but is constant on magnetic surfaces. Angular momentum transport and energy dissipation in the disk are parametrized by an alpha-prescription, and a Kramers opacity law is assumed to hold. We also determine the stability of the equilibria with respect to the magnetorotational (or Balbus-Hawley) instability. If the magnetic field is sufficiently strong, stable equilibria can be found in which the angle of inclination, i, of the magnetic field to the vertical at the surface of the disk has any value in the range [0,90 degrees). By analyzing the dynamics of a transonic outflow in the corona of the disk, we show that a certain potential difference must be overcome even when i > 30 degrees. We determine this potential difference as a function of i for increasing values of the vertical magnetic field strength. For ma...

  7. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    Science.gov (United States)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-02-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (Hα and Hβ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ˜10-10(R */R)3 g cm-3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the Hα-emitting portion of the inner gaseous disk of ˜10-9 M *. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l”Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

  8. C/O and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion

    CERN Document Server

    Piso, Ana-Maria A; Birnstiel, Tilman; Murray-Clay, Ruth A

    2015-01-01

    The C/O ratio is a defining feature of both gas giant atmospheric and protoplanetary disk chemistry. In disks, the C/O ratio is regulated by the presence of snowlines of major volatiles at different distances from the central star. We explore the effect of radial drift of solids and viscous gas accretion onto the central star on the snowline locations of the main C and O carriers in a protoplanetary disk, H2O, CO2 and CO, and their consequences for the C/O ratio in gas and dust throughout the disk. We determine the snowline locations for a range of fixed initial particle sizes and disk types. For our fiducial disk model, we find that grains with sizes ~0.5 cm < s < 7 m for an irradiated disk, and ~0.001 cm < s < 7 m for an evolving and viscous disk, desorb at a size-dependent location in the disk, which is independent of the particle's initial position. The snowline radius decreases for larger particles, up to sizes of ~7 m. Compared to a static disk, we find that radial drift and gas accretion in...

  9. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias

    2010-01-01

    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions i...

  10. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias

    2010-01-01

    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions i...

  11. The Effect of X-ray Irradiation on the Time Dependent Behaviour of Accretion Disks with Stochastic Perturbations

    CERN Document Server

    Maqbool, Bari; Iqbal, Naseer; Ahmad, Naveel

    2015-01-01

    The UV emission from X-ray binaries, is more likely to be produced by reprocessing of X-rays by the outer regions of an accretion disk. The structure of the outer disk may be altered due to the presence of X-ray irradiation and we discuss the physical regimes where this may occur and point out certain X-ray binaries where this effect may be important. The long term X-ray variability of these sources is believed to be due to stochastic fluctuations in the outer disk, which propagate inwards giving rise to accretion rate variation in the X-ray producing inner regions. The X-ray variability will induce structural variations in the outer disk which in turn may affect the inner accretion rate. To understand the qualitative behaviour of the disk in such a scenario, we adopt simplistic assumptions that the disk is fully ionised and is not warped. We develop and use a time dependent global hydrodynamical code to study the effect of a sinusoidal accretion rate perturbation introduced at a specific radius. The response...

  12. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    Science.gov (United States)

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  13. A Substantial Dust Disk Surrounding an Actively Accreting First-Ascent Giant Star

    CERN Document Server

    Melis, C; Song, I; Rhee, J H; Metchev, S

    2009-01-01

    We report identification of the first unambiguous example of what appears to be a new class of first-ascent giant stars that are actively accreting gas and dust and that are surrounded by substantial dusty disks. These old stars, who are nearing the end of their lives, are experiencing a rebirth into characteristics typically associated with newborn stars. The F2-type first-ascent giant star TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy we are able to determine that these two stars are $\\sim$1 Gyr old and reside at a distance of $\\sim$550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or sub-stellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets an...

  14. VARIABILITY OF THE ACCRETION DISK OF V926 Sco INFERRED FROM TOMOGRAPHIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, S. D. [University of Southampton, Highfield, Southampton, S017 1BJ (United Kingdom); Peris, C. S. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Vrtilek, S. D., E-mail: sdc1g08@soton.ac.u, E-mail: peris.c@husky.neu.edu, E-mail: cperis@cfa.harvard.edu, E-mail: svrtilek@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-11-10

    We present phase-resolved spectroscopic observations of the low-mass X-ray binary V926 Sco (4U 1735-44), covering the orbital period of 0.23 days, obtained with the Walter Baade 6.5 m Magellan Telescope at the Las Campanas Observatory in 2010 June and 2011 June. We use Hα radial velocities to derive a systemic velocity of –109 ± 4 km s{sup –1}. The FWHM of the lines observed in common with previous authors are significantly lower during our observations suggesting much reduced velocities in the system. The equivalent width of the Bowen fluorescence lines with respect to He II λ4686 are factors of two or more lower during our observations in comparison to those previously reported for the system, suggesting reduced irradiation of the secondary. Doppler and modulation tomography of Hα and He II λ4686 show asymmetric emission that can be attributed to a bulge in the accretion disk, as inferred from He II observations by previous authors. The X-ray fluxes from the source at times concurrent with the optical observations are significantly lower during our observations than during optical observations taken in 2003. We suggest that the system is in a lower accretion state compared to earlier observations; this explains both the lower velocities observed from the disk and the reduction of emission due to Bowen fluorescence detected from the secondary.

  15. Numerical simulation of the disk dynamics around the black hole: Bondi-Hoyle accretion

    Science.gov (United States)

    Koyuncu, Fahrettin; Dönmez, Orhan

    2014-06-01

    We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip-flop oscillation around the black holes. The flip-flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.

  16. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows

    Science.gov (United States)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.

    2017-02-01

    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s‑1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  17. Emergence of nonlinearity and plausible turbulence in accretion disks via hydromagnetic transient growth faster than magnetorotational instability

    CERN Document Server

    Nath, Sujit K

    2016-01-01

    We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that Magnetorotational Instability (MRI) is responsible for transporting matter in the presence of weak magnetic field. However, there are some shortcomings, which question effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g. transient growth (TG), can play an important role to bring nonlinearity in the system, even at weak magnetic fields. Otherwise, whether MRI or TG, which is primarily responsible to reveal nonlinearity to make the flow turbulent? Our results prove explicitly that the flows with high Reynolds number (Re), which is the case of realistic astrophysical accretion disks, exhibit nonlinearity by best TG of perturbation modes faster than that by best modes producing MRI. For a fixed wavevector, MRI dominates over transient effects, only at low Re, lower than its value ...

  18. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    Energy Technology Data Exchange (ETDEWEB)

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Montesinos, B. [Centro de Astrobiología, Departamento de Astrofísica (CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Brittain, S. D. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States); Van den Ancker, M. E., E-mail: I.Mendigutia@leeds.ac.uk [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany)

    2014-07-20

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉} = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  19. Stellar Parameters and Accretion Rate of the Transition Disk Star HD 142527 from X-Shooter

    Science.gov (United States)

    Mendigutía, I.; Fairlamb, J.; Montesinos, B.; Oudmaijer, R. D.; Najita, J. R.; Brittain, S. D.; van den Ancker, M. E.

    2014-07-01

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T eff = 6550 ± 100 K, log g = 3.75 ± 0.10, L */L ⊙ = 16.3 ± 4.5, M */M ⊙ = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M ⊙. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10-7 M ⊙ yr-1, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ~7 on a timescale of 2 to 5 yr.

  20. Observational limits on the spin-down torque of Accretion Powered Stellar Winds

    CERN Document Server

    Zanni, C

    2010-01-01

    The rotation period of classical T Tauri stars (CTTS) represents a longstanding puzzle. While young low-mass stars show a wide range of rotation periods, many CTTS are slow rotators, spinning at a small fraction of break-up, and their rotation period does not seem to shorten, despite the fact that they are actively accreting and contracting. Matt & Pudritz (2005) proposed that the spin-down torque of a stellar wind powered by a fraction of the accretion energy would be strong enough to balance the spin-up torque due to accretion. Since this model establishes a direct relation between accretion and ejection, the observable stellar parameters (mass, radius, rotation period, magnetic field) and the accretion diagnostics (accretion shock luminosity), can be used to constraint the wind characteristics. In particular, since the accretion energy powers both the stellar wind and the shock emission, we show in this letter how the accretion shock luminosity L_UV can provide upper limits to the spin-down efficiency ...

  1. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    Science.gov (United States)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.

    2017-02-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at http://www.aanda.org

  2. DETERMINATION OF CENTRAL ENGINE POSITION AND ACCRETION DISK STRUCTURE IN NGC 4261 BY CORE SHIFT MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro [Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa, 252-5210 (Japan); Sudou, Hiroshi [Department of Mathematical and Design Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 5011-1193 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Córdova 3107 Vitacura, Santiago (Chile); Hada, Kazuhiro, E-mail: haga@vsop.isas.jaxa.jp [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-07-01

    We report multifrequency phase-referenced observations of the nearby radio galaxy NGC 4261, which has prominent two-sided jets, using the Very Long Baseline Array at 1.4–43 GHz. We measured radio core positions showing observing frequency dependences (known as “core shift”) in both approaching jets and counterjets. The limit of the core position as the frequency approaches infinity, which suggests a jet base, is separated by 82 ± 16 μas upstream in projection, corresponding to (310 ± 60)R{sub s} (R{sub s}: Schwarzschild radius) as a deprojected distance, from the 43 GHz core in the approaching jet. In addition, the innermost component at the counterjet side appeared to approach the same position at infinity of the frequency, indicating that cores on both sides are approaching the same position, suggesting a spatial coincidence with the central engine. Applying a phase-referencing technique, we also obtained spectral index maps, which indicate that emission from the counterjet is affected by free–free absorption (FFA). The result of the core shift profile on the counterjet also requires FFA because the core positions at 5–15 GHz cannot be explained by a simple core shift model based on synchrotron self-absorption (SSA). Our result is apparently consistent with the SSA core shift with an additional disk-like absorber over the counterjet side. Core shift and opacity profiles at the counterjet side suggest a two-component accretion: a radiatively inefficient accretion flow at the inner region and a truncated thin disk in the outer region. We proposed a possible solution about density and temperature profiles in the outer disk on the basis of the radio observation.

  3. Radiation-hydrodynamic simulations of quasar disk winds

    Science.gov (United States)

    Higginbottom, N.

    2015-09-01

    Disk winds are a compelling candidate to provide geometrical unification between Broad Absorption Line QSOs (BALQSOs) and Type1 Quasars. However, the geometry of these winds, and even the driving mech- anism remain largely unknown. Progress has been made through RT simulations and theoretical analysis of simplified wind geometries but there are several outstanding issues including the problem of shielding the low ionization BAL gas from the intense X-ray radiation from the central corona, and also how to produce the strong emission lines which exemplify Type 1 Quasars. A complex, clumpy geometry may provide a solution, and a full hydrodynamic model in which such structure may well spontaneously develop is something we wish to investigate. We have already demonstrated that the previous generation of hydrodynamic models of BALQSOs suffer from the fact that radiation transfer (RT) was necessarily simplified to permit computation, thereby neglecting the effects of multiple scattering and reprocessing of photons within the wind (potentially very important processes). We have therefore embarked upon a project to marry together a RT code with a hydrodynamics code to permit full radiation hydrodynamics simulations to be carried out on QSO disk winds. Here we present details of the project and results to date.

  4. Structure analysis of solution to equations of quasi 3-D accretion disk model

    Institute of Scientific and Technical Information of China (English)

    WU; Mei

    2001-01-01

    [1]Frank, J., King, A., Raine, K., Accretion Power in Astrophysics, Cambridge: Cambridge University Press, 1992.[2]Lu Jufu, Abramowicz, M. A., Bimodel characteristic of accrection of black hole, Acta Astrophysica Sinica, 1988, 8(1): 1—13.[3]Shakura, N. I., Sunyaev, R. A., Black holes in binary systems: Observational appearance, A& A, 1973, 24: 337—355.[4]Spruit, H., Matsuda, T., Inoue, M. et al., Spiral shocks and accretion in discs, MNRAS, 1987, 229: 517—527.[5]Yang, R. X., Kafatos, M., Shock study in fully relativistic isothermal flows, 2, A& A, 1995, 295: 238—244.[6]Kafatos, M., Yang, R. X., Transonic inviscid disc flows in the schwarzschild metric-I, MNRAS, 1994, 268 (4): 925—937.[7]Fortner, B., Lamb, F. K., Miller, G. S., Origin of ‘normal-branch’ quasiperiodic oscillations in low-mass X-ray binary systems, Nature, 1989, 342 (14): 775—777.[8]Narayan, R., Kato, S., Honma, F., Global structure and dynamics of advection-dominated accretion flows around black holes, ApJ, 1997, 476: 49—60.[9]Chakrabarti, S., Titarchuk, L. G., Spectral properties of accretion disks around galactic and extragalactic black holes, ApJ, 1995, 455: 623—639.[10]Landu, L. D., Lifshitz, E. M., Fluid Mechanics, Bristol: f. W. Arrowsmith Ltd., 1959, 514—515.

  5. Enhanced accretion rates of stars on Super-massive Black Holes by star-disk interactions in galactic nuclei

    CERN Document Server

    Just, Andreas; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emanuel Y

    2012-01-01

    We investigate the dynamical interaction of a central star cluster surrounding a super-massive black hole and a central accretion disk. The dissipative force acting on stars in the disk leads to an enhanced mass flow towards the super-massive black hole and to an asymmetry in the phase space distribution due to the rotating accretion disk. The accretion disk is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation t...

  6. Precessional Density Wave as a Reason of Turbulence in Accretion Disks of Non-magnetic Close Binary Stars

    Science.gov (United States)

    Bisikalo, D. V.; Kurbatov, E. P.; Kaygorodov, P. V.

    2015-10-01

    3D numerical simulations demonstrate the formation of precessional spiral density waves in accretion disks of close binary stars. The precesional wave occurs in the Keplerian disk as a result of gravitational action of the donor-star. The wave causes the appearance of strong density and velocity gradients in the disk. Linear stability analysis shows that the presence of a radial velocity gradient leads to the instability of radial modes. The perturbation becomes unstable if the radial velocity variations are of the same order or greater than the sound speed on the characteristic wave scale of the perturbations. The unstable perturbations rapidly grow with time and give rise to the emergence and growth of turbulence in the accretion disk. The obtained viscosity (0.01 in terms of Shakura-Sunyaev parameter) is in agreement with observations.

  7. MHD Modeling of a Disk-Wind from a High-Mass Protobinary: the case of Orion Source I

    CERN Document Server

    Vaidya, B

    2012-01-01

    Very long baseline interferometry (VLBI) observations of SiO masers in Orion Source I has enabled for the first time to resolve the outflow from a high-mass protostar in the launch and collimation region. Therefore, Source I provides a unique laboratory to study mass-loss and mass-accretion in a high-mass protostar. We numerically simulate the dynamics of the disk-wind inside 100 AU from Source I. This enables us to investigate the balance of different forces (gravitational, magnetic, thermal) regulating gas dynamics in massive star formation. In this work, we adopt magnetohydrodynamic (MHD) disk-wind models to explain the observed properties of the disk-wind from Orion Source I. The central source is assumed to be a binary composed of two 10\\,$\\msun$ stars in a circular orbit with an orbital separation of 7 AU. High resolution ideal MHD wind launching simulations (which prescribe disk as a boundary) are performed using the PLUTO code. The simulations are allowed to run until a steady state is obtained. MHD d...

  8. Magnetic fields during the early stages of massive star formation I: Accretion and disk evolution

    CERN Document Server

    Seifried, D; Klessen, R S; Duffin, D; Pudritz, R E

    2011-01-01

    We present simulations of collapsing 100 M_\\sun mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian disks can form in the very early evolutionary stage of massive protostars. For this purpose, we perform 12 simulations with different initial conditions extending over a wide range in parameter space. The equations of magnetohydrodynamics (MHD) are solved under the assumption of ideal MHD. We find that the formation of Keplerian disks in the very early stages is suppressed for a mass-to-flux ratio normalised to the critical value \\mu below 10, in agreement with a series of low-mass star formation simulations. This is caused by very efficient magnetic braking resulting in a nearly instantaneous removal of angular momentum from the disk. For weak magnetic fields, corresponding to \\mu > 10, large-scale, cent...

  9. A statistical study of the relation between soft X-ray excess and accretion disk

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To study the origin of the soft X-ray excess,we compile a sample of 94 unobscured,radio-quiet QSOs and Seyfert galaxies with available data from GALEX and ROSAT.We find that 50 sources show strong soft X-ray excess and the other 44 show weak/no soft X-ray excess.Systematic analyses of the data indicate that the difference in soft X-rays is mainly but not only resulting from different accretion rates(in units of Eddington rate).The statistical study of the sources with soft X-ray excess shows that the strength of soft X-ray excess weakly and positively correlates with the Eddington ratio and increases with the increase of the strength of UV radiations relative to the X-rays.Provided that the UV emissions are from the thin disk,the correlations imply that the origin of soft X-ray excess is associated with the thin disk,either by means of Comptonization of the disk photons or in some other ways.

  10. Properties and stability of freely propagating nonlinear density waves in accretion disks

    CERN Document Server

    Fromang, S

    2007-01-01

    In this paper, we study the propagation and stability of nonlinear sound waves in accretion disks. Using the shearing box approximation, we derive the form of these waves using a semi-analytic approach and go on to study their stability. The results are compared to those of numerical simulations performed using finite difference approaches such as employed by ZEUS as well as Godunov methods. When the wave frequency is between Omega and two Omega (where Omega is the disk orbital angular velocity), it can couple resonantly with a pair of linear inertial waves and thus undergo a parametric instability. Neglecting the disk vertical stratification, we derive an expression for the growth rate when the amplitude of the background wave is small. Good agreement is found with the results of numerical simulations performed both with finite difference and Godunov codes. During the nonlinear phase of the instability, the flow remains well organised if the amplitude of the background wave is small. However, strongly nonlin...

  11. Accretion dynamics and disk evolution in NGC 2264: a study based on the Corot photometric observations

    CERN Document Server

    Alencar, S H P; Guimaraes, M M; McGinnis, P T; Gameiro, J F; Bouvier, J; Aigrain, S; Flaccomio, E; Favata, F

    2010-01-01

    The young cluster NGC 2264 was observed with the Corot satellite for 23 days uninterruptedly in March 2008 with unprecedent photometric accuracy. We present here the first results of the analysis of the accreting population. We intended to look for possible light curve variability of the same nature as that observed in the classical T Tauri star AA Tau, which was attributed to a magnetically controlled inner disk warp, which is directly associated with the interaction between the stellar magnetic field and the inner disk region. We analysed the Corot light curves of 83 previously known classical T Tauri stars that belong to NGC 2264 and classified them according to their morphology. We also studied the Corot light curve morphology as a function of a Spitzer-based classification of the star-disk systems. The classification derived on the basis of the Corot light curve morphology agrees very well with the Spitzer IRAC-based classification of the systems. The percentage of AA Tau-like light curves decreases as t...

  12. Investigating accretion disk - radio jet coupling across the stellar mass scale

    CERN Document Server

    Miller-Jones, James C A; Altamirano, Diego; Körding, Elmar G; Krimm, Hans A; Maitra, Dipankar; Remillard, Ron A; Russell, David M; Tudose, Valeriu; Dhawan, Vivek; Fender, Rob P; Heinz, Sebastian; Markoff, Sera; Migliari, Simone; Rupen, Michael P; Sarazin, Craig L

    2010-01-01

    Relationships between the X-ray and radio behavior of black hole X-ray binaries during outbursts have established a fundamental coupling between the accretion disks and radio jets in these systems. We begin by reviewing the prevailing paradigm for this disk-jet coupling, also highlighting what we know about similarities and differences with neutron star and white dwarf binaries. Until recently, this paradigm had not been directly tested with dedicated high-angular resolution radio imaging over entire outbursts. Moreover, such high-resolution monitoring campaigns had not previously targetted outbursts in which the compact object was either a neutron star or a white dwarf. To address this issue, we have embarked on the Jet Acceleration and Collimation Probe Of Transient X-Ray Binaries (JACPOT XRB) project, which aims to use high angular resolution observations to compare disk-jet coupling across the stellar mass scale, with the goal of probing the importance of the depth of the gravitational potential well, the...

  13. Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet Formation

    CERN Document Server

    Eisner, J A; White, R J; Akeson, R L; Sargent, A I

    2005-01-01

    We determine inner disk sizes and temperatures for four solar-type (1-2 M$_{\\odot}$) classical T Tauri stars (AS 207A, V2508 Oph, AS 205A, and PX Vul) using 2.2 $\\mu$m observations from the Keck Interferometer. Nearly contemporaneous near-IR adaptive optics imaging photometry, optical photometry, and high-dispersion optical spectroscopy are used to distinguish contributions from the inner disks and central stars in the interferometric observations. In addition, the spectroscopic and photometric data provide estimates of stellar properties, mass accretion rates, and disk co-rotation radii. We model our interferometric and photometric data in the context of geometrically flat accretion disk models with inner holes, and flared disks with puffed-up inner walls. Models incorporating puffed-up inner disk walls generally provide better fits to the data, similar to previous results for higher-mass Herbig Ae stars. Our measured inner disk sizes are larger than disk truncation radii predicted by magnetospheric accretio...

  14. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    CERN Document Server

    Miller, J M; Kaastra, J; Kallman, T; King, A L; Proga, D; Raymond, J; Reynolds, C S

    2015-01-01

    We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe XXVI line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are ro...

  15. Global MHD Simulations of Accretion Disks in Cataclysmic Variables (CVs). II. The Relative Importance of MRI and Spiral Shocks

    Science.gov (United States)

    Ju, Wenhua; Stone, James M.; Zhu, Zhaohuan

    2017-05-01

    We perform global three-dimensional MHD simulations of unstratified accretion disks in cataclysmic variables (CVs). By including mass inflow via an accretion stream, we are able to evolve the disk to a steady state. We investigate the relative importance of spiral shocks and the magnetorotational instability (MRI) in driving angular momentum transport and how each depend on the geometry and strength of the seed magnetic field and the Mach number of the disk (where Mach number is the ratio of the azimuthal velocity and the sound speed of gas). We use a locally isothermal equation of state and adopt temperature profiles that are consistent with CV disk observations. Our results indicate that the relative importance of spiral shocks and MRI in driving angular momentum transport is controlled by the gas Mach number and the seed magnetic field strength. MRI and spiral shocks provide comparable efficiency of angular momentum transport when the disk Mach number is around 10 and the seed magnetic field has plasma β =400 (where β is the ratio of gas pressure and magnetic pressure). The MRI dominates whenever the seed field strength, or the disk Mach number, is increased. Among all of our simulations, the effective viscosity parameter {α }{eff}˜ 0.016{--}0.1 after MRI saturates and the disk reaches steady state. Larger values of {α }{eff} are favored when the seed magnetic field has vertical components or the flow has stronger magnetization (1/β ). Our models all indicate that the role of MRI in driving angular momentum transport thus mass accretion in CV disks is indispensable, especially in cool disks with weak spiral shocks.

  16. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    Science.gov (United States)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  17. Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks

    CERN Document Server

    Hirabayashi, Kota

    2016-01-01

    A new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk is presented. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to a magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, to which we give a name "magneto-gradient driven instability", is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to...

  18. A pure hydrodynamic instability in shear flows and its application to astrophysical accretion disks

    CERN Document Server

    Nath, Sujit Kumar

    2016-01-01

    We provide the possible resolution for the century old problem of hydrodynamic shear flows, which are apparently stable in linear analysis but shown to be turbulent in astrophysically observed data and experiments. This mismatch is noticed in a variety of systems, from laboratory to astrophysical flows. There are so many uncountable attempts made so far to resolve this mismatch, beginning with the early work of Kelvin, Rayleigh, and Reynolds towards the end of the nineteenth century. Here we show that the presence of stochastic noise, whose inevitable presence should not be neglected in the stability analysis of shear flows, leads to pure hydrodynamic linear instability therein. This explains the origin of turbulence, which has been observed/interpreted in astrophysical accretion disks, laboratory experiments and direct numerical simulations. This is, to the best of our knowledge, the first solution to the long standing problem of hydrodynamic instability of Rayleigh stable flows.

  19. Extracting Energy Magnetically from Plunging Region of Black-Hole Accretion Disk

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-Mei; YE Yong-Chun; WANG Ding-Xiong

    2007-01-01

    An analytical expression for the jet power extracted from the plunging region between a black hole (BH)horizon and the inner edge of the disk (hereafter the PL power) is derived based on an improved equivalent circuit in BH magnetosphere with a mapping relation between the radial coordinate of the plunging region and that of the remote astrophysical load.It is shown that the PL power is of great importance in explaining jet power and dominates over the BZ and DL powers for a wide value range of the BH spin.In addition,we show that the PL power derived in our model can be fitted with the strong jet powers of several 3CR FR I radio galaxies,which cannot be explained by virtue of the BZ mechanism.Furthermore,the condition for negative energy of the accreting particles in the plunging region is discussed with the validity of the second law of BH thermodynamics.

  20. Can Self Organized Critical Accretion Disks Generate a Log-normal Emission Variability in AGN?

    CERN Document Server

    Kunjaya, Chatief; Vierdayanti, Kiki; Herlie, Stefani

    2011-01-01

    Active Galactic Nuclei (AGN), such as Seyfert galaxies, quasars, etc., show light variations in all wavelength bands, with various amplitude and in many time scales. The variations usually look erratic, not periodic nor purely random. Many of these objects also show lognormal flux distribution and RMS - flux relation and power law frequency distribution. So far, the lognormal flux distribution of black hole objects is only observational facts without satisfactory explanation about the physical mechanism producing such distribution in the accretion disk. One of the most promising models based on cellular automaton mechanism has been successful in reproducing PSD (Power Spectral Density) of the observed objects but could not reproduce lognormal flux distribution. Such distribution requires the existence of underlying multiplicative process while the existing SOC models are based on additive processes. A modified SOC model based on cellular automaton mechanism for producing lognormal flux distribution is present...

  1. Centrifugally driven winds from protostellar accretion discs - I. Formulation and initial results

    Science.gov (United States)

    Nolan, C. A.; Salmeron, R.; Federrath, C.; Bicknell, G. V.; Sutherland, R. S.

    2017-10-01

    Protostellar discs play an important role in star formation, acting as the primary mass reservoir for accretion on to young stars and regulating the extent to which angular momentum and gas is released back into stellar nurseries through the launching of powerful disc winds. In this study, we explore how disc structure relates to the properties of the wind-launching region, mapping out the regions of protostellar discs where wind launching could be viable. We combine a series of 1.5D semi-analytic, steady-state, vertical disc-wind solutions into a radially extended 1+1.5D model, incorporating all three diffusion mechanisms (Ohm, Hall and ambipolar). We observe that the majority of mass outflow via disc winds occurs over a radial width of a fraction of an astronomical unit, with outflow rates attenuating rapidly on either side. We also find that the mass accretion rate, magnetic field strength and surface density profile each have significant effects on both the location of the wind-launching region and the ejection/accretion ratio \\dot{M}_out/\\dot{M}_in. Increasing either the accretion rate or the magnetic field strength corresponds to a shift of the wind-launching region to smaller radii and a decrease in \\dot{M}_out/\\dot{M}_in, while increasing the surface density corresponds to launching regions at larger radii with increased \\dot{M}_out/\\dot{M}_in. Finally, we discover a class of disc winds containing an ineffective launching configuration at intermediate radii, leading to two radially separated regions of wind launching and diminished \\dot{M}_out/\\dot{M}_in. We find that the wind locations and ejection/accretion ratio are consistent with current observational and theoretical estimates.

  2. Special relativistic effects on the strength of the fluorescent $K\\alpha$ iron line from black hole accretion disks

    CERN Document Server

    Reynolds, C S

    1997-01-01

    The broad iron K$\\alpha$ emission line, commonly seen in the X-ray spectrum of Seyfert nuclei, is thought to originate when the inner accretion disk is illuminated by an active disk-corona. We show that relative motion between the disk and the X-ray emitting material can have an important influence on the observed equivalent width (EW) of this line via special relativistic aberration and Doppler effects. We suggest this may be relevant to understanding why the observed EW often exceeds the prediction of the standard X-ray reflection model. Several observational tests are suggested that could disentangle these special relativistic effects from iron abundance effects.

  3. Inner disk radius, accretion and the propeller effect in the spin-down phase of neutron stars

    CERN Document Server

    Ertan, Unal

    2015-01-01

    We have investigated the critical conditions required for an efficient steady propeller mechanism in the spin-down phases of magnetized neutron stars with optically thick accretion disks. We have shown through simple analytical calculations that: (1) the strength of the dipole field at the Alfven radius is not sufficient to sustain an efficient mass-outflow even when the magnetic dipole field lines rotate much faster than the escape speed, (2) in the spin-down phase, mass accretion onto the star could persist above a minimum disk mass-flow rate that is orders of magnitude lower than the rate corresponding to the transition between the spin-up and the spin-down states, (3) below this critical mass-flow rate, a steady propeller state could be established with a maximum inner disk radius about 25 times smaller than the Alfven radius. Our results indicate that only for spherical accretion, the inner disk radius is likely to approach the Alfven radius, and for all realistic cases, the accretion-propeller transitio...

  4. Design of Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    Science.gov (United States)

    Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Young, R.; Plewa, T.

    2010-05-01

    In many Cataclysmic Binary systems, mass transfer via Roche lobe overflow onto an accretion disk occurs. This produces a hot spot from the heating created by the supersonic impact of the infalling flow with the rotating accretion disk, which can produce a radiative reverse shock in the infalling flow. This collision region has many ambiguities as a radiation hydrodynamic system. Depending upon conditions, it has been argued (Armitgae & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. Laboratory experiments have yet to produce colliding flows that create a radiative reverse shock or to produce obliquely incident colliding flows, both of which are aspects of these Binary systems. We have undertaken the design of such an experiment, aimed at the Omega-60 laser facility. The design elements include the production of postshock flows within a dense material layer or ejecta flows by release of material from a shocked layer. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. In this poster we will discuss the astrophysical context, the experimental design work we have done, and the challenges of implementing and diagnosing an actual experiment. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  5. Light Curves from an MHD Simulation of a Black Hole Accretion Disk

    CERN Document Server

    Schnittman, J D; Hawley, J F; Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.

    2006-01-01

    We use a relativistic ray-tracing code to calculate the light curves observed from a global general relativistic magneto-hydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the "Thermal Dominant" state. The simulated power spectrum is characterized by a power law of index Gamma ~ 3 and total rms fractional variance of ~ 1 % near the orbital frequency at the inner-most stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features because at any given time they are seen only from certain observer directions. Additionally, we present detailed analysis of the azimuthal structur...

  6. MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S., E-mail: mjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-11-10

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.

  7. Characterising anomalous transport in accretion disks from X-ray observations

    CERN Document Server

    Greenhough, J; Chaty, S; Dendy, R O; Rowlands, G

    2002-01-01

    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1, the microquasar GRS1915+105, and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robu...

  8. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    CERN Document Server

    Izumi, Takuma; Kohno, Kotaro

    2016-01-01

    We present a positive correlation between the mass of dense molecular gas ($M_{\\rm dense}$) of $\\sim 100$ pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ($\\dot{M}_{\\rm BH}$) in total 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture $\\theta_{\\rm med}$ = 220 pc). A typical $M_{\\rm dense}$ of CNDs is 10$^{7-8}$ $M_\\odot$, estimated from the luminosity of the dense gas tracer, the HCN($1-0$) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between nuclear star formation rate and $\\dot{M}_{\\rm BH}$ revealed previously. Moreover, the $M_{\\rm dense}-\\dot{M}_{\\rm BH}$ correlation was tighter for CND-scale gas than for the gas on kpc or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas $>$kpc scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Mill...

  9. An accretion disk swept up by a powerful thermonuclear X-ray burst

    Science.gov (United States)

    Degenaar, Nathalie

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. Swift recently caught a very energetic type-I X-ray burst from the neutron star IGR J17062-6143 that displayed exceptional features. Firstly, the light curve of the 18 minute long X-ray burst tail shows an episode of 10 minutes with wild X-ray intensity fluctuations. Secondly, X-ray spectral analysis revealed a highly significant emission line around 1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. Finally, the detection of significant absorption lines and edges in the Fe-K band are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent emission of the source. The X-ray burst of IGR J17062-6143 shows the first unambiguous detection of atomic features at CCD resolution. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line, and photo-ionization modeling of the Fe-K absorption features each independently point to swept-up gas at a radius of ~1000 km from the neutron star. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  10. Turbulence-driven Polar Winds from T Tauri Stars Energized by Magnetospheric Accretion

    CERN Document Server

    Cranmer, Steven R

    2008-01-01

    Pre-main-sequence stars are observed to be surrounded by both accretion flows and some kind of wind or jet-like outflow. Recent work by Matt and Pudritz has suggested that if classical T Tauri stars exhibit stellar winds with mass loss rates about 0.1 times their accretion rates, the wind can carry away enough angular momentum to keep the stars from being spun up unrealistically by accretion. This paper presents a preliminary set of theoretical models of accretion-driven winds from the polar regions of T Tauri stars. These models are based on recently published self-consistent simulations of the Sun's coronal heating and wind acceleration. In addition to the convection-driven MHD turbulence (which dominates in the solar case), we add another source of wave energy at the photosphere that is driven by the impact of plasma in neighboring flux tubes undergoing magnetospheric accretion. This added energy, determined quantitatively from the far-field theory of MHD wave generation, is sufficient to produce T Tauri-l...

  11. `Tail-end' Bondi-Hoyle accretion in young star clusters: Implications for disks, planets, and stars

    CERN Document Server

    Throop, Henry B

    2008-01-01

    Young stars orbiting in the gravitational potential well of forming star clusters pass through the cluster's dense molecular gas and can experience Bondi-Hoyle accretion from reservoirs outside their individual protostellar cloud cores. Accretion can occur for several million years after the stars form, but before the cluster disperses. This accretion is predominantly onto the disk and not the star. N-body simulations of stars orbiting in three young model clusters containing 30, 300, and 3000 stars are presented. The simulations include the gravitational potential of the molecular gas which smoothly disperses over time. The clusters have a star formation efficiency of 33% and a radius of 0.22 pc. We find that the disks surrounding solar-mass stars in the N=30 cluster accretes ~0.01 M_sol (~1 minimum-mass solar nebula, MMSN) per Myr. The accretion rate scales as M^2.1 for stars of mass M. The accretion rate is ~5 times lower for N=3000 cluster, due to its higher stellar velocities and higher temperature. The ...

  12. Numerical Simulation of Hot Accretion Flows (III): Revisiting wind properties using trajectory approach

    CERN Document Server

    Yuan, Feng; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning

    2015-01-01

    Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind, such as mass flux and poloidal speed, and the mechanism of wind production. For this aim, we make use of a three dimensional GRMHD simulation of hot accretion flows around a Schwarzschild black hole. The simulation is designed so that the magnetic flux is not accumulated significantly around the black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Largrangian particles from simulation data. We find two types of real outflows, i.e., a quasi-relativistic jet close to the axis and a sub-relativistic wind subtending a much larger solid angle. Most of the wind originates from the surface layer of the accretion flow. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows $v_{\\rm p, wind}(r)\\approx 0.25 v_k(r)$. The mass flux ...

  13. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows III: application to a hydrodynamical simulation

    CERN Document Server

    Sim, S A; Miller, L; Long, K S; Turner, T J

    2010-01-01

    We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determi...

  14. Perspectives for the study of gas in protoplanetary disks and accretion/ejection phenomena in young stars with the near-IR spectrograph SPIROU at the CFHT

    CERN Document Server

    Carmona, A; Delfosse, X

    2013-01-01

    Near-IR atomic and molecular transitions are powerful tools to trace the warm and hot gas in the circumstellar environment of young stars. Ro-vibrational transitions of H2 and H2O, and overtone transitions of CO at 2 micron centered at the stellar velocity trace hot (T~1500 K) gas in the inner few AU of protoplanetary disks. H2 near-IR lines displaying a blueshift of a few km/s probe molecular disk winds. H2 lines presenting blueshifts of hundreds of km/s reveal hot shocked gas in jets. Atomic lines such as the HeI line at 10830 A and the Hydrogen Paschen beta and Brakett gamma lines trace emission from accretion funnel flows and atomic disk winds. Bright forbidden atomic lines in the near-IR of species such as [Fe II], [N I], [S I], [S II], and [C I] trace atomic and ionized material in jets. The new near-IR high resolution spectrograph SPIROU planned for the Canada France Hawaii Telescope will offer the unique capability of combining high-spectral resolution (R~75000) with a large wavelength coverage (0.98 ...

  15. The Relative Orientation of Nuclear Accretion and Galaxy Stellar Disks in Seyfert Galaxies

    CERN Document Server

    Nagar, N M

    1999-01-01

    We use the difference (delta) between the position angles of the nuclear radio emission and the host galaxy major axis to investigate the distribution of the angle (beta) between the axes of the nuclear accretion disk and the host galaxy disk in Seyfert galaxies. We provide a critical appraisal of the quality of all measurements, and find that the data are limited by observational uncertainties and biases, such as the well known deficiency of Seyfert galaxies of high inclination. There is weak evidence that the distribution of delta for Seyfert 2 galaxies may be different (at the 90% confidence level) from a uniform distribution, while the Seyfert 1 delta distribution is not significantly different from a uniform distribution or from the Seyfert 2 delta distribution. The cause of the possible non-uniformity in the distribution of delta for Seyfert 2 galaxies is discussed. Seyfert nuclei in late-type spiral galaxies may favor large values of delta (at the ~96% confidence level), while those in early-type galax...

  16. Stronger Reflection from Black Hole Accretion Disks in Soft X-ray States

    CERN Document Server

    Steiner, James F; Garcia, Javier A; McClintock, Jeffrey E

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole candidates collected over the 16-year mission lifetime of RXTE using a simple phenomenological model. As these black holes vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: The Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely the Compton power law. We find that reflection is several times more pronounced (~3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which ...

  17. Relativistic emission lines from accreting black holes - The effect of disk truncation on line profiles

    CERN Document Server

    Müller, A; Mueller, Andreas; Camenzind, Max

    2004-01-01

    Relativistic emission lines generated by thin accretion disks around rotating black holes are an important diagnostic tool for testing gravity near the horizon. The iron K-line is of special importance for the interpretation of the X-ray emission of Seyfert galaxies, quasars and galactic X-ray binary systems. A generalized kinematic model is presented which includes radial drifts and non-Keplerian rotations for the line emitters. The resulting line profiles are obtained with an object-oriented ray tracer operating in the curved Kerr background metric. The general form of the Doppler factor is presented which includes all kinds of poloidal and toroidal motions near the horizon. The parameters of the model include the spin parameter, the inclination, the truncation and outer radius of the disk, velocity profiles for rotation and radial drift, the emissivity profile and a multi-species line-system. The red wing flux is generally reduced when radial drift is included as compared to the pure Keplerian velocity fie...

  18. The Acceleration Mechanism of Resistive MHD Jets Launched from Accretion Disks

    CERN Document Server

    Kuwabara, T; Kudoh, T; Matsumoto, R

    2004-01-01

    We analyzed the results of non-linear resistive magnetohydrodynamical (MHD) simulations of jet formation to study the acceleration mechanism of axisymmetric, resistive MHD jets. The initial state is a constant angular momentum, polytropic torus threaded by weak uniform vertical magnetic fields. The time evolution of the torus is simulated by applying the CIP-MOCCT scheme extended for resistive MHD equations. We carried out simulations up to 50 rotation period at the innermost radius of the disk created by accretion from the torus. The acceleration forces and the characteristics of resistive jets were studied by computing forces acting on Lagrangian test particles. Since the angle between the rotation axis of the disk and magnetic field lines is smaller in resistive models than in ideal MHD models, magnetocentrifugal acceleration is smaller. The effective potential along a magnetic field line has maximum around $z \\sim 0.5r_0$ in resistive models, where $r_0$ is the radius where the density of the initial toru...

  19. Rossby Wave Instability of Thin Accretion Disks; 2, Detailed Linear Theory

    CERN Document Server

    Finn, J M; Colgate, S A

    1999-01-01

    In earlier work we identified a global, non-axisymmetric instability associated with the presence of an extreme in the radial profile of the key function ${\\cal L}(r) \\equiv (\\Sigma \\Omega/\\kappa^2) S^{2/\\Gamma}$ in a thin, inviscid, nonmagnetized accretion disk. Here, $\\Sigma(r)$ is the surface mass density of the disk, $\\Omega(r)$ the angular rotation rate, $S(r)$ the specific entropy, $\\Gamma$ the adiabatic index, and $\\kappa(r)$ the radial epicyclic frequency. The dispersion relation of the instability was shown to be similar to that of Rossby waves in planetary atmospheres. In this paper, we present the detailed linear theory of this Rossby wave instability and show that it exists for a wider range of conditions, specifically, for the case where there is a ``jump'' over some range of $r$ in $\\Sigma(r)$ or in the pressure $P(r)$. We elucidate the physical mechanism of this instability and its dependence on various parameters, including the magnitude of the ``bump'' or ``jump,'' the azimuthal mode number, ...

  20. The Effects of Photon Bubble Instability in Radiation-Dominated Accretion Disks

    CERN Document Server

    Turner, N J; Socrates, A; Begelman, M C; Davis, S W

    2005-01-01

    We examine the effects of photon bubble instability in radiation-dominated accretion disks such as those found around black holes in active galactic nuclei and X-ray binary star systems. Two- and 3-D numerical radiation MHD calculations of small patches of disk are used. Modes with wavelengths shorter than the gas pressure scale height grow faster than the orbital frequency in the surface layers. The fastest growth rate observed is five times the orbital frequency and occurs on nearly-vertical magnetic fields. The spectrum of linear modes agrees with a WKB analysis indicating still faster growth at unresolved scales, with a maximum proportional to the gravity and inversely proportional to the gas sound speed. Disturbances reaching non-linear amplitudes steepen into trains of shocks similar to a 1-D periodic non-linear analytic solution. Variations in propagation speed result in merging of adjacent fronts, and over time the shock spacing and amplitude increase. Growth is limited by the strength of the field, a...

  1. Detection of the Orbital Motions of Material in the Inner Accretion Disk of Mrk 766

    Science.gov (United States)

    Turner, T. J.; Miller, L.; George, I. M.; Reeves, J. N.

    2004-12-01

    Time-resolved X-ray spectroscopy has been obtained for the Seyfert galaxy Mrk 766 from XMM-Newton observations. Fe Kα emission has been detected with multiple peaks in energy that vary with time. The time variations appear as sinusoidally varying trails on the spectral-time plane, and provide direct evidence for the existence of matter orbiting a supermassive black hole. Fitting orbit models to the variations strongly indicates that the observed Fe emission originates in a small number of hotspots that are in coplanar orbits consistent with arising on an accretion disk. Taking the independently-determined value for the black hole mass of 4.3 × 106 M⊙ implies the disk is inclined at 26 ± 1o to the line of sight and emission is seen at a distance ˜ 100 gravitational radii ( ˜ 4 A.U.) from the black hole. The period and amplitude of the orbits yield a lower limit for the black hole mass of M BH > 3.6 × 105 M⊙ within a radius of 1.8 A.U.

  2. Stronger Reflection from Black Hole Accretion Disks in Soft X-Ray States

    Science.gov (United States)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely, the Compton power law. We find that reflection is several times more pronounced (˜3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  3. A Newly Forming Cold Flow Protogalactic Disk, a Signature of Cold Accretion from the Cosmic Web

    Science.gov (United States)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan

    2016-06-01

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool (T ˜ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Lyα emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous (R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 1012 M ⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  4. WAVE-VORTEX MODE COUPLING IN ASTROPHYSICAL ACCRETION DISKS UNDER COMBINED RADIAL AND VERTICAL STRATIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, A. [Departement de Physique, Faculte des Sciences de Tunis, 1060 Tunis (Tunisia); Lehner, T. [LUTH, UMR 8102 CNRS, Observatoire de Paris-Meudon, 5 place de Janssen, F-92195 Meudon (France); Godeferd, F.; Cambon, C. [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon, Universite de Lyon, UMR 5509, CNRS, INSA, UCB, F-69134 Ecully Cedex (France)

    2013-07-10

    We examine accretion disk flow under combined radial and vertical stratification utilizing a local Cartesian (or ''shearing box'') approximation. We investigate both axisymmetric and nonaxisymmetric disturbances with the Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces to the Solberg-Hoieland criterion in the case without vertical stratification. It shows that, asymptotically, stable radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous investigations strongly suggest that the so-called bypass concept of turbulence (i.e., that fine-tuned disturbances of any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks. We present an analysis of this process for three-dimensional plane-wave disturbances comoving with the shear flow of a general rotating shear flow under combined stable radial and vertical rotation. We demonstrate that large transient growth occurs for K{sub 2}/k{sub 1} >> 1 and k{sub 3} = 0 or k{sub 1} {approx} k{sub 3}, where k{sub 1}, K{sub 2}, and k{sub 3} are the azimuthal, radial, and vertical components of the initial wave vector, respectively. By using a generalized ''wave-vortex'' decomposition of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the transient dynamics of the vortex mode. The analysis of the power spectrum of total (kinetic+potential) energy in the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large scales, while the contribution coming from the wave mode is important at small scales. These findings may be confirmed by appropriate numerical simulations in the high Reynolds number regime.

  5. Simulations of disk galaxies with cosmic ray driven galactic winds

    CERN Document Server

    Booth, C M; Kravtsov, Andrey V; Gnedin, Nickolay Y

    2013-01-01

    We present results from high-resolution hydrodynamic simulations of isolated SMC- and Milky Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading factors of up to ~10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with \\propto v_c^{1-2} required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to SN driven winds, where most of the acceleration happens violently in situ near star forming sites. In contrast, the CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the h...

  6. The advection-dominated accretion flow+thin accretion disk model for two low-luminosity active galactic nuclei: M81 and NGC 4579

    Institute of Scientific and Technical Information of China (English)

    Ya-Di Xu; Xin-Wu Cao

    2009-01-01

    It was found that advection-dominated accretion flow (ADAF)+thin disk model calculations can reproduce the observed spectral energy distributions (SEDs) of two low- luminosity active galactic nuclei (AGNs), provided they are accreting at ~ 0.01 - 0.03 Eddington rates and the thin disks are truncated to ADAFs at~ 100Rs (Rs is the Schwarzschild radius) for M81 and NGC 4579 (Quataert et al. 1999). However, the black hole masses adopted in their work are about one order of magnitude lower than recent measurements on these two sources. Adopting the well estimated black hole masses, our ADAF+thin disk model calculations can reproduce the observed SEDs of these two low- luminosity AGNs, if the black hole is accreting at 2.5 × 10-4 Eddington rates with the thin disk truncated at Rtr = 120Rs for M81 ((m) = 3.3 × 10-3 and Rtr = 80Rs are required for NGC 4579). The transition zones with temperature from the thin disk with 104 - 105 to~109 - 1010 K in the ADAF will inevitably emit thermal X-ray lines, which provides a useful diagnosis of their physical properties. The observed widths of the thermal X-ray iron lines at(~)6.8 keV are consistent with Doppler broadening by Keplerian motion of the gases in the transition zones at~100Rs. We use the structure of the transition zone between the ADAF and the thin disk derived by assuming the turbulent diffusive heat mechanism to calculate their thermal X-ray line emission with the standard software package Astrophysical Plasma Emission Code (APEC). Comparing them with the equivalent widths of the observed thermal X-ray iron lines in these two sources, we find that the turbulent diffusive heat mechanism seems to be unable to reproduce the ob- served thermal X-ray line emission. The test of the evaporation model for the accretion mode transition with the observed thermal X-ray line emission is briefly discussed.

  7. Raman Scattered O VI $\\lambda$ 6825 and the Accretion Disk Emission Model in the Symbiotic Stars V1016 Cygni and HM Sagittae

    CERN Document Server

    Lee, Hee-Won

    2007-01-01

    We present the high resolution spectra of the D type symbiotic stars V1016 Cygni and HM Sagittae obtained with the Bohyunsan Optical Echelle Spectrograph (BOES), and investigate the double-peaked asymmetric profiles of the Raman scattered O VI 6825. By adopting a wind accretion disk model, we assume that the O VI emission region is described by a Keplerian thin disk. The Raman scattering occurs in a neutral region near the giant, taking in the form of a slow stellar wind, part of which is ionized by the strong UV radiation from the hot white dwarf. Using a Monte Carlo technique, we compute the line profiles that are modulated by the slow spherical stellar wind from the giant component with the ionization front approximated by a hyperboloid. In order to account for the asymmetry and the existence of a central dip in the profiles, we add an O VI resonance scattering region between the hot white dwarf and the giant star which hinders the incidence of slightly blue O VI photons upon the H I region. Overall good f...

  8. Outflowing disk winds in B[e] Supergiants

    CERN Document Server

    Cur'e, M; Cidale, L; Cur\\'{e}, Michel; Rial, Diego F.; Cidale, Lydia

    2005-01-01

    The effects of rapid rotation and bi--stability upon the density contrast between the equatorial and polar directions of a B[e] supergiant are investigated. Based on a new slow solution for different high rotational radiation--driven winds and the fact that bi--stability allows a change in the line--force parameters ($\\alpha$, $k$, and $\\delta$), the equatorial densities are about $10^2$--$10^3$ times higher than the polar ones. These values are in qualitative agreement with the observations. This calculation also permits to obtain the aperture angle of the disk.

  9. Turbulence In the Outer Regions of Protoplanetary Disks. II. Strong Accretion Driven by a Vertical Magnetic Field

    CERN Document Server

    Simon, Jacob B; Armitage, Philip J; Stone, James M; Beckwith, Kris

    2013-01-01

    We carry out a series of local, vertically stratified shearing box simulations of protoplanetary disks that include ambipolar diffusion and a net vertical magnetic field. The ambipolar diffusion profiles we employ correspond to 30AU and 100AU in a minimum mass solar nebula (MMSN) disk model, which consists of a far-UV-ionized surface layer and low-ionization disk interior. These simulations serve as a follow up to Simon et al. (2013), in which we found that without a net vertical field, the turbulent stresses that result from the magnetorotational instability (MRI) are too weak to account for observed accretion rates. The simulations in this work show a very strong dependence of the accretion stresses on the strength of the background vertical field; as the field strength increases, the stress amplitude increases. For gas to magnetic pressure ratios of 1e4 and 1e5, we find accretion rates between 1e-8 and 1e-7 solar masses per year. These accretion rates agree with observational constraints, suggesting a vert...

  10. Exploring accretion disc physics and black hole growth with regular monitoring of ultrafast AGN winds

    CERN Document Server

    Pounds, Ken; Nixon, Chris

    2016-01-01

    15 years of XMM-Newton observations have established that ultra-fast, highly ionized winds are common in radio-quiet AGN. A simple theory of Eddington-limited accretion correctly predicts the typical velocity (~0.1c) and high ionization of such winds, with observed flow energy capable of ejecting star-forming gas. With a recent extended XMM-Newton observation of the archetypal UFO, PG1211+143, revealing a more complex flow pattern, we suggest that targetted observations over the next decade offer unique potential for probing the inner accretion disc structure and SMBH growth.

  11. Quasi-Periodic Oscillations and Frequencies in AN Accretion Disk and Comparison with the Numerical Results from Non-Rotating Black Hole Computed by the Grh Code

    Science.gov (United States)

    Donmez, Orhan

    The shocked wave created on the accretion disk after different physical phenomena (accretion flows with pressure gradients, star-disk interaction etc.) may be responsible observed Quasi Periodic Oscillations (QPOs) in X-ray binaries. We present the set of characteristics frequencies associated with accretion disk around the rotating and non-rotating black holes for one particle case. These persistent frequencies are results of the rotating pattern in an accretion disk. We compare the frequency's from two different numerical results for fluid flow around the non-rotating black hole with one particle case. The numerical results are taken from Refs. 1 and 2 using fully general relativistic hydrodynamical code with non-selfgravitating disk. While the first numerical result has a relativistic tori around the black hole, the second one includes one-armed spiral shock wave produced from star-disk interaction. Some physical modes presented in the QPOs can be excited in numerical simulation of relativistic tori and spiral waves on the accretion disk. The results of these different dynamical structures on the accretion disk responsible for QPOs are discussed in detail.

  12. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    Energy Technology Data Exchange (ETDEWEB)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  13. Do stellar winds prevent the formation of supermassive stars by accretion?

    Science.gov (United States)

    Nakauchi, Daisuke; Hosokawa, Takashi; Omukai, Kazuyuki; Saio, Hideyuki; Nomoto, Ken'ichi

    2017-03-01

    Supermassive stars (SMSs; ∼105 M⊙) formed from metal-free gas in the early Universe attract attention as progenitors of supermassive black holes observed at high redshifts. To form SMSs by accretion, central protostars must accrete at as high rates as ∼0.1-1 M⊙ yr-1. Such protostars have very extended structures with bloated envelopes, like supergiant stars, and are called supergiant protostars (SGPSs). Under the assumption of hydrostatic equilibrium, SGPSs have density-inverted layers, where the luminosity becomes locally super-Eddington, near the surface. If the envelope matter is allowed to flow out, however, a stellar wind could be launched and hinder the accretion growth of SGPSs before reaching the supermassive regime. We examine whether radiation-driven winds are launched from SGPSs by constructing steady and spherically symmetric wind solutions. We find that the wind velocity does not reach the escape velocity in any case considered. This is because once the temperature falls below ∼104 K, the opacity plummet drastically owing to the recombination of hydrogen and the acceleration ceases suddenly. This indicates that, in realistic non-steady cases, even if outflows are launched from the surface of SGPSs, they would fall back again. Such a 'wind' does not result in net mass-loss and does not prevent the growth of SGPSs. In conclusion, SGPSs will grow to SMSs and eventually collapse to massive black holes of ∼105 M⊙, as long as the rapid accretion is maintained.

  14. 3-D MHD disk wind simulations of jets and outflows from high-mass protostars

    Science.gov (United States)

    Staff, Jan E.; Tanaka, Kei; Tan, Jonathan C.; Zhang, Yichen; Liu, Mengyao

    2017-01-01

    We present the results of a series of nested, large scale, three-dimensional magnetohydrodynamics simulations of disk winds with a Blandford-Payne like magnetic field configuration, resolving scales from the stellar surface to beyond the core. The goal is to understand the structure of massive protostellar cores at various stages of their formation as the protostellar mass grows from a massive core. At each stage of a given protostellar mass, first, we study how jets and winds develop from the inner accretion disk to ~100 AU scales. We use the results from these simulations to dictate the inner boundary condition of a set of simulation extending to the core boundary at ~10,000 AU of an initially 60 solar mass core. We run separate simulations where the protostellar mass is 1, 2, 4, 8, 12, 16, and 24 Msun, and we are working on making a small grid of models in the context of the Turbulent Core Model with three different core masses and three different core surface densities. The wind is blown into the simulation box with properties derived from the previous jet simulations. We examine the opening angle of the outflow cavity and thus the star formation efficiency from the core due to outflow feedback. We find that the opening angle increases as the protostellar mass grows, but it is always less than 10 degrees, which is surprisingly small compared with previous analytic models. This is caused by the core which confines the outflow. Finally, we use our simulation results as input to a radiative transfer calculation, to compare with observations made by the SOMA survey.

  15. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  16. Sustaining star formation rates in spiral galaxies - Supernova-driven turbulent accretion disk models applied to THINGS galaxies

    CERN Document Server

    Vollmer, B

    2010-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps (Vollmer & Beckert 2003) contains free parameters, which can be constrained by observations of molecular gas, atomic gas and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in star formation regime is realized by replacing the fr...

  17. The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis

    Science.gov (United States)

    Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia

    2017-08-01

    T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while

  18. Discovery of a Three-Layered Atmospheric Structure in Accretion Disks around Stellar-Mass Black Holes

    Science.gov (United States)

    Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang

    1999-01-01

    We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.

  19. The Space Density of Extended Ultraviolet (XUV) Disks in the Local Universe and Implications for Gas Accretion on to Galaxies

    CERN Document Server

    Lemonias, Jenna J; Thilker, David; Wyder, Ted K; Martin, D Christopher; Seibert, Mark; Treyer, Marie A; Bianchi, Luciana; Heckman, Timothy M; Madore, Barry F; Rich, R Michael

    2011-01-01

    We present results of the first unbiased search for extended UV (XUV)-disk galaxies undertaken to determine the space density of such galaxies. Our sample contains 561 local (0.001 1.5 x 10^4 s) and SDSS DR7 footprints. We explore modifications to the standard classification scheme for our sample that includes both disk- and bulge-dominated galaxies. Visual classification of each galaxy in the sample reveals an XUV-disk frequency of up to 20% for the most nearby portion of our sample. On average over the entire sample (out to z=0.05) the frequency ranges from a hard limit of 4% to 14%. The GALEX imaging allows us to detect XUV-disks beyond 100 Mpc. The XUV regions around XUV-disk galaxies are consistently bluer than the main bodies. We find a surprisingly high frequency of XUV emission around luminous red (NUV-r > 5) and green valley (3 1.5-4.2 x 10^-3 Mpc^-3. Using the XUV emission as an indicator of recent gas accretion, we estimate that the cold gas accretion rate onto these galaxies is > 1.7-4.6 x 10^-3...

  20. X-ray Reflection from Inhomogeneous Accretion Disks: II. Emission Line Variability and Implications for Reverberation Mapping

    CERN Document Server

    Ballantyne, D R; Young, A J

    2004-01-01

    One of the principal scientific objectives of the upcoming Constellation-X mission is to attempt to map the inner regions of accretion disks around black holes in Seyfert galaxies by reverberation mapping of the Fe K fluorescence line. This area of the disk is likely radiation pressure dominated and subject to various dynamical instabilities. Here, we show that density inhomogeneities in the disk atmosphere resulting from the photon bubble instability (PBI) can cause rapid changes in the X-ray reflection features, even when the illuminating flux is constant. Using a simulation of the development of the PBI, we find that, for the disk parameters chosen, the Fe K and O VIII Ly\\alpha lines vary on timescales as short as a few hundredths of an orbital time. In response to the changes in accretion disk structure, the Fe K equivalent width (EW) shows variations as large as ~100 eV. The magnitude and direction (positive or negative) of the changes depends on the ionization state of the atmosphere. The largest change...