WorldWideScience

Sample records for accreting young star

  1. Observational diagnostics of accretion on young stars and brown dwarfs

    Science.gov (United States)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  2. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  3. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    International Nuclear Information System (INIS)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  4. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  5. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    Science.gov (United States)

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  6. SURPRISINGLY WEAK MAGNETISM ON YOUNG ACCRETING BROWN DWARFS

    International Nuclear Information System (INIS)

    Reiners, A.; Basri, G.; Christensen, U. R.

    2009-01-01

    We have measured the surface magnetic flux on four accreting young brown dwarfs and one nonaccreting young very low mass (VLM) star utilizing high-resolution spectra of absorption lines of the FeH molecule. A magnetic field of 1-2 kG had been proposed for one of the brown dwarfs, Two Micron All Sky Survey (2MASS) J1207334-393254, because of its similarities to higher mass T Tauri stars as manifested in accretion and the presence of a jet. We do not find clear evidence for a kilogauss field in any of our young brown dwarfs but do find a 2 kG field on the young VLM star. Our 3σ upper limit for the magnetic flux in 2MASS J1207334-393254 just reaches 1 kG. We estimate the magnetic field required for accretion in young brown dwarfs given the observed rotations, and find that fields of only a few hundred gauss are sufficient for magnetospheric accretion. This predicted value is less than our observed upper limit. We conclude that magnetic fields in young brown dwarfs are a factor of 5 or more lower than in young stars of about one solar mass, and in older stars with spectral types similar to our young brown dwarfs. It is interesting that, during the first few million years, the fields scale down with mass in line with what is needed for magnetospheric accretion, yet no such scaling is observed at later ages within the same effective temperature range. This scaling is opposite to the trend in rotation, with shorter rotation periods for very young accreting brown dwarfs compared with accreting solar-mass objects (and very low Rossby numbers in all cases). We speculate that in young objects a deeper intrinsic connection may exist between magnetospheric accretion and magnetic field strength, or that magnetic field generation in brown dwarfs may be less efficient than in stars. Neither of these currently has an easy physical explanation.

  7. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis

    Science.gov (United States)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian

    2018-01-01

    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  8. CSI 2264: characterizing accretion-burst dominated light curves for young stars in NGC 2264

    International Nuclear Information System (INIS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Carey, Sean; Baglin, Annie; Alencar, Silvia; Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof; Venuti, Laura; Bouvier, Jerome; Turner, Neal J.; Plavchan, Peter; Terebey, Susan; Morales-Calderón, María; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee

    2014-01-01

    Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u – g versus g – r color-color diagram with the largest UV excesses. These stars also have large Hα equivalent widths, and either centrally peaked, lumpy Hα emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest Hα equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.

  9. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  10. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    International Nuclear Information System (INIS)

    Günther, H. M.; Wolk, S. J.; Wolter, U.; Robrade, J.

    2013-01-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L X /L bol close to the saturation limit. However, we find high densities (n e > 3 × 10 10 cm –3 ) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 × 10 –11 M ☉ yr –1 . Despite the simple Hα line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the Hα line we see a prominence in absorption about 2R * above the stellar surface—the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  11. Formation of new stellar populations from gas accreted by massive young star clusters.

    Science.gov (United States)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  12. Accretion-induced luminosity spreads in young clusters: evidence from stellar rotation

    Science.gov (United States)

    Littlefair, S. P.; Naylor, Tim; Mayne, N. J.; Saunders, Eric; Jeffries, R. D.

    2011-05-01

    We present an analysis of the rotation of young stars in the associations Cepheus OB3b, NGC 2264, 2362 and the Orion Nebula Cluster (ONC). We discover a correlation between rotation rate and position in a colour-magnitude diagram (CMD) such that stars which lie above an empirically determined median pre-main sequence rotate more rapidly than stars which lie below this sequence. The same correlation is seen, with a high degree of statistical significance, in each association studied here. If position within the CMD is interpreted as being due to genuine age spreads within a cluster, then the stars above the median pre-main sequence would be the youngest stars. This would in turn imply that the most rapidly rotating stars in an association are the youngest, and hence those with the largest moments of inertia and highest likelihood of ongoing accretion. Such a result does not fit naturally into the existing picture of angular momentum evolution in young stars, where the stars are braked effectively by their accretion discs until the disc disperses. Instead, we argue that, for a given association of young stars, position within the CMD is not primarily a function of age, but of accretion history. We show that this hypothesis could explain the correlation we observe between rotation rate and position within the CMD.

  13. Accretion Disks around Young Stars: An Observational Perspective

    Science.gov (United States)

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  14. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  15. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  16. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  17. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  18. Massive Star Formation: Accreting from Companion X. Chen1 ...

    Indian Academy of Sciences (India)

    Abstract. We report the possible accretion from companion in the mas- sive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO ...

  19. Gamma-burst emission from neutron-star accretion

    Science.gov (United States)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  20. Thermal structure of accreting neutron stars and strange stars

    International Nuclear Information System (INIS)

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  1. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    International Nuclear Information System (INIS)

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-01-01

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to ∼10 -13 M sun yr -1 for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of ∼3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10 -12 M sun yr -1 onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the Hα flux.

  2. POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION

    International Nuclear Information System (INIS)

    Fu, Lei; Li, Xiang-Dong

    2013-01-01

    The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range

  3. How young the accretion-powered pulsars could be?

    Science.gov (United States)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  4. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  5. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  6. Early Results from NICER Observations of Accreting Neutron Stars

    Science.gov (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  7. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  8. Disk accretion onto magnetic T Tauri stars

    International Nuclear Information System (INIS)

    Koenigl, A.

    1991-01-01

    The dynamical and radiative consequences of disk accretion onto magnetic T Tauri stars (TTS) are examined using the Ghosh and Lamb model. It is shown that a prolonged disk accretion phase is compatible with the low rotation rates measured in these stars if they possess a kilogauss strength field that disrupts the disk at a distance of a few stellar radii from the center. It is estimated that a steady state in which the net torque exerted on the star is zero can be attained on a time scale that is shorter than the age of the youngest visible TTS. Although the disk does not develop an ordinary shear boundary layer in this case, one can account for the observed UV excess and Balmer emission in terms of the shocks that form at the bottom of the high-latitude magnetic accretion columns on the stellar surface. This picture also provides a natural explanation of some of the puzzling variability properties of stars like DF Tau and RY Lup. YY Ori stars are interpreted as magnetic TTS in which the observer's line of sight is roughly parallel to an accretion column. 37 refs

  9. EVIDENCE FOR ACCRETION IN A NEARBY, YOUNG BROWN DWARF

    International Nuclear Information System (INIS)

    Reiners, Ansgar

    2009-01-01

    We report on the discovery of the young, nearby, brown dwarf 2MASS J0041353-562112. The object has a spectral type of M7.5; it shows Li absorption and signatures of accretion, which implies that it still has a disk and suggests an age below 10 Myr. The space motion vector and position on the sky indicate that the brown dwarf is probably a member of the ∼20 Myr old Tuc-Hor association, or that it may be an ejected member of the ∼12 Myr old β Pic association; both would imply that 2MASS J0041353-562112 may in fact be older than 10 Myr. No accreting star or brown dwarf was previously known in these associations. Assuming an age of 10 Myr, the brown dwarf has a mass of about 30 M Jup and is located at 35 pc distance. The newly discovered object is the closest accreting brown dwarf known. Its membership to an association older than 10 Myr implies that either disks in brown dwarfs can survive as long as in more massive stars, perhaps even longer, or that star formation in Tuc-Hor or β Pic occurred more recently than previously thought. The history and evolution of this object can provide new fundamental insight into the formation process of stars, brown dwarfs, and planets.

  10. He stars and He-accreting CO white dwarfs

    International Nuclear Information System (INIS)

    Limongi, M.; Tornambe, A.

    1991-01-01

    He star models in the mass range 0.4-1.0 solar mass have been evolved until the red giant phase or, depending on their mass, until crystallization on the white-dwarf cooling sequence. Some of the degenerate structures obtained in these computations have been successively accreted at various He accretion rates in order to better define the fate of the accreting dwarf versus its mass and accretion rate for a fixed degeneracy level of the accreting dwarf. He stars have been further induced to transfer mass to a degenerate companion through Roche lobe overflow, in conditions of large gravitational wave radiation by the system. CO dwarfs in binary systems with He stars are found to experience a thermal behavior whose effects are such to locate the structure on the verge of obtaining a strong SN-like explosive event. 22 refs

  11. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-06-10

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  12. The formation of stars by gravitational collapse rather than competitive accretion

    Science.gov (United States)

    Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2005-11-01

    There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (Msolar), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (~0.5Msolar), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

  13. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  14. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  15. Accreting neutron stars, black holes, and degenerate dwarf stars.

    Science.gov (United States)

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  16. Radio outburst from a massive (proto)star. When accretion turns into ejection

    Science.gov (United States)

    Cesaroni, R.; Moscadelli, L.; Neri, R.; Sanna, A.; Caratti o Garatti, A.; Eisloffel, J.; Stecklum, B.; Ray, T.; Walmsley, C. M.

    2018-05-01

    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims: As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods: We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/Submillimeter Array. Results: We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Conclusions: Our model fits indicate a significant increase in the jet opening angle and ionized mass loss rate with time. For the first time, we can estimate the ionization fraction in the jet and conclude that this must be low (memory of MalcolmWalmsley, who passed away before the present study could be completed. Without his insights and enlightened advice this work would have been impossible

  17. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.

    Science.gov (United States)

    McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J

    2018-02-15

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  18. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud

    Science.gov (United States)

    McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.

    2018-02-01

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  19. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  20. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  1. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    Science.gov (United States)

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  2. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  3. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  4. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NARCIS (Netherlands)

    Wang, K. -S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion

  5. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    Science.gov (United States)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  7. Neutron star accretion and the neutrino fireball

    International Nuclear Information System (INIS)

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-01-01

    The mixing necessary to explain the ''Fe'' line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ''fireball,'' a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion

  8. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  9. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  10. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of partially accreted crusts in accreting neutron stars

    Science.gov (United States)

    Wijnands, R.; Degenaar, N.; Page, D.

    2013-07-01

    It is assumed that accreting neutron stars in low-mass X-ray binaries are heated due to the compression of the existing crust by the freshly accreted matter which gives rise to a variety of nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by pycnonuclear reactions involving low-Z elements (the deep-crustal heating scenario). In this paper we discuss if neutron stars in the so-called very-faint X-ray transients (VFXTs; those transients have outburst peak 2-10 keV X-ray luminosities short-term (less than a few tens of thousands of years) and the one throughout their lifetime. The latter is particularly important because it can be so low that the neutron stars might not have accreted enough matter to become massive enough that enhanced core cooling processes become active. Therefore, they could be relatively warm compared to other systems for which such enhanced cooling processes have been inferred. However, the amount of matter can also not be too low because then the crust might not have been replaced significantly by accreted matter and thus a hybrid crust of partly accreted and partly original, albeit further compressed matter, might be present. This would inhibit the full range of pycnonuclear reactions to occur and therefore possibly decrease the amount of heat deposited in the crust. More detailed calculations of the heating and cooling properties of such hybrid crusts have to be performed to be conclusive. Furthermore, better understanding is needed about how a hybrid crust affects other properties such as the thermal conductivity. A potentially interesting way to observe the effects of a hybrid crust on the heating and cooling of an accreting neutron star is to observe the crust cooling of such a neutron star after a prolonged (years to decades) accretion episode and compare the results with similar studies performed for neutron stars with a fully accreted crust. We also show that some individual neutron-star

  11. Studies of accreting and non-accreting neutron stars

    International Nuclear Information System (INIS)

    Stollman, G.M.

    1987-01-01

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  12. A Multi-Fiber Spectroscopic Search for Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Loerincs, Jacqueline; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2017-01-01

    We present here results of a low resolution spectroscopic followup of candidate low-mass pre-main sequence stars in the Orion OB1 association. Our targets were selected from the CIDA Variability Survey of Orion (CVSO), and we used the Michigan/Magellan Fiber Spectrograph (M2FS) on the Magellan Clay 6.5m telescope to obtain spectra of 500 candidate T Tauri stars distributed in seven 0.5 deg diameter fields, adding to a total area of ~5.5 deg2. We identify young stars by looking at the distinctive Hα 6563 Å emission and Lithium Li I 6707 Å absorption features characteristic of young low mass pre-main sequence stars. Furthermore, by measuring the strength of their Hα emission lines, confirmed T Tauri stars can be classified as either Classical T Tauris (CTTS) or Weak-line T Tauris (WTTS), which give indication of whether the star is actively accreting material from a gas and dust disk surrounding the star, which may be the precursor of a planetary system. We confirm a total of 90 T Tauri stars, of which 50% are newly identified young members of Orion; out of the 49 new detections,15 are accreting CTTS, and of these all but one are found in the OB1b sub-region. This result is in line with our previous findings that this region is much younger than the more extended Orion OB1a sub-association. The M2FS results add to our growing census of young stars in Orion, that is allowing us to characterize in a systematic and consistent way the distribution of stellar ages across the entire complex, in order to building a complete picture of star formation in this, one of nearest most active sites of star birth.

  13. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  14. An infrared view of (candidate accretion) disks around massive young stars

    NARCIS (Netherlands)

    Bik, A.; Lenorzer, A.; Thi, W.F.; Puga Antolín, E.; Waters, L.B.F.M.; Kaper, L.; Martín-Hernández, L.N.

    2008-01-01

    Near-infrared surveys of high-mass star-forming regions start to shed light onto their stellar content. A particular class of objects found in these regions, the so-called massive Young Stellar Objects (YSOs) are surrounded by dense circumstellar material. Several near- and mid-infrared diagnostic

  15. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.; Hills, J.G.; Dewey, R.J.

    1992-01-01

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s -1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  16. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    International Nuclear Information System (INIS)

    Baraffe, I.; Chabrier, G.; Gallardo, J.

    2009-01-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T eff . The best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an ∼10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T eff , as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young (≤ a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.

  17. Cooling of Accretion-Heated Neutron Stars

    Indian Academy of Sciences (India)

    Rudy Wijnands

    2017-09-12

    Sep 12, 2017 ... the magnetic field might play an important role in the heating and cooling of the neutron stars. .... Source near Sgr A ..... marked the start of the research field that uses the cool- ... This curve is just to guide the eye for the individual sources and it is clear ..... Not all accretion-induced nuclear reactions might.

  18. SPATIALLY EXTENDED BRACKETT GAMMA EMISSION IN THE ENVIRONMENTS OF YOUNG STARS

    International Nuclear Information System (INIS)

    Beck, Tracy L.; Bary, Jeffery S.; McGregor, Peter J.

    2010-01-01

    The majority of atomic hydrogen Brγ emission detected in the spectra of young stellar objects is believed to arise from the recombination regions associated with the magnetospheric accretion of circumstellar disk material onto the forming star. In this paper, we present the results of a K-band integral field unit spectroscopic study of Brγ emission in eight young protostars: CW Tau, DG Tau, Haro 6-10, HL Tau, HV Tau C, RW Aur, T Tau, and XZ Tau. We spatially resolve Brγ emission structures in half of these young stars and find that most of the extended emission is consistent with the location and velocities of the known Herbig-Haro flows associated with these systems. At some velocities through the Brγ line profile, the spatially extended emission comprises 20% or more of the integrated flux in that spectral channel. However, the total spatially extended Brγ is typically less than ∼10% of the flux integrated over the full emission profile. For DG Tau and Haro 6-10 S, we estimate the mass outflow rate using simple assumptions about the hydrogen emission region and compare this to the derived mass accretion rate. We detect extended Brγ in the vicinity of the more obscured targets in our sample and conclude that spatially extended Brγ emission may exist toward other stars, but unattenuated photospheric flux probably limits its detectability.

  19. Revisiting Field Burial by Accretion onto Neutron Stars

    Indian Academy of Sciences (India)

    Dipanjan Mukherjee

    2017-09-12

    Sep 12, 2017 ... review the recent work on magnetic confinement of accreted matter on neutron stars poles. We present ..... hours to days, see Brown & Bildsten 1998) where the ...... Radhakrishnan, V., Srinivasan, G. 1984, in: Second Asian-.

  20. On hard X-ray spectra of accreting neutron stars

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1982-01-01

    Formation of the spectra of X-ray pulsars and gamma bursters is investigated. Interpretation of a hard X-ray spectrum of pulsars containing cyclotron lines is feasible on the basis of an isothermal model of a polar spot heated due to acccretion to a neutron star. It has been ascertained that in the regions responsible for the formation of continuum radiation and lines the mode polarization is determined by a magnetized vacuum rather than by a plasma. Bearing this in mind, the influence of the magnetic field of a star on the wide wings of the cyclotron line and on its depth is discussed. The part played by the accreting column in the case of strong accretion (approx. equal to 10 19 el cm -3 ) needed for long sustaining of the high level of X-rays from a neutron star-pulsar is studied. There occur the gaps in spectrum at frequencies close to the electron gyro-frequency and its harmonics due to the screening of the hot spot by the opaque gyro-resonant layer located within the accreting column. These gaps ensure the formation of cyclotron lines in absorption irrespective of the presence of such lines in the X-ray spectrum of a polar hot spot. (orig./WL)

  1. Self-similar Hot Accretion Flow onto a Neutron Star

    Science.gov (United States)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  2. Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral

    Science.gov (United States)

    Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.

    2018-04-01

    The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.

  3. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  4. The low-mass stellar population in the young cluster Tr 37. Disk evolution, accretion, and environment

    Science.gov (United States)

    Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min

    2013-11-01

    Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we

  5. Spectral energy distributions of T Tauri stars - disk flaring and limits on accretion

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution. 85 references

  6. DISK-RELATED BURSTS AND FADES IN YOUNG STARS

    International Nuclear Information System (INIS)

    Findeisen, Krzysztof; Hillenbrand, Lynne; Levitan, David; Sesar, Branimir; Ofek, Eran; Laher, Russ; Surace, Jason

    2013-01-01

    We present first results from a new, multiyear, time domain survey of young stars in the North America Nebula complex using the Palomar Transient Factory. Our survey is providing an unprecedented view of aperiodic variability in young stars on timescales of days to years. The analyzed sample covers R PTF ≈ 13.5-18 and spans a range of mid-infrared color, with larger-amplitude optical variables (exceeding 0.4 mag root mean squared) more likely to have mid-infrared evidence for circumstellar material. This paper characterizes infrared excess stars with distinct bursts above or fades below a baseline of lower-level variability, identifying 41 examples. The light curves exhibit a remarkable diversity of amplitudes, timescales, and morphologies, with a continuum of behaviors that cannot be classified into distinct groups. Among the bursters, we identify three particularly promising sources that may represent theoretically predicted short-timescale accretion instabilities. Finally, we find that fading behavior is approximately twice as common as bursting behavior on timescales of days to years, although the bursting and fading duty cycle for individual objects often varies from year to year.

  7. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of partially accreted crusts in accreting neutron stars

    NARCIS (Netherlands)

    Wijnands, R.; Degenaar, N.; Page, D.

    2013-01-01

    It is assumed that accreting neutron stars in low-mass X-ray binaries are heated due to the compression of the existing crust by the freshly accreted matter which gives rise to a variety of nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by

  8. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  9. NEAR-INFRARED VARIABILITY IN YOUNG STARS IN CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Thomas S. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 N Aohoku Pl, Hilo, HI 96720 (United States)

    2012-08-10

    We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, {approx}160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short

  10. Fallback accretion onto magnetized neutron stars and the hidden magnetic field model

    International Nuclear Information System (INIS)

    Torres, A; Cerdá-Durán, P; Font, J A

    2015-01-01

    The observation of several neutron stars with relatively low values of the surface magnetic field found in supernova remnants has led in recent years to controversial interpretations. A possible explanation is the slow rotation of the proto-neutron star at birth which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, seems to be favoured over the previous one due to the observation of three low magnetic field magnetars. This scenario considers the accretion of the fallback of the supernova debris onto the neutron star as the responsible for the observed low magnetic field. In this work, we have studied under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting fluid. We have considered a simplified toy model in general relativity to estimate the balance between the incoming accretion flow an the magnetosphere. We conclude that the burial is possible for values of the surface magnetic field below 10 13 G. The preliminary results reported in this paper for simplified polytropic models should be confirmed using a more realistic thermodynamical setup. (paper)

  11. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  12. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  13. Gravitational radiation and gamma-ray bursts from accreting neutron stars

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Araujo, J.C.N. de; Aguiar, O.D.; Horvath, J.E.

    2000-01-01

    It is well known that hydrodynamic instabilities can be induced in rapidly rotating low magnetic field neutron stars, which accrete mass from a companion in both high and low mass X-ray binaries. (author)

  14. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  15. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    Science.gov (United States)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  16. Young Stars with SALT

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Adric R. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L. [Department of Astrophysics, The American Museum of Natural History, New York, NY 10024 (United States); Henry, Todd J., E-mail: arr@caltech.edu [RECONS Institute, Chambersburg, PA (United States)

    2017-05-10

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups.

  17. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike

    2012-01-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age ∼<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics—namely, Hα emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess—the first unambiguous evidence of a dusty circumstellar disk—around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

  18. Mass-Accretion effects on white dwarf interiors

    International Nuclear Information System (INIS)

    Canal, R.; Hernanz, M.; Isern, J.; Labay, J.; Mochkovitch, R.

    1986-01-01

    There is observational evidence of the presence of young neutron stars in old binary systems. A likely explanation is that those neutron stars were produced in the collapse of old C+O white dwarfs. Old white dwarfs being cold and at least partially solid, accretion-induced mass growth should finally lead in a number of cases, to their collapse rather than to their explosion. We show in detail how mass accretion on initially solid white dwarfs can leave central solid cores when dynamical instability sets in. We also study the different effects of the existence of such cores on the outcome of the competition between thermonuclear explosion and gravitational collapse

  19. Accretion of matter onto highly magnetized neutron stars: Final report, July 1-September 30, 1985

    International Nuclear Information System (INIS)

    Hernquist, L.

    1986-06-01

    A final report is given of two research projects dealing with magnetic fields of neutron stars. These are the modulation of thermal x-rays from cooling neutron stars and plasma instabilities in neutron star accretion columns

  20. Supercritical accretion in the evolution of neutron star binaries and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  1. The First X-shooter Observations of Jets from Young Stars

    OpenAIRE

    Bacciotti, Francesca; Whelan, Emma T.; Alcala', Juan M.; Nisini, Brunella; Podio, Linda; Randich, Sofia; Stelzer, Beate; Cupani, Guido

    2011-01-01

    We present the first pilot study of jets from young stars conducted with X-shooter, on ESO/VLT. As it offers simultaneous, high quality spectra in the range 300-2500 nm X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well resolved continuous jets lying on the plane of the sky, ESO-HA 574 in Chamaleon I, and Par-Lup3-4 in Lupus III. The mass of the latter is close to th...

  2. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    International Nuclear Information System (INIS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-01-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems

  3. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    Energy Technology Data Exchange (ETDEWEB)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, Ensenada, Baja California, 22800 México (Mexico); Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599 (United States); Miroshnichenko, A. S., E-mail: gag@astro.unam.mx, E-mail: dgonzalez@astro.unam.mx, E-mail: zhar@astro.unam.mx [Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, NC 27402-6170 (United States)

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  4. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

    International Nuclear Information System (INIS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-01-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir  ∼ 10 12.1 M ⊙ ) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star  ∼ 10 8 –10 10 M ⊙ . Halos with more quiescent accretion histories tend to have lower mass progenitors (10 8 –10 9 M ⊙ ), and lower overall accreted stellar masses. Ultra-faint mass (M star  < 10 5 M ⊙ ) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10 5  < M star /M ⊙  < 10 8 provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M star  > 10 8 M ⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo

  5. THE GLOBAL EVOLUTION OF GIANT MOLECULAR CLOUDS. II. THE ROLE OF ACCRETION

    International Nuclear Information System (INIS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-01-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc -2 , in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  6. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    International Nuclear Information System (INIS)

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  7. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  8. The structure and spectrum of the accretion shock in the atmospheres of young stars

    Science.gov (United States)

    Dodin, Alexandr

    2018-04-01

    The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas law via the full energy flux.

  9. Enigmatic sub-luminous accreting neutron stars in our Galaxy

    NARCIS (Netherlands)

    Wijnands, R.

    2008-01-01

    During the last few years a class of enigmatic sub-luminous accreting neutron stars has been found in our Galaxy. They have peak X-ray luminosities (2-10 keV) of a few times 10(34) erg s(−1) to a few times 10(35) erg s(−1), and both persistent and transient sources have been found. I present a short

  10. The effect of an accretion disk on coherent pulsed emission from weakly magnetized neutron stars

    International Nuclear Information System (INIS)

    Asaoka, Ikuko; Hoshi, Reiun.

    1989-01-01

    Using a simple model for hot spots formed on the magnetic polar regions we calculate the X-ray pulse profiles expected from bright low-mass X-ray binaries. We assume that neutron stars in close binary systems are surrounded by accretion disks extending down in the vicinity of their surfaces. Even partial eclipses of a hot spot by the accretion disk change the coherent pulsed fraction and, in some cases, the phase of pulsations by almost 180deg. Coherent pulsations are clearly seen even for sufficiently compact model neutron stars, if the hot spots emit isotropic or fan-beam radiation. In the case of pencil-beam radiation, coherent pulsations are also seen if the cap-opening angle is less than ∼60deg, while the inclination angle is larger than 68deg. Gravitational lensing alone does not smear coherent pulsations in moderately weak magnetized neutron stars in the presence of an absorbing accretion disk. (author)

  11. An extensive VLT/X-shooter library of photospheric templates of pre-main sequence stars

    Science.gov (United States)

    Manara, C. F.; Frasca, A.; Alcalá, J. M.; Natta, A.; Stelzer, B.; Testi, L.

    2017-09-01

    Context. Studies of the formation and evolution of young stars and their disks rely on knowledge of the stellar parameters of the young stars. The derivation of these parameters is commonly based on comparison with photospheric template spectra. Furthermore, chromospheric emission in young active stars impacts the measurement of mass accretion rates, a key quantity for studying disk evolution. Aims: Here we derive stellar properties of low-mass (M⋆≲ 2 M⊙) pre-main sequence stars without disks, which represent ideal photospheric templates for studies of young stars. We also use these spectra to constrain the impact of chromospheric emission on the measurements of mass accretion rates. The spectra are reduced, flux-calibrated, and corrected for telluric absorption, and are made available to the community. Methods: We derive the spectral type for our targets by analyzing the photospheric molecular features present in their VLT/X-shooter spectra by means of spectral indices and comparison of the relative strength of photospheric absorption features. We also measure effective temperature, gravity, projected rotational velocity, and radial velocity from our spectra by fitting them with synthetic spectra with the ROTFIT tool. The targets have negligible extinction (AVpresented in our previous publication. We perform synthetic photometry on the spectra to derive the typical colors of young stars in different filters. We measure the luminosity of the emission lines present in the spectra and estimate the noise due to chromospheric emission in the measurements of accretion luminosity in accreting stars. Results: We provide a calibration of the photospheric colors of young pre-main sequence stars as a function of their spectral type in a set of standard broad-band optical and near-infrared filters. The logarithm of the noise on the accretion luminosity normalized to the stellar luminosity is roughly constant and equal to -2.3 for targets with masses larger than 1 solar

  12. Optical veiling, disk accretion, and the evolution of T Tauri stars

    International Nuclear Information System (INIS)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar mass is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs

  13. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  14. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H., E-mail: adeason@stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology and Physics Department, Stanford University, Stanford, CA 94305 (United States)

    2016-04-10

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), and lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  15. THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI

    Energy Technology Data Exchange (ETDEWEB)

    Herczeg, Gregory J.; Dong, Subo; Chen, Ping; Jose, Jessy; Gully-Santiago, Michael [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, 100871 Beijing (China); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hillenbrand, Lynne A. [Caltech, MC 105-24, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kochanek, Christopher S.; Stanek, K. Z.; Holoien, Thomas W.-S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Prieto, Jose L. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Kaplan, Kyle [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Mairs, Steve; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Zhu, Zhaohuan [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Smith, Martin C. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Bersier, David [Astrophysics Research Institute, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Mulders, Gijs D. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ayani, Kazuya, E-mail: gherczeg1@gmail.com [Bisei Astronomical Observatory, 1723-70 Okura, Bisei, Ibara, Okayama 714-1411 (Japan); and others

    2016-11-10

    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star–disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5 mag brightening in the V band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from ∼10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km s{sup −1}. The wind and hot gas both disappeared as the outburst faded and the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10–20 days. Fluorescent excitation of H{sub 2} is detected in emission from vibrational levels as high as v = 11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, though the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling.

  16. Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Claus, Brian; Watson, Linda; Moran, James, E-mail: qzhang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

    2017-03-01

    Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 α line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.

  17. X-ray luminosity by matter accretion on a neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, L [Bologna Univ. (Italy). Ist. di Fisica; Fortini, P L [Instituto di Astronomia, Bologna (Italy); Gualdi, C; Callegari, G [Ferrara Univ. (Italy). Ist. di Fisica

    1980-11-20

    When the accretion rate on a non magnetic neutron star is determined by stellar wind and not by overflowing the Roche lobe, it is shown that X-ray luminosity cannot exceed 10sup(36)-10sup(37) erg/sec. This very low limit is essentially set by radiation pressure which causes an effective braking on the falling matter.

  18. NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

    International Nuclear Information System (INIS)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel; Pascucci, Ilaria; Zhang, Lan; Sicilia-Aguilar, Aurora; Alonso-Martínez, Miguel; Eiroa, Carlos; Wang, Hongchi

    2017-01-01

    We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M ⊙ , which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of the sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.

  19. NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pascucci, Ilaria [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Zhang, Lan [Key Lab of Optical Astronomy, National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, 100012 Beijing (China); Sicilia-Aguilar, Aurora [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom); Alonso-Martínez, Miguel; Eiroa, Carlos [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Cantoblanco, Madrid (Spain); Wang, Hongchi [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China)

    2017-04-01

    We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M {sub ⊙}, which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of the sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.

  20. Dusty disks around young stars

    NARCIS (Netherlands)

    Verhoeff, A.

    2009-01-01

    Stars are formed through the collapse of giant molecular clouds. During this contraction the matter spins up and naturally forms a circumstellar disk. Once accretion comes to a halt, these disks are relatively stable. Some disks are known to last up to 10 Myrs. Most disks however, dissipate on

  1. CLOSE COMPANIONS TO YOUNG STARS. I. A LARGE SPECTROSCOPIC SURVEY IN CHAMAELEON I AND TAURUS-AURIGA

    International Nuclear Information System (INIS)

    Nguyen, Duy Cuong; Brandeker, Alexis; Van Kerkwijk, Marten H.; Jayawardhana, Ray

    2012-01-01

    We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial velocity (RV) precision of ∼80 m s –1 with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on RV variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Chamaeleon I (7%) and Taurus-Auriga (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient RV precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.

  2. Symbiotic star CI Cygni: S-process episode or accretion event

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, S J; Webbink, R F; Gallagher, J S; Truran, J W

    1982-02-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the s-process episode described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered.

  3. DISK BRAKING IN YOUNG STARS: PROBING ROTATION IN CHAMAELEON I AND TAURUS-AURIGA

    International Nuclear Information System (INIS)

    Duy Cuong Nguyen; Jayawardhana, Ray; Van Kerkwijk, Marten H.; Damjanov, Ivana; Brandeker, Alexis; Scholz, Alexander

    2009-01-01

    We present a comprehensive study of rotation, disk, and accretion signatures for 144 T Tauri stars in the young (∼2 Myr old) Chamaeleon I and Taurus-Auriga star-forming regions based on multi-epoch high-resolution optical spectra from the Magellan Clay 6.5 m telescope supplemented by mid-infrared photometry from the Spitzer Space Telescope. In contrast to previous studies in the Orion Nebula Cluster and NGC 2264, we do not see a clear signature of disk braking in Tau-Aur and Cha I. We find that both accretors and non-accretors have similar distributions of vsin i. This result could be due to different initial conditions, insufficient time for disk braking, or a significant age spread within the regions. The rotational velocities in both regions show a clear mass dependence, with F-K stars rotating on average about twice as fast as M stars, consistent with results reported for other clusters of similar age. Similarly, we find the upper envelope of the observed values of specific angular momentum j varies as M 0.5 for our sample which spans a mass range of ∼0.16-3 M sun . This power law complements previous studies in Orion which estimated j ∝ M 0.25 for ∼ sun . Furthermore, the overall specific angular momentum of this ∼10 Myr population is five times lower than that of non-accretors in our sample, and implies a stellar braking mechanism other than disk braking could be at work. For a subsample of 67 objects with mid-infrared photometry, we examine the connection between accretion signatures and dusty disks: in the vast majority of cases (63/67), the two properties correlate well, which suggests that the timescale of gas accretion is similar to the lifetime of inner disks.

  4. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-02-20

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the CO emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.

  5. An UXor among FUors: Extinction-related Brightness Variations of the Young Eruptive Star V582 Aur

    Science.gov (United States)

    Ábrahám, P.; Kóspál, Á.; Kun, M.; Fehér, O.; Zsidi, G.; Acosta-Pulido, J. A.; Carnerero, M. I.; García-Álvarez, D.; Moór, A.; Cseh, B.; Hajdu, G.; Hanyecz, O.; Kelemen, J.; Kriskovics, L.; Marton, G.; Mező, Gy.; Molnár, L.; Ordasi, A.; Rodríguez-Coira, G.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szegedi-Elek, E.; Szing, A.; Farkas-Takács, A.; Vida, K.; Vinkó, J.

    2018-01-01

    V582 Aur is an FU Ori-type young eruptive star in outburst since ∼1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyze the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one that occurred in 2012 and one that is ongoing since 2016. We collected archival photographic plates and carried out new optical, infrared, and millimeter-wave photometric and spectroscopic observations between 2010 and 2018, with a high sampling rate during the current minimum. Besides analyzing the color changes during fading, we compiled multiepoch spectral energy distributions and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04 M ⊙. The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO band head in absorption, and exhibit a variable Hα profile. The color variations strongly indicate that both the ∼1 yr long brightness dip in 2012 and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from A V = 4.5 to 12.5 mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate- and low-mass young stars, orbiting disk structures could be responsible for the eclipses.

  6. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  7. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    Science.gov (United States)

    Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho

    2018-02-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.

  8. Experimental measurements of the 15O(alpha,gamma)19Ne reaction rate and the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Fisker, J; Tan, W; Goerres, J; Wiescher, M; Cooper, R

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the accretion rate of the fuel supply and its depletion rate by nuclear burning in the hot CNO cycle and the rp-process. For accretion rates close to stable burning the burst ignition therefore depends critically on the hot CNO breakout reaction 15 O(α, γ) 19 Ne that regulates the flow between the hot CNO cycle and the rapid proton capture process. Until recently, the 15 O(α, γ) 19 Ne reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we perform a parameter study of the uncertainty of this reaction rate and determine the astrophysical consequences of the first measurement of this reaction rate. Our results corroborate earlier predictions and show that theoretically burning remains unstable up to accretion rates near the Eddington limit, in contrast to astronomical observations

  9. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    Science.gov (United States)

    Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark

    2018-06-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~Economia y Competitividad of Spain Consolider Project CSD2010-00064.

  10. Photoelectric UBV-photometry of the In(YY) DR Tauri-type young star in 1982-1986

    International Nuclear Information System (INIS)

    Kolotilov, E.A.

    1987-01-01

    The results of photoelectric UBV-photometry carried out in 1982-1986 for DR TAU - the star which undergone nova-like brightness increase in 1965-1980 - are presented. The brightness variations of the star during the post-maximum period include several days lasting flares and much more rare deep minima. The averaged colour-brightness relations are as follows: the higher brightness, the bluer B - V colour and the redder U - B colour. However the fast variations on a time scale of days do not always follow this relation. The observed pattern of variability of DR Tau is in agreement with the model of young stars activity (Grinin, 1980) proposing the appearance of hot spots in stellar atmosphere due to accretion of gas. Some arguments for the binarity of DR Tau are presented

  11. Mixing by shear instabilities in differentially rotating inhomogeneous stars with application to accreting white dwarf models for novae

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, J.

    1983-10-01

    The problem of how shear instabilities redistribute matter and angular momentum accreted by a star from a disk is considered. Necessary conditions for stability of the star to nonaxisymmetric perturbations are derived by use of the short wavelength approximation. By considering growth rates, it is shown that freshly accreted material rapidly takes up a quasi-spherical distribution due to dynamical instabilities. However, mixing inward toward the stellar interior occurs on a thermal time scale or longer.

  12. Period variations in pulsating X-ray sources. I. Accretion flow parameters and neutron star structure from timing observations

    International Nuclear Information System (INIS)

    Lamb, F.K.; Pines, D.; Shaham, J.

    1978-01-01

    We show that valuable information about both accretion flows and neutron star structure can be obtained from X-ray timing observations of period variations in pulsating sources. Such variations can result from variations in the accretion flow, or from internal torque variations, associated with oscillations of the fluid core or the unpinning of vortices in the inner crust. We develop a statistical description of torque variations in terms of noise processes, indicate how the applicability of such a description may be tested observationally, and show how it may be used to determine from observation both the properties of accretion flows and the internal structure of neutron stars, including the relative inertial moments of the crust and superfluid neutron core, the crust-core coupling time, and the frequencies of any low-frequency internal collective modes. Particular attention is paid to the physical origin of spin-down episodes; it is shown that usyc episodes may result either from external torque reversals or from internal torque variations.With the aid of the statistical description, the response of the star to torque fluctuations is calculated for three stellar models: (i) a completely rigid star; (ii) a two-component star; and (iii) a two-component star with a finite-frequency internal mode, such as the Tkachenko mode of a rotating neutron superfluid. Our calculations show that fluctuating torques could account for the period the period variations and spin-down episodes observed in Her X-1 and Cen X-3, including the large spin-down event observed in the latter source during 1972 September-October. The torque noise strengths inferred from current timing observations using the simple two-component models are shown to be consistent with those to be expected from fluctuations in accretion flows onto magnetic neutron stars

  13. The symbiotic star CI Cygni: S-process episode or accretion event

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Webbink, R.F.; Gallagher, J.S.; Truran, J.W.

    1982-01-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the 's-process episode' described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered. (orig.)

  14. Optical Monitoring of Young Stellar Objects

    Science.gov (United States)

    Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.

    2018-06-01

    Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.

  15. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  16. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  17. Accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.

    1986-01-01

    The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)

  18. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  19. Accretion disc origin of the Earth's water.

    Science.gov (United States)

    Vattuone, Luca; Smerieri, Marco; Savio, Letizia; Asaduzzaman, Abu Md; Muralidharan, Krishna; Drake, Michael J; Rocca, Mario

    2013-07-13

    Earth's water is conventionally believed to be delivered by comets or wet asteroids after the Earth formed. However, their elemental and isotopic properties are inconsistent with those of the Earth. It was thus proposed that water was introduced by adsorption onto grains in the accretion disc prior to planetary growth, with bonding energies so high as to be stable under high-temperature conditions. Here, we show both by laboratory experiments and numerical simulations that water adsorbs dissociatively on the olivine {100} surface at the temperature (approx. 500-1500 K) and water pressure (approx. 10⁻⁸ bar) expected for the accretion disc, leaving an OH adlayer that is stable at least up to 900 K. This may result in the formation of many Earth oceans, provided that a viable mechanism to produce water from hydroxyl exists. This adsorption process must occur in all disc environments around young stars. The inevitable conclusion is that water should be prevalent on terrestrial planets in the habitable zone around other stars.

  20. Direct measurement of interstellar extinction toward young stars using atomic hydrogen Lyα absorption

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Matthew; France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Hillenbrand, Lynne [California Institute of Technology, Department of Astrophysics, MC105-24, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Schindhelm, Eric [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Edwards, Suzan, E-mail: matthew.mcjunkin@colorado.edu [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States)

    2014-01-10

    Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyα emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope (HST) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log{sub 10}(N(H I)) ≈19.6-21.1, with corresponding visual extinctions of A{sub V} =0.02-0.72 mag, assuming an R{sub V} of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new HST blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by ∼0.6 mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry.

  1. Jets from Young Stars in Cygnus-X

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How do you spot very young, newly formed stars? One giveaway is the presence of jets and outflows that interact with the stars environments. In a new study, scientists have now discovered an unprecedented number of these outflows in a nearby star-forming region of our galaxy.Young Stars Hard at WorkCO map of the Cygnus-X region of the galactic plane, with the grid showing the UWISH2 coverage and the black triangles showing the positions of the detected outflows. [Makin Froebrich 2018]The birth and evolution of young stars is a dynamic, energetic process. As new stars form, material falls inward from the accretion disks surrounding young stellar objects, or YSOs. This material can power collimated streams of gas and dust that flow out along the stars rotation axes, plowing through the surrounding material. Where the outflows collide with the outside environment, shocks form that can be spotted in near-infrared hydrogen emission.Though weve learned a lot about these outflows, there remain a number of open questions. What factors govern their properties, such as their lengths, luminosities, and orientations? What is the origin of the emission features we see within the jets, known as knots? What roles do the driving sources and the environments play in the behavior and appearance of the jets?A selection of previously unknown outflows discovered as a result of this survey. Click for a closer look. [Makin Froebrich 2018]To answer these questions, we need to build a large, unbiased statistical sample of YSOs from across the galactic plane. Now, a large infrared survey known as the UKIRT Widefield Infrared Survey for H2 (UWISH2) is working toward that goal.Jackpot in Cygnus-XIn a recent publication, Sally Makin and Dirk Froebrich (University of Kent, UK), present results from UWISH2s latest release: a survey segment targeting a 42-square-degree region in the galactic plane known as the Cygnus-X star-forming region.The teams search for shock-excited emission in Cygnus

  2. X-RAY DETERMINATION OF THE VARIABLE RATE OF MASS ACCRETION ONTO TW HYDRAE

    Energy Technology Data Exchange (ETDEWEB)

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Luna, G. J. M. [Current address: Instituto de Astronomia y Fisica del Espacio (IAFE), Buenos Aires (Argentina)

    2012-12-01

    Diagnostics of electron temperature (T{sub e} ), electron density (n{sub e} ), and hydrogen column density (N{sub H}) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 Multiplication-Sign 10{sup -9} M{sub Sun} yr{sup -1}, for a stellar magnetic field strength of 600 G and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N{sub H}, T{sub e} , and n{sub e} by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars.

  3. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Kepler Science Office, Mountain View, CA 94035 (United States); Hillenbrand, Lynne A.; Carpenter, John [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, Maria [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, P.O. BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Bouvier, Jerome; Venuti, Laura [Université de Grenoble, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble (France); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI:48105 (United States); Micela, Giusi; Flaccomio, Ettore [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602-2451 (United States); Gutermuth, Rob, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.

  4. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    International Nuclear Information System (INIS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-01-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  5. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    Energy Technology Data Exchange (ETDEWEB)

    Ingleby, Laura; Calvet, Nuria; Hartmann, Lee; Miller, Jon; McClure, Melissa [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernández, Jesus; Briceno, Cesar [Centro de Investigaciones de Astronomía (CIDA), Mérida, 5101-A (Venezuela, Bolivarian Republic of); Espaillat, Catherine, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: cce@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-07-20

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10{sup –8} M{sub ☉} yr{sup –1}. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  6. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of -29.3(sup +1.1)(sub -1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 +/- 0.1) x 10(exp 12) G. The known pulsation period is now observed at 904.0+/- 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P= -2 x 10(exp -8) s s(exp -1) (-0.6 s per year, or a frequency derivative of v = 3 x 10(exp -14) Hz s(exp -1)). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 x 10(exp 8) cm.

  7. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    Science.gov (United States)

    Walton, D. J.; Fürst, F.; Harrison, F. A.; Stern, D.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A. C.; Middleton, M. J.; Ptak, A.; Tao, L.

    2018-02-01

    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM-Newton, NuSTAR and Chandra observatories. The broad-band XMM-Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∼0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B ≲ 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual 'off' states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.

  8. Effect of non-stationary accretion on spectral state transitions: An example of a persistent neutron star LMXB 4U1636–536

    Science.gov (United States)

    Zhang, Hui; Yu, Wen-Fei

    2018-03-01

    Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.

  9. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-01-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions 15 O(α, γ) 19 Ne and 18 Ne(α, p) 21 Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the 15 O(α, γ) 19 Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true 15 O(α, γ) 19 Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  10. An Accretion Model for Anomalous X-Ray Pulsars

    Science.gov (United States)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  11. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT*

    Directory of Open Access Journals (Sweden)

    Cody Ann Marie

    2014-01-01

    Full Text Available Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 (“CSI 2264”– a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway.

  12. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Tan, Jonathan C., E-mail: s.chatterjee@astro.ufl.edu, E-mail: jt@astro.ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  13. The 2014-2017 outburst of the young star ASASSN-13db. A time-resolved picture of a very-low-mass star between EXors and FUors

    Science.gov (United States)

    Sicilia-Aguilar, A.; Oprandi, A.; Froebrich, D.; Fang, M.; Prieto, J. L.; Stanek, K.; Scholz, A.; Kochanek, C. S.; Henning, Th.; Gredel, R.; Holoien, T. W.-S.; Rabus, M.; Shappee, B. J.; Billington, S. J.; Campbell-White, J.; Zegmott, T. J.

    2017-11-01

    Context. Accretion outbursts are key elements in star formation. ASASSN-13db is a M5-type star with a protoplanetary disk, the lowest-mass star known to experience accretion outbursts. Since its discovery in 2013, it has experienced two outbursts, the second of which started in November 2014 and lasted until February 2017. Aims: We explore the photometric and spectroscopic behavior of ASASSN-13db during the 2014-2017 outburst. Methods: We use high- and low-resolution spectroscopy and time-resolved photometry from the ASAS-SN survey, the LCOGT and the Beacon Observatory to study the light curve of ASASSN-13db and the dynamical and physical properties of the accretion flow. Results: The 2014-2017 outburst lasted for nearly 800 days. A 4.15 d period in the light curve likely corresponds to rotational modulation of a star with hot spot(s). The spectra show multiple emission lines with variable inverse P-Cygni profiles and a highly variable blue-shifted absorption below the continuum. Line ratios from metallic emission lines (Fe I/Fe II, Ti I/Ti II) suggest temperatures of 5800-6000 K in the accretion flow. Conclusions: Photometrically and spectroscopically, the 2014-2017 event displays an intermediate behavior between EXors and FUors. The accretion rate ([Ṁ]= 1-3 × 10-7 M⊙/yr), about two orders of magnitude higher than the accretion rate in quiescence, is not significantly different from the accretion rate observed in 2013. The absorption features in the spectra suggest that the system is viewed at a high angle and drives a powerful, non-axisymmetric wind, maybe related to magnetic reconnection. The properties of ASASSN-13db suggest that temperatures lower than those for solar-type stars are needed for modeling accretion in very-low-mass systems. Finally, the rotational modulation during the outburst reveals that accretion-related structures settle after the beginning of the outburst and can be relatively stable and long-lived. Our work also demonstrates the power

  14. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  15. Helium-burning flashes on accreting neutron stars: effects of stellar mass, radius, and magnetic field

    International Nuclear Information System (INIS)

    Joss, P.C.; Li, F.K.

    1980-01-01

    We have computed the evolution of the helium-burning shell in an accreting neutron star for various values of the stellar mass (M), radius (R), and surface magnetic fields strength (B). As shown in previous work, the helium-burning shell is often unstable and undergoes thermonuclear flashes that result in the emission of X-ray bursts from the neutron-star surface. The dependence of the properties of these bursts upon the values of M and R can be described by simple scaling relations. A strong magnetic field decreases the radiative and conductive opacities and inhibits convection in the neutron-star surface layers. For B 12 gauss, these effects are unimportant; for B> or approx. =10 13 gauss, the enhancement of the electron thermal conductivity is sufficiently large to stabilize the helium-burning shell against thermonuclear flashes. For intermediate values of B, the reduced opacities increase the recurrence intervals between bursts and the energy released per burst, while the inhibition of convection increases the burst rise times to about a few seconds. If the magnetic field funnels the accreting matter onto the magnetic polar caps, the instability of the helium-burning shell will be very strongly suppressed. These results suggest that it may eventually be possible to extract information on the macroscopic properties of neutron stars from the observed features of X-ray burst sources

  16. Unsteady Plasma Ejections from Hollow Accretion Columns of Galactic Neutron Stars as a Trigger for Gamma-Ray Bursts

    Science.gov (United States)

    Gvaramadze, V. V.

    1995-09-01

    We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.

  17. Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star

    Science.gov (United States)

    Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene

    2018-05-01

    Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html

  18. VLBA Scientists Study Birth of Sunlike Stars

    Science.gov (United States)

    1999-06-01

    Three teams of scientists have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to learn tantalizing new details about how Sun-like stars are formed. Young stars, still growing by drawing in nearby gas, also spew some of that material back into their surroundings, like impatient infants that eat too quickly. The VLBA observations are giving astronomers new insights on both processes -- the accretion of material by the new stars and the outflows of material from them. "For the first time, we're actually seeing what happens right down next to the star in these young systems," said Mark Claussen, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Claussen and other researchers announced their findings at the American Astronomical Society's meeting in Chicago. Material attracted by a young star's gravitational pull forms a flat, orbiting disk, called an accretion disk, in which the material circles closer and closer to the star until finally drawn into it. At the same time, material is ejected in "jets" speeding from the poles of the accretion disk. "The VLBA is showing us the first images of the region close to the star where the material in these jets is accelerated and formed into the `beams' of the jet," Claussen said. "We don't understand the details of these processes well," Claussen said. "These VLBA research projects are beginning to help unravel the mysteries of how stars like the Sun form." The teams are observing clumps of water vapor that naturally amplify radio emissions to see details smaller than the orbit of Mercury in young stellar systems as well as track gas motions. The clumps of gas are called masers, and amplify radio emission in much the same way that a laser amplifies light emission. "These images are just fantastic," said Al Wootten of NRAO in Charlottesville, VA. The maser clumps or "spots," emitting radio waves at a specific wavelength, can be tracked as they move over time. In addition

  19. An optical spectroscopic study of T Tauri stars. I. Photospheric properties

    Energy Technology Data Exchange (ETDEWEB)

    Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Hillenbrand, Lynne A. [Caltech, MC105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-05-10

    Estimates of the mass and age of young stars from their location in the H-R diagram are limited by not only the typical observational uncertainties that apply to field stars, but also by large systematic uncertainties related to circumstellar phenomena. In this paper, we analyze flux-calibrated optical spectra to measure accurate spectral types and extinctions of 281 nearby T Tauri stars (TTSs). The primary advances in this paper are (1) the incorporation of a simplistic accretion continuum in optical spectral type and extinction measurements calculated over the full optical wavelength range and (2) the uniform analysis of a large sample of stars, many of which are well known and can serve as benchmarks. Comparisons between the non-accreting TTS photospheric templates and stellar photosphere models are used to derive conversions from spectral type to temperature. Differences between spectral types can be subtle and difficult to discern, especially when accounting for accretion and extinction. The spectral types measured here are mostly consistent with spectral types measured over the past decade. However, our new spectral types are one to two subclasses later than literature spectral types for the original members of the TW Hya Association (TWA) and are discrepant with literature values for some well-known members of the Taurus Molecular Cloud. Our extinction measurements are consistent with other optical extinction measurements but are typically 1 mag lower than near-IR measurements, likely the result of methodological differences and the presence of near-IR excesses in most CTTSs. As an illustration of the impact of accretion, spectral type, and extinction uncertainties on the H-R diagrams of young clusters, we find that the resulting luminosity spread of stars in the TWA is 15%-30%. The luminosity spread in the TWA and previously measured for binary stars in Taurus suggests that for a majority of stars, protostellar accretion rates are not large enough to

  20. Accreting neutron stars by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  1. Studies of Young, Star-forming Circumstellar Disks

    Science.gov (United States)

    Bae, Jaehan

    2017-08-01

    Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks

  2. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  3. Young solar-type stars evolution: the lithium and seismology contributions

    International Nuclear Information System (INIS)

    Piau, Laurent Eric

    2001-01-01

    This PhD thesis is devoted to young low-mass stars. We modeled many of them since their formation until the solar age covering the range between 0.65 and 1.4 solar masses and metallicity values ranging from -0.1 to 0.1 dex. The theoretical computations are related to observations in nearby open-clusters: Hyades, Pleiades... This comparison demonstrates that the lithium evolution is still poorly understood in such stars. In stellar interiors, this nuclide is destroyed by nuclear processes at low temperatures. Its surface abundance evolution traduces mixing phenomena between surface and deeper layers and therefore allows a direct insight into stellar structure and evolution. Both of which depend on microscopic and macroscopic physical phenomena whose effects we systematically examine. As regards microphysics we mainly concentrate upon changes in metallicity, in distribution among metals and their consequences on stellar opacity. We also address atmospheric models while the star still lies close to its Hayashi track. Accretion and convective parameters are the macroscopic phenomena we address during pre-main sequence. The rotational effects are considered along the entire evolution including the much realistic rotation laws. The last part of this PhD thesis makes use of seismology. Today this Discipline allows direct probing of the solar internal structure and motions. Its future application in the realm of stars will substantially improve their understanding. We derive here some relevant seismic variables for the understanding of stellar evolution. Then we show how this powerful tool permits to determine fundamental stellar parameters such as the mass or the helium fraction. (author) [fr

  4. CONSTRAINTS ON THE NEUTRON STAR AND INNER ACCRETION FLOW IN SERPENS X-1 USING NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. M. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1046 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, The University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Fuerst, F.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Rana, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, M.; Barret, D. [Universite de Toulouse, UPS-OMP, Toulouse (France); Boggs, S. E.; Craig, W. W.; Tomsick, J. A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Christensen, F. E. [Danish Technical University, Lyngby (Denmark); Hailey, C. J.; Paerels, F. [Columbia Astrophysics Laboratory and Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Natalucci, L. [Istituto di Astrofisica e Planetologia Spaziali (INAF), Via Fosso del Cavaliere 100, Roma I-00133 (Italy); Stern, D. K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, W. W., E-mail: jonmm@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-10

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering ''hump'' peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z {sub NS} ≥ 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z {sub NS} ≥ 0.22 and R {sub NS} ≤ 12.6 km (assuming M {sub NS} = 1.4 M {sub ☉} and a = 0, where a = cJ/GM {sup 2}). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  5. Search for OB stars running away from young star clusters. I. NGC 6611

    Science.gov (United States)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  6. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  7. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  8. Planet population synthesis driven by pebble accretion in cluster environments

    Science.gov (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  9. ON THE ACCRETION-FED GROWTH OF NEUTRON STARS DURING COMMON ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-01-01

    This paper models the orbital inspiral of a neutron star (NS) through the envelope of its giant-branch companion during a common envelope (CE) episode. These CE episodes are necessary to produce close pairs of NSs that can inspiral and merge due to gravitational wave losses in less than a Hubble time. Because cooling by neutrinos can be very efficient, NSs have been predicted to accumulate significant mass during CE events, perhaps enough to lead them to collapse to black holes. We revisit this conclusion with the additional consideration of CE structure, particularly density gradients across the embedded NS's accretion radius. This work is informed by our recent numerical simulations that find that the presence of a density gradient strongly limits accretion by imposing a net angular momentum to the flow around the NS. Our calculations suggest that NSs should survive CE encounters. They accrete only modest amounts of envelope material, ≲ 0.1 M {sub ☉}, which is broadly consistent with mass determinations of double NS binaries. With less mass gain, NSs must spiral deeper to eject their CE, leading to a potential increase in mergers. The survival of NSs in CE events has implications for the formation mechanism of observed double NS binaries, as well as for predicted rates of NS binary gravitational wave inspirals and their electromagnetic counterparts.

  10. A Transient Transit Signature Associated with the Young Star RIK-210

    Energy Technology Data Exchange (ETDEWEB)

    David, Trevor J.; Hillenbrand, Lynne A.; Howard, Andrew W.; Wang, Ji [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Petigura, Erik A.; Benneke, Björn [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie; Howell, Steve B. [NASA Ames Research Center, Mountain View, California 94035 (United States); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Stauffer, John R. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Fulton, B. J. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Isaacson, Howard T. [Department of Astronomy, University of California, Berkeley, California 94720 (United States); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Hellier, Coel; Anderson, David R. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); West, Richard G.; Pollacco, Don, E-mail: tjd@astro.caltech.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2017-02-01

    We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they are not due to a single spherical body. The ingress of each dimming event is always shallower than egress, as one would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather, we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or an extended field of dust or debris near the corotation radius.

  11. Accretion onto CO White Dwarfs using MESA

    Science.gov (United States)

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  12. ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources

    Science.gov (United States)

    Koliopanos, Filippos; Vasilopoulos, Georgios; Godet, Olivier; Bachetti, Matteo; Webb, Natalie A.; Barret, Didier

    2017-12-01

    Aims: In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods: We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results: We confirm the previously noted presence of the low-energy (≲6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" (≳1 keV) and a "cool" (≲0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B ≳ 1012 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy (≳15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T r-0.75. Conclusions: We have offered a new and robust physical interpretation for

  13. Hot accreting white dwarfs in the quasi-static approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1982-01-01

    Properties of white dwarfs which are accreting hydrogen-rich matter at rates in the range 1.5 x 10 -9 to 2.5 x 10 -7 M/sub sun/ yr -1 are investigated in several approximations. Steady-burning models, in which matter is processed through nuclear-burning shells as rapidly as it is accreted, provide a framework for understanding the properties of models in which thermal pulses induced by hydrogen burning and helium burning are allowed to occur. In these latter models, the underlying carbon-oxygen core is chosen to be in a cycle-averaged steady state with regard to compressional heating and neutrino losses. Several of these models are evolved in the quasi-static approximation. Combining results obtained in the steady-burning approximation with those obtained in the quasi-static approximation, expressions are obtained for estimating, as functions of accretion rate and white dwarf mass, the thermal pulse recurrence period and the duration of hydrogen-burning phases. The time spent by an accreting model burning hydrogen as a large star of giant dimensions versus time spent burning hydrogen as a hot dwarf is also estimated as a function of model mass and accretion rate. Finally, suggestions for detecting observational counterparts of the theoretical models and suggestions for further theoretical investigations are offered. Subject headings: stars: accretion: stars: interiors: stars: novae: stars: symbiotic: stars: white dwarfs

  14. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  15. NEW CANDIDATE ERUPTIVE YOUNG STARS IN LYNDS 1340

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A.; Szegedi-Elek, E. [Konkoly Observatory, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Apai, D. [Department of Astronomy and Department of Planetary Sciences, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); O' Linger-Luscusk, J. [California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125 (United States); Stecklum, B. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Wolf-Chase, G., E-mail: kun@konkoly.hu [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States)

    2014-11-10

    We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23 L {sub ☉} < L {sub bol} < 59 L {sub ☉}. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our Hα survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASS 02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [S II] and Hα images, as well as the Spitzer Infrared Array Camera 4.5 μm images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars.

  16. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    Science.gov (United States)

    Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron

    2018-01-01

    Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.

  17. THE BIMODALITY OF ACCRETION IN T TAURI STARS AND BROWN DWARFS

    International Nuclear Information System (INIS)

    Vorobyov, E. I.; Basu, Shantanu

    2009-01-01

    We present numerical solutions of the collapse of prestellar cores that lead to the formation and evolution of circumstellar disks. The disk evolution is then followed for up to three million years. A variety of models of different initial masses and rotation rates allow us to study disk accretion around brown dwarfs and low-mass T Tauri stars (TTSs), with central object mass M * sun , as well as intermediate- and upper-mass TTSs (0.2 M sun * sun ). Our models include self-gravity and allow for nonaxisymmetric motions. In addition to the self-consistently generated gravitational torques, we introduce an effective turbulent α-viscosity with α = 0.01, which allows us particularly to model accretion in the low-mass regime where disk self-gravity is diminishing. A range of models with observationally motivated values of the initial ratio of rotational-to-gravitational energy yield a correlation between mass accretion rate M-dot and M * that is relatively steep, as observed. Additionally, our modeling reveals evidence for a bimodality in the M-dot - M * correlation, with a steeper slope at lower masses and a shallower slope at intermediate and upper masses, as also implied by observations. Furthermore, we show that the neglect of disk self-gravity leads to a much steeper M-dot - M * relation for intermediate- and upper-mass TTSs. This demonstrates that an accurate treatment of global self-gravity is essential to understanding observations of circumstellar disks.

  18. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  19. The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264

    Science.gov (United States)

    Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.

    2018-01-01

    Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later

  20. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-01-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  1. Flat spectrum T Tauri stars: The case for infall

    Science.gov (United States)

    Calvet, Nuria; Hartmann, Lee; Kenyon, S. J.; Whitney, B. A.

    1994-01-01

    We show that the mid- to far-infrared fluxes of 'flat spectrum' T Tauri stars can be explained by radiative equilibrium emission from infalling dusty envelopes. Infall eliminates the need for accretion disks with non-standard temperature distributions. The simplicity and power of this explanantion indicates that models employing 'active' disks, in which the temperature distribution is a parameterized power law, should be invoked with caution. Infall also naturally explains the scattered light nebulae detected around many flat spectrum sources. To match the observed spectra, material must fall onto a disk rather than the central star, as expected for collapse of a rotating molecular cloud. It may be necessary to invoke cavities in the envelopes to explain the strength of optical and near-infrared emission; these cavities could be produced by the powerful bipolar outflows commonly observed from young stars. If viewed along the cavity, a source may be lightly extincted at visual wavelengths, while still accreting substantial amounts of material from the envelope. Infall may also be needed to explain the infrared-bright companions of many optical T Tauri stars. This picture suggests that many of the flat spectrum sources are 'protostars'-young stellar objects surrounded by dust infalling envelopes of substantial mass.

  2. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    Science.gov (United States)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ˜ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ˜ 108-1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108-109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar 108 M⊙ can contribute a considerable fraction (˜20%-60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  3. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    International Nuclear Information System (INIS)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-01-01

    One puzzle in understanding how stars form in clusters is the source of mass—is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of ∼30 M ☉ Myr –1 (inferred from the N 2 H + velocity gradient along the filament), and radially contracting onto the filament at ∼130 M ☉ Myr –1 (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  4. Optical High-resolution Spectroscopy of 14 Young α-rich Stars

    Science.gov (United States)

    Matsuno, Tadafumi; Yong, David; Aoki, Wako; Ishigaki, Miho N.

    2018-06-01

    We report chemical abundances of 14 young α-rich stars including neutron-capture elements based on high-quality optical spectra from HIRES/Keck I and differential line-by-line analysis. From a comparison of the abundance patterns of young α-rich stars to those of nearby bright red giants with a similar metallicity range (‑0.7 branch stars plays an important role in the formation of young α-rich stars. The high frequency of radial velocity variation (more than 50%) is also confirmed. We argue that mass transfer from low-mass red giants is the likely dominant formation mechanism for young α-rich stars. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  6. Surveying Low-Mass Star Formation with the Submillimeter Array

    Science.gov (United States)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  7. Thermonuclear process and accretion onto neutron star envelopes: x-ray burst and transient sources

    International Nuclear Information System (INIS)

    Starrfield, S.; Kenyon, S.; Sparks, W.M.; Truran, J.W.; Theoretical Division, Los Alamos National Laboratory)

    1982-01-01

    We have used a Lagrangian, fully implicit, one-dimensional, hydrodynamic computer code to investigate the evolution of thermonuclear runaways in the thick, accreted, hydrogen-rich envelopes of 1.0 M/sub sun/ neutron stars with radii of 10 km and 20 km. Our simulations produce outbursts which range in time scale from about 2000 seconds to longer than 1 day. Peak effective temperature was 3.3 x 10 7 K (kTapprox.2.91 keV), and peak luminosity was 2 x 10 5 L/sub sun/ for the 10 km study. The 20 km neutron star produced a peak effective temperature and luminosity of 5.3 x 10 6 K and 5.9 x 10 2 L/sub sun/, respectively. We also investigated the effects of changes in the rates of the 14 O(α,p) and 15 O(α,ν) reactions on the evolution. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about 10 - 6 seconds

  8. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    Science.gov (United States)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  9. Energy transport in radially accreting white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.M.

    1986-10-01

    Some of the non-thermal energy transport processes which may be present in a white dwarf accretion column are examined and it is determined whether these could in any way contribute to a resolution of the soft X-ray puzzle. The first two Chapters of this Thesis constitute a review of the observations and proposed models for white dwarf accretion columns. In Chapter 3 we show that in Kuijpers and Pringle's original bombardment model of white dwarf accretion columns, in which the energy of the accreting material is deposited uniformly into a static atmosphere which then radiates the energy away as optically thin bremsstrahlung/line radiation, an incorrect Coulomb collisional timescale was used. In Chapter 4 we extend the calculations of Chapter 3 to include the effect of cyclotron radiation. It is concluded that a cyclotron cooled bombardment solution for a white dwarf accretion column may exist. We extend this calculation to derive a simple piecewise uniform temperature structure for such an accretion column, incorporating the effect of thermal conduction. In Chaper 5 we examine two of the non thermal emission mechanisms that might be present in white dwarf accretion columns:- non thermal Lyman-{alpha} emission and non thermal inverse bremsstrahlung emission. It is shown that neither would actually be sufficiently large to be detectable. In Chapter 6 some possible extensions to the work presented are suggested. (author).

  10. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L. [Radio and Geoastronomy Division, Harvard Smithsonian Center for Astrophysics, MS-42, Cambridge, MA, 02138 (United States); Gutermuth, Robert A.; Wilson, Grant W. [Department of Astronomy, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Hedden, Abigail, E-mail: kirkh@mcmaster.ca [Army Research Labs, Adelphi, MD 20783 (United States)

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  11. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2017-01-20

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

  12. Hydrodynamic simulations of accretion disks in cataclysmic variables

    International Nuclear Information System (INIS)

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  13. FORMING AN O STAR VIA DISK ACCRETION?

    International Nuclear Information System (INIS)

    Qiu Keping; Zhang Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ∼10 5 L ☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M ☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M ☉ . The outflow has a gas mass of 54 M ☉ and a dynamical timescale of 8 × 10 3 yr. The kinematics of the HMC are probed by high-excitation CH 3 OH and CH 3 CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10 –3 M ☉ yr –1 , is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13 CO and C 18 O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M ☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  14. Swings between rotation and accretion power in a binary millisecond pulsar.

    Science.gov (United States)

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  15. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    Science.gov (United States)

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  16. HIGHLY VARIABLE EXTINCTION AND ACCRETION IN THE JET-DRIVING CLASS I-TYPE YOUNG STAR PTF 10nvg (V2492 Cyg, IRAS 20496+4354)

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, Lynne A.; Carpenter, John M.; Muirhead, Philip S.; Crepp, Justin R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Miller, Adam A.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Covey, Kevin R. [Department of Astronomy, Cornell University, 226 Space Sciences Building, Ithaca, NY 14853 (United States); Fischer, William J. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States)

    2013-03-15

    We report extensive new photometry and spectroscopy of the highly variable young stellar object PTF 10nvg (also known as IRAS 20496+4354 and V2492 Cyg), including optical and near-infrared time-series data as well as mid-infrared and millimeter data. Following the previously reported 2010 rise to R{sub PTF} {approx}<13.{sup m}5 and subsequent fade, during 2011 and 2012 the source underwent additional episodes of brightening, followed by several magnitude dimming events including prolonged faint states at R{sub PTF} {approx}> 20{sup m}. The observed high-amplitude variations are largely consistent with extinction changes ({Delta}A{sub V} up to 30 mag) having a {approx}220 day quasi-periodic signal. However, photometry measured when the source was near maximum brightness in mid-2010 as well as in late-2012 does not phase well to this period. Spectral evolution includes not only changes in the spectral slope but also correlated variation in the prominence of TiO/VO/CO bands and atomic line emission, as well as anti-correlated variation in forbidden line emission which, along with H{sub 2}, dominates optical and infrared spectra at faint epochs. Notably, night-to-night variations in several forbidden doublet strengths and ratios are observed. High-dispersion spectra were obtained in a variety of photometric states and reveal time-variable line profiles. Neutral and singly ionized atomic species are likely formed in an accretion flow and/or impact while the origin of zero-velocity atomic Li I {lambda}6707 in emission is unknown. Forbidden lines, including several rare species, exhibit blueshifted emission profiles and likely arise from an outflow/jet. Several of these lines are also seen spatially offset from the continuum source position, presumably in a shocked region of an extended jet. Blueshifted absorption components of the Na I D doublet, K I {lambda}{lambda}7665, 7669 doublet, and the O I 7774 triplet, as well as blueshifted absorption components seen against

  17. Hyper-Eddington accretion in GRB

    International Nuclear Information System (INIS)

    Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.

    2005-01-01

    Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black ho le and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2 s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the di se is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation

  18. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    International Nuclear Information System (INIS)

    Kashiyama, Kazumi; Murase, Kohta

    2017-01-01

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M ej ≳ a few M ⊙ , a neutron star with an age of t age ∼ 10–100 years, an initial spin period of P i ≲ a few ms, and a dipole magnetic field of B dip ≲ a few × 10 13 G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M ej ∼ 0.1 M ⊙ , a younger neutron star with t age ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  19. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Murase, Kohta [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-10

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M {sub ej} ≳ a few M {sub ⊙}, a neutron star with an age of t {sub age} ∼ 10–100 years, an initial spin period of P{sub i} ≲ a few ms, and a dipole magnetic field of B {sub dip} ≲ a few × 10{sup 13} G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M {sub ej} ∼ 0.1 M {sub ⊙}, a younger neutron star with t {sub age} ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  20. Study of magnetized accretion flow with variable Γ equation of state

    Science.gov (United States)

    Singh, Kuldeep; Chattopadhyay, Indranil

    2018-05-01

    We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.

  1. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  2. A debris disk around an isolated young neutron star.

    Science.gov (United States)

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  3. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    DEFF Research Database (Denmark)

    Lanzuisi, G.; Perna, M.; Comastri, A.

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z similar to 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad...

  4. Extreme Variables in Star Forming Regions

    Science.gov (United States)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability

  5. Wind accretion and formation of disk structures in symbiotic binary systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  6. Laboratory Astrophysics Experiments to Study Star Formation

    Science.gov (United States)

    Young, Rachel

    As a thesis project, I devised and implemented a scaled accretion shock experiment on the OMEGA laser (Laboratory for Laser Energetics). This effort marked the first foray into the growing field of laser-created magnetized flowing plasmas for the Center for Laser Experimental Astrophysical Research (CLEAR) here at the University of Michigan. Accretion shocks form when streams of accreting material fall to the surface of a young, growing star along magnetic field lines and, due to their supersonic flow, create shocks. As I was concerned with what was happening immediately on the surface of the star where the shock forms, I scaled the system by launching a plasma jet (the "accreting flow") and driving it into a solid surface (the "stellar surface") in the presence of an imposed magnetic field parallel to the jet flow (locally analogous to the dipole field of the star). Early work for this thesis project was dedicated to building a magnetized flowing plasma platform at CLEAR. I investigated a method for launching collimated plasma jets and studied them using Thomson scattering, a method which measures parameters such as temperature and density by scattering a probe beam off the experimental plasma. Although the data were corrupted with probe heating effects, I overcame this problem by finding the mass density of the jets and using it to determine they were isothermal rarefactions with a temperature of 6 eV. Scaling an astrophysical phenomenon to the laboratory requires tailoring the parameters of the experiment to preserve its physics, rather than creating an experiment that merely superficially resembles it. I ensured this by distilling the driving physical processes of the astrophysical system--accretion shocks--into a list of dimensionless number constraints and mapping these into plasma parameter space. Due to this project being the first magnetized flowing plasma effort at CLEAR, it suffered the growing pains typical of a young research program. Of my two primary

  7. SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS

    International Nuclear Information System (INIS)

    Le Blanc, Thompson S.; Stassun, Keivan G.; Covey, Kevin R.

    2011-01-01

    Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these 'disk-locking' theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the

  8. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  9. Theory of quasi-spherical accretion in X-ray pulsars

    Science.gov (United States)

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  10. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Directory of Open Access Journals (Sweden)

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  11. Young star clusters in nearby molecular clouds

    Science.gov (United States)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  12. Evolution of accretion disks in tidal disruption events

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Rong-Feng [Current address: Racah Institute of Physics, Hebrew University of Jerusalem, Israel. (Israel); Matzner, Christopher D., E-mail: rf.shen@mail.huji.ac.il, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, M5S 3H4 (Canada)

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  13. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    Science.gov (United States)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the

  14. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  15. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  16. Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo

    2017-09-01

    We report on the properties of the low-mass stars that recently formed in the central ˜ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ˜ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5contract NAS5-26555.

  17. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  18. The Great Wall: Urca Cooling Layers in the Accreted NS Crust

    Directory of Open Access Journals (Sweden)

    Meisel Zach

    2018-01-01

    Full Text Available Accreting neutron stars host a number of astronomical observables which can be used to infer the properties of the underlying dense matter. These observables are sensitive to the heating and cooling processes taking place in the accreted neutron star (NS crust. Within the past few years it has become apparent that electron-capture/beta-decay (urca cycles can operate within the NS crust at high temperatures. Layers of nuclei undergoing urca cycling can create a thermal barrier, or Great Wall, between heating occurring deep in the crust and the regions above the urca layers. This paper briefly reviews the urca process and the implications for observables from accreting neutron stars.

  19. Accretion Disks and Coronae in the X-Ray Flashlight

    Science.gov (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  20. Magnetospheres of accreting compact objects in binary systems

    International Nuclear Information System (INIS)

    Aly, J.J.

    1985-09-01

    Bright pulsating X-ray sources (X-ray pulsars, AM Her stars,...) have been identified as strongly magnetized compact objects accreting matter from a binary companion. We give here a summary of some of the work which has been recently done to try to understand the interaction between the magnetic field of the compact object and the matter around. We examine in turn the models describing the interaction of the field with: i) a spherically symmetric accretion flow; ii) a thin keplerian accretion disk; iii) the companion itself. In all these cases, we pay particular attention to the following problems: i) how the external plasma interacting with the magnetosphere can get mixed with the field; ii) by which mechanism the magnetic field controls the mass-momentum-energy exchanges between the two stars. In conclusion, we compare the magnetosphere of an accreting compact object with that one of a planet [fr

  1. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  2. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  3. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  4. Brown dwarf accretion: Nonconventional star formation over very long timescales

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available We investigate the process of accretion of interstellar gas by the Galactic population of brown dwarfs over very long timescales typical for physical eschatology. In particular, we use the classical Hoyle-Lyttleton-Bondi accretion model to investigate the rate at which brown dwarfs collect enough additional mass to become red dwarfs, accretion-induced changes in the mass function of the low- mass objects, and the corresponding accretion heating of brown dwarfs. In addition, we show how we can make the definition of the final mass function for stellar objects more precise.

  5. Theories of magnetospheres around accreting compact objects

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1979-01-01

    A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfven critical point for inflow. In the case of accretion via a well-defined disk, new problems if magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the acretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined. (orig.)

  6. Hypervelocity stars from young stellar clusters in the Galactic Centre

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  7. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    Science.gov (United States)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  8. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  9. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  10. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    International Nuclear Information System (INIS)

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W.

    2010-01-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ∼10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  11. POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS

    Energy Technology Data Exchange (ETDEWEB)

    Nagakura, Hiroki; Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ioka, Kunihito, E-mail: hiroki@heap.phys.waseda.ac.jp [KEK Theory Center, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2012-08-01

    We investigate the propagation of accretion-powered jets in various types of massive stars such as Wolf-Rayet stars, light Population III (Pop III) stars, and massive Pop III stars, all of which are the progenitor candidates of gamma-ray bursts (GRBs). We perform two-dimensional axisymmetric simulations of relativistic hydrodynamics, taking into account both the envelope collapse and the jet propagation (i.e., the negative feedback of the jet on the accretion). Based on our hydrodynamic simulations, we show for the first time that the accretion-powered jet can potentially break out relativistically from the outer layers of Pop III progenitors. In our simulations, the accretion rate is estimated by the mass flux going through the inner boundary, and the jet is injected with a fixed accretion-to-jet conversion efficiency {eta}. By varying the efficiency {eta} and opening angle {theta}{sub op} for more than 40 models, we find that the jet can make a relativistic breakout from all types of progenitors for GRBs if a simple condition {eta} {approx}> 10{sup -4}({theta}{sub op}/8 Degree-Sign ){sup 2} is satisfied, which is consistent with analytical estimates. Otherwise no explosion or some failed spherical explosions occur.

  12. ACCRETION AND MAGNETIC RECONNECTION IN THE CLASSICAL T TAURI BINARY DQ TAU

    International Nuclear Information System (INIS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  13. ACCRETION AND MAGNETIC RECONNECTION IN THE CLASSICAL T TAURI BINARY DQ TAU

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Ardila, David R. [The Aerospace Corporation, M2-266, El Segundo, CA 90245 (United States); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Johns-Krull, Christopher [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Quijano-Vodniza, Alberto [University of Nariño Observatory, Pasto, Nariño (Colombia)

    2017-01-20

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  14. Nearly collisionless spherical accretion

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1977-01-01

    A fluid-like gas accretes much more efficiently than a collisionless gas. The ability of an accreting gas to behave like a fluid depends on the relationship of the mean free path of a gas particle at r → infinity lambdasub(infinity), to the typical length scales associated with the star-gas system. This relationship is examined in detail. For constant collision cross-section evidence is found for a rapid changeover from collisionless to fluid-like accretion flow when lambdasub(infinity) drops below a certain value, but for hard Coulomb collisions, the transition is more gradual, and is sensitive to the adiabatic index of the gas at r→ infinity. To these results must be added the effects of the substantial cusp of bound particles, which always develops in a system with arbitrarily small but non-zero cross-section. The density run in such a cusp depends on the collision properties of the particles. 'Loss-cone' accretion from the cusp may in some cases exceed the predicted accretion rate. (author)

  15. A model of two-stream non-radial accretion for binary X-ray pulsars

    International Nuclear Information System (INIS)

    Lipunov, V.M.

    1982-01-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered. (orig.)

  16. Spectral energy distribution analysis of class I and class II FU Orionis stars

    Energy Technology Data Exchange (ETDEWEB)

    Gramajo, Luciana V.; Gómez, Mercedes [Observatorio Astronómico, Universidad Nacional de Córdoba, Argentina, Laprida 854, 5000 Córdoba (Argentina); Rodón, Javier A., E-mail: luciana@oac.uncor.edu, E-mail: mercedes@oac.uncor.edu, E-mail: jrodon@eso.org [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile)

    2014-06-01

    FU Orionis stars (FUors) are eruptive pre-main sequence objects thought to represent quasi-periodic or recurring stages of enhanced accretion during the low-mass star-forming process. We characterize the sample of known and candidate FUors in a homogeneous and consistent way, deriving stellar and circumstellar parameters for each object. We emphasize the analysis in those parameters that are supposed to vary during the FUor stage. We modeled the spectral energy distributions of 24 of the 26 currently known FUors, using the radiative transfer code of Whitney et al. We compare our models with those obtained by Robitaille et al. for Taurus class II and I sources in quiescence periods by calculating the cumulative distribution of the different parameters. FUors have more massive disks: we find that ∼80% of the disks in FUors are more massive than any Taurus class II and I sources in the sample. Median values for the disk mass accretion rates are ∼10{sup –7} M {sub ☉} yr{sup –1} versus ∼10{sup –5} M {sub ☉} yr{sup –1} for standard young stellar objects (YSOs) and FUors, respectively. While the distributions of envelope mass accretion rates for class I FUors and standard class I objects are similar, FUors, on average, have higher envelope mass accretion rates than standard class II and class I sources. Most FUors (∼70%) have envelope mass accretion rates above 10{sup –7} M {sub ☉} yr{sup –1}. In contrast, 60% of the classical YSO sample has an accretion rate below this value. Our results support the current scenario in which changes experimented by the circumstellar disk explain the observed properties of these stars. However, the increase in the disk mass accretion rate is smaller than theoretically predicted, although in good agreement with previous determinations.

  17. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-02-20

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  18. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    International Nuclear Information System (INIS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-01-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10 −10 ( R * / R ) 3 g cm −3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10 −9 M * . We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  19. Anomalous Eclipses of the Young Star RW Aur A

    Science.gov (United States)

    Lamzin, S.; Cheryasov, D.; Chuntonov, G.; Dodin, A.; Grankin, K.; Malanchev, K.; Nadzhip, A.; Safonov, B.; Shakhovskoy, D.; Shenavrin, V.; Tatarnikov, A.; Vozyakova, O.

    2017-06-01

    Results of UBVRIJHKLM photometry, VRI polarimetry and optical spectroscopy of a young star RW Aur A obtained during 2010-11 and 2014-16 dimming events are presented. During the second dimming the star decreased its brightness to ΔV >4.5 mag, polarization of its light in I-band was up to 30 %, and color-magnitude diagramm was similar to that of UX Ori type stars. We conclude that the reason of both dimmings is an eclipses of the star by dust screen, but the size of the screen is much larger than in the case of UXORs.

  20. Realistic limitations of detecting planets around young active stars

    Directory of Open Access Journals (Sweden)

    Pinfield D.

    2013-04-01

    Full Text Available Current planet hunting methods using the radial velocity method are limited to observing middle-aged main-sequence stars where the signatures of stellar activity are much less than on young stars that have just arrived on the main-sequence. In this work we apply our knowledge from the surface imaging of these young stars to place realistic limitations on the possibility of detecting orbiting planets. In general we find that the magnitude of the stellar jitter is directly proportional to the stellar vsini. For G and K dwarfs, we find that it is possible, for models with high stellar activity and low stellar vsini, to be able to detect a 1 MJupiter mass planet within 50 epochs of observations and for the M dwarfs it is possible to detect a habitable zone Earth-like planet in 10s of observational epochs.

  1. Medium-resolution near-infrared spectroscopy of massive young stellar objects

    Science.gov (United States)

    Pomohaci, R.; Oudmaijer, R. D.; Lumsden, S. L.; Hoare, M. G.; Mendigutía, I.

    2017-12-01

    We present medium-resolution (R ∼ 7000) near-infrared echelle spectroscopic data for 36 massive young stellar objects (MYSOs) drawn from the Red MSX Source survey. This is the largest sample observed at this resolution at these wavelengths of MYSOs to date. The spectra are characterized mostly by emission from hydrogen recombination lines and accretion diagnostic lines. One MYSO shows photospheric H I absorption, a comparison with spectral standards indicates that the star is an A-type star with a low surface gravity, implying that the MYSOs are probably swollen, as also suggested by evolutionary calculations. An investigation of the Brγ line profiles shows that most are in pure emission, while 13 ± 5 per cent display P Cygni profiles, indicative of outflow, while less than 8 ± 4 per cent have inverse P Cygni profiles, indicative of infall. These values are comparable with investigations into the optically bright Herbig Be stars, but not with those of Herbig Ae and T Tauri stars, consistent with the notion that the more massive stars undergo accretion in a different fashion than lower mass objects that are undergoing magnetospheric accretion. Accretion luminosities and rates as derived from the Br γ line luminosities agree with results for lower mass sources, providing tentative evidence for massive star formation theories based on scaling of low-mass scenarios. We present Br γ/Br12 line profile ratios exploiting the fact that optical depth effects can be traced as a function of Doppler shift across the lines. These show that the winds of MYSOs in this sample are nearly equally split between constant, accelerating and decelerating velocity structures. There are no trends between the types of features we see and bolometric luminosities or near-infrared colours.

  2. Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers

    Science.gov (United States)

    Siegel, Daniel M.; Metzger, Brian D.

    2018-05-01

    Merging binaries consisting of two neutron stars (NSs) or an NS and a stellar-mass black hole typically form a massive accretion torus around the remnant black hole or long-lived NS. Outflows from these neutrino-cooled accretion disks represent an important site for r-process nucleosynthesis and the generation of kilonovae. We present the first three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulations including weak interactions and a realistic equation of state of such accretion disks over viscous timescales (380 ms). We witness the emergence of steady-state MHD turbulence, a magnetic dynamo with an ∼20 ms cycle, and the generation of a “hot” disk corona that launches powerful thermal outflows aided by the energy released as free nucleons recombine into α-particles. We identify a self-regulation mechanism that keeps the midplane electron fraction low (Y e ∼ 0.1) over viscous timescales. This neutron-rich reservoir, in turn, feeds outflows that retain a sufficiently low value of Y e ≈ 0.2 to robustly synthesize third-peak r-process elements. The quasi-spherical outflows are projected to unbind 40% of the initial disk mass with typical asymptotic escape velocities of 0.1c and may thus represent the dominant mass ejection mechanism in NS–NS mergers. Including neutrino absorption, our findings agree with previous hydrodynamical α-disk simulations that the entire range of r-process nuclei from the first to the third r-process peak can be synthesized in the outflows, in good agreement with observed solar system abundances. The asymptotic escape velocities and quantity of ejecta, when extrapolated to moderately higher disk masses, are consistent with those needed to explain the red kilonova emission following the NS merger GW170817.

  3. X-rays from neutron stars

    International Nuclear Information System (INIS)

    Boerner, G.

    1979-08-01

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  4. X-ray Observations of Eight Young Open Star Clusters: I ...

    Indian Academy of Sciences (India)

    XMM-Newton View of Eight Young Open Star Clusters. 395 ... Multi-wavelength surveys of young open clusters provide an effective way to iden- tify young cluster .... First, the input images were built in two energy ranges, a soft band (0.3–2.0 keV) and ..... 3.2 Color-magnitude diagram of X-ray sources with NIR counterparts.

  5. Polycyclic aromatic hydrocarbons in disks around young solar-type stars

    NARCIS (Netherlands)

    Geers, Vincent Carlo

    2007-01-01

    In this thesis we study the dust around solar-type young stars. In particular, we focus on one specific species of dust, namely the Polycyclic Aromatic Hydrocarbons (PAHs), a family of large molecules, or small grains, that are widely observed in nearby star-forming regions. We address the following

  6. NICER Eyes on Bursting Stars

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    What happens to a neutron stars accretion disk when its surface briefly explodes? A new instrument recently deployed at the International Space Station (ISS) is now watching bursts from neutron stars and reporting back.Deploying a New X-Ray MissionLaunch of NICER aboard a Falcon 9 rocket in June 2017. [NASA/Tony Gray]In early June of 2017, a SpaceX Dragon capsule on a Falcon 9 rocket launched on a resupply mission to the ISS. The pressurized interior of the Dragon contained the usual manifest of crew supplies, spacewalk equipment, and vehicle hardware. But the unpressurized trunk of the capsule held something a little different: the Neutron star Interior Composition Explorer (NICER).In the two weeks following launch, NICER was extracted from the SpaceX Dragon capsule and installed on the ISS. And by the end of the month, the instrument was already collecting its first data set: observations of a bright X-ray burst from Aql X-1, a neutron star accreting matter from a low-mass binary companion.Impact of BurstsNICERs goal is to provide a new view of neutron-star physics at X-ray energies of 0.212 keV a window that allows us to explore bursts of energy that neutron stars sometimes emit from their surfaces.Artists impression of an X-ray binary, in which a compact object accretes material from a companion star. [ESA/NASA/Felix Mirabel]In X-ray burster systems, hydrogen- and helium-rich material from a low-mass companion star piles up in an accretion disk around the neutron star. This material slowly funnels onto the neutron stars surface, forming a layer that gravitationally compresses and eventually becomes so dense and hot that runaway nuclear fusion ignites.Within seconds, the layer of material is burned up, producing a burst of emission from the neutron star that outshines even the inner regions of the hot accretion disk. Then more material funnels onto the neutron star and the process begins again.Though we have a good picture of the physics that causes these bursts

  7. Insights from simulations of star formation

    International Nuclear Information System (INIS)

    Larson, Richard B

    2007-01-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  8. Insights from simulations of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard B [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States)

    2007-03-15

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  9. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian; Amaro-Seoane, Pau, E-mail: Xian.Chen@aei.mpg.de, E-mail: Pau.Amaro-Seoane@aei.mpg.de [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany)

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  10. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-01

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of ∼2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of ∼0.2 β 1/2 compared to the Bondi value, where β is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  11. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: ajcunn@gmail.com [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  12. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  13. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  14. Periodic light variations of young stars U X Orion and S U Auriga

    International Nuclear Information System (INIS)

    Minikulov, N.Kh.; Abdulloev, S.Kh.

    2007-01-01

    The light curves of young variable stars U X Orion and S U Auriga are created from archive data of Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan and other sources. It is established that periodic light variations of young stars U X Orion and S U Auriga occurs to duration of 36.4 and 29.8 years, accordingly. It is supposed that such periodic light variations are connected with existence a planetary system around these stars

  15. Discovery of new dipper stars with K2: a window into the inner disc region of T Tauri stars

    Science.gov (United States)

    Hedges, Christina; Hodgkin, Simon; Kennedy, Grant

    2018-05-01

    In recent years, a new class of young stellar object (YSO) has been defined, referred to as dippers, where large transient drops in flux are observed. These dips are too large to be attributed to stellar variability, last from hours to days and can reduce the flux of a star by 10-50 per cent. This variability has been attributed to occultations by warps or accretion columns near the inner edge of circumstellar discs. Here, we present 95 dippers in the Upper Scorpius association and ρ Ophiuchus cloud complex found in K2 Campaign 2 data using supervised machine learning with a random forest classifier. We also present 30 YSOs that exhibit brightening events on the order of days, known as bursters. Not all dippers and bursters are known members, but all exhibit infrared excesses and are consistent with belonging to either of the two young star-forming regions. We find 21.0 ± 5.5 per cent of stars with discs are dippers for both regions combined. Our entire dipper sample consists only of late-type (KM) stars, but we show that biases limit dipper discovery for earlier spectral types. Using the dipper properties as a proxy, we find that the temperature at the inner disc edge is consistent with interferometric results for similar and earlier type stars.

  16. Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600

    Science.gov (United States)

    Lagos, P.; Scott, T. C.; Nigoche-Netro, A.; Demarco, R.; Humphrey, A.; Papaderos, P.

    2018-03-01

    Using VIMOS-IFU observations, we study the interstellar medium (ISM) of two star-forming dwarf galaxies, UM 461 and Mrk 600. Our aim was to search for the existence of metallicity inhomogeneities that might arise from infall of nearly pristine gas feeding ongoing localized star-formation. The IFU data allowed us to study the impact of external gas accretion on the chemical evolution as well as the ionised gas kinematics and morphologies of these galaxies. Both systems show signs of morphological distortions, including cometary-like morphologies. We analysed the spatial variation of 12 + log(O/H) abundances within both galaxies using the direct method (Te), the widely applied HII-CHI-mistry code, as well as by employing different standard calibrations. For UM 461 our results show that the ISM is fairly well mixed, at large scales, however we find an off-centre and low-metallicity region with 12 + log(O/H) ISM in our analysed galaxies are consistent with these systems being at different evolutionary stages.

  17. Growth of black holes in the interior of rotating neutron stars

    DEFF Research Database (Denmark)

    Kouvaris, C.; Tinyakov, P.

    2014-01-01

    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...

  18. Laboratory astrophysics with high energy and high power lasers: from radiative shocks to young star jets

    International Nuclear Information System (INIS)

    Diziere, A.

    2012-01-01

    Laboratory astrophysics are a rapidly developing domain of the High Energy Density Physics. It aims to recreate at smaller scales physical processes that astronomical telescopes have difficulties observing. We shall approach, in this thesis, three major subjects: 1) Jets ejected from young stars, characterized by an important collimation degree and ending with a bow shock; 2) Radiative shocks in which radiation emitted by the shock front itself plays a dominant role in its structure and 3) Accretion shocks in magnetic cataclysmic variables whose important cooling factor allows them to reach stationarity. From the conception to experimental realization, we shall attempt to reproduce in laboratory each of these processes by respecting the scaling laws linking both situations (experimental and astrophysical) established beforehand. The implementation of a large array of visible and X-ray diagnostics will finally allow to completely characterize them and calculate the dimensionless numbers that validate the astrophysical relevance. (author) [fr

  19. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    Science.gov (United States)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope

  20. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    Science.gov (United States)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-03-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution which can include a filamentary structure in addition to gas surrounding the stellar subclusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young proto-star clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  1. A Young Star Cluster in the Leo a Galaxy

    Directory of Open Access Journals (Sweden)

    Stonkutė R.

    2015-09-01

    Full Text Available We report a serendipitous discovery of a star cluster in the dwarf irregular galaxy Leo A. Young age (~28 Myr and low mass (~510 M⊙ estimates are based on the isochrone fit assuming a metallicity derived for HII regions (Z = 0.0007. The color-magnitude diagrams of the stars, located in and around the cluster area, and the results of aperture photometry of the cluster itself are presented.

  2. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  3. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    Science.gov (United States)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  4. SHOCK-DRIVEN ACCRETION IN CIRCUMPLANETARY DISKS: OBSERVABLES AND SATELLITE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhaohuan [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States); Ju, Wenhua; Stone, James M., E-mail: zhzhu@physics.unlv.edu [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2016-12-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α  coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm{sup −2} in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.

  5. SHOCK-DRIVEN ACCRETION IN CIRCUMPLANETARY DISKS: OBSERVABLES AND SATELLITE FORMATION

    International Nuclear Information System (INIS)

    Zhu, Zhaohuan; Ju, Wenhua; Stone, James M.

    2016-01-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α  coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm −2 in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.

  6. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  7. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    International Nuclear Information System (INIS)

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-01-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  8. FEEDBACK EFFECTS ON LOW-MASS STAR FORMATION

    International Nuclear Information System (INIS)

    Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.; Fisher, Robert T.

    2012-01-01

    Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud in the presence of protostellar feedback. We present results of the first simulations of a star-forming cluster that include both radiative transfer and protostellar outflows. We run four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. We find that outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. This means that, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M ☉ . We find initial fragmentation of our cloud at half the global Jeans length, around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions; the accretion rate does not appear to be consistent with either competitive accretion or accretion from an isothermal sphere. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency, ε core ≅ 1/3. The simulations are also able to reproduce many observation of local star-forming regions. Our simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass

  9. Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring?

    Science.gov (United States)

    Punzi, K. M.; Kastner, J. H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T.

    2018-01-01

    The erratically variable star RZ Piscium (RZ Psc) displays extreme optical dropout events and strikingly large excess infrared emission. To ascertain the evolutionary status of this intriguing star, we obtained observations of RZ Psc with the European Space Agency’s X-ray Multi-Mirror Mission (XMM-Newton), as well as high-resolution optical spectroscopy with the Hamilton Echelle on the Lick Shane 3 m telescope and with HIRES on the Keck I 10 m telescope. The optical spectroscopy data demonstrate that RZ Psc is a pre-main sequence star with an effective temperature of 5600 ± 75 K and log g of 4.35 ± 0.10. The ratio of X-ray to bolometric luminosity, {log}{L}X/{L}{bol}, lies in the range ‑3.7 to ‑3.2, consistent with ratios typical of young, solar-mass stars, thereby providing strong support for the young star status of RZ Psc. The Li absorption line strength of RZ Psc suggests an age in the range 30–50 Myr, which in turn implies that RZ Psc lies at a distance of ∼170 pc. Adopting this estimated distance, we find the Galactic space velocity of RZ Psc to be similar to the space velocities of stars in young moving groups near the Sun. Optical spectral features indicative of activity and/or circumstellar material are present in our spectra over multiple epochs, which provide evidence for the presence of a significant mass of circumstellar gas associated with RZ Psc. We suggest that the destruction of one or more massive orbiting bodies has recently occurred within 1 au of the star, and we are viewing the aftermath of such an event along the plane of the orbiting debris.

  10. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  11. Young Stellar Variability of GM Cephei by Circumstellar Dust Clumps

    Science.gov (United States)

    Huang, Po-Chieh; Chen, Wen-Ping; Hu, Chia-Ling; Burkhonov, Otabek; Ehgamberdiev, Shuhrat; Liu, Jinzhong; Naito, Hiroyuki; Pakstiene, Erika; Qvam, Jan Kare Trandem; Rätz, Stefanie; Semkov, Evgeni

    2018-04-01

    UX Orionis stars are a sub-type of Herbig Ae/be or T Tauri stars exhibiting sporadic extinction of stellar light due to circumstellar dust obscuration. GM Cep is such an UX Orionis star in the young (∼ 4 Myr) open cluster Trumpler 37 at ∼ 900 pc, showing a prominent infrared access, H-alpha emission, and flare activity. Our multi-color photometric monitoring from 2009 to 2016 showed (i) sporadic brightening on a time scale of days due to young stellar accretion, (ii) cyclic, but not strictly periodical, occultation events, each lasting for a couple months, with a probable recurrence time of about two years, (iii) normal dust reddening as the star became redder when dimmer, (iv) the unusual "blueing" phenomena near the brightness minima, during which the star appeared bluer when dimmer, and (v) a noticeable polarization, from 3 to 9 percent in g', r', and i' -bands. The occultation events may be caused by dust clumps, signifying the density inhomogeneity in a young stellar disk from grain coagulation to planetesimal formation. The level of polarization was anti-correlated with the brightness in the bright state, when the dust clump backscattered stellar light. We discussed two potential hypotheses: orbiting dust clumps versus dust clumps along a spiral arm structure.

  12. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    Energy Technology Data Exchange (ETDEWEB)

    Doppmann, Greg W. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743 (United States); Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Carr, John S., E-mail: gdoppmann@keck.hawaii.edu, E-mail: najita@noao.edu, E-mail: carr@nrl.navy.mil [Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States)

    2017-02-20

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ∼10 Myr. Using high-resolution 4.7 μ m spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10{sup −20} to 10{sup −18} W m{sup −2}). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.

  13. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chang, Philip; Murray, Norman, E-mail: evelee@berkeley.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  14. A Solution to the Protostellar Accretion Problem

    OpenAIRE

    Padoan, Paolo; Kritsuk, Alexei; Norman, Michael L.; Nordlund, Ake

    2004-01-01

    Accretion rates of order 10^-8 M_\\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \\dot{M}_accr\\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. Ho...

  15. Carbon-enhanced metal-poor stars and thermohaline mixing

    NARCIS (Netherlands)

    Stancliffe, R.J.; Glebbeek, E.; Izzard, R.G.; Pols, O.R.

    2007-01-01

    One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until

  16. IUE observations of long period eclipsing binaries: a study of accretion onto non-degenerate stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1980-01-01

    It has long been thought that β Lyrae is a unique system, by virtue of its UV spectrum and its nature. The author argues that a whole class of interacting long-period binaries exists, similar to β Lyrae. According to IUE observations made in 1978-79 this group comprises: RX Cas, SX Cas, V 367 Cyg, W Cru, β Lyr, and W Ser. AR Pav is a transition case linking them with the symbiotics. The author also suggests that HD 218393 (KX And), HD 72754, and HD 51480 are their non-eclipsing counterparts. The whole group is called the W Serpentis stars. These systems are mass-transfering binaries (case B) in which the mass transfer rate is relatively high, probably on the order 10 -6 to 10 -4 solar masses/year. They display an ultraviolet continuum with a color temperature definitely higher than the one observed in the optical region. Even more characteristical is the presence of strong emission lines of N V, C IV, Si IV, Fe III, Al III, and lower ions of C and Si. The author discusses these phenomena on the assumption that they are due to accretion onto non-degenerate stars. (Auth.)

  17. Mass-accreting white dwarfs and type Ia supernovae

    Science.gov (United States)

    Wang, Bo

    2018-05-01

    Type Ia supernovae (SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs (CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H- and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model (including the WD+MS channel, the WD+RG channel and the WD+He star channel), the double-degenerate model (including the violent merger scenario) and the sub-Chandrasekhar mass model. Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.

  18. The evolution of supermassive Population III stars

    Science.gov (United States)

    Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J.

    2018-02-01

    Supermassive primordial stars forming in atomically cooled haloes at z ˜ 15-20 are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of 0.1-1 M⊙ yr-1 until the general relativistic instability triggers its collapse to a black hole at masses of ˜105 M⊙. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionizing radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates 0.001-10 M⊙ yr-1, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We compute for the first time evolutionary tracks in the mass range M > 105 M⊙. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than 0.01 M⊙ yr-1, the stars evolve as red, cool supergiants with surface temperatures below 104 K towards masses >105 M⊙. Moreover, even with the lower rates 0.001 M_{⊙} yr{^{-1}}feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars. We provide numerical tables for the surface properties of our models.

  19. VizieR Online Data Catalog: Young star groups in NGC 300 (Rodriguez+, 2016)

    Science.gov (United States)

    Rodriguez, M. J.; Baume, G.; Feinstein, C.

    2016-08-01

    Fundamental characteristics of 1147 young star groups identified in 6 ACS/WFC fields of the galaxy NGC 300. For each group: field of the ACS/WFC, equatorial coordinates, radius, number of stars (the suffix bri indicates bright stars with F555W<25, the suffix dct indicate stars belonging to the decontaminated region, the suffixes blue and red refer to blue and red stars respectively), the magnitude of the brightest star in the group, PDMF slope with its error, and galactocentric distance. (1 data file).

  20. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  1. Modeling tracers of young stellar population age in star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Leitherer, Claus, E-mail: Emily.Levesque@colorado.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-12-20

    The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxy's youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the Hβ, Hα, and Brγ recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10{sup 6} M {sub ☉} instantaneous burst and a continuous star formation rate of 1 M {sub ☉} yr{sup –1}), and two different treatments of initial rotation rate (v {sub rot} = 0.0v {sub crit} and 0.4v {sub crit}). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.

  2. IRAS 06562-0337, The Ironclad Nebula: A New Young Star Cluster

    International Nuclear Information System (INIS)

    Alves, D.R.; Hoard, D.W.; Rodgers, B.

    1998-01-01

    IRAS 06562-0337 has been the recent subject of a classic debate: is it a proto endash planetary nebula or a young stellar object? We present the first 2 μm image of IRAS 06562-0337, which reveals an extended diffuse nebula containing approximately 70 stars inside a 30 double-prime radius around a bright, possibly resolved, central object. The derived stellar luminosity function is consistent with that expected from a single coeval population, and the brightness of the nebulosity is consistent with the predicted flux of unresolved low-mass stars. The stars and nebulosity are spatially coincident with strong CO line emission. We therefore identify IRAS 06562-0337 as a new young star cluster embedded in its placental molecular cloud. The central object is likely a Herbig Be star, M ∼ 20 M circle-dot , which may be seen in reflection. We present medium-resolution high signal-to-noise ratio 1997 epoch optical spectra of the central object. Comparison with previously published spectra shows new evidence for time-variable permitted and forbidden line emission, including Si ii, Fe ii, [Fe ii], and [O i]. We suggest that the origin is a dynamic stellar wind in the extended stratified atmosphere of the massive central star in IRAS 06562-0337. copyright copyright 1998. The American Astronomical Society

  3. YOUNG STELLAR OBJECTS IN THE MASSIVE STAR-FORMING REGION W49

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Hora, J. L.; Willis, S. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Gutermuth, R. A. [University of Massachusetts, Department of Astronomy, Amherst, MA 01003 (United States); Saygac, A. T., E-mail: gsaral@cfa.harvard.edu [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2015-11-01

    We present the initial results of our investigation of the star-forming complex W49, one of the youngest and most luminous massive star-forming regions in our Galaxy. We used Spitzer/Infrared Array Camera (IRAC) data to investigate massive star formation with the primary objective of locating a representative set of protostars and the clusters of young stars that are forming around them. We present our source catalog with the mosaics from the IRAC data. In this study we used a combination of IRAC, MIPS, Two Micron All Sky Survey, and UKIRT Deep Infrared Sky Survey (UKIDSS) data to identify and classify the young stellar objects (YSOs). We identified 232 Class 0/I YSOs, 907 Class II YSOs, and 74 transition disk candidate objects using color–color and color–magnitude diagrams. In addition, to understand the evolution of star formation in W49, we analyzed the distribution of YSOs in the region to identify clusters using a minimal spanning tree method. The fraction of YSOs that belong to clusters with ≥7 members is found to be 52% for a cutoff distance of 96″, and the ratio of Class II/I objects is 2.1. We compared the W49 region to the G305 and G333 star-forming regions and concluded that W49 has the richest population, with seven subclusters of YSOs.

  4. Dynamic effects on cyclotron scattering in pulsar accretion columns

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs

  5. Detection of X-ray emission from the young low-mass star Rossiter 137B

    Science.gov (United States)

    Vilhu, O.; Linsky, J. L.

    1987-01-01

    Rst 137B, a close M-dwarf companion to the active K-star HD 36705, has been detected in a High Resolution Image in the Einstein Observatory Archive. The X-ray surface fluxes (0.2-4 keV) from both stars are close to the empirical saturation level, F(x)/F(bol) of about 0.001, defined by rapid rotators and very young stars. This supports the earlier results of the youthfulness of the system. This young couple is an excellent subject for studies of dependence of early evolution on stellar mass. Rst 137B is one of the latest spectral types and thus lowest-mass premain-sequence stars yet detected as an X-ray source.

  6. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    Science.gov (United States)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  7. Wind accretion: Theory and observations

    Science.gov (United States)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  8. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    Energy Technology Data Exchange (ETDEWEB)

    Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122, Padova (Italy)

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  9. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); McGinnis, Pauline; Alencar, Silvia H. P. [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Hillenbrand, Lynne A.; Carpenter, John [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, María [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, PO BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Bouvier, Jerome; Venuti, Laura [Université de Grenoble, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Micela, Giusi; Flaccomio, Ettore [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602–2451 (United States); Gutermuth, Rob, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2015-04-15

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall.

  10. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES

    International Nuclear Information System (INIS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean; McGinnis, Pauline; Alencar, Silvia H. P.; Hillenbrand, Lynne A.; Carpenter, John; Turner, Neal J.; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall

  11. Spectral Characteristics of Young Stars Associated with the Sh2-296 Nebula

    Science.gov (United States)

    Fernandes, Beatriz; Gregorio-Hetem, Jane

    Aiming to contribute to the understanding of star formation and evolution in the Canis Major (CMa R1) Molecular Clouds Complex, we analyze the spectral characteristics of a population of young stars associated with the arc-shaped nebula Sh2-296. Our XMM/Newton observations detected 109 X-ray sources in the region and optical spectroscopy was performed with Gemini telescope for 85 optical counterparts. We identified and characterized 51 objects that present features typically found in young objects, such as Hα emission and strong absorption on the Li I line.

  12. SIMULATING THE FORMATION OF MASSIVE PROTOSTARS. I. RADIATIVE FEEDBACK AND ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany); Peters, Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Banerjee, Robi, E-mail: klassm@mcmaster.ca [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2016-05-20

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M {sub ⊙}. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M {sub ⊙} simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M {sub ⊙} simulation shows a star with a mass of 5.48 M {sub ⊙} and a disk of mass 3.3 M {sub ⊙}, while our 100 M {sub ⊙} simulation forms a 28.8 M {sub ⊙} mass star with a 15.8 M {sub ⊙} disk over the course of 41.6 kyr, and our 200 M {sub ⊙} simulation forms a 43.7 M {sub ⊙} star with an 18 M {sub ⊙} disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  13. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    International Nuclear Information System (INIS)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.; Carey, Sean; Baglin, Annie; Micela, Giuseppina; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Terebey, Susan

    2014-01-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.

  14. DYNAMICAL CONSTRAINTS ON THE ORIGIN OF THE YOUNG B-STARS IN THE GALACTIC CENTER

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Gualandris, Alessia

    2010-01-01

    Regular star formation is thought to be inhibited close to the massive black hole (MBH) in the Galactic center. Nevertheless, tens of young main-sequence B-stars have been observed in an isotropic distribution close to it. These stars are observed to have an apparently continuous distribution from very close to the MBH (<0.01 pc) and up to at least ∼0.5 pc, suggesting a common origin. Various models have been suggested for the formation of the B-stars closest to the MBH (<0.05 pc; the S-stars), typically involving the migration of these stars from their original birthplace to their currently observed position. Here, we explore the orbital phase space distribution of the B-stars throughout the central parsec expected from the various suggested models for the origin of the B-stars. We find that most of these models have difficulties in explaining, by themselves, both the population of the S-stars (<0.05 pc) and the population of the young B-stars further away (up to 0.5 pc). Most models grossly overpredict the number of B-stars up to 0.5 pc, given the observed number of S-stars. Such models include the intermediate-mass black hole assisted cluster inspiral scenario, Kozai-like perturbations by two disks, spiral density waves migration in a gaseous disk, and some of the eccentric disk instability models. We focus on one of the other models, the massive perturbers induced binary disruption, which is consistent with both the S-stars and the extended population of B-stars further away. For this model, we use analytical arguments and N-body simulations to provide further observational predictions. These could be compared with future observations to further support this model, constrain it, or refute it. These predictions include the radial distribution of the young B-stars, their eccentricity distribution, and its dependence on distance from the MBH (higher eccentricities at larger distances from the MBH), as well as less specific expectations regarding their mass

  15. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  16. Clumpy wind accretion in Supergiant X-ray Binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  17. Accretion of dark matter by stars.

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  18. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-01-01

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10 3–4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time

  19. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duane M. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Johnston, Kathryn V. [Department of Astronomy, Columbia University, New York City, NY 10027 (United States); Sen, Bodhisattva; Jessop, Will, E-mail: duane@shao.ac.cn [Department of Statistics, Columbia University, New York City, NY 10027 (United States)

    2015-03-20

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  20. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Science.gov (United States)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  1. BAYESIAN ANALYSIS TO IDENTIFY NEW STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS

    International Nuclear Information System (INIS)

    Malo, Lison; Doyon, René; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan; Baron, Frédérique; Riedel, Adric

    2013-01-01

    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the β Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as Hα and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in β Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for β Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 Å equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the β Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.

  2. X-Ray Outburst from Young Star in McNeil's Nebula

    Science.gov (United States)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  3. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Kesseli, Aurora Y. [Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Petkova, Maya A.; Wood, Kenneth; Gregory, Scott G. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9AD (United Kingdom); Whitney, Barbara A. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States); Hillenbrand, L. A. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, J. R.; Morales-Calderon, M.; Rebull, L. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Alencar, S. H. P., E-mail: aurorak@bu.com [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil)

    2016-09-01

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.

  4. KEY ISSUES REVIEW: Insights from simulations of star formation

    Science.gov (United States)

    Larson, Richard B.

    2007-03-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)

  5. On the model of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungelson, L.R.

    1982-01-01

    The authors discuss conditions necessary for appearance and discovery of the symbiotic star phenomenon within the model of a binary consisting of a red (super)giant 3 solar masses not filling the Roche lobe and of an accreting hot degenerate CO-dwarf 0.8 solar masses. Within this model ''classical'' symbiotic stars may exist only within a narrow region of mass accretion rates and separations of components: 10 -7 approximately -7 solar masses/y and 3x10 13 approximately 14 cm. The evolutionary status of symbiotic stars and related objects and the mechanisms of their variability are discussed. (Auth.)

  6. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  7. Focused Wind Mass Accretion in Mira AB

    Science.gov (United States)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  8. Final stages of evolution of cold, mass-accreting white dwarfs

    International Nuclear Information System (INIS)

    Hernanz, M.; Isern, J.; Canal, R.; Labay, J.; Mochkovitch, R.

    1988-01-01

    The evolution of solid C + O white dwarf models upon mass accretion is calculated up to the point of either explosive thermonuclear ignition or gravitational collapse. It is shown that both explosions and quiet collapses to a neutron star are possible for each of two different phase diagrams for high-density C + O mixtures. The ranges of initial masses and temperatures and of accretion rates leading to the different outcomes are determined. Problems concerning the chemical composition of the accreted matter and the effects of tidal dissipation are discussed. 68 references

  9. A statistical spectropolarimetric study of Herbig Ae/Be stars

    Science.gov (United States)

    Ababakr, K. M.; Oudmaijer, R. D.; Vink, J. S.

    2017-11-01

    We present H α linear spectropolarimetry of a large sample of Herbig Ae/Be stars. Together with newly obtained data for 17 objects, the sample contains 56 objects, the largest such sample to date. A change in linear polarization across the H α line is detected in 42 (75 per cent) objects, which confirms the previous finding that the circumstellar environment around these stars on small spatial scales has an asymmetric structure, which is typically identified with a disc. A second outcome of this research is that we confirm that Herbig Ae stars are similar to T Tauri stars in displaying a line polarization effect, while depolarization is more common among Herbig Be stars. This finding had been suggested previously to indicate that Herbig Ae stars form in the same manner than T Tauri stars through magnetospheric accretion. It appears that the transition between these two differing polarization line effects occurs around the B7-B8 spectral type. This would in turn not only suggest that Herbig Ae stars accrete in a similar fashion as lower mass stars, but also that this accretion mechanism switches to a different type of accretion for Herbig Be stars. We report that the magnitude of the line effect caused by electron scattering close to the stars does not exceed 2 per cent. Only a very weak correlation is found between the magnitude of the line effect and the spectral type or the strength of the H α line. This indicates that the detection of a line effect only relies on the geometry of the line-forming region and the geometry of the scattering electrons.

  10. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  11. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  12. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  13. Burst Oscillations: A New Spin on Neutron Stars

    Science.gov (United States)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  14. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    Science.gov (United States)

    2003-06-01

    Formation of Exceedingly Luminous and Hot Stars in Young Stellar Cluster Observed Directly Summary Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses. PR Photo 16a/03: Stellar cluster and star-forming region NGC 3603. PR Photo 16b/03: Region near very young, massive stars IRS 9A-C in NGC 3603 (8 bands from J to Q). How do massive stars form? This question is easy to pose, but so far very difficult to answer. In fact, the processes

  15. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Anglada-Escude, Guillem [Institut fuer Astrophysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Liu, Michael C.; Bowler, Brendan P. [Institute for Astronomy, University of Hawaii at Manoa 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Weinberger, Alycia J.; Boss, Alan P. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Reid, I. Neill [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Tamura, Motohide, E-mail: shkolnik@lowell.edu [National Astronomical Observatory of Japan, Tokyo (Japan)

    2012-10-10

    We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

  16. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  17. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  18. COMPARING THE ACCRETION DISK EVOLUTION OF BLACK HOLE AND NEUTRON STAR X-RAY BINARIES FROM LOW TO SUPER-EDDINGTON LUMINOSITY

    International Nuclear Information System (INIS)

    Weng Shanshan; Zhang Shuangnan

    2011-01-01

    Low-mass X-ray binaries (LMXBs) are systems in which a low-mass companion transfers mass via Roche-lobe overflow onto a black hole (BH) or a weakly magnetized neutron star (NS). It is believed that both the solid surface and the magnetic field of an NS can affect the accretion flow and show some observable effects. Using the disk emission dominant data, we compare the disk evolution of the two types of systems from low luminosity to super-Eddington luminosity. As the luminosity decreases the disk in the NS LMXB 4U1608-522 begins to leave the innermost stable circular orbit (ISCO) at much higher luminosity (∼0.1 L Edd ), compared with BH LMXBs at much lower luminosity (∼0.03 L Edd ), due to the interaction between the NS magnetosphere and accretion flow. However, as the luminosity increases above a critical luminosity, the disks in BH and NS LMXBs trace the same evolutionary pattern, because the magnetosphere is restricted inside ISCO, and then both the NS surface emission and (dipole) magnetic field do not significantly affect the secular evolution of the accretion disk, which is driven by the increased radiation pressure in the inner region. We further suggest that the NS surface emission provides additional information about the accretion disk not available in BH systems. Through the observed NS surface emission, we argue that the disk thickness H/R is less than 0.3-0.4, and that the significant outflow from the inner disk edge exists at a luminosity close to Eddington luminosity.

  19. VARIATIONS OF THE 10 μm SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    International Nuclear Information System (INIS)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F.

    2009-01-01

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 μm silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.

  20. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    Science.gov (United States)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  1. Observations of Hα-emission stars in the young cluster NGC 2264

    International Nuclear Information System (INIS)

    Rydgren, A.E.

    1979-01-01

    UBVRI photometry is given for a sample of 25 late-type Hα-emission stars in the young cluster NGC 2264. The stars are in the magnitude range 12< or =V<16. Some but not all appear to be T Tauri stars. The color--color diagrams support the view that the deviations from normal photospheric colors (due to ''spectral veiling'' and line emission) decrease with increasing wavelength between the U and I filters. In the (V, V-R) diagram, the Hα-emission stars lie in a well-defined pre-main-sequence band. Within this sample, there is a trend toward stronger line emission and spectral veiling with later spectral type. All of the likely legitimate T Tauri stars have inferred spectral types later than about K3. The question of cluster membership for stars in the cluster field with very small proper motions is considered

  2. DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Oskinova, L. M.; Hainich, R.; Sun, W.; Chen, Y.; Evans, C. J.; Hénault-Brunet, V.; Chu, Y.-H.; Gruendl, R. A.; Gallagher, J. S. III; Guerrero, M. A.; Güdel, M.; Silich, S.; Nazé, Y.; Reyes-Iturbide, J.

    2013-01-01

    We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.

  3. Stochastic spin evolution of neutron stars

    OpenAIRE

    Popov, S. B.; Prokhorov, M. E.; Khoperskov, A. V.; Lipunov, V. M.

    2001-01-01

    In this paper we present calculations of period distribution for old accreting isolated neutron stars (INSs). At the age about a few billions years low velocity INSs come to the stage of accretion. At that stage their period evolution is governed by magnetic breaking and accreted angular momentum. Due to turbulence of the interstellar medium (ISM) accreted momentum can both accelerate and decelerate rotation of an INS and spin evolution has chaotic character. Calculations show that for consta...

  4. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    International Nuclear Information System (INIS)

    Appleton, P. N.; Bitsakis, T.; Alatalo, K.; Mundell, C.; Lacy, M.; Armus, L.; Charmandaris, V.; Duc, P.-A.; Lisenfeld, U.; Ogle, P.

    2014-01-01

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 10 7 M ☉ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H 2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M ☉ yr –1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation

  5. X-ray observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1981-11-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone.

  6. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Adamo, A.; Messa, M. [Dept. of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Kim, H. [Gemini Observatory, La Serena (Chile); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Dale, D. A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Durham University, Durham (United Kingdom); Grebel, E. K.; Shabani, F. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Johnson, K. E. [Dept. of Astronomy, University of Virginia, Charlottesville, VA (United States); Kahre, L. [Dept. of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Pellerin, A. [Dept. of Physics and Astronomy, State University of New York at Geneseo, Geneseo NY (United States); Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, D., E-mail: kgrasha@astro.umass.edu [Dept. of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States)

    2017-05-10

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  7. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Science.gov (United States)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  8. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    International Nuclear Information System (INIS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Messa, M.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Shabani, F.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Pellerin, A.; Ryon, J. E.; Ubeda, L.; Smith, L. J.; Thilker, D.

    2017-01-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  9. IUE observations of new A star candidate proto-planetary systems

    Science.gov (United States)

    Grady, Carol A.

    1994-01-01

    As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.

  10. A search for lithium-rich giant stars

    International Nuclear Information System (INIS)

    Brown, J.A.; Sneden, C.; Lambert, D.L.; Dutchover, E. Jr.

    1989-01-01

    Lithium abundances or upper limits have been determined for 644 bright G-K giant stars selected from the DDO photometric catalog. Two of these giants possess surface lithium abundances approaching the cosmic value of the interstellar medium and young main-sequence stars, and eight more giants have Li contents far in excess of standard predictions. At least some of these Li-rich giants are shown to be evolved to the stage of having convectively mixed envelopes, either from the direct evidence of low surface carbon isotope ratios, or from the indirect evidence of their H-R diagram positions. Suggestions are given for the unique conditions that might have allowed these stars to produce or accrete new lithium for their surface layers, or simply to preserve from destruction their initial lithium contents. The lithium abundance of the remaining stars demonstrates that giants only very rarely meet the expectations of standard first dredge-up theories; the average extra Li destruction required is about 1.5 dex. The evolutionary states of these giants and their average masses are discussed briefly, and the Li distribution of the giants is compared to predictions of Galactic chemical evolution. 110 refs

  11. Symbiotic star UV emission and theoretical models

    International Nuclear Information System (INIS)

    Kafatos, M.

    1982-01-01

    Observations of symbiotic stars in the far UV have provided important information on the nature of these objects. The canonical spectrum of a symbiotic star, e.g. RW Hya, Z And, AG Peg, is dominated by strong allowed and semiforbidden lines of a variety of at least twice ionized elements. Weaker emission from neutral and singly ionized species is also present. A continuum may or may not be present in the 1200 - 2000 A range but is generally present in the range 2000 - 3200 A range. The suspected hot subdwarf continuum is seen in some cases in the range 1200 - 2000 A (RW Hya, AG Peg, SY Mus). The presence of an accretion disk is difficult to demonstrate and to this date the best candidate for accretion to a main sequence star remains CI Cyg. A number of equations have been derived by the author that can yield the accretion parameters from the observable quantities. Boundary layer temperatures approximately 10 5 K and accretion rates approximately > 10 -5 solar masses/yr are required for accreting main sequence companions. To this date, though, most of the symbiotics may only require the presence of a approximately 10 5 K hot subdwarf. (Auth.)

  12. PHOTO-REVERBERATION MAPPING OF A PROTOPLANETARY ACCRETION DISK AROUND A T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan Y. A.; Plavchan, Peter; Ciardi, David [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Rieke, George H. [Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Güth, Tina [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl., Socorro, NM 87801 (United States); Stauffer, John; Carey, Sean; Rebull, Luisa M. [Infrared Science Archive and Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, MC 314-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Covey, Kevin [Department of Physics and Astronomy, MS-9164, Western Washington University, 516 High St., Bellingham, WA 98225 (United States); Duran-Rojas, Maria C. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, 22800, Ensenada, Baja California, México (Mexico); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Morales-Calderón, María, E-mail: hyameng@lpl.arizona.edu [Centro de Astrobiología, Departamento de Astrofísica, INTA-CSIC, P.O. Box 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); and others

    2016-05-20

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μ m) and K (2.2 μ m) bands were synchronized while the 4.5 μ m emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ∼1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  13. Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star

    Science.gov (United States)

    Meng, Huan Y. A.; Plavchan, Peter; Rieke, George H.; Cody, Ann Marie; Güth, Tina; Stauffer, John; Covey, Kevin; Carey, Sean; Ciardi, David; Duran-Rojas, Maria C.; Gutermuth, Robert A.; Morales-Calderón, María; Rebull, Luisa M.; Watson, Alan M.

    2016-05-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μm) and K (2.2 μm) bands were synchronized while the 4.5 μm emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ˜1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  14. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  15. Star-formation history of very young clusters

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1985-01-01

    The popular idea that star formation has proceeded sequentially from lowest to highest mass members in open clusters is examined critically. For extremely young clusters, such as NGC 2264 and NGC 6530, this sequential hypothesis is a consequence of the assignment of pre-main-sequence contraction ages to all member stars. However, such ages yield a formation history which is implausible from a physical point of view, since the critical time for the onset of formation at any stellar mass is equal to the pre-main-sequence contraction time for that mass. Moreover, these ages are in conflict with the strong observational evidence that a substantial fraction of cluster members have already reached the main sequence. After reconsideration of the probable main-sequence members, the stellar ages in NGC 2264 and NGC 6530 are consistent with a variety of formation histories, and, in particular, with the view that all stellar masses form in approximately the same interval of time within a given cluster, i.e., that there is no mass-age correlation. A notion closely related to the sequential hypothesis, that the total star-formation rate increases exponentially with time, is subject to the same criticism

  16. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  17. X-ray observations of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1981-01-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone. (author)

  18. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  19. Study of magnetized accretion flow with cooling processes

    Indian Academy of Sciences (India)

    Kuldeep Singh

    2018-02-09

    Feb 9, 2018 ... 2University of Delhi, South Campus, Delhi 110 021, India. ∗ ... Abstract. We have studied shock in magnetized accretion flow/funnel flow in case of neutron star with .... where Ap is the area of cross-section of the flux tube.

  20. Young Star May Be Belching Spheres of Gas, Astronomers Say

    Science.gov (United States)

    2001-05-01

    A young star more than 2,000 light-years away in the constellation Cepheus may be belching out spheres of gas, say astronomers who observed it with the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope. Not only is the star ejecting spheres of gas, the researchers say, but it also may be ejecting them repeatedly, phenomena not predicted by current theories of how young stars shed matter. Cepheus A star-forming region with blowups of detail In order to remain stable while accumulating matter, young stars have to throw off some of the infalling material to avoid "spinning up" so fast they would break apart, according to current theories. Infalling matter forms a thin spinning disk around the core of the new star, and material is ejected in twin "jets" perpendicular to the plane of the disk. "Twin jets have been seen emerging from many young stars, so we are quite surprised to see evidence that this object may be ejecting not jets, but spheres of gas," said Paul T.P. Ho, an astronomer at the Harvard-Smithsonian Center for Astrophysics. The research is reported in the May 17 edition of the scientific journal Nature. The astronomers observed a complex star-forming region in Cepheus and found an arc of water molecules that act like giant celestial amplifiers to boost the strength of radio signals at a frequency of 22 GHz. Such radio-wave amplifiers, called masers, show up as bright spots readily observed with radio telescopes. "With the great ability of the VLBA to show fine detail, we could track the motions of these maser spots over a period of weeks, and saw that this arc of water molecules is expanding at nearly 20,000 miles per hour," said Ho. "This was possible because we could detect detail equivalent to seeing Lincoln's nose on a penny in Los Angeles from the distance of New York," Ho added. "These observations pushed the tremendous capabilities of the VLBA and of modern computing power to their limits. This is an extremely complex

  1. HIGH-MASS STAR FORMATION TOWARD SOUTHERN INFRARED BUBBLE S10

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swagat Ranjan; Tej, Anandmayee; Vig, Sarita [Indian Institute of Space Science and Technology, Trivandrum 695547 (India); Ghosh, Swarna K.; Ishwara Chandra, C. H., E-mail: swagat.12@iist.ac.in [National Centre For Radio Astrophysics, Pune 411007 (India)

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2  M {sub ⊙}, lies ∼7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μ m image. The masses and linear diameter of these range between ∼300–1600  M {sub ⊙} and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  2. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Esquej, P. [Centro de Astrobiología, INTA-CSIC, Villafranca del Castillo, E-28850, Madrid (Spain); Alonso-Herrero, A.; Hernán-Caballero, A. [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M. [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea, E-38205, La Laguna (Spain); Hönig, S. F. [UCSB Department of Physics, Broida Hall 2015H, Santa Barbara, CA (United States); Roche, P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku, HI 96720 (United States); Díaz-Santos, T. [Spitzer Science Center, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Levenson, N. A. [Gemini Observatory, Casilla 603, La Serena (Chile); Aretxaga, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla (Mexico); Packham, C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  3. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    Science.gov (United States)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  4. NuSTAR Observation of the Symbiotic System GX 1+4

    Science.gov (United States)

    Wolff, Michael Thomas; Becker, Peter A.; Enoto, Teruaki; Pottschmidt, Katja; Wood, Kent

    2017-08-01

    We report on a NuSTAR observation of the symbiotic binary system GX 1+4. GX 1+4 is one of a small number of systems with a red giant mass donor and a magnetic neutron star in orbit around each other. The accreting pulsar in GX 1+4 has a spin period of ~150 seconds with epochs of both spin-up and spin-down. The orbital period that has not been determined. Magnetic accretion theory in such systems suggests that the neutron star has a magnetic field in the range 1013-1014 Gauss although this is not settled because no cyclotron absorption feature has been observed in the X-ray spectrum. The NuSTAR spectrum shows broad Fe-line emission near ~6.5 keV and also shows a broad power law shape detected up to ~60 keV. We analyze and discuss the NuSTAR X-ray data with particular attention to the question of what can the spectrum tell us about the structure of the accretion flow onto the neutron star and the magnetic field strength.

  5. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    Science.gov (United States)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  6. Accretion onto hot white dwarfs in relation to symbiotic novae

    International Nuclear Information System (INIS)

    Livio, M.; Prialnik, D.; Regev, O.

    1989-01-01

    Numerical calculations are used to study the hydrodynamic evolution of a hot white dwarf with 1 solar mass accreting hydrogen-rich matter at rates between 10 to the -8th and 10 to the -6th solar masses/yr. It is found that for accretion at a rate of about 10 to the -8th solar masses/yr, nova-type outbursts of long duration occur at intervals of about 1500 yr. About half of the accreted envelope is ejected during these outbursts. At a rate of about 10 to the -7th solar masses/yr, the star alternates between comparable periods at a high plateau luminosity and giant dimensions and periods at a low luminosity and white dwarf dimension. At 10 to the -6th solar masses/yr, equilibrium is achieved with a typical red giant luminosity supported by steady hydrogen burning. It is concluded that symbiotic novae are more likely to occur in detached systems involving wind accretors. Thus, the contribution of symbiotic stars to the frequency of type I supernovae is severely constrained. 39 refs

  7. Destruction of a Magnetized Star

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    What happens when a magnetized star is torn apart by the tidal forces of a supermassive black hole, in a violent process known as a tidal disruption event? Two scientists have broken new ground by simulating the disruption of stars with magnetic fields for the first time.The magnetic field configuration during a simulation of the partial disruption of a star. Top left: pre-disruption star. Bottom left: matter begins to re-accrete onto the surviving core after the partial disruption. Right: vortices form in the core as high-angular-momentum debris continues to accrete, winding up and amplifying the field. [Adapted from Guillochon McCourt 2017]What About Magnetic Fields?Magnetic fields are expected to exist in the majority of stars. Though these fields dont dominate the energy budget of a star the magnetic pressure is a million times weaker than the gas pressure in the Suns interior, for example they are the drivers of interesting activity, like the prominences and flares of our Sun.Given this, we can wonder what role stars magnetic fields might play when the stars are torn apart in tidal disruption events. Do the fields change what we observe? Are they dispersed during the disruption, or can they be amplified? Might they even be responsible for launching jets of matter from the black hole after the disruption?Star vs. Black HoleIn a recent study, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Michael McCourt (Hubble Fellow at UC Santa Barbara) have tackled these questions by performing the first simulations of tidal disruptions of stars that include magnetic fields.In their simulations, Guillochon and McCourt evolve a solar-mass star that passes close to a million-solar-mass black hole. Their simulations explore different magnetic field configurations for the star, and they consider both what happens when the star barely grazes the black hole and is only partially disrupted, as well as what happens when the black hole tears the star apart

  8. PS1-10jh CONTINUES TO FOLLOW THE FALLBACK ACCRETION RATE OF A TIDALLY DISRUPTED STAR

    Energy Technology Data Exchange (ETDEWEB)

    Gezari, S. [Department of Astronomy, University of Maryland, Stadium Drive, College Park, MD 20742-2421 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University Athens, OH 45701 (United States); Lawrence, A. [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jones, D. O. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Berger, E.; Challis, P. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Narayan, G., E-mail: suvi@astro.umd.edu [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-12-10

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t{sup −5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  9. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    DEFF Research Database (Denmark)

    Zhou, G.; Rappaport, S.; Nelson, L.

    2018-01-01

    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass in a 72-day orbit around...... an A0 accreting star of mass . The disk around the accreting star occults the donor star once every orbit, inducing 19-day long, 7% deep eclipses identified by K2 and subsequently found in pre-discovery All-Sky Automated Survey and All Sky Automated Survey for Supernovae observations. We coordinated...

  10. Accretion disc boundary layers - geometrically and optically thin case

    International Nuclear Information System (INIS)

    Regev, Oded; Hougerat, A.A.

    1988-01-01

    The method of matched asymptotic expansions is applied to an optically and geometrically thin boundary layer between an accretion disc and the accreting star. Analytical solutions are presented for a particular viscosity prescription in the boundary layer. For a typical example we find that the disc closely resembles standard steady-disc theory. It is identical to it everywhere save a narrow boundary layer, where the temperature increases rapidly inward (by an order of magnitude), the angular velocity achieves maximum and decreases to its surface value and other variables also undergo rapid changes. This and previous work can now be used to calculate the emission from accretion discs including the boundary layers for a wide range of parameters. (author)

  11. Diffuse γ-ray emission in the vicinity of young star cluster Westerlund 2

    Science.gov (United States)

    Yang, Rui-zhi; de Oña Wilhelmi, Emma; Aharonian, Felix

    2018-04-01

    We report the results of our analysis of the publicly available data obtained by the Large Area Telescope (LAT) on board the Fermi satellite towards the direction of the young massive star cluster Westerlund 2. We found significant extended γ-ray emission in the vicinity of Westerlund 2 with a hard power-law energy spectrum extending from 1 to 250 GeV with a photon index of 2.0 ± 0.1. We argue that amongst several alternatives, the luminous stars in Westerlund 2 are likely sites of acceleration of particles responsible for the diffuse γ-ray emission of the surrounding interstellar medium. In particular, the young star cluster Westerlund 2 can provide sufficient non-thermal energy to account for the γ-ray emission. In this scenario, since the γ-ray production region is significantly larger than the area occupied by the star cluster, we conclude that the γ-ray production is caused by hadronic interactions of accelerated protons and nuclei with the ambient gas. In that case, the total energy budget in relativistic particles is estimated of the order of 1050 erg.

  12. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    Science.gov (United States)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-04-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  13. Accretion discs around neutron stars

    International Nuclear Information System (INIS)

    Pringle, J.E.

    1982-01-01

    If the central object in the disc is a neutron star, then we do not need the disc itself to produce the X-rays. In other words, the disc structure itself is not important as long as it plays the role of depositing matter on the neutron star at a sufficient rate to produce the X-ray flux. Similarly, in the outer disc regions, the main disc luminosity comes from absorption and reradiation of X-ray photons and not from the intrinsic, viscously-produced, local energy production rate. These two points indicate why in the compact binary X-ray sources confrontation between disc theory and observations is not generally practicable. For this reason I will divide my talk into two parts: one on observational discs in which I discuss what observational evidence there is for discs in the compact X-ray sources and what the evidence can tell the theorist about disc behaviour, and the other on theoretical discs where I consider in what ways theoretical arguments can put limits or cast doubt on some of the empirical models put forward to explain the observations. (orig.)

  14. Magnetohydrodynamic Simulations of Black Hole Accretion

    Science.gov (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  15. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    International Nuclear Information System (INIS)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernández, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J.

    2012-01-01

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  16. Angular momentum transfer in steady disk accretion

    International Nuclear Information System (INIS)

    Gorbatskij, V.G.

    1977-01-01

    The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one

  17. Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs

    Science.gov (United States)

    Curran, R. L.; Argiroffi, C.; Sacco, G. G.; Orlando, S.; Peres, G.; Reale, F.; Maggio, A.

    2011-02-01

    Context. High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in classical T Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consistently lower than those derived from UV/optical/NIR studies. Aims: We aim to test the hypothesis that the high density soft X-ray emission originates from accretion by analysing, in a homogeneous manner, optical accretion indicators for an X-ray selected sample of CTTSs. Methods: We analyse optical spectra of the X-ray selected sample of CTTSs and calculate the accretion rates based on measuring the Hα, Hβ, Hγ, He ii 4686 Å, He i 5016 Å, He i 5876 Å, O i 6300 Å, and He i 6678 Å equivalent widths. In addition, we also calculate the accretion rates based on the full width at 10% maximum of the Hα line. The different optical tracers of accretion are compared and discussed. The derived accretion rates are then compared to the accretion rates derived from the X-ray spectroscopy. Results: We find that, for each CTTS in our sample, the different optical tracers predict mass-accretion rates that agree within the errors, albeit with a spread of ≈ 1 order of magnitude. Typically, mass-accretion rates derived from Hα and He i 5876 Å are larger than those derived from Hβ, Hγ, and O i. In addition, the Hα full width at 10%, whilst a good indicator of accretion, may not accurately measure the mass-accretion rate. When the optical mass-accretion rates are compared to the X-ray derived mass-accretion rates, we find that: a) the latter are always lower (but by varying amounts); b) the latter range within a factor of ≈ 2 around 2 × 10-10 M⊙ yr-1, despite the former spanning a range of ≈ 3 orders of magnitude. We suggest that the systematic underestimate of the X-ray derived mass-accretion rates could depend on the density distribution inside the accretion streams, where the densest part of the stream is

  18. POISSON project. III. Investigating the evolution of the mass accretion rate

    Science.gov (United States)

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  19. NuSTAR and XMM-Newton observations of 1e1743.1-2843: indications of a neutron star LMXB nature of the compact object

    DEFF Research Database (Denmark)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya

    2016-01-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X......-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum...

  20. Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment

    Science.gov (United States)

    Matrozis, E.; Stancliffe, R. J.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an asymptotic giant branch (AGB) companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to reflect the nucleosynthesis output of the first AGB stars. We have previously shown that, for this to be the case, some physical mechanism must counter atomic diffusion (gravitational settling and radiative levitation) in these nearly fully radiative stars, which otherwise leads to surface abundance anomalies clearly inconsistent with observations. Here we take into account angular momentum accretion by these stars. We compute in detail the evolution of typical CEMP-s stars from the zero-age main sequence, through the mass accretion, and up the red giant branch for a wide range of specific angular momentum ja of the accreted material, corresponding to surface rotation velocities, vrot, between about 0.3 and 300 kms-1. We find that only for ja ≳ 1017 cm2s-1 (vrot > 20 kms-1, depending on mass accreted) angular momentum accretion directly causes chemical dilution of the accreted material. This could nevertheless be relevant to CEMP-s stars, which are observed to rotate more slowly, if they undergo continuous angular momentum loss akin to solar-like stars. In models with rotation velocities characteristic of CEMP-s stars, rotational mixing primarily serves to inhibit atomic diffusion, such that the maximal surface abundance variations (with respect to the composition of the accreted material) prior to first dredge-up remain within about 0.4 dex without thermohaline mixing or about 0.5-1.5 dex with thermohaline mixing. Even in models with the lowest rotation velocities (vrot ≲ 1 kms-1), rotational mixing is able to severely inhibit atomic diffusion, compared to non-rotating models. We thus conclude that it offers a natural solution to the problem posed by atomic diffusion and cannot be

  1. Comparative study of dust and young stars in three small galaxies

    International Nuclear Information System (INIS)

    Price, J.S.

    1984-01-01

    A comparative study is presented of dust and young stars in the central regions of the three small galaxies NGC 205, NGC 185, and NGC 3077 in the U, B, V, and K filters, and at six additional optical wavelengths. All three program galaxies have been successfully modeled with the empirical models of Oemler (1976); NGC 205 and NGC 3077 were also modeled with unsharp mask models. Subtracting model galaxies from the data enabled the authors to isolate clusters of young stars and dust clouds in the central regions of each galaxy. A comparison of the colors of the young clusters in NGC 3077 and those in NGC 205 reveals that the colors of the clusters in these two small galaxies are different. In NGC 185, diffuse emission after subtracting an Oemler model was discovered. NGC 205 also showed this remnant emission, with very similar colors to those of the remnant in NGC 185, but NGC 3077 did not. The colors of this diffuse remnant emission in NGC 205 and NGC 185 are interpreted as being due to previous episodes of star formation in the two dwarf ellipticals. A comparison of the author's data with that of Caldwell (1983) on a sample of 33 dwarf elliptical galaxies in Virgo indicates that star formation in dwarf elliptical galaxies is a common phenomenon. The study of dust in NGC 185 and NGC 205 at optical wavelengths shows that the properties of dust in NGC 205 are very similar to those of galactic dust, while the dust in NGC 185 is distinctly different. The optical and 2.2 micron centers of NGC 3077 are found to be different. From comparison of the three galaxies studied here, the author concludes that it is unlikely that NGC 205 and NGC 185 tidally interacted with M31

  2. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  3. Nuclear fusion and carbon flashes on neutron stars

    Science.gov (United States)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  4. AN ACCOUNTING OF THE DUST-OBSCURED STAR FORMATION AND ACCRETION HISTORIES OVER THE LAST ∼11 BILLION YEARS

    International Nuclear Information System (INIS)

    Murphy, E. J.; Chary, R.-R.; Dickinson, M.; Pope, A.; Frayer, D. T.; Lin, L.

    2011-01-01

    We report on an accounting of the star-formation- and accretion-driven energetics of 24 μm-detected sources in the Great Observatories Origins Deep Survey-North field. For sources having infrared (IR; 8-1000 μm) luminosities ∼>3 x 10 12 L sun when derived by fitting local spectral energy distributions (SEDs) to 24 μm photometry alone, we find these IR luminosity estimates to be a factor of ∼4 times larger than those estimated when the SED fitting includes additional 16 and 70 μm data (and in some cases mid-IR spectroscopy and 850 μm data). This discrepancy arises from the fact that high-luminosity sources at z >> 0 appear to have far- to mid-IR ratios, as well as aromatic feature equivalent widths, typical of lower luminosity galaxies in the local universe. Using our improved estimates for IR luminosity and active galactic nucleus (AGN) contributions, we investigate the evolution of the IR luminosity density versus redshift arising from star formation and AGN processes alone. We find that, within the uncertainties, the total star-formation-driven IR luminosity density is constant between 1.15 ∼ 2. AGNs appear to account for ∼ 11 L sun ≤ L IR 12 L sun ) appear to dominate the star formation rate density along with normal star-forming galaxies (L IR 11 L sun ) between 0.6 ∼ 2, the contribution from ultraluminous infrared galaxies (L IR ≥ 10 12 L sun ) becomes comparable with that of LIRGs. Using our improved IR luminosity estimates, we find existing calibrations for UV extinction corrections based on measurements of the UV spectral slope typically overcorrect UV luminosities by a factor of ∼2, on average, for our sample of 24 μm-selected sources; accordingly we have derived a new UV extinction correction more appropriate for our sample.

  5. DASCH ON KU Cyg: A ∼ 5 YEAR DUST ACCRETION EVENT IN ∼ 1900

    International Nuclear Information System (INIS)

    Tang Sumin; Grindlay, Jonathan; Los, Edward; Servillat, Mathieu

    2011-01-01

    KU Cyg is an eclipsing binary consisting of an F-type star accreting through a large accretion disk from a K5III red giant. Here we present the discovery of a 5 year dip around 1900 found from its 100 year DASCH light curve. It showed a ∼0.5 mag slow fading from 1899 to 1903 and brightened back around 1904 on a relatively shorter timescale. The light curve shape of the 1899-1904 fading-brightening event differs from the dust production and dispersion process observed in R Coronae Borealis stars, which usually has a faster fading and slower recovery, and for KU Cyg is probably related to the accretion disk surrounding the F star. The slow fading in KU Cyg is probably caused by increases in dust extinction in the disk, and the subsequent quick brightening may be due to the evaporation of dust transported inward through the disk. The extinction excess which caused the fading may arise from increased mass transfer rate in the system or from dust clump ejections from the K giant.

  6. Spectral Evidence for an Inner Carbon-rich Circumstellar Belt in the Young HD 36546 A-star System

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Sitko, M. L. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 and Space Science Institute, Boulder, CO 80301 (United States); Russell, R. W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Marengo, M. [Department of Physics and Astronomy, 12 Physics Hall, Iowa State University, Ames, IA 50010 (United States); Currie, T. [Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Hilo, HI 96720 (United States); Melis, C. [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093-0424 (United States); Mittal, T. [Department of Earth and Planetary Sciences, McCone Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); Song, I., E-mail: carey.lisse@jhuapl.edu, E-mail: ron.vervack@jhuapl.edu, E-mail: sitkoml@ucmail.uc.edu, E-mail: ray.russell@aero.org, E-mail: mmarengo@iastate.edu, E-mail: currie@naoj.org, E-mail: cmelis@ucsd.edu, E-mail: tmittal2@berkeley.edu, E-mail: song@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451 (United States)

    2017-05-10

    Using the NASA/IRTF SpeX and BASS spectrometers we have obtained 0.7–13 μ m observations of the newly imaged 3–10 Myr old HD 36546 disk system. The SpeX spectrum is most consistent with the photospheric emission expected from an L {sub *} ∼ 20 L {sub ⊙}, solar abundance A1.5V star with little to no extinction, and excess emission from circumstellar dust detectable beyond 4.5 μ m. Non-detections of CO emission lines and accretion signatures point to the gas-poor circumstellar environment of a very old transition disk. Combining the SpeX + BASS spectra with archival WISE / AKARI / IRAS / Herschel photometry, we find an outer cold dust belt at ∼135 K and 20–40 au from the primary, likely coincident with the disk imaged by Subaru, and a new second inner belt with a temperature ∼570 K and an unusual, broad SED maximum in the 6–9 μ m region, tracing dust at 1.1–2.2 au. An SED maximum at 6–9 μ m has been reported in just two other A-star systems, HD 131488 and HD 121191, both of ∼10 Myr age. From Spitzer , we have also identified the ∼12 Myr old A7V HD 148657 system as having similar 5–35 μ m excess spectral features. The Spitzer data allows us to rule out water emission and rule in carbonaceous materials—organics, carbonates, SiC—as the source of the 6–9 μ m excess. Assuming a common origin for the four young A-star systems’ disks, we suggest they are experiencing an early era of carbon-rich planetesimal processing.

  7. X-ray sources associated with young stellar objects in the star formation region CMa R1

    Science.gov (United States)

    Santos-Silva, Thais; Gregorio-Hetem, Jane; Montmerle, Thierry

    2013-07-01

    In previous works we studied the star formation scenario in the molecular cloud Canis Major R1 (CMa R1), derived from the existence of young stellar population groups near the Be stars Z CMa and GU CMa. Using data from the ROSAT X-ray satellite, having a field-of-view of ~ 1° in diameter, Gregorio-Hetem et al. (2009) discovered in this region young stellar objects mainly grouped in two clusters of different ages, with others located in between. In order to investigate the nature of these objects and to test a possible scenario of sequential star formation in this region, four fields (each 30 arcmin diameter, with some overlap) have been observed with the XMM-Newton satellite, with a sensitivity about 10 times better than ROSAT. The XMM-Newton data are currently under analysis. Preliminary results indicate the presence of about 324 sources, most of them apparently having one or more near-infrared counterparts showing typical colors of young stars. The youth of the X-ray sources was also confirmed by X-ray hardness ratio diagrams (XHRD), in different energy bands, giving an estimate of their Lx/Lbol ratios. In addition to these results, we present a detailed study of the XMM field covering the cluster near Z CMa. Several of these sources were classified as T Tauri and Herbig Ae/Be stars, using optical spectroscopy obtained with Gemini telescopes, in order to validate the use of XHRD applied to the entire sample. This classification is also used to confirm the relation between the luminosities in the near-infrared and X-ray bands expected for the T Tauri stars in CMa R1. In the present work we show the results of the study based on the spectra of about 90 sources found nearby Z CMa. We checked that the X-ray spectra (0.3 to 10 keV) of young objects is different from that observed in field stars and extragalactic objects. Some of the candidates also have light curve showing flares that are typical of T Tauri stars, which confirms the young nature of these X

  8. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    Science.gov (United States)

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.

  9. X-ray Observations of Eight Young Open Star Clusters: I ...

    Indian Academy of Sciences (India)

    X-ray Observations of Eight Young Open Star Clusters: I. Membership and X-ray Luminosity. Himali Bhatt, J. C. Pandey, K. P. Singh, Ram Sagar & Brijesh Kumar. J. Astrophys. Astr. 34(4), December 2013, pp. 393–429, c Indian Academy of Sciences. Supplementary Material. Supplementary Table 3 follows.

  10. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    Optical and infrared spectrophotometry is presented of the high-excitation emission-line star H1-36. The presence of a variable M giant is established: H1-36 may therefore be classified as a symbiotic star. The observations are interpreted in terms of the usual binary model for symbiotic stars, namely that an unseen star is heated by accretion of gas from its companion M giant. (author)

  11. The accretion-heated crust of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    Degenaar, N.; Wijnands, R.

    2011-01-01

    We report on a Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, carried out ∼7 weeks after the cessation of the 2010 outburst of the newly discovered transiently accreting 11-Hz X-ray pulsar. We detect a thermal spectrum that can be fitted with a neutron star

  12. Black Hole Event Horizons and Advection-Dominated Accretion

    Science.gov (United States)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  13. A KINEMATIC AND PHOTOMETRIC STUDY OF THE GALACTIC YOUNG STAR CLUSTER NGC 7380

    International Nuclear Information System (INIS)

    Chen, W. P.; Chen, C. W.; Pandey, A. K.; Sharma, Saurabh; Chen Li; Sperauskas, J.; Ogura, K.; Chuang, R. J.; Boyle, R. P.

    2011-01-01

    We present proper motions, radial velocities, and a photometric study of the Galactic open cluster NGC 7380, which is associated with prominent emission nebulosity and dark molecular clouds. On the basis of the sample of highly probable member stars, the star cluster is found to be at a distance of 2.6 ± 0.4 kpc, has an age of around 4 Myr, and a physical size of ∼6 pc across with a tidal structure. The binary O-type star DH Cep is a member of the cluster in its late stage of clearing the surrounding material, and may have triggered the ongoing star formation in neighboring molecular clouds which harbor young stars that are coeval and comoving with, but not gravitationally bound by, the star cluster.

  14. Gas-rich dwarfs and accretion phenomena in early-type galaxies

    Science.gov (United States)

    Silk, J.; Norman, C.

    1979-01-01

    An analysis is presented of the combined effects of cloud accretion and galactic winds and coronae. An accretion model is developed wherein gas-rich dwarf galaxies are accreted into galactic halos, which provides an adequate source of H I to account for observations of neutral gas in early-type galaxies. Accretion is found to fuel the wind, thereby regulating the accretion flow and yielding a time-dependent model for star formation, enrichment, and nuclear activity. The permissible parameter range for intergalactic gas clouds and galaxy groups is discussed, along with the frequency of gas-rich dwarfs and their large ratios of gas mass to luminosity. Also considered is the occurrence of gas stripping and the consequent formation of dwarf spheroidal systems that remain in the halo, and gas clouds that dissipate and suffer further infall. A cosmological implication of the model is that, because the characteristic time scale of a gas-rich dwarf galaxy to be accreted and lose its gas is comparable to a Hubble time, there may have been a far more extensive primordial distribution of such systems at earlier epochs.

  15. Undergoing spherically symmetric steady-state accretion stability of white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, R [Polska Akademia Nauk, Warsaw. N. Copernicus Astronomical Center

    1980-01-01

    Thermal and vibrational stabilities of accreting white dwarfs with steady-state nuclear burning were considered, assuming spherically symmetric accretion of the hydrogen-rich matter and using linear stability analysis. Almost all models with masses 0.2 M(sun) - 1.39 M(sun) were found to be unstable in some way. The type of instability expected to dominate is given as a function of the accretion rate. For most accretion rates it is the thermal instability. Oscillation periods are given for the models in which the vibrational instability is the most violent one. These periods are of the order of seconds or minutes. We expect that our stability analysis may suggest the cause of the variabilities of the hot components of some symbiotic stars, for a wide range of the accretion rates. In this case our models may serve as the initial conditions for evolutionary computations. The results predict that short-period oscillations should be observed in some hot nuclei of planetary nebulae.

  16. The Physics of Wind-Fed Accretion

    International Nuclear Information System (INIS)

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  17. A Be-type star with a black-hole companion.

    Science.gov (United States)

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  18. Identifying the Young Low-mass Stars within 25 pc. II. Distances, Kinematics, and Group Membership

    Science.gov (United States)

    Shkolnik, Evgenya L.; Anglada-Escudé, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-01

    We have conducted a kinematic study of 165 young M dwarfs with ages of lsim300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of lsim25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (lsim3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and β Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages lsim150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope, the du Pont Telescope at Las Campanas Observatory, and the Subaru Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial

  19. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B. [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); De Mink, S. E. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); De Koter, A.; Sana, H. [Astronomical Institute " Anton Pannekoek" , Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Liermann, A., E-mail: fschneid@astro.uni-bonn.de [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  20. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    International Nuclear Information System (INIS)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >De Koter, A.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉ .

  1. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    Science.gov (United States)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  2. Magnetic fields of Herbig Ae/Be stars

    Directory of Open Access Journals (Sweden)

    Hubrig S.

    2014-01-01

    Full Text Available We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.

  3. Solar neutrinos and solar accretion of interstellar matter

    International Nuclear Information System (INIS)

    Newman, M.J.; Talbot, R.J. Jr.

    1976-01-01

    It is argued that if the Hoyle-Lyttleton mass accretion rate applies (Proc. Camb. Phil. Soc., Math. Phys. Sci. 35: 405 (1939)) the accretion of interstellar matter by the Sun is sufficient to enhance the surface heavy element abundances. This will also apply to other solar-type stars. The enhancement may be sufficient to allow the construction of consistent solar models with an interior heavy element abundance significantly lower than the observed surface abundance. This state of affairs lowers the predicted solar neutrino flux. It has been suggested that a similar enhancement of surface abundances might occur due to accretion of 'planetesimals' left over after formation of the solar system, and both processes may occur, thereby increasing the effect. The simple accretion model of Hoyle and Lyttleton is discussed mathematically. A crucial question to be answered by future research, however, is whether or not accretion on to the solar surface actually occurs. One of the most obvious obstacles is the outward flowing solar wind, and this is discussed. It appears that the outward flow can be reversed to an inward flow for certain interstellar cloud densities. (U.K.)

  4. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  5. Formation of luminous contact binaries by rapid accretion onto white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.; Nariai, K.; Sugimoto, D.

    1980-01-01

    During the evolution of a close binary system, there is a phase of mass exchange between its component stars. The authors investigate what happens in the case of extremely rapid accretion onto a white dwarf. They have computed the whole processes of mass accretion starting from its onset through the shell flash and further mass accumulation. Throughout the computation the effect of gravitational energy release has been correctly taken into account. (Auth.)

  6. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    OpenAIRE

    Tauris, Thomas M.; Sanyal, Debashis; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequ...

  7. A UKIDSS-based search for low-mass stars and small stellar clumps in off-cloud parts of young star-forming regions* **

    Directory of Open Access Journals (Sweden)

    Barrado y Navascués D.

    2011-07-01

    Full Text Available The form and universality of the mass function of young and nearby star-forming regions is still under debate. Its relation to the stellar density, its mass peak and the dependency on most recent models shows significant differencies for the various regions and remains unclear up to date. We aim to get a more complete census of two of such regions. We investigate yet unexplored areas of Orion and Taurus-Auriga, observed by the UKIDSS survey. In the latter, we search for low-mass stars via photometric and proper motion criteria and signs for variability. In Orion, we search for small stellar clumps via nearest-neighbor methods. Highlights in Taurus would be the finding of the missing low-mass stars and the detection of a young cluster T dwarf. In Orion, we discovered small stellar associations of its OB1b and OB1c populations. Combined with what is known in literature, we will provide by this investigations a general picture of the results of the star-forming processes in large areas of Taurus and Orion and probe the most recent models.

  8. M-dwarf rapid rotators and the detection of relatively young multiple M-star systems

    International Nuclear Information System (INIS)

    Rappaport, S.; Joss, M.; Sanchis-Ojeda, R.

    2014-01-01

    We have searched the Kepler light curves of ∼3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P rot , of <2 days, and 110 with P rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have 3 or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ∼5% occurrence rate of rapid rotation among the ∼3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.

  9. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  10. MAGNETIC FLUX EXPULSION IN STAR FORMATION

    International Nuclear Information System (INIS)

    Zhao Bo; Li Zhiyun; Nakamura, Fumitaka; Krasnopolsky, Ruben; Shang, Hsien

    2011-01-01

    Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known 'magnetic flux problem' demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in three dimensions, using a magnetohydrodynamic (MHD) version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in three-dimensional MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

  11. Localized thermonuclear runaways and volcanoes on degenerate dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Shara, M.M.

    1982-10-15

    Practically all studies to date of thermonuclear runaways on degenerate dwarf stars in binary systems have considered only spherically symmetric eruptions. We emphasize that even slightly non-spherically symmetric accretion leads to transverse temperature gradients in the dwarfs' accreted envelopes. Over a rather broad range of parameter space, thermalization time scales in accreted envelopes are much longer than thermonuclear runaway time scales. Thus localized thermonuclear runaways (i.e., runaways much smaller than the host degenerate star) rather than spherically symmetric global eruptions are likely to occur on many degenerate dwarfs. Localized runaways are more likely to occur on more massive and/or hotter dwarfs.

  12. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  13. Stars get dizzy after lunch

    International Nuclear Information System (INIS)

    Zhang, Michael; Penev, Kaloyan

    2014-01-01

    Exoplanet searches have discovered a large number of h ot Jupiters — high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q * . This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q * = 10 6 , 3.9 × 10 –6 of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  14. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Andrews, J. E. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Lee, J. C.; Sabbi, E.; Ubeda, L.; Bright, S. N.; Whitmore, B. C.; Aloisi, A. [Space Telescope Science Institute, Baltimore, MD (United States); Kim, H. [Department of Astronomy, The University of Texas at Austin, Austin, TX (United States); Thilker, D. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, E. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Mink, S. E. de [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam (Netherlands); Chandar, R., E-mail: calzetti@astro.umass.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); and others

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  15. Interstellar clouds and the formation of stars

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H; Carlqvist, P [Kungliga Tekniska Hoegskolan, Stockholm (Sweden). Institutionen foer Plasmafysik

    1978-05-01

    Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere through in situ measurements. The 'pseudo-plasma formalism', which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A 'stellesimal' accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.

  16. Spectral Variations of T Tauri stars

    Science.gov (United States)

    Guenther, E.

    1994-02-01

    Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling

  17. On origin and evolutionary stage of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungel'son, L.R.

    1976-01-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter with the rate of 10 -5 -10 -6 M/yr over the period of 10 5 -10 6 years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the stage of red giant, and also of more close pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10 -6 -10 -9 M/yr and some consequencies of accretion on a C-O dwarf have been considered

  18. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  19. NEW BROWN DWARF COMPANIONS TO YOUNG STARS IN SCORPIUS-CENTAURUS

    Energy Technology Data Exchange (ETDEWEB)

    Janson, Markus [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Jayawardhana, Ray; Bonavita, Mariangela [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Girard, Julien H. [European Southern Observatory, Santiago (Chile); Lafreniere, David [Department of Physics, University of Montreal, Montreal, QC (Canada); Gizis, John [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Brandeker, Alexis, E-mail: janson@astro.princeton.edu [Department of Astronomy, Stockholm University, Stockholm (Sweden)

    2012-10-10

    We present the discoveries of three faint companions to young stars in the Scorpius-Centaurus region, imaged with the NICI instrument on Gemini South. We have confirmed all three companions through common proper motion tests. Follow-up spectroscopy has confirmed two of them, HIP 65423 B and HIP 65517 B, to be brown dwarfs, while the third, HIP 72099 B, is more likely a very low mass star just above the hydrogen burning limit. The detection of wide companions in the mass range of {approx}40-100 M{sub jup} complements previous work in the same region, reporting detections of similarly wide companions with lower masses, in the range of {approx}10-30 M{sub jup}. Such low masses near the deuterium burning limit have raised the question of whether those objects formed like planets or stars. The existence of intermediate objects as reported here could represent a bridge between lower-mass companions and stellar companions, but in any case demonstrate that mass alone may not provide a clear-cut distinction for the formation of low-mass companions to stars.

  20. COOL YOUNG STARS IN THE NORTHERN HEMISPHERE: β PICTORIS AND AB DORADUS MOVING GROUP CANDIDATES

    International Nuclear Information System (INIS)

    Schlieder, Joshua E.; Simon, Michal; Lépine, Sébastien

    2012-01-01

    As part of our continuing effort to identify new, low-mass members of nearby, young moving groups (NYMGs), we present a list of young, low-mass candidates in the northern hemisphere. We used our proven proper-motion selection procedure and ROSAT X-ray and GALEX-UV activity indicators to identify 204 young stars as candidate members of the β Pictoris and AB Doradus NYMGs. Definitive membership assignment of a given candidate will require a measurement of its radial velocity and distance. We present a simple system of indices to characterize the young candidates and help prioritize follow-up observations. New group members identified in this candidate list will be high priority targets for (1) exoplanet direct imaging searches, (2) the study of post-T-Tauri astrophysics, (3) understanding recent local star formation, and (4) the study of local galactic kinematics. Information available now allows us to identify eight likely new members in the list. Two of these, a late-K and an early-M dwarf, we find to be likely members of the β Pic group. The other six stars are likely members of the AB Dor moving group. These include an M dwarf triple system, and three very cool objects that may be young brown dwarfs, making them the lowest-mass, isolated objects proposed in the AB Dor moving group to date.

  1. Angular dimensions of accreting young stars

    International Nuclear Information System (INIS)

    Chelli, A.; Lena, P.; Sibille, F.

    1979-01-01

    The prostellar candidates W31RS5 and the BN object have been observed using a method of infrared speckle interferometry which allows the spatial spectrum of an object in a given direction in the modulus sense to be determined up to the frequency cut-off of the telescope. Results obtained are discussed and compared with those of other workers. (U.K.)

  2. X-ray pulsars: accretion flow deceleration

    International Nuclear Information System (INIS)

    Miller, G.S.

    1987-01-01

    X-ray pulsars are thought to be neutron stars that derive the energy for their x-ray emission by accreting material onto their magnetic polar caps. The accreting material and the x-ray pulsar atmospheres were idealized as fully ionized plasmas consisting only of electrons and protons. A high magnetic field (∼ 5 x 10 12 Gauss) permeates the atmospheric plasma, and causes the motion of atmospheric electrons perpendicular to the field to be quantized into discrete Landau levels. All atmospheric electrons initially lie in the Landau ground state, but in the author's calculations of Coulomb collisions between atmospheric electrons and accreting protons, he allows for processes that leave the electrons in the first excited Landau level. He also considers interactions between accreting protons and the collective modes of the atmospheric plasma. Division of the electromagnetic interaction of a fast proton with a magnetized plasma into single particle and collective effects is described in detail in Chapter 2. Deceleration of the accretion flow due to Coulomb collisions with atmospheric electrons and collective plasma effects was studied in a number of computer simulations. These simulations, along with a discussion of the physical state of the atmospheric plasma and its interactions with a past proton, are presented in Chapter 3. Details of the atmospheric model and a description of the results of the simulations are given in Chapter 4. Chapter 5 contains some brief concluding remarks, and some thoughts on future research

  3. Relativistic shocks in electron-positron plasmas, and polar cap accretion onto neutron stars: Two non-linear problems in astrophysical plasma physics

    International Nuclear Information System (INIS)

    Arons, J.

    1988-01-01

    I outline particle simulations and theory of relativistic shock waves in an e/sup +-/ plasma. Magnetic reflection of particles is an essential role in the shock structure. Instability of the reflected particles in the shock front produces intense extraordinary mode radiation. Such shocks are candidates for the particle accelerator in plerions and in extragalactic jets only if the upstream Poynting flux composes no more than 10% of the total. I summarize analytical and numerical studies of radiation dominated accretion onto the magnetic poles of neutron stars. The upper limit to the photon luminosity depends upon magnetic confinement, not upon the dragging of photons into the star. Numerical solutions show the plasma forms large scale ''photon bubbles.'' I suggest the percolative loss of radiation controls the pressure and therefore the limits of magnetic confinement. Loss of magnetic confinement through resistive interchange instability is suggested as a means of generating TeV to PeV voltage drops along the magnetic field. 34 refs., 6 figs., 1 tab

  4. Origin and evolutionary stage of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Tutukov, A V; Yungel' son, L R [AN SSSR, Moscow. Astronomicheskij Sovet

    1976-08-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter at the rate of 10/sup -5/-10/sup -6/ M/yr over the period of 10/sup 5/-10/sup 6/ years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the red giant stage,, and also of closer pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10/sup -6/-10/sup -9/ M/yr, and some consequencies of accretion on a C-O dwarf have been considered.

  5. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    Science.gov (United States)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  6. TEMPERATURE STRUCTURE OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

    International Nuclear Information System (INIS)

    Lesniak, M. V.; Desch, S. J.

    2011-01-01

    We calculate the temperature structures of protoplanetary disks (PPDs) around T Tauri stars heated by both incident starlight and viscous dissipation. We present a new algorithm for calculating the temperatures in disks in hydrostatic and radiative equilibrium, based on Rybicki's method for iteratively calculating the vertical temperature structure within an annulus. At each iteration, the method solves for the temperature at all locations simultaneously, and converges rapidly even at high (>>10 4 ) optical depth. The method retains the full frequency dependence of the radiation field. We use this algorithm to study for the first time disks evolving via the magnetorotational instability. Because PPD midplanes are weakly ionized, this instability operates preferentially in their surface layers, and disks will undergo layered accretion. We find that the midplane temperatures T mid are strongly affected by the column density Σ a of the active layers, even for fixed mass accretion rate M-dot . Models assuming uniform accretion predict midplane temperatures in the terrestrial planet forming region several x 10 2 K higher than our layered accretion models do. For M-dot -7 M sun yr -1 and the column densities Σ a -2 associated with layered accretion, disk temperatures are indistinguishable from those of a passively heated disk. We find emergent spectra are insensitive to Σ a , making it difficult to observationally identify disks undergoing layered versus uniform accretion.

  7. Thermal states of coldest and hottest neutron stars in soft X-ray transients

    OpenAIRE

    Yakovlev, D. G.; Levenfish, K. P.; Potekhin, A. Y.; Gnedin, O. Y.; Chabrier, G.

    2003-01-01

    We calculate the thermal structure and quiescent thermal luminosity of accreting neutron stars (warmed by deep crustal heating in accreted matter) in soft X-ray transients (SXTs). We consider neutron stars with nucleon and hyperon cores and with accreted envelopes. It is assumed that an envelope has an outer helium layer (of variable depth) and deeper layers of heavier elements, either with iron or with much heavier nuclei (of atomic weight A > 100) on the top (Haensel & Zdunik 1990, 2003, as...

  8. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. Clifton; Sandstrom, Karin [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dalcanton, Julianne J.; Beerman, Lori C.; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Fouesneau, Morgan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Larsen, Søren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Skillman, Evan D., E-mail: lcj@ucsd.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2016-08-10

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.

  9. Young Star Cluster Found Aglow With Mysterious X-Ray Cloud

    Science.gov (United States)

    2002-12-01

    A mysterious cloud of high-energy electrons enveloping a young cluster of stars has been discovered by astronomers using NASA's Chandra X-ray Observatory. These extremely high-energy particles could cause dramatic changes in the chemistry of the disks that will eventually form planets around stars in the cluster. Known as RCW 38, the star cluster covers a region about 5 light years across. It contains thousands of stars formed less than a million years ago and appears to be forming new stars even today. The crowded environment of a star cluster is thought to be conducive to the production of hot gas, but not high-energy particles. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which is evident in RCW 38. "The RCW 38 observation doesn't agree with the conventional picture," said Scott Wolk of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, lead author of an Astrophysical Journal Letters paper describing the Chandra observation. "The data show that somehow extremely high-energy electrons are being produced there, although it is not clear how." RCW 38 RCW 38 X-ray, Radio, Infrared Composite Electrons accelerated to energies of trillions of volts are required to account for the observed X-ray spectrum of the gas cloud surrounding the ensemble of stars, which shows an excess of high-energy X-rays. As these electrons move in the magnetic field that threads the cluster, they produce X-rays. One possible origin for the high-energy electrons is a previously undetected supernova that occurred in the cluster. Although direct evidence for the supernova could have faded away thousands of years ago, a shock wave or a rapidly rotating neutron star produced by the outburst could be acting in concert with stellar winds to produce the high-energy electrons. "Regardless of the origin of the energetic electrons," said Wolk, "their presence would change the chemistry of proto

  10. Characteristics of old neutron stars in dense interstellar clouds

    International Nuclear Information System (INIS)

    Boehringer, H.; Morfill, G.E.; Zimmermann, H.U.

    1987-01-01

    The forms observable radiation will assume as old neutron stars pass through interstellar clouds and accrete material are examined theoretically. The radiation, mainly X-rays and gamma rays, will be partially absorbed by the surrounding dust and gas, which in turn produces far-IR radiation from warm dust and line radiation from the gas. Adiabatic compression of the accretion flow and the accretion shock are expected to produce cosmic rays, while gamma rays will be emitted by interaction of the energetic particles with the cloud material. The calculations indicate that the stars will then be identified as X-ray sources, some of which may be unidentified sources in the COS-B database. 37 references

  11. Photometric search for variable stars in the young open cluster Berkeley 59

    Science.gov (United States)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period dispersal of the discs of relatively massive stars.

  12. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    Science.gov (United States)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-06-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type (proto)stars. Aims: In order to establish whether disc-mediated accretion is the formation mechanism for the most massive stars, we have searched for circumstellar, rotating discs around a limited sample of six luminous (>105L⊙) young stellar objects. These objects were selected on the basis of their IR and radio properties in order to maximize the likelihood of association with disc+jet systems. Methods: We used ALMA with 0.̋2 resolution to observe a large number of molecular lines typical of hot molecular cores. In this paper we limit our analysis to two disc tracers (methyl cyanide, CH3CN, and its isotopologue, 13CH3CN), and an outflow tracer (silicon monoxide, SiO). Results: We reveal many cores, although their number depends dramatically on the target. We focus on the cores that present prominent molecular line emission. In six of these a velocity gradient is seen across the core,three of which show evidence of Keplerian-like rotation. The SiO data reveal clear but poorly collimated bipolar outflow signatures towards two objects only. This can be explained if real jets are rare (perhaps short-lived) in very massive objects and/or if stellar multiplicity significantly affects the outflow structure.For all cores with velocity gradients, the velocity field is analysed through position-velocity plots to establish whether the gas is undergoing rotation with νrot ∝ R- α, as expected for Keplerian-like discs. Conclusions: Our results suggest that in three objects we are observing rotation in circumstellar discs, with three more tentative cases, and one core where no evidence for rotation is found. In all cases but one, we find that the gas mass is less than the mass of

  13. A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    White, Catherine E. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Somerville, Rachel S. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-01

    Both numerical hydrodynamic and semi-analytic cosmological models of galaxy formation struggle to match observed star formation histories of galaxies in low-mass halos (M {sub H} ≲ 10{sup 11} M {sub ☉}), predicting more star formation at high redshift and less star formation at low redshift than observed. The fundamental problem is that galaxies' gas accretion and star formation rates are too closely coupled in the models: the accretion rate largely drives the star formation rate. Observations point to gas accretion rates that outpace star formation at high redshift, resulting in a buildup of gas and a delay in star formation until lower redshifts. We present three empirical adjustments of standard recipes in a semi-analytic model motivated by three physical scenarios that could cause this decoupling: (1) the mass-loading factors of outflows driven by stellar feedback may have a steeper dependence on halo mass at earlier times, (2) the efficiency of star formation may be lower in low-mass halos at high redshift, and (3) gas may not be able to accrete efficiently onto the disk in low-mass halos at high redshift. These new recipes, once tuned, better reproduce the evolution of f {sub *}≡ M {sub *}/M {sub H} as a function of halo mass as derived from abundance matching over redshifts z = 0 to 3, though they have different effects on cold gas fractions, star formation rates, and metallicities. Changes to gas accretion and stellar-driven winds are promising, while direct modification of the star formation timescale requires drastic measures that are not physically well motivated.

  14. NOVAE WITH LONG-LASTING SUPERSOFT EMISSION THAT DRIVE A HIGH ACCRETION RATE

    International Nuclear Information System (INIS)

    Schaefer, Bradley E.; Collazzi, Andrew C.

    2010-01-01

    We identify a new class of novae characterized by the post-eruption quiescent light curve being more than roughly a factor of 10 brighter than the pre-eruption light curve. Eight novae (V723 Cas, V1500 Cyg, V1974 Cyg, GQ Mus, CP Pup, T Pyx, V4633 Sgr, and RW UMi) are separated out as being significantly distinct from other novae. This group shares a suite of uncommon properties, characterized by the post-eruption magnitude being much brighter than before eruption, short orbital periods, long-lasting supersoft emission following the eruption, a highly magnetized white dwarf (WD), and secular declines during the post-eruption quiescence. We present a basic physical picture which shows why all five uncommon properties are causally connected. In general, novae show supersoft emission due to hydrogen burning on the WD in the final portion of the eruption, and this hydrogen burning will be long-lasting if new hydrogen is poured onto the surface at a sufficient rate. Most novae do not have adequate accretion for continuous hydrogen burning, but some can achieve this if the companion star is nearby (with short orbital period) and a magnetic field channels the matter onto a small area on the WD so as to produce a locally high accretion rate. The resultant supersoft flux irradiates the companion star and drives a higher accretion rate (with a brighter post-eruption phase), which serves to keep the hydrogen burning and the supersoft flux going. The feedback loop cannot be perfectly self-sustaining, so the supersoft flux will decline over time, forcing a decline in the accretion rate and the system brightness. We name this new group after the prototype, V1500 Cyg. V1500 Cyg stars are definitely not progenitors of Type Ia supernovae. The V1500 Cyg stars have similar physical mechanisms and appearances as predicted for nova by the hibernation model, but with this group accounting for only 14% of novae.

  15. MINBAR: A comprehensive study of 6000+ thermonuclear shell flashes from neutron stars

    DEFF Research Database (Denmark)

    Galloway, Duncan; in't Zand, J.J.M.; Chenevez, Jérôme

    2014-01-01

    Thermonuclear (type-I) X-ray bursts have been observed from accreting neutron stars since the early 1970s. These events serve as a valuable diagnostic tool to constrain the source distance; accretion rate; accreted fuel composition, and hence evolutionary status of the donor; and even the neutron...

  16. CN rings in full protoplanetary disks around young stars as probes of disk structure

    Science.gov (United States)

    Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.

    2018-01-01

    Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.

  17. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  18. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  19. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  20. The accretion of migrating giant planets

    Science.gov (United States)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  1. StarPals International Young Astronomers' Network Collaborative Projects for IYA

    Science.gov (United States)

    Kingan, Jessi

    2008-09-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities in which, more than simply visualizing themselves as research scientists, they can actually become one. The technologies of robotic telescopes, videoconferencing, and online classrooms are expanding the possibilities like never before. In honor of IYA2009, StarPals would like to encourage 400 schools to participate on a global scale in astronomy/cosmology research on various concurrent projects. We will offer in-person or online workshops and training sessions to teach the teachers. We will be seeking publication in scientific journals for some student research. For our current project, the Double Stars Challenge, students use the robotic telescopes to take a series of four images of one of 30 double stars from a list furnished by the US Naval Observatory and then use MPO Canopus software to take distance and position angle measurements. StarPals provides students with hands-on training, telescope time, and software to complete the imaging and measuring. A paper will be drafted from our research data and submitted to the Journal of Double Star Observations. The kids who participate in this project may potentially be the youngest contributors to an article in a vetted scientific journal. Kids rapidly adapt and improve their computer skills operating these telescopes and discover for themselves that science is COOL!

  2. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  3. Broad-Band Variability in Accreting Compact Objects

    Directory of Open Access Journals (Sweden)

    S. Scaringi

    2015-02-01

    Full Text Available Cataclysmic variable stars are in many ways similar to X-ray binaries. Both types of systems possess an accretion disk, which in most cases can reach the surface (or event horizon of the central compact object. The main difference is that the embedded gravitational potential well in X-ray binaries is much deeper than those found in cataclysmic variables. As a result, X-ray binaries emit most of their radiation at X-ray wavelengths, as opposed to cataclysmic variables which emit mostly at optical/ultraviolet wavelengths. Both types of systems display aperiodic broad-band variability which can be associated to the accretion disk. Here, the properties of the observed X-ray variability in XRBs are compared to those observed at optical wavelengths in CVs. In most cases the variability properties of both types of systems are qualitatively similar once the relevant timescales associated with the inner accretion disk regions have been taken into account. The similarities include the observed power spectral density shapes, the rms-flux relation as well as Fourier-dependant time lags. Here a brief overview on these similarities is given, placing them in the context of the fluctuating accretion disk model which seeks to reproduce the observed variability.

  4. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    Science.gov (United States)

    Mineshige, Shin

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.

  5. Mass accretion rate fluctuations in black hole X-ray binaries

    NARCIS (Netherlands)

    Rapisarda, S.

    2017-01-01

    This thesis is about the first systematic and quantitative application of propagating mass accretion rate fluctuations models to black hole X-ray binaries. Black hole X-ray binaries are systems consisting of a solar mass star orbiting around a stellar mass black hole. Eventually, the black hole

  6. Spherically symmetric near-critical accretion onto neutron stars

    International Nuclear Information System (INIS)

    Miller, G.S.

    1990-01-01

    Numerical and approximate analytic solutions for time-independent, spherically symmetric, radiation pressure-dominated accretion flows are presented. For flows with luminosities at infinity, L-infinity, sufficiently close to the Eddington limit L-crit, the flow velocity profile is qualitatively different from the modified free-fall profile v(r) = (1 - L-infinity/L-crit)exp 1/2 (2GM/r)exp 1/2. Advective contributions to the comoving radiation flux decelerate the flow within a criical radius, and, in this settling region, the velocity of the flow decreases linearly with decreasing radius. 14 refs

  7. Young Stars in Old Galaxies - a Cosmic Hide and Seek Game

    Science.gov (United States)

    2002-05-01

    Surprise Discovery with World's Leading Telescopes [1] Summary Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT) , a group of European and American astronomers [2] have made an unexpected, major discovery. They have identified a huge number of "young" stellar clusters , only a few billion years old [3], inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one . Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe . PR Photo 15a/02 : Combined HST+VLT image of elliptical galaxy NGC 4365 PR Photo 15b/02 : Same image, with "old" and "young" stellar clusters indicated PR Photo 15c/02 : Animated GIF image, showing the three cluster populations observed in NGC 4365 Do elliptical galaxies only contain old stars? One of the challenges of modern astronomy is to understand how galaxies, those large systems of stars, gas and dust, form and evolve. In this connection, a central question has always been to learn when most of the stars in the Universe formed. Did this happen at a very early stage, within a few billion years after the Big Bang? Or were a significant number of the stars we now observe formed much more recently? Spectacular collisions between galaxies take place all the time, triggering the formation of thousands or even millions of stars, cf. ESO PR Photo 29b/99 of the dramatic encounter between NGC 6872 and IC 4970. However, when looking at the Universe as a whole, most

  8. YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    International Nuclear Information System (INIS)

    Ness, M.; Debattista, Victor P.; Cole, D. R.; Bensby, T.; Feltzing, S.; Roškar, R.; Johnson, J. A.; Freeman, K.

    2014-01-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look

  9. Accretion on to Magnetic White Dwarfs

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Dayal

    2014-01-01

    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  10. Accretion-induced quasinormal mode excitation of a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Nagar, Alessandro; Zanotti, Olindo; Font, Jose A.; Rezzolla, Luciano

    2007-01-01

    By combining the numerical solution of the nonlinear hydrodynamics equations with the solution of the linear inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations, we investigate the properties of the gravitational radiation emitted during the axisymmetric accretion of matter onto a Schwarzschild black hole. The matter models considered include quadrupolar dust shells and thick accretion disks, permitting us to simulate situations which may be encountered at the end stages of stellar gravitational collapse or binary neutron star merger. We focus on the interference pattern appearing in the energy spectra of the emitted gravitational waves and on the amount of excitation of the quasinormal modes of the accreting black hole. We show that, quite generically in the presence of accretion, the black-hole ringdown is not a simple superposition of quasinormal modes, although the fundamental mode is usually present and often dominates the gravitational-wave signal. We interpret this as due to backscattering of waves off the nonexponentially decaying part of the black-hole potential and to the finite spatial extension of the accreting matter. Our results suggest that the black-hole QNM contributions to the full gravitational-wave signal should be extremely small and possibly not detectable in generic astrophysical scenarios involving the accretion of extended distributions of matter

  11. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    International Nuclear Information System (INIS)

    Matzner, Christopher D.; Jumper, Peter H.

    2015-01-01

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when its column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive

  12. Relativistic shocks in electron-positron plasmas, and polar cap accretion onto neutron stars: Two non-linear problems in astrophysical plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J.

    1988-08-15

    I outline particle simulations and theory of relativistic shock waves in an e/sup +-/ plasma. Magnetic reflection of particles is an essential role in the shock structure. Instability of the reflected particles in the shock front produces intense extraordinary mode radiation. Such shocks are candidates for the particle accelerator in plerions and in extragalactic jets only if the upstream Poynting flux composes no more than 10% of the total. I summarize analytical and numerical studies of radiation dominated accretion onto the magnetic poles of neutron stars. The upper limit to the photon luminosity depends upon magnetic confinement, not upon the dragging of photons into the star. Numerical solutions show the plasma forms large scale ''photon bubbles.'' I suggest the percolative loss of radiation controls the pressure and therefore the limits of magnetic confinement. Loss of magnetic confinement through resistive interchange instability is suggested as a means of generating TeV to PeV voltage drops along the magnetic field. 34 refs., 6 figs., 1 tab.

  13. EVOLUTION OF THE DUST/GAS ENVIRONMENT AROUND HERBIG Ae/Be STARS

    International Nuclear Information System (INIS)

    Liu Tie; Zhang Huawei; Wu Yuefang; Qin Shengli; Miller, Martin

    2011-01-01

    Using the KOSMA 3 m telescope, 54 Herbig Ae/Be (HAe/Be) stars were surveyed in CO and 13 CO emission lines. The properties of the stars and their circumstellar environments were studied by fitting spectral energy distributions (SEDs). The mean line width of 13 CO (2-1) lines of this sample is 1.87 km s -1 . The average column density of H 2 is found to be 4.9 x 10 21 cm -2 for stars younger than 10 6 yr, while this drops to 2.5 x 10 21 cm -2 for those older than 10 6 yr. No significant difference is found among the SEDs of HAe and HBe stars of the same age. Infrared excess decreases with age, envelope masses and envelope accretion rates decease with age after 10 5 yr, the average disk mass of the sample is 3.3 x 10 -2 M sun , the disk accretion rate decreases more slowly than the envelope accretion rate, and a strong correlation between the CO line intensity and the envelope mass is found.

  14. X-rays from stars

    Science.gov (United States)

    Güdel, Manuel

    2004-07-01

    Spectroscopic studies available from Chandra and XMM-Newton play a pivotal part in the understanding of the physical processes in stellar (magnetic and non-magnetic) atmospheres. It is now routinely possible to derive densities and to study the influence of ultraviolet radiation fields, both of which can be used to infer the geometry of the radiating sources. Line profiles provide important information on bulk mass motions and attenuation by neutral matter, e.g. in stellar winds. The increased sensitivity has revealed new types of X-ray sources in systems that were thought to be unlikely places for X-rays: flaring brown dwarfs, including rather old, non-accreting objects, and terminal shocks in jets of young stars are important examples. New clues concerning the role of stellar high-energy processes in the modification of the stellar environment (ionization, spallation, etc.) contribute significantly to our understanding of the "astro-ecology" in forming planetary systems. Technological limitations are evident. The spectral resolution has not reached the level where bulk mass motions in cool stars become easily measurable. Higher resolution would also be important to perform X-ray "Doppler imaging" in order to reconstruct the 3-D distribution of the X-ray sources around a rotating star. Higher sensitivity will be required to perform high-resolution spectroscopy of weak sources such as brown dwarfs or embedded pre-main-sequence sources. A new generation of satellites such as Constellation-X or XEUS should pursue these goals.

  15. Searching for Young Stars in Cepheus C

    Science.gov (United States)

    Evans, Sam; Rebull, Luisa; Rutherford, Thomas; Stalnaker, Olivia; Taylor, John; Efsits, Gabriel; Harl, Linda; Keil, Shayna; Learman, Duncan; Leonard, Liam; Russell, Aaron

    2018-01-01

    We used archival Herschel Space Observatory data to search for young stellar objects (YSOs) in the Cepheus C region of the molecular cloud Cepheus OB3. Previous work by Gutermuth et al. (2009) identified 114 YSO candidates in this region based on Spitzer/IRAC data. Work by Orr et al. (2016) refined a list of approximately 300 young star candidates to 245 likely YSOs. Our initial search focused on longer infrared wavelength data – Herschel (70, 160, 250, 350, 500 μm) archival data and SCUBA (450, 850 μm) data from the literature (DiFrancesco et al. 2008). Through image inspection and catalog matching, we assembled a list of 54 candidate YSOs detected at wavelengths longer than 22 μm. For each source, we constructed a spectral energy distribution (SED) by aggregating available shorter wavelength data from the literature and assembling photometry from released PACS catalogs, preliminary SPIRE catalogs, and our own photometric measurements. We also created color-color and color-magnitude diagrams to see how these sources compared to each other, other populations of YSOs, and objects in extragalactic regions. Each source was then classified based on its SED shape and its locations on color-color and color-magnitude diagrams. From the initial list of 54 candidates, we suspect all are likely YSOs, some of which are very embedded; ~40% are likely SED Class I or 0. Approximately 20% of the 54 sources have not been previously identified. By beginning the investigation of YSOs in this region, we are adding to the body of YSO knowledge which can be used to understand the process of star formation. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  16. Star Formation and Young Population of the H II Complex Sh2-294

    Science.gov (United States)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.

    2012-08-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.

  17. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    International Nuclear Information System (INIS)

    Samal, M. R.; Pandey, A. K.; Chauhan, N.; Jose, J.; Ojha, D. K.; Pandey, B.

    2012-01-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H 2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H 2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass ( ☉ ) YSOs; however, we also detected a massive YSO (∼9 M ☉ ) of Class I nature, embedded in a cloud of visual extinction of ∼24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ∼ 4.5 × 10 6 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ∼4 × 10 6 yr B0 main-sequence star.

  18. Unravelling the role of SW Sextantis stars in the evolution of cataclysmic variables

    Science.gov (United States)

    Araujo-Betancor, Sofia; Gansicke, Boris; Long, Knox; Rodriguez-Gil, Pablo

    2005-08-01

    SW Sextantis stars are a relatively large group of cataclysmic variables whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assessment of their evolutionary state is illusionary. There is one particular behavior of the SW Sex stars that can allow us to overcome this problem: SW Sex stars exhibit low states during which accretion onto the white dwarf decreases or shuts off completely. Only during this rare occasions we can directly observe the white dwarf and the donor star in these systems, and measurements of the white dwarf temperature, spectral type of the donor, mass and distance to the system can be carried out. With this aim in mind, we have set up a long-term monitoring of a group of five SW Sex stars using the 1.3 m telescope at CTIO. Here we propose to activate follow-up TOOs to obtain optical spectra of the low states to accurately determine the fundamental properties of these systems.

  19. HOT GAS LINES IN T TAURI STARS

    International Nuclear Information System (INIS)

    Ardila, David R.; Herczeg, Gregory J.; Gregory, Scott G.; Hillenbrand, Lynne A.; Ingleby, Laura; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria; France, Kevin; Brown, Alexander; Edwards, Suzan; Johns-Krull, Christopher; Linsky, Jeffrey L.; Yang, Hao; Valenti, Jeff A.; Abgrall, Hervé; Alexander, Richard D.; Brown, Joanna M.; Espaillat, Catherine; Hussain, Gaitee

    2013-01-01

    For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 Å line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from ∼20% to up to ∼80%. The velocity centroids of the BCs and NCs are such that V BC ∼> 4 V NC , consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by ∼10 km s –1 . The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV

  20. Dippers and dusty disc edges: new diagnostics and comparison to model predictions

    Science.gov (United States)

    Bodman, Eva H. L.; Quillen, Alice C.; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S.; Mamajek, Eric E.; Blackman, Eric G.; Rizzuto, Aaron; Kastner, Joel H.

    2017-09-01

    We revisit the nature of large dips in flux from extinction by dusty circumstellar material that is observed by Kepler for many young stars in the Upper Sco and ρ Oph star formation regions. These young, low-mass 'dipper' stars are known to have low accretion rates and primarily host moderately evolved dusty circumstellar discs. Young low-mass stars often exhibit rotating starspots that cause quasi-periodic photometric variations. We found no evidence for periods associated with the dips that are different from the starspot rotation period in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disc temperatures computed at the disc corotation radius are cool enough that dust should not sublime. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotation radius. Magnetospheric truncation models can explain why the dips are associated with material near corotation and how dusty material is lifted out of the mid-plane to obscure the star that would account for the large fraction of young low-mass stars that are dippers. We propose that variations in disc orientation angle, stellar magnetic field dipole tilt axis and disc accretion rate are underlying parameters accounting for differences in the dipper light curves.

  1. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    International Nuclear Information System (INIS)

    Mineshige, S.

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars. 52 references

  2. RECONCILING AGN-STAR FORMATION, THE SOLTAN ARGUMENT, AND MEIER’S PARADOX

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, David [Department of Physics, Kennesaw State University, Marietta GA, 30060 (United States); Kim, Matthew I.; Christian, Damian J. [Department of Physics and Astronomy, California State University, Northridge CA, 91330 (United States); Hollingworth, Emily [Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta GA, 30332 (United States); Lowery, Aaron [Department of Geosciences, Mississippi State University, MS, 39762 (United States); Harmon, Matthew [Department of Physics, Southern Polytechnic State University, Marietta GA, 30060 (United States)

    2016-02-01

    We provide a theoretical context for understanding the recent work of Kalfountzou et al. showing that star formation is enhanced at lower optical luminosity in radio-loud quasars. Our proposal for coupling the assumption of collimated FRII quasar-jet-induced star formation with lower accretion optical luminosity also explains the observed jet power peak in active galaxies at higher redshift compared to the peak in accretion power, doing so in a way that predicts the existence of a family of radio-quiet active galactic nuclei associated with rapidly spinning supermassive black holes at low redshift, as mounting observations suggest. The relevance of this work lies in its promise to explain the observed cosmological evolution of accretion power, jet power, and star formation in a way that is both compatible with the Soltan argument and resolves the so-called “Meier Paradox.”.

  3. Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches

    Science.gov (United States)

    Mukherjee, Arunava; Messenger, Chris; Riles, Keith

    2018-02-01

    The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.

  4. Chandra Detection of an Evolved Population of Young Stars in Serpens South

    Science.gov (United States)

    Winston, E.; Wolk, S. J.; Gutermuth, R.; Bourke, T. L.

    2018-06-01

    We present a Chandra study of the deeply embedded Serpens South star-forming region, examining cluster structure and disk properties at the earliest stages. In total, 152 X-ray sources are detected. Combined with Spitzer and 2MASS photometry, 66 X-ray sources are reliably matched to an IR counterpart. We identify 21 class I, 6 flat spectrum, 16 class II, and 18 class III young stars; 5 were unclassified. Eighteen sources were variable in X-rays, 8 exhibiting flare-like emission and one source being periodic. The cluster’s X-ray luminosity distance was estimated: the best match was to the nearer distance of 260 pc for the front of the Aquila Rift complex. The ratio of N H to A K is found to be ∼0.68 × 1022, similar to that measured in other young low-mass regions, but lower than that measured in the interstellar medium and high-mass clusters (∼(1.6–2) × 1022). We find that the spatial distribution closely follows that of the dense filament from which the stars have formed, with the class II population still strongly associated with the filament. There are four subclusters in the field, with three forming knots in the filament, and a fourth to the west, which may not be associated but may be contributing to the distributed class III population. A high percentage of diskless class IIIs (upper limit 30% of classified X-ray sources) in such a young cluster could indicate that processing of disks is influenced by the cluster environment and is not solely dependent on timescale.

  5. Time-Dependent Variations of Accretion Disk

    Directory of Open Access Journals (Sweden)

    Hye-Weon Na

    1987-06-01

    Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.

  6. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  7. Probing jets from young embedded sources

    Science.gov (United States)

    Nisini, Brunella

    2017-08-01

    Jets are intimately related to the process of star formation and disc accretion. Our present knowledge of this key ingredient in protostars mostly relies on observations of optical jets from T Tauri stars, where the original circumstellar envelope has been already cleared out. However, to understand how jets are originally formed and how their properties evolve with time, detailed observations of young accreting protostars, i.e. the class 0/I sources, are mandatory. The study of class0/I jets will be revolutionised by JWST, able to penetrate protostars dusty envelopes with unprecedented sensitivity and resolution. However, complementary information on parameters inferred from lines in different excitation regimes, for at least a representative sample of a few bright sources, is essential for a correct interpretation of the JWST results. Here we propose to observe four prototype bright jets from class0/I sources with the WFC3 in narrow band filters in order to acquire high angular resolution images in the [OI]6300A, [FeII]1.25 and [FeII]1.64um lines. These images will be used to: 1) provide accurate extinction maps of the jets that will be an important archival reference for any future observation on these jets. 2) measure key parameters as the mass flux, the iron abundance and the jet collimation on the hot gas component of the jets. These information will provide an invaluable reference frame for a comparison with similar parameters measured by JWST in a different gas regime. In addition, these observations will allow us to confront the properties of class 0/I jets with those of the more evolved T Tauri stars.

  8. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  9. X-ray detectability of accreting isolated black holes in our Galaxy

    Science.gov (United States)

    Tsuna, Daichi; Kawanaka, Norita; Totani, Tomonori

    2018-06-01

    Detectability of isolated black holes (IBHs) without a companion star but emitting X-rays by accretion from dense interstellar medium (ISM) or molecular cloud gas is investigated. We calculate orbits of IBHs in the Galaxy to derive a realistic spatial distribution of IBHs for various mean values of kick velocity at their birth υavg. X-ray luminosities of these IBHs are then calculated considering various phases of ISM and molecular clouds for a wide range of the accretion efficiency λ (a ratio of the actual accretion rate to the Bondi rate) that is rather uncertain. It is found that detectable IBHs mostly reside near the Galactic Centre (GC), and hence taking the Galactic structure into account is essential. In the hard X-ray band, where identification of IBHs from other contaminating X-ray sources may be easier, the expected number of IBHs detectable by the past survey by NuSTAR towards GC is at most order unity. However, 30-100 IBHs may be detected by the future survey by FORCE with an optimistic parameter set of υavg = 50 km s-1 and λ = 0.1, implying that it may be possible to detect IBHs or constrain the model parameters.

  10. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    Science.gov (United States)

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  11. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  12. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  13. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  14. A new method for measuring metallicities of young super star clusters

    International Nuclear Information System (INIS)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Davies, Ben; Bastian, Nate; Bergemann, Maria; Plez, Bertrand; Evans, Chris; Patrick, Lee; Schinnerer, Eva

    2014-01-01

    We demonstrate how the metallicities of young super star clusters (SSC) can be measured using novel spectroscopic techniques in the J-band. The near-infrared flux of SSCs older than ∼6 Myr is dominated by tens to hundreds of red supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find [Z] = +0.28 ± 0.14 dex using a moderate resolution (R ∼ 3500) J-band spectrum and in NGC 6496 we report [Z] = -0.32 ± 0.20 dex from a low resolution spectrum of R ∼ 1800. Recently commissioned low resolution multiplexed spectrographs on the Very Large Telescope (KMOS) and Keck (MOSFIRE) will allow accurate measurements of SSC metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation campaigns using the method presented in this paper.

  15. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  16. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    Science.gov (United States)

    Zhou, G.; Rappaport, S.; Nelson, L.; Huang, C. X.; Senhadji, A.; Rodriguez, J. E.; Vanderburg, A.; Quinn, S.; Johnson, C. I.; Latham, D. W.; Torres, G.; Gary, B. L.; Tan, T. G.; Johnson, M. C.; Burt, J.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Schwengeler, H. M.; Terentev, I.; Bieryla, A.; Esquerdo, G. A.; Berlind, P.; Calkins, M. L.; Bento, J.; Cochran, W. D.; Karjalainen, M.; Hatzes, A. P.; Karjalainen, R.; Holden, B.; Butler, R. P.

    2018-02-01

    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass 0.542+/- 0.053 {M}ȯ in a 72-day orbit around an A0 accreting star of mass 3.24+/- 0.29 {M}ȯ . The 59.9+/- 6.2 {R}ȯ disk around the accreting star occults the donor star once every orbit, inducing 19-day long, 7% deep eclipses identified by K2 and subsequently found in pre-discovery All-Sky Automated Survey and All Sky Automated Survey for Supernovae observations. We coordinated a campaign of photometric and spectroscopic observations for MWC 882 to measure the dynamical masses of the components and to monitor the system during eclipse. We found the photometric eclipse to be gray to ≈1%. We found that the primary star exhibits spectroscopic signatures of active accretion, and we observed gas absorption features from the disk during eclipse. We suggest that MWC 882 initially consisted of a ≈3.6 M ⊙ donor star transferring mass via Roche lobe overflow to a ≈2.1 M ⊙ accretor in a ≈7-day initial orbit. Through angular momentum conservation, the donor star is pushed outward during mass transfer to its current orbit of 72 days. The observed state of the system corresponds with the donor star having left the red giant branch ∼0.3 Myr ago, terminating active mass transfer. The present disk is expected to be short-lived (102 yr) without an active feeding mechanism, presenting a challenge to this model.

  17. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  18. The Young Substellar Companion ROXs 12 B: Near-infrared Spectrum, System Architecture, and Spin-Orbit Misalignment

    Science.gov (United States)

    Bowler, Brendan P.; Kraus, Adam L.; Bryan, Marta L.; Knutson, Heather A.; Brogi, Matteo; Rizzuto, Aaron C.; Mace, Gregory N.; Vanderburg, Andrew; Liu, Michael C.; Hillenbrand, Lynne A.; Cieza, Lucas A.

    2017-10-01

    ROXs 12 (2MASS J16262803-2526477) is a young star hosting a directly imaged companion near the deuterium-burning limit. We present a suite of spectroscopic, imaging, and time-series observations to characterize the physical and environmental properties of this system. Moderate-resolution near-infrared spectroscopy of ROXs 12 B from Gemini-North/NIFS and Keck/OSIRIS reveals signatures of low surface gravity including weak alkali absorption lines and a triangular H-band pseudocontinuum shape. No signs of Paβ emission are evident. As a population, however, we find that about half (46% ± 14%) of young (≲15 Myr) companions with masses ≲20 M Jup possess actively accreting subdisks detected via Paβ line emission, which represents a lower limit on the prevalence of circumplanetary disks in general, as some are expected to be in a quiescent phase of accretion. The bolometric luminosity of the companion and age of the host star ({6}-2+4 Myr) imply a mass of 17.5 ± 1.5 M Jup for ROXs 12 B based on hot-start evolutionary models. We identify a wide (5100 au) tertiary companion to this system, 2MASS J16262774-2527247, that is heavily accreting and exhibits stochastic variability in its K2 light curve. By combining v sin I * measurements with rotation periods from K2, we constrain the line-of-sight inclinations of ROXs 12 A and 2MASS J16262774-2527247 and find that they are misaligned by {{60}-11+7}^\\circ . In addition, the orbital axis of ROXs 12 B is likely misaligned from the spin axis of its host star, ROXs 12 A, suggesting that ROXs 12 B formed akin to fragmenting binary stars or in an equatorial disk that was torqued by the wide stellar tertiary. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support

  19. Small scale kinematics of massive star-forming cores

    NARCIS (Netherlands)

    Wang, Kuo-Song

    2013-01-01

    Unlike the formation of Solar-type stars, the formation of massive stars (M>8 Msun) is not yet well understood. For Solar-type protostars, the presence of circumstellar or protoplanetary disks which provide a path for mass accretion onto protostars is well established. However, to date only few

  20. A survey for variable young stars with small telescopes: First results from HOYS-CAPS

    Science.gov (United States)

    Froebrich, D.; Campbell-White, J.; Scholz, A.; Eislöffel, J.; Zegmott, T.; Billington, S. J.; Donohoe, J.; Makin, S. V.; Hibbert, R.; Newport, R. J.; Pickard, R.; Quinn, N.; Rodda, T.; Piehler, G.; Shelley, M.; Parkinson, S.; Wiersema, K.; Walton, I.

    2018-05-01

    Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long-term, multi-filter, high-cadence monitoring of large YSO samples is the key to understand the partly unusual light-curves that many of these objects show. Here we introduce and present the first results of the HOYS-CAPScitizen science project which aims to perform such monitoring for nearby (d < 1 kpc) and young (age < 10 Myr) clusters and star forming regions, visible from the northern hemisphere, with small telescopes. We have identified and characterised 466 variable (413 confirmed young) stars in 8 young, nearby clusters. All sources vary by at least 0.2 mag in V, have been observed at least 15 times in V, R and I in the same night over a period of about 2 yrs and have a Stetson index of larger than 1. This is one of the largest samples of variable YSOs observed over such a time-span and cadence in multiple filters. About two thirds of our sample are classical T-Tauri stars, while the rest are objects with depleted or transition disks. Objects characterised as bursters show by far the highest variability. Dippers and objects whose variability is dominated by occultations from normal interstellar dust or dust with larger grains (or opaque material) have smaller amplitudes. We have established a hierarchical clustering algorithm based on the light-curve properties which allows the identification of the YSOs with the most unusual behaviour, and to group sources with similar properties. We discuss in detail the light-curves of the unusual objects V2492 Cyg, V350 Cep and 2MASS J21383981+5708470.

  1. Symbiotic star AG Dra

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The results obtained from photometric (in the UBVRJHKLM system) and spectrophotometric (in the range 0.33-0.75 μm) observations of symbiotic star AG Dra are presented. The cool component of this star is a red giant with approximately constant brightness (ΔJ ≤ 0 m .3) classified as K4-K5. This red giant fills it's Roche loble and probably is on the assymptotic giant branch of the HR diagramm. The presence of IR excess in 5 μm associated with radiation of the gaseous envelope with the mass of M≅ 10 -6 M sun have been detected. Observations of AG Dra indicate that growing of the bolometric flux of a hot component is accompanied with decreasing effective temperature. The hot component of the system is probably an accerting red dwarf with the mass M≅ 0.4 M sun and disk accretion of matter of cool star with the rate M >or ∼ 10 -4 M sun year in equatorial region. Increase of accretion rate during the outburst of AG Dra leads to the increase of stellar wind from the red dwarf surface and the decrease of it's effective temperature. The hot component of AG Dra may also be considered as a white Dwarf with luminosity L 3 L sun and R eff >or approx. 0.2 R sun . In this case gravitational energy of accreting matter M > or ∼ 10 -6 M sun / year would be the source of the hot component outbursts. The luminosity between outbursts is determined by energy generation from the burning hydrogen layer source

  2. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  3. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Dotter, A.; Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Marino, A. F.; Milone, A. P. [Australian National University, The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Weston Creek, ACT 2611 (Australia); Bailey, J. I. III [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Crane, J. D. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mateo, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Olszewski, E. W. [The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-09-01

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}). The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.

  4. Long GRBs from Binary Stars: Runaway, Wolf-Rayet Progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution - the latter had previously

  5. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kuhn, Michael A. [Millennium Institute of Astrophysics, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Povich, Matthew S., E-mail: edf@astro.psu.edu [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Ave., Pomona, CA 91768 (United States)

    2016-12-20

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  6. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    International Nuclear Information System (INIS)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.

    2016-01-01

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  7. Probing the crust of the neutron star in EXO 0748-676

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Medin, Z. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, A. [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Wijnands, R. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Wolff, M. T. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Jonker, P. G. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands); Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Brown, E. F., E-mail: degenaar@umich.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2014-08-10

    X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ≅5 yr post-outburst. We find that the neutron star temperature remained at ≅117 eV between 2009 and 2011, but had decreased to ≅110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature (≅95 eV) measured ≅4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.

  8. ULTRAVIOLET-SELECTED FIELD AND PRE-MAIN-SEQUENCE STARS TOWARD TAURUS AND UPPER SCORPIUS

    International Nuclear Information System (INIS)

    Findeisen, K.; Hillenbrand, L.

    2010-01-01

    We have carried out a Galaxy Evolution Explorer (GALEX) Cycle 1 guest investigator program covering 56 deg 2 near the Taurus T association and 12 deg 2 along the northern edge of the Upper Scorpius OB association. We combined photometry in the GALEX far-ultraviolet and near-ultraviolet bands with data from the Two Micron All Sky Survey to identify candidate young (∼<100 Myr old) stars as those with an ultraviolet excess relative to older main-sequence stars. Follow-up spectroscopy of a partial sample of these candidates suggests five new members of Taurus, with 8-20 expected from additional observations, and five new members of Upper Scorpius, with three to six expected from additional observations. These candidate new members appear to represent a distributed, non-clustered population in either region, although our sample statistics are as of yet too poor to constrain the nature or extent of this population. Rather, our study demonstrates the ability of GALEX observations to identify young stellar populations distributed over a wide area of the sky. We also highlight the necessity of a better understanding of the Galactic ultraviolet source population to support similar investigations. In particular, we report a large population of stars with an ultraviolet excess but no optical indicators of stellar activity or accretion, and briefly argue against several interpretations of these sources.

  9. Evolution of the magnetized, neutrino-cooled accretion disk in the aftermath of a black hole-neutron star binary merger

    Science.gov (United States)

    Hossein Nouri, Fatemeh; Duez, Matthew D.; Foucart, Francois; Deaton, M. Brett; Haas, Roland; Haddadi, Milad; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela

    2018-04-01

    Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the postmerger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically driven heating processes, so realistic models must include both effects. In this paper, we study the postmerger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial postmerger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20 ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged.

  10. Hydromagnetic rotational braking of magnetic stars

    International Nuclear Information System (INIS)

    Fleck, R.C. Jr.

    1980-01-01

    It is suggested that the magnetic Ap stars can be rotationally decelerated to long periods by the braking action of the associated magnetic field on time scales of order 10 7 --10 10 years depending on whether the star's dipole field is aligned perpendicular or parallel to the rotation axis. Rotation includes a toroidal magnetic field in the plasma surrounding a star, and the accompanying magnetic stresses produce a net torque acting to despin the star. These results indicate that it is not necessary to postulate mass loss or mass accretion for this purely hydromagnetic braking effect

  11. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    International Nuclear Information System (INIS)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-01-01

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  12. Long GRBs from binary stars: runaway, Wolf-Rayet progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution — the latter had previously

  13. CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766

    International Nuclear Information System (INIS)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Günther, H. M.; Chen, C. H.; Grady, C. A.

    2017-01-01

    Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10 29 erg s −1 , consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L x  > 6 × 10 25 erg s −1 within 2′ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT Apec  = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L x  ∼ 2 × 10 29 erg s −1 argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10 6 years. At 10 28 –10 29 erg s −1 X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  14. ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2016-07-20

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  15. OGLE-2008-BLG-355Lb: A massive planet around a late-type star

    Energy Technology Data Exchange (ETDEWEB)

    Koshimoto, N.; Sumi, T.; Fukagawa, M.; Shibai, H. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Rattenbury, N.; Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, 464-8601 (Japan); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Muraki, Y. [Department of Physics, Konan University, Nishiokamoto 8-9-1, Kobe 658-8501 (Japan); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To. [Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-06-20

    We report the discovery of a massive planet, OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 ± 0.0006 at a separation of 0.877 ± 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio, implies a host star mass of M{sub h}=0.37{sub −0.17}{sup +0.30} M{sub ⊙} and a companion of mass M{sub P}=4.6{sub −2.2}{sup +3.7}M{sub J}, at a projected separation of r{sub ⊥}=1.70{sub −0.30}{sup +0.29} AU. The implied distance to the planetary system is D {sub L} = 6.8 ± 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis may be a challenge to the core accretion model of planet formation, as the core accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. Thus, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.

  16. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis.

    Science.gov (United States)

    Siegel, Daniel M; Metzger, Brian D

    2017-12-08

    The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.

  17. The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation

    International Nuclear Information System (INIS)

    Paumard, T; Genzel, R; Martins, F; Nayakshin, S; Beloborodov, A M; Levin, Y; Trippe, S; Eisenhauer, F; Ott, T; Gillessen, S; Abuter, R; Cuadra, J; Alexander, T; Sternberg, A

    2006-01-01

    We report the definite spectroscopic identification of ≅ 40 OB supergiants, giants and main sequence stars in the central parsec of the Galaxy. Detection of their absorption lines have become possible with the high spatial and spectral resolution and sensitivity of the adaptive optics integral Held spectrometer SPIFFI/SINFONI on the ESO VLT. Several of these OB stars appear to be helium and nitrogen rich. Almost all of the ≅80 massive stars now known in the central parsec (central arcsecond excluded) reside in one of two somewhat thick ((|/R) ≅ 0.14) rotating disks. These stellar disks have fairly sharp inner edges (R ≅ 1'') and surface density profiles that scale as R -2 . We do not detect any OB stars outside the central 0.5 pc. The majority of the stars in the clockwise system appear to be on almost circular orbits, whereas most of those in the 'counter-clockwise' disk appear to be on eccentric orbits. Based on its stellar surface density distribution and dynamics we propose that IRS 13E is an extremely dense cluster (ρ core ∼> 3 x 10 8 M o-dot pc -3 ), which has formed in the counter-clockwise disk. The stellar contents of both systems are remarkably similar, indicating a common age of ≅ 6±2 Myr. The K-band luminosity function of the massive stars suggests a top-heavy mass function and limits the total stellar mass contained in both disks to ≅ 1.5 x 10 4 M o-dot . Our data strongly favor in situ star formation from dense gas accretion disks for the two stellar disks. This conclusion is very clear for the clockwise disk and highly plausible for the counter-clockwise system

  18. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    Science.gov (United States)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  19. DARK STARS: A NEW LOOK AT THE FIRST STARS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Spolyar, Douglas; Bodenheimer, Peter; Freese, Katherine; Gondolo, Paolo

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the universe may be dark (matter powered) stars (DSs), luminous objects powered by dark matter (DM) heating rather than by nuclear fusion, and in this paper we examine the history of these DSs. The power source is annihilation of weakly interacting massive particles (WIMPs) which are their own antiparticles. These WIMPs are the best motivated DM candidates and may be discovered by ongoing direct or indirect detection searches (e.g., Fermi/GLAST) or at the Large Hadron Collider at CERN. A new stellar phase results, powered by DM annihilation as long as there is a DM fuel, from millions to billions of years. We build up the DSs from the time DM heating becomes the dominant power source, accreting more and more matter onto them. We have included many new effects in the current study, including a variety of particle masses and accretion rates, nuclear burning, feedback mechanisms, and possible repopulation of DM density due to capture. Remarkably, we find that in all these cases, we obtain the same result: the first stars are very large, 500-1000 times as massive as the Sun; as well as puffy (radii 1-10 AU), bright (10 6 -10 7 L sun ), and cool (T surf sun and the temperatures are much hotter (T surf > 50,000 K). Hence DSs should be observationally distinct from standard Pop III stars. In addition, DSs avoid the (unobserved) element enrichment produced by the standard first stars. Once the DM fuel is exhausted, the DS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes that may provide seeds for the supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate-mass black holes.

  20. Gamma-ray bursts from fast, galactic neutron stars

    International Nuclear Information System (INIS)

    Colgate, S.A.; Leonard, P.J.

    1996-01-01

    What makes a Galactic model of gamma-ray bursts (GBs) feasible is the observation of a new population of objects, fast neutron stars, that are isotropic with respect to the galaxy following a finite period, ∼30 My, after their formation (1). Our Galactic model for the isotropic component of GBs is based upon high-velocity neutron stars (NSs) that have accretion disks. These fast NSs are formed in tidally locked binaries, producing a unique population of high velocity (approx-gt 10 3 kms -1 ) and slowly rotating (8 s) NSs. Tidal locking occurs due to the meridional circulation caused by the conservation of angular momentum of the tidal lobes. Following the collapse to a NS and the explosion, these lobes initially perturb the NS in the direction of the companion. Subsequent accretion (1 to 2 s) occurs on the rear side of the initial motion, resulting in a runaway acceleration of the NS by neutrino emission from the hot accreted matter. The recoil momentum of the relativistic neutrino emission from the localized, down flowing matter far exceeds the momentum drag of the accreted matter. The recoil of the NS is oriented towards the companion, but the NS misses because of the pre-explosion orbital motion. The near miss captures matter from the companion and forms a disk around the NS. Accretion onto the NS from this initially gaseous disk due to the ''alpha'' viscosity results in a soft gamma-ray repeater phase, which lasts ∼10 4 yr. Later, after the neutron star has moved ∼30 kpc from its birthplace, solid bodies form in the disk, and accrete to planetoid size bodies after ∼3x10 7 years. Some of these planetoid bodies, with a mass of ∼10 21 endash 10 22 g, are perturbed into an orbit inside the tidal distortion radius of approx-gt 10 5 km. Of these ∼1% are captured by the magnetic field of the NS at R 3 km to create GBs

  1. Focused Study of Thermonuclear Bursts on Neutron Stars

    Science.gov (United States)

    Chenevez, Jérôme

    2009-05-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.

  2. Helium flashes on accreting white dwarfs: consequences for type 1 supernova and nova abundances

    International Nuclear Information System (INIS)

    Hillebrandt, W.; Ziegert, W.; Thielemann, F.K.

    1986-01-01

    Helium flashes on an accreting 1 Solar mass carbon-oxygen white dwarf are investigated. It is demonstrated that the outer layers of a white dwarf growing towards the Chandrasekhar limit will be significantly enriched in elements like Mg, Al, Si and S provided the mass accretion rate is of the order of a few times 10 -8 to 10 -7 Solar mass per year. Since these stars are believed to explode as type I supernovae the abundances being ejected will depend also upon the accretion history of the white dwarfs. In addition this matter will have a rather non-solar isotopic composition. Finally, our results may help to explain abundances of heavy elements observed in certain novae if the white dwarf in those binary systems has gone through a high accretion rate phase once in the past before becoming a normal cataclysmic variable

  3. HOT HIGH-MASS ACCRETION DISK CANDIDATES

    International Nuclear Information System (INIS)

    Beuther, H.; Walsh, A. J.; Longmore, S. N.

    2009-01-01

    To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a dozen high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope Compact Array (ATCA) in the high-excitation (4,4) and (5,5) lines of NH 3 . All of our originally selected sources were detected in both NH 3 transitions, directly associated with CH 3 OH Class II maser emission and implying that high-excitation NH 3 lines are good tracers of the dense gas components in hot-core-type targets. Only the one source that did not satisfy the initial selection criteria remained undetected. From the 11 mapped sources, six show clear signatures of rotation and/or infall motions. These signatures vary from velocity gradients perpendicular to the outflows, to infall signatures in absorption against ultracompact H II regions, to more spherical infall signatures in emission. Although our spatial resolution is ∼1000 AU, we do not find clear Keplerian signatures in any of the sources. Furthermore, we also do not find flattened structures. In contrast to this, in several of the sources with rotational signatures, the spatial structure is approximately spherical with sizes exceeding 10 4 AU, showing considerable clumpy sub-structure at even smaller scales. This implies that on average typical Keplerian accretion disks-if they exist as expected-should be confined to regions usually smaller than 1000 AU. It is likely that these disks are fed by the larger-scale rotating envelope structure we observe here. Furthermore, we do detect 1.25 cm continuum emission in most fields of view. While in some cases weak cm continuum emission is associated with our targets, more typically larger-scale H II regions are seen offset more than 10'' from our sources. While these H II regions are unlikely to be directly related to the target regions, this spatial association nevertheless additionally stresses that high-mass star formation rarely

  4. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-12-01

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is a Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.

  5. NuSTAR AND SUZAKU OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK

    International Nuclear Information System (INIS)

    Parker, M. L.; Lohfink, A.; Fabian, A. C.; Alston, W. N.; Kara, E.; Tomsick, J. A.; Boggs, S. E.; Craig, W. W.; Miller, J. M.; Yamaoka, K.; Nowak, M.; Grinberg, V.; Christensen, F. E.; Fürst, F.; Grefenstette, B. W.; Harrison, F. A.; Gandhi, P.; Hailey, C. J.; King, A. L.; Stern, D.

    2015-01-01

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broadband spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, instead requiring a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of García et al. to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height and rule out truncation to greater than three gravitational radii at the 3σ confidence level. In addition, we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that the blurring parameters are consistent when fitting either just the iron line or the entire broadband spectrum, which is well modeled with a Comptonized continuum plus reflection model

  6. Deposition of steeply infalling debris around white dwarf stars

    Science.gov (United States)

    Brown, John C.; Veras, Dimitri; Gänsicke, Boris T.

    2017-06-01

    High-metallicity pollution is common in white dwarf (WD) stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to WD systems. We find that the evolution of cm-to-km size (a0) infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any WD, and apply the algorithm to four limiting combinations of hot versus cool (young/old) WDs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (I) Total sublimation above the photosphere befalls all small infallers across the entire WD temperature (TWD) range, the threshold size rising with TWD and 100× larger for rock than snow. (II) All very large objects fragment tidally regardless of TWD: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103-3 × 104 cm across all WD cooling ages. (III) A considerable range of a0 avoids fragmentation and total sublimation, yielding impacts or grazes with cold WDs. This range rapidly narrows with increasing TWD, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  7. Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems

    Science.gov (United States)

    Farihi, J.; Fossati, L.; Wheatley, P. J.; Metzger, B. D.; Mauerhan, J.; Bachman, S.; Gänsicke, B. T.; Redfield, S.; Cauley, P. W.; Kochukhov, O.; Achilleos, N.; Stone, N.

    2018-02-01

    This paper reports circular spectropolarimetry and X-ray observations of several polluted white dwarfs including WD 1145+017, with the aim to constrain the behaviour of disc material and instantaneous accretion rates in these evolved planetary systems. Two stars with previously observed Zeeman splitting, WD 0322-019 and WD 2105-820, are detected above 5σ and 〈Bz〉 > 1 kG, while WD 1145+017, WD 1929+011, and WD 2326+049 yield (null) detections below this minimum level of confidence. For these latter three stars, high-resolution spectra and atmospheric modelling are used to obtain limits on magnetic field strengths via the absence of Zeeman splitting, finding B* Earth composition material falling on to the magnetic polar regions of white dwarfs, where X-rays and cyclotron radiation may contribute to accretion luminosity. This analysis is applied to X-ray data for WD 1145+017, WD 1729+371, and WD 2326+049, and the upper bound count rates are modelled with spectra for a range of plasma kT = 1-10 keV in both the magnetic and non-magnetic accretion regimes. The results for all three stars are consistent with a typical dusty white dwarf in a steady state at 108-109 g s-1. In particular, the non-magnetic limits for WD 1145+017 are found to be well below previous estimates of up to 1012 g s-1, and likely below 1010 g s-1, thus suggesting the star-disc system may be average in its evolutionary state, and only special in viewing geometry.

  8. FRB 121102: A Repeatedly Combed Neutron Star by a Nearby Low-luminosity Accreting Supermassive Black Hole

    Science.gov (United States)

    Zhang, Bing

    2018-02-01

    The origin of fast radio bursts (FRBs) remains mysterious. Recently, the only repeating FRB source, FRB 121102, was reported to possess an extremely large and variable rotation measure (RM). The inferred magnetic field strength in the burst environment is comparable to that in the vicinity of the supermassive black hole Sagittarius A* of our Galaxy. Here, we show that all of the observational properties of FRB 121102 (including the high RM and its evolution, the high linear polarization degree, an invariant polarization angle across each burst and other properties previously known) can be interpreted within the “cosmic comb” model, which invokes a neutron star with typical spin and magnetic field parameters whose magnetosphere is repeatedly and marginally combed by a variable outflow from a nearby low-luminosity accreting supermassive black hole in the host galaxy. We propose three falsifiable predictions (periodic “on/off” states, and periodic/correlated variation of RM and polarization angle) of the model and discuss other FRBs within the context of the cosmic comb model as well as the challenges encountered by other repeating FRB models in light of the new observations.

  9. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei [Department of Astronomy, Peking University, 100871 Beijing (China); Qin Shengli, E-mail: liutiepku@gmail.com [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  10. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    International Nuclear Information System (INIS)

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-01-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10 3 cm –3 and kinematic temperature ∼20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  11. Rapid Evolution of the Gaseous Exoplanetary Debris Around the White Dwarf Star HE 1349--2305

    OpenAIRE

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.; Fanale, S. M.; Fuchs, J. T.; Hermes, J. J.

    2018-01-01

    Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic preces...

  12. White-dwarf rotational equilibria in magnetic cataclysmic variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Warner, B. (Cape Town Univ. (South Africa). Dept. of Astronomy Australian National Univ., Canberra (Australia). Dept. of Mathematics); Wickramasinghe, D.T. (Australian National Univ., Canberra (Australia). Dept. of Mathematics)

    1991-02-01

    The magnetic cataclysmic variable stars (polars, intermediate polars and DQ Her stars) are grouped about three lines in the orbital period-spin period diagram. This segregation is shown to be the consequence of competition between braking and accretion torques when combined with the effects of cyclical variations in rate of mass transfer. (author).

  13. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  14. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Science.gov (United States)

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  15. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    International Nuclear Information System (INIS)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m Kp = 11.6, T eff = 5576 K, M * = 0.98 M ☉ ). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ⊕ , based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars

  16. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  17. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae

    Science.gov (United States)

    Metzger, Brian D.; Beniamini, Paz; Giannios, Dimitrios

    2018-04-01

    Rapidly spinning, strongly magnetized protoneutron stars (“millisecond protomagnetars”) are candidate central engines of long-duration gamma-ray bursts (GRBs), superluminous supernovae (SLSNe), and binary neutron star mergers. Magnetar birth may be accompanied by the fallback of stellar debris, lasting for seconds or longer following the explosion. Accretion alters the magnetar evolution by (1) providing an additional source of rotational energy (or a potential sink, if the propeller mechanism operates), (2) enhancing the spin-down luminosity above the dipole rate by compressing the magnetosphere and expanding the polar cap region of open magnetic field lines, and (3) supplying an additional accretion-powered neutrino luminosity that sustains the wind baryon loading, even after the magnetar’s internal neutrino luminosity has subsided. The more complex evolution of the jet power and magnetization of an accreting magnetar more readily accounts for the high 56Ni yields of GRB SNe and the irregular time evolution of some GRB light curves (e.g., bursts with precursors followed by a long quiescent interval before the main emission episode). Additional baryon loading from accretion-powered neutrino irradiation of the polar cap lengthens the time frame over which the jet magnetization is in the requisite range σ ≲ 103 for efficient gamma-ray emission, thereby accommodating GRBs with ultralong durations. Though accretion does not significantly raise the maximum energy budget from the limit of ≲ few × 1052 erg for an isolated magnetar, it greatly expands the range of magnetic field strengths and birth spin periods capable of powering GRB jets, reducing the differences between the magnetar properties normally invoked to explain GRBs versus SLSNe.

  18. Molecular line study of massive star-forming regions from the Red MSX Source survey

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  19. Cataclysmic Variable Stars

    Science.gov (United States)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  20. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    Science.gov (United States)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  1. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    Science.gov (United States)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  2. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    NARCIS (Netherlands)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-01-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type

  3. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  4. DM ORI: A YOUNG STAR OCCULTED BY A DISTURBANCE IN ITS PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Weintraub, David A. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Cargile, Phillip [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Kochanek, Christopher S.; Gaudi, B. Scott; Stanek, Krzysztof Z.; Holoien, Thomas W.-S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); James, David [Cerro Tololo InterAmerican Observatory, Casilla 603, La Serena (Chile); Kuhn, Rudolf B. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Prieto, Jose L. [Nucleo de Astronoma de la Facultad de Ingeniera, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Feldman, Daniel M.; Espaillat, Catherine C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2016-11-01

    In some planet formation theories, protoplanets grow gravitationally within a young star’s protoplanetary disk, a signature of which may be a localized disturbance in the disk’s radial and/or vertical structure. Using time-series photometric observations by the Kilodegree Extremely Little Telescope South project and the All-Sky Automated Survey for SuperNovae, combined with archival observations, we present the discovery of two extended dimming events of the young star, DM Ori. This young system faded by ∼1.5 mag from 2000 March to 2002 August and then again in 2013 January until 2014 September (depth ∼1.7 mag). We constrain the duration of the 2000–2002 dimming to be < 860 days, and the event in 2013–2014 to be < 585 days, separated by ∼12.5 years. A model of the spectral energy distribution indicates a large infrared excess consistent with an extensive circumstellar disk. Using basic kinematic arguments, we propose that DM Ori is likely being periodically occulted by a feature (possibly a warp or perturbation) in its circumstellar disk. In this scenario, the occulting feature is located >6 au from the host star, moving at ∼14.6 km s{sup −1} and is ∼4.9 au in width. This localized structure may indicate a disturbance such as that which may be caused by a protoplanet early in its formation.

  5. AN ENERGETIC AGN OUTBURST POWERED BY A RAPIDLY SPINNING SUPERMASSIVE BLACK HOLE OR AN ACCRETING ULTRAMASSIVE BLACK HOLE

    International Nuclear Information System (INIS)

    McNamara, B. R.; Kazemzadeh, F.; Kirkpatrick, C. C.; Rafferty, D. A.; Birzan, L.; Nulsen, P. E. J.; Wise, M. W.

    2009-01-01

    Powering the 10 62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion with a 10% mass-to-energy conversion efficiency implies that its putative supermassive black hole (SMBH) grew by ∼6 x 10 8 M sun over the past 100 Myr. Guided by data at several wavelengths, we place upper limits on the amount of cold gas and star formation near the nucleus of 9 M sun and sun yr -1 , respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the inner several kpc must have been consumed by its SMBH at the rate of ∼3-5 M sun yr -1 during the past 100 Myr while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10 11 M sun . Furthermore, its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ∼5 x 10 9 M sun black hole. We suggest instead that the active galactic nucleus (AGN) outburst is powered by angular momentum released from a rapidly spinning black hole. The rotational energy and power available from a spinning black hole are consistent with the cavity and shock energetics inferred from X-ray observations. A maximally spinning 10 9 M sun black hole contains enough rotational energy, ∼10 62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10 10 M sun . The host galaxy's unusually large 3.8 kpc stellar core radius (light deficit) may

  6. Revolution evolution: tracing angular momentum during star and planetary system formation

    Science.gov (United States)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the

  7. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms

    International Nuclear Information System (INIS)

    Nomoto, K.

    1982-01-01

    The evolution of carbon-oxygen white dwarfs accreting helium in binary systems has been investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs as a plausible explosion model for a Type I supernova. Although the accreted material has been assumed to be helium, our results should also be applicable to the more general case of accretion of hydrogen-rich material, since hydrogen shell burning leads to the development of a helium zone. Several cases with different accretion rates of helium and different initial masses of the white dwarf have been studied. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates, or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case for the slow accretion since, in this case, the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail

  8. Standing non-dissipative shocks in black hole accretion and winds

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1988-07-01

    We present all non-dissipative shock solutions for stationary, axially symmetric and rotating adiabatic flows of small transverse thickness in black hole potential. We show that for a given initial and final states of the flow, there can be as many as four formal shock locations in both the accretion and the winds. Only two (three) of these locations are acceptable for accretion onto black holes (neutron stars) and three of these locations are acceptable for winds. We prove that the shock strength and the temperature jump have a lower limit which does not depend upon the parameters of the flow or the force field in which the flow moves and is only a function of the adiabatic index of flow. (author). 14 refs, 12 figs

  9. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    International Nuclear Information System (INIS)

    Moriya, Takashi J.

    2016-01-01

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  10. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-10-20

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  11. Gap opening by gas accretion and influence on planet populations

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Ndugu, N.; Morbidelli, A.

    2017-09-01

    Giant planets grow and migrate in protoplanetary disks. Because they accrete gas from their horseshoe region until the latter is depleted, we find that giant planets can open a gap before being lost into their central star by type I migration. A reduced type II migration is then enough and necessary to limit the total amount of migration that a giant planet suffers during its formation.

  12. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  13. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  14. Spectroscopic confirmation of young planetary-mass companions on wide orbits

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C.; Mann, Andrew W. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kraus, Adam L., E-mail: bpbowler@caltech.edu [Astronomy Department, University of Texas at Austin, Austin, TX 78712, USA. (United States)

    2014-03-20

    We present moderate-resolution (R ∼ 4000-5000) near-infrared integral field spectroscopy of the young (1-5 Myr) 6-14 M {sub Jup} companions ROXs 42B b and FW Tau b obtained with Keck/OSIRIS and Gemini-North/NIFS. The spectrum of ROXs 42B b exhibits clear signs of low surface gravity common to young L dwarfs, confirming its extreme youth, cool temperature, and low mass. Overall, it closely resembles the free-floating 4-7 M {sub Jup} L-type Taurus member 2MASS J04373705+2331080. The companion to FW Tau AB is more enigmatic. Our optical and near-infrared spectra show strong evidence of outflow activity and disk accretion in the form of line emission from [S II], [O I], Hα, Ca II, [Fe II], Paβ, and H{sub 2}. The molecular hydrogen emission is spatially resolved as a single lobe that stretches ≈0.''1 (15 AU). Although the extended emission is not kinematically resolved in our data, its morphology resembles shock-excited H{sub 2} jets primarily seen in young Class 0 and Class I sources. The near-infrared continuum of FW Tau b is mostly flat and lacks the deep absorption features expected for a cool, late-type object. This may be a result of accretion-induced veiling, especially in light of its strong and sustained Hα emission (EW(Hα) ≳ 290 Å). Alternatively, FW Tau b may be a slightly warmer (M5-M8) accreting low-mass star or brown dwarf (0.03-0.15 M {sub ☉}) with an edge-on disk. Regardless, its young evolutionary stage is in stark contrast to its Class III host FW Tau AB, indicating a more rapid disk clearing timescale for the host binary system than for its wide companion. Finally, we present near-infrared spectra of the young (∼2-10 Myr) low-mass (12-15 M {sub Jup}) companions GSC 6214-210 B and SR 12 C and find they best resemble low-gravity M9.5 and M9 substellar templates.

  15. Using He I λ10830 to Diagnose Mass Flows Around Herbig Ae/Be Stars

    Science.gov (United States)

    Cauley, Paul W.; Johns-Krull, Christopher M.

    2015-01-01

    The pre-main sequence Herbig Ae/Be stars (HAEBES) are the intermediate mass cousins of the low mass T Tauri stars (TTSs). However, it is not clear that the same accretion and mass outflow mechanisms operate identically in both mass regimes. Classical TTSs (CTTSs) accrete material from their disks along stellar magnetic field lines in a scenario called magnetospheric accretion. Magnetospheric accretion requires a strong stellar dipole field in order to truncate the inner gas disk. These fields are either absent or very weak on a large majority of HAEBES, challenging the view that magnetospheric accretion is the dominant accretion mechanism. If magnetospheric accretion does not operate similarly around HAEBES as it does around CTTSs, then strong magnetocentrifugal outflows, which are directly linked to accretion and are ubiquitous around CTTSs, may be driven less efficiently from HAEBE systems. Here we present high resolution spectroscopic observations of the He I λ10830 line in a sample of 48 HAEBES. He I λ10830 is an excellent tracer of both mass infall and outflow which is directly manifested as red and blue-shifted absorption in the profile morphologies. These features, among others, are common in our sample. The occurrence of both red and blue-shifted absorption profiles is less frequent, however, than is found in CTTSs. Statistical contingency tests confirm this difference at a significant level. In addition, we find strong evidence for smaller disk truncation radii in the objects displaying red-shifted absorption profiles. This is expected for HAEBES experiencing magnetospheric accretion based on their large rotation rates and weak magnetic field strengths. Finally, the low incidence of blue-shifted absorption in our sample compared to CTTSs and the complete lack of simultaneous red and blue-shifted absorption features suggests that magnetospheric accretion in HAEBES is less efficient at driving strong outflows. The stellar wind-like outflows that are

  16. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...

  17. CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D.; Fridriksson, J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Brown, E. F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201 (United States); Homan, J. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Heinke, C. O.; Sivakoff, G. R. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Pooley, D., E-mail: degenaar@umich.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2013-09-20

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≅2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.

  18. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    Science.gov (United States)

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  19. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  20. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    Science.gov (United States)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical